phy_lp.c 82 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200
  1. /*
  2. Broadcom B43 wireless driver
  3. IEEE 802.11g LP-PHY driver
  4. Copyright (c) 2008-2009 Michael Buesch <mb@bu3sch.de>
  5. This program is free software; you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation; either version 2 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program; see the file COPYING. If not, write to
  15. the Free Software Foundation, Inc., 51 Franklin Steet, Fifth Floor,
  16. Boston, MA 02110-1301, USA.
  17. */
  18. #include "b43.h"
  19. #include "main.h"
  20. #include "phy_lp.h"
  21. #include "phy_common.h"
  22. #include "tables_lpphy.h"
  23. static inline u16 channel2freq_lp(u8 channel)
  24. {
  25. if (channel < 14)
  26. return (2407 + 5 * channel);
  27. else if (channel == 14)
  28. return 2484;
  29. else if (channel < 184)
  30. return (5000 + 5 * channel);
  31. else
  32. return (4000 + 5 * channel);
  33. }
  34. static unsigned int b43_lpphy_op_get_default_chan(struct b43_wldev *dev)
  35. {
  36. if (b43_current_band(dev->wl) == IEEE80211_BAND_2GHZ)
  37. return 1;
  38. return 36;
  39. }
  40. static int b43_lpphy_op_allocate(struct b43_wldev *dev)
  41. {
  42. struct b43_phy_lp *lpphy;
  43. lpphy = kzalloc(sizeof(*lpphy), GFP_KERNEL);
  44. if (!lpphy)
  45. return -ENOMEM;
  46. dev->phy.lp = lpphy;
  47. return 0;
  48. }
  49. static void b43_lpphy_op_prepare_structs(struct b43_wldev *dev)
  50. {
  51. struct b43_phy *phy = &dev->phy;
  52. struct b43_phy_lp *lpphy = phy->lp;
  53. memset(lpphy, 0, sizeof(*lpphy));
  54. //TODO
  55. }
  56. static void b43_lpphy_op_free(struct b43_wldev *dev)
  57. {
  58. struct b43_phy_lp *lpphy = dev->phy.lp;
  59. kfree(lpphy);
  60. dev->phy.lp = NULL;
  61. }
  62. static void lpphy_read_band_sprom(struct b43_wldev *dev)
  63. {
  64. struct b43_phy_lp *lpphy = dev->phy.lp;
  65. struct ssb_bus *bus = dev->dev->bus;
  66. u16 cckpo, maxpwr;
  67. u32 ofdmpo;
  68. int i;
  69. if (b43_current_band(dev->wl) == IEEE80211_BAND_2GHZ) {
  70. lpphy->tx_isolation_med_band = bus->sprom.tri2g;
  71. lpphy->bx_arch = bus->sprom.bxa2g;
  72. lpphy->rx_pwr_offset = bus->sprom.rxpo2g;
  73. lpphy->rssi_vf = bus->sprom.rssismf2g;
  74. lpphy->rssi_vc = bus->sprom.rssismc2g;
  75. lpphy->rssi_gs = bus->sprom.rssisav2g;
  76. lpphy->txpa[0] = bus->sprom.pa0b0;
  77. lpphy->txpa[1] = bus->sprom.pa0b1;
  78. lpphy->txpa[2] = bus->sprom.pa0b2;
  79. maxpwr = bus->sprom.maxpwr_bg;
  80. lpphy->max_tx_pwr_med_band = maxpwr;
  81. cckpo = bus->sprom.cck2gpo;
  82. ofdmpo = bus->sprom.ofdm2gpo;
  83. if (cckpo) {
  84. for (i = 0; i < 4; i++) {
  85. lpphy->tx_max_rate[i] =
  86. maxpwr - (ofdmpo & 0xF) * 2;
  87. ofdmpo >>= 4;
  88. }
  89. ofdmpo = bus->sprom.ofdm2gpo;
  90. for (i = 4; i < 15; i++) {
  91. lpphy->tx_max_rate[i] =
  92. maxpwr - (ofdmpo & 0xF) * 2;
  93. ofdmpo >>= 4;
  94. }
  95. } else {
  96. ofdmpo &= 0xFF;
  97. for (i = 0; i < 4; i++)
  98. lpphy->tx_max_rate[i] = maxpwr;
  99. for (i = 4; i < 15; i++)
  100. lpphy->tx_max_rate[i] = maxpwr - ofdmpo;
  101. }
  102. } else { /* 5GHz */
  103. lpphy->tx_isolation_low_band = bus->sprom.tri5gl;
  104. lpphy->tx_isolation_med_band = bus->sprom.tri5g;
  105. lpphy->tx_isolation_hi_band = bus->sprom.tri5gh;
  106. lpphy->bx_arch = bus->sprom.bxa5g;
  107. lpphy->rx_pwr_offset = bus->sprom.rxpo5g;
  108. lpphy->rssi_vf = bus->sprom.rssismf5g;
  109. lpphy->rssi_vc = bus->sprom.rssismc5g;
  110. lpphy->rssi_gs = bus->sprom.rssisav5g;
  111. lpphy->txpa[0] = bus->sprom.pa1b0;
  112. lpphy->txpa[1] = bus->sprom.pa1b1;
  113. lpphy->txpa[2] = bus->sprom.pa1b2;
  114. lpphy->txpal[0] = bus->sprom.pa1lob0;
  115. lpphy->txpal[1] = bus->sprom.pa1lob1;
  116. lpphy->txpal[2] = bus->sprom.pa1lob2;
  117. lpphy->txpah[0] = bus->sprom.pa1hib0;
  118. lpphy->txpah[1] = bus->sprom.pa1hib1;
  119. lpphy->txpah[2] = bus->sprom.pa1hib2;
  120. maxpwr = bus->sprom.maxpwr_al;
  121. ofdmpo = bus->sprom.ofdm5glpo;
  122. lpphy->max_tx_pwr_low_band = maxpwr;
  123. for (i = 4; i < 12; i++) {
  124. lpphy->tx_max_ratel[i] = maxpwr - (ofdmpo & 0xF) * 2;
  125. ofdmpo >>= 4;
  126. }
  127. maxpwr = bus->sprom.maxpwr_a;
  128. ofdmpo = bus->sprom.ofdm5gpo;
  129. lpphy->max_tx_pwr_med_band = maxpwr;
  130. for (i = 4; i < 12; i++) {
  131. lpphy->tx_max_rate[i] = maxpwr - (ofdmpo & 0xF) * 2;
  132. ofdmpo >>= 4;
  133. }
  134. maxpwr = bus->sprom.maxpwr_ah;
  135. ofdmpo = bus->sprom.ofdm5ghpo;
  136. lpphy->max_tx_pwr_hi_band = maxpwr;
  137. for (i = 4; i < 12; i++) {
  138. lpphy->tx_max_rateh[i] = maxpwr - (ofdmpo & 0xF) * 2;
  139. ofdmpo >>= 4;
  140. }
  141. }
  142. }
  143. static void lpphy_adjust_gain_table(struct b43_wldev *dev, u32 freq)
  144. {
  145. struct b43_phy_lp *lpphy = dev->phy.lp;
  146. u16 temp[3];
  147. u16 isolation;
  148. B43_WARN_ON(dev->phy.rev >= 2);
  149. if (b43_current_band(dev->wl) == IEEE80211_BAND_2GHZ)
  150. isolation = lpphy->tx_isolation_med_band;
  151. else if (freq <= 5320)
  152. isolation = lpphy->tx_isolation_low_band;
  153. else if (freq <= 5700)
  154. isolation = lpphy->tx_isolation_med_band;
  155. else
  156. isolation = lpphy->tx_isolation_hi_band;
  157. temp[0] = ((isolation - 26) / 12) << 12;
  158. temp[1] = temp[0] + 0x1000;
  159. temp[2] = temp[0] + 0x2000;
  160. b43_lptab_write_bulk(dev, B43_LPTAB16(12, 0), 3, temp);
  161. b43_lptab_write_bulk(dev, B43_LPTAB16(13, 0), 3, temp);
  162. }
  163. static void lpphy_table_init(struct b43_wldev *dev)
  164. {
  165. u32 freq = channel2freq_lp(b43_lpphy_op_get_default_chan(dev));
  166. if (dev->phy.rev < 2)
  167. lpphy_rev0_1_table_init(dev);
  168. else
  169. lpphy_rev2plus_table_init(dev);
  170. lpphy_init_tx_gain_table(dev);
  171. if (dev->phy.rev < 2)
  172. lpphy_adjust_gain_table(dev, freq);
  173. }
  174. static void lpphy_baseband_rev0_1_init(struct b43_wldev *dev)
  175. {
  176. struct ssb_bus *bus = dev->dev->bus;
  177. struct b43_phy_lp *lpphy = dev->phy.lp;
  178. u16 tmp, tmp2;
  179. b43_phy_mask(dev, B43_LPPHY_AFE_DAC_CTL, 0xF7FF);
  180. b43_phy_write(dev, B43_LPPHY_AFE_CTL, 0);
  181. b43_phy_write(dev, B43_LPPHY_AFE_CTL_OVR, 0);
  182. b43_phy_write(dev, B43_LPPHY_RF_OVERRIDE_0, 0);
  183. b43_phy_write(dev, B43_LPPHY_RF_OVERRIDE_2, 0);
  184. b43_phy_set(dev, B43_LPPHY_AFE_DAC_CTL, 0x0004);
  185. b43_phy_maskset(dev, B43_LPPHY_OFDMSYNCTHRESH0, 0xFF00, 0x0078);
  186. b43_phy_maskset(dev, B43_LPPHY_CLIPCTRTHRESH, 0x83FF, 0x5800);
  187. b43_phy_write(dev, B43_LPPHY_ADC_COMPENSATION_CTL, 0x0016);
  188. b43_phy_maskset(dev, B43_LPPHY_AFE_ADC_CTL_0, 0xFFF8, 0x0004);
  189. b43_phy_maskset(dev, B43_LPPHY_VERYLOWGAINDB, 0x00FF, 0x5400);
  190. b43_phy_maskset(dev, B43_LPPHY_HIGAINDB, 0x00FF, 0x2400);
  191. b43_phy_maskset(dev, B43_LPPHY_LOWGAINDB, 0x00FF, 0x2100);
  192. b43_phy_maskset(dev, B43_LPPHY_VERYLOWGAINDB, 0xFF00, 0x0006);
  193. b43_phy_mask(dev, B43_LPPHY_RX_RADIO_CTL, 0xFFFE);
  194. b43_phy_maskset(dev, B43_LPPHY_CLIPCTRTHRESH, 0xFFE0, 0x0005);
  195. b43_phy_maskset(dev, B43_LPPHY_CLIPCTRTHRESH, 0xFC10, 0x0180);
  196. b43_phy_maskset(dev, B43_LPPHY_CLIPCTRTHRESH, 0x83FF, 0x3800);
  197. b43_phy_maskset(dev, B43_LPPHY_GAINDIRECTMISMATCH, 0xFFF0, 0x0005);
  198. b43_phy_maskset(dev, B43_LPPHY_GAIN_MISMATCH_LIMIT, 0xFFC0, 0x001A);
  199. b43_phy_maskset(dev, B43_LPPHY_CRS_ED_THRESH, 0xFF00, 0x00B3);
  200. b43_phy_maskset(dev, B43_LPPHY_CRS_ED_THRESH, 0x00FF, 0xAD00);
  201. b43_phy_maskset(dev, B43_LPPHY_INPUT_PWRDB,
  202. 0xFF00, lpphy->rx_pwr_offset);
  203. if ((bus->sprom.boardflags_lo & B43_BFL_FEM) &&
  204. ((b43_current_band(dev->wl) == IEEE80211_BAND_5GHZ) ||
  205. (bus->sprom.boardflags_hi & B43_BFH_PAREF))) {
  206. /* TODO:
  207. * Set the LDO voltage to 0x0028 - FIXME: What is this?
  208. * Call sb_pmu_set_ldo_voltage with 4 and the LDO voltage
  209. * as arguments
  210. * Call sb_pmu_paref_ldo_enable with argument TRUE
  211. */
  212. if (dev->phy.rev == 0) {
  213. b43_phy_maskset(dev, B43_LPPHY_LP_RF_SIGNAL_LUT,
  214. 0xFFCF, 0x0010);
  215. }
  216. b43_lptab_write(dev, B43_LPTAB16(11, 7), 60);
  217. } else {
  218. //TODO: Call ssb_pmu_paref_ldo_enable with argument FALSE
  219. b43_phy_maskset(dev, B43_LPPHY_LP_RF_SIGNAL_LUT,
  220. 0xFFCF, 0x0020);
  221. b43_lptab_write(dev, B43_LPTAB16(11, 7), 100);
  222. }
  223. tmp = lpphy->rssi_vf | lpphy->rssi_vc << 4 | 0xA000;
  224. b43_phy_write(dev, B43_LPPHY_AFE_RSSI_CTL_0, tmp);
  225. if (bus->sprom.boardflags_hi & B43_BFH_RSSIINV)
  226. b43_phy_maskset(dev, B43_LPPHY_AFE_RSSI_CTL_1, 0xF000, 0x0AAA);
  227. else
  228. b43_phy_maskset(dev, B43_LPPHY_AFE_RSSI_CTL_1, 0xF000, 0x02AA);
  229. b43_lptab_write(dev, B43_LPTAB16(11, 1), 24);
  230. b43_phy_maskset(dev, B43_LPPHY_RX_RADIO_CTL,
  231. 0xFFF9, (lpphy->bx_arch << 1));
  232. if (dev->phy.rev == 1 &&
  233. (bus->sprom.boardflags_hi & B43_BFH_FEM_BT)) {
  234. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_1, 0xFFC0, 0x000A);
  235. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_1, 0x3F00, 0x0900);
  236. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_2, 0xFFC0, 0x000A);
  237. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_2, 0xC0FF, 0x0B00);
  238. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_3, 0xFFC0, 0x000A);
  239. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_3, 0xC0FF, 0x0400);
  240. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_4, 0xFFC0, 0x000A);
  241. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_4, 0xC0FF, 0x0B00);
  242. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_5, 0xFFC0, 0x000A);
  243. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_5, 0xC0FF, 0x0900);
  244. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_6, 0xFFC0, 0x000A);
  245. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_6, 0xC0FF, 0x0B00);
  246. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_7, 0xFFC0, 0x000A);
  247. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_7, 0xC0FF, 0x0900);
  248. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_8, 0xFFC0, 0x000A);
  249. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_8, 0xC0FF, 0x0B00);
  250. } else if (b43_current_band(dev->wl) == IEEE80211_BAND_5GHZ ||
  251. (bus->boardinfo.type == 0x048A) || ((dev->phy.rev == 0) &&
  252. (bus->sprom.boardflags_lo & B43_BFL_FEM))) {
  253. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_1, 0xFFC0, 0x0001);
  254. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_1, 0xC0FF, 0x0400);
  255. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_2, 0xFFC0, 0x0001);
  256. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_2, 0xC0FF, 0x0500);
  257. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_3, 0xFFC0, 0x0002);
  258. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_3, 0xC0FF, 0x0800);
  259. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_4, 0xFFC0, 0x0002);
  260. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_4, 0xC0FF, 0x0A00);
  261. } else if (dev->phy.rev == 1 ||
  262. (bus->sprom.boardflags_lo & B43_BFL_FEM)) {
  263. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_1, 0xFFC0, 0x0004);
  264. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_1, 0xC0FF, 0x0800);
  265. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_2, 0xFFC0, 0x0004);
  266. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_2, 0xC0FF, 0x0C00);
  267. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_3, 0xFFC0, 0x0002);
  268. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_3, 0xC0FF, 0x0100);
  269. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_4, 0xFFC0, 0x0002);
  270. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_4, 0xC0FF, 0x0300);
  271. } else {
  272. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_1, 0xFFC0, 0x000A);
  273. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_1, 0xC0FF, 0x0900);
  274. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_2, 0xFFC0, 0x000A);
  275. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_2, 0xC0FF, 0x0B00);
  276. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_3, 0xFFC0, 0x0006);
  277. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_3, 0xC0FF, 0x0500);
  278. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_4, 0xFFC0, 0x0006);
  279. b43_phy_maskset(dev, B43_LPPHY_TR_LOOKUP_4, 0xC0FF, 0x0700);
  280. }
  281. if (dev->phy.rev == 1 && (bus->sprom.boardflags_hi & B43_BFH_PAREF)) {
  282. b43_phy_copy(dev, B43_LPPHY_TR_LOOKUP_5, B43_LPPHY_TR_LOOKUP_1);
  283. b43_phy_copy(dev, B43_LPPHY_TR_LOOKUP_6, B43_LPPHY_TR_LOOKUP_2);
  284. b43_phy_copy(dev, B43_LPPHY_TR_LOOKUP_7, B43_LPPHY_TR_LOOKUP_3);
  285. b43_phy_copy(dev, B43_LPPHY_TR_LOOKUP_8, B43_LPPHY_TR_LOOKUP_4);
  286. }
  287. if ((bus->sprom.boardflags_hi & B43_BFH_FEM_BT) &&
  288. (bus->chip_id == 0x5354) &&
  289. (bus->chip_package == SSB_CHIPPACK_BCM4712S)) {
  290. b43_phy_set(dev, B43_LPPHY_CRSGAIN_CTL, 0x0006);
  291. b43_phy_write(dev, B43_LPPHY_GPIO_SELECT, 0x0005);
  292. b43_phy_write(dev, B43_LPPHY_GPIO_OUTEN, 0xFFFF);
  293. //FIXME the Broadcom driver caches & delays this HF write!
