vmx.c 96 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "irq.h"
  18. #include "mmu.h"
  19. #include <linux/kvm_host.h>
  20. #include <linux/module.h>
  21. #include <linux/kernel.h>
  22. #include <linux/mm.h>
  23. #include <linux/highmem.h>
  24. #include <linux/sched.h>
  25. #include <linux/moduleparam.h>
  26. #include "kvm_cache_regs.h"
  27. #include "x86.h"
  28. #include <asm/io.h>
  29. #include <asm/desc.h>
  30. #include <asm/vmx.h>
  31. #include <asm/virtext.h>
  32. #define __ex(x) __kvm_handle_fault_on_reboot(x)
  33. MODULE_AUTHOR("Qumranet");
  34. MODULE_LICENSE("GPL");
  35. static int __read_mostly bypass_guest_pf = 1;
  36. module_param(bypass_guest_pf, bool, S_IRUGO);
  37. static int __read_mostly enable_vpid = 1;
  38. module_param_named(vpid, enable_vpid, bool, 0444);
  39. static int __read_mostly flexpriority_enabled = 1;
  40. module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
  41. static int __read_mostly enable_ept = 1;
  42. module_param_named(ept, enable_ept, bool, S_IRUGO);
  43. static int __read_mostly emulate_invalid_guest_state = 0;
  44. module_param(emulate_invalid_guest_state, bool, S_IRUGO);
  45. struct vmcs {
  46. u32 revision_id;
  47. u32 abort;
  48. char data[0];
  49. };
  50. struct vcpu_vmx {
  51. struct kvm_vcpu vcpu;
  52. struct list_head local_vcpus_link;
  53. unsigned long host_rsp;
  54. int launched;
  55. u8 fail;
  56. u32 idt_vectoring_info;
  57. struct kvm_msr_entry *guest_msrs;
  58. struct kvm_msr_entry *host_msrs;
  59. int nmsrs;
  60. int save_nmsrs;
  61. int msr_offset_efer;
  62. #ifdef CONFIG_X86_64
  63. int msr_offset_kernel_gs_base;
  64. #endif
  65. struct vmcs *vmcs;
  66. struct {
  67. int loaded;
  68. u16 fs_sel, gs_sel, ldt_sel;
  69. int gs_ldt_reload_needed;
  70. int fs_reload_needed;
  71. int guest_efer_loaded;
  72. } host_state;
  73. struct {
  74. struct {
  75. bool pending;
  76. u8 vector;
  77. unsigned rip;
  78. } irq;
  79. } rmode;
  80. int vpid;
  81. bool emulation_required;
  82. enum emulation_result invalid_state_emulation_result;
  83. /* Support for vnmi-less CPUs */
  84. int soft_vnmi_blocked;
  85. ktime_t entry_time;
  86. s64 vnmi_blocked_time;
  87. };
  88. static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
  89. {
  90. return container_of(vcpu, struct vcpu_vmx, vcpu);
  91. }
  92. static int init_rmode(struct kvm *kvm);
  93. static u64 construct_eptp(unsigned long root_hpa);
  94. static DEFINE_PER_CPU(struct vmcs *, vmxarea);
  95. static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
  96. static DEFINE_PER_CPU(struct list_head, vcpus_on_cpu);
  97. static unsigned long *vmx_io_bitmap_a;
  98. static unsigned long *vmx_io_bitmap_b;
  99. static unsigned long *vmx_msr_bitmap_legacy;
  100. static unsigned long *vmx_msr_bitmap_longmode;
  101. static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
  102. static DEFINE_SPINLOCK(vmx_vpid_lock);
  103. static struct vmcs_config {
  104. int size;
  105. int order;
  106. u32 revision_id;
  107. u32 pin_based_exec_ctrl;
  108. u32 cpu_based_exec_ctrl;
  109. u32 cpu_based_2nd_exec_ctrl;
  110. u32 vmexit_ctrl;
  111. u32 vmentry_ctrl;
  112. } vmcs_config;
  113. static struct vmx_capability {
  114. u32 ept;
  115. u32 vpid;
  116. } vmx_capability;
  117. #define VMX_SEGMENT_FIELD(seg) \
  118. [VCPU_SREG_##seg] = { \
  119. .selector = GUEST_##seg##_SELECTOR, \
  120. .base = GUEST_##seg##_BASE, \
  121. .limit = GUEST_##seg##_LIMIT, \
  122. .ar_bytes = GUEST_##seg##_AR_BYTES, \
  123. }
  124. static struct kvm_vmx_segment_field {
  125. unsigned selector;
  126. unsigned base;
  127. unsigned limit;
  128. unsigned ar_bytes;
  129. } kvm_vmx_segment_fields[] = {
  130. VMX_SEGMENT_FIELD(CS),
  131. VMX_SEGMENT_FIELD(DS),
  132. VMX_SEGMENT_FIELD(ES),
  133. VMX_SEGMENT_FIELD(FS),
  134. VMX_SEGMENT_FIELD(GS),
  135. VMX_SEGMENT_FIELD(SS),
  136. VMX_SEGMENT_FIELD(TR),
  137. VMX_SEGMENT_FIELD(LDTR),
  138. };
  139. /*
  140. * Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it
  141. * away by decrementing the array size.
  142. */
  143. static const u32 vmx_msr_index[] = {
  144. #ifdef CONFIG_X86_64
  145. MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, MSR_KERNEL_GS_BASE,
  146. #endif
  147. MSR_EFER, MSR_K6_STAR,
  148. };
  149. #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
  150. static void load_msrs(struct kvm_msr_entry *e, int n)
  151. {
  152. int i;
  153. for (i = 0; i < n; ++i)
  154. wrmsrl(e[i].index, e[i].data);
  155. }
  156. static void save_msrs(struct kvm_msr_entry *e, int n)
  157. {
  158. int i;
  159. for (i = 0; i < n; ++i)
  160. rdmsrl(e[i].index, e[i].data);
  161. }
  162. static inline int is_page_fault(u32 intr_info)
  163. {
  164. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  165. INTR_INFO_VALID_MASK)) ==
  166. (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
  167. }
  168. static inline int is_no_device(u32 intr_info)
  169. {
  170. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  171. INTR_INFO_VALID_MASK)) ==
  172. (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
  173. }
  174. static inline int is_invalid_opcode(u32 intr_info)
  175. {
  176. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  177. INTR_INFO_VALID_MASK)) ==
  178. (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
  179. }
  180. static inline int is_external_interrupt(u32 intr_info)
  181. {
  182. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
  183. == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  184. }
  185. static inline int cpu_has_vmx_msr_bitmap(void)
  186. {
  187. return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
  188. }
  189. static inline int cpu_has_vmx_tpr_shadow(void)
  190. {
  191. return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
  192. }
  193. static inline int vm_need_tpr_shadow(struct kvm *kvm)
  194. {
  195. return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
  196. }
  197. static inline int cpu_has_secondary_exec_ctrls(void)
  198. {
  199. return vmcs_config.cpu_based_exec_ctrl &
  200. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
  201. }
  202. static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
  203. {
  204. return vmcs_config.cpu_based_2nd_exec_ctrl &
  205. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  206. }
  207. static inline bool cpu_has_vmx_flexpriority(void)
  208. {
  209. return cpu_has_vmx_tpr_shadow() &&
  210. cpu_has_vmx_virtualize_apic_accesses();
  211. }
  212. static inline int cpu_has_vmx_invept_individual_addr(void)
  213. {
  214. return !!(vmx_capability.ept & VMX_EPT_EXTENT_INDIVIDUAL_BIT);
  215. }
  216. static inline int cpu_has_vmx_invept_context(void)
  217. {
  218. return !!(vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT);
  219. }
  220. static inline int cpu_has_vmx_invept_global(void)
  221. {
  222. return !!(vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT);
  223. }
  224. static inline int cpu_has_vmx_ept(void)
  225. {
  226. return vmcs_config.cpu_based_2nd_exec_ctrl &
  227. SECONDARY_EXEC_ENABLE_EPT;
  228. }
  229. static inline int vm_need_virtualize_apic_accesses(struct kvm *kvm)
  230. {
  231. return flexpriority_enabled &&
  232. (cpu_has_vmx_virtualize_apic_accesses()) &&
  233. (irqchip_in_kernel(kvm));
  234. }
  235. static inline int cpu_has_vmx_vpid(void)
  236. {
  237. return vmcs_config.cpu_based_2nd_exec_ctrl &
  238. SECONDARY_EXEC_ENABLE_VPID;
  239. }
  240. static inline int cpu_has_virtual_nmis(void)
  241. {
  242. return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
  243. }
  244. static inline bool report_flexpriority(void)
  245. {
  246. return flexpriority_enabled;
  247. }
  248. static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
  249. {
  250. int i;
  251. for (i = 0; i < vmx->nmsrs; ++i)
  252. if (vmx->guest_msrs[i].index == msr)
  253. return i;
  254. return -1;
  255. }
  256. static inline void __invvpid(int ext, u16 vpid, gva_t gva)
  257. {
  258. struct {
  259. u64 vpid : 16;
  260. u64 rsvd : 48;
  261. u64 gva;
  262. } operand = { vpid, 0, gva };
  263. asm volatile (__ex(ASM_VMX_INVVPID)
  264. /* CF==1 or ZF==1 --> rc = -1 */
  265. "; ja 1f ; ud2 ; 1:"
  266. : : "a"(&operand), "c"(ext) : "cc", "memory");
  267. }
  268. static inline void __invept(int ext, u64 eptp, gpa_t gpa)
  269. {
  270. struct {
  271. u64 eptp, gpa;
  272. } operand = {eptp, gpa};
  273. asm volatile (__ex(ASM_VMX_INVEPT)
  274. /* CF==1 or ZF==1 --> rc = -1 */
  275. "; ja 1f ; ud2 ; 1:\n"
  276. : : "a" (&operand), "c" (ext) : "cc", "memory");
  277. }
  278. static struct kvm_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
  279. {
  280. int i;
  281. i = __find_msr_index(vmx, msr);
  282. if (i >= 0)
  283. return &vmx->guest_msrs[i];
  284. return NULL;
  285. }
  286. static void vmcs_clear(struct vmcs *vmcs)
  287. {
  288. u64 phys_addr = __pa(vmcs);
  289. u8 error;
  290. asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
  291. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  292. : "cc", "memory");
  293. if (error)
  294. printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
  295. vmcs, phys_addr);
  296. }
  297. static void __vcpu_clear(void *arg)
  298. {
  299. struct vcpu_vmx *vmx = arg;
  300. int cpu = raw_smp_processor_id();
  301. if (vmx->vcpu.cpu == cpu)
  302. vmcs_clear(vmx->vmcs);
  303. if (per_cpu(current_vmcs, cpu) == vmx->vmcs)
  304. per_cpu(current_vmcs, cpu) = NULL;
  305. rdtscll(vmx->vcpu.arch.host_tsc);
  306. list_del(&vmx->local_vcpus_link);
  307. vmx->vcpu.cpu = -1;
  308. vmx->launched = 0;
  309. }
  310. static void vcpu_clear(struct vcpu_vmx *vmx)
  311. {
  312. if (vmx->vcpu.cpu == -1)
  313. return;
  314. smp_call_function_single(vmx->vcpu.cpu, __vcpu_clear, vmx, 1);
  315. }
  316. static inline void vpid_sync_vcpu_all(struct vcpu_vmx *vmx)
  317. {
  318. if (vmx->vpid == 0)
  319. return;
  320. __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
  321. }
  322. static inline void ept_sync_global(void)
  323. {
  324. if (cpu_has_vmx_invept_global())
  325. __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
  326. }
  327. static inline void ept_sync_context(u64 eptp)
  328. {
  329. if (enable_ept) {
  330. if (cpu_has_vmx_invept_context())
  331. __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
  332. else
  333. ept_sync_global();
  334. }
  335. }
  336. static inline void ept_sync_individual_addr(u64 eptp, gpa_t gpa)
  337. {
  338. if (enable_ept) {
  339. if (cpu_has_vmx_invept_individual_addr())
  340. __invept(VMX_EPT_EXTENT_INDIVIDUAL_ADDR,
  341. eptp, gpa);
  342. else
  343. ept_sync_context(eptp);
  344. }
  345. }
  346. static unsigned long vmcs_readl(unsigned long field)
  347. {
  348. unsigned long value;
  349. asm volatile (__ex(ASM_VMX_VMREAD_RDX_RAX)
  350. : "=a"(value) : "d"(field) : "cc");
  351. return value;
  352. }
  353. static u16 vmcs_read16(unsigned long field)
  354. {
  355. return vmcs_readl(field);
  356. }
  357. static u32 vmcs_read32(unsigned long field)
  358. {
  359. return vmcs_readl(field);
  360. }
  361. static u64 vmcs_read64(unsigned long field)
  362. {
  363. #ifdef CONFIG_X86_64
  364. return vmcs_readl(field);
  365. #else
  366. return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
  367. #endif
  368. }
  369. static noinline void vmwrite_error(unsigned long field, unsigned long value)
  370. {
  371. printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
  372. field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
  373. dump_stack();
  374. }
  375. static void vmcs_writel(unsigned long field, unsigned long value)
  376. {
  377. u8 error;
  378. asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
  379. : "=q"(error) : "a"(value), "d"(field) : "cc");
  380. if (unlikely(error))
  381. vmwrite_error(field, value);
  382. }
  383. static void vmcs_write16(unsigned long field, u16 value)
  384. {
  385. vmcs_writel(field, value);
  386. }
  387. static void vmcs_write32(unsigned long field, u32 value)
  388. {
  389. vmcs_writel(field, value);
  390. }
  391. static void vmcs_write64(unsigned long field, u64 value)
  392. {
  393. vmcs_writel(field, value);
  394. #ifndef CONFIG_X86_64
  395. asm volatile ("");
  396. vmcs_writel(field+1, value >> 32);
  397. #endif
  398. }
  399. static void vmcs_clear_bits(unsigned long field, u32 mask)
  400. {
  401. vmcs_writel(field, vmcs_readl(field) & ~mask);
  402. }
  403. static void vmcs_set_bits(unsigned long field, u32 mask)
  404. {
  405. vmcs_writel(field, vmcs_readl(field) | mask);
  406. }
  407. static void update_exception_bitmap(struct kvm_vcpu *vcpu)
  408. {
  409. u32 eb;
  410. eb = (1u << PF_VECTOR) | (1u << UD_VECTOR);
  411. if (!vcpu->fpu_active)
  412. eb |= 1u << NM_VECTOR;
  413. if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
  414. if (vcpu->guest_debug &
  415. (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
  416. eb |= 1u << DB_VECTOR;
  417. if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
  418. eb |= 1u << BP_VECTOR;
  419. }
  420. if (vcpu->arch.rmode.active)
  421. eb = ~0;
  422. if (enable_ept)
  423. eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
  424. vmcs_write32(EXCEPTION_BITMAP, eb);
  425. }
  426. static void reload_tss(void)
  427. {
  428. /*
  429. * VT restores TR but not its size. Useless.
