bnx2x_init_ops.h 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844
  1. /* bnx2x_init_ops.h: Broadcom Everest network driver.
  2. * Static functions needed during the initialization.
  3. * This file is "included" in bnx2x_main.c.
  4. *
  5. * Copyright (c) 2007-2010 Broadcom Corporation
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License as published by
  9. * the Free Software Foundation.
  10. *
  11. * Maintained by: Eilon Greenstein <eilong@broadcom.com>
  12. * Written by: Vladislav Zolotarov <vladz@broadcom.com>
  13. */
  14. #ifndef BNX2X_INIT_OPS_H
  15. #define BNX2X_INIT_OPS_H
  16. static int bnx2x_gunzip(struct bnx2x *bp, const u8 *zbuf, int len);
  17. static void bnx2x_init_str_wr(struct bnx2x *bp, u32 addr, const u32 *data,
  18. u32 len)
  19. {
  20. u32 i;
  21. for (i = 0; i < len; i++)
  22. REG_WR(bp, addr + i*4, data[i]);
  23. }
  24. static void bnx2x_init_ind_wr(struct bnx2x *bp, u32 addr, const u32 *data,
  25. u32 len)
  26. {
  27. u32 i;
  28. for (i = 0; i < len; i++)
  29. REG_WR_IND(bp, addr + i*4, data[i]);
  30. }
  31. static void bnx2x_write_big_buf(struct bnx2x *bp, u32 addr, u32 len)
  32. {
  33. if (bp->dmae_ready)
  34. bnx2x_write_dmae_phys_len(bp, GUNZIP_PHYS(bp), addr, len);
  35. else
  36. bnx2x_init_str_wr(bp, addr, GUNZIP_BUF(bp), len);
  37. }
  38. static void bnx2x_init_fill(struct bnx2x *bp, u32 addr, int fill, u32 len)
  39. {
  40. u32 buf_len = (((len*4) > FW_BUF_SIZE) ? FW_BUF_SIZE : (len*4));
  41. u32 buf_len32 = buf_len/4;
  42. u32 i;
  43. memset(GUNZIP_BUF(bp), (u8)fill, buf_len);
  44. for (i = 0; i < len; i += buf_len32) {
  45. u32 cur_len = min(buf_len32, len - i);
  46. bnx2x_write_big_buf(bp, addr + i*4, cur_len);
  47. }
  48. }
  49. static void bnx2x_init_wr_64(struct bnx2x *bp, u32 addr, const u32 *data,
  50. u32 len64)
  51. {
  52. u32 buf_len32 = FW_BUF_SIZE/4;
  53. u32 len = len64*2;
  54. u64 data64 = 0;
  55. u32 i;
  56. /* 64 bit value is in a blob: first low DWORD, then high DWORD */
  57. data64 = HILO_U64((*(data + 1)), (*data));
  58. len64 = min((u32)(FW_BUF_SIZE/8), len64);
  59. for (i = 0; i < len64; i++) {
  60. u64 *pdata = ((u64 *)(GUNZIP_BUF(bp))) + i;
  61. *pdata = data64;
  62. }
  63. for (i = 0; i < len; i += buf_len32) {
  64. u32 cur_len = min(buf_len32, len - i);
  65. bnx2x_write_big_buf(bp, addr + i*4, cur_len);
  66. }
  67. }
  68. /*********************************************************
  69. There are different blobs for each PRAM section.
  70. In addition, each blob write operation is divided into a few operations
  71. in order to decrease the amount of phys. contiguous buffer needed.
  72. Thus, when we select a blob the address may be with some offset
  73. from the beginning of PRAM section.
