cfq-iosched.c 107 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281
  1. /*
  2. * CFQ, or complete fairness queueing, disk scheduler.
  3. *
  4. * Based on ideas from a previously unfinished io
  5. * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
  6. *
  7. * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
  8. */
  9. #include <linux/module.h>
  10. #include <linux/slab.h>
  11. #include <linux/blkdev.h>
  12. #include <linux/elevator.h>
  13. #include <linux/jiffies.h>
  14. #include <linux/rbtree.h>
  15. #include <linux/ioprio.h>
  16. #include <linux/blktrace_api.h>
  17. #include "cfq.h"
  18. /*
  19. * tunables
  20. */
  21. /* max queue in one round of service */
  22. static const int cfq_quantum = 8;
  23. static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
  24. /* maximum backwards seek, in KiB */
  25. static const int cfq_back_max = 16 * 1024;
  26. /* penalty of a backwards seek */
  27. static const int cfq_back_penalty = 2;
  28. static const int cfq_slice_sync = HZ / 10;
  29. static int cfq_slice_async = HZ / 25;
  30. static const int cfq_slice_async_rq = 2;
  31. static int cfq_slice_idle = HZ / 125;
  32. static int cfq_group_idle = HZ / 125;
  33. static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
  34. static const int cfq_hist_divisor = 4;
  35. /*
  36. * offset from end of service tree
  37. */
  38. #define CFQ_IDLE_DELAY (HZ / 5)
  39. /*
  40. * below this threshold, we consider thinktime immediate
  41. */
  42. #define CFQ_MIN_TT (2)
  43. #define CFQ_SLICE_SCALE (5)
  44. #define CFQ_HW_QUEUE_MIN (5)
  45. #define CFQ_SERVICE_SHIFT 12
  46. #define CFQQ_SEEK_THR (sector_t)(8 * 100)
  47. #define CFQQ_CLOSE_THR (sector_t)(8 * 1024)
  48. #define CFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
  49. #define CFQQ_SEEKY(cfqq) (hweight32(cfqq->seek_history) > 32/8)
  50. #define RQ_CIC(rq) \
  51. ((struct cfq_io_context *) (rq)->elevator_private[0])
  52. #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private[1])
  53. #define RQ_CFQG(rq) (struct cfq_group *) ((rq)->elevator_private[2])
  54. static struct kmem_cache *cfq_pool;
  55. static struct kmem_cache *cfq_ioc_pool;
  56. static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
  57. static struct completion *ioc_gone;
  58. static DEFINE_SPINLOCK(ioc_gone_lock);
  59. static DEFINE_SPINLOCK(cic_index_lock);
  60. static DEFINE_IDA(cic_index_ida);
  61. #define CFQ_PRIO_LISTS IOPRIO_BE_NR
  62. #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
  63. #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
  64. #define sample_valid(samples) ((samples) > 80)
  65. #define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
  66. /*
  67. * Most of our rbtree usage is for sorting with min extraction, so
  68. * if we cache the leftmost node we don't have to walk down the tree
  69. * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
  70. * move this into the elevator for the rq sorting as well.
  71. */
  72. struct cfq_rb_root {
  73. struct rb_root rb;
  74. struct rb_node *left;
  75. unsigned count;
  76. unsigned total_weight;
  77. u64 min_vdisktime;
  78. };
  79. #define CFQ_RB_ROOT (struct cfq_rb_root) { .rb = RB_ROOT, .left = NULL, \
  80. .count = 0, .min_vdisktime = 0, }
  81. /*
  82. * Per process-grouping structure
  83. */
  84. struct cfq_queue {
  85. /* reference count */
  86. int ref;
  87. /* various state flags, see below */
  88. unsigned int flags;
  89. /* parent cfq_data */
  90. struct cfq_data *cfqd;
  91. /* service_tree member */
  92. struct rb_node rb_node;
  93. /* service_tree key */
  94. unsigned long rb_key;
  95. /* prio tree member */
  96. struct rb_node p_node;
  97. /* prio tree root we belong to, if any */
  98. struct rb_root *p_root;
  99. /* sorted list of pending requests */
  100. struct rb_root sort_list;
  101. /* if fifo isn't expired, next request to serve */
  102. struct request *next_rq;
  103. /* requests queued in sort_list */
  104. int queued[2];
  105. /* currently allocated requests */
  106. int allocated[2];
  107. /* fifo list of requests in sort_list */
  108. struct list_head fifo;
  109. /* time when queue got scheduled in to dispatch first request. */
  110. unsigned long dispatch_start;
  111. unsigned int allocated_slice;
  112. unsigned int slice_dispatch;
  113. /* time when first request from queue completed and slice started. */
  114. unsigned long slice_start;
  115. unsigned long slice_end;
  116. long slice_resid;
  117. /* pending metadata requests */
  118. int meta_pending;
  119. /* number of requests that are on the dispatch list or inside driver */
  120. int dispatched;
  121. /* io prio of this group */
  122. unsigned short ioprio, org_ioprio;
  123. unsigned short ioprio_class, org_ioprio_class;
  124. pid_t pid;
  125. u32 seek_history;
  126. sector_t last_request_pos;
  127. struct cfq_rb_root *service_tree;
  128. struct cfq_queue *new_cfqq;
  129. struct cfq_group *cfqg;
  130. /* Number of sectors dispatched from queue in single dispatch round */
  131. unsigned long nr_sectors;
  132. };
  133. /*
  134. * First index in the service_trees.