  430. */
  431. struct descriptor_table gdt;
  432. struct desc_struct *descs;
  433. kvm_get_gdt(&gdt);
  434. descs = (void *)gdt.base;
  435. descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
  436. load_TR_desc();
  437. }
  438. static void load_transition_efer(struct vcpu_vmx *vmx)
  439. {
  440. int efer_offset = vmx->msr_offset_efer;
  441. u64 host_efer = vmx->host_msrs[efer_offset].data;
  442. u64 guest_efer = vmx->guest_msrs[efer_offset].data;
  443. u64 ignore_bits;
  444. if (efer_offset < 0)
  445. return;
  446. /*
  447. * NX is emulated; LMA and LME handled by hardware; SCE meaninless
  448. * outside long mode
  449. */
  450. ignore_bits = EFER_NX | EFER_SCE;
  451. #ifdef CONFIG_X86_64
  452. ignore_bits |= EFER_LMA | EFER_LME;
  453. /* SCE is meaningful only in long mode on Intel */
  454. if (guest_efer & EFER_LMA)
  455. ignore_bits &= ~(u64)EFER_SCE;
  456. #endif
  457. if ((guest_efer & ~ignore_bits) == (host_efer & ~ignore_bits))
  458. return;
  459. vmx->host_state.guest_efer_loaded = 1;
  460. guest_efer &= ~ignore_bits;
  461. guest_efer |= host_efer & ignore_bits;
  462. wrmsrl(MSR_EFER, guest_efer);
  463. vmx->vcpu.stat.efer_reload++;
  464. }
  465. static void reload_host_efer(struct vcpu_vmx *vmx)
  466. {
  467. if (vmx->host_state.guest_efer_loaded) {
  468. vmx->host_state.guest_efer_loaded = 0;
  469. load_msrs(vmx->host_msrs + vmx->msr_offset_efer, 1);
  470. }
  471. }
  472. static void vmx_save_host_state(struct kvm_vcpu *vcpu)
  473. {
  474. struct vcpu_vmx *vmx = to_vmx(vcpu);
  475. if (vmx->host_state.loaded)
  476. return;
  477. vmx->host_state.loaded = 1;
  478. /*
  479. * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
  480. * allow segment selectors with cpl > 0 or ti == 1.
  481. */
  482. vmx->host_state.ldt_sel = kvm_read_ldt();
  483. vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
  484. vmx->host_state.fs_sel = kvm_read_fs();
  485. if (!(vmx->host_state.fs_sel & 7)) {
  486. vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
  487. vmx->host_state.fs_reload_needed = 0;
  488. } else {
  489. vmcs_write16(HOST_FS_SELECTOR, 0);
  490. vmx->host_state.fs_reload_needed = 1;
  491. }
  492. vmx->host_state.gs_sel = kvm_read_gs();
  493. if (!(vmx->host_state.gs_sel & 7))
  494. vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
  495. else {
  496. vmcs_write16(HOST_GS_SELECTOR, 0);
  497. vmx->host_state.gs_ldt_reload_needed = 1;
  498. }
  499. #ifdef CONFIG_X86_64
  500. vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
  501. vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
  502. #else
  503. vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
  504. vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
  505. #endif
  506. #ifdef CONFIG_X86_64
  507. if (is_long_mode(&vmx->vcpu))
  508. save_msrs(vmx->host_msrs +
  509. vmx->msr_offset_kernel_gs_base, 1);
  510. #endif
  511. load_msrs(vmx->guest_msrs, vmx->save_nmsrs);
  512. load_transition_efer(vmx);
  513. }
  514. static void __vmx_load_host_state(struct vcpu_vmx *vmx)
  515. {
  516. unsigned long flags;
  517. if (!vmx->host_state.loaded)
  518. return;
  519. ++vmx->vcpu.stat.host_state_reload;
  520. vmx->host_state.loaded = 0;
  521. if (vmx->host_state.fs_reload_needed)
  522. kvm_load_fs(vmx->host_state.fs_sel);
  523. if (vmx->host_state.gs_ldt_reload_needed) {
  524. kvm_load_ldt(vmx->host_state.ldt_sel);
  525. /*
  526. * If we have to reload gs, we must take care to
  527. * preserve our gs base.
  528. */
  529. local_irq_save(flags);
  530. kvm_load_gs(vmx->host_state.gs_sel);
  531. #ifdef CONFIG_X86_64
  532. wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
  533. #endif
  534. local_irq_restore(flags);
  535. }
  536. reload_tss();
  537. save_msrs(vmx->guest_msrs, vmx->save_nmsrs);
  538. load_msrs(vmx->host_msrs, vmx->save_nmsrs);
  539. reload_host_efer(vmx);
  540. }
  541. static void vmx_load_host_state(struct vcpu_vmx *vmx)
  542. {
  543. preempt_disable();
  544. __vmx_load_host_state(vmx);
  545. preempt_enable();
  546. }
  547. /*
  548. * Switches to specified vcpu, until a matching vcpu_put(), but assumes
  549. * vcpu mutex is already taken.
  550. */
  551. static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  552. {
  553. struct vcpu_vmx *vmx = to_vmx(vcpu);
  554. u64 phys_addr = __pa(vmx->vmcs);
  555. u64 tsc_this, delta, new_offset;
  556. if (vcpu->cpu != cpu) {
  557. vcpu_clear(vmx);
  558. kvm_migrate_timers(vcpu);
  559. vpid_sync_vcpu_all(vmx);
  560. local_irq_disable();
  561. list_add(&vmx->local_vcpus_link,
  562. &per_cpu(vcpus_on_cpu, cpu));
  563. local_irq_enable();
  564. }
  565. if (per_cpu(current_vmcs, cpu) != vmx->vmcs) {
  566. u8 error;
  567. per_cpu(current_vmcs, cpu) = vmx->vmcs;
  568. asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
  569. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  570. : "cc");
  571. if (error)
  572. printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
  573. vmx->vmcs, phys_addr);
  574. }
  575. if (vcpu->cpu != cpu) {
  576. struct descriptor_table dt;
  577. unsigned long sysenter_esp;
  578. vcpu->cpu = cpu;
  579. /*
  580. * Linux uses per-cpu TSS and GDT, so set these when switching
  581. * processors.
  582. */
  583. vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
  584. kvm_get_gdt(&dt);
  585. vmcs_writel(HOST_GDTR_BASE, dt.base); /* 22.2.4 */
  586. rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
  587. vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
  588. /*
  589. * Make sure the time stamp counter is monotonous.
  590. */
  591. rdtscll(tsc_this);
  592. if (tsc_this < vcpu->arch.host_tsc) {
  593. delta = vcpu->arch.host_tsc - tsc_this;
  594. new_offset = vmcs_read64(TSC_OFFSET) + delta;
  595. vmcs_write64(TSC_OFFSET, new_offset);
  596. }
  597. }
  598. }
  599. static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
  600. {
  601. __vmx_load_host_state(to_vmx(vcpu));
  602. }
  603. static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
  604. {
  605. if (vcpu->fpu_active)
  606. return;
  607. vcpu->fpu_active = 1;
  608. vmcs_clear_bits(GUEST_CR0, X86_CR0_TS);
  609. if (vcpu->arch.cr0 & X86_CR0_TS)
  610. vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
  611. update_exception_bitmap(vcpu);
  612. }
  613. static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
  614. {
  615. if (!vcpu->fpu_active)
  616. return;
  617. vcpu->fpu_active = 0;
  618. vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
  619. update_exception_bitmap(vcpu);
  620. }
  621. static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
  622. {
  623. return vmcs_readl(GUEST_RFLAGS);
  624. }
  625. static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  626. {
  627. if (vcpu->arch.rmode.active)
  628. rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  629. vmcs_writel(GUEST_RFLAGS, rflags);
  630. }
  631. static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
  632. {
  633. unsigned long rip;
  634. u32 interruptibility;
  635. rip = kvm_rip_read(vcpu);
  636. rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  637. kvm_rip_write(vcpu, rip);
  638. /*
  639. * We emulated an instruction, so temporary interrupt blocking
  640. * should be removed, if set.
  641. */
  642. interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  643. if (interruptibility & 3)
  644. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
  645. interruptibility & ~3);
  646. }
  647. static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
  648. bool has_error_code, u32 error_code)
  649. {
  650. struct vcpu_vmx *vmx = to_vmx(vcpu);
  651. u32 intr_info = nr | INTR_INFO_VALID_MASK;
  652. if (has_error_code) {
  653. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
  654. intr_info |= INTR_INFO_DELIVER_CODE_MASK;
  655. }
  656. if (vcpu->arch.rmode.active) {
  657. vmx->rmode.irq.pending = true;
  658. vmx->rmode.irq.vector = nr;
  659. vmx->rmode.irq.rip = kvm_rip_read(vcpu);
  660. if (nr == BP_VECTOR || nr == OF_VECTOR)
  661. vmx->rmode.irq.rip++;
  662. intr_info |= INTR_TYPE_SOFT_INTR;
  663. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
  664. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
  665. kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
  666. return;
  667. }
  668. if (nr == BP_VECTOR || nr == OF_VECTOR) {
  669. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
  670. intr_info |= INTR_TYPE_SOFT_EXCEPTION;
  671. } else
  672. intr_info |= INTR_TYPE_HARD_EXCEPTION;
  673. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
  674. }
  675. /*
  676. * Swap MSR entry in host/guest MSR entry array.
  677. */
  678. #ifdef CONFIG_X86_64
  679. static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
  680. {
  681. struct kvm_msr_entry tmp;
  682. tmp = vmx->guest_msrs[to];
  683. vmx->guest_msrs[to] = vmx->guest_msrs[from];
  684. vmx->guest_msrs[from] = tmp;
  685. tmp = vmx->host_msrs[to];
  686. vmx->host_msrs[to] = vmx->host_msrs[from];
  687. vmx->host_msrs[from] = tmp;
  688. }
  689. #endif
  690. /*
  691. * Set up the vmcs to automatically save and restore system
  692. * msrs. Don't touch the 64-bit msrs if the guest is in legacy
  693. * mode, as fiddling with msrs is very expensive.
  694. */
  695. static void setup_msrs(struct vcpu_vmx *vmx)
  696. {
  697. int save_nmsrs;
  698. unsigned long *msr_bitmap;
  699. vmx_load_host_state(vmx);
  700. save_nmsrs = 0;
  701. #ifdef CONFIG_X86_64
  702. if (is_long_mode(&vmx->vcpu)) {
  703. int index;
  704. index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
  705. if (index >= 0)
  706. move_msr_up(vmx, index, save_nmsrs++);
  707. index = __find_msr_index(vmx, MSR_LSTAR);
  708. if (index >= 0)
  709. move_msr_up(vmx, index, save_nmsrs++);
  710. index = __find_msr_index(vmx, MSR_CSTAR);
  711. if (index >= 0)
  712. move_msr_up(vmx, index, save_nmsrs++);
  713. index = __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
  714. if (index >= 0)
  715. move_msr_up(vmx, index, save_nmsrs++);
  716. /*
  717. * MSR_K6_STAR is only needed on long mode guests, and only
  718. * if efer.sce is enabled.
  719. */
  720. index = __find_msr_index(vmx, MSR_K6_STAR);
  721. if ((index >= 0) && (vmx->vcpu.arch.shadow_efer & EFER_SCE))
  722. move_msr_up(vmx, index, save_nmsrs++);
  723. }
  724. #endif
  725. vmx->save_nmsrs = save_nmsrs;
  726. #ifdef CONFIG_X86_64
  727. vmx->msr_offset_kernel_gs_base =
  728. __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
  729. #endif
  730. vmx->msr_offset_efer = __find_msr_index(vmx, MSR_EFER);
  731. if (cpu_has_vmx_msr_bitmap()) {
  732. if (is_long_mode(&vmx->vcpu))
  733. msr_bitmap = vmx_msr_bitmap_longmode;
  734. else
  735. msr_bitmap = vmx_msr_bitmap_legacy;
  736. vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
  737. }
  738. }
  739. /*
  740. * reads and returns guest's timestamp counter "register"
  741. * guest_tsc = host_tsc + tsc_offset -- 21.3
  742. */
  743. static u64 guest_read_tsc(void)
  744. {
  745. u64 host_tsc, tsc_offset;
  746. rdtscll(host_tsc);
  747. tsc_offset = vmcs_read64(TSC_OFFSET);
  748. return host_tsc + tsc_offset;
  749. }
  750. /*
  751. * writes 'guest_tsc' into guest's timestamp counter "register"
  752. * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
  753. */
  754. static void guest_write_tsc(u64 guest_tsc, u64 host_tsc)
  755. {
  756. vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
  757. }
  758. /*
  759. * Reads an msr value (of 'msr_index') into 'pdata'.
  760. * Returns 0 on success, non-0 otherwise.
  761. * Assumes vcpu_load() was already called.
  762. */
  763. static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  764. {
  765. u64 data;
  766. struct kvm_msr_entry *msr;
  767. if (!pdata) {
  768. printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
  769. return -EINVAL;
  770. }
  771. switch (msr_index) {
  772. #ifdef CONFIG_X86_64
  773. case MSR_FS_BASE:
  774. data = vmcs_readl(GUEST_FS_BASE);
  775. break;
  776. case MSR_GS_BASE:
  777. data = vmcs_readl(GUEST_GS_BASE);
  778. break;
  779. case MSR_EFER:
  780. return kvm_get_msr_common(vcpu, msr_index, pdata);
  781. #endif
  782. case MSR_IA32_TIME_STAMP_COUNTER:
  783. data = guest_read_tsc();
  784. break;
  785. case MSR_IA32_SYSENTER_CS:
  786. data = vmcs_read32(GUEST_SYSENTER_CS);
  787. break;
  788. case MSR_IA32_SYSENTER_EIP:
  789. data = vmcs_readl(GUEST_SYSENTER_EIP);
  790. break;
  791. case MSR_IA32_SYSENTER_ESP:
  792. data = vmcs_readl(GUEST_SYSENTER_ESP);
  793. break;
  794. default:
  795. vmx_load_host_state(to_vmx(vcpu));
  796. msr = find_msr_entry(to_vmx(vcpu), msr_index);
  797. if (msr) {
  798. data = msr->data;
  799. break;
  800. }
  801. return kvm_get_msr_common(vcpu, msr_index, pdata);
  802. }
  803. *pdata = data;
  804. return 0;
  805. }
  806. /*
  807. * Writes msr value into into the appropriate "register".
  808. * Returns 0 on success, non-0 otherwise.
  809. * Assumes vcpu_load() was already called.