  74. The same holds for the INT_TABLE sections.
  75. **********************************************************/
  76. #define IF_IS_INT_TABLE_ADDR(base, addr) \
  77. if (((base) <= (addr)) && ((base) + 0x400 >= (addr)))
  78. #define IF_IS_PRAM_ADDR(base, addr) \
  79. if (((base) <= (addr)) && ((base) + 0x40000 >= (addr)))
  80. static const u8 *bnx2x_sel_blob(struct bnx2x *bp, u32 addr, const u8 *data)
  81. {
  82. IF_IS_INT_TABLE_ADDR(TSEM_REG_INT_TABLE, addr)
  83. data = INIT_TSEM_INT_TABLE_DATA(bp);
  84. else
  85. IF_IS_INT_TABLE_ADDR(CSEM_REG_INT_TABLE, addr)
  86. data = INIT_CSEM_INT_TABLE_DATA(bp);
  87. else
  88. IF_IS_INT_TABLE_ADDR(USEM_REG_INT_TABLE, addr)
  89. data = INIT_USEM_INT_TABLE_DATA(bp);
  90. else
  91. IF_IS_INT_TABLE_ADDR(XSEM_REG_INT_TABLE, addr)
  92. data = INIT_XSEM_INT_TABLE_DATA(bp);
  93. else
  94. IF_IS_PRAM_ADDR(TSEM_REG_PRAM, addr)
  95. data = INIT_TSEM_PRAM_DATA(bp);
  96. else
  97. IF_IS_PRAM_ADDR(CSEM_REG_PRAM, addr)
  98. data = INIT_CSEM_PRAM_DATA(bp);
  99. else
  100. IF_IS_PRAM_ADDR(USEM_REG_PRAM, addr)
  101. data = INIT_USEM_PRAM_DATA(bp);
  102. else
  103. IF_IS_PRAM_ADDR(XSEM_REG_PRAM, addr)
  104. data = INIT_XSEM_PRAM_DATA(bp);
  105. return data;
  106. }
  107. static void bnx2x_write_big_buf_wb(struct bnx2x *bp, u32 addr, u32 len)
  108. {
  109. if (bp->dmae_ready)
  110. bnx2x_write_dmae_phys_len(bp, GUNZIP_PHYS(bp), addr, len);
  111. else
  112. bnx2x_init_ind_wr(bp, addr, GUNZIP_BUF(bp), len);
  113. }
  114. static void bnx2x_init_wr_wb(struct bnx2x *bp, u32 addr, const u32 *data,
  115. u32 len)
  116. {
  117. const u32 *old_data = data;
  118. data = (const u32 *)bnx2x_sel_blob(bp, addr, (const u8 *)data);
  119. if (bp->dmae_ready) {
  120. if (old_data != data)
  121. VIRT_WR_DMAE_LEN(bp, data, addr, len, 1);
  122. else
  123. VIRT_WR_DMAE_LEN(bp, data, addr, len, 0);
  124. } else
  125. bnx2x_init_ind_wr(bp, addr, data, len);
  126. }
  127. static void bnx2x_wr_64(struct bnx2x *bp, u32 reg, u32 val_lo, u32 val_hi)
  128. {
  129. u32 wb_write[2];
  130. wb_write[0] = val_lo;
  131. wb_write[1] = val_hi;
  132. REG_WR_DMAE_LEN(bp, reg, wb_write, 2);
  133. }
  134. static void bnx2x_init_wr_zp(struct bnx2x *bp, u32 addr, u32 len, u32 blob_off)
  135. {
  136. const u8 *data = NULL;
  137. int rc;
  138. u32 i;
  139. data = bnx2x_sel_blob(bp, addr, data) + blob_off*4;
  140. rc = bnx2x_gunzip(bp, data, len);
  141. if (rc)
  142. return;
  143. /* gunzip_outlen is in dwords */
  144. len = GUNZIP_OUTLEN(bp);
  145. for (i = 0; i < len; i++)
  146. ((u32 *)GUNZIP_BUF(bp))[i] =
  147. cpu_to_le32(((u32 *)GUNZIP_BUF(bp))[i]);
  148. bnx2x_write_big_buf_wb(bp, addr, len);
  149. }
  150. static void bnx2x_init_block(struct bnx2x *bp, u32 block, u32 stage)
  151. {
  152. u16 op_start =
  153. INIT_OPS_OFFSETS(bp)[BLOCK_OPS_IDX(block, stage, STAGE_START)];
  154. u16 op_end =
  155. INIT_OPS_OFFSETS(bp)[BLOCK_OPS_IDX(block, stage, STAGE_END)];
  156. union init_op *op;
  157. int hw_wr;
  158. u32 i, op_type, addr, len;
  159. const u32 *data, *data_base;
  160. /* If empty block */
  161. if (op_start == op_end)
  162. return;
  163. if (CHIP_REV_IS_FPGA(bp))
  164. hw_wr = OP_WR_FPGA;
  165. else if (CHIP_REV_IS_EMUL(bp))
  166. hw_wr = OP_WR_EMUL;
  167. else
  168. hw_wr = OP_WR_ASIC;
  169. data_base = INIT_DATA(bp);
  170. for (i = op_start; i < op_end; i++) {
  171. op = (union init_op *)&(INIT_OPS(bp)[i]);
  172. op_type = op->str_wr.op;
  173. addr = op->str_wr.offset;
  174. len = op->str_wr.data_len;
  175. data = data_base + op->str_wr.data_off;
  176. /* HW/EMUL specific */
  177. if ((op_type > OP_WB) && (op_type == hw_wr))
  178. op_type = OP_WR;
  179. switch (op_type) {
  180. case OP_RD:
  181. REG_RD(bp, addr);
  182. break;
  183. case OP_WR:
  184. REG_WR(bp, addr, op->write.val);
  185. break;
  186. case OP_SW:
  187. bnx2x_init_str_wr(bp, addr, data, len);
  188. break;
  189. case OP_WB:
  190. bnx2x_init_wr_wb(bp, addr, data, len);
  191. break;
  192. case OP_SI:
  193. bnx2x_init_ind_wr(bp, addr, data, len);
  194. break;
  195. case OP_ZR:
  196. bnx2x_init_fill(bp, addr, 0, op->zero.len);
  197. break;
  198. case OP_ZP:
  199. bnx2x_init_wr_zp(bp, addr, len,
  200. op->str_wr.data_off);
  201. break;
  202. case OP_WR_64:
  203. bnx2x_init_wr_64(bp, addr, data, len);
  204. break;
  205. default:
  206. /* happens whenever an op is of a diff HW */
  207. break;
  208. }
  209. }
  210. }
  211. /****************************************************************************
  212. * PXP Arbiter
  213. ****************************************************************************/
  214. /*
  215. * This code configures the PCI read/write arbiter
  216. * which implements a weighted round robin
  217. * between the virtual queues in the chip.
