aachba.c 64 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210
  1. /*
  2. * Adaptec AAC series RAID controller driver
  3. * (c) Copyright 2001 Red Hat Inc. <alan@redhat.com>
  4. *
  5. * based on the old aacraid driver that is..
  6. * Adaptec aacraid device driver for Linux.
  7. *
  8. * Copyright (c) 2000 Adaptec, Inc. (aacraid@adaptec.com)
  9. *
  10. * This program is free software; you can redistribute it and/or modify
  11. * it under the terms of the GNU General Public License as published by
  12. * the Free Software Foundation; either version 2, or (at your option)
  13. * any later version.
  14. *
  15. * This program is distributed in the hope that it will be useful,
  16. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  17. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  18. * GNU General Public License for more details.
  19. *
  20. * You should have received a copy of the GNU General Public License
  21. * along with this program; see the file COPYING. If not, write to
  22. * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
  23. *
  24. */
  25. #include <linux/kernel.h>
  26. #include <linux/init.h>
  27. #include <linux/types.h>
  28. #include <linux/sched.h>
  29. #include <linux/pci.h>
  30. #include <linux/spinlock.h>
  31. #include <linux/slab.h>
  32. #include <linux/completion.h>
  33. #include <linux/blkdev.h>
  34. #include <asm/semaphore.h>
  35. #include <asm/uaccess.h>
  36. #include <scsi/scsi.h>
  37. #include <scsi/scsi_cmnd.h>
  38. #include <scsi/scsi_device.h>
  39. #include <scsi/scsi_host.h>
  40. #include "aacraid.h"
  41. /* values for inqd_pdt: Peripheral device type in plain English */
  42. #define INQD_PDT_DA 0x00 /* Direct-access (DISK) device */
  43. #define INQD_PDT_PROC 0x03 /* Processor device */
  44. #define INQD_PDT_CHNGR 0x08 /* Changer (jukebox, scsi2) */
  45. #define INQD_PDT_COMM 0x09 /* Communication device (scsi2) */
  46. #define INQD_PDT_NOLUN2 0x1f /* Unknown Device (scsi2) */
  47. #define INQD_PDT_NOLUN 0x7f /* Logical Unit Not Present */
  48. #define INQD_PDT_DMASK 0x1F /* Peripheral Device Type Mask */
  49. #define INQD_PDT_QMASK 0xE0 /* Peripheral Device Qualifer Mask */
  50. /*
  51. * Sense codes
  52. */
  53. #define SENCODE_NO_SENSE 0x00
  54. #define SENCODE_END_OF_DATA 0x00
  55. #define SENCODE_BECOMING_READY 0x04
  56. #define SENCODE_INIT_CMD_REQUIRED 0x04
  57. #define SENCODE_PARAM_LIST_LENGTH_ERROR 0x1A
  58. #define SENCODE_INVALID_COMMAND 0x20
  59. #define SENCODE_LBA_OUT_OF_RANGE 0x21
  60. #define SENCODE_INVALID_CDB_FIELD 0x24
  61. #define SENCODE_LUN_NOT_SUPPORTED 0x25
  62. #define SENCODE_INVALID_PARAM_FIELD 0x26
  63. #define SENCODE_PARAM_NOT_SUPPORTED 0x26
  64. #define SENCODE_PARAM_VALUE_INVALID 0x26
  65. #define SENCODE_RESET_OCCURRED 0x29
  66. #define SENCODE_LUN_NOT_SELF_CONFIGURED_YET 0x3E
  67. #define SENCODE_INQUIRY_DATA_CHANGED 0x3F
  68. #define SENCODE_SAVING_PARAMS_NOT_SUPPORTED 0x39
  69. #define SENCODE_DIAGNOSTIC_FAILURE 0x40
  70. #define SENCODE_INTERNAL_TARGET_FAILURE 0x44
  71. #define SENCODE_INVALID_MESSAGE_ERROR 0x49
  72. #define SENCODE_LUN_FAILED_SELF_CONFIG 0x4c
  73. #define SENCODE_OVERLAPPED_COMMAND 0x4E
  74. /*
  75. * Additional sense codes
  76. */
  77. #define ASENCODE_NO_SENSE 0x00
  78. #define ASENCODE_END_OF_DATA 0x05
  79. #define ASENCODE_BECOMING_READY 0x01
  80. #define ASENCODE_INIT_CMD_REQUIRED 0x02
  81. #define ASENCODE_PARAM_LIST_LENGTH_ERROR 0x00
  82. #define ASENCODE_INVALID_COMMAND 0x00
  83. #define ASENCODE_LBA_OUT_OF_RANGE 0x00
  84. #define ASENCODE_INVALID_CDB_FIELD 0x00
  85. #define ASENCODE_LUN_NOT_SUPPORTED 0x00
  86. #define ASENCODE_INVALID_PARAM_FIELD 0x00
  87. #define ASENCODE_PARAM_NOT_SUPPORTED 0x01
  88. #define ASENCODE_PARAM_VALUE_INVALID 0x02
  89. #define ASENCODE_RESET_OCCURRED 0x00
  90. #define ASENCODE_LUN_NOT_SELF_CONFIGURED_YET 0x00
  91. #define ASENCODE_INQUIRY_DATA_CHANGED 0x03
  92. #define ASENCODE_SAVING_PARAMS_NOT_SUPPORTED 0x00
  93. #define ASENCODE_DIAGNOSTIC_FAILURE 0x80
  94. #define ASENCODE_INTERNAL_TARGET_FAILURE 0x00
  95. #define ASENCODE_INVALID_MESSAGE_ERROR 0x00
  96. #define ASENCODE_LUN_FAILED_SELF_CONFIG 0x00
  97. #define ASENCODE_OVERLAPPED_COMMAND 0x00
  98. #define BYTE0(x) (unsigned char)(x)
  99. #define BYTE1(x) (unsigned char)((x) >> 8)
  100. #define BYTE2(x) (unsigned char)((x) >> 16)
  101. #define BYTE3(x) (unsigned char)((x) >> 24)
  102. /*------------------------------------------------------------------------------
  103. * S T R U C T S / T Y P E D E F S
  104. *----------------------------------------------------------------------------*/
  105. /* SCSI inquiry data */
  106. struct inquiry_data {
  107. u8 inqd_pdt; /* Peripheral qualifier | Peripheral Device Type */
  108. u8 inqd_dtq; /* RMB | Device Type Qualifier */
  109. u8 inqd_ver; /* ISO version | ECMA version | ANSI-approved version */
  110. u8 inqd_rdf; /* AENC | TrmIOP | Response data format */
  111. u8 inqd_len; /* Additional length (n-4) */
  112. u8 inqd_pad1[2];/* Reserved - must be zero */
  113. u8 inqd_pad2; /* RelAdr | WBus32 | WBus16 | Sync | Linked |Reserved| CmdQue | SftRe */
  114. u8 inqd_vid[8]; /* Vendor ID */
  115. u8 inqd_pid[16];/* Product ID */
  116. u8 inqd_prl[4]; /* Product Revision Level */
  117. };
  118. /*
  119. * M O D U L E G L O B A L S
  120. */
  121. static unsigned long aac_build_sg(struct scsi_cmnd* scsicmd, struct sgmap* sgmap);
  122. static unsigned long aac_build_sg64(struct scsi_cmnd* scsicmd, struct sgmap64* psg);
  123. static unsigned long aac_build_sgraw(struct scsi_cmnd* scsicmd, struct sgmapraw* psg);
  124. static int aac_send_srb_fib(struct scsi_cmnd* scsicmd);
  125. #ifdef AAC_DETAILED_STATUS_INFO
  126. static char *aac_get_status_string(u32 status);
  127. #endif
  128. /*
  129. * Non dasd selection is handled entirely in aachba now
  130. */
  131. static int nondasd = -1;
  132. static int dacmode = -1;
  133. static int commit = -1;
  134. module_param(nondasd, int, 0);
  135. MODULE_PARM_DESC(nondasd, "Control scanning of hba for nondasd devices. 0=off, 1=on");
  136. module_param(dacmode, int, 0);
  137. MODULE_PARM_DESC(dacmode, "Control whether dma addressing is using 64 bit DAC. 0=off, 1=on");
  138. module_param(commit, int, 0);
  139. MODULE_PARM_DESC(commit, "Control whether a COMMIT_CONFIG is issued to the adapter for foreign arrays.\nThis is typically needed in systems that do not have a BIOS. 0=off, 1=on");
  140. int numacb = -1;
  141. module_param(numacb, int, S_IRUGO|S_IWUSR);
  142. MODULE_PARM_DESC(numacb, "Request a limit to the number of adapter control blocks (FIB) allocated. Valid\nvalues are 512 and down. Default is to use suggestion from Firmware.");
  143. int acbsize = -1;
  144. module_param(acbsize, int, S_IRUGO|S_IWUSR);
  145. MODULE_PARM_DESC(acbsize, "Request a specific adapter control block (FIB) size. Valid values are 512,\n2048, 4096 and 8192. Default is to use suggestion from Firmware.");
  146. /**
  147. * aac_get_config_status - check the adapter configuration
  148. * @common: adapter to query
  149. *
  150. * Query config status, and commit the configuration if needed.