  810. */
  811. static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  812. {
  813. struct vcpu_vmx *vmx = to_vmx(vcpu);
  814. struct kvm_msr_entry *msr;
  815. u64 host_tsc;
  816. int ret = 0;
  817. switch (msr_index) {
  818. case MSR_EFER:
  819. vmx_load_host_state(vmx);
  820. ret = kvm_set_msr_common(vcpu, msr_index, data);
  821. break;
  822. #ifdef CONFIG_X86_64
  823. case MSR_FS_BASE:
  824. vmcs_writel(GUEST_FS_BASE, data);
  825. break;
  826. case MSR_GS_BASE:
  827. vmcs_writel(GUEST_GS_BASE, data);
  828. break;
  829. #endif
  830. case MSR_IA32_SYSENTER_CS:
  831. vmcs_write32(GUEST_SYSENTER_CS, data);
  832. break;
  833. case MSR_IA32_SYSENTER_EIP:
  834. vmcs_writel(GUEST_SYSENTER_EIP, data);
  835. break;
  836. case MSR_IA32_SYSENTER_ESP:
  837. vmcs_writel(GUEST_SYSENTER_ESP, data);
  838. break;
  839. case MSR_IA32_TIME_STAMP_COUNTER:
  840. rdtscll(host_tsc);
  841. guest_write_tsc(data, host_tsc);
  842. break;
  843. case MSR_P6_PERFCTR0:
  844. case MSR_P6_PERFCTR1:
  845. case MSR_P6_EVNTSEL0:
  846. case MSR_P6_EVNTSEL1:
  847. /*
  848. * Just discard all writes to the performance counters; this
  849. * should keep both older linux and windows 64-bit guests
  850. * happy
  851. */
  852. pr_unimpl(vcpu, "unimplemented perfctr wrmsr: 0x%x data 0x%llx\n", msr_index, data);
  853. break;
  854. case MSR_IA32_CR_PAT:
  855. if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
  856. vmcs_write64(GUEST_IA32_PAT, data);
  857. vcpu->arch.pat = data;
  858. break;
  859. }
  860. /* Otherwise falls through to kvm_set_msr_common */
  861. default:
  862. vmx_load_host_state(vmx);
  863. msr = find_msr_entry(vmx, msr_index);
  864. if (msr) {
  865. msr->data = data;
  866. break;
  867. }
  868. ret = kvm_set_msr_common(vcpu, msr_index, data);
  869. }
  870. return ret;
  871. }
  872. static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
  873. {
  874. __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
  875. switch (reg) {
  876. case VCPU_REGS_RSP:
  877. vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
  878. break;
  879. case VCPU_REGS_RIP:
  880. vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
  881. break;
  882. default:
  883. break;
  884. }
  885. }
  886. static int set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
  887. {
  888. int old_debug = vcpu->guest_debug;
  889. unsigned long flags;
  890. vcpu->guest_debug = dbg->control;
  891. if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
  892. vcpu->guest_debug = 0;
  893. if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
  894. vmcs_writel(GUEST_DR7, dbg->arch.debugreg[7]);
  895. else
  896. vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
  897. flags = vmcs_readl(GUEST_RFLAGS);
  898. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  899. flags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
  900. else if (old_debug & KVM_GUESTDBG_SINGLESTEP)
  901. flags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  902. vmcs_writel(GUEST_RFLAGS, flags);
  903. update_exception_bitmap(vcpu);
  904. return 0;
  905. }
  906. static __init int cpu_has_kvm_support(void)
  907. {
  908. return cpu_has_vmx();
  909. }
  910. static __init int vmx_disabled_by_bios(void)
  911. {
  912. u64 msr;
  913. rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
  914. return (msr & (FEATURE_CONTROL_LOCKED |
  915. FEATURE_CONTROL_VMXON_ENABLED))
  916. == FEATURE_CONTROL_LOCKED;
  917. /* locked but not enabled */
  918. }
  919. static void hardware_enable(void *garbage)
  920. {
  921. int cpu = raw_smp_processor_id();
  922. u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
  923. u64 old;
  924. INIT_LIST_HEAD(&per_cpu(vcpus_on_cpu, cpu));
  925. rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
  926. if ((old & (FEATURE_CONTROL_LOCKED |
  927. FEATURE_CONTROL_VMXON_ENABLED))
  928. != (FEATURE_CONTROL_LOCKED |
  929. FEATURE_CONTROL_VMXON_ENABLED))
  930. /* enable and lock */
  931. wrmsrl(MSR_IA32_FEATURE_CONTROL, old |
  932. FEATURE_CONTROL_LOCKED |
  933. FEATURE_CONTROL_VMXON_ENABLED);
  934. write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
  935. asm volatile (ASM_VMX_VMXON_RAX
  936. : : "a"(&phys_addr), "m"(phys_addr)
  937. : "memory", "cc");
  938. }
  939. static void vmclear_local_vcpus(void)
  940. {
  941. int cpu = raw_smp_processor_id();
  942. struct vcpu_vmx *vmx, *n;
  943. list_for_each_entry_safe(vmx, n, &per_cpu(vcpus_on_cpu, cpu),
  944. local_vcpus_link)
  945. __vcpu_clear(vmx);
  946. }
  947. /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
  948. * tricks.
  949. */
  950. static void kvm_cpu_vmxoff(void)
  951. {
  952. asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
  953. write_cr4(read_cr4() & ~X86_CR4_VMXE);
  954. }
  955. static void hardware_disable(void *garbage)
  956. {
  957. vmclear_local_vcpus();
  958. kvm_cpu_vmxoff();
  959. }
  960. static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
  961. u32 msr, u32 *result)
  962. {
  963. u32 vmx_msr_low, vmx_msr_high;
  964. u32 ctl = ctl_min | ctl_opt;
  965. rdmsr(msr, vmx_msr_low, vmx_msr_high);
  966. ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
  967. ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
  968. /* Ensure minimum (required) set of control bits are supported. */
  969. if (ctl_min & ~ctl)
  970. return -EIO;
  971. *result = ctl;
  972. return 0;
  973. }
  974. static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
  975. {
  976. u32 vmx_msr_low, vmx_msr_high;
  977. u32 min, opt, min2, opt2;
  978. u32 _pin_based_exec_control = 0;
  979. u32 _cpu_based_exec_control = 0;
  980. u32 _cpu_based_2nd_exec_control = 0;
  981. u32 _vmexit_control = 0;
  982. u32 _vmentry_control = 0;
  983. min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
  984. opt = PIN_BASED_VIRTUAL_NMIS;
  985. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
  986. &_pin_based_exec_control) < 0)
  987. return -EIO;
  988. min = CPU_BASED_HLT_EXITING |
  989. #ifdef CONFIG_X86_64
  990. CPU_BASED_CR8_LOAD_EXITING |
  991. CPU_BASED_CR8_STORE_EXITING |
  992. #endif
  993. CPU_BASED_CR3_LOAD_EXITING |
  994. CPU_BASED_CR3_STORE_EXITING |
  995. CPU_BASED_USE_IO_BITMAPS |
  996. CPU_BASED_MOV_DR_EXITING |
  997. CPU_BASED_USE_TSC_OFFSETING |
  998. CPU_BASED_INVLPG_EXITING;
  999. opt = CPU_BASED_TPR_SHADOW |
  1000. CPU_BASED_USE_MSR_BITMAPS |
  1001. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
  1002. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
  1003. &_cpu_based_exec_control) < 0)
  1004. return -EIO;
  1005. #ifdef CONFIG_X86_64
  1006. if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
  1007. _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
  1008. ~CPU_BASED_CR8_STORE_EXITING;
  1009. #endif
  1010. if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
  1011. min2 = 0;
  1012. opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
  1013. SECONDARY_EXEC_WBINVD_EXITING |
  1014. SECONDARY_EXEC_ENABLE_VPID |
  1015. SECONDARY_EXEC_ENABLE_EPT;
  1016. if (adjust_vmx_controls(min2, opt2,
  1017. MSR_IA32_VMX_PROCBASED_CTLS2,
  1018. &_cpu_based_2nd_exec_control) < 0)
  1019. return -EIO;
  1020. }
  1021. #ifndef CONFIG_X86_64
  1022. if (!(_cpu_based_2nd_exec_control &
  1023. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
  1024. _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
  1025. #endif
  1026. if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
  1027. /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
  1028. enabled */
  1029. min &= ~(CPU_BASED_CR3_LOAD_EXITING |
  1030. CPU_BASED_CR3_STORE_EXITING |
  1031. CPU_BASED_INVLPG_EXITING);
  1032. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
  1033. &_cpu_based_exec_control) < 0)
  1034. return -EIO;
  1035. rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
  1036. vmx_capability.ept, vmx_capability.vpid);
  1037. }
  1038. min = 0;
  1039. #ifdef CONFIG_X86_64
  1040. min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
  1041. #endif
  1042. opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT;
  1043. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
  1044. &_vmexit_control) < 0)
  1045. return -EIO;
  1046. min = 0;
  1047. opt = VM_ENTRY_LOAD_IA32_PAT;
  1048. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
  1049. &_vmentry_control) < 0)
  1050. return -EIO;
  1051. rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
  1052. /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
  1053. if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
  1054. return -EIO;
  1055. #ifdef CONFIG_X86_64
  1056. /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
  1057. if (vmx_msr_high & (1u<<16))
  1058. return -EIO;
  1059. #endif
  1060. /* Require Write-Back (WB) memory type for VMCS accesses. */
  1061. if (((vmx_msr_high >> 18) & 15) != 6)
  1062. return -EIO;
  1063. vmcs_conf->size = vmx_msr_high & 0x1fff;
  1064. vmcs_conf->order = get_order(vmcs_config.size);
  1065. vmcs_conf->revision_id = vmx_msr_low;
  1066. vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
  1067. vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
  1068. vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
  1069. vmcs_conf->vmexit_ctrl = _vmexit_control;
  1070. vmcs_conf->vmentry_ctrl = _vmentry_control;
  1071. return 0;
  1072. }
  1073. static struct vmcs *alloc_vmcs_cpu(int cpu)
  1074. {
  1075. int node = cpu_to_node(cpu);
  1076. struct page *pages;
  1077. struct vmcs *vmcs;
  1078. pages = alloc_pages_node(node, GFP_KERNEL, vmcs_config.order);
  1079. if (!pages)
  1080. return NULL;
  1081. vmcs = page_address(pages);
  1082. memset(vmcs, 0, vmcs_config.size);
  1083. vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
  1084. return vmcs;
  1085. }
  1086. static struct vmcs *alloc_vmcs(void)
  1087. {
  1088. return alloc_vmcs_cpu(raw_smp_processor_id());
  1089. }
  1090. static void free_vmcs(struct vmcs *vmcs)
  1091. {
  1092. free_pages((unsigned long)vmcs, vmcs_config.order);
  1093. }
  1094. static void free_kvm_area(void)
  1095. {
  1096. int cpu;
  1097. for_each_online_cpu(cpu)
  1098. free_vmcs(per_cpu(vmxarea, cpu));
  1099. }
  1100. static __init int alloc_kvm_area(void)
  1101. {
  1102. int cpu;
  1103. for_each_online_cpu(cpu) {
  1104. struct vmcs *vmcs;
  1105. vmcs = alloc_vmcs_cpu(cpu);
  1106. if (!vmcs) {
  1107. free_kvm_area();
  1108. return -ENOMEM;
  1109. }
  1110. per_cpu(vmxarea, cpu) = vmcs;
  1111. }
  1112. return 0;
  1113. }
  1114. static __init int hardware_setup(void)
  1115. {
  1116. if (setup_vmcs_config(&vmcs_config) < 0)
  1117. return -EIO;
  1118. if (boot_cpu_has(X86_FEATURE_NX))
  1119. kvm_enable_efer_bits(EFER_NX);
  1120. if (!cpu_has_vmx_vpid())
  1121. enable_vpid = 0;
  1122. if (!cpu_has_vmx_ept())
  1123. enable_ept = 0;
  1124. if (!cpu_has_vmx_flexpriority())
  1125. flexpriority_enabled = 0;
  1126. if (!cpu_has_vmx_tpr_shadow())
  1127. kvm_x86_ops->update_cr8_intercept = NULL;
  1128. return alloc_kvm_area();
  1129. }
  1130. static __exit void hardware_unsetup(void)
  1131. {
  1132. free_kvm_area();
  1133. }
  1134. static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
  1135. {
  1136. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1137. if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
  1138. vmcs_write16(sf->selector, save->selector);
  1139. vmcs_writel(sf->base, save->base);
  1140. vmcs_write32(sf->limit, save->limit);
  1141. vmcs_write32(sf->ar_bytes, save->ar);
  1142. } else {
  1143. u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
  1144. << AR_DPL_SHIFT;
  1145. vmcs_write32(sf->ar_bytes, 0x93 | dpl);
  1146. }
  1147. }
  1148. static void enter_pmode(struct kvm_vcpu *vcpu)
  1149. {
  1150. unsigned long flags;
  1151. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1152. vmx->emulation_required = 1;
  1153. vcpu->arch.rmode.active = 0;
  1154. vmcs_writel(GUEST_TR_BASE, vcpu->arch.rmode.tr.base);
  1155. vmcs_write32(GUEST_TR_LIMIT, vcpu->arch.rmode.tr.limit);
  1156. vmcs_write32(GUEST_TR_AR_BYTES, vcpu->arch.rmode.tr.ar);
  1157. flags = vmcs_readl(GUEST_RFLAGS);
  1158. flags &= ~(X86_EFLAGS_IOPL | X86_EFLAGS_VM);
  1159. flags |= (vcpu->arch.rmode.save_iopl << IOPL_SHIFT);
  1160. vmcs_writel(GUEST_RFLAGS, flags);
  1161. vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
  1162. (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
  1163. update_exception_bitmap(vcpu);
  1164. if (emulate_invalid_guest_state)
  1165. return;
  1166. fix_pmode_dataseg(VCPU_SREG_ES, &vcpu->arch.rmode.es);
  1167. fix_pmode_dataseg(VCPU_SREG_DS, &vcpu->arch.rmode.ds);
  1168. fix_pmode_dataseg(VCPU_SREG_GS, &vcpu->arch.rmode.gs);
  1169. fix_pmode_dataseg(VCPU_SREG_FS, &vcpu->arch.rmode.fs);
  1170. vmcs_write16(GUEST_SS_SELECTOR, 0);
  1171. vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
  1172. vmcs_write16(GUEST_CS_SELECTOR,
  1173. vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
  1174. vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
  1175. }
  1176. static gva_t rmode_tss_base(struct kvm *kvm)
  1177. {
  1178. if (!kvm->arch.tss_addr) {
  1179. gfn_t base_gfn = kvm->memslots[0].base_gfn +
  1180. kvm->memslots[0].npages - 3;
  1181. return base_gfn << PAGE_SHIFT;
  1182. }
  1183. return kvm->arch.tss_addr;
  1184. }
  1185. static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
  1186. {
  1187. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1188. save->selector = vmcs_read16(sf->selector);
  1189. save->base = vmcs_readl(sf->base);
  1190. save->limit = vmcs_read32(sf->limit);
  1191. save->ar = vmcs_read32(sf->ar_bytes);
  1192. vmcs_write16(sf->selector, save->base >> 4);
  1193. vmcs_write32(sf->base, save->base & 0xfffff);
  1194. vmcs_write32(sf->limit, 0xffff);
  1195. vmcs_write32(sf->ar_bytes, 0xf3);
  1196. }
  1197. static void enter_rmode(struct kvm_vcpu *vcpu)
  1198. {
  1199. unsigned long flags;
  1200. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1201. vmx->emulation_required = 1;
  1202. vcpu->arch.rmode.active = 1;
  1203. vcpu->arch.rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
  1204. vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
  1205. vcpu->arch.rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
  1206. vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
  1207. vcpu->arch.rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
  1208. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  1209. flags = vmcs_readl(GUEST_RFLAGS);
  1210. vcpu->arch.rmode.save_iopl