  218. *
  219. * The values were derived for each PCI max payload and max request size.
  220. * since max payload and max request size are only known at run time,
  221. * this is done as a separate init stage.
  222. */
  223. #define NUM_WR_Q 13
  224. #define NUM_RD_Q 29
  225. #define MAX_RD_ORD 3
  226. #define MAX_WR_ORD 2
  227. /* configuration for one arbiter queue */
  228. struct arb_line {
  229. int l;
  230. int add;
  231. int ubound;
  232. };
  233. /* derived configuration for each read queue for each max request size */
  234. static const struct arb_line read_arb_data[NUM_RD_Q][MAX_RD_ORD + 1] = {
  235. /* 1 */ { {8, 64, 25}, {16, 64, 25}, {32, 64, 25}, {64, 64, 41} },
  236. { {4, 8, 4}, {4, 8, 4}, {4, 8, 4}, {4, 8, 4} },
  237. { {4, 3, 3}, {4, 3, 3}, {4, 3, 3}, {4, 3, 3} },
  238. { {8, 3, 6}, {16, 3, 11}, {16, 3, 11}, {16, 3, 11} },
  239. { {8, 64, 25}, {16, 64, 25}, {32, 64, 25}, {64, 64, 41} },
  240. { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {64, 3, 41} },
  241. { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {64, 3, 41} },
  242. { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {64, 3, 41} },
  243. { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {64, 3, 41} },
  244. /* 10 */{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
  245. { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
  246. { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
  247. { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
  248. { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
  249. { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
  250. { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
  251. { {8, 64, 6}, {16, 64, 11}, {32, 64, 21}, {32, 64, 21} },
  252. { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
  253. { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
  254. /* 20 */{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
  255. { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
  256. { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
  257. { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
  258. { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
  259. { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
  260. { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
  261. { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
  262. { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
  263. { {8, 64, 25}, {16, 64, 41}, {32, 64, 81}, {64, 64, 120} }
  264. };
  265. /* derived configuration for each write queue for each max request size */
  266. static const struct arb_line write_arb_data[NUM_WR_Q][MAX_WR_ORD + 1] = {
  267. /* 1 */ { {4, 6, 3}, {4, 6, 3}, {4, 6, 3} },
  268. { {4, 2, 3}, {4, 2, 3}, {4, 2, 3} },
  269. { {8, 2, 6}, {16, 2, 11}, {16, 2, 11} },
  270. { {8, 2, 6}, {16, 2, 11}, {32, 2, 21} },
  271. { {8, 2, 6}, {16, 2, 11}, {32, 2, 21} },
  272. { {8, 2, 6}, {16, 2, 11}, {32, 2, 21} },
  273. { {8, 64, 25}, {16, 64, 25}, {32, 64, 25} },
  274. { {8, 2, 6}, {16, 2, 11}, {16, 2, 11} },
  275. { {8, 2, 6}, {16, 2, 11}, {16, 2, 11} },
  276. /* 10 */{ {8, 9, 6}, {16, 9, 11}, {32, 9, 21} },
  277. { {8, 47, 19}, {16, 47, 19}, {32, 47, 21} },
  278. { {8, 9, 6}, {16, 9, 11}, {16, 9, 11} },
  279. { {8, 64, 25}, {16, 64, 41}, {32, 64, 81} }
  280. };
  281. /* register addresses for read queues */
  282. static const struct arb_line read_arb_addr[NUM_RD_Q-1] = {
  283. /* 1 */ {PXP2_REG_RQ_BW_RD_L0, PXP2_REG_RQ_BW_RD_ADD0,
  284. PXP2_REG_RQ_BW_RD_UBOUND0},
  285. {PXP2_REG_PSWRQ_BW_L1, PXP2_REG_PSWRQ_BW_ADD1,
  286. PXP2_REG_PSWRQ_BW_UB1},