  135. * IDLE is handled separately, so it has negative index
  136. */
  137. enum wl_prio_t {
  138. BE_WORKLOAD = 0,
  139. RT_WORKLOAD = 1,
  140. IDLE_WORKLOAD = 2,
  141. CFQ_PRIO_NR,
  142. };
  143. /*
  144. * Second index in the service_trees.
  145. */
  146. enum wl_type_t {
  147. ASYNC_WORKLOAD = 0,
  148. SYNC_NOIDLE_WORKLOAD = 1,
  149. SYNC_WORKLOAD = 2
  150. };
  151. /* This is per cgroup per device grouping structure */
  152. struct cfq_group {
  153. /* group service_tree member */
  154. struct rb_node rb_node;
  155. /* group service_tree key */
  156. u64 vdisktime;
  157. unsigned int weight;
  158. unsigned int new_weight;
  159. bool needs_update;
  160. /* number of cfqq currently on this group */
  161. int nr_cfqq;
  162. /*
  163. * Per group busy queues average. Useful for workload slice calc. We
  164. * create the array for each prio class but at run time it is used
  165. * only for RT and BE class and slot for IDLE class remains unused.
  166. * This is primarily done to avoid confusion and a gcc warning.
  167. */
  168. unsigned int busy_queues_avg[CFQ_PRIO_NR];
  169. /*
  170. * rr lists of queues with requests. We maintain service trees for
  171. * RT and BE classes. These trees are subdivided in subclasses
  172. * of SYNC, SYNC_NOIDLE and ASYNC based on workload type. For IDLE
  173. * class there is no subclassification and all the cfq queues go on
  174. * a single tree service_tree_idle.
  175. * Counts are embedded in the cfq_rb_root
  176. */
  177. struct cfq_rb_root service_trees[2][3];
  178. struct cfq_rb_root service_tree_idle;
  179. unsigned long saved_workload_slice;
  180. enum wl_type_t saved_workload;
  181. enum wl_prio_t saved_serving_prio;
  182. struct blkio_group blkg;
  183. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  184. struct hlist_node cfqd_node;
  185. int ref;
  186. #endif
  187. /* number of requests that are on the dispatch list or inside driver */
  188. int dispatched;
  189. };
  190. /*
  191. * Per block device queue structure
  192. */
  193. struct cfq_data {
  194. struct request_queue *queue;
  195. /* Root service tree for cfq_groups */
  196. struct cfq_rb_root grp_service_tree;
  197. struct cfq_group root_group;
  198. /*
  199. * The priority currently being served
  200. */
  201. enum wl_prio_t serving_prio;
  202. enum wl_type_t serving_type;
  203. unsigned long workload_expires;
  204. struct cfq_group *serving_group;
  205. /*
  206. * Each priority tree is sorted by next_request position. These
  207. * trees are used when determining if two or more queues are
  208. * interleaving requests (see cfq_close_cooperator).