  1211. = (flags & X86_EFLAGS_IOPL) >> IOPL_SHIFT;
  1212. flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  1213. vmcs_writel(GUEST_RFLAGS, flags);
  1214. vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
  1215. update_exception_bitmap(vcpu);
  1216. if (emulate_invalid_guest_state)
  1217. goto continue_rmode;
  1218. vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
  1219. vmcs_write32(GUEST_SS_LIMIT, 0xffff);
  1220. vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
  1221. vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
  1222. vmcs_write32(GUEST_CS_LIMIT, 0xffff);
  1223. if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
  1224. vmcs_writel(GUEST_CS_BASE, 0xf0000);
  1225. vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
  1226. fix_rmode_seg(VCPU_SREG_ES, &vcpu->arch.rmode.es);
  1227. fix_rmode_seg(VCPU_SREG_DS, &vcpu->arch.rmode.ds);
  1228. fix_rmode_seg(VCPU_SREG_GS, &vcpu->arch.rmode.gs);
  1229. fix_rmode_seg(VCPU_SREG_FS, &vcpu->arch.rmode.fs);
  1230. continue_rmode:
  1231. kvm_mmu_reset_context(vcpu);
  1232. init_rmode(vcpu->kvm);
  1233. }
  1234. static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
  1235. {
  1236. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1237. struct kvm_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
  1238. vcpu->arch.shadow_efer = efer;
  1239. if (!msr)
  1240. return;
  1241. if (efer & EFER_LMA) {
  1242. vmcs_write32(VM_ENTRY_CONTROLS,
  1243. vmcs_read32(VM_ENTRY_CONTROLS) |
  1244. VM_ENTRY_IA32E_MODE);
  1245. msr->data = efer;
  1246. } else {
  1247. vmcs_write32(VM_ENTRY_CONTROLS,
  1248. vmcs_read32(VM_ENTRY_CONTROLS) &
  1249. ~VM_ENTRY_IA32E_MODE);
  1250. msr->data = efer & ~EFER_LME;
  1251. }
  1252. setup_msrs(vmx);
  1253. }
  1254. #ifdef CONFIG_X86_64
  1255. static void enter_lmode(struct kvm_vcpu *vcpu)
  1256. {
  1257. u32 guest_tr_ar;
  1258. guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
  1259. if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
  1260. printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
  1261. __func__);
  1262. vmcs_write32(GUEST_TR_AR_BYTES,
  1263. (guest_tr_ar & ~AR_TYPE_MASK)
  1264. | AR_TYPE_BUSY_64_TSS);
  1265. }
  1266. vcpu->arch.shadow_efer |= EFER_LMA;
  1267. vmx_set_efer(vcpu, vcpu->arch.shadow_efer);
  1268. }
  1269. static void exit_lmode(struct kvm_vcpu *vcpu)
  1270. {
  1271. vcpu->arch.shadow_efer &= ~EFER_LMA;
  1272. vmcs_write32(VM_ENTRY_CONTROLS,
  1273. vmcs_read32(VM_ENTRY_CONTROLS)
  1274. & ~VM_ENTRY_IA32E_MODE);
  1275. }
  1276. #endif
  1277. static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
  1278. {
  1279. vpid_sync_vcpu_all(to_vmx(vcpu));
  1280. if (enable_ept)
  1281. ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
  1282. }
  1283. static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
  1284. {
  1285. vcpu->arch.cr4 &= KVM_GUEST_CR4_MASK;
  1286. vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & ~KVM_GUEST_CR4_MASK;
  1287. }
  1288. static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
  1289. {
  1290. if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
  1291. if (!load_pdptrs(vcpu, vcpu->arch.cr3)) {
  1292. printk(KERN_ERR "EPT: Fail to load pdptrs!\n");
  1293. return;
  1294. }
  1295. vmcs_write64(GUEST_PDPTR0, vcpu->arch.pdptrs[0]);
  1296. vmcs_write64(GUEST_PDPTR1, vcpu->arch.pdptrs[1]);
  1297. vmcs_write64(GUEST_PDPTR2, vcpu->arch.pdptrs[2]);
  1298. vmcs_write64(GUEST_PDPTR3, vcpu->arch.pdptrs[3]);
  1299. }
  1300. }
  1301. static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
  1302. static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
  1303. unsigned long cr0,
  1304. struct kvm_vcpu *vcpu)
  1305. {
  1306. if (!(cr0 & X86_CR0_PG)) {
  1307. /* From paging/starting to nonpaging */
  1308. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
  1309. vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
  1310. (CPU_BASED_CR3_LOAD_EXITING |
  1311. CPU_BASED_CR3_STORE_EXITING));
  1312. vcpu->arch.cr0 = cr0;
  1313. vmx_set_cr4(vcpu, vcpu->arch.cr4);
  1314. *hw_cr0 |= X86_CR0_PE | X86_CR0_PG;
  1315. *hw_cr0 &= ~X86_CR0_WP;
  1316. } else if (!is_paging(vcpu)) {
  1317. /* From nonpaging to paging */
  1318. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
  1319. vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
  1320. ~(CPU_BASED_CR3_LOAD_EXITING |
  1321. CPU_BASED_CR3_STORE_EXITING));
  1322. vcpu->arch.cr0 = cr0;
  1323. vmx_set_cr4(vcpu, vcpu->arch.cr4);
  1324. if (!(vcpu->arch.cr0 & X86_CR0_WP))
  1325. *hw_cr0 &= ~X86_CR0_WP;
  1326. }
  1327. }
  1328. static void ept_update_paging_mode_cr4(unsigned long *hw_cr4,
  1329. struct kvm_vcpu *vcpu)
  1330. {
  1331. if (!is_paging(vcpu)) {
  1332. *hw_cr4 &= ~X86_CR4_PAE;
  1333. *hw_cr4 |= X86_CR4_PSE;
  1334. } else if (!(vcpu->arch.cr4 & X86_CR4_PAE))
  1335. *hw_cr4 &= ~X86_CR4_PAE;
  1336. }
  1337. static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  1338. {
  1339. unsigned long hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK) |
  1340. KVM_VM_CR0_ALWAYS_ON;
  1341. vmx_fpu_deactivate(vcpu);
  1342. if (vcpu->arch.rmode.active && (cr0 & X86_CR0_PE))
  1343. enter_pmode(vcpu);
  1344. if (!vcpu->arch.rmode.active && !(cr0 & X86_CR0_PE))
  1345. enter_rmode(vcpu);
  1346. #ifdef CONFIG_X86_64
  1347. if (vcpu->arch.shadow_efer & EFER_LME) {
  1348. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
  1349. enter_lmode(vcpu);
  1350. if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
  1351. exit_lmode(vcpu);
  1352. }
  1353. #endif
  1354. if (enable_ept)
  1355. ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
  1356. vmcs_writel(CR0_READ_SHADOW, cr0);
  1357. vmcs_writel(GUEST_CR0, hw_cr0);
  1358. vcpu->arch.cr0 = cr0;
  1359. if (!(cr0 & X86_CR0_TS) || !(cr0 & X86_CR0_PE))
  1360. vmx_fpu_activate(vcpu);
  1361. }
  1362. static u64 construct_eptp(unsigned long root_hpa)
  1363. {
  1364. u64 eptp;
  1365. /* TODO write the value reading from MSR */
  1366. eptp = VMX_EPT_DEFAULT_MT |
  1367. VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
  1368. eptp |= (root_hpa & PAGE_MASK);
  1369. return eptp;
  1370. }
  1371. static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  1372. {
  1373. unsigned long guest_cr3;
  1374. u64 eptp;
  1375. guest_cr3 = cr3;
  1376. if (enable_ept) {
  1377. eptp = construct_eptp(cr3);
  1378. vmcs_write64(EPT_POINTER, eptp);
  1379. ept_sync_context(eptp);
  1380. ept_load_pdptrs(vcpu);
  1381. guest_cr3 = is_paging(vcpu) ? vcpu->arch.cr3 :
  1382. VMX_EPT_IDENTITY_PAGETABLE_ADDR;
  1383. }
  1384. vmx_flush_tlb(vcpu);
  1385. vmcs_writel(GUEST_CR3, guest_cr3);
  1386. if (vcpu->arch.cr0 & X86_CR0_PE)
  1387. vmx_fpu_deactivate(vcpu);
  1388. }
  1389. static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  1390. {
  1391. unsigned long hw_cr4 = cr4 | (vcpu->arch.rmode.active ?
  1392. KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
  1393. vcpu->arch.cr4 = cr4;
  1394. if (enable_ept)
  1395. ept_update_paging_mode_cr4(&hw_cr4, vcpu);
  1396. vmcs_writel(CR4_READ_SHADOW, cr4);
  1397. vmcs_writel(GUEST_CR4, hw_cr4);
  1398. }
  1399. static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
  1400. {
  1401. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1402. return vmcs_readl(sf->base);
  1403. }
  1404. static void vmx_get_segment(struct kvm_vcpu *vcpu,
  1405. struct kvm_segment *var, int seg)
  1406. {
  1407. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1408. u32 ar;
  1409. var->base = vmcs_readl(sf->base);
  1410. var->limit = vmcs_read32(sf->limit);
  1411. var->selector = vmcs_read16(sf->selector);
  1412. ar = vmcs_read32(sf->ar_bytes);
  1413. if ((ar & AR_UNUSABLE_MASK) && !emulate_invalid_guest_state)
  1414. ar = 0;
  1415. var->type = ar & 15;
  1416. var->s = (ar >> 4) & 1;
  1417. var->dpl = (ar >> 5) & 3;
  1418. var->present = (ar >> 7) & 1;
  1419. var->avl = (ar >> 12) & 1;
  1420. var->l = (ar >> 13) & 1;
  1421. var->db = (ar >> 14) & 1;
  1422. var->g = (ar >> 15) & 1;
  1423. var->unusable = (ar >> 16) & 1;
  1424. }
  1425. static int vmx_get_cpl(struct kvm_vcpu *vcpu)
  1426. {
  1427. struct kvm_segment kvm_seg;
  1428. if (!(vcpu->arch.cr0 & X86_CR0_PE)) /* if real mode */
  1429. return 0;
  1430. if (vmx_get_rflags(vcpu) & X86_EFLAGS_VM) /* if virtual 8086 */
  1431. return 3;
  1432. vmx_get_segment(vcpu, &kvm_seg, VCPU_SREG_CS);
  1433. return kvm_seg.selector & 3;
  1434. }
  1435. static u32 vmx_segment_access_rights(struct kvm_segment *var)
  1436. {
  1437. u32 ar;
  1438. if (var->unusable)
  1439. ar = 1 << 16;
  1440. else {
  1441. ar = var->type & 15;
  1442. ar |= (var->s & 1) << 4;
  1443. ar |= (var->dpl & 3) << 5;
  1444. ar |= (var->present & 1) << 7;
  1445. ar |= (var->avl & 1) << 12;
  1446. ar |= (var->l & 1) << 13;
  1447. ar |= (var->db & 1) << 14;
  1448. ar |= (var->g & 1) << 15;
  1449. }
  1450. if (ar == 0) /* a 0 value means unusable */
  1451. ar = AR_UNUSABLE_MASK;
  1452. return ar;
  1453. }
  1454. static void vmx_set_segment(struct kvm_vcpu *vcpu,
  1455. struct kvm_segment *var, int seg)
  1456. {
  1457. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1458. u32 ar;
  1459. if (vcpu->arch.rmode.active && seg == VCPU_SREG_TR) {
  1460. vcpu->arch.rmode.tr.selector = var->selector;
  1461. vcpu->arch.rmode.tr.base = var->base;
  1462. vcpu->arch.rmode.tr.limit = var->limit;
  1463. vcpu->arch.rmode.tr.ar = vmx_segment_access_rights(var);
  1464. return;
  1465. }
  1466. vmcs_writel(sf->base, var->base);
  1467. vmcs_write32(sf->limit, var->limit);
  1468. vmcs_write16(sf->selector, var->selector);
  1469. if (vcpu->arch.rmode.active && var->s) {
  1470. /*
  1471. * Hack real-mode segments into vm86 compatibility.
  1472. */
  1473. if (var->base == 0xffff0000 && var->selector == 0xf000)
  1474. vmcs_writel(sf->base, 0xf0000);
  1475. ar = 0xf3;
  1476. } else
  1477. ar = vmx_segment_access_rights(var);
  1478. vmcs_write32(sf->ar_bytes, ar);
  1479. }
  1480. static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  1481. {
  1482. u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
  1483. *db = (ar >> 14) & 1;
  1484. *l = (ar >> 13) & 1;
  1485. }
  1486. static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1487. {
  1488. dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
  1489. dt->base = vmcs_readl(GUEST_IDTR_BASE);
  1490. }
  1491. static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1492. {
  1493. vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
  1494. vmcs_writel(GUEST_IDTR_BASE, dt->base);
  1495. }
  1496. static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1497. {
  1498. dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
  1499. dt->base = vmcs_readl(GUEST_GDTR_BASE);
  1500. }
  1501. static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1502. {
  1503. vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
  1504. vmcs_writel(GUEST_GDTR_BASE, dt->base);
  1505. }
  1506. static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
  1507. {
  1508. struct kvm_segment var;
  1509. u32 ar;
  1510. vmx_get_segment(vcpu, &var, seg);
  1511. ar = vmx_segment_access_rights(&var);
  1512. if (var.base != (var.selector << 4))
  1513. return false;
  1514. if (var.limit != 0xffff)
  1515. return false;
  1516. if (ar != 0xf3)
  1517. return false;
  1518. return true;
  1519. }
  1520. static bool code_segment_valid(struct kvm_vcpu *vcpu)
  1521. {
  1522. struct kvm_segment cs;
  1523. unsigned int cs_rpl;
  1524. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  1525. cs_rpl = cs.selector & SELECTOR_RPL_MASK;
  1526. if (cs.unusable)
  1527. return false;
  1528. if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
  1529. return false;
  1530. if (!cs.s)
  1531. return false;
  1532. if (cs.type & AR_TYPE_WRITEABLE_MASK) {
  1533. if (cs.dpl > cs_rpl)
  1534. return false;
  1535. } else {
  1536. if (cs.dpl != cs_rpl)
  1537. return false;
  1538. }
  1539. if (!cs.present)
  1540. return false;
  1541. /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
  1542. return true;
  1543. }
  1544. static bool stack_segment_valid(struct kvm_vcpu *vcpu)
  1545. {
  1546. struct kvm_segment ss;
  1547. unsigned int ss_rpl;
  1548. vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
  1549. ss_rpl = ss.selector & SELECTOR_RPL_MASK;
  1550. if (ss.unusable)
  1551. return true;
  1552. if (ss.type != 3 && ss.type != 7)
  1553. return false;
  1554. if (!ss.s)
  1555. return false;
  1556. if (ss.dpl != ss_rpl) /* DPL != RPL */
  1557. return false;
  1558. if (!ss.present)
  1559. return false;
  1560. return true;
  1561. }
  1562. static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
  1563. {
  1564. struct kvm_segment var;
  1565. unsigned int rpl;
  1566. vmx_get_segment(vcpu, &var, seg);
  1567. rpl = var.selector & SELECTOR_RPL_MASK;
  1568. if (var.unusable)
  1569. return true;
  1570. if (!var.s)
  1571. return false;
  1572. if (!var.present)
  1573. return false;
  1574. if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
  1575. if (var.dpl < rpl) /* DPL < RPL */
  1576. return false;
  1577. }
  1578. /* TODO: Add other members to kvm_segment_field to allow checking for other access
  1579. * rights flags
  1580. */
  1581. return true;
  1582. }
  1583. static bool tr_valid(struct kvm_vcpu *vcpu)
  1584. {
  1585. struct kvm_segment tr;
  1586. vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
  1587. if (tr.unusable)
  1588. return false;
  1589. if (tr.selector & SELECTOR_TI_MASK) /* TI = 1 */
  1590. return false;
  1591. if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
  1592. return false;
  1593. if (!tr.present)
  1594. return false;
  1595. return true;
  1596. }
  1597. static bool ldtr_valid(struct kvm_vcpu *vcpu)
  1598. {
  1599. struct kvm_segment ldtr;
  1600. vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
  1601. if (ldtr.unusable)
  1602. return true;
  1603. if (ldtr.selector & SELECTOR_TI_MASK) /* TI = 1 */
  1604. return false;
  1605. if (ldtr.type != 2)
  1606. return false;
  1607. if (!ldtr.present)
  1608. return false;
  1609. return true;
  1610. }
  1611. static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
  1612. {
  1613. struct kvm_segment cs, ss;
  1614. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  1615. vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
  1616. return ((cs.selector & SELECTOR_RPL_MASK) ==
  1617. (ss.selector & SELECTOR_RPL_MASK));
  1618. }
  1619. /*
  1620. * Check if guest state is valid. Returns true if valid, false if
  1621. * not.