  151. */
  152. int aac_get_config_status(struct aac_dev *dev)
  153. {
  154. int status = 0;
  155. struct fib * fibptr;
  156. if (!(fibptr = fib_alloc(dev)))
  157. return -ENOMEM;
  158. fib_init(fibptr);
  159. {
  160. struct aac_get_config_status *dinfo;
  161. dinfo = (struct aac_get_config_status *) fib_data(fibptr);
  162. dinfo->command = cpu_to_le32(VM_ContainerConfig);
  163. dinfo->type = cpu_to_le32(CT_GET_CONFIG_STATUS);
  164. dinfo->count = cpu_to_le32(sizeof(((struct aac_get_config_status_resp *)NULL)->data));
  165. }
  166. status = fib_send(ContainerCommand,
  167. fibptr,
  168. sizeof (struct aac_get_config_status),
  169. FsaNormal,
  170. 1, 1,
  171. NULL, NULL);
  172. if (status < 0 ) {
  173. printk(KERN_WARNING "aac_get_config_status: SendFIB failed.\n");
  174. } else {
  175. struct aac_get_config_status_resp *reply
  176. = (struct aac_get_config_status_resp *) fib_data(fibptr);
  177. dprintk((KERN_WARNING
  178. "aac_get_config_status: response=%d status=%d action=%d\n",
  179. le32_to_cpu(reply->response),
  180. le32_to_cpu(reply->status),
  181. le32_to_cpu(reply->data.action)));
  182. if ((le32_to_cpu(reply->response) != ST_OK) ||
  183. (le32_to_cpu(reply->status) != CT_OK) ||
  184. (le32_to_cpu(reply->data.action) > CFACT_PAUSE)) {
  185. printk(KERN_WARNING "aac_get_config_status: Will not issue the Commit Configuration\n");
  186. status = -EINVAL;
  187. }
  188. }
  189. fib_complete(fibptr);
  190. /* Send a CT_COMMIT_CONFIG to enable discovery of devices */
  191. if (status >= 0) {
  192. if (commit == 1) {
  193. struct aac_commit_config * dinfo;
  194. fib_init(fibptr);
  195. dinfo = (struct aac_commit_config *) fib_data(fibptr);
  196. dinfo->command = cpu_to_le32(VM_ContainerConfig);
  197. dinfo->type = cpu_to_le32(CT_COMMIT_CONFIG);
  198. status = fib_send(ContainerCommand,
  199. fibptr,
  200. sizeof (struct aac_commit_config),
  201. FsaNormal,
  202. 1, 1,
  203. NULL, NULL);
  204. fib_complete(fibptr);
  205. } else if (commit == 0) {
  206. printk(KERN_WARNING
  207. "aac_get_config_status: Foreign device configurations are being ignored\n");
  208. }
  209. }
  210. fib_free(fibptr);
  211. return status;
  212. }
  213. /**
  214. * aac_get_containers - list containers
  215. * @common: adapter to probe
  216. *
  217. * Make a list of all containers on this controller
  218. */
  219. int aac_get_containers(struct aac_dev *dev)
  220. {
  221. struct fsa_dev_info *fsa_dev_ptr;
  222. u32 index;
  223. int status = 0;
  224. struct fib * fibptr;
  225. unsigned instance;
  226. struct aac_get_container_count *dinfo;
  227. struct aac_get_container_count_resp *dresp;
  228. int maximum_num_containers = MAXIMUM_NUM_CONTAINERS;
  229. instance = dev->scsi_host_ptr->unique_id;
  230. if (!(fibptr = fib_alloc(dev)))
  231. return -ENOMEM;
  232. fib_init(fibptr);
  233. dinfo = (struct aac_get_container_count *) fib_data(fibptr);
  234. dinfo->command = cpu_to_le32(VM_ContainerConfig);
  235. dinfo->type = cpu_to_le32(CT_GET_CONTAINER_COUNT);
  236. status = fib_send(ContainerCommand,
  237. fibptr,
  238. sizeof (struct aac_get_container_count),
  239. FsaNormal,
  240. 1, 1,
  241. NULL, NULL);
  242. if (status >= 0) {
  243. dresp = (struct aac_get_container_count_resp *)fib_data(fibptr);
  244. maximum_num_containers = le32_to_cpu(dresp->ContainerSwitchEntries);
  245. fib_complete(fibptr);
  246. }
  247. if (maximum_num_containers < MAXIMUM_NUM_CONTAINERS)
  248. maximum_num_containers = MAXIMUM_NUM_CONTAINERS;
  249. fsa_dev_ptr = (struct fsa_dev_info *) kmalloc(
  250. sizeof(*fsa_dev_ptr) * maximum_num_containers, GFP_KERNEL);
  251. if (!fsa_dev_ptr) {
  252. fib_free(fibptr);
  253. return -ENOMEM;
  254. }
  255. memset(fsa_dev_ptr, 0, sizeof(*fsa_dev_ptr) * maximum_num_containers);
  256. dev->fsa_dev = fsa_dev_ptr;
  257. dev->maximum_num_containers = maximum_num_containers;
  258. for (index = 0; index < dev->maximum_num_containers; index++) {
  259. struct aac_query_mount *dinfo;
  260. struct aac_mount *dresp;
  261. fsa_dev_ptr[index].devname[0] = '\0';
  262. fib_init(fibptr);
  263. dinfo = (struct aac_query_mount *) fib_data(fibptr);
  264. dinfo->command = cpu_to_le32(VM_NameServe);
  265. dinfo->count = cpu_to_le32(index);
  266. dinfo->type = cpu_to_le32(FT_FILESYS);
  267. status = fib_send(ContainerCommand,
  268. fibptr,
  269. sizeof (struct aac_query_mount),
  270. FsaNormal,
  271. 1, 1,
  272. NULL, NULL);
  273. if (status < 0 ) {
  274. printk(KERN_WARNING "aac_get_containers: SendFIB failed.\n");
  275. break;
  276. }
  277. dresp = (struct aac_mount *)fib_data(fibptr);
  278. dprintk ((KERN_DEBUG
  279. "VM_NameServe cid=%d status=%d vol=%d state=%d cap=%u\n",
  280. (int)index, (int)le32_to_cpu(dresp->status),
  281. (int)le32_to_cpu(dresp->mnt[0].vol),
  282. (int)le32_to_cpu(dresp->mnt[0].state),
  283. (unsigned)le32_to_cpu(dresp->mnt[0].capacity)));
  284. if ((le32_to_cpu(dresp->status) == ST_OK) &&
  285. (le32_to_cpu(dresp->mnt[0].vol) != CT_NONE) &&
  286. (le32_to_cpu(dresp->mnt[0].state) != FSCS_HIDDEN)) {
  287. fsa_dev_ptr[index].valid = 1;
  288. fsa_dev_ptr[index].type = le32_to_cpu(dresp->mnt[0].vol);
  289. fsa_dev_ptr[index].size = le32_to_cpu(dresp->mnt[0].capacity);
  290. if (le32_to_cpu(dresp->mnt[0].state) & FSCS_READONLY)
  291. fsa_dev_ptr[index].ro = 1;
  292. }
  293. fib_complete(fibptr);
  294. /*
  295. * If there are no more containers, then stop asking.
  296. */
  297. if ((index + 1) >= le32_to_cpu(dresp->count)){
  298. break;
  299. }
  300. }
  301. fib_free(fibptr);
  302. return status;
  303. }
  304. static void aac_io_done(struct scsi_cmnd * scsicmd)
  305. {
  306. unsigned long cpu_flags;
  307. struct Scsi_Host *host = scsicmd->device->host;
  308. spin_lock_irqsave(host->host_lock, cpu_flags);
  309. scsicmd->scsi_done(scsicmd);
  310. spin_unlock_irqrestore(host->host_lock, cpu_flags);
  311. }
  312. static void get_container_name_callback(void *context, struct fib * fibptr)
  313. {
  314. struct aac_get_name_resp * get_name_reply;
  315. struct scsi_cmnd * scsicmd;
  316. scsicmd = (struct scsi_cmnd *) context;
  317. dprintk((KERN_DEBUG "get_container_name_callback[cpu %d]: t = %ld.\n", smp_processor_id(), jiffies));
  318. if (fibptr == NULL)
  319. BUG();
  320. get_name_reply = (struct aac_get_name_resp *) fib_data(fibptr);
  321. /* Failure is irrelevant, using default value instead */
  322. if ((le32_to_cpu(get_name_reply->status) == CT_OK)
  323. && (get_name_reply->data[0] != '\0')) {
  324. int count;
  325. char * dp;
  326. char * sp = get_name_reply->data;
  327. sp[sizeof(((struct aac_get_name_resp *)NULL)->data)-1] = '\0';
  328. while (*sp == ' ')
  329. ++sp;
  330. count = sizeof(((struct inquiry_data *)NULL)->inqd_pid);
  331. dp = ((struct inquiry_data *)scsicmd->request_buffer)->inqd_pid;
  332. if (*sp) do {
  333. *dp++ = (*sp) ? *sp++ : ' ';
  334. } while (--count > 0);
  335. }
  336. scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
  337. fib_complete(fibptr);
  338. fib_free(fibptr);
  339. aac_io_done(scsicmd);
  340. }
  341. /**
  342. * aac_get_container_name - get container name, none blocking.
  343. */
  344. static int aac_get_container_name(struct scsi_cmnd * scsicmd, int cid)
  345. {
  346. int status;
  347. struct aac_get_name *dinfo;
  348. struct fib * cmd_fibcontext;
  349. struct aac_dev * dev;
  350. dev = (struct aac_dev *)scsicmd->device->host->hostdata;
  351. if (!(cmd_fibcontext = fib_alloc(dev)))
  352. return -ENOMEM;
  353. fib_init(cmd_fibcontext);
  354. dinfo = (struct aac_get_name *) fib_data(cmd_fibcontext);
  355. dinfo->command = cpu_to_le32(VM_ContainerConfig);
  356. dinfo->type = cpu_to_le32(CT_READ_NAME);
  357. dinfo->cid = cpu_to_le32(cid);
  358. dinfo->count = cpu_to_le32(sizeof(((struct aac_get_name_resp *)NULL)->data));
  359. status = fib_send(ContainerCommand,
  360. cmd_fibcontext,
  361. sizeof (struct aac_get_name),
  362. FsaNormal,
  363. 0, 1,
  364. (fib_callback) get_container_name_callback,
  365. (void *) scsicmd);
  366. /*
  367. * Check that the command queued to the controller
  368. */
  369. if (status == -EINPROGRESS)
  370. return 0;
  371. printk(KERN_WARNING "aac_get_container_name: fib_send failed with status: %d.\n", status);
  372. fib_complete(cmd_fibcontext);
  373. fib_free(cmd_fibcontext);
  374. return -1;
  375. }
  376. /**
  377. * probe_container - query a logical volume
  378. * @dev: device to query
  379. * @cid: container identifier
  380. *
  381. * Queries the controller about the given volume. The volume information
  382. * is updated in the struct fsa_dev_info structure rather than returned.
  383. */
  384. static int probe_container(struct aac_dev *dev, int cid)
  385. {
  386. struct fsa_dev_info *fsa_dev_ptr;
  387. int status;
  388. struct aac_query_mount *dinfo;
  389. struct aac_mount *dresp;
  390. struct fib * fibptr;
  391. unsigned instance;
  392. fsa_dev_ptr = dev->fsa_dev;
  393. instance = dev->scsi_host_ptr->unique_id;
  394. if (!(fibptr = fib_alloc(dev)))
  395. return -ENOMEM;
  396. fib_init(fibptr);
  397. dinfo = (struct aac_query_mount *)fib_data(fibptr);
  398. dinfo->command = cpu_to_le32(VM_NameServe);
  399. dinfo->count = cpu_to_le32(cid);
  400. dinfo->type = cpu_to_le32(FT_FILESYS);
  401. status = fib_send(ContainerCommand,
  402. fibptr,
  403. sizeof(struct aac_query_mount),
  404. FsaNormal,
  405. 1, 1,
  406. NULL, NULL);
  407. if (status < 0) {
  408. printk(KERN_WARNING "aacraid: probe_container query failed.\n");
  409. goto error;
  410. }
  411. dresp = (struct aac_mount *) fib_data(fibptr);
  412. if ((le32_to_cpu(dresp->status) == ST_OK) &&
  413. (le32_to_cpu(dresp->mnt[0].vol) != CT_NONE) &&
  414. (le32_to_cpu(dresp->mnt[0].state) != FSCS_HIDDEN)) {
  415. fsa_dev_ptr[cid].valid = 1;
  416. fsa_dev_ptr[cid].type = le32_to_cpu(dresp->mnt[0].vol);
  417. fsa_dev_ptr[cid].size = le32_to_cpu(dresp->mnt[0].capacity);
  418. if (le32_to_cpu(dresp->mnt[0].state) & FSCS_READONLY)
  419. fsa_dev_ptr[cid].ro = 1;
  420. }
  421. error:
  422. fib_complete(fibptr);
  423. fib_free(fibptr);
  424. return status;
  425. }
  426. /* Local Structure to set SCSI inquiry data strings */
  427. struct scsi_inq {
  428. char vid[8]; /* Vendor ID */
  429. char pid[16]; /* Product ID */
  430. char prl[4]; /* Product Revision Level */
  431. };
  432. /**
  433. * InqStrCopy - string merge
  434. * @a: string to copy from
  435. * @b: string to copy to
  436. *
  437. * Copy a String from one location to another
  438. * without copying \0
  439. */
  440. static void inqstrcpy(char *a, char *b)
  441. {
  442. while(*a != (char)0)
  443. *b++ = *a++;
  444. }
  445. static char *container_types[] = {
  446. "None",
  447. "Volume",
  448. "Mirror",
  449. "Stripe",
  450. "RAID5",
  451. "SSRW",
  452. "SSRO",
  453. "Morph",
  454. "Legacy",
  455. "RAID4",
  456. "RAID10",
  457. "RAID00",
  458. "V-MIRRORS",
  459. "PSEUDO R4",
  460. "RAID50",
  461. "RAID5D",
  462. "RAID5D0",
  463. "RAID1E",
  464. "RAID6",
  465. "RAID60",
  466. "Unknown"
  467. };
  468. /* Function: setinqstr
  469. *
  470. * Arguments: [1] pointer to void [1] int
  471. *
  472. * Purpose: Sets SCSI inquiry data strings for vendor, product
  473. * and revision level. Allows strings to be set in platform dependant
  474. * files instead of in OS dependant driver source.