  287. {PXP2_REG_PSWRQ_BW_L2, PXP2_REG_PSWRQ_BW_ADD2,
  288. PXP2_REG_PSWRQ_BW_UB2},
  289. {PXP2_REG_PSWRQ_BW_L3, PXP2_REG_PSWRQ_BW_ADD3,
  290. PXP2_REG_PSWRQ_BW_UB3},
  291. {PXP2_REG_RQ_BW_RD_L4, PXP2_REG_RQ_BW_RD_ADD4,
  292. PXP2_REG_RQ_BW_RD_UBOUND4},
  293. {PXP2_REG_RQ_BW_RD_L5, PXP2_REG_RQ_BW_RD_ADD5,
  294. PXP2_REG_RQ_BW_RD_UBOUND5},
  295. {PXP2_REG_PSWRQ_BW_L6, PXP2_REG_PSWRQ_BW_ADD6,
  296. PXP2_REG_PSWRQ_BW_UB6},
  297. {PXP2_REG_PSWRQ_BW_L7, PXP2_REG_PSWRQ_BW_ADD7,
  298. PXP2_REG_PSWRQ_BW_UB7},
  299. {PXP2_REG_PSWRQ_BW_L8, PXP2_REG_PSWRQ_BW_ADD8,
  300. PXP2_REG_PSWRQ_BW_UB8},
  301. /* 10 */{PXP2_REG_PSWRQ_BW_L9, PXP2_REG_PSWRQ_BW_ADD9,
  302. PXP2_REG_PSWRQ_BW_UB9},
  303. {PXP2_REG_PSWRQ_BW_L10, PXP2_REG_PSWRQ_BW_ADD10,
  304. PXP2_REG_PSWRQ_BW_UB10},
  305. {PXP2_REG_PSWRQ_BW_L11, PXP2_REG_PSWRQ_BW_ADD11,
  306. PXP2_REG_PSWRQ_BW_UB11},
  307. {PXP2_REG_RQ_BW_RD_L12, PXP2_REG_RQ_BW_RD_ADD12,
  308. PXP2_REG_RQ_BW_RD_UBOUND12},
  309. {PXP2_REG_RQ_BW_RD_L13, PXP2_REG_RQ_BW_RD_ADD13,
  310. PXP2_REG_RQ_BW_RD_UBOUND13},
  311. {PXP2_REG_RQ_BW_RD_L14, PXP2_REG_RQ_BW_RD_ADD14,
  312. PXP2_REG_RQ_BW_RD_UBOUND14},
  313. {PXP2_REG_RQ_BW_RD_L15, PXP2_REG_RQ_BW_RD_ADD15,
  314. PXP2_REG_RQ_BW_RD_UBOUND15},
  315. {PXP2_REG_RQ_BW_RD_L16, PXP2_REG_RQ_BW_RD_ADD16,
  316. PXP2_REG_RQ_BW_RD_UBOUND16},
  317. {PXP2_REG_RQ_BW_RD_L17, PXP2_REG_RQ_BW_RD_ADD17,
  318. PXP2_REG_RQ_BW_RD_UBOUND17},
  319. {PXP2_REG_RQ_BW_RD_L18, PXP2_REG_RQ_BW_RD_ADD18,
  320. PXP2_REG_RQ_BW_RD_UBOUND18},
  321. /* 20 */{PXP2_REG_RQ_BW_RD_L19, PXP2_REG_RQ_BW_RD_ADD19,
  322. PXP2_REG_RQ_BW_RD_UBOUND19},
  323. {PXP2_REG_RQ_BW_RD_L20, PXP2_REG_RQ_BW_RD_ADD20,
  324. PXP2_REG_RQ_BW_RD_UBOUND20},
  325. {PXP2_REG_RQ_BW_RD_L22, PXP2_REG_RQ_BW_RD_ADD22,
  326. PXP2_REG_RQ_BW_RD_UBOUND22},
  327. {PXP2_REG_RQ_BW_RD_L23, PXP2_REG_RQ_BW_RD_ADD23,
  328. PXP2_REG_RQ_BW_RD_UBOUND23},
  329. {PXP2_REG_RQ_BW_RD_L24, PXP2_REG_RQ_BW_RD_ADD24,
  330. PXP2_REG_RQ_BW_RD_UBOUND24},
  331. {PXP2_REG_RQ_BW_RD_L25, PXP2_REG_RQ_BW_RD_ADD25,
  332. PXP2_REG_RQ_BW_RD_UBOUND25},
  333. {PXP2_REG_RQ_BW_RD_L26, PXP2_REG_RQ_BW_RD_ADD26,
  334. PXP2_REG_RQ_BW_RD_UBOUND26},
  335. {PXP2_REG_RQ_BW_RD_L27, PXP2_REG_RQ_BW_RD_ADD27,
  336. PXP2_REG_RQ_BW_RD_UBOUND27},
  337. {PXP2_REG_PSWRQ_BW_L28, PXP2_REG_PSWRQ_BW_ADD28,
  338. PXP2_REG_PSWRQ_BW_UB28}
  339. };
  340. /* register addresses for write queues */
  341. static const struct arb_line write_arb_addr[NUM_WR_Q-1] = {
  342. /* 1 */ {PXP2_REG_PSWRQ_BW_L1, PXP2_REG_PSWRQ_BW_ADD1,
  343. PXP2_REG_PSWRQ_BW_UB1},
  344. {PXP2_REG_PSWRQ_BW_L2, PXP2_REG_PSWRQ_BW_ADD2,
  345. PXP2_REG_PSWRQ_BW_UB2},
  346. {PXP2_REG_PSWRQ_BW_L3, PXP2_REG_PSWRQ_BW_ADD3,
  347. PXP2_REG_PSWRQ_BW_UB3},
  348. {PXP2_REG_PSWRQ_BW_L6, PXP2_REG_PSWRQ_BW_ADD6,
  349. PXP2_REG_PSWRQ_BW_UB6},
  350. {PXP2_REG_PSWRQ_BW_L7, PXP2_REG_PSWRQ_BW_ADD7,
  351. PXP2_REG_PSWRQ_BW_UB7},
  352. {PXP2_REG_PSWRQ_BW_L8, PXP2_REG_PSWRQ_BW_ADD8,
  353. PXP2_REG_PSWRQ_BW_UB8},
  354. {PXP2_REG_PSWRQ_BW_L9, PXP2_REG_PSWRQ_BW_ADD9,
  355. PXP2_REG_PSWRQ_BW_UB9},
  356. {PXP2_REG_PSWRQ_BW_L10, PXP2_REG_PSWRQ_BW_ADD10,
  357. PXP2_REG_PSWRQ_BW_UB10},
  358. {PXP2_REG_PSWRQ_BW_L11, PXP2_REG_PSWRQ_BW_ADD11,
  359. PXP2_REG_PSWRQ_BW_UB11},
  360. /* 10 */{PXP2_REG_PSWRQ_BW_L28, PXP2_REG_PSWRQ_BW_ADD28,
  361. PXP2_REG_PSWRQ_BW_UB28},
  362. {PXP2_REG_RQ_BW_WR_L29, PXP2_REG_RQ_BW_WR_ADD29,
  363. PXP2_REG_RQ_BW_WR_UBOUND29},
  364. {PXP2_REG_RQ_BW_WR_L30, PXP2_REG_RQ_BW_WR_ADD30,
  365. PXP2_REG_RQ_BW_WR_UBOUND30}
  366. };
  367. static void bnx2x_init_pxp_arb(struct bnx2x *bp, int r_order, int w_order)
  368. {
  369. u32 val, i;