  1622. * We assume that registers are always usable
  1623. */
  1624. static bool guest_state_valid(struct kvm_vcpu *vcpu)
  1625. {
  1626. /* real mode guest state checks */
  1627. if (!(vcpu->arch.cr0 & X86_CR0_PE)) {
  1628. if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
  1629. return false;
  1630. if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
  1631. return false;
  1632. if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
  1633. return false;
  1634. if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
  1635. return false;
  1636. if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
  1637. return false;
  1638. if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
  1639. return false;
  1640. } else {
  1641. /* protected mode guest state checks */
  1642. if (!cs_ss_rpl_check(vcpu))
  1643. return false;
  1644. if (!code_segment_valid(vcpu))
  1645. return false;
  1646. if (!stack_segment_valid(vcpu))
  1647. return false;
  1648. if (!data_segment_valid(vcpu, VCPU_SREG_DS))
  1649. return false;
  1650. if (!data_segment_valid(vcpu, VCPU_SREG_ES))
  1651. return false;
  1652. if (!data_segment_valid(vcpu, VCPU_SREG_FS))
  1653. return false;
  1654. if (!data_segment_valid(vcpu, VCPU_SREG_GS))
  1655. return false;
  1656. if (!tr_valid(vcpu))
  1657. return false;
  1658. if (!ldtr_valid(vcpu))
  1659. return false;
  1660. }
  1661. /* TODO:
  1662. * - Add checks on RIP
  1663. * - Add checks on RFLAGS
  1664. */
  1665. return true;
  1666. }
  1667. static int init_rmode_tss(struct kvm *kvm)
  1668. {
  1669. gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
  1670. u16 data = 0;
  1671. int ret = 0;
  1672. int r;
  1673. r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
  1674. if (r < 0)
  1675. goto out;
  1676. data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
  1677. r = kvm_write_guest_page(kvm, fn++, &data,
  1678. TSS_IOPB_BASE_OFFSET, sizeof(u16));
  1679. if (r < 0)
  1680. goto out;
  1681. r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
  1682. if (r < 0)
  1683. goto out;
  1684. r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
  1685. if (r < 0)
  1686. goto out;
  1687. data = ~0;
  1688. r = kvm_write_guest_page(kvm, fn, &data,
  1689. RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
  1690. sizeof(u8));
  1691. if (r < 0)
  1692. goto out;
  1693. ret = 1;
  1694. out:
  1695. return ret;
  1696. }
  1697. static int init_rmode_identity_map(struct kvm *kvm)
  1698. {
  1699. int i, r, ret;
  1700. pfn_t identity_map_pfn;
  1701. u32 tmp;
  1702. if (!enable_ept)
  1703. return 1;
  1704. if (unlikely(!kvm->arch.ept_identity_pagetable)) {
  1705. printk(KERN_ERR "EPT: identity-mapping pagetable "
  1706. "haven't been allocated!\n");
  1707. return 0;
  1708. }
  1709. if (likely(kvm->arch.ept_identity_pagetable_done))
  1710. return 1;
  1711. ret = 0;
  1712. identity_map_pfn = VMX_EPT_IDENTITY_PAGETABLE_ADDR >> PAGE_SHIFT;
  1713. r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
  1714. if (r < 0)
  1715. goto out;
  1716. /* Set up identity-mapping pagetable for EPT in real mode */
  1717. for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
  1718. tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
  1719. _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
  1720. r = kvm_write_guest_page(kvm, identity_map_pfn,
  1721. &tmp, i * sizeof(tmp), sizeof(tmp));
  1722. if (r < 0)
  1723. goto out;
  1724. }
  1725. kvm->arch.ept_identity_pagetable_done = true;
  1726. ret = 1;
  1727. out:
  1728. return ret;
  1729. }
  1730. static void seg_setup(int seg)
  1731. {
  1732. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1733. vmcs_write16(sf->selector, 0);
  1734. vmcs_writel(sf->base, 0);
  1735. vmcs_write32(sf->limit, 0xffff);
  1736. vmcs_write32(sf->ar_bytes, 0xf3);
  1737. }
  1738. static int alloc_apic_access_page(struct kvm *kvm)
  1739. {
  1740. struct kvm_userspace_memory_region kvm_userspace_mem;
  1741. int r = 0;
  1742. down_write(&kvm->slots_lock);
  1743. if (kvm->arch.apic_access_page)
  1744. goto out;
  1745. kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
  1746. kvm_userspace_mem.flags = 0;
  1747. kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
  1748. kvm_userspace_mem.memory_size = PAGE_SIZE;
  1749. r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
  1750. if (r)
  1751. goto out;
  1752. kvm->arch.apic_access_page = gfn_to_page(kvm, 0xfee00);
  1753. out:
  1754. up_write(&kvm->slots_lock);
  1755. return r;
  1756. }
  1757. static int alloc_identity_pagetable(struct kvm *kvm)
  1758. {
  1759. struct kvm_userspace_memory_region kvm_userspace_mem;
  1760. int r = 0;
  1761. down_write(&kvm->slots_lock);
  1762. if (kvm->arch.ept_identity_pagetable)
  1763. goto out;
  1764. kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
  1765. kvm_userspace_mem.flags = 0;
  1766. kvm_userspace_mem.guest_phys_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
  1767. kvm_userspace_mem.memory_size = PAGE_SIZE;
  1768. r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
  1769. if (r)
  1770. goto out;
  1771. kvm->arch.ept_identity_pagetable = gfn_to_page(kvm,
  1772. VMX_EPT_IDENTITY_PAGETABLE_ADDR >> PAGE_SHIFT);
  1773. out:
  1774. up_write(&kvm->slots_lock);
  1775. return r;
  1776. }
  1777. static void allocate_vpid(struct vcpu_vmx *vmx)
  1778. {
  1779. int vpid;
  1780. vmx->vpid = 0;
  1781. if (!enable_vpid)
  1782. return;
  1783. spin_lock(&vmx_vpid_lock);
  1784. vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
  1785. if (vpid < VMX_NR_VPIDS) {
  1786. vmx->vpid = vpid;
  1787. __set_bit(vpid, vmx_vpid_bitmap);
  1788. }
  1789. spin_unlock(&vmx_vpid_lock);
  1790. }
  1791. static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap, u32 msr)
  1792. {
  1793. int f = sizeof(unsigned long);
  1794. if (!cpu_has_vmx_msr_bitmap())
  1795. return;
  1796. /*
  1797. * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
  1798. * have the write-low and read-high bitmap offsets the wrong way round.
  1799. * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
  1800. */
  1801. if (msr <= 0x1fff) {
  1802. __clear_bit(msr, msr_bitmap + 0x000 / f); /* read-low */
  1803. __clear_bit(msr, msr_bitmap + 0x800 / f); /* write-low */
  1804. } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
  1805. msr &= 0x1fff;
  1806. __clear_bit(msr, msr_bitmap + 0x400 / f); /* read-high */
  1807. __clear_bit(msr, msr_bitmap + 0xc00 / f); /* write-high */
  1808. }
  1809. }
  1810. static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
  1811. {
  1812. if (!longmode_only)
  1813. __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy, msr);
  1814. __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode, msr);
  1815. }
  1816. /*
  1817. * Sets up the vmcs for emulated real mode.
  1818. */
  1819. static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
  1820. {
  1821. u32 host_sysenter_cs, msr_low, msr_high;
  1822. u32 junk;
  1823. u64 host_pat, tsc_this, tsc_base;
  1824. unsigned long a;
  1825. struct descriptor_table dt;
  1826. int i;
  1827. unsigned long kvm_vmx_return;
  1828. u32 exec_control;
  1829. /* I/O */
  1830. vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
  1831. vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
  1832. if (cpu_has_vmx_msr_bitmap())
  1833. vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
  1834. vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
  1835. /* Control */
  1836. vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
  1837. vmcs_config.pin_based_exec_ctrl);
  1838. exec_control = vmcs_config.cpu_based_exec_ctrl;
  1839. if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
  1840. exec_control &= ~CPU_BASED_TPR_SHADOW;
  1841. #ifdef CONFIG_X86_64
  1842. exec_control |= CPU_BASED_CR8_STORE_EXITING |
  1843. CPU_BASED_CR8_LOAD_EXITING;
  1844. #endif
  1845. }
  1846. if (!enable_ept)
  1847. exec_control |= CPU_BASED_CR3_STORE_EXITING |
  1848. CPU_BASED_CR3_LOAD_EXITING |
  1849. CPU_BASED_INVLPG_EXITING;
  1850. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
  1851. if (cpu_has_secondary_exec_ctrls()) {
  1852. exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
  1853. if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
  1854. exec_control &=
  1855. ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  1856. if (vmx->vpid == 0)
  1857. exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
  1858. if (!enable_ept)
  1859. exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
  1860. vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
  1861. }
  1862. vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, !!bypass_guest_pf);
  1863. vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, !!bypass_guest_pf);
  1864. vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
  1865. vmcs_writel(HOST_CR0, read_cr0()); /* 22.2.3 */
  1866. vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
  1867. vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
  1868. vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
  1869. vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1870. vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1871. vmcs_write16(HOST_FS_SELECTOR, kvm_read_fs()); /* 22.2.4 */
  1872. vmcs_write16(HOST_GS_SELECTOR, kvm_read_gs()); /* 22.2.4 */
  1873. vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1874. #ifdef CONFIG_X86_64
  1875. rdmsrl(MSR_FS_BASE, a);
  1876. vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
  1877. rdmsrl(MSR_GS_BASE, a);
  1878. vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
  1879. #else
  1880. vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
  1881. vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
  1882. #endif
  1883. vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
  1884. kvm_get_idt(&dt);
  1885. vmcs_writel(HOST_IDTR_BASE, dt.base); /* 22.2.4 */
  1886. asm("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return));
  1887. vmcs_writel(HOST_RIP, kvm_vmx_return); /* 22.2.5 */
  1888. vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
  1889. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
  1890. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
  1891. rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
  1892. vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
  1893. rdmsrl(MSR_IA32_SYSENTER_ESP, a);
  1894. vmcs_writel(HOST_IA32_SYSENTER_ESP, a); /* 22.2.3 */
  1895. rdmsrl(MSR_IA32_SYSENTER_EIP, a);
  1896. vmcs_writel(HOST_IA32_SYSENTER_EIP, a); /* 22.2.3 */
  1897. if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
  1898. rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
  1899. host_pat = msr_low | ((u64) msr_high << 32);
  1900. vmcs_write64(HOST_IA32_PAT, host_pat);
  1901. }
  1902. if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
  1903. rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
  1904. host_pat = msr_low | ((u64) msr_high << 32);
  1905. /* Write the default value follow host pat */
  1906. vmcs_write64(GUEST_IA32_PAT, host_pat);
  1907. /* Keep arch.pat sync with GUEST_IA32_PAT */
  1908. vmx->vcpu.arch.pat = host_pat;
  1909. }
  1910. for (i = 0; i < NR_VMX_MSR; ++i) {
  1911. u32 index = vmx_msr_index[i];
  1912. u32 data_low, data_high;
  1913. u64 data;
  1914. int j = vmx->nmsrs;
  1915. if (rdmsr_safe(index, &data_low, &data_high) < 0)
  1916. continue;
  1917. if (wrmsr_safe(index, data_low, data_high) < 0)
  1918. continue;
  1919. data = data_low | ((u64)data_high << 32);
  1920. vmx->host_msrs[j].index = index;
  1921. vmx->host_msrs[j].reserved = 0;
  1922. vmx->host_msrs[j].data = data;
  1923. vmx->guest_msrs[j] = vmx->host_msrs[j];
  1924. ++vmx->nmsrs;
  1925. }
  1926. vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
  1927. /* 22.2.1, 20.8.1 */
  1928. vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
  1929. vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
  1930. vmcs_writel(CR4_GUEST_HOST_MASK, KVM_GUEST_CR4_MASK);
  1931. tsc_base = vmx->vcpu.kvm->arch.vm_init_tsc;
  1932. rdtscll(tsc_this);
  1933. if (tsc_this < vmx->vcpu.kvm->arch.vm_init_tsc)
  1934. tsc_base = tsc_this;
  1935. guest_write_tsc(0, tsc_base);
  1936. return 0;
  1937. }
  1938. static int init_rmode(struct kvm *kvm)
  1939. {
  1940. if (!init_rmode_tss(kvm))
  1941. return 0;
  1942. if (!init_rmode_identity_map(kvm))
  1943. return 0;
  1944. return 1;
  1945. }
  1946. static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
  1947. {
  1948. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1949. u64 msr;
  1950. int ret;
  1951. vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
  1952. down_read(&vcpu->kvm->slots_lock);
  1953. if (!init_rmode(vmx->vcpu.kvm)) {
  1954. ret = -ENOMEM;
  1955. goto out;
  1956. }
  1957. vmx->vcpu.arch.rmode.active = 0;
  1958. vmx->soft_vnmi_blocked = 0;
  1959. vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
  1960. kvm_set_cr8(&vmx->vcpu, 0);
  1961. msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
  1962. if (vmx->vcpu.vcpu_id == 0)
  1963. msr |= MSR_IA32_APICBASE_BSP;
  1964. kvm_set_apic_base(&vmx->vcpu, msr);
  1965. fx_init(&vmx->vcpu);
  1966. seg_setup(VCPU_SREG_CS);
  1967. /*
  1968. * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
  1969. * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
  1970. */
  1971. if (vmx->vcpu.vcpu_id == 0) {
  1972. vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
  1973. vmcs_writel(GUEST_CS_BASE, 0x000f0000);
  1974. } else {
  1975. vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
  1976. vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
  1977. }
  1978. seg_setup(VCPU_SREG_DS);
  1979. seg_setup(VCPU_SREG_ES);
  1980. seg_setup(VCPU_SREG_FS);
  1981. seg_setup(VCPU_SREG_GS);
  1982. seg_setup(VCPU_SREG_SS);
  1983. vmcs_write16(GUEST_TR_SELECTOR, 0);
  1984. vmcs_writel(GUEST_TR_BASE, 0);
  1985. vmcs_write32(GUEST_TR_LIMIT, 0xffff);
  1986. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  1987. vmcs_write16(GUEST_LDTR_SELECTOR, 0);
  1988. vmcs_writel(GUEST_LDTR_BASE, 0);
  1989. vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
  1990. vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
  1991. vmcs_write32(GUEST_SYSENTER_CS, 0);
  1992. vmcs_writel(GUEST_SYSENTER_ESP, 0);
  1993. vmcs_writel(GUEST_SYSENTER_EIP, 0);
  1994. vmcs_writel(GUEST_RFLAGS, 0x02);
  1995. if (vmx->vcpu.vcpu_id == 0)
  1996. kvm_rip_write(vcpu, 0xfff0);
  1997. else
  1998. kvm_rip_write(vcpu, 0);
  1999. kvm_register_write(vcpu, VCPU_REGS_RSP, 0);
  2000. vmcs_writel(GUEST_DR7, 0x400);
  2001. vmcs_writel(GUEST_GDTR_BASE, 0);
  2002. vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
  2003. vmcs_writel(GUEST_IDTR_BASE, 0);
  2004. vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
  2005. vmcs_write32(GUEST_ACTIVITY_STATE, 0);
  2006. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
  2007. vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
  2008. /* Special registers */
  2009. vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
  2010. setup_msrs(vmx);
  2011. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
  2012. if (cpu_has_vmx_tpr_shadow()) {
  2013. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
  2014. if (vm_need_tpr_shadow(vmx->vcpu.kvm))
  2015. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
  2016. page_to_phys(vmx->vcpu.arch.apic->regs_page));
  2017. vmcs_write32(TPR_THRESHOLD, 0);
  2018. }
  2019. if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
  2020. vmcs_write64(APIC_ACCESS_ADDR,
  2021. page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
  2022. if (vmx->vpid != 0)
  2023. vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
  2024. vmx->vcpu.arch.cr0 = 0x60000010;
  2025. vmx_set_cr0(&vmx->vcpu, vmx->vcpu.arch.cr0); /* enter rmode */
  2026. vmx_set_cr4(&vmx->vcpu, 0);
  2027. vmx_set_efer(&vmx->vcpu, 0);
  2028. vmx_fpu_activate(&vmx->vcpu);
  2029. update_exception_bitmap(&vmx->vcpu);
  2030. vpid_sync_vcpu_all(vmx);
  2031. ret = 0;
  2032. /* HACK: Don't enable emulation on guest boot/reset */
  2033. vmx->emulation_required = 0;
  2034. out:
  2035. up_read(&vcpu->kvm->slots_lock);
  2036. return ret;
  2037. }
  2038. void vmx_drop_interrupt_shadow(struct kvm_vcpu *vcpu)
  2039. {
  2040. vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
  2041. GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
  2042. }
  2043. static void enable_irq_window(struct kvm_vcpu *vcpu)
  2044. {
  2045. u32 cpu_based_vm_exec_control;
  2046. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2047. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
  2048. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2049. }
  2050. static void enable_nmi_window(struct kvm_vcpu *vcpu)
  2051. {
  2052. u32 cpu_based_vm_exec_control;
  2053. if (!cpu_has_virtual_nmis()) {
  2054. enable_irq_window(vcpu);
  2055. return;
  2056. }
  2057. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2058. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
  2059. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2060. }
  2061. static void vmx_inject_irq(struct kvm_vcpu *vcpu, int irq)
  2062. {
  2063. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2064. KVMTRACE_1D(INJ_VIRQ, vcpu, (u32)irq, handler);
  2065. ++vcpu->stat.irq_injections;
  2066. if (vcpu->arch.rmode.active) {
  2067. vmx->rmode.irq.pending = true;
  2068. vmx->rmode.irq.vector = irq;
  2069. vmx->rmode.irq.rip = kvm_rip_read(vcpu);
  2070. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  2071. irq | INTR_TYPE_SOFT_INTR | INTR_INFO_VALID_MASK);
  2072. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
  2073. kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
  2074. return;
  2075. }
  2076. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  2077. irq | INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  2078. }
  2079. static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
  2080. {
  2081. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2082. if (!cpu_has_virtual_nmis()) {
  2083. /*
  2084. * Tracking the NMI-blocked state in software is built upon
  2085. * finding the next open IRQ window. This, in turn, depends on
  2086. * well-behaving guests: They have to keep IRQs disabled at
  2087. * least as long as the NMI handler runs. Otherwise we may
  2088. * cause NMI nesting, maybe breaking the guest. But as this is
  2089. * highly unlikely, we can live with the residual risk.