  294. b43_hf_write(dev, b43_hf_read(dev) | B43_HF_PR45960W);
  295. }
  296. if (b43_current_band(dev->wl) == IEEE80211_BAND_2GHZ) {
  297. b43_phy_set(dev, B43_LPPHY_LP_PHY_CTL, 0x8000);
  298. b43_phy_set(dev, B43_LPPHY_CRSGAIN_CTL, 0x0040);
  299. b43_phy_maskset(dev, B43_LPPHY_MINPWR_LEVEL, 0x00FF, 0xA400);
  300. b43_phy_maskset(dev, B43_LPPHY_CRSGAIN_CTL, 0xF0FF, 0x0B00);
  301. b43_phy_maskset(dev, B43_LPPHY_SYNCPEAKCNT, 0xFFF8, 0x0007);
  302. b43_phy_maskset(dev, B43_LPPHY_DSSS_CONFIRM_CNT, 0xFFF8, 0x0003);
  303. b43_phy_maskset(dev, B43_LPPHY_DSSS_CONFIRM_CNT, 0xFFC7, 0x0020);
  304. b43_phy_mask(dev, B43_LPPHY_IDLEAFTERPKTRXTO, 0x00FF);
  305. } else { /* 5GHz */
  306. b43_phy_mask(dev, B43_LPPHY_LP_PHY_CTL, 0x7FFF);
  307. b43_phy_mask(dev, B43_LPPHY_CRSGAIN_CTL, 0xFFBF);
  308. }
  309. if (dev->phy.rev == 1) {
  310. tmp = b43_phy_read(dev, B43_LPPHY_CLIPCTRTHRESH);
  311. tmp2 = (tmp & 0x03E0) >> 5;
  312. tmp2 |= tmp << 5;
  313. b43_phy_write(dev, B43_LPPHY_4C3, tmp2);
  314. tmp = b43_phy_read(dev, B43_LPPHY_OFDMSYNCTHRESH0);
  315. tmp2 = (tmp & 0x1F00) >> 8;
  316. tmp2 |= tmp << 5;
  317. b43_phy_write(dev, B43_LPPHY_4C4, tmp2);
  318. tmp = b43_phy_read(dev, B43_LPPHY_VERYLOWGAINDB);
  319. tmp2 = tmp & 0x00FF;
  320. tmp2 |= tmp << 8;
  321. b43_phy_write(dev, B43_LPPHY_4C5, tmp2);
  322. }
  323. }
  324. static void lpphy_save_dig_flt_state(struct b43_wldev *dev)
  325. {
  326. static const u16 addr[] = {
  327. B43_PHY_OFDM(0xC1),
  328. B43_PHY_OFDM(0xC2),
  329. B43_PHY_OFDM(0xC3),
  330. B43_PHY_OFDM(0xC4),
  331. B43_PHY_OFDM(0xC5),
  332. B43_PHY_OFDM(0xC6),
  333. B43_PHY_OFDM(0xC7),
  334. B43_PHY_OFDM(0xC8),
  335. B43_PHY_OFDM(0xCF),
  336. };
  337. static const u16 coefs[] = {
  338. 0xDE5E, 0xE832, 0xE331, 0x4D26,
  339. 0x0026, 0x1420, 0x0020, 0xFE08,
  340. 0x0008,
  341. };
  342. struct b43_phy_lp *lpphy = dev->phy.lp;
  343. int i;
  344. for (i = 0; i < ARRAY_SIZE(addr); i++) {
  345. lpphy->dig_flt_state[i] = b43_phy_read(dev, addr[i]);
  346. b43_phy_write(dev, addr[i], coefs[i]);
  347. }
  348. }
  349. static void lpphy_restore_dig_flt_state(struct b43_wldev *dev)
  350. {
  351. static const u16 addr[] = {
  352. B43_PHY_OFDM(0xC1),
  353. B43_PHY_OFDM(0xC2),
  354. B43_PHY_OFDM(0xC3),
  355. B43_PHY_OFDM(0xC4),
  356. B43_PHY_OFDM(0xC5),
  357. B43_PHY_OFDM(0xC6),
  358. B43_PHY_OFDM(0xC7),
  359. B43_PHY_OFDM(0xC8),
  360. B43_PHY_OFDM(0xCF),
  361. };
  362. struct b43_phy_lp *lpphy = dev->phy.lp;
  363. int i;
  364. for (i = 0; i < ARRAY_SIZE(addr); i++)
  365. b43_phy_write(dev, addr[i], lpphy->dig_flt_state[i]);
  366. }
  367. static void lpphy_baseband_rev2plus_init(struct b43_wldev *dev)
  368. {
  369. struct ssb_bus *bus = dev->dev->bus;
  370. struct b43_phy_lp *lpphy = dev->phy.lp;
  371. b43_phy_write(dev, B43_LPPHY_AFE_DAC_CTL, 0x50);
  372. b43_phy_write(dev, B43_LPPHY_AFE_CTL, 0x8800);
  373. b43_phy_write(dev, B43_LPPHY_AFE_CTL_OVR, 0);
  374. b43_phy_write(dev, B43_LPPHY_AFE_CTL_OVRVAL, 0);
  375. b43_phy_write(dev, B43_LPPHY_RF_OVERRIDE_0, 0);
  376. b43_phy_write(dev, B43_LPPHY_RF_OVERRIDE_2, 0);
  377. b43_phy_write(dev, B43_PHY_OFDM(0xF9), 0);
  378. b43_phy_write(dev, B43_LPPHY_TR_LOOKUP_1, 0);
  379. b43_phy_set(dev, B43_LPPHY_ADC_COMPENSATION_CTL, 0x10);
  380. b43_phy_maskset(dev, B43_LPPHY_OFDMSYNCTHRESH0, 0xFF00, 0xB4);
  381. b43_phy_maskset(dev, B43_LPPHY_DCOFFSETTRANSIENT, 0xF8FF, 0x200);
  382. b43_phy_maskset(dev, B43_LPPHY_DCOFFSETTRANSIENT, 0xFF00, 0x7F);
  383. b43_phy_maskset(dev, B43_LPPHY_GAINDIRECTMISMATCH, 0xFF0F, 0x40);
  384. b43_phy_maskset(dev, B43_LPPHY_PREAMBLECONFIRMTO, 0xFF00, 0x2);
  385. b43_phy_mask(dev, B43_LPPHY_CRSGAIN_CTL, ~0x4000);
  386. b43_phy_mask(dev, B43_LPPHY_CRSGAIN_CTL, ~0x2000);
  387. b43_phy_set(dev, B43_PHY_OFDM(0x10A), 0x1);
  388. if (bus->boardinfo.rev >= 0x18) {
  389. b43_lptab_write(dev, B43_LPTAB32(17, 65), 0xEC);
  390. b43_phy_maskset(dev, B43_PHY_OFDM(0x10A), 0xFF01, 0x14);
  391. } else {
  392. b43_phy_maskset(dev, B43_PHY_OFDM(0x10A), 0xFF01, 0x10);
  393. }
  394. b43_phy_maskset(dev, B43_PHY_OFDM(0xDF), 0xFF00, 0xF4);
  395. b43_phy_maskset(dev, B43_PHY_OFDM(0xDF), 0x00FF, 0xF100);
  396. b43_phy_write(dev, B43_LPPHY_CLIPTHRESH, 0x48);
  397. b43_phy_maskset(dev, B43_LPPHY_HIGAINDB, 0xFF00, 0x46);
  398. b43_phy_maskset(dev, B43_PHY_OFDM(0xE4), 0xFF00, 0x10);
  399. b43_phy_maskset(dev, B43_LPPHY_PWR_THRESH1, 0xFFF0, 0x9);
  400. b43_phy_mask(dev, B43_LPPHY_GAINDIRECTMISMATCH, ~0xF);
  401. b43_phy_maskset(dev, B43_LPPHY_VERYLOWGAINDB, 0x00FF, 0x5500);
  402. b43_phy_maskset(dev, B43_LPPHY_CLIPCTRTHRESH, 0xFC1F, 0xA0);
  403. b43_phy_maskset(dev, B43_LPPHY_GAINDIRECTMISMATCH, 0xE0FF, 0x300);
  404. b43_phy_maskset(dev, B43_LPPHY_HIGAINDB, 0x00FF, 0x2A00);
  405. if ((bus->chip_id == 0x4325) && (bus->chip_rev == 0)) {
  406. b43_phy_maskset(dev, B43_LPPHY_LOWGAINDB, 0x00FF, 0x2100);
  407. b43_phy_maskset(dev, B43_LPPHY_VERYLOWGAINDB, 0xFF00, 0xA);
  408. } else {
  409. b43_phy_maskset(dev, B43_LPPHY_LOWGAINDB, 0x00FF, 0x1E00);
  410. b43_phy_maskset(dev, B43_LPPHY_VERYLOWGAINDB, 0xFF00, 0xD);
  411. }
  412. b43_phy_maskset(dev, B43_PHY_OFDM(0xFE), 0xFFE0, 0x1F);
  413. b43_phy_maskset(dev, B43_PHY_OFDM(0xFF), 0xFFE0, 0xC);
  414. b43_phy_maskset(dev, B43_PHY_OFDM(0x100), 0xFF00, 0x19);
  415. b43_phy_maskset(dev, B43_PHY_OFDM(0xFF), 0x03FF, 0x3C00);
  416. b43_phy_maskset(dev, B43_PHY_OFDM(0xFE), 0xFC1F, 0x3E0);
  417. b43_phy_maskset(dev, B43_PHY_OFDM(0xFF), 0xFFE0, 0xC);
  418. b43_phy_maskset(dev, B43_PHY_OFDM(0x100), 0x00FF, 0x1900);
  419. b43_phy_maskset(dev, B43_LPPHY_CLIPCTRTHRESH, 0x83FF, 0x5800);
  420. b43_phy_maskset(dev, B43_LPPHY_CLIPCTRTHRESH, 0xFFE0, 0x12);
  421. b43_phy_maskset(dev, B43_LPPHY_GAINMISMATCH, 0x0FFF, 0x9000);
  422. if ((bus->chip_id == 0x4325) && (bus->chip_rev == 0)) {
  423. b43_lptab_write(dev, B43_LPTAB16(0x08, 0x14), 0);
  424. b43_lptab_write(dev, B43_LPTAB16(0x08, 0x12), 0x40);
  425. }
  426. if (b43_current_band(dev->wl) == IEEE80211_BAND_2GHZ) {
  427. b43_phy_set(dev, B43_LPPHY_CRSGAIN_CTL, 0x40);
  428. b43_phy_maskset(dev, B43_LPPHY_CRSGAIN_CTL, 0xF0FF, 0xB00);
  429. b43_phy_maskset(dev, B43_LPPHY_SYNCPEAKCNT, 0xFFF8, 0x6);
  430. b43_phy_maskset(dev, B43_LPPHY_MINPWR_LEVEL, 0x00FF, 0x9D00);
  431. b43_phy_maskset(dev, B43_LPPHY_MINPWR_LEVEL, 0xFF00, 0xA1);
  432. b43_phy_mask(dev, B43_LPPHY_IDLEAFTERPKTRXTO, 0x00FF);
  433. } else /* 5GHz */
  434. b43_phy_mask(dev, B43_LPPHY_CRSGAIN_CTL, ~0x40);
  435. b43_phy_maskset(dev, B43_LPPHY_CRS_ED_THRESH, 0xFF00, 0xB3);
  436. b43_phy_maskset(dev, B43_LPPHY_CRS_ED_THRESH, 0x00FF, 0xAD00);
  437. b43_phy_maskset(dev, B43_LPPHY_INPUT_PWRDB, 0xFF00, lpphy->rx_pwr_offset);
  438. b43_phy_set(dev, B43_LPPHY_RESET_CTL, 0x44);
  439. b43_phy_write(dev, B43_LPPHY_RESET_CTL, 0x80);
  440. b43_phy_write(dev, B43_LPPHY_AFE_RSSI_CTL_0, 0xA954);
  441. b43_phy_write(dev, B43_LPPHY_AFE_RSSI_CTL_1,
  442. 0x2000 | ((u16)lpphy->rssi_gs << 10) |
  443. ((u16)lpphy->rssi_vc << 4) | lpphy->rssi_vf);
  444. if ((bus->chip_id == 0x4325) && (bus->chip_rev == 0)) {
  445. b43_phy_set(dev, B43_LPPHY_AFE_ADC_CTL_0, 0x1C);
  446. b43_phy_maskset(dev, B43_LPPHY_AFE_CTL, 0x00FF, 0x8800);
  447. b43_phy_maskset(dev, B43_LPPHY_AFE_ADC_CTL_1, 0xFC3C, 0x0400);
  448. }
  449. lpphy_save_dig_flt_state(dev);
  450. }
  451. static void lpphy_baseband_init(struct b43_wldev *dev)
  452. {
  453. lpphy_table_init(dev);
  454. if (dev->phy.rev >= 2)
  455. lpphy_baseband_rev2plus_init(dev);
  456. else
  457. lpphy_baseband_rev0_1_init(dev);
  458. }
  459. struct b2062_freqdata {
  460. u16 freq;
  461. u8 data[6];
  462. };
  463. /* Initialize the 2062 radio. */
  464. static void lpphy_2062_init(struct b43_wldev *dev)
  465. {
  466. struct b43_phy_lp *lpphy = dev->phy.lp;
  467. struct ssb_bus *bus = dev->dev->bus;
  468. u32 crystalfreq, tmp, ref;
  469. unsigned int i;
  470. const struct b2062_freqdata *fd = NULL;
  471. static const struct b2062_freqdata freqdata_tab[] = {
  472. { .freq = 12000, .data[0] = 6, .data[1] = 6, .data[2] = 6,
  473. .data[3] = 6, .data[4] = 10, .data[5] = 6, },
  474. { .freq = 13000, .data[0] = 4, .data[1] = 4, .data[2] = 4,
  475. .data[3] = 4, .data[4] = 11, .data[5] = 7, },
  476. { .freq = 14400, .data[0] = 3, .data[1] = 3, .data[2] = 3,
  477. .data[3] = 3, .data[4] = 12, .data[5] = 7, },
  478. { .freq = 16200, .data[0] = 3, .data[1] = 3, .data[2] = 3,
  479. .data[3] = 3, .data[4] = 13, .data[5] = 8, },
  480. { .freq = 18000, .data[0] = 2, .data[1] = 2, .data[2] = 2,
  481. .data[3] = 2, .data[4] = 14, .data[5] = 8, },
  482. { .freq = 19200, .data[0] = 1, .data[1] = 1, .data[2] = 1,
  483. .data[3] = 1, .data[4] = 14, .data[5] = 9, },
  484. };
  485. b2062_upload_init_table(dev);
  486. b43_radio_write(dev, B2062_N_TX_CTL3, 0);
  487. b43_radio_write(dev, B2062_N_TX_CTL4, 0);
  488. b43_radio_write(dev, B2062_N_TX_CTL5, 0);
  489. b43_radio_write(dev, B2062_N_PDN_CTL0, 0x40);
  490. b43_radio_write(dev, B2062_N_PDN_CTL0, 0);
  491. b43_radio_write(dev, B2062_N_CALIB_TS, 0x10);
  492. b43_radio_write(dev, B2062_N_CALIB_TS, 0);
  493. if (b43_current_band(dev->wl) == IEEE80211_BAND_2GHZ)
  494. b43_radio_set(dev, B2062_N_TSSI_CTL0, 0x1);
  495. else
  496. b43_radio_mask(dev, B2062_N_TSSI_CTL0, ~0x1);
  497. /* Get the crystal freq, in Hz. */
  498. crystalfreq = bus->chipco.pmu.crystalfreq * 1000;
  499. B43_WARN_ON(!(bus->chipco.capabilities & SSB_CHIPCO_CAP_PMU));
  500. B43_WARN_ON(crystalfreq == 0);
  501. if (crystalfreq <= 30000000) {
  502. lpphy->pdiv = 1;
  503. b43_radio_mask(dev, B2062_S_RFPLL_CTL1, 0xFFFB);
  504. } else {
  505. lpphy->pdiv = 2;
  506. b43_radio_set(dev, B2062_S_RFPLL_CTL1, 0x4);
  507. }
  508. tmp = (((800000000 * lpphy->pdiv + crystalfreq) /
  509. (2 * crystalfreq)) - 8) & 0xFF;
  510. b43_radio_write(dev, B2062_S_RFPLL_CTL7, tmp);
  511. tmp = (((100 * crystalfreq + 16000000 * lpphy->pdiv) /
  512. (32000000 * lpphy->pdiv)) - 1) & 0xFF;
  513. b43_radio_write(dev, B2062_S_RFPLL_CTL18, tmp);
  514. tmp = (((2 * crystalfreq + 1000000 * lpphy->pdiv) /
  515. (2000000 * lpphy->pdiv)) - 1) & 0xFF;
  516. b43_radio_write(dev, B2062_S_RFPLL_CTL19, tmp);
  517. ref = (1000 * lpphy->pdiv + 2 * crystalfreq) / (2000 * lpphy->pdiv);
  518. ref &= 0xFFFF;
  519. for (i = 0; i < ARRAY_SIZE(freqdata_tab); i++) {
  520. if (ref < freqdata_tab[i].freq) {
  521. fd = &freqdata_tab[i];
  522. break;
  523. }
  524. }
  525. if (!fd)
  526. fd = &freqdata_tab[ARRAY_SIZE(freqdata_tab) - 1];
  527. b43dbg(dev->wl, "b2062: Using crystal tab entry %u kHz.\n",
  528. fd->freq); /* FIXME: Keep this printk until the code is fully debugged. */
  529. b43_radio_write(dev, B2062_S_RFPLL_CTL8,
  530. ((u16)(fd->data[1]) << 4) | fd->data[0]);
  531. b43_radio_write(dev, B2062_S_RFPLL_CTL9,
  532. ((u16)(fd->data[3]) << 4) | fd->data[2]);
  533. b43_radio_write(dev, B2062_S_RFPLL_CTL10, fd->data[4]);
  534. b43_radio_write(dev, B2062_S_RFPLL_CTL11, fd->data[5]);
  535. }
  536. /* Initialize the 2063 radio. */
  537. static void lpphy_2063_init(struct b43_wldev *dev)
  538. {
  539. b2063_upload_init_table(dev);
  540. b43_radio_write(dev, B2063_LOGEN_SP5, 0);
  541. b43_radio_set(dev, B2063_COMM8, 0x38);
  542. b43_radio_write(dev, B2063_REG_SP1, 0x56);
  543. b43_radio_mask(dev, B2063_RX_BB_CTL2, ~0x2);
  544. b43_radio_write(dev, B2063_PA_SP7, 0);
  545. b43_radio_write(dev, B2063_TX_RF_SP6, 0x20);
  546. b43_radio_write(dev, B2063_TX_RF_SP9, 0x40);
  547. b43_radio_write(dev, B2063_PA_SP3, 0xa0);
  548. b43_radio_write(dev, B2063_PA_SP4, 0xa0);
  549. b43_radio_write(dev, B2063_PA_SP2, 0x18);
  550. }
  551. struct lpphy_stx_table_entry {
  552. u16 phy_offset;
  553. u16 phy_shift;
  554. u16 rf_addr;
  555. u16 rf_shift;
  556. u16 mask;
  557. };
  558. static const struct lpphy_stx_table_entry lpphy_stx_table[] = {