  475. */
  476. static void setinqstr(int devtype, void *data, int tindex)
  477. {
  478. struct scsi_inq *str;
  479. struct aac_driver_ident *mp;
  480. mp = aac_get_driver_ident(devtype);
  481. str = (struct scsi_inq *)(data); /* cast data to scsi inq block */
  482. inqstrcpy (mp->vname, str->vid);
  483. inqstrcpy (mp->model, str->pid); /* last six chars reserved for vol type */
  484. if (tindex < (sizeof(container_types)/sizeof(char *))){
  485. char *findit = str->pid;
  486. for ( ; *findit != ' '; findit++); /* walk till we find a space */
  487. /* RAID is superfluous in the context of a RAID device */
  488. if (memcmp(findit-4, "RAID", 4) == 0)
  489. *(findit -= 4) = ' ';
  490. inqstrcpy (container_types[tindex], findit + 1);
  491. }
  492. inqstrcpy ("V1.0", str->prl);
  493. }
  494. static void set_sense(u8 *sense_buf, u8 sense_key, u8 sense_code,
  495. u8 a_sense_code, u8 incorrect_length,
  496. u8 bit_pointer, u16 field_pointer,
  497. u32 residue)
  498. {
  499. sense_buf[0] = 0xF0; /* Sense data valid, err code 70h (current error) */
  500. sense_buf[1] = 0; /* Segment number, always zero */
  501. if (incorrect_length) {
  502. sense_buf[2] = sense_key | 0x20;/* Set ILI bit | sense key */
  503. sense_buf[3] = BYTE3(residue);
  504. sense_buf[4] = BYTE2(residue);
  505. sense_buf[5] = BYTE1(residue);
  506. sense_buf[6] = BYTE0(residue);
  507. } else
  508. sense_buf[2] = sense_key; /* Sense key */
  509. if (sense_key == ILLEGAL_REQUEST)
  510. sense_buf[7] = 10; /* Additional sense length */
  511. else
  512. sense_buf[7] = 6; /* Additional sense length */
  513. sense_buf[12] = sense_code; /* Additional sense code */
  514. sense_buf[13] = a_sense_code; /* Additional sense code qualifier */
  515. if (sense_key == ILLEGAL_REQUEST) {
  516. sense_buf[15] = 0;
  517. if (sense_code == SENCODE_INVALID_PARAM_FIELD)
  518. sense_buf[15] = 0x80;/* Std sense key specific field */
  519. /* Illegal parameter is in the parameter block */
  520. if (sense_code == SENCODE_INVALID_CDB_FIELD)
  521. sense_buf[15] = 0xc0;/* Std sense key specific field */
  522. /* Illegal parameter is in the CDB block */
  523. sense_buf[15] |= bit_pointer;
  524. sense_buf[16] = field_pointer >> 8; /* MSB */
  525. sense_buf[17] = field_pointer; /* LSB */
  526. }
  527. }
  528. int aac_get_adapter_info(struct aac_dev* dev)
  529. {
  530. struct fib* fibptr;
  531. int rcode;
  532. u32 tmp;
  533. struct aac_adapter_info *info;
  534. struct aac_bus_info *command;
  535. struct aac_bus_info_response *bus_info;
  536. if (!(fibptr = fib_alloc(dev)))
  537. return -ENOMEM;
  538. fib_init(fibptr);
  539. info = (struct aac_adapter_info *) fib_data(fibptr);
  540. memset(info,0,sizeof(*info));
  541. rcode = fib_send(RequestAdapterInfo,
  542. fibptr,
  543. sizeof(*info),
  544. FsaNormal,
  545. 1, 1,
  546. NULL,
  547. NULL);
  548. if (rcode < 0) {
  549. fib_complete(fibptr);
  550. fib_free(fibptr);
  551. return rcode;
  552. }
  553. memcpy(&dev->adapter_info, info, sizeof(*info));
  554. if (dev->adapter_info.options & AAC_OPT_SUPPLEMENT_ADAPTER_INFO) {
  555. struct aac_supplement_adapter_info * info;
  556. fib_init(fibptr);
  557. info = (struct aac_supplement_adapter_info *) fib_data(fibptr);
  558. memset(info,0,sizeof(*info));
  559. rcode = fib_send(RequestSupplementAdapterInfo,
  560. fibptr,
  561. sizeof(*info),
  562. FsaNormal,
  563. 1, 1,
  564. NULL,
  565. NULL);
  566. if (rcode >= 0)
  567. memcpy(&dev->supplement_adapter_info, info, sizeof(*info));
  568. }
  569. /*
  570. * GetBusInfo
  571. */
  572. fib_init(fibptr);
  573. bus_info = (struct aac_bus_info_response *) fib_data(fibptr);
  574. memset(bus_info, 0, sizeof(*bus_info));
  575. command = (struct aac_bus_info *)bus_info;
  576. command->Command = cpu_to_le32(VM_Ioctl);
  577. command->ObjType = cpu_to_le32(FT_DRIVE);
  578. command->MethodId = cpu_to_le32(1);
  579. command->CtlCmd = cpu_to_le32(GetBusInfo);
  580. rcode = fib_send(ContainerCommand,
  581. fibptr,
  582. sizeof (*bus_info),
  583. FsaNormal,
  584. 1, 1,
  585. NULL, NULL);
  586. if (rcode >= 0 && le32_to_cpu(bus_info->Status) == ST_OK) {
  587. dev->maximum_num_physicals = le32_to_cpu(bus_info->TargetsPerBus);
  588. dev->maximum_num_channels = le32_to_cpu(bus_info->BusCount);
  589. }
  590. tmp = le32_to_cpu(dev->adapter_info.kernelrev);
  591. printk(KERN_INFO "%s%d: kernel %d.%d-%d[%d] %.*s\n",
  592. dev->name,
  593. dev->id,
  594. tmp>>24,
  595. (tmp>>16)&0xff,
  596. tmp&0xff,
  597. le32_to_cpu(dev->adapter_info.kernelbuild),
  598. (int)sizeof(dev->supplement_adapter_info.BuildDate),
  599. dev->supplement_adapter_info.BuildDate);
  600. tmp = le32_to_cpu(dev->adapter_info.monitorrev);
  601. printk(KERN_INFO "%s%d: monitor %d.%d-%d[%d]\n",
  602. dev->name, dev->id,
  603. tmp>>24,(tmp>>16)&0xff,tmp&0xff,
  604. le32_to_cpu(dev->adapter_info.monitorbuild));
  605. tmp = le32_to_cpu(dev->adapter_info.biosrev);
  606. printk(KERN_INFO "%s%d: bios %d.%d-%d[%d]\n",
  607. dev->name, dev->id,
  608. tmp>>24,(tmp>>16)&0xff,tmp&0xff,
  609. le32_to_cpu(dev->adapter_info.biosbuild));
  610. if (le32_to_cpu(dev->adapter_info.serial[0]) != 0xBAD0)
  611. printk(KERN_INFO "%s%d: serial %x\n",
  612. dev->name, dev->id,
  613. le32_to_cpu(dev->adapter_info.serial[0]));
  614. dev->nondasd_support = 0;
  615. dev->raid_scsi_mode = 0;
  616. if(dev->adapter_info.options & AAC_OPT_NONDASD){
  617. dev->nondasd_support = 1;
  618. }
  619. /*
  620. * If the firmware supports ROMB RAID/SCSI mode and we are currently
  621. * in RAID/SCSI mode, set the flag. For now if in this mode we will
  622. * force nondasd support on. If we decide to allow the non-dasd flag
  623. * additional changes changes will have to be made to support
  624. * RAID/SCSI. the function aac_scsi_cmd in this module will have to be
  625. * changed to support the new dev->raid_scsi_mode flag instead of
  626. * leaching off of the dev->nondasd_support flag. Also in linit.c the
  627. * function aac_detect will have to be modified where it sets up the
  628. * max number of channels based on the aac->nondasd_support flag only.
  629. */
  630. if ((dev->adapter_info.options & AAC_OPT_SCSI_MANAGED) &&
  631. (dev->adapter_info.options & AAC_OPT_RAID_SCSI_MODE)) {
  632. dev->nondasd_support = 1;
  633. dev->raid_scsi_mode = 1;
  634. }
  635. if (dev->raid_scsi_mode != 0)
  636. printk(KERN_INFO "%s%d: ROMB RAID/SCSI mode enabled\n",
  637. dev->name, dev->id);
  638. if(nondasd != -1) {
  639. dev->nondasd_support = (nondasd!=0);
  640. }
  641. if(dev->nondasd_support != 0){
  642. printk(KERN_INFO "%s%d: Non-DASD support enabled.\n",dev->name, dev->id);
  643. }
  644. dev->dac_support = 0;
  645. if( (sizeof(dma_addr_t) > 4) && (dev->adapter_info.options & AAC_OPT_SGMAP_HOST64)){
  646. printk(KERN_INFO "%s%d: 64bit support enabled.\n", dev->name, dev->id);
  647. dev->dac_support = 1;
  648. }
  649. if(dacmode != -1) {
  650. dev->dac_support = (dacmode!=0);
  651. }
  652. if(dev->dac_support != 0) {
  653. if (!pci_set_dma_mask(dev->pdev, 0xFFFFFFFFFFFFFFFFULL) &&
  654. !pci_set_consistent_dma_mask(dev->pdev, 0xFFFFFFFFFFFFFFFFULL)) {
  655. printk(KERN_INFO"%s%d: 64 Bit DAC enabled\n",
  656. dev->name, dev->id);
  657. } else if (!pci_set_dma_mask(dev->pdev, 0xFFFFFFFFULL) &&
  658. !pci_set_consistent_dma_mask(dev->pdev, 0xFFFFFFFFULL)) {
  659. printk(KERN_INFO"%s%d: DMA mask set failed, 64 Bit DAC disabled\n",
  660. dev->name, dev->id);
  661. dev->dac_support = 0;
  662. } else {
  663. printk(KERN_WARNING"%s%d: No suitable DMA available.\n",
  664. dev->name, dev->id);
  665. rcode = -ENOMEM;
  666. }
  667. }
  668. /*
  669. * 57 scatter gather elements
  670. */
  671. if (!(dev->raw_io_interface)) {
  672. dev->scsi_host_ptr->sg_tablesize = (dev->max_fib_size -
  673. sizeof(struct aac_fibhdr) -
  674. sizeof(struct aac_write) + sizeof(struct sgmap)) /
  675. sizeof(struct sgmap);
  676. if (dev->dac_support) {
  677. /*
  678. * 38 scatter gather elements
  679. */
  680. dev->scsi_host_ptr->sg_tablesize =
  681. (dev->max_fib_size -
  682. sizeof(struct aac_fibhdr) -
  683. sizeof(struct aac_write64) +
  684. sizeof(struct sgmap64)) /
  685. sizeof(struct sgmap64);
  686. }
  687. dev->scsi_host_ptr->max_sectors = AAC_MAX_32BIT_SGBCOUNT;
  688. if(!(dev->adapter_info.options & AAC_OPT_NEW_COMM)) {
  689. /*
  690. * Worst case size that could cause sg overflow when
  691. * we break up SG elements that are larger than 64KB.
  692. * Would be nice if we could tell the SCSI layer what
  693. * the maximum SG element size can be. Worst case is
  694. * (sg_tablesize-1) 4KB elements with one 64KB
  695. * element.