  2090. */
  2091. vmx->soft_vnmi_blocked = 1;
  2092. vmx->vnmi_blocked_time = 0;
  2093. }
  2094. ++vcpu->stat.nmi_injections;
  2095. if (vcpu->arch.rmode.active) {
  2096. vmx->rmode.irq.pending = true;
  2097. vmx->rmode.irq.vector = NMI_VECTOR;
  2098. vmx->rmode.irq.rip = kvm_rip_read(vcpu);
  2099. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  2100. NMI_VECTOR | INTR_TYPE_SOFT_INTR |
  2101. INTR_INFO_VALID_MASK);
  2102. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
  2103. kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
  2104. return;
  2105. }
  2106. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  2107. INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
  2108. }
  2109. static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
  2110. {
  2111. if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
  2112. return 0;
  2113. return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
  2114. (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS |
  2115. GUEST_INTR_STATE_NMI));
  2116. }
  2117. static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
  2118. {
  2119. return (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
  2120. !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
  2121. (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
  2122. }
  2123. static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
  2124. {
  2125. int ret;
  2126. struct kvm_userspace_memory_region tss_mem = {
  2127. .slot = TSS_PRIVATE_MEMSLOT,
  2128. .guest_phys_addr = addr,
  2129. .memory_size = PAGE_SIZE * 3,
  2130. .flags = 0,
  2131. };
  2132. ret = kvm_set_memory_region(kvm, &tss_mem, 0);
  2133. if (ret)
  2134. return ret;
  2135. kvm->arch.tss_addr = addr;
  2136. return 0;
  2137. }
  2138. static int handle_rmode_exception(struct kvm_vcpu *vcpu,
  2139. int vec, u32 err_code)
  2140. {
  2141. /*
  2142. * Instruction with address size override prefix opcode 0x67
  2143. * Cause the #SS fault with 0 error code in VM86 mode.
  2144. */
  2145. if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
  2146. if (emulate_instruction(vcpu, NULL, 0, 0, 0) == EMULATE_DONE)
  2147. return 1;
  2148. /*
  2149. * Forward all other exceptions that are valid in real mode.
  2150. * FIXME: Breaks guest debugging in real mode, needs to be fixed with
  2151. * the required debugging infrastructure rework.
  2152. */
  2153. switch (vec) {
  2154. case DB_VECTOR:
  2155. if (vcpu->guest_debug &
  2156. (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
  2157. return 0;
  2158. kvm_queue_exception(vcpu, vec);
  2159. return 1;
  2160. case BP_VECTOR:
  2161. if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
  2162. return 0;
  2163. /* fall through */
  2164. case DE_VECTOR:
  2165. case OF_VECTOR:
  2166. case BR_VECTOR:
  2167. case UD_VECTOR:
  2168. case DF_VECTOR:
  2169. case SS_VECTOR:
  2170. case GP_VECTOR:
  2171. case MF_VECTOR:
  2172. kvm_queue_exception(vcpu, vec);
  2173. return 1;
  2174. }
  2175. return 0;
  2176. }
  2177. static int handle_exception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2178. {
  2179. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2180. u32 intr_info, ex_no, error_code;
  2181. unsigned long cr2, rip, dr6;
  2182. u32 vect_info;
  2183. enum emulation_result er;
  2184. vect_info = vmx->idt_vectoring_info;
  2185. intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  2186. if ((vect_info & VECTORING_INFO_VALID_MASK) &&
  2187. !is_page_fault(intr_info))
  2188. printk(KERN_ERR "%s: unexpected, vectoring info 0x%x "
  2189. "intr info 0x%x\n", __func__, vect_info, intr_info);
  2190. if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
  2191. return 1; /* already handled by vmx_vcpu_run() */
  2192. if (is_no_device(intr_info)) {
  2193. vmx_fpu_activate(vcpu);
  2194. return 1;
  2195. }
  2196. if (is_invalid_opcode(intr_info)) {
  2197. er = emulate_instruction(vcpu, kvm_run, 0, 0, EMULTYPE_TRAP_UD);
  2198. if (er != EMULATE_DONE)
  2199. kvm_queue_exception(vcpu, UD_VECTOR);
  2200. return 1;
  2201. }
  2202. error_code = 0;
  2203. rip = kvm_rip_read(vcpu);
  2204. if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
  2205. error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
  2206. if (is_page_fault(intr_info)) {
  2207. /* EPT won't cause page fault directly */
  2208. if (enable_ept)
  2209. BUG();
  2210. cr2 = vmcs_readl(EXIT_QUALIFICATION);
  2211. KVMTRACE_3D(PAGE_FAULT, vcpu, error_code, (u32)cr2,
  2212. (u32)((u64)cr2 >> 32), handler);
  2213. if (vcpu->arch.interrupt.pending || vcpu->arch.exception.pending)
  2214. kvm_mmu_unprotect_page_virt(vcpu, cr2);
  2215. return kvm_mmu_page_fault(vcpu, cr2, error_code);
  2216. }
  2217. if (vcpu->arch.rmode.active &&
  2218. handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
  2219. error_code)) {
  2220. if (vcpu->arch.halt_request) {
  2221. vcpu->arch.halt_request = 0;
  2222. return kvm_emulate_halt(vcpu);
  2223. }
  2224. return 1;
  2225. }
  2226. ex_no = intr_info & INTR_INFO_VECTOR_MASK;
  2227. switch (ex_no) {
  2228. case DB_VECTOR:
  2229. dr6 = vmcs_readl(EXIT_QUALIFICATION);
  2230. if (!(vcpu->guest_debug &
  2231. (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
  2232. vcpu->arch.dr6 = dr6 | DR6_FIXED_1;
  2233. kvm_queue_exception(vcpu, DB_VECTOR);
  2234. return 1;
  2235. }
  2236. kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
  2237. kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
  2238. /* fall through */
  2239. case BP_VECTOR:
  2240. kvm_run->exit_reason = KVM_EXIT_DEBUG;
  2241. kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
  2242. kvm_run->debug.arch.exception = ex_no;
  2243. break;
  2244. default:
  2245. kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
  2246. kvm_run->ex.exception = ex_no;
  2247. kvm_run->ex.error_code = error_code;
  2248. break;
  2249. }
  2250. return 0;
  2251. }
  2252. static int handle_external_interrupt(struct kvm_vcpu *vcpu,
  2253. struct kvm_run *kvm_run)
  2254. {
  2255. ++vcpu->stat.irq_exits;
  2256. KVMTRACE_1D(INTR, vcpu, vmcs_read32(VM_EXIT_INTR_INFO), handler);
  2257. return 1;
  2258. }
  2259. static int handle_triple_fault(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2260. {
  2261. kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
  2262. return 0;
  2263. }
  2264. static int handle_io(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2265. {
  2266. unsigned long exit_qualification;
  2267. int size, in, string;
  2268. unsigned port;
  2269. ++vcpu->stat.io_exits;
  2270. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2271. string = (exit_qualification & 16) != 0;
  2272. if (string) {
  2273. if (emulate_instruction(vcpu,
  2274. kvm_run, 0, 0, 0) == EMULATE_DO_MMIO)
  2275. return 0;
  2276. return 1;
  2277. }
  2278. size = (exit_qualification & 7) + 1;
  2279. in = (exit_qualification & 8) != 0;
  2280. port = exit_qualification >> 16;
  2281. skip_emulated_instruction(vcpu);
  2282. return kvm_emulate_pio(vcpu, kvm_run, in, size, port);
  2283. }
  2284. static void
  2285. vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
  2286. {
  2287. /*
  2288. * Patch in the VMCALL instruction:
  2289. */
  2290. hypercall[0] = 0x0f;
  2291. hypercall[1] = 0x01;
  2292. hypercall[2] = 0xc1;
  2293. }
  2294. static int handle_cr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2295. {
  2296. unsigned long exit_qualification;
  2297. int cr;
  2298. int reg;
  2299. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2300. cr = exit_qualification & 15;
  2301. reg = (exit_qualification >> 8) & 15;
  2302. switch ((exit_qualification >> 4) & 3) {
  2303. case 0: /* mov to cr */
  2304. KVMTRACE_3D(CR_WRITE, vcpu, (u32)cr,
  2305. (u32)kvm_register_read(vcpu, reg),
  2306. (u32)((u64)kvm_register_read(vcpu, reg) >> 32),
  2307. handler);
  2308. switch (cr) {
  2309. case 0:
  2310. kvm_set_cr0(vcpu, kvm_register_read(vcpu, reg));
  2311. skip_emulated_instruction(vcpu);
  2312. return 1;
  2313. case 3:
  2314. kvm_set_cr3(vcpu, kvm_register_read(vcpu, reg));
  2315. skip_emulated_instruction(vcpu);
  2316. return 1;
  2317. case 4:
  2318. kvm_set_cr4(vcpu, kvm_register_read(vcpu, reg));
  2319. skip_emulated_instruction(vcpu);
  2320. return 1;
  2321. case 8: {
  2322. u8 cr8_prev = kvm_get_cr8(vcpu);
  2323. u8 cr8 = kvm_register_read(vcpu, reg);
  2324. kvm_set_cr8(vcpu, cr8);
  2325. skip_emulated_instruction(vcpu);
  2326. if (irqchip_in_kernel(vcpu->kvm))
  2327. return 1;
  2328. if (cr8_prev <= cr8)
  2329. return 1;
  2330. kvm_run->exit_reason = KVM_EXIT_SET_TPR;
  2331. return 0;
  2332. }
  2333. };
  2334. break;
  2335. case 2: /* clts */
  2336. vmx_fpu_deactivate(vcpu);
  2337. vcpu->arch.cr0 &= ~X86_CR0_TS;
  2338. vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
  2339. vmx_fpu_activate(vcpu);
  2340. KVMTRACE_0D(CLTS, vcpu, handler);
  2341. skip_emulated_instruction(vcpu);
  2342. return 1;
  2343. case 1: /*mov from cr*/
  2344. switch (cr) {
  2345. case 3:
  2346. kvm_register_write(vcpu, reg, vcpu->arch.cr3);
  2347. KVMTRACE_3D(CR_READ, vcpu, (u32)cr,
  2348. (u32)kvm_register_read(vcpu, reg),
  2349. (u32)((u64)kvm_register_read(vcpu, reg) >> 32),
  2350. handler);
  2351. skip_emulated_instruction(vcpu);
  2352. return 1;
  2353. case 8:
  2354. kvm_register_write(vcpu, reg, kvm_get_cr8(vcpu));
  2355. KVMTRACE_2D(CR_READ, vcpu, (u32)cr,
  2356. (u32)kvm_register_read(vcpu, reg), handler);
  2357. skip_emulated_instruction(vcpu);
  2358. return 1;
  2359. }
  2360. break;
  2361. case 3: /* lmsw */
  2362. kvm_lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
  2363. skip_emulated_instruction(vcpu);
  2364. return 1;
  2365. default:
  2366. break;
  2367. }
  2368. kvm_run->exit_reason = 0;
  2369. pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
  2370. (int)(exit_qualification >> 4) & 3, cr);
  2371. return 0;
  2372. }
  2373. static int handle_dr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2374. {
  2375. unsigned long exit_qualification;
  2376. unsigned long val;
  2377. int dr, reg;
  2378. dr = vmcs_readl(GUEST_DR7);
  2379. if (dr & DR7_GD) {
  2380. /*
  2381. * As the vm-exit takes precedence over the debug trap, we
  2382. * need to emulate the latter, either for the host or the
  2383. * guest debugging itself.