  559. { .phy_offset = 2, .phy_shift = 6, .rf_addr = 0x3d, .rf_shift = 3, .mask = 0x01, },
  560. { .phy_offset = 1, .phy_shift = 12, .rf_addr = 0x4c, .rf_shift = 1, .mask = 0x01, },
  561. { .phy_offset = 1, .phy_shift = 8, .rf_addr = 0x50, .rf_shift = 0, .mask = 0x7f, },
  562. { .phy_offset = 0, .phy_shift = 8, .rf_addr = 0x44, .rf_shift = 0, .mask = 0xff, },
  563. { .phy_offset = 1, .phy_shift = 0, .rf_addr = 0x4a, .rf_shift = 0, .mask = 0xff, },
  564. { .phy_offset = 0, .phy_shift = 4, .rf_addr = 0x4d, .rf_shift = 0, .mask = 0xff, },
  565. { .phy_offset = 1, .phy_shift = 4, .rf_addr = 0x4e, .rf_shift = 0, .mask = 0xff, },
  566. { .phy_offset = 0, .phy_shift = 12, .rf_addr = 0x4f, .rf_shift = 0, .mask = 0x0f, },
  567. { .phy_offset = 1, .phy_shift = 0, .rf_addr = 0x4f, .rf_shift = 4, .mask = 0x0f, },
  568. { .phy_offset = 3, .phy_shift = 0, .rf_addr = 0x49, .rf_shift = 0, .mask = 0x0f, },
  569. { .phy_offset = 4, .phy_shift = 3, .rf_addr = 0x46, .rf_shift = 4, .mask = 0x07, },
  570. { .phy_offset = 3, .phy_shift = 15, .rf_addr = 0x46, .rf_shift = 0, .mask = 0x01, },
  571. { .phy_offset = 4, .phy_shift = 0, .rf_addr = 0x46, .rf_shift = 1, .mask = 0x07, },
  572. { .phy_offset = 3, .phy_shift = 8, .rf_addr = 0x48, .rf_shift = 4, .mask = 0x07, },
  573. { .phy_offset = 3, .phy_shift = 11, .rf_addr = 0x48, .rf_shift = 0, .mask = 0x0f, },
  574. { .phy_offset = 3, .phy_shift = 4, .rf_addr = 0x49, .rf_shift = 4, .mask = 0x0f, },
  575. { .phy_offset = 2, .phy_shift = 15, .rf_addr = 0x45, .rf_shift = 0, .mask = 0x01, },
  576. { .phy_offset = 5, .phy_shift = 13, .rf_addr = 0x52, .rf_shift = 4, .mask = 0x07, },
  577. { .phy_offset = 6, .phy_shift = 0, .rf_addr = 0x52, .rf_shift = 7, .mask = 0x01, },
  578. { .phy_offset = 5, .phy_shift = 3, .rf_addr = 0x41, .rf_shift = 5, .mask = 0x07, },
  579. { .phy_offset = 5, .phy_shift = 6, .rf_addr = 0x41, .rf_shift = 0, .mask = 0x0f, },
  580. { .phy_offset = 5, .phy_shift = 10, .rf_addr = 0x42, .rf_shift = 5, .mask = 0x07, },
  581. { .phy_offset = 4, .phy_shift = 15, .rf_addr = 0x42, .rf_shift = 0, .mask = 0x01, },
  582. { .phy_offset = 5, .phy_shift = 0, .rf_addr = 0x42, .rf_shift = 1, .mask = 0x07, },
  583. { .phy_offset = 4, .phy_shift = 11, .rf_addr = 0x43, .rf_shift = 4, .mask = 0x0f, },
  584. { .phy_offset = 4, .phy_shift = 7, .rf_addr = 0x43, .rf_shift = 0, .mask = 0x0f, },
  585. { .phy_offset = 4, .phy_shift = 6, .rf_addr = 0x45, .rf_shift = 1, .mask = 0x01, },
  586. { .phy_offset = 2, .phy_shift = 7, .rf_addr = 0x40, .rf_shift = 4, .mask = 0x0f, },
  587. { .phy_offset = 2, .phy_shift = 11, .rf_addr = 0x40, .rf_shift = 0, .mask = 0x0f, },
  588. };
  589. static void lpphy_sync_stx(struct b43_wldev *dev)
  590. {
  591. const struct lpphy_stx_table_entry *e;
  592. unsigned int i;
  593. u16 tmp;
  594. for (i = 0; i < ARRAY_SIZE(lpphy_stx_table); i++) {
  595. e = &lpphy_stx_table[i];
  596. tmp = b43_radio_read(dev, e->rf_addr);
  597. tmp >>= e->rf_shift;
  598. tmp <<= e->phy_shift;
  599. b43_phy_maskset(dev, B43_PHY_OFDM(0xF2 + e->phy_offset),
  600. ~(e->mask << e->phy_shift), tmp);
  601. }
  602. }
  603. static void lpphy_radio_init(struct b43_wldev *dev)
  604. {
  605. /* The radio is attached through the 4wire bus. */
  606. b43_phy_set(dev, B43_LPPHY_FOURWIRE_CTL, 0x2);
  607. udelay(1);
  608. b43_phy_mask(dev, B43_LPPHY_FOURWIRE_CTL, 0xFFFD);
  609. udelay(1);
  610. if (dev->phy.radio_ver == 0x2062) {
  611. lpphy_2062_init(dev);
  612. } else {
  613. lpphy_2063_init(dev);
  614. lpphy_sync_stx(dev);
  615. b43_phy_write(dev, B43_PHY_OFDM(0xF0), 0x5F80);
  616. b43_phy_write(dev, B43_PHY_OFDM(0xF1), 0);
  617. if (dev->dev->bus->chip_id == 0x4325) {
  618. // TODO SSB PMU recalibration
  619. }
  620. }
  621. }
  622. struct lpphy_iq_est { u32 iq_prod, i_pwr, q_pwr; };
  623. static void lpphy_set_rc_cap(struct b43_wldev *dev)
  624. {
  625. struct b43_phy_lp *lpphy = dev->phy.lp;
  626. u8 rc_cap = (lpphy->rc_cap & 0x1F) >> 1;
  627. if (dev->phy.rev == 1) //FIXME check channel 14!
  628. rc_cap = max_t(u8, rc_cap + 5, 15);
  629. b43_radio_write(dev, B2062_N_RXBB_CALIB2,
  630. max_t(u8, lpphy->rc_cap - 4, 0x80));
  631. b43_radio_write(dev, B2062_N_TX_CTL_A, rc_cap | 0x80);
  632. b43_radio_write(dev, B2062_S_RXG_CNT16,
  633. ((lpphy->rc_cap & 0x1F) >> 2) | 0x80);
  634. }
  635. static u8 lpphy_get_bb_mult(struct b43_wldev *dev)
  636. {
  637. return (b43_lptab_read(dev, B43_LPTAB16(0, 87)) & 0xFF00) >> 8;
  638. }
  639. static void lpphy_set_bb_mult(struct b43_wldev *dev, u8 bb_mult)
  640. {
  641. b43_lptab_write(dev, B43_LPTAB16(0, 87), (u16)bb_mult << 8);
  642. }
  643. static void lpphy_disable_crs(struct b43_wldev *dev)
  644. {
  645. b43_phy_maskset(dev, B43_LPPHY_CRSGAIN_CTL, 0xFF1F, 0x80);
  646. b43_phy_maskset(dev, B43_LPPHY_RF_OVERRIDE_VAL_0, 0xFFFC, 0x1);
  647. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_0, 0x3);
  648. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_VAL_0, 0xFFFB);
  649. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_0, 0x4);
  650. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_0, 0xFFF7);
  651. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_0, 0x8);
  652. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_VAL_0, 0x10);
  653. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_0, 0x10);
  654. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_VAL_0, 0xFFDF);
  655. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_0, 0x20);
  656. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_VAL_0, 0xFFBF);
  657. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_0, 0x40);
  658. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_2_VAL, 0x7);
  659. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_2_VAL, 0x38);
  660. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_2_VAL, 0xFF3F);
  661. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_2_VAL, 0x100);
  662. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_2_VAL, 0xFDFF);
  663. b43_phy_write(dev, B43_LPPHY_PS_CTL_OVERRIDE_VAL0, 0);
  664. b43_phy_write(dev, B43_LPPHY_PS_CTL_OVERRIDE_VAL1, 1);
  665. b43_phy_write(dev, B43_LPPHY_PS_CTL_OVERRIDE_VAL2, 0x20);
  666. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_2_VAL, 0xFBFF);
  667. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_2_VAL, 0xF7FF);
  668. b43_phy_write(dev, B43_LPPHY_TX_GAIN_CTL_OVERRIDE_VAL, 0);
  669. b43_phy_write(dev, B43_LPPHY_RX_GAIN_CTL_OVERRIDE_VAL, 0x45AF);
  670. b43_phy_write(dev, B43_LPPHY_RF_OVERRIDE_2, 0x3FF);
  671. }
  672. static void lpphy_restore_crs(struct b43_wldev *dev)
  673. {
  674. if (b43_current_band(dev->wl) == IEEE80211_BAND_2GHZ)
  675. b43_phy_maskset(dev, B43_LPPHY_CRSGAIN_CTL, 0xFF1F, 0x60);
  676. else
  677. b43_phy_maskset(dev, B43_LPPHY_CRSGAIN_CTL, 0xFF1F, 0x20);
  678. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_0, 0xFF80);
  679. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_2, 0xFC00);
  680. }
  681. struct lpphy_tx_gains { u16 gm, pga, pad, dac; };
  682. static struct lpphy_tx_gains lpphy_get_tx_gains(struct b43_wldev *dev)
  683. {
  684. struct lpphy_tx_gains gains;
  685. u16 tmp;
  686. gains.dac = (b43_phy_read(dev, B43_LPPHY_AFE_DAC_CTL) & 0x380) >> 7;
  687. if (dev->phy.rev < 2) {
  688. tmp = b43_phy_read(dev,
  689. B43_LPPHY_TX_GAIN_CTL_OVERRIDE_VAL) & 0x7FF;
  690. gains.gm = tmp & 0x0007;
  691. gains.pga = (tmp & 0x0078) >> 3;
  692. gains.pad = (tmp & 0x780) >> 7;
  693. } else {
  694. tmp = b43_phy_read(dev, B43_LPPHY_TX_GAIN_CTL_OVERRIDE_VAL);
  695. gains.pad = b43_phy_read(dev, B43_PHY_OFDM(0xFB)) & 0xFF;
  696. gains.gm = tmp & 0xFF;
  697. gains.pga = (tmp >> 8) & 0xFF;
  698. }
  699. return gains;
  700. }
  701. static void lpphy_set_dac_gain(struct b43_wldev *dev, u16 dac)
  702. {
  703. u16 ctl = b43_phy_read(dev, B43_LPPHY_AFE_DAC_CTL) & 0xC7F;
  704. ctl |= dac << 7;
  705. b43_phy_maskset(dev, B43_LPPHY_AFE_DAC_CTL, 0xF000, ctl);
  706. }
  707. static void lpphy_set_tx_gains(struct b43_wldev *dev,
  708. struct lpphy_tx_gains gains)
  709. {
  710. u16 rf_gain, pa_gain;
  711. if (dev->phy.rev < 2) {
  712. rf_gain = (gains.pad << 7) | (gains.pga << 3) | gains.gm;
  713. b43_phy_maskset(dev, B43_LPPHY_TX_GAIN_CTL_OVERRIDE_VAL,
  714. 0xF800, rf_gain);
  715. } else {
  716. pa_gain = b43_phy_read(dev, B43_PHY_OFDM(0xFB)) & 0x7F00;
  717. b43_phy_write(dev, B43_LPPHY_TX_GAIN_CTL_OVERRIDE_VAL,
  718. (gains.pga << 8) | gains.gm);
  719. b43_phy_maskset(dev, B43_LPPHY_TX_GAIN_CTL_OVERRIDE_VAL,
  720. 0x8000, gains.pad | pa_gain);
  721. b43_phy_write(dev, B43_PHY_OFDM(0xFC),
  722. (gains.pga << 8) | gains.gm);
  723. b43_phy_maskset(dev, B43_PHY_OFDM(0xFD),
  724. 0x8000, gains.pad | pa_gain);
  725. }
  726. lpphy_set_dac_gain(dev, gains.dac);
  727. if (dev->phy.rev < 2) {
  728. b43_phy_maskset(dev, B43_LPPHY_RF_OVERRIDE_2, 0xFEFF, 1 << 8);
  729. } else {
  730. b43_phy_maskset(dev, B43_LPPHY_RF_OVERRIDE_2, 0xFF7F, 1 << 7);
  731. b43_phy_maskset(dev, B43_LPPHY_RF_OVERRIDE_2, 0xBFFF, 1 << 14);
  732. }
  733. b43_phy_maskset(dev, B43_LPPHY_RF_OVERRIDE_2, 0xFFBF, 1 << 6);
  734. }
  735. static void lpphy_rev0_1_set_rx_gain(struct b43_wldev *dev, u32 gain)
  736. {
  737. u16 trsw = gain & 0x1;
  738. u16 lna = (gain & 0xFFFC) | ((gain & 0xC) >> 2);
  739. u16 ext_lna = (gain & 2) >> 1;
  740. b43_phy_maskset(dev, B43_LPPHY_RF_OVERRIDE_VAL_0, 0xFFFE, trsw);
  741. b43_phy_maskset(dev, B43_LPPHY_RF_OVERRIDE_2_VAL,
  742. 0xFBFF, ext_lna << 10);
  743. b43_phy_maskset(dev, B43_LPPHY_RF_OVERRIDE_2_VAL,
  744. 0xF7FF, ext_lna << 11);
  745. b43_phy_write(dev, B43_LPPHY_RX_GAIN_CTL_OVERRIDE_VAL, lna);
  746. }
  747. static void lpphy_rev2plus_set_rx_gain(struct b43_wldev *dev, u32 gain)
  748. {
  749. u16 low_gain = gain & 0xFFFF;
  750. u16 high_gain = (gain >> 16) & 0xF;
  751. u16 ext_lna = (gain >> 21) & 0x1;
  752. u16 trsw = ~(gain >> 20) & 0x1;
  753. u16 tmp;
  754. b43_phy_maskset(dev, B43_LPPHY_RF_OVERRIDE_VAL_0, 0xFFFE, trsw);
  755. b43_phy_maskset(dev, B43_LPPHY_RF_OVERRIDE_2_VAL,
  756. 0xFDFF, ext_lna << 9);
  757. b43_phy_maskset(dev, B43_LPPHY_RF_OVERRIDE_2_VAL,
  758. 0xFBFF, ext_lna << 10);
  759. b43_phy_write(dev, B43_LPPHY_RX_GAIN_CTL_OVERRIDE_VAL, low_gain);
  760. b43_phy_maskset(dev, B43_LPPHY_AFE_DDFS, 0xFFF0, high_gain);
  761. if (b43_current_band(dev->wl) == IEEE80211_BAND_2GHZ) {
  762. tmp = (gain >> 2) & 0x3;
  763. b43_phy_maskset(dev, B43_LPPHY_RF_OVERRIDE_2_VAL,
  764. 0xE7FF, tmp<<11);
  765. b43_phy_maskset(dev, B43_PHY_OFDM(0xE6), 0xFFE7, tmp << 3);
  766. }
  767. }
  768. static void lpphy_enable_rx_gain_override(struct b43_wldev *dev)
  769. {
  770. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_0, 0xFFFE);
  771. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_0, 0xFFEF);
  772. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_0, 0xFFBF);
  773. if (dev->phy.rev >= 2) {
  774. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_2, 0xFEFF);
  775. if (b43_current_band(dev->wl) != IEEE80211_BAND_2GHZ)
  776. return;
  777. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_2, 0xFBFF);
  778. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_2, 0xFFF7);
  779. } else {
  780. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_2, 0xFDFF);
  781. }
  782. }
  783. static void lpphy_disable_rx_gain_override(struct b43_wldev *dev)
  784. {
  785. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_0, 0x1);
  786. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_0, 0x10);
  787. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_0, 0x40);
  788. if (dev->phy.rev >= 2) {
  789. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_2, 0x100);
  790. if (b43_current_band(dev->wl) != IEEE80211_BAND_2GHZ)
  791. return;
  792. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_2, 0x400);