  696. * 32bit -> 468 or 238KB 64bit -> 424 or 212KB
  697. */
  698. dev->scsi_host_ptr->max_sectors =
  699. (dev->scsi_host_ptr->sg_tablesize * 8) + 112;
  700. }
  701. }
  702. fib_complete(fibptr);
  703. fib_free(fibptr);
  704. return rcode;
  705. }
  706. static void io_callback(void *context, struct fib * fibptr)
  707. {
  708. struct aac_dev *dev;
  709. struct aac_read_reply *readreply;
  710. struct scsi_cmnd *scsicmd;
  711. u32 cid;
  712. scsicmd = (struct scsi_cmnd *) context;
  713. dev = (struct aac_dev *)scsicmd->device->host->hostdata;
  714. cid = ID_LUN_TO_CONTAINER(scsicmd->device->id, scsicmd->device->lun);
  715. dprintk((KERN_DEBUG "io_callback[cpu %d]: lba = %u, t = %ld.\n", smp_processor_id(), ((scsicmd->cmnd[1] & 0x1F) << 16) | (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3], jiffies));
  716. if (fibptr == NULL)
  717. BUG();
  718. if(scsicmd->use_sg)
  719. pci_unmap_sg(dev->pdev,
  720. (struct scatterlist *)scsicmd->buffer,
  721. scsicmd->use_sg,
  722. scsicmd->sc_data_direction);
  723. else if(scsicmd->request_bufflen)
  724. pci_unmap_single(dev->pdev, scsicmd->SCp.dma_handle,
  725. scsicmd->request_bufflen,
  726. scsicmd->sc_data_direction);
  727. readreply = (struct aac_read_reply *)fib_data(fibptr);
  728. if (le32_to_cpu(readreply->status) == ST_OK)
  729. scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
  730. else {
  731. #ifdef AAC_DETAILED_STATUS_INFO
  732. printk(KERN_WARNING "io_callback: io failed, status = %d\n",
  733. le32_to_cpu(readreply->status));
  734. #endif
  735. scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION;
  736. set_sense((u8 *) &dev->fsa_dev[cid].sense_data,
  737. HARDWARE_ERROR,
  738. SENCODE_INTERNAL_TARGET_FAILURE,
  739. ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0,
  740. 0, 0);
  741. memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
  742. (sizeof(dev->fsa_dev[cid].sense_data) > sizeof(scsicmd->sense_buffer))
  743. ? sizeof(scsicmd->sense_buffer)
  744. : sizeof(dev->fsa_dev[cid].sense_data));
  745. }
  746. fib_complete(fibptr);
  747. fib_free(fibptr);
  748. aac_io_done(scsicmd);
  749. }
  750. static int aac_read(struct scsi_cmnd * scsicmd, int cid)
  751. {
  752. u32 lba;
  753. u32 count;
  754. int status;
  755. u16 fibsize;
  756. struct aac_dev *dev;
  757. struct fib * cmd_fibcontext;
  758. dev = (struct aac_dev *)scsicmd->device->host->hostdata;
  759. /*
  760. * Get block address and transfer length
  761. */
  762. if (scsicmd->cmnd[0] == READ_6) /* 6 byte command */
  763. {
  764. dprintk((KERN_DEBUG "aachba: received a read(6) command on id %d.\n", cid));
  765. lba = ((scsicmd->cmnd[1] & 0x1F) << 16) | (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3];
  766. count = scsicmd->cmnd[4];
  767. if (count == 0)
  768. count = 256;
  769. } else {
  770. dprintk((KERN_DEBUG "aachba: received a read(10) command on id %d.\n", cid));
  771. lba = (scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16) | (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
  772. count = (scsicmd->cmnd[7] << 8) | scsicmd->cmnd[8];
  773. }
  774. dprintk((KERN_DEBUG "aac_read[cpu %d]: lba = %u, t = %ld.\n",
  775. smp_processor_id(), (unsigned long long)lba, jiffies));
  776. /*
  777. * Alocate and initialize a Fib
  778. */
  779. if (!(cmd_fibcontext = fib_alloc(dev))) {
  780. return -1;
  781. }
  782. fib_init(cmd_fibcontext);
  783. if (dev->raw_io_interface) {
  784. struct aac_raw_io *readcmd;
  785. readcmd = (struct aac_raw_io *) fib_data(cmd_fibcontext);
  786. readcmd->block[0] = cpu_to_le32(lba);
  787. readcmd->block[1] = 0;
  788. readcmd->count = cpu_to_le32(count<<9);
  789. readcmd->cid = cpu_to_le16(cid);
  790. readcmd->flags = cpu_to_le16(1);
  791. readcmd->bpTotal = 0;
  792. readcmd->bpComplete = 0;
  793. aac_build_sgraw(scsicmd, &readcmd->sg);
  794. fibsize = sizeof(struct aac_raw_io) + ((le32_to_cpu(readcmd->sg.count) - 1) * sizeof (struct sgentryraw));
  795. if (fibsize > (dev->max_fib_size - sizeof(struct aac_fibhdr)))
  796. BUG();
  797. /*
  798. * Now send the Fib to the adapter
  799. */
  800. status = fib_send(ContainerRawIo,
  801. cmd_fibcontext,
  802. fibsize,
  803. FsaNormal,
  804. 0, 1,
  805. (fib_callback) io_callback,
  806. (void *) scsicmd);
  807. } else if (dev->dac_support == 1) {
  808. struct aac_read64 *readcmd;
  809. readcmd = (struct aac_read64 *) fib_data(cmd_fibcontext);
  810. readcmd->command = cpu_to_le32(VM_CtHostRead64);
  811. readcmd->cid = cpu_to_le16(cid);
  812. readcmd->sector_count = cpu_to_le16(count);
  813. readcmd->block = cpu_to_le32(lba);
  814. readcmd->pad = 0;
  815. readcmd->flags = 0;
  816. aac_build_sg64(scsicmd, &readcmd->sg);
  817. fibsize = sizeof(struct aac_read64) +
  818. ((le32_to_cpu(readcmd->sg.count) - 1) *
  819. sizeof (struct sgentry64));
  820. BUG_ON (fibsize > (sizeof(struct hw_fib) -
  821. sizeof(struct aac_fibhdr)));
  822. /*
  823. * Now send the Fib to the adapter
  824. */
  825. status = fib_send(ContainerCommand64,
  826. cmd_fibcontext,
  827. fibsize,
  828. FsaNormal,
  829. 0, 1,
  830. (fib_callback) io_callback,
  831. (void *) scsicmd);
  832. } else {
  833. struct aac_read *readcmd;
  834. readcmd = (struct aac_read *) fib_data(cmd_fibcontext);
  835. readcmd->command = cpu_to_le32(VM_CtBlockRead);
  836. readcmd->cid = cpu_to_le32(cid);
  837. readcmd->block = cpu_to_le32(lba);
  838. readcmd->count = cpu_to_le32(count * 512);
  839. aac_build_sg(scsicmd, &readcmd->sg);
  840. fibsize = sizeof(struct aac_read) +
  841. ((le32_to_cpu(readcmd->sg.count) - 1) *
  842. sizeof (struct sgentry));
  843. BUG_ON (fibsize > (dev->max_fib_size -
  844. sizeof(struct aac_fibhdr)));
  845. /*
  846. * Now send the Fib to the adapter
  847. */
  848. status = fib_send(ContainerCommand,
  849. cmd_fibcontext,
  850. fibsize,
  851. FsaNormal,
  852. 0, 1,
  853. (fib_callback) io_callback,
  854. (void *) scsicmd);
  855. }
  856. /*
  857. * Check that the command queued to the controller
  858. */
  859. if (status == -EINPROGRESS)
  860. return 0;
  861. printk(KERN_WARNING "aac_read: fib_send failed with status: %d.\n", status);
  862. /*
  863. * For some reason, the Fib didn't queue, return QUEUE_FULL
  864. */
  865. scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_TASK_SET_FULL;
  866. aac_io_done(scsicmd);
  867. fib_complete(cmd_fibcontext);
  868. fib_free(cmd_fibcontext);
  869. return 0;
  870. }
  871. static int aac_write(struct scsi_cmnd * scsicmd, int cid)
  872. {
  873. u32 lba;
  874. u32 count;
  875. int status;
  876. u16 fibsize;
  877. struct aac_dev *dev;
  878. struct fib * cmd_fibcontext;
  879. dev = (struct aac_dev *)scsicmd->device->host->hostdata;
  880. /*
  881. * Get block address and transfer length
  882. */
  883. if (scsicmd->cmnd[0] == WRITE_6) /* 6 byte command */
  884. {
  885. lba = ((scsicmd->cmnd[1] & 0x1F) << 16) | (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3];
  886. count = scsicmd->cmnd[4];
  887. if (count == 0)
  888. count = 256;
  889. } else {
  890. dprintk((KERN_DEBUG "aachba: received a write(10) command on id %d.\n", cid));
  891. lba = (scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16) | (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
  892. count = (scsicmd->cmnd[7] << 8) | scsicmd->cmnd[8];
  893. }
  894. dprintk((KERN_DEBUG "aac_write[cpu %d]: lba = %u, t = %ld.\n",
  895. smp_processor_id(), (unsigned long long)lba, jiffies));
  896. /*
  897. * Allocate and initialize a Fib then setup a BlockWrite command
  898. */
  899. if (!(cmd_fibcontext = fib_alloc(dev))) {
  900. scsicmd->result = DID_ERROR << 16;
  901. aac_io_done(scsicmd);
  902. return 0;
  903. }
  904. fib_init(cmd_fibcontext);
  905. if (dev->raw_io_interface) {
  906. struct aac_raw_io *writecmd;
  907. writecmd = (struct aac_raw_io *) fib_data(cmd_fibcontext);
  908. writecmd->block[0] = cpu_to_le32(lba);
  909. writecmd->block[1] = 0;
  910. writecmd->count = cpu_to_le32(count<<9);
  911. writecmd->cid = cpu_to_le16(cid);
  912. writecmd->flags = 0;
  913. writecmd->bpTotal = 0;
  914. writecmd->bpComplete = 0;
  915. aac_build_sgraw(scsicmd, &writecmd->sg);
  916. fibsize = sizeof(struct aac_raw_io) + ((le32_to_cpu(writecmd->sg.count) - 1) * sizeof (struct sgentryraw));
  917. if (fibsize > (dev->max_fib_size - sizeof(struct aac_fibhdr)))
  918. BUG();
  919. /*
  920. * Now send the Fib to the adapter
  921. */
  922. status = fib_send(ContainerRawIo,
  923. cmd_fibcontext,
  924. fibsize,
  925. FsaNormal,
  926. 0, 1,
  927. (fib_callback) io_callback,
  928. (void *) scsicmd);
  929. } else if (dev->dac_support == 1) {
  930. struct aac_write64 *writecmd;
  931. writecmd = (struct aac_write64 *) fib_data(cmd_fibcontext);
  932. writecmd->command = cpu_to_le32(VM_CtHostWrite64);
  933. writecmd->cid = cpu_to_le16(cid);
  934. writecmd->sector_count = cpu_to_le16(count);
  935. writecmd->block = cpu_to_le32(lba);
  936. writecmd->pad = 0;
  937. writecmd->flags = 0;
  938. aac_build_sg64(scsicmd, &writecmd->sg);
  939. fibsize = sizeof(struct aac_write64) +
  940. ((le32_to_cpu(writecmd->sg.count) - 1) *
  941. sizeof (struct sgentry64));
  942. BUG_ON (fibsize > (dev->max_fib_size -
  943. sizeof(struct aac_fibhdr)));
  944. /*
  945. * Now send the Fib to the adapter
  946. */
  947. status = fib_send(ContainerCommand64,
  948. cmd_fibcontext,
  949. fibsize,
  950. FsaNormal,
  951. 0, 1,
  952. (fib_callback) io_callback,
  953. (void *) scsicmd);
  954. } else {
  955. struct aac_write *writecmd;
  956. writecmd = (struct aac_write *) fib_data(cmd_fibcontext);
  957. writecmd->command = cpu_to_le32(VM_CtBlockWrite);
  958. writecmd->cid = cpu_to_le32(cid);
  959. writecmd->block = cpu_to_le32(lba);
  960. writecmd->count = cpu_to_le32(count * 512);
  961. writecmd->sg.count = cpu_to_le32(1);
  962. /* ->stable is not used - it did mean which type of write */
  963. aac_build_sg(scsicmd, &writecmd->sg);
  964. fibsize = sizeof(struct aac_write) +
  965. ((le32_to_cpu(writecmd->sg.count) - 1) *
  966. sizeof (struct sgentry));
  967. BUG_ON (fibsize > (dev->max_fib_size -
  968. sizeof(struct aac_fibhdr)));
  969. /*
  970. * Now send the Fib to the adapter
  971. */
  972. status = fib_send(ContainerCommand,
  973. cmd_fibcontext,
  974. fibsize,
  975. FsaNormal,
  976. 0, 1,
  977. (fib_callback) io_callback,
  978. (void *) scsicmd);
  979. }
  980. /*
  981. * Check that the command queued to the controller
  982. */
  983. if (status == -EINPROGRESS)
  984. {
  985. return 0;
  986. }
  987. printk(KERN_WARNING "aac_write: fib_send failed with status: %d\n", status);
  988. /*
  989. * For some reason, the Fib didn't queue, return QUEUE_FULL
  990. */
  991. scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_TASK_SET_FULL;
  992. aac_io_done(scsicmd);
  993. fib_complete(cmd_fibcontext);
  994. fib_free(cmd_fibcontext);
  995. return 0;
  996. }
  997. static void synchronize_callback(void *context, struct fib *fibptr)
  998. {
  999. struct aac_synchronize_reply *synchronizereply;
  1000. struct scsi_cmnd *cmd;
  1001. cmd = context;
  1002. dprintk((KERN_DEBUG "synchronize_callback[cpu %d]: t = %ld.\n",
  1003. smp_processor_id(), jiffies));
  1004. BUG_ON(fibptr == NULL);
  1005. synchronizereply = fib_data(fibptr);
  1006. if (le32_to_cpu(synchronizereply->status) == CT_OK)
  1007. cmd->result = DID_OK << 16 |
  1008. COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
  1009. else {
  1010. struct scsi_device *sdev = cmd->device;
  1011. struct aac_dev *dev = (struct aac_dev *)sdev->host->hostdata;
  1012. u32 cid = ID_LUN_TO_CONTAINER(sdev->id, sdev->lun);
  1013. printk(KERN_WARNING
  1014. "synchronize_callback: synchronize failed, status = %d\n",
  1015. le32_to_cpu(synchronizereply->status));
  1016. cmd->result = DID_OK << 16 |
  1017. COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION;
  1018. set_sense((u8 *)&dev->fsa_dev[cid].sense_data,
  1019. HARDWARE_ERROR,
  1020. SENCODE_INTERNAL_TARGET_FAILURE,
  1021. ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0,
  1022. 0, 0);
  1023. memcpy(cmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
  1024. min(sizeof(dev->fsa_dev[cid].sense_data),
  1025. sizeof(cmd->sense_buffer)));
  1026. }
  1027. fib_complete(fibptr);
  1028. fib_free(fibptr);
  1029. aac_io_done(cmd);
  1030. }
  1031. static int aac_synchronize(struct scsi_cmnd *scsicmd, int cid)
  1032. {
  1033. int status;
  1034. struct fib *cmd_fibcontext;
  1035. struct aac_synchronize *synchronizecmd;
  1036. struct scsi_cmnd *cmd;
  1037. struct scsi_device *sdev = scsicmd->device;
  1038. int active = 0;
  1039. unsigned long flags;
  1040. /*
  1041. * Wait for all commands to complete to this specific
  1042. * target (block).