  209. */
  210. struct rb_root prio_trees[CFQ_PRIO_LISTS];
  211. unsigned int busy_queues;
  212. unsigned int busy_sync_queues;
  213. int rq_in_driver;
  214. int rq_in_flight[2];
  215. /*
  216. * queue-depth detection
  217. */
  218. int rq_queued;
  219. int hw_tag;
  220. /*
  221. * hw_tag can be
  222. * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
  223. * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
  224. * 0 => no NCQ
  225. */
  226. int hw_tag_est_depth;
  227. unsigned int hw_tag_samples;
  228. /*
  229. * idle window management
  230. */
  231. struct timer_list idle_slice_timer;
  232. struct work_struct unplug_work;
  233. struct cfq_queue *active_queue;
  234. struct cfq_io_context *active_cic;
  235. /*
  236. * async queue for each priority case
  237. */
  238. struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
  239. struct cfq_queue *async_idle_cfqq;
  240. sector_t last_position;
  241. /*
  242. * tunables, see top of file
  243. */
  244. unsigned int cfq_quantum;
  245. unsigned int cfq_fifo_expire[2];
  246. unsigned int cfq_back_penalty;
  247. unsigned int cfq_back_max;
  248. unsigned int cfq_slice[2];
  249. unsigned int cfq_slice_async_rq;
  250. unsigned int cfq_slice_idle;
  251. unsigned int cfq_group_idle;
  252. unsigned int cfq_latency;
  253. unsigned int cic_index;
  254. struct list_head cic_list;
  255. /*
  256. * Fallback dummy cfqq for extreme OOM conditions
  257. */
  258. struct cfq_queue oom_cfqq;
  259. unsigned long last_delayed_sync;
  260. /* List of cfq groups being managed on this device*/
  261. struct hlist_head cfqg_list;
  262. /* Number of groups which are on blkcg->blkg_list */
  263. unsigned int nr_blkcg_linked_grps;
  264. };
  265. static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
  266. static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
  267. enum wl_prio_t prio,
  268. enum wl_type_t type)
  269. {
  270. if (!cfqg)
  271. return NULL;
  272. if (prio == IDLE_WORKLOAD)
  273. return &cfqg->service_tree_idle;
  274. return &cfqg->service_trees[prio][type];
  275. }
  276. enum cfqq_state_flags {
  277. CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
  278. CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
  279. CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
  280. CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
  281. CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
  282. CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
  283. CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
  284. CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
  285. CFQ_CFQQ_FLAG_sync, /* synchronous queue */
  286. CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
  287. CFQ_CFQQ_FLAG_split_coop, /* shared cfqq will be splitted */
  288. CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
  289. CFQ_CFQQ_FLAG_wait_busy, /* Waiting for next request */
  290. };
  291. #define CFQ_CFQQ_FNS(name) \
  292. static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
  293. { \
  294. (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
  295. } \
  296. static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
  297. { \
  298. (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
  299. } \
  300. static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
  301. { \
  302. return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
  303. }
  304. CFQ_CFQQ_FNS(on_rr);
  305. CFQ_CFQQ_FNS(wait_request);
  306. CFQ_CFQQ_FNS(must_dispatch);
  307. CFQ_CFQQ_FNS(must_alloc_slice);
  308. CFQ_CFQQ_FNS(fifo_expire);
  309. CFQ_CFQQ_FNS(idle_window);
  310. CFQ_CFQQ_FNS(prio_changed);
  311. CFQ_CFQQ_FNS(slice_new);
  312. CFQ_CFQQ_FNS(sync);
  313. CFQ_CFQQ_FNS(coop);
  314. CFQ_CFQQ_FNS(split_coop);
  315. CFQ_CFQQ_FNS(deep);
  316. CFQ_CFQQ_FNS(wait_busy);
  317. #undef CFQ_CFQQ_FNS
  318. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  319. #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
  320. blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
  321. cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
  322. blkg_path(&(cfqq)->cfqg->blkg), ##args)
  323. #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) \
  324. blk_add_trace_msg((cfqd)->queue, "%s " fmt, \
  325. blkg_path(&(cfqg)->blkg), ##args) \
  326. #else
  327. #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
  328. blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
  329. #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0)
  330. #endif
  331. #define cfq_log(cfqd, fmt, args...) \
  332. blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
  333. /* Traverses through cfq group service trees */
  334. #define for_each_cfqg_st(cfqg, i, j, st) \
  335. for (i = 0; i <= IDLE_WORKLOAD; i++) \
  336. for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
  337. : &cfqg->service_tree_idle; \
  338. (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
  339. (i == IDLE_WORKLOAD && j == 0); \
  340. j++, st = i < IDLE_WORKLOAD ? \
  341. &cfqg->service_trees[i][j]: NULL) \
  342. static inline bool iops_mode(struct cfq_data *cfqd)
  343. {
  344. /*
  345. * If we are not idling on queues and it is a NCQ drive, parallel
  346. * execution of requests is on and measuring time is not possible
  347. * in most of the cases until and unless we drive shallower queue
  348. * depths and that becomes a performance bottleneck. In such cases
  349. * switch to start providing fairness in terms of number of IOs.