  793. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_2, 0x8);
  794. } else {
  795. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_2, 0x200);
  796. }
  797. }
  798. static void lpphy_set_rx_gain(struct b43_wldev *dev, u32 gain)
  799. {
  800. if (dev->phy.rev < 2)
  801. lpphy_rev0_1_set_rx_gain(dev, gain);
  802. else
  803. lpphy_rev2plus_set_rx_gain(dev, gain);
  804. lpphy_enable_rx_gain_override(dev);
  805. }
  806. static void lpphy_set_rx_gain_by_index(struct b43_wldev *dev, u16 idx)
  807. {
  808. u32 gain = b43_lptab_read(dev, B43_LPTAB16(12, idx));
  809. lpphy_set_rx_gain(dev, gain);
  810. }
  811. static void lpphy_stop_ddfs(struct b43_wldev *dev)
  812. {
  813. b43_phy_mask(dev, B43_LPPHY_AFE_DDFS, 0xFFFD);
  814. b43_phy_mask(dev, B43_LPPHY_LP_PHY_CTL, 0xFFDF);
  815. }
  816. static void lpphy_run_ddfs(struct b43_wldev *dev, int i_on, int q_on,
  817. int incr1, int incr2, int scale_idx)
  818. {
  819. lpphy_stop_ddfs(dev);
  820. b43_phy_mask(dev, B43_LPPHY_AFE_DDFS_POINTER_INIT, 0xFF80);
  821. b43_phy_mask(dev, B43_LPPHY_AFE_DDFS_POINTER_INIT, 0x80FF);
  822. b43_phy_maskset(dev, B43_LPPHY_AFE_DDFS_INCR_INIT, 0xFF80, incr1);
  823. b43_phy_maskset(dev, B43_LPPHY_AFE_DDFS_INCR_INIT, 0x80FF, incr2 << 8);
  824. b43_phy_maskset(dev, B43_LPPHY_AFE_DDFS, 0xFFF7, i_on << 3);
  825. b43_phy_maskset(dev, B43_LPPHY_AFE_DDFS, 0xFFEF, q_on << 4);
  826. b43_phy_maskset(dev, B43_LPPHY_AFE_DDFS, 0xFF9F, scale_idx << 5);
  827. b43_phy_mask(dev, B43_LPPHY_AFE_DDFS, 0xFFFB);
  828. b43_phy_set(dev, B43_LPPHY_AFE_DDFS, 0x2);
  829. b43_phy_set(dev, B43_LPPHY_AFE_DDFS, 0x20);
  830. }
  831. static bool lpphy_rx_iq_est(struct b43_wldev *dev, u16 samples, u8 time,
  832. struct lpphy_iq_est *iq_est)
  833. {
  834. int i;
  835. b43_phy_mask(dev, B43_LPPHY_CRSGAIN_CTL, 0xFFF7);
  836. b43_phy_write(dev, B43_LPPHY_IQ_NUM_SMPLS_ADDR, samples);
  837. b43_phy_maskset(dev, B43_LPPHY_IQ_ENABLE_WAIT_TIME_ADDR, 0xFF00, time);
  838. b43_phy_mask(dev, B43_LPPHY_IQ_ENABLE_WAIT_TIME_ADDR, 0xFEFF);
  839. b43_phy_set(dev, B43_LPPHY_IQ_ENABLE_WAIT_TIME_ADDR, 0xFDFF);
  840. for (i = 0; i < 500; i++) {
  841. if (!(b43_phy_read(dev,
  842. B43_LPPHY_IQ_ENABLE_WAIT_TIME_ADDR) & 0x200))
  843. break;
  844. msleep(1);
  845. }
  846. if ((b43_phy_read(dev, B43_LPPHY_IQ_ENABLE_WAIT_TIME_ADDR) & 0x200)) {
  847. b43_phy_set(dev, B43_LPPHY_CRSGAIN_CTL, 0x8);
  848. return false;
  849. }
  850. iq_est->iq_prod = b43_phy_read(dev, B43_LPPHY_IQ_ACC_HI_ADDR);
  851. iq_est->iq_prod <<= 16;
  852. iq_est->iq_prod |= b43_phy_read(dev, B43_LPPHY_IQ_ACC_LO_ADDR);
  853. iq_est->i_pwr = b43_phy_read(dev, B43_LPPHY_IQ_I_PWR_ACC_HI_ADDR);
  854. iq_est->i_pwr <<= 16;
  855. iq_est->i_pwr |= b43_phy_read(dev, B43_LPPHY_IQ_I_PWR_ACC_LO_ADDR);
  856. iq_est->q_pwr = b43_phy_read(dev, B43_LPPHY_IQ_Q_PWR_ACC_HI_ADDR);
  857. iq_est->q_pwr <<= 16;
  858. iq_est->q_pwr |= b43_phy_read(dev, B43_LPPHY_IQ_Q_PWR_ACC_LO_ADDR);
  859. b43_phy_set(dev, B43_LPPHY_CRSGAIN_CTL, 0x8);
  860. return true;
  861. }
  862. static int lpphy_loopback(struct b43_wldev *dev)
  863. {
  864. struct lpphy_iq_est iq_est;
  865. int i, index = -1;
  866. u32 tmp;
  867. memset(&iq_est, 0, sizeof(iq_est));
  868. b43_phy_maskset(dev, B43_LPPHY_RF_OVERRIDE_VAL_0, 0xFFFC, 0x3);
  869. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_0, 0x3);
  870. b43_phy_mask(dev, B43_LPPHY_AFE_CTL_OVRVAL, 0xFFFE);
  871. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_0, 0x800);
  872. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_VAL_0, 0x800);
  873. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_0, 0x8);
  874. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_VAL_0, 0x8);
  875. b43_radio_write(dev, B2062_N_TX_CTL_A, 0x80);
  876. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_0, 0x80);
  877. b43_phy_set(dev, B43_LPPHY_RF_OVERRIDE_VAL_0, 0x80);
  878. for (i = 0; i < 32; i++) {
  879. lpphy_set_rx_gain_by_index(dev, i);
  880. lpphy_run_ddfs(dev, 1, 1, 5, 5, 0);
  881. if (!(lpphy_rx_iq_est(dev, 1000, 32, &iq_est)))
  882. continue;
  883. tmp = (iq_est.i_pwr + iq_est.q_pwr) / 1000;
  884. if ((tmp > 4000) && (tmp < 10000)) {
  885. index = i;
  886. break;
  887. }
  888. }
  889. lpphy_stop_ddfs(dev);
  890. return index;
  891. }
  892. static u32 lpphy_qdiv_roundup(u32 dividend, u32 divisor, u8 precision)
  893. {
  894. u32 quotient, remainder, rbit, roundup, tmp;
  895. if (divisor == 0) {
  896. quotient = 0;
  897. remainder = 0;
  898. } else {
  899. quotient = dividend / divisor;
  900. remainder = dividend % divisor;
  901. }
  902. rbit = divisor & 0x1;
  903. roundup = (divisor >> 1) + rbit;
  904. precision--;
  905. while (precision != 0xFF) {
  906. tmp = remainder - roundup;
  907. quotient <<= 1;
  908. remainder <<= 1;
  909. if (remainder >= roundup) {
  910. remainder = (tmp << 1) + rbit;
  911. quotient--;
  912. }
  913. precision--;
  914. }
  915. if (remainder >= roundup)
  916. quotient++;
  917. return quotient;
  918. }
  919. /* Read the TX power control mode from hardware. */
  920. static void lpphy_read_tx_pctl_mode_from_hardware(struct b43_wldev *dev)
  921. {
  922. struct b43_phy_lp *lpphy = dev->phy.lp;
  923. u16 ctl;
  924. ctl = b43_phy_read(dev, B43_LPPHY_TX_PWR_CTL_CMD);
  925. switch (ctl & B43_LPPHY_TX_PWR_CTL_CMD_MODE) {
  926. case B43_LPPHY_TX_PWR_CTL_CMD_MODE_OFF:
  927. lpphy->txpctl_mode = B43_LPPHY_TXPCTL_OFF;
  928. break;
  929. case B43_LPPHY_TX_PWR_CTL_CMD_MODE_SW:
  930. lpphy->txpctl_mode = B43_LPPHY_TXPCTL_SW;
  931. break;
  932. case B43_LPPHY_TX_PWR_CTL_CMD_MODE_HW:
  933. lpphy->txpctl_mode = B43_LPPHY_TXPCTL_HW;
  934. break;
  935. default:
  936. lpphy->txpctl_mode = B43_LPPHY_TXPCTL_UNKNOWN;
  937. B43_WARN_ON(1);
  938. break;
  939. }
  940. }
  941. /* Set the TX power control mode in hardware. */
  942. static void lpphy_write_tx_pctl_mode_to_hardware(struct b43_wldev *dev)
  943. {
  944. struct b43_phy_lp *lpphy = dev->phy.lp;
  945. u16 ctl;
  946. switch (lpphy->txpctl_mode) {
  947. case B43_LPPHY_TXPCTL_OFF:
  948. ctl = B43_LPPHY_TX_PWR_CTL_CMD_MODE_OFF;
  949. break;
  950. case B43_LPPHY_TXPCTL_HW:
  951. ctl = B43_LPPHY_TX_PWR_CTL_CMD_MODE_HW;
  952. break;
  953. case B43_LPPHY_TXPCTL_SW:
  954. ctl = B43_LPPHY_TX_PWR_CTL_CMD_MODE_SW;
  955. break;
  956. default:
  957. ctl = 0;
  958. B43_WARN_ON(1);
  959. }
  960. b43_phy_maskset(dev, B43_LPPHY_TX_PWR_CTL_CMD,
  961. (u16)~B43_LPPHY_TX_PWR_CTL_CMD_MODE, ctl);
  962. }
  963. static void lpphy_set_tx_power_control(struct b43_wldev *dev,
  964. enum b43_lpphy_txpctl_mode mode)
  965. {
  966. struct b43_phy_lp *lpphy = dev->phy.lp;
  967. enum b43_lpphy_txpctl_mode oldmode;
  968. oldmode = lpphy->txpctl_mode;
  969. lpphy_read_tx_pctl_mode_from_hardware(dev);
  970. if (lpphy->txpctl_mode == mode)
  971. return;
  972. lpphy->txpctl_mode = mode;
  973. if (oldmode == B43_LPPHY_TXPCTL_HW) {
  974. //TODO Update TX Power NPT
  975. //TODO Clear all TX Power offsets
  976. } else {
  977. if (mode == B43_LPPHY_TXPCTL_HW) {
  978. //TODO Recalculate target TX power
  979. b43_phy_maskset(dev, B43_LPPHY_TX_PWR_CTL_CMD,
  980. 0xFF80, lpphy->tssi_idx);
  981. b43_phy_maskset(dev, B43_LPPHY_TX_PWR_CTL_NNUM,
  982. 0x8FFF, ((u16)lpphy->tssi_npt << 16));
  983. //TODO Set "TSSI Transmit Count" variable to total transmitted frame count
  984. //TODO Disable TX gain override
  985. lpphy->tx_pwr_idx_over = -1;
  986. }
  987. }
  988. if (dev->phy.rev >= 2) {
  989. if (mode == B43_LPPHY_TXPCTL_HW)
  990. b43_phy_maskset(dev, B43_PHY_OFDM(0xD0), 0xFD, 0x2);
  991. else
  992. b43_phy_maskset(dev, B43_PHY_OFDM(0xD0), 0xFD, 0);
  993. }
  994. lpphy_write_tx_pctl_mode_to_hardware(dev);
  995. }
  996. static int b43_lpphy_op_switch_channel(struct b43_wldev *dev,
  997. unsigned int new_channel);
  998. static void lpphy_rev0_1_rc_calib(struct b43_wldev *dev)
  999. {
  1000. struct b43_phy_lp *lpphy = dev->phy.lp;
  1001. struct lpphy_iq_est iq_est;
  1002. struct lpphy_tx_gains tx_gains;
  1003. static const u32 ideal_pwr_table[22] = {
  1004. 0x10000, 0x10557, 0x10e2d, 0x113e0, 0x10f22, 0x0ff64,
  1005. 0x0eda2, 0x0e5d4, 0x0efd1, 0x0fbe8, 0x0b7b8, 0x04b35,
  1006. 0x01a5e, 0x00a0b, 0x00444, 0x001fd, 0x000ff, 0x00088,
  1007. 0x0004c, 0x0002c, 0x0001a, 0xc0006,
  1008. };
  1009. bool old_txg_ovr;
  1010. u8 old_bbmult;
  1011. u16 old_rf_ovr, old_rf_ovrval, old_afe_ovr, old_afe_ovrval,
  1012. old_rf2_ovr, old_rf2_ovrval, old_phy_ctl;
  1013. enum b43_lpphy_txpctl_mode old_txpctl;
  1014. u32 normal_pwr, ideal_pwr, mean_sq_pwr, tmp = 0, mean_sq_pwr_min = 0;
  1015. int loopback, i, j, inner_sum, err;
  1016. memset(&iq_est, 0, sizeof(iq_est));
  1017. err = b43_lpphy_op_switch_channel(dev, 7);
  1018. if (err) {
  1019. b43dbg(dev->wl,
  1020. "RC calib: Failed to switch to channel 7, error = %d",
  1021. err);
  1022. }
  1023. old_txg_ovr = (b43_phy_read(dev, B43_LPPHY_AFE_CTL_OVR) >> 6) & 1;
  1024. old_bbmult = lpphy_get_bb_mult(dev);
  1025. if (old_txg_ovr)
  1026. tx_gains = lpphy_get_tx_gains(dev);
  1027. old_rf_ovr = b43_phy_read(dev, B43_LPPHY_RF_OVERRIDE_0);
  1028. old_rf_ovrval = b43_phy_read(dev, B43_LPPHY_RF_OVERRIDE_VAL_0);
  1029. old_afe_ovr = b43_phy_read(dev, B43_LPPHY_AFE_CTL_OVR);
  1030. old_afe_ovrval = b43_phy_read(dev, B43_LPPHY_AFE_CTL_OVRVAL);
  1031. old_rf2_ovr = b43_phy_read(dev, B43_LPPHY_RF_OVERRIDE_2);
  1032. old_rf2_ovrval = b43_phy_read(dev, B43_LPPHY_RF_OVERRIDE_2_VAL);
  1033. old_phy_ctl = b43_phy_read(dev, B43_LPPHY_LP_PHY_CTL);
  1034. lpphy_read_tx_pctl_mode_from_hardware(dev);
  1035. old_txpctl = lpphy->txpctl_mode;
  1036. lpphy_set_tx_power_control(dev, B43_LPPHY_TX_PWR_CTL_CMD_MODE_OFF);
  1037. lpphy_disable_crs(dev);
  1038. loopback = lpphy_loopback(dev);
  1039. if (loopback == -1)
  1040. goto finish;
  1041. lpphy_set_rx_gain_by_index(dev, loopback);
  1042. b43_phy_maskset(dev, B43_LPPHY_LP_PHY_CTL, 0xFFBF, 0x40);
  1043. b43_phy_maskset(dev, B43_LPPHY_RF_OVERRIDE_2_VAL, 0xFFF8, 0x1);
  1044. b43_phy_maskset(dev, B43_LPPHY_RF_OVERRIDE_2_VAL, 0xFFC7, 0x8);
  1045. b43_phy_maskset(dev, B43_LPPHY_RF_OVERRIDE_2_VAL, 0xFF3F, 0xC0);
  1046. for (i = 128; i <= 159; i++) {
  1047. b43_radio_write(dev, B2062_N_RXBB_CALIB2, i);
  1048. inner_sum = 0;
  1049. for (j = 5; j <= 25; j++) {
  1050. lpphy_run_ddfs(dev, 1, 1, j, j, 0);
  1051. if (!(lpphy_rx_iq_est(dev, 1000, 32, &iq_est)))
  1052. goto finish;
  1053. mean_sq_pwr = iq_est.i_pwr + iq_est.q_pwr;
  1054. if (j == 5)
  1055. tmp = mean_sq_pwr;
  1056. ideal_pwr = ((ideal_pwr_table[j-5] >> 3) + 1) >> 1;
  1057. normal_pwr = lpphy_qdiv_roundup(mean_sq_pwr, tmp, 12);
  1058. mean_sq_pwr = ideal_pwr - normal_pwr;
  1059. mean_sq_pwr *= mean_sq_pwr;
  1060. inner_sum += mean_sq_pwr;
  1061. if ((i = 128) || (inner_sum < mean_sq_pwr_min)) {
  1062. lpphy->rc_cap = i;
  1063. mean_sq_pwr_min = inner_sum;
  1064. }
  1065. }
  1066. }
  1067. lpphy_stop_ddfs(dev);
  1068. finish:
  1069. lpphy_restore_crs(dev);
  1070. b43_phy_write(dev, B43_LPPHY_RF_OVERRIDE_VAL_0, old_rf_ovrval);
  1071. b43_phy_write(dev, B43_LPPHY_RF_OVERRIDE_0, old_rf_ovr);
  1072. b43_phy_write(dev, B43_LPPHY_AFE_CTL_OVRVAL, old_afe_ovrval);
  1073. b43_phy_write(dev, B43_LPPHY_AFE_CTL_OVR, old_afe_ovr);
  1074. b43_phy_write(dev, B43_LPPHY_RF_OVERRIDE_2_VAL, old_rf2_ovrval);
  1075. b43_phy_write(dev, B43_LPPHY_RF_OVERRIDE_2, old_rf2_ovr);
  1076. b43_phy_write(dev, B43_LPPHY_LP_PHY_CTL, old_phy_ctl);
  1077. lpphy_set_bb_mult(dev, old_bbmult);
  1078. if (old_txg_ovr) {
  1079. /*
  1080. * SPEC FIXME: The specs say "get_tx_gains" here, which is
  1081. * illogical. According to lwfinger, vendor driver v4.150.10.5
  1082. * has a Set here, while v4.174.64.19 has a Get - regression in
  1083. * the vendor driver? This should be tested this once the code
  1084. * is testable.