  1043. */
  1044. spin_lock_irqsave(&sdev->list_lock, flags);
  1045. list_for_each_entry(cmd, &sdev->cmd_list, list)
  1046. if (cmd != scsicmd && cmd->serial_number != 0) {
  1047. ++active;
  1048. break;
  1049. }
  1050. spin_unlock_irqrestore(&sdev->list_lock, flags);
  1051. /*
  1052. * Yield the processor (requeue for later)
  1053. */
  1054. if (active)
  1055. return SCSI_MLQUEUE_DEVICE_BUSY;
  1056. /*
  1057. * Allocate and initialize a Fib
  1058. */
  1059. if (!(cmd_fibcontext =
  1060. fib_alloc((struct aac_dev *)scsicmd->device->host->hostdata)))
  1061. return SCSI_MLQUEUE_HOST_BUSY;
  1062. fib_init(cmd_fibcontext);
  1063. synchronizecmd = fib_data(cmd_fibcontext);
  1064. synchronizecmd->command = cpu_to_le32(VM_ContainerConfig);
  1065. synchronizecmd->type = cpu_to_le32(CT_FLUSH_CACHE);
  1066. synchronizecmd->cid = cpu_to_le32(cid);
  1067. synchronizecmd->count =
  1068. cpu_to_le32(sizeof(((struct aac_synchronize_reply *)NULL)->data));
  1069. /*
  1070. * Now send the Fib to the adapter
  1071. */
  1072. status = fib_send(ContainerCommand,
  1073. cmd_fibcontext,
  1074. sizeof(struct aac_synchronize),
  1075. FsaNormal,
  1076. 0, 1,
  1077. (fib_callback)synchronize_callback,
  1078. (void *)scsicmd);
  1079. /*
  1080. * Check that the command queued to the controller
  1081. */
  1082. if (status == -EINPROGRESS)
  1083. return 0;
  1084. printk(KERN_WARNING
  1085. "aac_synchronize: fib_send failed with status: %d.\n", status);
  1086. fib_complete(cmd_fibcontext);
  1087. fib_free(cmd_fibcontext);
  1088. return SCSI_MLQUEUE_HOST_BUSY;
  1089. }
  1090. /**
  1091. * aac_scsi_cmd() - Process SCSI command
  1092. * @scsicmd: SCSI command block
  1093. *
  1094. * Emulate a SCSI command and queue the required request for the
  1095. * aacraid firmware.
  1096. */
  1097. int aac_scsi_cmd(struct scsi_cmnd * scsicmd)
  1098. {
  1099. u32 cid = 0;
  1100. struct Scsi_Host *host = scsicmd->device->host;
  1101. struct aac_dev *dev = (struct aac_dev *)host->hostdata;
  1102. struct fsa_dev_info *fsa_dev_ptr = dev->fsa_dev;
  1103. int cardtype = dev->cardtype;
  1104. int ret;
  1105. /*
  1106. * If the bus, id or lun is out of range, return fail
  1107. * Test does not apply to ID 16, the pseudo id for the controller
  1108. * itself.
  1109. */
  1110. if (scsicmd->device->id != host->this_id) {
  1111. if ((scsicmd->device->channel == 0) ){
  1112. if( (scsicmd->device->id >= dev->maximum_num_containers) || (scsicmd->device->lun != 0)){
  1113. scsicmd->result = DID_NO_CONNECT << 16;
  1114. scsicmd->scsi_done(scsicmd);
  1115. return 0;
  1116. }
  1117. cid = ID_LUN_TO_CONTAINER(scsicmd->device->id, scsicmd->device->lun);
  1118. /*
  1119. * If the target container doesn't exist, it may have
  1120. * been newly created
  1121. */
  1122. if ((fsa_dev_ptr[cid].valid & 1) == 0) {
  1123. switch (scsicmd->cmnd[0]) {
  1124. case INQUIRY:
  1125. case READ_CAPACITY:
  1126. case TEST_UNIT_READY:
  1127. spin_unlock_irq(host->host_lock);
  1128. probe_container(dev, cid);
  1129. spin_lock_irq(host->host_lock);
  1130. if (fsa_dev_ptr[cid].valid == 0) {
  1131. scsicmd->result = DID_NO_CONNECT << 16;
  1132. scsicmd->scsi_done(scsicmd);
  1133. return 0;
  1134. }
  1135. default:
  1136. break;
  1137. }
  1138. }
  1139. /*
  1140. * If the target container still doesn't exist,
  1141. * return failure
  1142. */
  1143. if (fsa_dev_ptr[cid].valid == 0) {
  1144. scsicmd->result = DID_BAD_TARGET << 16;
  1145. scsicmd->scsi_done(scsicmd);
  1146. return 0;
  1147. }
  1148. } else { /* check for physical non-dasd devices */
  1149. if(dev->nondasd_support == 1){
  1150. return aac_send_srb_fib(scsicmd);
  1151. } else {
  1152. scsicmd->result = DID_NO_CONNECT << 16;
  1153. scsicmd->scsi_done(scsicmd);
  1154. return 0;
  1155. }
  1156. }
  1157. }
  1158. /*
  1159. * else Command for the controller itself
  1160. */
  1161. else if ((scsicmd->cmnd[0] != INQUIRY) && /* only INQUIRY & TUR cmnd supported for controller */
  1162. (scsicmd->cmnd[0] != TEST_UNIT_READY))
  1163. {
  1164. dprintk((KERN_WARNING "Only INQUIRY & TUR command supported for controller, rcvd = 0x%x.\n", scsicmd->cmnd[0]));
  1165. scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION;
  1166. set_sense((u8 *) &dev->fsa_dev[cid].sense_data,
  1167. ILLEGAL_REQUEST,
  1168. SENCODE_INVALID_COMMAND,
  1169. ASENCODE_INVALID_COMMAND, 0, 0, 0, 0);
  1170. memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
  1171. (sizeof(dev->fsa_dev[cid].sense_data) > sizeof(scsicmd->sense_buffer))
  1172. ? sizeof(scsicmd->sense_buffer)
  1173. : sizeof(dev->fsa_dev[cid].sense_data));
  1174. scsicmd->scsi_done(scsicmd);
  1175. return 0;
  1176. }
  1177. /* Handle commands here that don't really require going out to the adapter */
  1178. switch (scsicmd->cmnd[0]) {
  1179. case INQUIRY:
  1180. {
  1181. struct inquiry_data *inq_data_ptr;
  1182. dprintk((KERN_DEBUG "INQUIRY command, ID: %d.\n", scsicmd->device->id));
  1183. inq_data_ptr = (struct inquiry_data *)scsicmd->request_buffer;
  1184. memset(inq_data_ptr, 0, sizeof (struct inquiry_data));
  1185. inq_data_ptr->inqd_ver = 2; /* claim compliance to SCSI-2 */
  1186. inq_data_ptr->inqd_dtq = 0x80; /* set RMB bit to one indicating that the medium is removable */
  1187. inq_data_ptr->inqd_rdf = 2; /* A response data format value of two indicates that the data shall be in the format specified in SCSI-2 */
  1188. inq_data_ptr->inqd_len = 31;
  1189. /*Format for "pad2" is RelAdr | WBus32 | WBus16 | Sync | Linked |Reserved| CmdQue | SftRe */
  1190. inq_data_ptr->inqd_pad2= 0x32 ; /*WBus16|Sync|CmdQue */
  1191. /*
  1192. * Set the Vendor, Product, and Revision Level
  1193. * see: <vendor>.c i.e. aac.c
  1194. */
  1195. if (scsicmd->device->id == host->this_id) {
  1196. setinqstr(cardtype, (void *) (inq_data_ptr->inqd_vid), (sizeof(container_types)/sizeof(char *)));
  1197. inq_data_ptr->inqd_pdt = INQD_PDT_PROC; /* Processor device */
  1198. scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
  1199. scsicmd->scsi_done(scsicmd);
  1200. return 0;
  1201. }
  1202. setinqstr(cardtype, (void *) (inq_data_ptr->inqd_vid), fsa_dev_ptr[cid].type);
  1203. inq_data_ptr->inqd_pdt = INQD_PDT_DA; /* Direct/random access device */
  1204. return aac_get_container_name(scsicmd, cid);
  1205. }
  1206. case READ_CAPACITY:
  1207. {
  1208. u32 capacity;
  1209. char *cp;
  1210. dprintk((KERN_DEBUG "READ CAPACITY command.\n"));
  1211. if (fsa_dev_ptr[cid].size <= 0x100000000LL)
  1212. capacity = fsa_dev_ptr[cid].size - 1;
  1213. else
  1214. capacity = (u32)-1;
  1215. cp = scsicmd->request_buffer;
  1216. cp[0] = (capacity >> 24) & 0xff;
  1217. cp[1] = (capacity >> 16) & 0xff;
  1218. cp[2] = (capacity >> 8) & 0xff;
  1219. cp[3] = (capacity >> 0) & 0xff;
  1220. cp[4] = 0;
  1221. cp[5] = 0;
  1222. cp[6] = 2;
  1223. cp[7] = 0;
  1224. scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
  1225. scsicmd->scsi_done(scsicmd);
  1226. return 0;
  1227. }
  1228. case MODE_SENSE:
  1229. {
  1230. char *mode_buf;
  1231. dprintk((KERN_DEBUG "MODE SENSE command.\n"));
  1232. mode_buf = scsicmd->request_buffer;
  1233. mode_buf[0] = 3; /* Mode data length */
  1234. mode_buf[1] = 0; /* Medium type - default */
  1235. mode_buf[2] = 0; /* Device-specific param, bit 8: 0/1 = write enabled/protected */
  1236. mode_buf[3] = 0; /* Block descriptor length */
  1237. scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
  1238. scsicmd->scsi_done(scsicmd);
  1239. return 0;
  1240. }
  1241. case MODE_SENSE_10:
  1242. {
  1243. char *mode_buf;
  1244. dprintk((KERN_DEBUG "MODE SENSE 10 byte command.\n"));
  1245. mode_buf = scsicmd->request_buffer;
  1246. mode_buf[0] = 0; /* Mode data length (MSB) */
  1247. mode_buf[1] = 6; /* Mode data length (LSB) */
  1248. mode_buf[2] = 0; /* Medium type - default */
  1249. mode_buf[3] = 0; /* Device-specific param, bit 8: 0/1 = write enabled/protected */
  1250. mode_buf[4] = 0; /* reserved */
  1251. mode_buf[5] = 0; /* reserved */
  1252. mode_buf[6] = 0; /* Block descriptor length (MSB) */
  1253. mode_buf[7] = 0; /* Block descriptor length (LSB) */