  350. */
  351. if (!cfqd->cfq_slice_idle && cfqd->hw_tag)
  352. return true;
  353. else
  354. return false;
  355. }
  356. static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
  357. {
  358. if (cfq_class_idle(cfqq))
  359. return IDLE_WORKLOAD;
  360. if (cfq_class_rt(cfqq))
  361. return RT_WORKLOAD;
  362. return BE_WORKLOAD;
  363. }
  364. static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
  365. {
  366. if (!cfq_cfqq_sync(cfqq))
  367. return ASYNC_WORKLOAD;
  368. if (!cfq_cfqq_idle_window(cfqq))
  369. return SYNC_NOIDLE_WORKLOAD;
  370. return SYNC_WORKLOAD;
  371. }
  372. static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
  373. struct cfq_data *cfqd,
  374. struct cfq_group *cfqg)
  375. {
  376. if (wl == IDLE_WORKLOAD)
  377. return cfqg->service_tree_idle.count;
  378. return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
  379. + cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
  380. + cfqg->service_trees[wl][SYNC_WORKLOAD].count;
  381. }
  382. static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
  383. struct cfq_group *cfqg)
  384. {
  385. return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
  386. + cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
  387. }
  388. static void cfq_dispatch_insert(struct request_queue *, struct request *);
  389. static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
  390. struct io_context *, gfp_t);
  391. static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
  392. struct io_context *);
  393. static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
  394. bool is_sync)
  395. {
  396. return cic->cfqq[is_sync];
  397. }
  398. static inline void cic_set_cfqq(struct cfq_io_context *cic,
  399. struct cfq_queue *cfqq, bool is_sync)
  400. {
  401. cic->cfqq[is_sync] = cfqq;
  402. }
  403. #define CIC_DEAD_KEY 1ul
  404. #define CIC_DEAD_INDEX_SHIFT 1
  405. static inline void *cfqd_dead_key(struct cfq_data *cfqd)
  406. {
  407. return (void *)(cfqd->cic_index << CIC_DEAD_INDEX_SHIFT | CIC_DEAD_KEY);
  408. }
  409. static inline struct cfq_data *cic_to_cfqd(struct cfq_io_context *cic)
  410. {
  411. struct cfq_data *cfqd = cic->key;
  412. if (unlikely((unsigned long) cfqd & CIC_DEAD_KEY))
  413. return NULL;
  414. return cfqd;
  415. }
  416. /*
  417. * We regard a request as SYNC, if it's either a read or has the SYNC bit
  418. * set (in which case it could also be direct WRITE).
  419. */
  420. static inline bool cfq_bio_sync(struct bio *bio)
  421. {
  422. return bio_data_dir(bio) == READ || (bio->bi_rw & REQ_SYNC);
  423. }
  424. /*
  425. * scheduler run of queue, if there are requests pending and no one in the
  426. * driver that will restart queueing
  427. */
  428. static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
  429. {
  430. if (cfqd->busy_queues) {
  431. cfq_log(cfqd, "schedule dispatch");
  432. kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
  433. }
  434. }
  435. /*
  436. * Scale schedule slice based on io priority. Use the sync time slice only
  437. * if a queue is marked sync and has sync io queued. A sync queue with async
  438. * io only, should not get full sync slice length.
  439. */
  440. static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
  441. unsigned short prio)
  442. {
  443. const int base_slice = cfqd->cfq_slice[sync];
  444. WARN_ON(prio >= IOPRIO_BE_NR);
  445. return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
  446. }
  447. static inline int
  448. cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  449. {
  450. return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
  451. }
  452. static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
  453. {
  454. u64 d = delta << CFQ_SERVICE_SHIFT;
  455. d = d * BLKIO_WEIGHT_DEFAULT;
  456. do_div(d, cfqg->weight);
  457. return d;
  458. }
  459. static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
  460. {
  461. s64 delta = (s64)(vdisktime - min_vdisktime);
  462. if (delta > 0)
  463. min_vdisktime = vdisktime;
  464. return min_vdisktime;
  465. }
  466. static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
  467. {
  468. s64 delta = (s64)(vdisktime - min_vdisktime);
  469. if (delta < 0)
  470. min_vdisktime = vdisktime;
  471. return min_vdisktime;
  472. }
  473. static void update_min_vdisktime(struct cfq_rb_root *st)
  474. {
  475. struct cfq_group *cfqg;
  476. if (st->left) {
  477. cfqg = rb_entry_cfqg(st->left);
  478. st->min_vdisktime = max_vdisktime(st->min_vdisktime,
  479. cfqg->vdisktime);
  480. }
  481. }
  482. /*
  483. * get averaged number of queues of RT/BE priority.