  1085. */
  1086. lpphy_set_tx_gains(dev, tx_gains);
  1087. }
  1088. lpphy_set_tx_power_control(dev, old_txpctl);
  1089. if (lpphy->rc_cap)
  1090. lpphy_set_rc_cap(dev);
  1091. }
  1092. static void lpphy_rev2plus_rc_calib(struct b43_wldev *dev)
  1093. {
  1094. struct ssb_bus *bus = dev->dev->bus;
  1095. u32 crystal_freq = bus->chipco.pmu.crystalfreq * 1000;
  1096. u8 tmp = b43_radio_read(dev, B2063_RX_BB_SP8) & 0xFF;
  1097. int i;
  1098. b43_radio_write(dev, B2063_RX_BB_SP8, 0x0);
  1099. b43_radio_write(dev, B2063_RC_CALIB_CTL1, 0x7E);
  1100. b43_radio_mask(dev, B2063_PLL_SP1, 0xF7);
  1101. b43_radio_write(dev, B2063_RC_CALIB_CTL1, 0x7C);
  1102. b43_radio_write(dev, B2063_RC_CALIB_CTL2, 0x15);
  1103. b43_radio_write(dev, B2063_RC_CALIB_CTL3, 0x70);
  1104. b43_radio_write(dev, B2063_RC_CALIB_CTL4, 0x52);
  1105. b43_radio_write(dev, B2063_RC_CALIB_CTL5, 0x1);
  1106. b43_radio_write(dev, B2063_RC_CALIB_CTL1, 0x7D);
  1107. for (i = 0; i < 10000; i++) {
  1108. if (b43_radio_read(dev, B2063_RC_CALIB_CTL6) & 0x2)
  1109. break;
  1110. msleep(1);
  1111. }
  1112. if (!(b43_radio_read(dev, B2063_RC_CALIB_CTL6) & 0x2))
  1113. b43_radio_write(dev, B2063_RX_BB_SP8, tmp);
  1114. tmp = b43_radio_read(dev, B2063_TX_BB_SP3) & 0xFF;
  1115. b43_radio_write(dev, B2063_TX_BB_SP3, 0x0);
  1116. b43_radio_write(dev, B2063_RC_CALIB_CTL1, 0x7E);
  1117. b43_radio_write(dev, B2063_RC_CALIB_CTL1, 0x7C);
  1118. b43_radio_write(dev, B2063_RC_CALIB_CTL2, 0x55);
  1119. b43_radio_write(dev, B2063_RC_CALIB_CTL3, 0x76);
  1120. if (crystal_freq == 24000000) {
  1121. b43_radio_write(dev, B2063_RC_CALIB_CTL4, 0xFC);
  1122. b43_radio_write(dev, B2063_RC_CALIB_CTL5, 0x0);
  1123. } else {
  1124. b43_radio_write(dev, B2063_RC_CALIB_CTL4, 0x13);
  1125. b43_radio_write(dev, B2063_RC_CALIB_CTL5, 0x1);
  1126. }
  1127. b43_radio_write(dev, B2063_PA_SP7, 0x7D);
  1128. for (i = 0; i < 10000; i++) {
  1129. if (b43_radio_read(dev, B2063_RC_CALIB_CTL6) & 0x2)
  1130. break;
  1131. msleep(1);
  1132. }
  1133. if (!(b43_radio_read(dev, B2063_RC_CALIB_CTL6) & 0x2))
  1134. b43_radio_write(dev, B2063_TX_BB_SP3, tmp);
  1135. b43_radio_write(dev, B2063_RC_CALIB_CTL1, 0x7E);
  1136. }
  1137. static void lpphy_calibrate_rc(struct b43_wldev *dev)
  1138. {
  1139. struct b43_phy_lp *lpphy = dev->phy.lp;
  1140. if (dev->phy.rev >= 2) {
  1141. lpphy_rev2plus_rc_calib(dev);
  1142. } else if (!lpphy->rc_cap) {
  1143. if (b43_current_band(dev->wl) == IEEE80211_BAND_2GHZ)
  1144. lpphy_rev0_1_rc_calib(dev);
  1145. } else {
  1146. lpphy_set_rc_cap(dev);
  1147. }
  1148. }
  1149. static void lpphy_set_tx_power_by_index(struct b43_wldev *dev, u8 index)
  1150. {
  1151. struct b43_phy_lp *lpphy = dev->phy.lp;
  1152. lpphy->tx_pwr_idx_over = index;
  1153. if (lpphy->txpctl_mode != B43_LPPHY_TXPCTL_OFF)
  1154. lpphy_set_tx_power_control(dev, B43_LPPHY_TXPCTL_SW);
  1155. //TODO
  1156. }
  1157. static void lpphy_btcoex_override(struct b43_wldev *dev)
  1158. {
  1159. b43_write16(dev, B43_MMIO_BTCOEX_CTL, 0x3);
  1160. b43_write16(dev, B43_MMIO_BTCOEX_TXCTL, 0xFF);
  1161. }
  1162. static void lpphy_pr41573_workaround(struct b43_wldev *dev)
  1163. {
  1164. struct b43_phy_lp *lpphy = dev->phy.lp;
  1165. u32 *saved_tab;
  1166. const unsigned int saved_tab_size = 256;
  1167. enum b43_lpphy_txpctl_mode txpctl_mode;
  1168. s8 tx_pwr_idx_over;
  1169. u16 tssi_npt, tssi_idx;
  1170. saved_tab = kcalloc(saved_tab_size, sizeof(saved_tab[0]), GFP_KERNEL);
  1171. if (!saved_tab) {
  1172. b43err(dev->wl, "PR41573 failed. Out of memory!\n");
  1173. return;
  1174. }
  1175. lpphy_read_tx_pctl_mode_from_hardware(dev);
  1176. txpctl_mode = lpphy->txpctl_mode;
  1177. tx_pwr_idx_over = lpphy->tx_pwr_idx_over;
  1178. tssi_npt = lpphy->tssi_npt;
  1179. tssi_idx = lpphy->tssi_idx;
  1180. if (dev->phy.rev < 2) {
  1181. b43_lptab_read_bulk(dev, B43_LPTAB32(10, 0x140),
  1182. saved_tab_size, saved_tab);
  1183. } else {
  1184. b43_lptab_read_bulk(dev, B43_LPTAB32(7, 0x140),
  1185. saved_tab_size, saved_tab);
  1186. }
  1187. //TODO
  1188. kfree(saved_tab);
  1189. }
  1190. static void lpphy_calibration(struct b43_wldev *dev)
  1191. {
  1192. struct b43_phy_lp *lpphy = dev->phy.lp;
  1193. enum b43_lpphy_txpctl_mode saved_pctl_mode;
  1194. b43_mac_suspend(dev);
  1195. lpphy_btcoex_override(dev);
  1196. lpphy_read_tx_pctl_mode_from_hardware(dev);
  1197. saved_pctl_mode = lpphy->txpctl_mode;
  1198. lpphy_set_tx_power_control(dev, B43_LPPHY_TXPCTL_OFF);
  1199. //TODO Perform transmit power table I/Q LO calibration
  1200. if ((dev->phy.rev == 0) && (saved_pctl_mode != B43_LPPHY_TXPCTL_OFF))
  1201. lpphy_pr41573_workaround(dev);
  1202. //TODO If a full calibration has not been performed on this channel yet, perform PAPD TX-power calibration
  1203. lpphy_set_tx_power_control(dev, saved_pctl_mode);
  1204. //TODO Perform I/Q calibration with a single control value set
  1205. b43_mac_enable(dev);
  1206. }
  1207. static void lpphy_set_tssi_mux(struct b43_wldev *dev, enum tssi_mux_mode mode)
  1208. {
  1209. if (mode != TSSI_MUX_EXT) {
  1210. b43_radio_set(dev, B2063_PA_SP1, 0x2);
  1211. b43_phy_set(dev, B43_PHY_OFDM(0xF3), 0x1000);
  1212. b43_radio_write(dev, B2063_PA_CTL10, 0x51);
  1213. if (mode == TSSI_MUX_POSTPA) {
  1214. b43_radio_mask(dev, B2063_PA_SP1, 0xFFFE);
  1215. b43_phy_mask(dev, B43_LPPHY_AFE_CTL_OVRVAL, 0xFFC7);
  1216. } else {
  1217. b43_radio_maskset(dev, B2063_PA_SP1, 0xFFFE, 0x1);
  1218. b43_phy_maskset(dev, B43_LPPHY_AFE_CTL_OVRVAL,
  1219. 0xFFC7, 0x20);
  1220. }
  1221. } else {
  1222. B43_WARN_ON(1);
  1223. }
  1224. }
  1225. static void lpphy_tx_pctl_init_hw(struct b43_wldev *dev)
  1226. {
  1227. u16 tmp;
  1228. int i;
  1229. //SPEC TODO Call LP PHY Clear TX Power offsets
  1230. for (i = 0; i < 64; i++) {
  1231. if (dev->phy.rev >= 2)
  1232. b43_lptab_write(dev, B43_LPTAB32(7, i + 1), i);
  1233. else
  1234. b43_lptab_write(dev, B43_LPTAB32(10, i + 1), i);
  1235. }
  1236. b43_phy_maskset(dev, B43_LPPHY_TX_PWR_CTL_NNUM, 0xFF00, 0xFF);
  1237. b43_phy_maskset(dev, B43_LPPHY_TX_PWR_CTL_NNUM, 0x8FFF, 0x5000);
  1238. b43_phy_maskset(dev, B43_LPPHY_TX_PWR_CTL_IDLETSSI, 0xFFC0, 0x1F);
  1239. if (dev->phy.rev < 2) {
  1240. b43_phy_mask(dev, B43_LPPHY_LP_PHY_CTL, 0xEFFF);
  1241. b43_phy_maskset(dev, B43_LPPHY_LP_PHY_CTL, 0xDFFF, 0x2000);
  1242. } else {
  1243. b43_phy_mask(dev, B43_PHY_OFDM(0x103), 0xFFFE);
  1244. b43_phy_maskset(dev, B43_PHY_OFDM(0x103), 0xFFFB, 0x4);
  1245. b43_phy_maskset(dev, B43_PHY_OFDM(0x103), 0xFFEF, 0x10);
  1246. b43_radio_maskset(dev, B2063_IQ_CALIB_CTL2, 0xF3, 0x1);
  1247. lpphy_set_tssi_mux(dev, TSSI_MUX_POSTPA);
  1248. }
  1249. b43_phy_maskset(dev, B43_LPPHY_TX_PWR_CTL_IDLETSSI, 0x7FFF, 0x8000);
  1250. b43_phy_mask(dev, B43_LPPHY_TX_PWR_CTL_DELTAPWR_LIMIT, 0xFF);
  1251. b43_phy_write(dev, B43_LPPHY_TX_PWR_CTL_DELTAPWR_LIMIT, 0xA);
  1252. b43_phy_maskset(dev, B43_LPPHY_TX_PWR_CTL_CMD,
  1253. (u16)~B43_LPPHY_TX_PWR_CTL_CMD_MODE,
  1254. B43_LPPHY_TX_PWR_CTL_CMD_MODE_OFF);
  1255. b43_phy_mask(dev, B43_LPPHY_TX_PWR_CTL_NNUM, 0xF8FF);
  1256. b43_phy_maskset(dev, B43_LPPHY_TX_PWR_CTL_CMD,
  1257. (u16)~B43_LPPHY_TX_PWR_CTL_CMD_MODE,
  1258. B43_LPPHY_TX_PWR_CTL_CMD_MODE_SW);
  1259. if (dev->phy.rev < 2) {
  1260. b43_phy_maskset(dev, B43_LPPHY_RF_OVERRIDE_0, 0xEFFF, 0x1000);
  1261. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_VAL_0, 0xEFFF);
  1262. } else {
  1263. lpphy_set_tx_power_by_index(dev, 0x7F);
  1264. }
  1265. b43_dummy_transmission(dev, true, true);
  1266. tmp = b43_phy_read(dev, B43_LPPHY_TX_PWR_CTL_STAT);
  1267. if (tmp & 0x8000) {
  1268. b43_phy_maskset(dev, B43_LPPHY_TX_PWR_CTL_IDLETSSI,
  1269. 0xFFC0, (tmp & 0xFF) - 32);
  1270. }
  1271. b43_phy_mask(dev, B43_LPPHY_RF_OVERRIDE_0, 0xEFFF);
  1272. // (SPEC?) TODO Set "Target TX frequency" variable to 0
  1273. // SPEC FIXME "Set BB Multiplier to 0xE000" impossible - bb_mult is u8!