  1254. scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
  1255. scsicmd->scsi_done(scsicmd);
  1256. return 0;
  1257. }
  1258. case REQUEST_SENSE:
  1259. dprintk((KERN_DEBUG "REQUEST SENSE command.\n"));
  1260. memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data, sizeof (struct sense_data));
  1261. memset(&dev->fsa_dev[cid].sense_data, 0, sizeof (struct sense_data));
  1262. scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
  1263. scsicmd->scsi_done(scsicmd);
  1264. return 0;
  1265. case ALLOW_MEDIUM_REMOVAL:
  1266. dprintk((KERN_DEBUG "LOCK command.\n"));
  1267. if (scsicmd->cmnd[4])
  1268. fsa_dev_ptr[cid].locked = 1;
  1269. else
  1270. fsa_dev_ptr[cid].locked = 0;
  1271. scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
  1272. scsicmd->scsi_done(scsicmd);
  1273. return 0;
  1274. /*
  1275. * These commands are all No-Ops
  1276. */
  1277. case TEST_UNIT_READY:
  1278. case RESERVE:
  1279. case RELEASE:
  1280. case REZERO_UNIT:
  1281. case REASSIGN_BLOCKS:
  1282. case SEEK_10:
  1283. case START_STOP:
  1284. scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
  1285. scsicmd->scsi_done(scsicmd);
  1286. return 0;
  1287. }
  1288. switch (scsicmd->cmnd[0])
  1289. {
  1290. case READ_6:
  1291. case READ_10:
  1292. /*
  1293. * Hack to keep track of ordinal number of the device that
  1294. * corresponds to a container. Needed to convert
  1295. * containers to /dev/sd device names
  1296. */
  1297. spin_unlock_irq(host->host_lock);
  1298. if (scsicmd->request->rq_disk)
  1299. memcpy(fsa_dev_ptr[cid].devname,
  1300. scsicmd->request->rq_disk->disk_name,
  1301. 8);
  1302. ret = aac_read(scsicmd, cid);
  1303. spin_lock_irq(host->host_lock);
  1304. return ret;
  1305. case WRITE_6:
  1306. case WRITE_10:
  1307. spin_unlock_irq(host->host_lock);
  1308. ret = aac_write(scsicmd, cid);
  1309. spin_lock_irq(host->host_lock);
  1310. return ret;
  1311. case SYNCHRONIZE_CACHE:
  1312. /* Issue FIB to tell Firmware to flush it's cache */
  1313. return aac_synchronize(scsicmd, cid);
  1314. default:
  1315. /*
  1316. * Unhandled commands
  1317. */
  1318. dprintk((KERN_WARNING "Unhandled SCSI Command: 0x%x.\n", scsicmd->cmnd[0]));
  1319. scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION;
  1320. set_sense((u8 *) &dev->fsa_dev[cid].sense_data,
  1321. ILLEGAL_REQUEST, SENCODE_INVALID_COMMAND,
  1322. ASENCODE_INVALID_COMMAND, 0, 0, 0, 0);
  1323. memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
  1324. (sizeof(dev->fsa_dev[cid].sense_data) > sizeof(scsicmd->sense_buffer))
  1325. ? sizeof(scsicmd->sense_buffer)
  1326. : sizeof(dev->fsa_dev[cid].sense_data));
  1327. scsicmd->scsi_done(scsicmd);
  1328. return 0;
  1329. }
  1330. }
  1331. static int query_disk(struct aac_dev *dev, void __user *arg)
  1332. {
  1333. struct aac_query_disk qd;
  1334. struct fsa_dev_info *fsa_dev_ptr;
  1335. fsa_dev_ptr = dev->fsa_dev;
  1336. if (copy_from_user(&qd, arg, sizeof (struct aac_query_disk)))
  1337. return -EFAULT;
  1338. if (qd.cnum == -1)
  1339. qd.cnum = ID_LUN_TO_CONTAINER(qd.id, qd.lun);
  1340. else if ((qd.bus == -1) && (qd.id == -1) && (qd.lun == -1))
  1341. {
  1342. if (qd.cnum < 0 || qd.cnum >= dev->maximum_num_containers)
  1343. return -EINVAL;
  1344. qd.instance = dev->scsi_host_ptr->host_no;
  1345. qd.bus = 0;
  1346. qd.id = CONTAINER_TO_ID(qd.cnum);
  1347. qd.lun = CONTAINER_TO_LUN(qd.cnum);
  1348. }
  1349. else return -EINVAL;
  1350. qd.valid = fsa_dev_ptr[qd.cnum].valid;
  1351. qd.locked = fsa_dev_ptr[qd.cnum].locked;
  1352. qd.deleted = fsa_dev_ptr[qd.cnum].deleted;
  1353. if (fsa_dev_ptr[qd.cnum].devname[0] == '\0')
  1354. qd.unmapped = 1;
  1355. else
  1356. qd.unmapped = 0;
  1357. strlcpy(qd.name, fsa_dev_ptr[qd.cnum].devname,
  1358. min(sizeof(qd.name), sizeof(fsa_dev_ptr[qd.cnum].devname) + 1));
  1359. if (copy_to_user(arg, &qd, sizeof (struct aac_query_disk)))
  1360. return -EFAULT;
  1361. return 0;
  1362. }
  1363. static int force_delete_disk(struct aac_dev *dev, void __user *arg)
  1364. {
  1365. struct aac_delete_disk dd;
  1366. struct fsa_dev_info *fsa_dev_ptr;
  1367. fsa_dev_ptr = dev->fsa_dev;
  1368. if (copy_from_user(&dd, arg, sizeof (struct aac_delete_disk)))
  1369. return -EFAULT;
  1370. if (dd.cnum >= dev->maximum_num_containers)
  1371. return -EINVAL;
  1372. /*
  1373. * Mark this container as being deleted.
  1374. */
  1375. fsa_dev_ptr[dd.cnum].deleted = 1;
  1376. /*
  1377. * Mark the container as no longer valid
  1378. */
  1379. fsa_dev_ptr[dd.cnum].valid = 0;
  1380. return 0;
  1381. }
  1382. static int delete_disk(struct aac_dev *dev, void __user *arg)
  1383. {
  1384. struct aac_delete_disk dd;
  1385. struct fsa_dev_info *fsa_dev_ptr;
  1386. fsa_dev_ptr = dev->fsa_dev;
  1387. if (copy_from_user(&dd, arg, sizeof (struct aac_delete_disk)))
  1388. return -EFAULT;
  1389. if (dd.cnum >= dev->maximum_num_containers)
  1390. return -EINVAL;
  1391. /*
  1392. * If the container is locked, it can not be deleted by the API.
  1393. */
  1394. if (fsa_dev_ptr[dd.cnum].locked)
  1395. return -EBUSY;
  1396. else {
  1397. /*
  1398. * Mark the container as no longer being valid.
  1399. */
  1400. fsa_dev_ptr[dd.cnum].valid = 0;
  1401. fsa_dev_ptr[dd.cnum].devname[0] = '\0';
  1402. return 0;
  1403. }
  1404. }
  1405. int aac_dev_ioctl(struct aac_dev *dev, int cmd, void __user *arg)
  1406. {
  1407. switch (cmd) {
  1408. case FSACTL_QUERY_DISK:
  1409. return query_disk(dev, arg);
  1410. case FSACTL_DELETE_DISK:
  1411. return delete_disk(dev, arg);
  1412. case FSACTL_FORCE_DELETE_DISK:
  1413. return force_delete_disk(dev, arg);
  1414. case FSACTL_GET_CONTAINERS:
  1415. return aac_get_containers(dev);
  1416. default:
  1417. return -ENOTTY;
  1418. }
  1419. }
  1420. /**
  1421. *
  1422. * aac_srb_callback
  1423. * @context: the context set in the fib - here it is scsi cmd
  1424. * @fibptr: pointer to the fib
  1425. *
  1426. * Handles the completion of a scsi command to a non dasd device
  1427. *
  1428. */
  1429. static void aac_srb_callback(void *context, struct fib * fibptr)
  1430. {
  1431. struct aac_dev *dev;
  1432. struct aac_srb_reply *srbreply;
  1433. struct scsi_cmnd *scsicmd;
  1434. scsicmd = (struct scsi_cmnd *) context;
  1435. dev = (struct aac_dev *)scsicmd->device->host->hostdata;
  1436. if (fibptr == NULL)
  1437. BUG();
  1438. srbreply = (struct aac_srb_reply *) fib_data(fibptr);
  1439. scsicmd->sense_buffer[0] = '\0'; /* Initialize sense valid flag to false */
  1440. /*
  1441. * Calculate resid for sg
  1442. */
  1443. scsicmd->resid = scsicmd->request_bufflen -
  1444. le32_to_cpu(srbreply->data_xfer_length);
  1445. if(scsicmd->use_sg)
  1446. pci_unmap_sg(dev->pdev,
  1447. (struct scatterlist *)scsicmd->buffer,
  1448. scsicmd->use_sg,
  1449. scsicmd->sc_data_direction);
  1450. else if(scsicmd->request_bufflen)
  1451. pci_unmap_single(dev->pdev, scsicmd->SCp.dma_handle, scsicmd->request_bufflen,
  1452. scsicmd->sc_data_direction);
  1453. /*
  1454. * First check the fib status
  1455. */
  1456. if (le32_to_cpu(srbreply->status) != ST_OK){
  1457. int len;
  1458. printk(KERN_WARNING "aac_srb_callback: srb failed, status = %d\n", le32_to_cpu(srbreply->status));
  1459. len = (le32_to_cpu(srbreply->sense_data_size) >
  1460. sizeof(scsicmd->sense_buffer)) ?
  1461. sizeof(scsicmd->sense_buffer) :
  1462. le32_to_cpu(srbreply->sense_data_size);
  1463. scsicmd->result = DID_ERROR << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION;
  1464. memcpy(scsicmd->sense_buffer, srbreply->sense_data, len);
  1465. }
  1466. /*
  1467. * Next check the srb status
  1468. */
  1469. switch( (le32_to_cpu(srbreply->srb_status))&0x3f){
  1470. case SRB_STATUS_ERROR_RECOVERY:
  1471. case SRB_STATUS_PENDING:
  1472. case SRB_STATUS_SUCCESS:
  1473. if(scsicmd->cmnd[0] == INQUIRY ){
  1474. u8 b;
  1475. u8 b1;
  1476. /* We can't expose disk devices because we can't tell whether they
  1477. * are the raw container drives or stand alone drives. If they have
  1478. * the removable bit set then we should expose them though.