  484. * average is updated, with a formula that gives more weight to higher numbers,
  485. * to quickly follows sudden increases and decrease slowly
  486. */
  487. static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
  488. struct cfq_group *cfqg, bool rt)
  489. {
  490. unsigned min_q, max_q;
  491. unsigned mult = cfq_hist_divisor - 1;
  492. unsigned round = cfq_hist_divisor / 2;
  493. unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
  494. min_q = min(cfqg->busy_queues_avg[rt], busy);
  495. max_q = max(cfqg->busy_queues_avg[rt], busy);
  496. cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
  497. cfq_hist_divisor;
  498. return cfqg->busy_queues_avg[rt];
  499. }
  500. static inline unsigned
  501. cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
  502. {
  503. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  504. return cfq_target_latency * cfqg->weight / st->total_weight;
  505. }
  506. static inline unsigned
  507. cfq_scaled_cfqq_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  508. {
  509. unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
  510. if (cfqd->cfq_latency) {
  511. /*
  512. * interested queues (we consider only the ones with the same
  513. * priority class in the cfq group)
  514. */
  515. unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
  516. cfq_class_rt(cfqq));
  517. unsigned sync_slice = cfqd->cfq_slice[1];
  518. unsigned expect_latency = sync_slice * iq;
  519. unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
  520. if (expect_latency > group_slice) {
  521. unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
  522. /* scale low_slice according to IO priority
  523. * and sync vs async */
  524. unsigned low_slice =
  525. min(slice, base_low_slice * slice / sync_slice);
  526. /* the adapted slice value is scaled to fit all iqs
  527. * into the target latency */
  528. slice = max(slice * group_slice / expect_latency,
  529. low_slice);
  530. }
  531. }
  532. return slice;
  533. }
  534. static inline void
  535. cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  536. {
  537. unsigned slice = cfq_scaled_cfqq_slice(cfqd, cfqq);
  538. cfqq->slice_start = jiffies;
  539. cfqq->slice_end = jiffies + slice;
  540. cfqq->allocated_slice = slice;
  541. cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
  542. }
  543. /*
  544. * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
  545. * isn't valid until the first request from the dispatch is activated
  546. * and the slice time set.
  547. */
  548. static inline bool cfq_slice_used(struct cfq_queue *cfqq)
  549. {
  550. if (cfq_cfqq_slice_new(cfqq))
  551. return false;
  552. if (time_before(jiffies, cfqq->slice_end))
  553. return false;
  554. return true;
  555. }
  556. /*
  557. * Lifted from AS - choose which of rq1 and rq2 that is best served now.
  558. * We choose the request that is closest to the head right now. Distance
  559. * behind the head is penalized and only allowed to a certain extent.
  560. */
  561. static struct request *
  562. cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
  563. {
  564. sector_t s1, s2, d1 = 0, d2 = 0;
  565. unsigned long back_max;
  566. #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
  567. #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
  568. unsigned wrap = 0; /* bit mask: requests behind the disk head? */
  569. if (rq1 == NULL || rq1 == rq2)
  570. return rq2;
  571. if (rq2 == NULL)
  572. return rq1;
  573. if (rq_is_sync(rq1) != rq_is_sync(rq2))
  574. return rq_is_sync(rq1) ? rq1 : rq2;
  575. if ((rq1->cmd_flags ^ rq2->cmd_flags) & REQ_META)
  576. return rq1->cmd_flags & REQ_META ? rq1 : rq2;
  577. s1 = blk_rq_pos(rq1);
  578. s2 = blk_rq_pos(rq2);
  579. /*
  580. * by definition, 1KiB is 2 sectors
  581. */
  582. back_max = cfqd->cfq_back_max * 2;
  583. /*
  584. * Strict one way elevator _except_ in the case where we allow
  585. * short backward seeks which are biased as twice the cost of a
  586. * similar forward seek.
  587. */
  588. if (s1 >= last)
  589. d1 = s1 - last;
  590. else if (s1 + back_max >= last)
  591. d1 = (last - s1) * cfqd->cfq_back_penalty;
  592. else
  593. wrap |= CFQ_RQ1_WRAP;
  594. if (s2 >= last)
  595. d2 = s2 - last;
  596. else if (s2 + back_max >= last)
  597. d2 = (last - s2) * cfqd->cfq_back_penalty;
  598. else
  599. wrap |= CFQ_RQ2_WRAP;
  600. /* Found required data */
  601. /*
  602. * By doing switch() on the bit mask "wrap" we avoid having to
  603. * check two variables for all permutations: --> faster!
  604. */
  605. switch (wrap) {
  606. case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
  607. if (d1 < d2)
  608. return rq1;
  609. else if (d2 < d1)
  610. return rq2;
  611. else {
  612. if (s1 >= s2)
  613. return rq1;
  614. else
  615. return rq2;
  616. }
  617. case CFQ_RQ2_WRAP:
  618. return rq1;
  619. case CFQ_RQ1_WRAP:
  620. return rq2;
  621. case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
  622. default:
  623. /*
  624. * Since both rqs are wrapped,
  625. * start with the one that's further behind head
  626. * (--> only *one* back seek required),
  627. * since back seek takes more time than forward.