  1274. }
  1275. static void lpphy_tx_pctl_init_sw(struct b43_wldev *dev)
  1276. {
  1277. struct lpphy_tx_gains gains;
  1278. if (b43_current_band(dev->wl) == IEEE80211_BAND_2GHZ) {
  1279. gains.gm = 4;
  1280. gains.pad = 12;
  1281. gains.pga = 12;
  1282. gains.dac = 0;
  1283. } else {
  1284. gains.gm = 7;
  1285. gains.pad = 14;
  1286. gains.pga = 15;
  1287. gains.dac = 0;
  1288. }
  1289. lpphy_set_tx_gains(dev, gains);
  1290. lpphy_set_bb_mult(dev, 150);
  1291. }
  1292. /* Initialize TX power control */
  1293. static void lpphy_tx_pctl_init(struct b43_wldev *dev)
  1294. {
  1295. if (0/*FIXME HWPCTL capable */) {
  1296. lpphy_tx_pctl_init_hw(dev);
  1297. } else { /* This device is only software TX power control capable. */
  1298. lpphy_tx_pctl_init_sw(dev);
  1299. }
  1300. }
  1301. static u16 b43_lpphy_op_read(struct b43_wldev *dev, u16 reg)
  1302. {
  1303. b43_write16(dev, B43_MMIO_PHY_CONTROL, reg);
  1304. return b43_read16(dev, B43_MMIO_PHY_DATA);
  1305. }
  1306. static void b43_lpphy_op_write(struct b43_wldev *dev, u16 reg, u16 value)
  1307. {
  1308. b43_write16(dev, B43_MMIO_PHY_CONTROL, reg);
  1309. b43_write16(dev, B43_MMIO_PHY_DATA, value);
  1310. }
  1311. static u16 b43_lpphy_op_radio_read(struct b43_wldev *dev, u16 reg)
  1312. {
  1313. /* Register 1 is a 32-bit register. */
  1314. B43_WARN_ON(reg == 1);
  1315. /* LP-PHY needs a special bit set for read access */
  1316. if (dev->phy.rev < 2) {
  1317. if (reg != 0x4001)
  1318. reg |= 0x100;
  1319. } else
  1320. reg |= 0x200;
  1321. b43_write16(dev, B43_MMIO_RADIO_CONTROL, reg);
  1322. return b43_read16(dev, B43_MMIO_RADIO_DATA_LOW);
  1323. }
  1324. static void b43_lpphy_op_radio_write(struct b43_wldev *dev, u16 reg, u16 value)
  1325. {
  1326. /* Register 1 is a 32-bit register. */
  1327. B43_WARN_ON(reg == 1);
  1328. b43_write16(dev, B43_MMIO_RADIO_CONTROL, reg);
  1329. b43_write16(dev, B43_MMIO_RADIO_DATA_LOW, value);
  1330. }
  1331. static void b43_lpphy_op_software_rfkill(struct b43_wldev *dev,
  1332. bool blocked)
  1333. {
  1334. //TODO
  1335. }
  1336. struct b206x_channel {
  1337. u8 channel;
  1338. u16 freq;
  1339. u8 data[12];
  1340. };
  1341. static const struct b206x_channel b2062_chantbl[] = {
  1342. { .channel = 1, .freq = 2412, .data[0] = 0xFF, .data[1] = 0xFF,
  1343. .data[2] = 0xB5, .data[3] = 0x1B, .data[4] = 0x24, .data[5] = 0x32,
  1344. .data[6] = 0x32, .data[7] = 0x88, .data[8] = 0x88, },
  1345. { .channel = 2, .freq = 2417, .data[0] = 0xFF, .data[1] = 0xFF,
  1346. .data[2] = 0xB5, .data[3] = 0x1B, .data[4] = 0x24, .data[5] = 0x32,
  1347. .data[6] = 0x32, .data[7] = 0x88, .data[8] = 0x88, },
  1348. { .channel = 3, .freq = 2422, .data[0] = 0xFF, .data[1] = 0xFF,
  1349. .data[2] = 0xB5, .data[3] = 0x1B, .data[4] = 0x24, .data[5] = 0x32,
  1350. .data[6] = 0x32, .data[7] = 0x88, .data[8] = 0x88, },
  1351. { .channel = 4, .freq = 2427, .data[0] = 0xFF, .data[1] = 0xFF,
  1352. .data[2] = 0xB5, .data[3] = 0x1B, .data[4] = 0x24, .data[5] = 0x32,
  1353. .data[6] = 0x32, .data[7] = 0x88, .data[8] = 0x88, },
  1354. { .channel = 5, .freq = 2432, .data[0] = 0xFF, .data[1] = 0xFF,
  1355. .data[2] = 0xB5, .data[3] = 0x1B, .data[4] = 0x24, .data[5] = 0x32,
  1356. .data[6] = 0x32, .data[7] = 0x88, .data[8] = 0x88, },
  1357. { .channel = 6, .freq = 2437, .data[0] = 0xFF, .data[1] = 0xFF,
  1358. .data[2] = 0xB5, .data[3] = 0x1B, .data[4] = 0x24, .data[5] = 0x32,
  1359. .data[6] = 0x32, .data[7] = 0x88, .data[8] = 0x88, },
  1360. { .channel = 7, .freq = 2442, .data[0] = 0xFF, .data[1] = 0xFF,
  1361. .data[2] = 0xB5, .data[3] = 0x1B, .data[4] = 0x24, .data[5] = 0x32,
  1362. .data[6] = 0x32, .data[7] = 0x88, .data[8] = 0x88, },
  1363. { .channel = 8, .freq = 2447, .data[0] = 0xFF, .data[1] = 0xFF,
  1364. .data[2] = 0xB5, .data[3] = 0x1B, .data[4] = 0x24, .data[5] = 0x32,
  1365. .data[6] = 0x32, .data[7] = 0x88, .data[8] = 0x88, },
  1366. { .channel = 9, .freq = 2452, .data[0] = 0xFF, .data[1] = 0xFF,
  1367. .data[2] = 0xB5, .data[3] = 0x1B, .data[4] = 0x24, .data[5] = 0x32,
  1368. .data[6] = 0x32, .data[7] = 0x88, .data[8] = 0x88, },
  1369. { .channel = 10, .freq = 2457, .data[0] = 0xFF, .data[1] = 0xFF,
  1370. .data[2] = 0xB5, .data[3] = 0x1B, .data[4] = 0x24, .data[5] = 0x32,
  1371. .data[6] = 0x32, .data[7] = 0x88, .data[8] = 0x88, },
  1372. { .channel = 11, .freq = 2462, .data[0] = 0xFF, .data[1] = 0xFF,
  1373. .data[2] = 0xB5, .data[3] = 0x1B, .data[4] = 0x24, .data[5] = 0x32,
  1374. .data[6] = 0x32, .data[7] = 0x88, .data[8] = 0x88, },
  1375. { .channel = 12, .freq = 2467, .data[0] = 0xFF, .data[1] = 0xFF,
  1376. .data[2] = 0xB5, .data[3] = 0x1B, .data[4] = 0x24, .data[5] = 0x32,
  1377. .data[6] = 0x32, .data[7] = 0x88, .data[8] = 0x88, },
  1378. { .channel = 13, .freq = 2472, .data[0] = 0xFF, .data[1] = 0xFF,
  1379. .data[2] = 0xB5, .data[3] = 0x1B, .data[4] = 0x24, .data[5] = 0x32,
  1380. .data[6] = 0x32, .data[7] = 0x88, .data[8] = 0x88, },
  1381. { .channel = 14, .freq = 2484, .data[0] = 0xFF, .data[1] = 0xFF,
  1382. .data[2] = 0xB5, .data[3] = 0x1B, .data[4] = 0x24, .data[5] = 0x32,
  1383. .data[6] = 0x32, .data[7] = 0x88, .data[8] = 0x88, },
  1384. { .channel = 34, .freq = 5170, .data[0] = 0x00, .data[1] = 0x22,
  1385. .data[2] = 0x20, .data[3] = 0x84, .data[4] = 0x3C, .data[5] = 0x77,
  1386. .data[6] = 0x35, .data[7] = 0xFF, .data[8] = 0x88, },
  1387. { .channel = 38, .freq = 5190, .data[0] = 0x00, .data[1] = 0x11,
  1388. .data[2] = 0x10, .data[3] = 0x83, .data[4] = 0x3C, .data[5] = 0x77,
  1389. .data[6] = 0x35, .data[7] = 0xFF, .data[8] = 0x88, },
  1390. { .channel = 42, .freq = 5210, .data[0] = 0x00, .data[1] = 0x11,
  1391. .data[2] = 0x10, .data[3] = 0x83, .data[4] = 0x3C, .data[5] = 0x77,
  1392. .data[6] = 0x35, .data[7] = 0xFF, .data[8] = 0x88, },
  1393. { .channel = 46, .freq = 5230, .data[0] = 0x00, .data[1] = 0x00,
  1394. .data[2] = 0x00, .data[3] = 0x83, .data[4] = 0x3C, .data[5] = 0x77,
  1395. .data[6] = 0x35, .data[7] = 0xFF, .data[8] = 0x88, },
  1396. { .channel = 36, .freq = 5180, .data[0] = 0x00, .data[1] = 0x11,
  1397. .data[2] = 0x20, .data[3] = 0x83, .data[4] = 0x3C, .data[5] = 0x77,
  1398. .data[6] = 0x35, .data[7] = 0xFF, .data[8] = 0x88, },
  1399. { .channel = 40, .freq = 5200, .data[0] = 0x00, .data[1] = 0x11,
  1400. .data[2] = 0x10, .data[3] = 0x84, .data[4] = 0x3C, .data[5] = 0x77,
  1401. .data[6] = 0x35, .data[7] = 0xFF, .data[8] = 0x88, },
  1402. { .channel = 44, .freq = 5220, .data[0] = 0x00, .data[1] = 0x11,
  1403. .data[2] = 0x00, .data[3] = 0x83, .data[4] = 0x3C, .data[5] = 0x77,
  1404. .data[6] = 0x35, .data[7] = 0xFF, .data[8] = 0x88, },
  1405. { .channel = 48, .freq = 5240, .data[0] = 0x00, .data[1] = 0x00,
  1406. .data[2] = 0x00, .data[3] = 0x83, .data[4] = 0x3C, .data[5] = 0x77,
  1407. .data[6] = 0x35, .data[7] = 0xFF, .data[8] = 0x88, },
  1408. { .channel = 52, .freq = 5260, .data[0] = 0x00, .data[1] = 0x00,
  1409. .data[2] = 0x00, .data[3] = 0x83, .data[4] = 0x3C, .data[5] = 0x77,
  1410. .data[6] = 0x35, .data[7] = 0xFF, .data[8] = 0x88, },
  1411. { .channel = 56, .freq = 5280, .data[0] = 0x00, .data[1] = 0x00,
  1412. .data[2] = 0x00, .data[3] = 0x83, .data[4] = 0x3C, .data[5] = 0x77,
  1413. .data[6] = 0x35, .data[7] = 0xFF, .data[8] = 0x88, },
  1414. { .channel = 60, .freq = 5300, .data[0] = 0x00, .data[1] = 0x00,
  1415. .data[2] = 0x00, .data[3] = 0x63, .data[4] = 0x3C, .data[5] = 0x77,
  1416. .data[6] = 0x35, .data[7] = 0xFF, .data[8] = 0x88, },
  1417. { .channel = 64, .freq = 5320, .data[0] = 0x00, .data[1] = 0x00,
  1418. .data[2] = 0x00, .data[3] = 0x62, .data[4] = 0x3C, .data[5] = 0x77,
  1419. .data[6] = 0x35, .data[7] = 0xFF, .data[8] = 0x88, },
  1420. { .channel = 100, .freq = 5500, .data[0] = 0x00, .data[1] = 0x00,
  1421. .data[2] = 0x00, .data[3] = 0x30, .data[4] = 0x3C, .data[5] = 0x77,
  1422. .data[6] = 0x37, .data[7] = 0xFF, .data[8] = 0x88, },
  1423. { .channel = 104, .freq = 5520, .data[0] = 0x00, .data[1] = 0x00,
  1424. .data[2] = 0x00, .data[3] = 0x20, .data[4] = 0x3C, .data[5] = 0x77,
  1425. .data[6] = 0x37, .data[7] = 0xFF, .data[8] = 0x88, },
  1426. { .channel = 108, .freq = 5540, .data[0] = 0x00, .data[1] = 0x00,
  1427. .data[2] = 0x00, .data[3] = 0x20, .data[4] = 0x3C, .data[5] = 0x77,
  1428. .data[6] = 0x37, .data[7] = 0xFF, .data[8] = 0x88, },
  1429. { .channel = 112, .freq = 5560, .data[0] = 0x00, .data[1] = 0x00,
  1430. .data[2] = 0x00, .data[3] = 0x20, .data[4] = 0x3C, .data[5] = 0x77,
  1431. .data[6] = 0x37, .data[7] = 0xFF, .data[8] = 0x88, },
  1432. { .channel = 116, .freq = 5580, .data[0] = 0x00, .data[1] = 0x00,
  1433. .data[2] = 0x00, .data[3] = 0x10, .data[4] = 0x3C, .data[5] = 0x77,
  1434. .data[6] = 0x37, .data[7] = 0xFF, .data[8] = 0x88, },
  1435. { .channel = 120, .freq = 5600, .data[0] = 0x00, .data[1] = 0x00,
  1436. .data[2] = 0x00, .data[3] = 0x00, .data[4] = 0x3C, .data[5] = 0x77,
  1437. .data[6] = 0x37, .data[7] = 0xFF, .data[8] = 0x88, },
  1438. { .channel = 124, .freq = 5620, .data[0] = 0x00, .data[1] = 0x00,
  1439. .data[2] = 0x00, .data[3] = 0x00, .data[4] = 0x3C, .data[5] = 0x77,
  1440. .data[6] = 0x37, .data[7] = 0xFF, .data[8] = 0x88, },
  1441. { .channel = 128, .freq = 5640, .data[0] = 0x00, .data[1] = 0x00,
  1442. .data[2] = 0x00, .data[3] = 0x00, .data[4] = 0x3C, .data[5] = 0x77,
  1443. .data[6] = 0x37, .data[7] = 0xFF, .data[8] = 0x88, },
  1444. { .channel = 132, .freq = 5660, .data[0] = 0x00, .data[1] = 0x00,
  1445. .data[2] = 0x00, .data[3] = 0x00, .data[4] = 0x3C, .data[5] = 0x77,
  1446. .data[6] = 0x37, .data[7] = 0xFF, .data[8] = 0x88, },
  1447. { .channel = 136, .freq = 5680, .data[0] = 0x00, .data[1] = 0x00,
  1448. .data[2] = 0x00, .data[3] = 0x00, .data[4] = 0x3C, .data[5] = 0x77,
  1449. .data[6] = 0x37, .data[7] = 0xFF, .data[8] = 0x88, },
  1450. { .channel = 140, .freq = 5700, .data[0] = 0x00, .data[1] = 0x00,
  1451. .data[2] = 0x00, .data[3] = 0x00, .data[4] = 0x3C, .data[5] = 0x77,
  1452. .data[6] = 0x37, .data[7] = 0xFF, .data[8] = 0x88, },
  1453. { .channel = 149, .freq = 5745, .data[0] = 0x00, .data[1] = 0x00,
  1454. .data[2] = 0x00, .data[3] = 0x00, .data[4] = 0x3C, .data[5] = 0x77,
  1455. .data[6] = 0x37, .data[7] = 0xFF, .data[8] = 0x88, },
  1456. { .channel = 153, .freq = 5765, .data[0] = 0x00, .data[1] = 0x00,
  1457. .data[2] = 0x00, .data[3] = 0x00, .data[4] = 0x3C, .data[5] = 0x77,
  1458. .data[6] = 0x37, .data[7] = 0xFF, .data[8] = 0x88, },
  1459. { .channel = 157, .freq = 5785, .data[0] = 0x00, .data[1] = 0x00,
  1460. .data[2] = 0x00, .data[3] = 0x00, .data[4] = 0x3C, .data[5] = 0x77,
  1461. .data[6] = 0x37, .data[7] = 0xFF, .data[8] = 0x88, },
  1462. { .channel = 161, .freq = 5805, .data[0] = 0x00, .data[1] = 0x00,
  1463. .data[2] = 0x00, .data[3] = 0x00, .data[4] = 0x3C, .data[5] = 0x77,
  1464. .data[6] = 0x37, .data[7] = 0xFF, .data[8] = 0x88, },
  1465. { .channel = 165, .freq = 5825, .data[0] = 0x00, .data[1] = 0x00,
  1466. .data[2] = 0x00, .data[3] = 0x00, .data[4] = 0x3C, .data[5] = 0x77,
  1467. .data[6] = 0x37, .data[7] = 0xFF, .data[8] = 0x88, },
  1468. { .channel = 184, .freq = 4920, .data[0] = 0x55, .data[1] = 0x77,
  1469. .data[2] = 0x90, .data[3] = 0xF7, .data[4] = 0x3C, .data[5] = 0x77,
  1470. .data[6] = 0x35, .data[7] = 0xFF, .data[8] = 0xFF, },
  1471. { .channel = 188, .freq = 4940, .data[0] = 0x44, .data[1] = 0x77,
  1472. .data[2] = 0x80, .data[3] = 0xE7, .data[4] = 0x3C, .data[5] = 0x77,
  1473. .data[6] = 0x35, .data[7] = 0xFF, .data[8] = 0xFF, },
  1474. { .channel = 192, .freq = 4960, .data[0] = 0x44, .data[1] = 0x66,
  1475. .data[2] = 0x80, .data[3] = 0xE7, .data[4] = 0x3C, .data[5] = 0x77,
  1476. .data[6] = 0x35, .data[7] = 0xFF, .data[8] = 0xFF, },
  1477. { .channel = 196, .freq = 4980, .data[0] = 0x33, .data[1] = 0x66,
  1478. .data[2] = 0x70, .data[3] = 0xC7, .data[4] = 0x3C, .data[5] = 0x77,
  1479. .data[6] = 0x35, .data[7] = 0xFF, .data[8] = 0xFF, },
  1480. { .channel = 200, .freq = 5000, .data[0] = 0x22, .data[1] = 0x55,
  1481. .data[2] = 0x60, .data[3] = 0xD7, .data[4] = 0x3C, .data[5] = 0x77,
  1482. .data[6] = 0x35, .data[7] = 0xFF, .data[8] = 0xFF, },
  1483. { .channel = 204, .freq = 5020, .data[0] = 0x22, .data[1] = 0x55,
  1484. .data[2] = 0x60, .data[3] = 0xC7, .data[4] = 0x3C, .data[5] = 0x77,
  1485. .data[6] = 0x35, .data[7] = 0xFF, .data[8] = 0xFF, },
  1486. { .channel = 208, .freq = 5040, .data[0] = 0x22, .data[1] = 0x44,
  1487. .data[2] = 0x50, .data[3] = 0xC7, .data[4] = 0x3C, .data[5] = 0x77,
  1488. .data[6] = 0x35, .data[7] = 0xFF, .data[8] = 0xFF, },
  1489. { .channel = 212, .freq = 5060, .data[0] = 0x11, .data[1] = 0x44,
  1490. .data[2] = 0x50, .data[3] = 0xA5, .data[4] = 0x3C, .data[5] = 0x77,
  1491. .data[6] = 0x35, .data[7] = 0xFF, .data[8] = 0x88, },
  1492. { .channel = 216, .freq = 5080, .data[0] = 0x00, .data[1] = 0x44,
  1493. .data[2] = 0x40, .data[3] = 0xB6, .data[4] = 0x3C, .data[5] = 0x77,
  1494. .data[6] = 0x35, .data[7] = 0xFF, .data[8] = 0x88, },
  1495. };
  1496. static const struct b206x_channel b2063_chantbl[] = {
  1497. { .channel = 1, .freq = 2412, .data[0] = 0x6F, .data[1] = 0x3C,
  1498. .data[2] = 0x3C, .data[3] = 0x04, .data[4] = 0x05, .data[5] = 0x05,
  1499. .data[6] = 0x05, .data[7] = 0x05, .data[8] = 0x77, .data[9] = 0x80,
  1500. .data[10] = 0x80, .data[11] = 0x70, },
  1501. { .channel = 2, .freq = 2417, .data[0] = 0x6F, .data[1] = 0x3C,
  1502. .data[2] = 0x3C, .data[3] = 0x04, .data[4] = 0x05, .data[5] = 0x05,
  1503. .data[6] = 0x05, .data[7] = 0x05, .data[8] = 0x77, .data[9] = 0x80,
  1504. .data[10] = 0x80, .data[11] = 0x70, },
  1505. { .channel = 3, .freq = 2422, .data[0] = 0x6F, .data[1] = 0x3C,
  1506. .data[2] = 0x3C, .data[3] = 0x04, .data[4] = 0x05, .data[5] = 0x05,
  1507. .data[6] = 0x05, .data[7] = 0x05, .data[8] = 0x77, .data[9] = 0x80,
  1508. .data[10] = 0x80, .data[11] = 0x70, },
  1509. { .channel = 4, .freq = 2427, .data[0] = 0x6F, .data[1] = 0x2C,
  1510. .data[2] = 0x2C, .data[3] = 0x04, .data[4] = 0x05, .data[5] = 0x05,
  1511. .data[6] = 0x05, .data[7] = 0x05, .data[8] = 0x77, .data[9] = 0x80,
  1512. .data[10] = 0x80, .data[11] = 0x70, },
  1513. { .channel = 5, .freq = 2432, .data[0] = 0x6F, .data[1] = 0x2C,
  1514. .data[2] = 0x2C, .data[3] = 0x04, .data[4] = 0x05, .data[5] = 0x05,
  1515. .data[6] = 0x05, .data[7] = 0x05, .data[8] = 0x77, .data[9] = 0x80,
  1516. .data[10] = 0x80, .data[11] = 0x70, },
  1517. { .channel = 6, .freq = 2437, .data[0] = 0x6F, .data[1] = 0x2C,
  1518. .data[2] = 0x2C, .data[3] = 0x04, .data[4] = 0x05, .data[5] = 0x05,
  1519. .data[6] = 0x05, .data[7] = 0x05, .data[8] = 0x77, .data[9] = 0x80,
  1520. .data[10] = 0x80, .data[11] = 0x70, },
  1521. { .channel = 7, .freq = 2442, .data[0] = 0x6F, .data[1] = 0x2C,
  1522. .data[2] = 0x2C, .data[3] = 0x04, .data[4] = 0x05, .data[5] = 0x05,
  1523. .data[6] = 0x05, .data[7] = 0x05, .data[8] = 0x77, .data[9] = 0x80,
  1524. .data[10] = 0x80, .data[11] = 0x70, },
  1525. { .channel = 8, .freq = 2447, .data[0] = 0x6F, .data[1] = 0x2C,
  1526. .data[2] = 0x2C, .data[3] = 0x04, .data[4] = 0x05, .data[5] = 0x05,
  1527. .data[6] = 0x05, .data[7] = 0x05, .data[8] = 0x77, .data[9] = 0x80,
  1528. .data[10] = 0x80, .data[11] = 0x70, },
  1529. { .channel = 9, .freq = 2452, .data[0] = 0x6F, .data[1] = 0x1C,
  1530. .data[2] = 0x1C, .data[3] = 0x04, .data[4] = 0x05, .data[5] = 0x05,
  1531. .data[6] = 0x05, .data[7] = 0x05, .data[8] = 0x77, .data[9] = 0x80,