  2384. */
  2385. if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
  2386. kvm_run->debug.arch.dr6 = vcpu->arch.dr6;
  2387. kvm_run->debug.arch.dr7 = dr;
  2388. kvm_run->debug.arch.pc =
  2389. vmcs_readl(GUEST_CS_BASE) +
  2390. vmcs_readl(GUEST_RIP);
  2391. kvm_run->debug.arch.exception = DB_VECTOR;
  2392. kvm_run->exit_reason = KVM_EXIT_DEBUG;
  2393. return 0;
  2394. } else {
  2395. vcpu->arch.dr7 &= ~DR7_GD;
  2396. vcpu->arch.dr6 |= DR6_BD;
  2397. vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
  2398. kvm_queue_exception(vcpu, DB_VECTOR);
  2399. return 1;
  2400. }
  2401. }
  2402. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2403. dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
  2404. reg = DEBUG_REG_ACCESS_REG(exit_qualification);
  2405. if (exit_qualification & TYPE_MOV_FROM_DR) {
  2406. switch (dr) {
  2407. case 0 ... 3:
  2408. val = vcpu->arch.db[dr];
  2409. break;
  2410. case 6:
  2411. val = vcpu->arch.dr6;
  2412. break;
  2413. case 7:
  2414. val = vcpu->arch.dr7;
  2415. break;
  2416. default:
  2417. val = 0;
  2418. }
  2419. kvm_register_write(vcpu, reg, val);
  2420. KVMTRACE_2D(DR_READ, vcpu, (u32)dr, (u32)val, handler);
  2421. } else {
  2422. val = vcpu->arch.regs[reg];
  2423. switch (dr) {
  2424. case 0 ... 3:
  2425. vcpu->arch.db[dr] = val;
  2426. if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
  2427. vcpu->arch.eff_db[dr] = val;
  2428. break;
  2429. case 4 ... 5:
  2430. if (vcpu->arch.cr4 & X86_CR4_DE)
  2431. kvm_queue_exception(vcpu, UD_VECTOR);
  2432. break;
  2433. case 6:
  2434. if (val & 0xffffffff00000000ULL) {
  2435. kvm_queue_exception(vcpu, GP_VECTOR);
  2436. break;
  2437. }
  2438. vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
  2439. break;
  2440. case 7:
  2441. if (val & 0xffffffff00000000ULL) {
  2442. kvm_queue_exception(vcpu, GP_VECTOR);
  2443. break;
  2444. }
  2445. vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
  2446. if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
  2447. vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
  2448. vcpu->arch.switch_db_regs =
  2449. (val & DR7_BP_EN_MASK);
  2450. }
  2451. break;
  2452. }
  2453. KVMTRACE_2D(DR_WRITE, vcpu, (u32)dr, (u32)val, handler);
  2454. }
  2455. skip_emulated_instruction(vcpu);
  2456. return 1;
  2457. }
  2458. static int handle_cpuid(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2459. {
  2460. kvm_emulate_cpuid(vcpu);
  2461. return 1;
  2462. }
  2463. static int handle_rdmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2464. {
  2465. u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
  2466. u64 data;
  2467. if (vmx_get_msr(vcpu, ecx, &data)) {
  2468. kvm_inject_gp(vcpu, 0);
  2469. return 1;
  2470. }
  2471. KVMTRACE_3D(MSR_READ, vcpu, ecx, (u32)data, (u32)(data >> 32),
  2472. handler);
  2473. /* FIXME: handling of bits 32:63 of rax, rdx */
  2474. vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
  2475. vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
  2476. skip_emulated_instruction(vcpu);
  2477. return 1;
  2478. }
  2479. static int handle_wrmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2480. {
  2481. u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
  2482. u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
  2483. | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
  2484. KVMTRACE_3D(MSR_WRITE, vcpu, ecx, (u32)data, (u32)(data >> 32),
  2485. handler);
  2486. if (vmx_set_msr(vcpu, ecx, data) != 0) {
  2487. kvm_inject_gp(vcpu, 0);
  2488. return 1;
  2489. }
  2490. skip_emulated_instruction(vcpu);
  2491. return 1;
  2492. }
  2493. static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu,
  2494. struct kvm_run *kvm_run)
  2495. {
  2496. return 1;
  2497. }
  2498. static int handle_interrupt_window(struct kvm_vcpu *vcpu,
  2499. struct kvm_run *kvm_run)
  2500. {
  2501. u32 cpu_based_vm_exec_control;
  2502. /* clear pending irq */
  2503. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2504. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
  2505. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2506. KVMTRACE_0D(PEND_INTR, vcpu, handler);
  2507. ++vcpu->stat.irq_window_exits;
  2508. /*
  2509. * If the user space waits to inject interrupts, exit as soon as
  2510. * possible
  2511. */
  2512. if (!irqchip_in_kernel(vcpu->kvm) &&
  2513. kvm_run->request_interrupt_window &&
  2514. !kvm_cpu_has_interrupt(vcpu)) {
  2515. kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
  2516. return 0;
  2517. }
  2518. return 1;
  2519. }
  2520. static int handle_halt(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2521. {
  2522. skip_emulated_instruction(vcpu);
  2523. return kvm_emulate_halt(vcpu);
  2524. }
  2525. static int handle_vmcall(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2526. {
  2527. skip_emulated_instruction(vcpu);
  2528. kvm_emulate_hypercall(vcpu);
  2529. return 1;
  2530. }
  2531. static int handle_invlpg(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2532. {
  2533. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2534. kvm_mmu_invlpg(vcpu, exit_qualification);
  2535. skip_emulated_instruction(vcpu);
  2536. return 1;
  2537. }
  2538. static int handle_wbinvd(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2539. {
  2540. skip_emulated_instruction(vcpu);
  2541. /* TODO: Add support for VT-d/pass-through device */
  2542. return 1;
  2543. }
  2544. static int handle_apic_access(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2545. {
  2546. unsigned long exit_qualification;
  2547. enum emulation_result er;
  2548. unsigned long offset;
  2549. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2550. offset = exit_qualification & 0xffful;
  2551. er = emulate_instruction(vcpu, kvm_run, 0, 0, 0);
  2552. if (er != EMULATE_DONE) {
  2553. printk(KERN_ERR
  2554. "Fail to handle apic access vmexit! Offset is 0x%lx\n",
  2555. offset);
  2556. return -ENOTSUPP;
  2557. }
  2558. return 1;
  2559. }
  2560. static int handle_task_switch(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2561. {
  2562. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2563. unsigned long exit_qualification;
  2564. u16 tss_selector;
  2565. int reason, type, idt_v;
  2566. idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
  2567. type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
  2568. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2569. reason = (u32)exit_qualification >> 30;
  2570. if (reason == TASK_SWITCH_GATE && idt_v) {
  2571. switch (type) {
  2572. case INTR_TYPE_NMI_INTR:
  2573. vcpu->arch.nmi_injected = false;
  2574. if (cpu_has_virtual_nmis())
  2575. vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
  2576. GUEST_INTR_STATE_NMI);
  2577. break;
  2578. case INTR_TYPE_EXT_INTR:
  2579. kvm_clear_interrupt_queue(vcpu);
  2580. break;
  2581. case INTR_TYPE_HARD_EXCEPTION:
  2582. case INTR_TYPE_SOFT_EXCEPTION:
  2583. kvm_clear_exception_queue(vcpu);
  2584. break;
  2585. default:
  2586. break;
  2587. }
  2588. }
  2589. tss_selector = exit_qualification;
  2590. if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
  2591. type != INTR_TYPE_EXT_INTR &&
  2592. type != INTR_TYPE_NMI_INTR))
  2593. skip_emulated_instruction(vcpu);
  2594. if (!kvm_task_switch(vcpu, tss_selector, reason))
  2595. return 0;
  2596. /* clear all local breakpoint enable flags */
  2597. vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~55);
  2598. /*
  2599. * TODO: What about debug traps on tss switch?
  2600. * Are we supposed to inject them and update dr6?
  2601. */
  2602. return 1;
  2603. }
  2604. static int handle_ept_violation(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2605. {
  2606. unsigned long exit_qualification;
  2607. gpa_t gpa;
  2608. int gla_validity;
  2609. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2610. if (exit_qualification & (1 << 6)) {
  2611. printk(KERN_ERR "EPT: GPA exceeds GAW!\n");
  2612. return -ENOTSUPP;
  2613. }
  2614. gla_validity = (exit_qualification >> 7) & 0x3;
  2615. if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
  2616. printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
  2617. printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
  2618. (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
  2619. vmcs_readl(GUEST_LINEAR_ADDRESS));
  2620. printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
  2621. (long unsigned int)exit_qualification);
  2622. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  2623. kvm_run->hw.hardware_exit_reason = 0;
  2624. return -ENOTSUPP;
  2625. }
  2626. gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
  2627. return kvm_mmu_page_fault(vcpu, gpa & PAGE_MASK, 0);
  2628. }
  2629. static int handle_nmi_window(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2630. {
  2631. u32 cpu_based_vm_exec_control;
  2632. /* clear pending NMI */
  2633. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2634. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
  2635. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2636. ++vcpu->stat.nmi_window_exits;
  2637. return 1;
  2638. }
  2639. static void handle_invalid_guest_state(struct kvm_vcpu *vcpu,
  2640. struct kvm_run *kvm_run)
  2641. {
  2642. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2643. enum emulation_result err = EMULATE_DONE;
  2644. preempt_enable();
  2645. local_irq_enable();
  2646. while (!guest_state_valid(vcpu)) {
  2647. err = emulate_instruction(vcpu, kvm_run, 0, 0, 0);
  2648. if (err == EMULATE_DO_MMIO)
  2649. break;
  2650. if (err != EMULATE_DONE) {
  2651. kvm_report_emulation_failure(vcpu, "emulation failure");
  2652. return;
  2653. }
  2654. if (signal_pending(current))
  2655. break;
  2656. if (need_resched())
  2657. schedule();
  2658. }
  2659. local_irq_disable();
  2660. preempt_disable();
  2661. vmx->invalid_state_emulation_result = err;
  2662. }
  2663. /*
  2664. * The exit handlers return 1 if the exit was handled fully and guest execution
  2665. * may resume. Otherwise they set the kvm_run parameter to indicate what needs
  2666. * to be done to userspace and return 0.
  2667. */
  2668. static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu,
  2669. struct kvm_run *kvm_run) = {
  2670. [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
  2671. [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
  2672. [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
  2673. [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
  2674. [EXIT_REASON_IO_INSTRUCTION] = handle_io,
  2675. [EXIT_REASON_CR_ACCESS] = handle_cr,
  2676. [EXIT_REASON_DR_ACCESS] = handle_dr,
  2677. [EXIT_REASON_CPUID] = handle_cpuid,
  2678. [EXIT_REASON_MSR_READ] = handle_rdmsr,
  2679. [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
  2680. [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
  2681. [EXIT_REASON_HLT] = handle_halt,
  2682. [EXIT_REASON_INVLPG] = handle_invlpg,
  2683. [EXIT_REASON_VMCALL] = handle_vmcall,
  2684. [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
  2685. [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
  2686. [EXIT_REASON_WBINVD] = handle_wbinvd,
  2687. [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
  2688. [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
  2689. };
  2690. static const int kvm_vmx_max_exit_handlers =
  2691. ARRAY_SIZE(kvm_vmx_exit_handlers);
  2692. /*
  2693. * The guest has exited. See if we can fix it or if we need userspace
  2694. * assistance.
  2695. */
  2696. static int vmx_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
  2697. {
  2698. u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
  2699. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2700. u32 vectoring_info = vmx->idt_vectoring_info;
  2701. KVMTRACE_3D(VMEXIT, vcpu, exit_reason, (u32)kvm_rip_read(vcpu),
  2702. (u32)((u64)kvm_rip_read(vcpu) >> 32), entryexit);
  2703. /* If we need to emulate an MMIO from handle_invalid_guest_state
  2704. * we just return 0 */
  2705. if (vmx->emulation_required && emulate_invalid_guest_state) {
  2706. if (guest_state_valid(vcpu))
  2707. vmx->emulation_required = 0;
  2708. return vmx->invalid_state_emulation_result != EMULATE_DO_MMIO;
  2709. }
  2710. /* Access CR3 don't cause VMExit in paging mode, so we need
  2711. * to sync with guest real CR3. */
  2712. if (enable_ept && is_paging(vcpu)) {
  2713. vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
  2714. ept_load_pdptrs(vcpu);
  2715. }
  2716. if (unlikely(vmx->fail)) {
  2717. kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
  2718. kvm_run->fail_entry.hardware_entry_failure_reason
  2719. = vmcs_read32(VM_INSTRUCTION_ERROR);
  2720. return 0;
  2721. }
  2722. if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
  2723. (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
  2724. exit_reason != EXIT_REASON_EPT_VIOLATION &&
  2725. exit_reason != EXIT_REASON_TASK_SWITCH))
  2726. printk(KERN_WARNING "%s: unexpected, valid vectoring info "
  2727. "(0x%x) and exit reason is 0x%x\n",
  2728. __func__, vectoring_info, exit_reason);
  2729. if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked)) {
  2730. if (vmx_interrupt_allowed(vcpu)) {
  2731. vmx->soft_vnmi_blocked = 0;
  2732. } else if (vmx->vnmi_blocked_time > 1000000000LL &&
  2733. vcpu->arch.nmi_pending) {
  2734. /*
  2735. * This CPU don't support us in finding the end of an
  2736. * NMI-blocked window if the guest runs with IRQs
  2737. * disabled. So we pull the trigger after 1 s of
  2738. * futile waiting, but inform the user about this.
  2739. */
  2740. printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
  2741. "state on VCPU %d after 1 s timeout\n",
  2742. __func__, vcpu->vcpu_id);
  2743. vmx->soft_vnmi_blocked = 0;
  2744. }
  2745. }
  2746. if (exit_reason < kvm_vmx_max_exit_handlers
  2747. && kvm_vmx_exit_handlers[exit_reason])
  2748. return kvm_vmx_exit_handlers[exit_reason](vcpu, kvm_run);
  2749. else {
  2750. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  2751. kvm_run->hw.hardware_exit_reason = exit_reason;
  2752. }
  2753. return 0;
  2754. }
  2755. static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
  2756. {
  2757. if (irr == -1 || tpr < irr) {
  2758. vmcs_write32(TPR_THRESHOLD, 0);
  2759. return;
  2760. }
  2761. vmcs_write32(TPR_THRESHOLD, irr);
  2762. }
  2763. static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
  2764. {
  2765. u32 exit_intr_info;
  2766. u32 idt_vectoring_info = vmx->idt_vectoring_info;
  2767. bool unblock_nmi;
  2768. u8 vector;
  2769. int type;
  2770. bool idtv_info_valid;
  2771. idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
  2772. exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  2773. if (cpu_has_virtual_nmis()) {
  2774. unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
  2775. vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
  2776. /*
  2777. * SDM 3: 27.7.1.2 (September 2008)
  2778. * Re-set bit "block by NMI" before VM entry if vmexit caused by
  2779. * a guest IRET fault.
  2780. * SDM 3: 23.2.2 (September 2008)
  2781. * Bit 12 is undefined in any of the following cases:
  2782. * If the VM exit sets the valid bit in the IDT-vectoring
  2783. * information field.
  2784. * If the VM exit is due to a double fault.
  2785. */
  2786. if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
  2787. vector != DF_VECTOR && !idtv_info_valid)
  2788. vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
  2789. GUEST_INTR_STATE_NMI);
  2790. } else if (unlikely(vmx->soft_vnmi_blocked))
  2791. vmx->vnmi_blocked_time +=
  2792. ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
  2793. vmx->vcpu.arch.nmi_injected = false;
  2794. kvm_clear_exception_queue(&vmx->vcpu);
  2795. kvm_clear_interrupt_queue(&vmx->vcpu);
  2796. if (!idtv_info_valid)
  2797. return;
  2798. vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
  2799. type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
  2800. switch (type) {
  2801. case INTR_TYPE_NMI_INTR:
  2802. vmx->vcpu.arch.nmi_injected = true;
  2803. /*
  2804. * SDM 3: 27.7.1.2 (September 2008)
  2805. * Clear bit "block by NMI" before VM entry if a NMI
  2806. * delivery faulted.
  2807. */
  2808. vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
  2809. GUEST_INTR_STATE_NMI);
  2810. break;
  2811. case INTR_TYPE_HARD_EXCEPTION:
  2812. case INTR_TYPE_SOFT_EXCEPTION:
  2813. if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
  2814. u32 err = vmcs_read32(IDT_VECTORING_ERROR_CODE);
  2815. kvm_queue_exception_e(&vmx->vcpu, vector, err);
  2816. } else
  2817. kvm_queue_exception(&vmx->vcpu, vector);
  2818. break;
  2819. case INTR_TYPE_EXT_INTR:
  2820. kvm_queue_interrupt(&vmx->vcpu, vector);
  2821. break;
  2822. default:
  2823. break;
  2824. }
  2825. }
  2826. /*
  2827. * Failure to inject an interrupt should give us the information
  2828. * in IDT_VECTORING_INFO_FIELD. However, if the failure occurs
  2829. * when fetching the interrupt redirection bitmap in the real-mode
  2830. * tss, this doesn't happen. So we do it ourselves.