  370. if (r_order > MAX_RD_ORD) {
  371. DP(NETIF_MSG_HW, "read order of %d order adjusted to %d\n",
  372. r_order, MAX_RD_ORD);
  373. r_order = MAX_RD_ORD;
  374. }
  375. if (w_order > MAX_WR_ORD) {
  376. DP(NETIF_MSG_HW, "write order of %d order adjusted to %d\n",
  377. w_order, MAX_WR_ORD);
  378. w_order = MAX_WR_ORD;
  379. }
  380. if (CHIP_REV_IS_FPGA(bp)) {
  381. DP(NETIF_MSG_HW, "write order adjusted to 1 for FPGA\n");
  382. w_order = 0;
  383. }
  384. DP(NETIF_MSG_HW, "read order %d write order %d\n", r_order, w_order);
  385. for (i = 0; i < NUM_RD_Q-1; i++) {
  386. REG_WR(bp, read_arb_addr[i].l, read_arb_data[i][r_order].l);
  387. REG_WR(bp, read_arb_addr[i].add,
  388. read_arb_data[i][r_order].add);
  389. REG_WR(bp, read_arb_addr[i].ubound,
  390. read_arb_data[i][r_order].ubound);
  391. }
  392. for (i = 0; i < NUM_WR_Q-1; i++) {
  393. if ((write_arb_addr[i].l == PXP2_REG_RQ_BW_WR_L29) ||
  394. (write_arb_addr[i].l == PXP2_REG_RQ_BW_WR_L30)) {
  395. REG_WR(bp, write_arb_addr[i].l,
  396. write_arb_data[i][w_order].l);
  397. REG_WR(bp, write_arb_addr[i].add,
  398. write_arb_data[i][w_order].add);
  399. REG_WR(bp, write_arb_addr[i].ubound,
  400. write_arb_data[i][w_order].ubound);
  401. } else {
  402. val = REG_RD(bp, write_arb_addr[i].l);
  403. REG_WR(bp, write_arb_addr[i].l,
  404. val | (write_arb_data[i][w_order].l << 10));
  405. val = REG_RD(bp, write_arb_addr[i].add);
  406. REG_WR(bp, write_arb_addr[i].add,
  407. val | (write_arb_data[i][w_order].add << 10));
  408. val = REG_RD(bp, write_arb_addr[i].ubound);
  409. REG_WR(bp, write_arb_addr[i].ubound,
  410. val | (write_arb_data[i][w_order].ubound << 7));
  411. }
  412. }
  413. val = write_arb_data[NUM_WR_Q-1][w_order].add;
  414. val += write_arb_data[NUM_WR_Q-1][w_order].ubound << 10;
  415. val += write_arb_data[NUM_WR_Q-1][w_order].l << 17;
  416. REG_WR(bp, PXP2_REG_PSWRQ_BW_RD, val);
  417. val = read_arb_data[NUM_RD_Q-1][r_order].add;
  418. val += read_arb_data[NUM_RD_Q-1][r_order].ubound << 10;
  419. val += read_arb_data[NUM_RD_Q-1][r_order].l << 17;
  420. REG_WR(bp, PXP2_REG_PSWRQ_BW_WR, val);
  421. REG_WR(bp, PXP2_REG_RQ_WR_MBS0, w_order);
  422. REG_WR(bp, PXP2_REG_RQ_WR_MBS1, w_order);
  423. REG_WR(bp, PXP2_REG_RQ_RD_MBS0, r_order);
  424. REG_WR(bp, PXP2_REG_RQ_RD_MBS1, r_order);
  425. if (r_order == MAX_RD_ORD)
  426. REG_WR(bp, PXP2_REG_RQ_PDR_LIMIT, 0xe00);
  427. REG_WR(bp, PXP2_REG_WR_USDMDP_TH, (0x18 << w_order));
  428. if (CHIP_IS_E1H(bp)) {
  429. /* MPS w_order optimal TH presently TH
  430. * 128 0 0 2
  431. * 256 1 1 3
  432. * >=512 2 2 3
  433. */
  434. val = ((w_order == 0) ? 2 : 3);
  435. REG_WR(bp, PXP2_REG_WR_HC_MPS, val);
  436. REG_WR(bp, PXP2_REG_WR_USDM_MPS, val);
  437. REG_WR(bp, PXP2_REG_WR_CSDM_MPS, val);
  438. REG_WR(bp, PXP2_REG_WR_TSDM_MPS, val);
  439. REG_WR(bp, PXP2_REG_WR_XSDM_MPS, val);
  440. REG_WR(bp, PXP2_REG_WR_QM_MPS, val);
  441. REG_WR(bp, PXP2_REG_WR_TM_MPS, val);
  442. REG_WR(bp, PXP2_REG_WR_SRC_MPS, val);
  443. REG_WR(bp, PXP2_REG_WR_DBG_MPS, val);
  444. REG_WR(bp, PXP2_REG_WR_DMAE_MPS, 2); /* DMAE is special */
  445. REG_WR(bp, PXP2_REG_WR_CDU_MPS, val);
  446. }
  447. }
  448. /****************************************************************************
  449. * ILT management
  450. ****************************************************************************/
  451. /*
  452. * This codes hides the low level HW interaction for ILT management and
  453. * configuration. The API consists of a shadow ILT table which is set by the
  454. * driver and a set of routines to use it to configure the HW.