  1532. .data[10] = 0x80, .data[11] = 0x70, },
  1533. { .channel = 10, .freq = 2457, .data[0] = 0x6F, .data[1] = 0x1C,
  1534. .data[2] = 0x1C, .data[3] = 0x04, .data[4] = 0x05, .data[5] = 0x05,
  1535. .data[6] = 0x05, .data[7] = 0x05, .data[8] = 0x77, .data[9] = 0x80,
  1536. .data[10] = 0x80, .data[11] = 0x70, },
  1537. { .channel = 11, .freq = 2462, .data[0] = 0x6E, .data[1] = 0x1C,
  1538. .data[2] = 0x1C, .data[3] = 0x04, .data[4] = 0x05, .data[5] = 0x05,
  1539. .data[6] = 0x05, .data[7] = 0x05, .data[8] = 0x77, .data[9] = 0x80,
  1540. .data[10] = 0x80, .data[11] = 0x70, },
  1541. { .channel = 12, .freq = 2467, .data[0] = 0x6E, .data[1] = 0x1C,
  1542. .data[2] = 0x1C, .data[3] = 0x04, .data[4] = 0x05, .data[5] = 0x05,
  1543. .data[6] = 0x05, .data[7] = 0x05, .data[8] = 0x77, .data[9] = 0x80,
  1544. .data[10] = 0x80, .data[11] = 0x70, },
  1545. { .channel = 13, .freq = 2472, .data[0] = 0x6E, .data[1] = 0x1C,
  1546. .data[2] = 0x1C, .data[3] = 0x04, .data[4] = 0x05, .data[5] = 0x05,
  1547. .data[6] = 0x05, .data[7] = 0x05, .data[8] = 0x77, .data[9] = 0x80,
  1548. .data[10] = 0x80, .data[11] = 0x70, },
  1549. { .channel = 14, .freq = 2484, .data[0] = 0x6E, .data[1] = 0x0C,
  1550. .data[2] = 0x0C, .data[3] = 0x04, .data[4] = 0x05, .data[5] = 0x05,
  1551. .data[6] = 0x05, .data[7] = 0x05, .data[8] = 0x77, .data[9] = 0x80,
  1552. .data[10] = 0x80, .data[11] = 0x70, },
  1553. { .channel = 34, .freq = 5170, .data[0] = 0x6A, .data[1] = 0x0C,
  1554. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x02, .data[5] = 0x05,
  1555. .data[6] = 0x0D, .data[7] = 0x0D, .data[8] = 0x77, .data[9] = 0x80,
  1556. .data[10] = 0x20, .data[11] = 0x00, },
  1557. { .channel = 36, .freq = 5180, .data[0] = 0x6A, .data[1] = 0x0C,
  1558. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x01, .data[5] = 0x05,
  1559. .data[6] = 0x0D, .data[7] = 0x0C, .data[8] = 0x77, .data[9] = 0x80,
  1560. .data[10] = 0x20, .data[11] = 0x00, },
  1561. { .channel = 38, .freq = 5190, .data[0] = 0x6A, .data[1] = 0x0C,
  1562. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x01, .data[5] = 0x04,
  1563. .data[6] = 0x0C, .data[7] = 0x0C, .data[8] = 0x77, .data[9] = 0x80,
  1564. .data[10] = 0x20, .data[11] = 0x00, },
  1565. { .channel = 40, .freq = 5200, .data[0] = 0x69, .data[1] = 0x0C,
  1566. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x01, .data[5] = 0x04,
  1567. .data[6] = 0x0C, .data[7] = 0x0C, .data[8] = 0x77, .data[9] = 0x70,
  1568. .data[10] = 0x20, .data[11] = 0x00, },
  1569. { .channel = 42, .freq = 5210, .data[0] = 0x69, .data[1] = 0x0C,
  1570. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x01, .data[5] = 0x04,
  1571. .data[6] = 0x0B, .data[7] = 0x0C, .data[8] = 0x77, .data[9] = 0x70,
  1572. .data[10] = 0x20, .data[11] = 0x00, },
  1573. { .channel = 44, .freq = 5220, .data[0] = 0x69, .data[1] = 0x0C,
  1574. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x00, .data[5] = 0x04,
  1575. .data[6] = 0x0B, .data[7] = 0x0B, .data[8] = 0x77, .data[9] = 0x60,
  1576. .data[10] = 0x20, .data[11] = 0x00, },
  1577. { .channel = 46, .freq = 5230, .data[0] = 0x69, .data[1] = 0x0C,
  1578. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x00, .data[5] = 0x03,
  1579. .data[6] = 0x0A, .data[7] = 0x0B, .data[8] = 0x77, .data[9] = 0x60,
  1580. .data[10] = 0x20, .data[11] = 0x00, },
  1581. { .channel = 48, .freq = 5240, .data[0] = 0x69, .data[1] = 0x0C,
  1582. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x00, .data[5] = 0x03,
  1583. .data[6] = 0x0A, .data[7] = 0x0A, .data[8] = 0x77, .data[9] = 0x60,
  1584. .data[10] = 0x20, .data[11] = 0x00, },
  1585. { .channel = 52, .freq = 5260, .data[0] = 0x68, .data[1] = 0x0C,
  1586. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x00, .data[5] = 0x02,
  1587. .data[6] = 0x09, .data[7] = 0x09, .data[8] = 0x77, .data[9] = 0x60,
  1588. .data[10] = 0x20, .data[11] = 0x00, },
  1589. { .channel = 56, .freq = 5280, .data[0] = 0x68, .data[1] = 0x0C,
  1590. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x00, .data[5] = 0x01,
  1591. .data[6] = 0x08, .data[7] = 0x08, .data[8] = 0x77, .data[9] = 0x50,
  1592. .data[10] = 0x10, .data[11] = 0x00, },
  1593. { .channel = 60, .freq = 5300, .data[0] = 0x68, .data[1] = 0x0C,
  1594. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x00, .data[5] = 0x01,
  1595. .data[6] = 0x08, .data[7] = 0x08, .data[8] = 0x77, .data[9] = 0x50,
  1596. .data[10] = 0x10, .data[11] = 0x00, },
  1597. { .channel = 64, .freq = 5320, .data[0] = 0x67, .data[1] = 0x0C,
  1598. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x00, .data[5] = 0x00,
  1599. .data[6] = 0x08, .data[7] = 0x08, .data[8] = 0x77, .data[9] = 0x50,
  1600. .data[10] = 0x10, .data[11] = 0x00, },
  1601. { .channel = 100, .freq = 5500, .data[0] = 0x64, .data[1] = 0x0C,
  1602. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x00, .data[5] = 0x00,
  1603. .data[6] = 0x02, .data[7] = 0x01, .data[8] = 0x77, .data[9] = 0x20,
  1604. .data[10] = 0x00, .data[11] = 0x00, },
  1605. { .channel = 104, .freq = 5520, .data[0] = 0x64, .data[1] = 0x0C,
  1606. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x00, .data[5] = 0x00,
  1607. .data[6] = 0x01, .data[7] = 0x01, .data[8] = 0x77, .data[9] = 0x20,
  1608. .data[10] = 0x00, .data[11] = 0x00, },
  1609. { .channel = 108, .freq = 5540, .data[0] = 0x63, .data[1] = 0x0C,
  1610. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x00, .data[5] = 0x00,
  1611. .data[6] = 0x01, .data[7] = 0x00, .data[8] = 0x77, .data[9] = 0x10,
  1612. .data[10] = 0x00, .data[11] = 0x00, },
  1613. { .channel = 112, .freq = 5560, .data[0] = 0x63, .data[1] = 0x0C,
  1614. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x00, .data[5] = 0x00,
  1615. .data[6] = 0x00, .data[7] = 0x00, .data[8] = 0x77, .data[9] = 0x10,
  1616. .data[10] = 0x00, .data[11] = 0x00, },
  1617. { .channel = 116, .freq = 5580, .data[0] = 0x62, .data[1] = 0x0C,
  1618. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x00, .data[5] = 0x00,
  1619. .data[6] = 0x00, .data[7] = 0x00, .data[8] = 0x77, .data[9] = 0x10,
  1620. .data[10] = 0x00, .data[11] = 0x00, },
  1621. { .channel = 120, .freq = 5600, .data[0] = 0x62, .data[1] = 0x0C,
  1622. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x00, .data[5] = 0x00,
  1623. .data[6] = 0x00, .data[7] = 0x00, .data[8] = 0x77, .data[9] = 0x00,
  1624. .data[10] = 0x00, .data[11] = 0x00, },
  1625. { .channel = 124, .freq = 5620, .data[0] = 0x62, .data[1] = 0x0C,
  1626. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x00, .data[5] = 0x00,
  1627. .data[6] = 0x00, .data[7] = 0x00, .data[8] = 0x77, .data[9] = 0x00,
  1628. .data[10] = 0x00, .data[11] = 0x00, },
  1629. { .channel = 128, .freq = 5640, .data[0] = 0x61, .data[1] = 0x0C,
  1630. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x00, .data[5] = 0x00,
  1631. .data[6] = 0x00, .data[7] = 0x00, .data[8] = 0x77, .data[9] = 0x00,
  1632. .data[10] = 0x00, .data[11] = 0x00, },
  1633. { .channel = 132, .freq = 5660, .data[0] = 0x61, .data[1] = 0x0C,
  1634. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x00, .data[5] = 0x00,
  1635. .data[6] = 0x00, .data[7] = 0x00, .data[8] = 0x77, .data[9] = 0x00,
  1636. .data[10] = 0x00, .data[11] = 0x00, },
  1637. { .channel = 136, .freq = 5680, .data[0] = 0x61, .data[1] = 0x0C,
  1638. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x00, .data[5] = 0x00,
  1639. .data[6] = 0x00, .data[7] = 0x00, .data[8] = 0x77, .data[9] = 0x00,
  1640. .data[10] = 0x00, .data[11] = 0x00, },
  1641. { .channel = 140, .freq = 5700, .data[0] = 0x60, .data[1] = 0x0C,
  1642. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x00, .data[5] = 0x00,
  1643. .data[6] = 0x00, .data[7] = 0x00, .data[8] = 0x77, .data[9] = 0x00,
  1644. .data[10] = 0x00, .data[11] = 0x00, },
  1645. { .channel = 149, .freq = 5745, .data[0] = 0x60, .data[1] = 0x0C,
  1646. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x00, .data[5] = 0x00,
  1647. .data[6] = 0x00, .data[7] = 0x00, .data[8] = 0x77, .data[9] = 0x00,
  1648. .data[10] = 0x00, .data[11] = 0x00, },
  1649. { .channel = 153, .freq = 5765, .data[0] = 0x60, .data[1] = 0x0C,
  1650. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x00, .data[5] = 0x00,
  1651. .data[6] = 0x00, .data[7] = 0x00, .data[8] = 0x77, .data[9] = 0x00,
  1652. .data[10] = 0x00, .data[11] = 0x00, },
  1653. { .channel = 157, .freq = 5785, .data[0] = 0x60, .data[1] = 0x0C,
  1654. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x00, .data[5] = 0x00,
  1655. .data[6] = 0x00, .data[7] = 0x00, .data[8] = 0x77, .data[9] = 0x00,
  1656. .data[10] = 0x00, .data[11] = 0x00, },
  1657. { .channel = 161, .freq = 5805, .data[0] = 0x60, .data[1] = 0x0C,
  1658. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x00, .data[5] = 0x00,
  1659. .data[6] = 0x00, .data[7] = 0x00, .data[8] = 0x77, .data[9] = 0x00,
  1660. .data[10] = 0x00, .data[11] = 0x00, },
  1661. { .channel = 165, .freq = 5825, .data[0] = 0x60, .data[1] = 0x0C,
  1662. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x00, .data[5] = 0x00,
  1663. .data[6] = 0x00, .data[7] = 0x00, .data[8] = 0x77, .data[9] = 0x00,
  1664. .data[10] = 0x00, .data[11] = 0x00, },
  1665. { .channel = 184, .freq = 4920, .data[0] = 0x6E, .data[1] = 0x0C,
  1666. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x09, .data[5] = 0x0E,
  1667. .data[6] = 0x0F, .data[7] = 0x0F, .data[8] = 0x77, .data[9] = 0xC0,
  1668. .data[10] = 0x50, .data[11] = 0x00, },
  1669. { .channel = 188, .freq = 4940, .data[0] = 0x6E, .data[1] = 0x0C,
  1670. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x09, .data[5] = 0x0D,
  1671. .data[6] = 0x0F, .data[7] = 0x0F, .data[8] = 0x77, .data[9] = 0xB0,
  1672. .data[10] = 0x50, .data[11] = 0x00, },
  1673. { .channel = 192, .freq = 4960, .data[0] = 0x6E, .data[1] = 0x0C,
  1674. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x08, .data[5] = 0x0C,
  1675. .data[6] = 0x0F, .data[7] = 0x0F, .data[8] = 0x77, .data[9] = 0xB0,
  1676. .data[10] = 0x50, .data[11] = 0x00, },
  1677. { .channel = 196, .freq = 4980, .data[0] = 0x6D, .data[1] = 0x0C,
  1678. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x08, .data[5] = 0x0C,
  1679. .data[6] = 0x0F, .data[7] = 0x0F, .data[8] = 0x77, .data[9] = 0xA0,
  1680. .data[10] = 0x40, .data[11] = 0x00, },
  1681. { .channel = 200, .freq = 5000, .data[0] = 0x6D, .data[1] = 0x0C,
  1682. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x08, .data[5] = 0x0B,
  1683. .data[6] = 0x0F, .data[7] = 0x0F, .data[8] = 0x77, .data[9] = 0xA0,
  1684. .data[10] = 0x40, .data[11] = 0x00, },
  1685. { .channel = 204, .freq = 5020, .data[0] = 0x6D, .data[1] = 0x0C,
  1686. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x08, .data[5] = 0x0A,
  1687. .data[6] = 0x0F, .data[7] = 0x0F, .data[8] = 0x77, .data[9] = 0xA0,
  1688. .data[10] = 0x40, .data[11] = 0x00, },
  1689. { .channel = 208, .freq = 5040, .data[0] = 0x6C, .data[1] = 0x0C,
  1690. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x07, .data[5] = 0x09,
  1691. .data[6] = 0x0F, .data[7] = 0x0F, .data[8] = 0x77, .data[9] = 0x90,
  1692. .data[10] = 0x40, .data[11] = 0x00, },
  1693. { .channel = 212, .freq = 5060, .data[0] = 0x6C, .data[1] = 0x0C,
  1694. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x06, .data[5] = 0x08,
  1695. .data[6] = 0x0F, .data[7] = 0x0F, .data[8] = 0x77, .data[9] = 0x90,
  1696. .data[10] = 0x40, .data[11] = 0x00, },
  1697. { .channel = 216, .freq = 5080, .data[0] = 0x6C, .data[1] = 0x0C,
  1698. .data[2] = 0x0C, .data[3] = 0x00, .data[4] = 0x05, .data[5] = 0x08,
  1699. .data[6] = 0x0F, .data[7] = 0x0F, .data[8] = 0x77, .data[9] = 0x90,
  1700. .data[10] = 0x40, .data[11] = 0x00, },
  1701. };
  1702. static void lpphy_b2062_reset_pll_bias(struct b43_wldev *dev)
  1703. {
  1704. struct ssb_bus *bus = dev->dev->bus;
  1705. b43_radio_write(dev, B2062_S_RFPLL_CTL2, 0xFF);
  1706. udelay(20);
  1707. if (bus->chip_id == 0x5354) {
  1708. b43_radio_write(dev, B2062_N_COMM1, 4);
  1709. b43_radio_write(dev, B2062_S_RFPLL_CTL2, 4);
  1710. } else {
  1711. b43_radio_write(dev, B2062_S_RFPLL_CTL2, 0);
  1712. }
  1713. udelay(5);
  1714. }
  1715. static void lpphy_b2062_vco_calib(struct b43_wldev *dev)
  1716. {
  1717. b43_phy_write(dev, B2062_S_RFPLL_CTL21, 0x42);
  1718. b43_phy_write(dev, B2062_S_RFPLL_CTL21, 0x62);
  1719. udelay(200);
  1720. }
  1721. static int lpphy_b2062_tune(struct b43_wldev *dev,
  1722. unsigned int channel)
  1723. {
  1724. struct b43_phy_lp *lpphy = dev->phy.lp;
  1725. struct ssb_bus *bus = dev->dev->bus;
  1726. const struct b206x_channel *chandata = NULL;
  1727. u32 crystal_freq = bus->chipco.pmu.crystalfreq * 1000;
  1728. u32 tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7, tmp8, tmp9;
  1729. int i, err = 0;
  1730. for (i = 0; i < ARRAY_SIZE(b2062_chantbl); i++) {
  1731. if (b2062_chantbl[i].channel == channel) {
  1732. chandata = &b2062_chantbl[i];
  1733. break;
  1734. }
  1735. }
  1736. if (B43_WARN_ON(!chandata))
  1737. return -EINVAL;
  1738. b43_radio_set(dev, B2062_S_RFPLL_CTL14, 0x04);
  1739. b43_radio_write(dev, B2062_N_LGENA_TUNE0, chandata->data[0]);
  1740. b43_radio_write(dev, B2062_N_LGENA_TUNE2, chandata->data[1]);
  1741. b43_radio_write(dev, B2062_N_LGENA_TUNE3, chandata->data[2]);
  1742. b43_radio_write(dev, B2062_N_TX_TUNE, chandata->data[3]);
  1743. b43_radio_write(dev, B2062_S_LGENG_CTL1, chandata->data[4]);
  1744. b43_radio_write(dev, B2062_N_LGENA_CTL5, chandata->data[5]);
  1745. b43_radio_write(dev, B2062_N_LGENA_CTL6, chandata->data[6]);
  1746. b43_radio_write(dev, B2062_N_TX_PGA, chandata->data[7]);
  1747. b43_radio_write(dev, B2062_N_TX_PAD, chandata->data[8]);
  1748. tmp1 = crystal_freq / 1000;
  1749. tmp2 = lpphy->pdiv * 1000;
  1750. b43_radio_write(dev, B2062_S_RFPLL_CTL33, 0xCC);
  1751. b43_radio_write(dev, B2062_S_RFPLL_CTL34, 0x07);
  1752. lpphy_b2062_reset_pll_bias(dev);
  1753. tmp3 = tmp2 * channel2freq_lp(channel);
  1754. if (channel2freq_lp(channel) < 4000)
  1755. tmp3 *= 2;
  1756. tmp4 = 48 * tmp1;
  1757. tmp6 = tmp3 / tmp4;
  1758. tmp7 = tmp3 % tmp4;
  1759. b43_radio_write(dev, B2062_S_RFPLL_CTL26, tmp6);
  1760. tmp5 = tmp7 * 0x100;
  1761. tmp6 = tmp5 / tmp4;
  1762. tmp7 = tmp5 % tmp4;
  1763. b43_radio_write(dev, B2062_S_RFPLL_CTL27, tmp6);
  1764. tmp5 = tmp7 * 0x100;
  1765. tmp6 = tmp5 / tmp4;
  1766. tmp7 = tmp5 % tmp4;
  1767. b43_radio_write(dev, B2062_S_RFPLL_CTL28, tmp6);
  1768. tmp5 = tmp7 * 0x100;
  1769. tmp6 = tmp5 / tmp4;
  1770. tmp7 = tmp5 % tmp4;
  1771. b43_radio_write(dev, B2062_S_RFPLL_CTL29, tmp6 + ((2 * tmp7) / tmp4));
  1772. tmp8 = b43_phy_read(dev, B2062_S_RFPLL_CTL19);
  1773. tmp9 = ((2 * tmp3 * (tmp8 + 1)) + (3 * tmp1)) / (6 * tmp1);
  1774. b43_radio_write(dev, B2062_S_RFPLL_CTL23, tmp9 >> 8);
  1775. b43_radio_write(dev, B2062_S_RFPLL_CTL24, tmp9 & 0xFF);
  1776. lpphy_b2062_vco_calib(dev);
  1777. if (b43_radio_read(dev, B2062_S_RFPLL_CTL3) & 0x10) {
  1778. b43_radio_write(dev, B2062_S_RFPLL_CTL33, 0xFC);
  1779. b43_radio_write(dev, B2062_S_RFPLL_CTL34, 0);
  1780. lpphy_b2062_reset_pll_bias(dev);
  1781. lpphy_b2062_vco_calib(dev);
  1782. if (b43_radio_read(dev, B2062_S_RFPLL_CTL3) & 0x10)
  1783. err = -EIO;
  1784. }
  1785. b43_radio_mask(dev, B2062_S_RFPLL_CTL14, ~0x04);
  1786. return err;
  1787. }
  1788. static void lpphy_japan_filter(struct b43_wldev *dev, int channel)
  1789. {
  1790. struct b43_phy_lp *lpphy = dev->phy.lp;
  1791. u16 tmp = (channel == 14); //SPEC FIXME check japanwidefilter!