  1479. */
  1480. b = (*(u8*)scsicmd->buffer)&0x1f;
  1481. b1 = ((u8*)scsicmd->buffer)[1];
  1482. if( b==TYPE_TAPE || b==TYPE_WORM || b==TYPE_ROM || b==TYPE_MOD|| b==TYPE_MEDIUM_CHANGER
  1483. || (b==TYPE_DISK && (b1&0x80)) ){
  1484. scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8;
  1485. /*
  1486. * We will allow disk devices if in RAID/SCSI mode and
  1487. * the channel is 2
  1488. */
  1489. } else if ((dev->raid_scsi_mode) &&
  1490. (scsicmd->device->channel == 2)) {
  1491. scsicmd->result = DID_OK << 16 |
  1492. COMMAND_COMPLETE << 8;
  1493. } else {
  1494. scsicmd->result = DID_NO_CONNECT << 16 |
  1495. COMMAND_COMPLETE << 8;
  1496. }
  1497. } else {
  1498. scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8;
  1499. }
  1500. break;
  1501. case SRB_STATUS_DATA_OVERRUN:
  1502. switch(scsicmd->cmnd[0]){
  1503. case READ_6:
  1504. case WRITE_6:
  1505. case READ_10:
  1506. case WRITE_10:
  1507. case READ_12:
  1508. case WRITE_12:
  1509. if(le32_to_cpu(srbreply->data_xfer_length) < scsicmd->underflow ) {
  1510. printk(KERN_WARNING"aacraid: SCSI CMD underflow\n");
  1511. } else {
  1512. printk(KERN_WARNING"aacraid: SCSI CMD Data Overrun\n");
  1513. }
  1514. scsicmd->result = DID_ERROR << 16 | COMMAND_COMPLETE << 8;
  1515. break;
  1516. case INQUIRY: {
  1517. u8 b;
  1518. u8 b1;
  1519. /* We can't expose disk devices because we can't tell whether they
  1520. * are the raw container drives or stand alone drives
  1521. */
  1522. b = (*(u8*)scsicmd->buffer)&0x0f;
  1523. b1 = ((u8*)scsicmd->buffer)[1];
  1524. if( b==TYPE_TAPE || b==TYPE_WORM || b==TYPE_ROM || b==TYPE_MOD|| b==TYPE_MEDIUM_CHANGER
  1525. || (b==TYPE_DISK && (b1&0x80)) ){
  1526. scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8;
  1527. /*
  1528. * We will allow disk devices if in RAID/SCSI mode and
  1529. * the channel is 2
  1530. */
  1531. } else if ((dev->raid_scsi_mode) &&
  1532. (scsicmd->device->channel == 2)) {
  1533. scsicmd->result = DID_OK << 16 |
  1534. COMMAND_COMPLETE << 8;
  1535. } else {
  1536. scsicmd->result = DID_NO_CONNECT << 16 |
  1537. COMMAND_COMPLETE << 8;
  1538. }
  1539. break;
  1540. }
  1541. default:
  1542. scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8;
  1543. break;
  1544. }
  1545. break;
  1546. case SRB_STATUS_ABORTED:
  1547. scsicmd->result = DID_ABORT << 16 | ABORT << 8;
  1548. break;
  1549. case SRB_STATUS_ABORT_FAILED:
  1550. // Not sure about this one - but assuming the hba was trying to abort for some reason
  1551. scsicmd->result = DID_ERROR << 16 | ABORT << 8;
  1552. break;
  1553. case SRB_STATUS_PARITY_ERROR:
  1554. scsicmd->result = DID_PARITY << 16 | MSG_PARITY_ERROR << 8;
  1555. break;
  1556. case SRB_STATUS_NO_DEVICE:
  1557. case SRB_STATUS_INVALID_PATH_ID:
  1558. case SRB_STATUS_INVALID_TARGET_ID:
  1559. case SRB_STATUS_INVALID_LUN:
  1560. case SRB_STATUS_SELECTION_TIMEOUT:
  1561. scsicmd->result = DID_NO_CONNECT << 16 | COMMAND_COMPLETE << 8;
  1562. break;
  1563. case SRB_STATUS_COMMAND_TIMEOUT:
  1564. case SRB_STATUS_TIMEOUT:
  1565. scsicmd->result = DID_TIME_OUT << 16 | COMMAND_COMPLETE << 8;
  1566. break;
  1567. case SRB_STATUS_BUSY:
  1568. scsicmd->result = DID_NO_CONNECT << 16 | COMMAND_COMPLETE << 8;
  1569. break;
  1570. case SRB_STATUS_BUS_RESET:
  1571. scsicmd->result = DID_RESET << 16 | COMMAND_COMPLETE << 8;
  1572. break;
  1573. case SRB_STATUS_MESSAGE_REJECTED:
  1574. scsicmd->result = DID_ERROR << 16 | MESSAGE_REJECT << 8;
  1575. break;
  1576. case SRB_STATUS_REQUEST_FLUSHED:
  1577. case SRB_STATUS_ERROR:
  1578. case SRB_STATUS_INVALID_REQUEST:
  1579. case SRB_STATUS_REQUEST_SENSE_FAILED:
  1580. case SRB_STATUS_NO_HBA:
  1581. case SRB_STATUS_UNEXPECTED_BUS_FREE:
  1582. case SRB_STATUS_PHASE_SEQUENCE_FAILURE:
  1583. case SRB_STATUS_BAD_SRB_BLOCK_LENGTH:
  1584. case SRB_STATUS_DELAYED_RETRY:
  1585. case SRB_STATUS_BAD_FUNCTION:
  1586. case SRB_STATUS_NOT_STARTED:
  1587. case SRB_STATUS_NOT_IN_USE:
  1588. case SRB_STATUS_FORCE_ABORT:
  1589. case SRB_STATUS_DOMAIN_VALIDATION_FAIL:
  1590. default:
  1591. #ifdef AAC_DETAILED_STATUS_INFO
  1592. printk("aacraid: SRB ERROR(%u) %s scsi cmd 0x%x - scsi status 0x%x\n",
  1593. le32_to_cpu(srbreply->srb_status) & 0x3F,
  1594. aac_get_status_string(
  1595. le32_to_cpu(srbreply->srb_status) & 0x3F),
  1596. scsicmd->cmnd[0],
  1597. le32_to_cpu(srbreply->scsi_status));
  1598. #endif
  1599. scsicmd->result = DID_ERROR << 16 | COMMAND_COMPLETE << 8;
  1600. break;
  1601. }
  1602. if (le32_to_cpu(srbreply->scsi_status) == 0x02 ){ // Check Condition
  1603. int len;
  1604. scsicmd->result |= SAM_STAT_CHECK_CONDITION;
  1605. len = (le32_to_cpu(srbreply->sense_data_size) >
  1606. sizeof(scsicmd->sense_buffer)) ?
  1607. sizeof(scsicmd->sense_buffer) :
  1608. le32_to_cpu(srbreply->sense_data_size);
  1609. #ifdef AAC_DETAILED_STATUS_INFO
  1610. dprintk((KERN_WARNING "aac_srb_callback: check condition, status = %d len=%d\n",
  1611. le32_to_cpu(srbreply->status), len));
  1612. #endif
  1613. memcpy(scsicmd->sense_buffer, srbreply->sense_data, len);
  1614. }
  1615. /*
  1616. * OR in the scsi status (already shifted up a bit)
  1617. */
  1618. scsicmd->result |= le32_to_cpu(srbreply->scsi_status);
  1619. fib_complete(fibptr);
  1620. fib_free(fibptr);
  1621. aac_io_done(scsicmd);
  1622. }
  1623. /**
  1624. *
  1625. * aac_send_scb_fib
  1626. * @scsicmd: the scsi command block
  1627. *
  1628. * This routine will form a FIB and fill in the aac_srb from the
  1629. * scsicmd passed in.
  1630. */
  1631. static int aac_send_srb_fib(struct scsi_cmnd* scsicmd)
  1632. {
  1633. struct fib* cmd_fibcontext;
  1634. struct aac_dev* dev;
  1635. int status;
  1636. struct aac_srb *srbcmd;
  1637. u16 fibsize;
  1638. u32 flag;
  1639. u32 timeout;
  1640. dev = (struct aac_dev *)scsicmd->device->host->hostdata;
  1641. if (scsicmd->device->id >= dev->maximum_num_physicals ||
  1642. scsicmd->device->lun > 7) {
  1643. scsicmd->result = DID_NO_CONNECT << 16;
  1644. scsicmd->scsi_done(scsicmd);
  1645. return 0;
  1646. }
  1647. dev = (struct aac_dev *)scsicmd->device->host->hostdata;
  1648. switch(scsicmd->sc_data_direction){
  1649. case DMA_TO_DEVICE:
  1650. flag = SRB_DataOut;
  1651. break;
  1652. case DMA_BIDIRECTIONAL:
  1653. flag = SRB_DataIn | SRB_DataOut;
  1654. break;
  1655. case DMA_FROM_DEVICE:
  1656. flag = SRB_DataIn;
  1657. break;
  1658. case DMA_NONE:
  1659. default: /* shuts up some versions of gcc */
  1660. flag = SRB_NoDataXfer;
  1661. break;
  1662. }
  1663. /*
  1664. * Allocate and initialize a Fib then setup a BlockWrite command
  1665. */
  1666. if (!(cmd_fibcontext = fib_alloc(dev))) {
  1667. return -1;
  1668. }
  1669. fib_init(cmd_fibcontext);
  1670. srbcmd = (struct aac_srb*) fib_data(cmd_fibcontext);
  1671. srbcmd->function = cpu_to_le32(SRBF_ExecuteScsi);
  1672. srbcmd->channel = cpu_to_le32(aac_logical_to_phys(scsicmd->device->channel));
  1673. srbcmd->id = cpu_to_le32(scsicmd->device->id);
  1674. srbcmd->lun = cpu_to_le32(scsicmd->device->lun);
  1675. srbcmd->flags = cpu_to_le32(flag);
  1676. timeout = scsicmd->timeout_per_command/HZ;
  1677. if(timeout == 0){
  1678. timeout = 1;
  1679. }
  1680. srbcmd->timeout = cpu_to_le32(timeout); // timeout in seconds
  1681. srbcmd->retry_limit = 0; /* Obsolete parameter */
  1682. srbcmd->cdb_size = cpu_to_le32(scsicmd->cmd_len);
  1683. if( dev->dac_support == 1 ) {
  1684. aac_build_sg64(scsicmd, (struct sgmap64*) &srbcmd->sg);
  1685. srbcmd->count = cpu_to_le32(scsicmd->request_bufflen);
  1686. memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb));
  1687. memcpy(srbcmd->cdb, scsicmd->cmnd, scsicmd->cmd_len);
  1688. /*
  1689. * Build Scatter/Gather list
  1690. */
  1691. fibsize = sizeof (struct aac_srb) - sizeof (struct sgentry) +
  1692. ((le32_to_cpu(srbcmd->sg.count) & 0xff) *
  1693. sizeof (struct sgentry64));
  1694. BUG_ON (fibsize > (dev->max_fib_size -
  1695. sizeof(struct aac_fibhdr)));
  1696. /*
  1697. * Now send the Fib to the adapter
  1698. */
  1699. status = fib_send(ScsiPortCommand64, cmd_fibcontext,
  1700. fibsize, FsaNormal, 0, 1,
  1701. (fib_callback) aac_srb_callback,
  1702. (void *) scsicmd);
  1703. } else {
  1704. aac_build_sg(scsicmd, (struct sgmap*)&srbcmd->sg);
  1705. srbcmd->count = cpu_to_le32(scsicmd->request_bufflen);
  1706. memset(srbcmd->cdb, 0, sizeof(srbcmd->cdb));
  1707. memcpy(srbcmd->cdb, scsicmd->cmnd, scsicmd->cmd_len);
  1708. /*
  1709. * Build Scatter/Gather list
  1710. */
  1711. fibsize = sizeof (struct aac_srb) +
  1712. (((le32_to_cpu(srbcmd->sg.count) & 0xff) - 1) *
  1713. sizeof (struct sgentry));
  1714. BUG_ON (fibsize > (dev->max_fib_size -
  1715. sizeof(struct aac_fibhdr)));
  1716. /*
  1717. * Now send the Fib to the adapter
  1718. */
  1719. status = fib_send(ScsiPortCommand, cmd_fibcontext, fibsize, FsaNormal, 0, 1,
  1720. (fib_callback) aac_srb_callback, (void *) scsicmd);
  1721. }
  1722. /*
  1723. * Check that the command queued to the controller