  628. */
  629. if (s1 <= s2)
  630. return rq1;
  631. else
  632. return rq2;
  633. }
  634. }
  635. /*
  636. * The below is leftmost cache rbtree addon
  637. */
  638. static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
  639. {
  640. /* Service tree is empty */
  641. if (!root->count)
  642. return NULL;
  643. if (!root->left)
  644. root->left = rb_first(&root->rb);
  645. if (root->left)
  646. return rb_entry(root->left, struct cfq_queue, rb_node);
  647. return NULL;
  648. }
  649. static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
  650. {
  651. if (!root->left)
  652. root->left = rb_first(&root->rb);
  653. if (root->left)
  654. return rb_entry_cfqg(root->left);
  655. return NULL;
  656. }
  657. static void rb_erase_init(struct rb_node *n, struct rb_root *root)
  658. {
  659. rb_erase(n, root);
  660. RB_CLEAR_NODE(n);
  661. }
  662. static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
  663. {
  664. if (root->left == n)
  665. root->left = NULL;
  666. rb_erase_init(n, &root->rb);
  667. --root->count;
  668. }
  669. /*
  670. * would be nice to take fifo expire time into account as well
  671. */
  672. static struct request *
  673. cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  674. struct request *last)
  675. {
  676. struct rb_node *rbnext = rb_next(&last->rb_node);
  677. struct rb_node *rbprev = rb_prev(&last->rb_node);
  678. struct request *next = NULL, *prev = NULL;
  679. BUG_ON(RB_EMPTY_NODE(&last->rb_node));
  680. if (rbprev)
  681. prev = rb_entry_rq(rbprev);
  682. if (rbnext)
  683. next = rb_entry_rq(rbnext);
  684. else {
  685. rbnext = rb_first(&cfqq->sort_list);
  686. if (rbnext && rbnext != &last->rb_node)
  687. next = rb_entry_rq(rbnext);
  688. }
  689. return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
  690. }
  691. static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
  692. struct cfq_queue *cfqq)
  693. {
  694. /*
  695. * just an approximation, should be ok.
  696. */
  697. return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
  698. cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
  699. }
  700. static inline s64
  701. cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
  702. {
  703. return cfqg->vdisktime - st->min_vdisktime;
  704. }
  705. static void
  706. __cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
  707. {
  708. struct rb_node **node = &st->rb.rb_node;
  709. struct rb_node *parent = NULL;
  710. struct cfq_group *__cfqg;
  711. s64 key = cfqg_key(st, cfqg);
  712. int left = 1;
  713. while (*node != NULL) {
  714. parent = *node;
  715. __cfqg = rb_entry_cfqg(parent);
  716. if (key < cfqg_key(st, __cfqg))
  717. node = &parent->rb_left;
  718. else {
  719. node = &parent->rb_right;
  720. left = 0;
  721. }
  722. }
  723. if (left)
  724. st->left = &cfqg->rb_node;
  725. rb_link_node(&cfqg->rb_node, parent, node);
  726. rb_insert_color(&cfqg->rb_node, &st->rb);
  727. }
  728. static void
  729. cfq_update_group_weight(struct cfq_group *cfqg)
  730. {
  731. BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
  732. if (cfqg->needs_update) {
  733. cfqg->weight = cfqg->new_weight;
  734. cfqg->needs_update = false;
  735. }
  736. }
  737. static void
  738. cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
  739. {
  740. BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
  741. cfq_update_group_weight(cfqg);
  742. __cfq_group_service_tree_add(st, cfqg);
  743. st->total_weight += cfqg->weight;
  744. }
  745. static void
  746. cfq_group_notify_queue_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
  747. {
  748. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  749. struct cfq_group *__cfqg;
  750. struct rb_node *n;
  751. cfqg->nr_cfqq++;
  752. if (!RB_EMPTY_NODE(&cfqg->rb_node))
  753. return;
  754. /*
  755. * Currently put the group at the end. Later implement something
  756. * so that groups get lesser vtime based on their weights, so that
  757. * if group does not loose all if it was not continuously backlogged.
  758. */
  759. n = rb_last(&st->rb);
  760. if (n) {
  761. __cfqg = rb_entry_cfqg(n);
  762. cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
  763. } else
  764. cfqg->vdisktime = st->min_vdisktime;
  765. cfq_group_service_tree_add(st, cfqg);
  766. }
  767. static void
  768. cfq_group_service_tree_del(struct cfq_rb_root *st, struct cfq_group *cfqg)
  769. {
  770. st->total_weight -= cfqg->weight;
  771. if (!RB_EMPTY_NODE(&cfqg->rb_node))
  772. cfq_rb_erase(&cfqg->rb_node, st);
  773. }
  774. static void
  775. cfq_group_notify_queue_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
  776. {
  777. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  778. BUG_ON(cfqg->nr_cfqq < 1);
  779. cfqg->nr_cfqq--;
  780. /* If there are other cfq queues under this group, don't delete it */
  781. if (cfqg->nr_cfqq)
  782. return;
  783. cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
  784. cfq_group_service_tree_del(st, cfqg);
  785. cfqg->saved_workload_slice = 0;
  786. cfq_blkiocg_update_dequeue_stats(&cfqg->blkg, 1);
  787. }
  788. static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq,
  789. unsigned int *unaccounted_time)
  790. {
  791. unsigned int slice_used;
  792. /*
  793. * Queue got expired before even a single request completed or
  794. * got expired immediately after first request completion.