  2831. */
  2832. static void fixup_rmode_irq(struct vcpu_vmx *vmx)
  2833. {
  2834. vmx->rmode.irq.pending = 0;
  2835. if (kvm_rip_read(&vmx->vcpu) + 1 != vmx->rmode.irq.rip)
  2836. return;
  2837. kvm_rip_write(&vmx->vcpu, vmx->rmode.irq.rip);
  2838. if (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) {
  2839. vmx->idt_vectoring_info &= ~VECTORING_INFO_TYPE_MASK;
  2840. vmx->idt_vectoring_info |= INTR_TYPE_EXT_INTR;
  2841. return;
  2842. }
  2843. vmx->idt_vectoring_info =
  2844. VECTORING_INFO_VALID_MASK
  2845. | INTR_TYPE_EXT_INTR
  2846. | vmx->rmode.irq.vector;
  2847. }
  2848. #ifdef CONFIG_X86_64
  2849. #define R "r"
  2850. #define Q "q"
  2851. #else
  2852. #define R "e"
  2853. #define Q "l"
  2854. #endif
  2855. static void vmx_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2856. {
  2857. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2858. u32 intr_info;
  2859. /* Record the guest's net vcpu time for enforced NMI injections. */
  2860. if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
  2861. vmx->entry_time = ktime_get();
  2862. /* Handle invalid guest state instead of entering VMX */
  2863. if (vmx->emulation_required && emulate_invalid_guest_state) {
  2864. handle_invalid_guest_state(vcpu, kvm_run);
  2865. return;
  2866. }
  2867. if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
  2868. vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
  2869. if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
  2870. vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
  2871. /*
  2872. * Loading guest fpu may have cleared host cr0.ts
  2873. */
  2874. vmcs_writel(HOST_CR0, read_cr0());
  2875. set_debugreg(vcpu->arch.dr6, 6);
  2876. asm(
  2877. /* Store host registers */
  2878. "push %%"R"dx; push %%"R"bp;"
  2879. "push %%"R"cx \n\t"
  2880. "cmp %%"R"sp, %c[host_rsp](%0) \n\t"
  2881. "je 1f \n\t"
  2882. "mov %%"R"sp, %c[host_rsp](%0) \n\t"
  2883. __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
  2884. "1: \n\t"
  2885. /* Check if vmlaunch of vmresume is needed */
  2886. "cmpl $0, %c[launched](%0) \n\t"
  2887. /* Load guest registers. Don't clobber flags. */
  2888. "mov %c[cr2](%0), %%"R"ax \n\t"
  2889. "mov %%"R"ax, %%cr2 \n\t"
  2890. "mov %c[rax](%0), %%"R"ax \n\t"
  2891. "mov %c[rbx](%0), %%"R"bx \n\t"
  2892. "mov %c[rdx](%0), %%"R"dx \n\t"
  2893. "mov %c[rsi](%0), %%"R"si \n\t"
  2894. "mov %c[rdi](%0), %%"R"di \n\t"
  2895. "mov %c[rbp](%0), %%"R"bp \n\t"
  2896. #ifdef CONFIG_X86_64
  2897. "mov %c[r8](%0), %%r8 \n\t"
  2898. "mov %c[r9](%0), %%r9 \n\t"
  2899. "mov %c[r10](%0), %%r10 \n\t"
  2900. "mov %c[r11](%0), %%r11 \n\t"
  2901. "mov %c[r12](%0), %%r12 \n\t"
  2902. "mov %c[r13](%0), %%r13 \n\t"
  2903. "mov %c[r14](%0), %%r14 \n\t"
  2904. "mov %c[r15](%0), %%r15 \n\t"
  2905. #endif
  2906. "mov %c[rcx](%0), %%"R"cx \n\t" /* kills %0 (ecx) */
  2907. /* Enter guest mode */
  2908. "jne .Llaunched \n\t"
  2909. __ex(ASM_VMX_VMLAUNCH) "\n\t"
  2910. "jmp .Lkvm_vmx_return \n\t"
  2911. ".Llaunched: " __ex(ASM_VMX_VMRESUME) "\n\t"
  2912. ".Lkvm_vmx_return: "
  2913. /* Save guest registers, load host registers, keep flags */
  2914. "xchg %0, (%%"R"sp) \n\t"
  2915. "mov %%"R"ax, %c[rax](%0) \n\t"
  2916. "mov %%"R"bx, %c[rbx](%0) \n\t"
  2917. "push"Q" (%%"R"sp); pop"Q" %c[rcx](%0) \n\t"
  2918. "mov %%"R"dx, %c[rdx](%0) \n\t"
  2919. "mov %%"R"si, %c[rsi](%0) \n\t"
  2920. "mov %%"R"di, %c[rdi](%0) \n\t"
  2921. "mov %%"R"bp, %c[rbp](%0) \n\t"
  2922. #ifdef CONFIG_X86_64
  2923. "mov %%r8, %c[r8](%0) \n\t"
  2924. "mov %%r9, %c[r9](%0) \n\t"
  2925. "mov %%r10, %c[r10](%0) \n\t"
  2926. "mov %%r11, %c[r11](%0) \n\t"
  2927. "mov %%r12, %c[r12](%0) \n\t"
  2928. "mov %%r13, %c[r13](%0) \n\t"
  2929. "mov %%r14, %c[r14](%0) \n\t"
  2930. "mov %%r15, %c[r15](%0) \n\t"
  2931. #endif
  2932. "mov %%cr2, %%"R"ax \n\t"
  2933. "mov %%"R"ax, %c[cr2](%0) \n\t"
  2934. "pop %%"R"bp; pop %%"R"bp; pop %%"R"dx \n\t"
  2935. "setbe %c[fail](%0) \n\t"
  2936. : : "c"(vmx), "d"((unsigned long)HOST_RSP),
  2937. [launched]"i"(offsetof(struct vcpu_vmx, launched)),
  2938. [fail]"i"(offsetof(struct vcpu_vmx, fail)),
  2939. [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
  2940. [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
  2941. [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
  2942. [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
  2943. [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
  2944. [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
  2945. [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
  2946. [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
  2947. #ifdef CONFIG_X86_64
  2948. [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
  2949. [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
  2950. [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
  2951. [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
  2952. [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
  2953. [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
  2954. [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
  2955. [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
  2956. #endif
  2957. [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2))
  2958. : "cc", "memory"
  2959. , R"bx", R"di", R"si"
  2960. #ifdef CONFIG_X86_64
  2961. , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
  2962. #endif
  2963. );
  2964. vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
  2965. vcpu->arch.regs_dirty = 0;
  2966. get_debugreg(vcpu->arch.dr6, 6);
  2967. vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  2968. if (vmx->rmode.irq.pending)
  2969. fixup_rmode_irq(vmx);
  2970. asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
  2971. vmx->launched = 1;
  2972. intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  2973. /* We need to handle NMIs before interrupts are enabled */
  2974. if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
  2975. (intr_info & INTR_INFO_VALID_MASK)) {
  2976. KVMTRACE_0D(NMI, vcpu, handler);
  2977. asm("int $2");
  2978. }
  2979. vmx_complete_interrupts(vmx);
  2980. }
  2981. #undef R
  2982. #undef Q
  2983. static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
  2984. {
  2985. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2986. if (vmx->vmcs) {
  2987. vcpu_clear(vmx);
  2988. free_vmcs(vmx->vmcs);
  2989. vmx->vmcs = NULL;
  2990. }
  2991. }
  2992. static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
  2993. {
  2994. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2995. spin_lock(&vmx_vpid_lock);
  2996. if (vmx->vpid != 0)
  2997. __clear_bit(vmx->vpid, vmx_vpid_bitmap);
  2998. spin_unlock(&vmx_vpid_lock);
  2999. vmx_free_vmcs(vcpu);
  3000. kfree(vmx->host_msrs);
  3001. kfree(vmx->guest_msrs);
  3002. kvm_vcpu_uninit(vcpu);
  3003. kmem_cache_free(kvm_vcpu_cache, vmx);
  3004. }
  3005. static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
  3006. {
  3007. int err;
  3008. struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
  3009. int cpu;
  3010. if (!vmx)
  3011. return ERR_PTR(-ENOMEM);
  3012. allocate_vpid(vmx);
  3013. err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
  3014. if (err)
  3015. goto free_vcpu;
  3016. vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  3017. if (!vmx->guest_msrs) {
  3018. err = -ENOMEM;
  3019. goto uninit_vcpu;
  3020. }
  3021. vmx->host_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  3022. if (!vmx->host_msrs)
  3023. goto free_guest_msrs;
  3024. vmx->vmcs = alloc_vmcs();
  3025. if (!vmx->vmcs)
  3026. goto free_msrs;
  3027. vmcs_clear(vmx->vmcs);
  3028. cpu = get_cpu();
  3029. vmx_vcpu_load(&vmx->vcpu, cpu);
  3030. err = vmx_vcpu_setup(vmx);
  3031. vmx_vcpu_put(&vmx->vcpu);
  3032. put_cpu();
  3033. if (err)
  3034. goto free_vmcs;
  3035. if (vm_need_virtualize_apic_accesses(kvm))
  3036. if (alloc_apic_access_page(kvm) != 0)
  3037. goto free_vmcs;
  3038. if (enable_ept)
  3039. if (alloc_identity_pagetable(kvm) != 0)
  3040. goto free_vmcs;
  3041. return &vmx->vcpu;
  3042. free_vmcs:
  3043. free_vmcs(vmx->vmcs);
  3044. free_msrs:
  3045. kfree(vmx->host_msrs);
  3046. free_guest_msrs:
  3047. kfree(vmx->guest_msrs);
  3048. uninit_vcpu:
  3049. kvm_vcpu_uninit(&vmx->vcpu);
  3050. free_vcpu:
  3051. kmem_cache_free(kvm_vcpu_cache, vmx);
  3052. return ERR_PTR(err);
  3053. }
  3054. static void __init vmx_check_processor_compat(void *rtn)
  3055. {
  3056. struct vmcs_config vmcs_conf;
  3057. *(int *)rtn = 0;
  3058. if (setup_vmcs_config(&vmcs_conf) < 0)
  3059. *(int *)rtn = -EIO;
  3060. if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
  3061. printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
  3062. smp_processor_id());
  3063. *(int *)rtn = -EIO;
  3064. }
  3065. }
  3066. static int get_ept_level(void)
  3067. {
  3068. return VMX_EPT_DEFAULT_GAW + 1;
  3069. }
  3070. static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
  3071. {
  3072. u64 ret;
  3073. /* For VT-d and EPT combination
  3074. * 1. MMIO: always map as UC
  3075. * 2. EPT with VT-d:
  3076. * a. VT-d without snooping control feature: can't guarantee the
  3077. * result, try to trust guest.
  3078. * b. VT-d with snooping control feature: snooping control feature of
  3079. * VT-d engine can guarantee the cache correctness. Just set it
  3080. * to WB to keep consistent with host. So the same as item 3.
  3081. * 3. EPT without VT-d: always map as WB and set IGMT=1 to keep
  3082. * consistent with host MTRR
  3083. */
  3084. if (is_mmio)
  3085. ret = MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
  3086. else if (vcpu->kvm->arch.iommu_domain &&
  3087. !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY))
  3088. ret = kvm_get_guest_memory_type(vcpu, gfn) <<
  3089. VMX_EPT_MT_EPTE_SHIFT;
  3090. else
  3091. ret = (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT)
  3092. | VMX_EPT_IGMT_BIT;
  3093. return ret;
  3094. }
  3095. static struct kvm_x86_ops vmx_x86_ops = {
  3096. .cpu_has_kvm_support = cpu_has_kvm_support,
  3097. .disabled_by_bios = vmx_disabled_by_bios,
  3098. .hardware_setup = hardware_setup,
  3099. .hardware_unsetup = hardware_unsetup,
  3100. .check_processor_compatibility = vmx_check_processor_compat,
  3101. .hardware_enable = hardware_enable,
  3102. .hardware_disable = hardware_disable,
  3103. .cpu_has_accelerated_tpr = report_flexpriority,
  3104. .vcpu_create = vmx_create_vcpu,
  3105. .vcpu_free = vmx_free_vcpu,
  3106. .vcpu_reset = vmx_vcpu_reset,
  3107. .prepare_guest_switch = vmx_save_host_state,
  3108. .vcpu_load = vmx_vcpu_load,
  3109. .vcpu_put = vmx_vcpu_put,
  3110. .set_guest_debug = set_guest_debug,
  3111. .get_msr = vmx_get_msr,
  3112. .set_msr = vmx_set_msr,
  3113. .get_segment_base = vmx_get_segment_base,
  3114. .get_segment = vmx_get_segment,
  3115. .set_segment = vmx_set_segment,
  3116. .get_cpl = vmx_get_cpl,
  3117. .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
  3118. .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
  3119. .set_cr0 = vmx_set_cr0,
  3120. .set_cr3 = vmx_set_cr3,
  3121. .set_cr4 = vmx_set_cr4,
  3122. .set_efer = vmx_set_efer,
  3123. .get_idt = vmx_get_idt,
  3124. .set_idt = vmx_set_idt,
  3125. .get_gdt = vmx_get_gdt,
  3126. .set_gdt = vmx_set_gdt,
  3127. .cache_reg = vmx_cache_reg,
  3128. .get_rflags = vmx_get_rflags,
  3129. .set_rflags = vmx_set_rflags,
  3130. .tlb_flush = vmx_flush_tlb,
  3131. .run = vmx_vcpu_run,
  3132. .handle_exit = vmx_handle_exit,
  3133. .skip_emulated_instruction = skip_emulated_instruction,
  3134. .patch_hypercall = vmx_patch_hypercall,
  3135. .set_irq = vmx_inject_irq,
  3136. .set_nmi = vmx_inject_nmi,
  3137. .queue_exception = vmx_queue_exception,
  3138. .interrupt_allowed = vmx_interrupt_allowed,
  3139. .nmi_allowed = vmx_nmi_allowed,
  3140. .enable_nmi_window = enable_nmi_window,
  3141. .enable_irq_window = enable_irq_window,
  3142. .update_cr8_intercept = update_cr8_intercept,
  3143. .drop_interrupt_shadow = vmx_drop_interrupt_shadow,
  3144. .set_tss_addr = vmx_set_tss_addr,
  3145. .get_tdp_level = get_ept_level,
  3146. .get_mt_mask = vmx_get_mt_mask,
  3147. };
  3148. static int __init vmx_init(void)
  3149. {
  3150. int r;
  3151. vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
  3152. if (!vmx_io_bitmap_a)
  3153. return -ENOMEM;
  3154. vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
  3155. if (!vmx_io_bitmap_b) {
  3156. r = -ENOMEM;
  3157. goto out;
  3158. }
  3159. vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
  3160. if (!vmx_msr_bitmap_legacy) {
  3161. r = -ENOMEM;
  3162. goto out1;
  3163. }
  3164. vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
  3165. if (!vmx_msr_bitmap_longmode) {
  3166. r = -ENOMEM;
  3167. goto out2;
  3168. }
  3169. /*
  3170. * Allow direct access to the PC debug port (it is often used for I/O
  3171. * delays, but the vmexits simply slow things down).
  3172. */
  3173. memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
  3174. clear_bit(0x80, vmx_io_bitmap_a);
  3175. memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
  3176. memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
  3177. memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
  3178. set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
  3179. r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx), THIS_MODULE);
  3180. if (r)
  3181. goto out3;
  3182. vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
  3183. vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
  3184. vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
  3185. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
  3186. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
  3187. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
  3188. if (enable_ept) {
  3189. bypass_guest_pf = 0;
  3190. kvm_mmu_set_base_ptes(VMX_EPT_READABLE_MASK |
  3191. VMX_EPT_WRITABLE_MASK);
  3192. kvm_mmu_set_mask_ptes(0ull, 0ull, 0ull, 0ull,
  3193. VMX_EPT_EXECUTABLE_MASK);
  3194. kvm_enable_tdp();
  3195. } else
  3196. kvm_disable_tdp();
  3197. if (bypass_guest_pf)
  3198. kvm_mmu_set_nonpresent_ptes(~0xffeull, 0ull);
  3199. ept_sync_global();
  3200. return 0;
  3201. out3:
  3202. free_page((unsigned long)vmx_msr_bitmap_longmode);
  3203. out2:
  3204. free_page((unsigned long)vmx_msr_bitmap_legacy);
  3205. out1:
  3206. free_page((unsigned long)vmx_io_bitmap_b);
  3207. out:
  3208. free_page((unsigned long)vmx_io_bitmap_a);
  3209. return r;
  3210. }
  3211. static void __exit vmx_exit(void)
  3212. {
  3213. free_page((unsigned long)vmx_msr_bitmap_legacy);
  3214. free_page((unsigned long)vmx_msr_bitmap_longmode);
  3215. free_page((unsigned long)vmx_io_bitmap_b);
  3216. free_page((unsigned long)vmx_io_bitmap_a);
  3217. kvm_exit();
  3218. }
  3219. module_init(vmx_init)
  3220. module_exit(vmx_exit)