  1792. if (dev->phy.rev < 2) { //SPEC FIXME Isn't this rev0/1-specific?
  1793. b43_phy_maskset(dev, B43_LPPHY_LP_PHY_CTL, 0xFCFF, tmp << 9);
  1794. if ((dev->phy.rev == 1) && (lpphy->rc_cap))
  1795. lpphy_set_rc_cap(dev);
  1796. } else {
  1797. b43_radio_write(dev, B2063_TX_BB_SP3, 0x3F);
  1798. }
  1799. }
  1800. static void lpphy_b2063_vco_calib(struct b43_wldev *dev)
  1801. {
  1802. u16 tmp;
  1803. b43_phy_mask(dev, B2063_PLL_SP1, ~0x40);
  1804. tmp = b43_phy_read(dev, B2063_PLL_JTAG_CALNRST) & 0xF8;
  1805. b43_phy_write(dev, B2063_PLL_JTAG_CALNRST, tmp);
  1806. udelay(1);
  1807. b43_phy_write(dev, B2063_PLL_JTAG_CALNRST, tmp | 0x4);
  1808. udelay(1);
  1809. b43_phy_write(dev, B2063_PLL_JTAG_CALNRST, tmp | 0x6);
  1810. udelay(1);
  1811. b43_phy_write(dev, B2063_PLL_JTAG_CALNRST, tmp | 0x7);
  1812. udelay(300);
  1813. b43_phy_set(dev, B2063_PLL_SP1, 0x40);
  1814. }
  1815. static int lpphy_b2063_tune(struct b43_wldev *dev,
  1816. unsigned int channel)
  1817. {
  1818. struct ssb_bus *bus = dev->dev->bus;
  1819. static const struct b206x_channel *chandata = NULL;
  1820. u32 crystal_freq = bus->chipco.pmu.crystalfreq * 1000;
  1821. u32 freqref, vco_freq, val1, val2, val3, timeout, timeoutref, count;
  1822. u16 old_comm15, scale;
  1823. u32 tmp1, tmp2, tmp3, tmp4, tmp5, tmp6;
  1824. int i, div = (crystal_freq <= 26000000 ? 1 : 2);
  1825. for (i = 0; i < ARRAY_SIZE(b2063_chantbl); i++) {
  1826. if (b2063_chantbl[i].channel == channel) {
  1827. chandata = &b2063_chantbl[i];
  1828. break;
  1829. }
  1830. }
  1831. if (B43_WARN_ON(!chandata))
  1832. return -EINVAL;
  1833. b43_radio_write(dev, B2063_LOGEN_VCOBUF1, chandata->data[0]);
  1834. b43_radio_write(dev, B2063_LOGEN_MIXER2, chandata->data[1]);
  1835. b43_radio_write(dev, B2063_LOGEN_BUF2, chandata->data[2]);
  1836. b43_radio_write(dev, B2063_LOGEN_RCCR1, chandata->data[3]);
  1837. b43_radio_write(dev, B2063_A_RX_1ST3, chandata->data[4]);
  1838. b43_radio_write(dev, B2063_A_RX_2ND1, chandata->data[5]);
  1839. b43_radio_write(dev, B2063_A_RX_2ND4, chandata->data[6]);
  1840. b43_radio_write(dev, B2063_A_RX_2ND7, chandata->data[7]);
  1841. b43_radio_write(dev, B2063_A_RX_PS6, chandata->data[8]);
  1842. b43_radio_write(dev, B2063_TX_RF_CTL2, chandata->data[9]);
  1843. b43_radio_write(dev, B2063_TX_RF_CTL5, chandata->data[10]);
  1844. b43_radio_write(dev, B2063_PA_CTL11, chandata->data[11]);
  1845. old_comm15 = b43_radio_read(dev, B2063_COMM15);
  1846. b43_radio_set(dev, B2063_COMM15, 0x1E);
  1847. if (chandata->freq > 4000) /* spec says 2484, but 4000 is safer */
  1848. vco_freq = chandata->freq << 1;
  1849. else
  1850. vco_freq = chandata->freq << 2;
  1851. freqref = crystal_freq * 3;
  1852. val1 = lpphy_qdiv_roundup(crystal_freq, 1000000, 16);
  1853. val2 = lpphy_qdiv_roundup(crystal_freq, 1000000 * div, 16);
  1854. val3 = lpphy_qdiv_roundup(vco_freq, 3, 16);
  1855. timeout = ((((8 * crystal_freq) / (div * 5000000)) + 1) >> 1) - 1;
  1856. b43_radio_write(dev, B2063_PLL_JTAG_PLL_VCO_CALIB3, 0x2);
  1857. b43_radio_maskset(dev, B2063_PLL_JTAG_PLL_VCO_CALIB6,
  1858. 0xFFF8, timeout >> 2);
  1859. b43_radio_maskset(dev, B2063_PLL_JTAG_PLL_VCO_CALIB7,
  1860. 0xFF9F,timeout << 5);
  1861. timeoutref = ((((8 * crystal_freq) / (div * (timeout + 1))) +
  1862. 999999) / 1000000) + 1;
  1863. b43_radio_write(dev, B2063_PLL_JTAG_PLL_VCO_CALIB5, timeoutref);
  1864. count = lpphy_qdiv_roundup(val3, val2 + 16, 16);
  1865. count *= (timeout + 1) * (timeoutref + 1);
  1866. count--;
  1867. b43_radio_maskset(dev, B2063_PLL_JTAG_PLL_VCO_CALIB7,
  1868. 0xF0, count >> 8);
  1869. b43_radio_write(dev, B2063_PLL_JTAG_PLL_VCO_CALIB8, count & 0xFF);
  1870. tmp1 = ((val3 * 62500) / freqref) << 4;
  1871. tmp2 = ((val3 * 62500) % freqref) << 4;
  1872. while (tmp2 >= freqref) {
  1873. tmp1++;
  1874. tmp2 -= freqref;
  1875. }
  1876. b43_radio_maskset(dev, B2063_PLL_JTAG_PLL_SG1, 0xFFE0, tmp1 >> 4);
  1877. b43_radio_maskset(dev, B2063_PLL_JTAG_PLL_SG2, 0xFE0F, tmp1 << 4);
  1878. b43_radio_maskset(dev, B2063_PLL_JTAG_PLL_SG2, 0xFFF0, tmp1 >> 16);
  1879. b43_radio_write(dev, B2063_PLL_JTAG_PLL_SG3, (tmp2 >> 8) & 0xFF);
  1880. b43_radio_write(dev, B2063_PLL_JTAG_PLL_SG4, tmp2 & 0xFF);
  1881. b43_radio_write(dev, B2063_PLL_JTAG_PLL_LF1, 0xB9);
  1882. b43_radio_write(dev, B2063_PLL_JTAG_PLL_LF2, 0x88);
  1883. b43_radio_write(dev, B2063_PLL_JTAG_PLL_LF3, 0x28);
  1884. b43_radio_write(dev, B2063_PLL_JTAG_PLL_LF4, 0x63);
  1885. tmp3 = ((41 * (val3 - 3000)) /1200) + 27;
  1886. tmp4 = lpphy_qdiv_roundup(132000 * tmp1, 8451, 16);
  1887. if ((tmp4 + tmp3 - 1) / tmp3 > 60) {
  1888. scale = 1;
  1889. tmp5 = ((tmp4 + tmp3) / (tmp3 << 1)) - 8;
  1890. } else {
  1891. scale = 0;
  1892. tmp5 = ((tmp4 + (tmp3 >> 1)) / tmp3) - 8;
  1893. }
  1894. b43_phy_maskset(dev, B2063_PLL_JTAG_PLL_CP2, 0xFFC0, tmp5);
  1895. b43_phy_maskset(dev, B2063_PLL_JTAG_PLL_CP2, 0xFFBF, scale << 6);
  1896. tmp6 = lpphy_qdiv_roundup(100 * val1, val3, 16);
  1897. tmp6 *= (tmp5 * 8) * (scale + 1);
  1898. if (tmp6 > 150)
  1899. tmp6 = 0;
  1900. b43_phy_maskset(dev, B2063_PLL_JTAG_PLL_CP3, 0xFFE0, tmp6);
  1901. b43_phy_maskset(dev, B2063_PLL_JTAG_PLL_CP3, 0xFFDF, scale << 5);
  1902. b43_phy_maskset(dev, B2063_PLL_JTAG_PLL_XTAL_12, 0xFFFB, 0x4);
  1903. if (crystal_freq > 26000000)
  1904. b43_phy_set(dev, B2063_PLL_JTAG_PLL_XTAL_12, 0x2);
  1905. else
  1906. b43_phy_mask(dev, B2063_PLL_JTAG_PLL_XTAL_12, 0xFD);
  1907. if (val1 == 45)
  1908. b43_phy_set(dev, B2063_PLL_JTAG_PLL_VCO1, 0x2);
  1909. else
  1910. b43_phy_mask(dev, B2063_PLL_JTAG_PLL_VCO1, 0xFD);
  1911. b43_phy_set(dev, B2063_PLL_SP2, 0x3);
  1912. udelay(1);
  1913. b43_phy_mask(dev, B2063_PLL_SP2, 0xFFFC);
  1914. lpphy_b2063_vco_calib(dev);
  1915. b43_radio_write(dev, B2063_COMM15, old_comm15);
  1916. return 0;
  1917. }
  1918. static int b43_lpphy_op_switch_channel(struct b43_wldev *dev,
  1919. unsigned int new_channel)
  1920. {
  1921. int err;
  1922. b43_write16(dev, B43_MMIO_CHANNEL, new_channel);
  1923. if (dev->phy.radio_ver == 0x2063) {
  1924. err = lpphy_b2063_tune(dev, new_channel);
  1925. if (err)
  1926. return err;
  1927. } else {
  1928. err = lpphy_b2062_tune(dev, new_channel);
  1929. if (err)
  1930. return err;
  1931. lpphy_japan_filter(dev, new_channel);
  1932. lpphy_adjust_gain_table(dev, channel2freq_lp(new_channel));
  1933. }
  1934. return 0;
  1935. }
  1936. static int b43_lpphy_op_init(struct b43_wldev *dev)
  1937. {
  1938. int err;
  1939. lpphy_read_band_sprom(dev); //FIXME should this be in prepare_structs?
  1940. lpphy_baseband_init(dev);
  1941. lpphy_radio_init(dev);
  1942. lpphy_calibrate_rc(dev);
  1943. err = b43_lpphy_op_switch_channel(dev,
  1944. b43_lpphy_op_get_default_chan(dev));
  1945. if (err) {
  1946. b43dbg(dev->wl, "Switch to init channel failed, error = %d.\n",
  1947. err);
  1948. }
  1949. lpphy_tx_pctl_init(dev);
  1950. lpphy_calibration(dev);
  1951. //TODO ACI init
  1952. return 0;
  1953. }
  1954. static void b43_lpphy_op_set_rx_antenna(struct b43_wldev *dev, int antenna)
  1955. {
  1956. //TODO
  1957. }
  1958. static void b43_lpphy_op_adjust_txpower(struct b43_wldev *dev)
  1959. {
  1960. //TODO
  1961. }
  1962. static enum b43_txpwr_result b43_lpphy_op_recalc_txpower(struct b43_wldev *dev,
  1963. bool ignore_tssi)
  1964. {
  1965. //TODO
  1966. return B43_TXPWR_RES_DONE;
  1967. }
  1968. const struct b43_phy_operations b43_phyops_lp = {
  1969. .allocate = b43_lpphy_op_allocate,
  1970. .free = b43_lpphy_op_free,
  1971. .prepare_structs = b43_lpphy_op_prepare_structs,
  1972. .init = b43_lpphy_op_init,
  1973. .phy_read = b43_lpphy_op_read,
  1974. .phy_write = b43_lpphy_op_write,
  1975. .radio_read = b43_lpphy_op_radio_read,
  1976. .radio_write = b43_lpphy_op_radio_write,
  1977. .software_rfkill = b43_lpphy_op_software_rfkill,
  1978. .switch_analog = b43_phyop_switch_analog_generic,
  1979. .switch_channel = b43_lpphy_op_switch_channel,
  1980. .get_default_chan = b43_lpphy_op_get_default_chan,
  1981. .set_rx_antenna = b43_lpphy_op_set_rx_antenna,
  1982. .recalc_txpower = b43_lpphy_op_recalc_txpower,
  1983. .adjust_txpower = b43_lpphy_op_adjust_txpower,
  1984. };