  795. */
  796. if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
  797. /*
  798. * Also charge the seek time incurred to the group, otherwise
  799. * if there are mutiple queues in the group, each can dispatch
  800. * a single request on seeky media and cause lots of seek time
  801. * and group will never know it.
  802. */
  803. slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
  804. 1);
  805. } else {
  806. slice_used = jiffies - cfqq->slice_start;
  807. if (slice_used > cfqq->allocated_slice) {
  808. *unaccounted_time = slice_used - cfqq->allocated_slice;
  809. slice_used = cfqq->allocated_slice;
  810. }
  811. if (time_after(cfqq->slice_start, cfqq->dispatch_start))
  812. *unaccounted_time += cfqq->slice_start -
  813. cfqq->dispatch_start;
  814. }
  815. return slice_used;
  816. }
  817. static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
  818. struct cfq_queue *cfqq)
  819. {
  820. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  821. unsigned int used_sl, charge, unaccounted_sl = 0;
  822. int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
  823. - cfqg->service_tree_idle.count;
  824. BUG_ON(nr_sync < 0);
  825. used_sl = charge = cfq_cfqq_slice_usage(cfqq, &unaccounted_sl);
  826. if (iops_mode(cfqd))
  827. charge = cfqq->slice_dispatch;
  828. else if (!cfq_cfqq_sync(cfqq) && !nr_sync)
  829. charge = cfqq->allocated_slice;
  830. /* Can't update vdisktime while group is on service tree */
  831. cfq_group_service_tree_del(st, cfqg);
  832. cfqg->vdisktime += cfq_scale_slice(charge, cfqg);
  833. /* If a new weight was requested, update now, off tree */
  834. cfq_group_service_tree_add(st, cfqg);
  835. /* This group is being expired. Save the context */
  836. if (time_after(cfqd->workload_expires, jiffies)) {
  837. cfqg->saved_workload_slice = cfqd->workload_expires
  838. - jiffies;
  839. cfqg->saved_workload = cfqd->serving_type;
  840. cfqg->saved_serving_prio = cfqd->serving_prio;
  841. } else
  842. cfqg->saved_workload_slice = 0;
  843. cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
  844. st->min_vdisktime);
  845. cfq_log_cfqq(cfqq->cfqd, cfqq,
  846. "sl_used=%u disp=%u charge=%u iops=%u sect=%lu",
  847. used_sl, cfqq->slice_dispatch, charge,
  848. iops_mode(cfqd), cfqq->nr_sectors);
  849. cfq_blkiocg_update_timeslice_used(&cfqg->blkg, used_sl,
  850. unaccounted_sl);
  851. cfq_blkiocg_set_start_empty_time(&cfqg->blkg);
  852. }
  853. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  854. static inline struct cfq_group *cfqg_of_blkg(struct blkio_group *blkg)
  855. {
  856. if (blkg)
  857. return container_of(blkg, struct cfq_group, blkg);
  858. return NULL;
  859. }
  860. void cfq_update_blkio_group_weight(void *key, struct blkio_group *blkg,
  861. unsigned int weight)
  862. {
  863. struct cfq_group *cfqg = cfqg_of_blkg(blkg);
  864. cfqg->new_weight = weight;
  865. cfqg->needs_update = true;
  866. }
  867. static void cfq_init_add_cfqg_lists(struct cfq_data *cfqd,
  868. struct cfq_group *cfqg, struct blkio_cgroup *blkcg)
  869. {
  870. struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
  871. unsigned int major, minor;
  872. /*
  873. * Add group onto cgroup list. It might happen that bdi->dev is
  874. * not initialized yet. Initialize this new group without major
  875. * and minor info and this info will be filled in once a new thread
  876. * comes for IO.
  877. */
  878. if (bdi->dev) {
  879. sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
  880. cfq_blkiocg_add_blkio_group(blkcg, &cfqg->blkg,
  881. (void *)cfqd, MKDEV(major, minor));
  882. } else
  883. cfq_blkiocg_add_blkio_group(blkcg, &cfqg->blkg,
  884. (void *)cfqd, 0);
  885. cfqd->nr_blkcg_linked_grps++;
  886. cfqg->weight = blkcg_get_weight(blkcg, cfqg->blkg.dev);
  887. /* Add group on cfqd list */
  888. hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
  889. }
  890. /*
  891. * Should be called from sleepable context. No request queue lock as per
  892. * cpu stats are allocated dynamically and alloc_percpu needs to be called
  893. * from sleepable context.