  455. *
  456. */
  457. /* ILT HW init operations */
  458. /* ILT memory management operations */
  459. #define ILT_MEMOP_ALLOC 0
  460. #define ILT_MEMOP_FREE 1
  461. /* the phys address is shifted right 12 bits and has an added
  462. * 1=valid bit added to the 53rd bit
  463. * then since this is a wide register(TM)
  464. * we split it into two 32 bit writes
  465. */
  466. #define ILT_ADDR1(x) ((u32)(((u64)x >> 12) & 0xFFFFFFFF))
  467. #define ILT_ADDR2(x) ((u32)((1 << 20) | ((u64)x >> 44)))
  468. #define ILT_RANGE(f, l) (((l) << 10) | f)
  469. static int bnx2x_ilt_line_mem_op(struct bnx2x *bp, struct ilt_line *line,
  470. u32 size, u8 memop)
  471. {
  472. if (memop == ILT_MEMOP_FREE) {
  473. BNX2X_ILT_FREE(line->page, line->page_mapping, line->size);
  474. return 0;
  475. }
  476. BNX2X_ILT_ZALLOC(line->page, &line->page_mapping, size);
  477. if (!line->page)
  478. return -1;
  479. line->size = size;
  480. return 0;
  481. }
  482. static int bnx2x_ilt_client_mem_op(struct bnx2x *bp, int cli_num, u8 memop)
  483. {
  484. int i, rc;
  485. struct bnx2x_ilt *ilt = BP_ILT(bp);
  486. struct ilt_client_info *ilt_cli = &ilt->clients[cli_num];
  487. if (!ilt || !ilt->lines)
  488. return -1;
  489. if (ilt_cli->flags & (ILT_CLIENT_SKIP_INIT | ILT_CLIENT_SKIP_MEM))
  490. return 0;
  491. for (rc = 0, i = ilt_cli->start; i <= ilt_cli->end && !rc; i++) {
  492. rc = bnx2x_ilt_line_mem_op(bp, &ilt->lines[i],
  493. ilt_cli->page_size, memop);
  494. }
  495. return rc;
  496. }
  497. int bnx2x_ilt_mem_op(struct bnx2x *bp, u8 memop)
  498. {
  499. int rc = bnx2x_ilt_client_mem_op(bp, ILT_CLIENT_CDU, memop);
  500. if (!rc)
  501. rc = bnx2x_ilt_client_mem_op(bp, ILT_CLIENT_QM, memop);
  502. if (!rc)
  503. rc = bnx2x_ilt_client_mem_op(bp, ILT_CLIENT_SRC, memop);
  504. if (!rc)
  505. rc = bnx2x_ilt_client_mem_op(bp, ILT_CLIENT_TM, memop);
  506. return rc;
  507. }
  508. static void bnx2x_ilt_line_wr(struct bnx2x *bp, int abs_idx,
  509. dma_addr_t page_mapping)
  510. {
  511. u32 reg;
  512. if (CHIP_IS_E1(bp))
  513. reg = PXP2_REG_RQ_ONCHIP_AT + abs_idx*8;
  514. else
  515. reg = PXP2_REG_RQ_ONCHIP_AT_B0 + abs_idx*8;
  516. bnx2x_wr_64(bp, reg, ILT_ADDR1(page_mapping), ILT_ADDR2(page_mapping));
  517. }
  518. static void bnx2x_ilt_line_init_op(struct bnx2x *bp, struct bnx2x_ilt *ilt,
  519. int idx, u8 initop)
  520. {
  521. dma_addr_t null_mapping;
  522. int abs_idx = ilt->start_line + idx;
  523. switch (initop) {
  524. case INITOP_INIT:
  525. /* set in the init-value array */
  526. case INITOP_SET:
  527. bnx2x_ilt_line_wr(bp, abs_idx, ilt->lines[idx].page_mapping);
  528. break;
  529. case INITOP_CLEAR:
  530. null_mapping = 0;
  531. bnx2x_ilt_line_wr(bp, abs_idx, null_mapping);
  532. break;
  533. }
  534. }
  535. void bnx2x_ilt_boundry_init_op(struct bnx2x *bp,
  536. struct ilt_client_info *ilt_cli,
  537. u32 ilt_start, u8 initop)
  538. {
  539. u32 start_reg = 0;
  540. u32 end_reg = 0;
  541. /* The boundary is either SET or INIT,
  542. CLEAR => SET and for now SET ~~ INIT */
  543. /* find the appropriate regs */
  544. if (CHIP_IS_E1(bp)) {
  545. switch (ilt_cli->client_num) {
  546. case ILT_CLIENT_CDU:
  547. start_reg = PXP2_REG_PSWRQ_CDU0_L2P;