  1724. */
  1725. if (status == -EINPROGRESS){
  1726. return 0;
  1727. }
  1728. printk(KERN_WARNING "aac_srb: fib_send failed with status: %d\n", status);
  1729. fib_complete(cmd_fibcontext);
  1730. fib_free(cmd_fibcontext);
  1731. return -1;
  1732. }
  1733. static unsigned long aac_build_sg(struct scsi_cmnd* scsicmd, struct sgmap* psg)
  1734. {
  1735. struct aac_dev *dev;
  1736. unsigned long byte_count = 0;
  1737. dev = (struct aac_dev *)scsicmd->device->host->hostdata;
  1738. // Get rid of old data
  1739. psg->count = 0;
  1740. psg->sg[0].addr = 0;
  1741. psg->sg[0].count = 0;
  1742. if (scsicmd->use_sg) {
  1743. struct scatterlist *sg;
  1744. int i;
  1745. int sg_count;
  1746. sg = (struct scatterlist *) scsicmd->request_buffer;
  1747. sg_count = pci_map_sg(dev->pdev, sg, scsicmd->use_sg,
  1748. scsicmd->sc_data_direction);
  1749. psg->count = cpu_to_le32(sg_count);
  1750. byte_count = 0;
  1751. for (i = 0; i < sg_count; i++) {
  1752. psg->sg[i].addr = cpu_to_le32(sg_dma_address(sg));
  1753. psg->sg[i].count = cpu_to_le32(sg_dma_len(sg));
  1754. byte_count += sg_dma_len(sg);
  1755. sg++;
  1756. }
  1757. /* hba wants the size to be exact */
  1758. if(byte_count > scsicmd->request_bufflen){
  1759. u32 temp = le32_to_cpu(psg->sg[i-1].count) -
  1760. (byte_count - scsicmd->request_bufflen);
  1761. psg->sg[i-1].count = cpu_to_le32(temp);
  1762. byte_count = scsicmd->request_bufflen;
  1763. }
  1764. /* Check for command underflow */
  1765. if(scsicmd->underflow && (byte_count < scsicmd->underflow)){
  1766. printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n",
  1767. byte_count, scsicmd->underflow);
  1768. }
  1769. }
  1770. else if(scsicmd->request_bufflen) {
  1771. dma_addr_t addr;
  1772. addr = pci_map_single(dev->pdev,
  1773. scsicmd->request_buffer,
  1774. scsicmd->request_bufflen,
  1775. scsicmd->sc_data_direction);
  1776. psg->count = cpu_to_le32(1);
  1777. psg->sg[0].addr = cpu_to_le32(addr);
  1778. psg->sg[0].count = cpu_to_le32(scsicmd->request_bufflen);
  1779. scsicmd->SCp.dma_handle = addr;
  1780. byte_count = scsicmd->request_bufflen;
  1781. }
  1782. return byte_count;
  1783. }
  1784. static unsigned long aac_build_sg64(struct scsi_cmnd* scsicmd, struct sgmap64* psg)
  1785. {
  1786. struct aac_dev *dev;
  1787. unsigned long byte_count = 0;
  1788. u64 addr;
  1789. dev = (struct aac_dev *)scsicmd->device->host->hostdata;
  1790. // Get rid of old data
  1791. psg->count = 0;
  1792. psg->sg[0].addr[0] = 0;
  1793. psg->sg[0].addr[1] = 0;
  1794. psg->sg[0].count = 0;
  1795. if (scsicmd->use_sg) {
  1796. struct scatterlist *sg;
  1797. int i;
  1798. int sg_count;
  1799. sg = (struct scatterlist *) scsicmd->request_buffer;
  1800. sg_count = pci_map_sg(dev->pdev, sg, scsicmd->use_sg,
  1801. scsicmd->sc_data_direction);
  1802. psg->count = cpu_to_le32(sg_count);
  1803. byte_count = 0;
  1804. for (i = 0; i < sg_count; i++) {
  1805. addr = sg_dma_address(sg);
  1806. psg->sg[i].addr[0] = cpu_to_le32(addr & 0xffffffff);
  1807. psg->sg[i].addr[1] = cpu_to_le32(addr>>32);
  1808. psg->sg[i].count = cpu_to_le32(sg_dma_len(sg));
  1809. byte_count += sg_dma_len(sg);
  1810. sg++;
  1811. }
  1812. /* hba wants the size to be exact */
  1813. if(byte_count > scsicmd->request_bufflen){
  1814. u32 temp = le32_to_cpu(psg->sg[i-1].count) -
  1815. (byte_count - scsicmd->request_bufflen);
  1816. psg->sg[i-1].count = cpu_to_le32(temp);
  1817. byte_count = scsicmd->request_bufflen;
  1818. }
  1819. /* Check for command underflow */
  1820. if(scsicmd->underflow && (byte_count < scsicmd->underflow)){
  1821. printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n",
  1822. byte_count, scsicmd->underflow);
  1823. }
  1824. }
  1825. else if(scsicmd->request_bufflen) {
  1826. u64 addr;
  1827. addr = pci_map_single(dev->pdev,
  1828. scsicmd->request_buffer,
  1829. scsicmd->request_bufflen,
  1830. scsicmd->sc_data_direction);
  1831. psg->count = cpu_to_le32(1);
  1832. psg->sg[0].addr[0] = cpu_to_le32(addr & 0xffffffff);
  1833. psg->sg[0].addr[1] = cpu_to_le32(addr >> 32);
  1834. psg->sg[0].count = cpu_to_le32(scsicmd->request_bufflen);
  1835. scsicmd->SCp.dma_handle = addr;
  1836. byte_count = scsicmd->request_bufflen;
  1837. }
  1838. return byte_count;
  1839. }
  1840. static unsigned long aac_build_sgraw(struct scsi_cmnd* scsicmd, struct sgmapraw* psg)
  1841. {
  1842. struct Scsi_Host *host = scsicmd->device->host;
  1843. struct aac_dev *dev = (struct aac_dev *)host->hostdata;
  1844. unsigned long byte_count = 0;
  1845. // Get rid of old data
  1846. psg->count = 0;
  1847. psg->sg[0].next = 0;
  1848. psg->sg[0].prev = 0;
  1849. psg->sg[0].addr[0] = 0;
  1850. psg->sg[0].addr[1] = 0;
  1851. psg->sg[0].count = 0;
  1852. psg->sg[0].flags = 0;
  1853. if (scsicmd->use_sg) {
  1854. struct scatterlist *sg;
  1855. int i;
  1856. int sg_count;
  1857. sg = (struct scatterlist *) scsicmd->request_buffer;
  1858. sg_count = pci_map_sg(dev->pdev, sg, scsicmd->use_sg,
  1859. scsicmd->sc_data_direction);
  1860. for (i = 0; i < sg_count; i++) {
  1861. int count = sg_dma_len(sg);
  1862. u64 addr = sg_dma_address(sg);
  1863. psg->sg[i].next = 0;
  1864. psg->sg[i].prev = 0;
  1865. psg->sg[i].addr[1] = cpu_to_le32((u32)(addr>>32));
  1866. psg->sg[i].addr[0] = cpu_to_le32((u32)(addr & 0xffffffff));
  1867. psg->sg[i].count = cpu_to_le32(count);
  1868. psg->sg[i].flags = 0;
  1869. byte_count += count;
  1870. sg++;
  1871. }
  1872. psg->count = cpu_to_le32(sg_count);
  1873. /* hba wants the size to be exact */
  1874. if(byte_count > scsicmd->request_bufflen){
  1875. u32 temp = le32_to_cpu(psg->sg[i-1].count) -
  1876. (byte_count - scsicmd->request_bufflen);
  1877. psg->sg[i-1].count = cpu_to_le32(temp);
  1878. byte_count = scsicmd->request_bufflen;
  1879. }
  1880. /* Check for command underflow */
  1881. if(scsicmd->underflow && (byte_count < scsicmd->underflow)){
  1882. printk(KERN_WARNING"aacraid: cmd len %08lX cmd underflow %08X\n",
  1883. byte_count, scsicmd->underflow);
  1884. }
  1885. }
  1886. else if(scsicmd->request_bufflen) {
  1887. int count;
  1888. u64 addr;
  1889. scsicmd->SCp.dma_handle = pci_map_single(dev->pdev,
  1890. scsicmd->request_buffer,
  1891. scsicmd->request_bufflen,
  1892. scsicmd->sc_data_direction);
  1893. addr = scsicmd->SCp.dma_handle;
  1894. count = scsicmd->request_bufflen;
  1895. psg->count = cpu_to_le32(1);
  1896. psg->sg[0].next = 0;
  1897. psg->sg[0].prev = 0;
  1898. psg->sg[0].addr[1] = cpu_to_le32((u32)(addr>>32));
  1899. psg->sg[0].addr[0] = cpu_to_le32((u32)(addr & 0xffffffff));
  1900. psg->sg[0].count = cpu_to_le32(count);
  1901. psg->sg[0].flags = 0;
  1902. byte_count = scsicmd->request_bufflen;
  1903. }
  1904. return byte_count;
  1905. }
  1906. #ifdef AAC_DETAILED_STATUS_INFO
  1907. struct aac_srb_status_info {
  1908. u32 status;
  1909. char *str;
  1910. };
  1911. static struct aac_srb_status_info srb_status_info[] = {
  1912. { SRB_STATUS_PENDING, "Pending Status"},
  1913. { SRB_STATUS_SUCCESS, "Success"},
  1914. { SRB_STATUS_ABORTED, "Aborted Command"},
  1915. { SRB_STATUS_ABORT_FAILED, "Abort Failed"},
  1916. { SRB_STATUS_ERROR, "Error Event"},
  1917. { SRB_STATUS_BUSY, "Device Busy"},
  1918. { SRB_STATUS_INVALID_REQUEST, "Invalid Request"},
  1919. { SRB_STATUS_INVALID_PATH_ID, "Invalid Path ID"},
  1920. { SRB_STATUS_NO_DEVICE, "No Device"},
  1921. { SRB_STATUS_TIMEOUT, "Timeout"},
  1922. { SRB_STATUS_SELECTION_TIMEOUT, "Selection Timeout"},
  1923. { SRB_STATUS_COMMAND_TIMEOUT, "Command Timeout"},
  1924. { SRB_STATUS_MESSAGE_REJECTED, "Message Rejected"},
  1925. { SRB_STATUS_BUS_RESET, "Bus Reset"},
  1926. { SRB_STATUS_PARITY_ERROR, "Parity Error"},
  1927. { SRB_STATUS_REQUEST_SENSE_FAILED,"Request Sense Failed"},
  1928. { SRB_STATUS_NO_HBA, "No HBA"},
  1929. { SRB_STATUS_DATA_OVERRUN, "Data Overrun/Data Underrun"},
  1930. { SRB_STATUS_UNEXPECTED_BUS_FREE,"Unexpected Bus Free"},
  1931. { SRB_STATUS_PHASE_SEQUENCE_FAILURE,"Phase Error"},
  1932. { SRB_STATUS_BAD_SRB_BLOCK_LENGTH,"Bad Srb Block Length"},
  1933. { SRB_STATUS_REQUEST_FLUSHED, "Request Flushed"},
  1934. { SRB_STATUS_DELAYED_RETRY, "Delayed Retry"},
  1935. { SRB_STATUS_INVALID_LUN, "Invalid LUN"},
  1936. { SRB_STATUS_INVALID_TARGET_ID, "Invalid TARGET ID"},
  1937. { SRB_STATUS_BAD_FUNCTION, "Bad Function"},
  1938. { SRB_STATUS_ERROR_RECOVERY, "Error Recovery"},
  1939. { SRB_STATUS_NOT_STARTED, "Not Started"},
  1940. { SRB_STATUS_NOT_IN_USE, "Not In Use"},
  1941. { SRB_STATUS_FORCE_ABORT, "Force Abort"},
  1942. { SRB_STATUS_DOMAIN_VALIDATION_FAIL,"Domain Validation Failure"},
  1943. { 0xff, "Unknown Error"}
  1944. };
  1945. char *aac_get_status_string(u32 status)
  1946. {
  1947. int i;
  1948. for(i=0; i < (sizeof(srb_status_info)/sizeof(struct aac_srb_status_info)); i++ ){
  1949. if(srb_status_info[i].status == status){
  1950. return srb_status_info[i].str;
  1951. }
  1952. }
  1953. return "Bad Status Code";
  1954. }
  1955. #endif