  548. break;
  549. case ILT_CLIENT_QM:
  550. start_reg = PXP2_REG_PSWRQ_QM0_L2P;
  551. break;
  552. case ILT_CLIENT_SRC:
  553. start_reg = PXP2_REG_PSWRQ_SRC0_L2P;
  554. break;
  555. case ILT_CLIENT_TM:
  556. start_reg = PXP2_REG_PSWRQ_TM0_L2P;
  557. break;
  558. }
  559. REG_WR(bp, start_reg + BP_FUNC(bp)*4,
  560. ILT_RANGE((ilt_start + ilt_cli->start),
  561. (ilt_start + ilt_cli->end)));
  562. } else {
  563. switch (ilt_cli->client_num) {
  564. case ILT_CLIENT_CDU:
  565. start_reg = PXP2_REG_RQ_CDU_FIRST_ILT;
  566. end_reg = PXP2_REG_RQ_CDU_LAST_ILT;
  567. break;
  568. case ILT_CLIENT_QM:
  569. start_reg = PXP2_REG_RQ_QM_FIRST_ILT;
  570. end_reg = PXP2_REG_RQ_QM_LAST_ILT;
  571. break;
  572. case ILT_CLIENT_SRC:
  573. start_reg = PXP2_REG_RQ_SRC_FIRST_ILT;
  574. end_reg = PXP2_REG_RQ_SRC_LAST_ILT;
  575. break;
  576. case ILT_CLIENT_TM:
  577. start_reg = PXP2_REG_RQ_TM_FIRST_ILT;
  578. end_reg = PXP2_REG_RQ_TM_LAST_ILT;
  579. break;
  580. }
  581. REG_WR(bp, start_reg, (ilt_start + ilt_cli->start));
  582. REG_WR(bp, end_reg, (ilt_start + ilt_cli->end));
  583. }
  584. }
  585. void bnx2x_ilt_client_init_op_ilt(struct bnx2x *bp, struct bnx2x_ilt *ilt,
  586. struct ilt_client_info *ilt_cli, u8 initop)
  587. {
  588. int i;
  589. if (ilt_cli->flags & ILT_CLIENT_SKIP_INIT)
  590. return;
  591. for (i = ilt_cli->start; i <= ilt_cli->end; i++)
  592. bnx2x_ilt_line_init_op(bp, ilt, i, initop);
  593. /* init/clear the ILT boundries */
  594. bnx2x_ilt_boundry_init_op(bp, ilt_cli, ilt->start_line, initop);
  595. }
  596. void bnx2x_ilt_client_init_op(struct bnx2x *bp,
  597. struct ilt_client_info *ilt_cli, u8 initop)
  598. {
  599. struct bnx2x_ilt *ilt = BP_ILT(bp);
  600. bnx2x_ilt_client_init_op_ilt(bp, ilt, ilt_cli, initop);
  601. }
  602. static void bnx2x_ilt_client_id_init_op(struct bnx2x *bp,
  603. int cli_num, u8 initop)
  604. {
  605. struct bnx2x_ilt *ilt = BP_ILT(bp);
  606. struct ilt_client_info *ilt_cli = &ilt->clients[cli_num];
  607. bnx2x_ilt_client_init_op(bp, ilt_cli, initop);
  608. }
  609. void bnx2x_ilt_init_op(struct bnx2x *bp, u8 initop)
  610. {
  611. bnx2x_ilt_client_id_init_op(bp, ILT_CLIENT_CDU, initop);
  612. bnx2x_ilt_client_id_init_op(bp, ILT_CLIENT_QM, initop);
  613. bnx2x_ilt_client_id_init_op(bp, ILT_CLIENT_SRC, initop);
  614. bnx2x_ilt_client_id_init_op(bp, ILT_CLIENT_TM, initop);
  615. }
  616. static void bnx2x_ilt_init_client_psz(struct bnx2x *bp, int cli_num,
  617. u32 psz_reg, u8 initop)
  618. {
  619. struct bnx2x_ilt *ilt = BP_ILT(bp);
  620. struct ilt_client_info *ilt_cli = &ilt->clients[cli_num];
  621. if (ilt_cli->flags & ILT_CLIENT_SKIP_INIT)
  622. return;
  623. switch (initop) {
  624. case INITOP_INIT:
  625. /* set in the init-value array */
  626. case INITOP_SET:
  627. REG_WR(bp, psz_reg, ILOG2(ilt_cli->page_size >> 12));
  628. break;
  629. case INITOP_CLEAR:
  630. break;
  631. }
  632. }
  633. /*
  634. * called during init common stage, ilt clients should be initialized
  635. * prioir to calling this function
  636. */
  637. void bnx2x_ilt_init_page_size(struct bnx2x *bp, u8 initop)
  638. {
  639. bnx2x_ilt_init_client_psz(bp, ILT_CLIENT_CDU,
  640. PXP2_REG_RQ_CDU_P_SIZE, initop);
  641. bnx2x_ilt_init_client_psz(bp, ILT_CLIENT_QM,
  642. PXP2_REG_RQ_QM_P_SIZE, initop);
  643. bnx2x_ilt_init_client_psz(bp, ILT_CLIENT_SRC,
  644. PXP2_REG_RQ_SRC_P_SIZE, initop);
  645. bnx2x_ilt_init_client_psz(bp, ILT_CLIENT_TM,
  646. PXP2_REG_RQ_TM_P_SIZE, initop);
  647. }
  648. /****************************************************************************
  649. * QM initializations
  650. ****************************************************************************/
  651. #define QM_QUEUES_PER_FUNC 16 /* E1 has 32, but only 16 are used */
  652. #define QM_INIT_MIN_CID_COUNT 31
  653. #define QM_INIT(cid_cnt) (cid_cnt > QM_INIT_MIN_CID_COUNT)
  654. /* called during init port stage */
  655. void bnx2x_qm_init_cid_count(struct bnx2x *bp, int qm_cid_count,
  656. u8 initop)
  657. {
  658. int port = BP_PORT(bp);
  659. if (QM_INIT(qm_cid_count)) {
  660. switch (initop) {
  661. case INITOP_INIT:
  662. /* set in the init-value array */
  663. case INITOP_SET:
  664. REG_WR(bp, QM_REG_CONNNUM_0 + port*4,
  665. qm_cid_count/16 - 1);
  666. break;
  667. case INITOP_CLEAR:
  668. break;
  669. }
  670. }
  671. }
  672. static void bnx2x_qm_set_ptr_table(struct bnx2x *bp, int qm_cid_count)
  673. {
  674. int i;
  675. u32 wb_data[2];
  676. wb_data[0] = wb_data[1] = 0;
  677. for (i = 0; i < 4 * QM_QUEUES_PER_FUNC; i++) {
  678. REG_WR(bp, QM_REG_BASEADDR + i*4,
  679. qm_cid_count * 4 * (i % QM_QUEUES_PER_FUNC));
  680. bnx2x_init_ind_wr(bp, QM_REG_PTRTBL + i*8,
  681. wb_data, 2);
  682. if (CHIP_IS_E1H(bp)) {
  683. REG_WR(bp, QM_REG_BASEADDR_EXT_A + i*4,
  684. qm_cid_count * 4 * (i % QM_QUEUES_PER_FUNC));
  685. bnx2x_init_ind_wr(bp, QM_REG_PTRTBL_EXT_A + i*8,
  686. wb_data, 2);
  687. }
  688. }
  689. }
  690. /* called during init common stage */
  691. void bnx2x_qm_init_ptr_table(struct bnx2x *bp, int qm_cid_count,
  692. u8 initop)
  693. {
  694. if (!QM_INIT(qm_cid_count))
  695. return;
  696. switch (initop) {
  697. case INITOP_INIT:
  698. /* set in the init-value array */
  699. case INITOP_SET:
  700. bnx2x_qm_set_ptr_table(bp, qm_cid_count);
  701. break;
  702. case INITOP_CLEAR:
  703. break;
  704. }
  705. }
  706. /****************************************************************************
  707. * SRC initializations
  708. ****************************************************************************/
  709. /* called during init func stage */
  710. void bnx2x_src_init_t2(struct bnx2x *bp, struct src_ent *t2,
  711. dma_addr_t t2_mapping, int src_cid_count)
  712. {
  713. int i;
  714. int port = BP_PORT(bp);
  715. /* Initialize T2 */
  716. for (i = 0; i < src_cid_count-1; i++)
  717. t2[i].next = (u64)(t2_mapping + (i+1)*sizeof(struct src_ent));
  718. /* tell the searcher where the T2 table is */
  719. REG_WR(bp, SRC_REG_COUNTFREE0 + port*4, src_cid_count);
  720. bnx2x_wr_64(bp, SRC_REG_FIRSTFREE0 + port*16,
  721. U64_LO(t2_mapping), U64_HI(t2_mapping));
  722. bnx2x_wr_64(bp, SRC_REG_LASTFREE0 + port*16,
  723. U64_LO((u64)t2_mapping +
  724. (src_cid_count-1) * sizeof(struct src_ent)),
  725. U64_HI((u64)t2_mapping +
  726. (src_cid_count-1) * sizeof(struct src_ent)));
  727. }
  728. #endif /* BNX2X_INIT_OPS_H */