  894. */
  895. static struct cfq_group * cfq_alloc_cfqg(struct cfq_data *cfqd)
  896. {
  897. struct cfq_group *cfqg = NULL;
  898. int i, j, ret;
  899. struct cfq_rb_root *st;
  900. cfqg = kzalloc_node(sizeof(*cfqg), GFP_ATOMIC, cfqd->queue->node);
  901. if (!cfqg)
  902. return NULL;
  903. for_each_cfqg_st(cfqg, i, j, st)
  904. *st = CFQ_RB_ROOT;
  905. RB_CLEAR_NODE(&cfqg->rb_node);
  906. /*
  907. * Take the initial reference that will be released on destroy
  908. * This can be thought of a joint reference by cgroup and
  909. * elevator which will be dropped by either elevator exit
  910. * or cgroup deletion path depending on who is exiting first.
  911. */
  912. cfqg->ref = 1;
  913. ret = blkio_alloc_blkg_stats(&cfqg->blkg);
  914. if (ret) {
  915. kfree(cfqg);
  916. return NULL;
  917. }
  918. return cfqg;
  919. }
  920. static struct cfq_group *
  921. cfq_find_cfqg(struct cfq_data *cfqd, struct blkio_cgroup *blkcg)
  922. {
  923. struct cfq_group *cfqg = NULL;
  924. void *key = cfqd;
  925. struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
  926. unsigned int major, minor;
  927. /*
  928. * This is the common case when there are no blkio cgroups.
  929. * Avoid lookup in this case
  930. */
  931. if (blkcg == &blkio_root_cgroup)
  932. cfqg = &cfqd->root_group;
  933. else
  934. cfqg = cfqg_of_blkg(blkiocg_lookup_group(blkcg, key));
  935. if (cfqg && !cfqg->blkg.dev && bdi->dev && dev_name(bdi->dev)) {
  936. sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
  937. cfqg->blkg.dev = MKDEV(major, minor);
  938. }
  939. return cfqg;
  940. }
  941. /*
  942. * Search for the cfq group current task belongs to. request_queue lock must
  943. * be held.
  944. */
  945. static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd)
  946. {
  947. struct blkio_cgroup *blkcg;
  948. struct cfq_group *cfqg = NULL, *__cfqg = NULL;
  949. struct request_queue *q = cfqd->queue;
  950. rcu_read_lock();
  951. blkcg = task_blkio_cgroup(current);
  952. cfqg = cfq_find_cfqg(cfqd, blkcg);
  953. if (cfqg) {
  954. rcu_read_unlock();
  955. return cfqg;
  956. }
  957. /*
  958. * Need to allocate a group. Allocation of group also needs allocation
  959. * of per cpu stats which in-turn takes a mutex() and can block. Hence
  960. * we need to drop rcu lock and queue_lock before we call alloc.
  961. *
  962. * Not taking any queue reference here and assuming that queue is
  963. * around by the time we return. CFQ queue allocation code does
  964. * the same. It might be racy though.
  965. */
  966. rcu_read_unlock();
  967. spin_unlock_irq(q->queue_lock);
  968. cfqg = cfq_alloc_cfqg(cfqd);
  969. spin_lock_irq(q->queue_lock);
  970. rcu_read_lock();
  971. blkcg = task_blkio_cgroup(current);
  972. /*
  973. * If some other thread already allocated the group while we were
  974. * not holding queue lock, free up the group
  975. */
  976. __cfqg = cfq_find_cfqg(cfqd, blkcg);
  977. if (__cfqg) {
  978. kfree(cfqg);
  979. rcu_read_unlock();
  980. return __cfqg;
  981. }
  982. if (!cfqg)
  983. cfqg = &cfqd->root_group;
  984. cfq_init_add_cfqg_lists(cfqd, cfqg, blkcg);
  985. rcu_read_unlock();
  986. return cfqg;
  987. }
  988. static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
  989. {
  990. cfqg->ref++;
  991. return cfqg;
  992. }
  993. static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
  994. {
  995. /* Currently, all async queues are mapped to root group */
  996. if (!cfq_cfqq_sync(cfqq))
  997. cfqg = &cfqq->cfqd->root_group;
  998. cfqq->cfqg = cfqg;
  999. /* cfqq reference on cfqg */
  1000. cfqq->cfqg->ref++;
  1001. }
  1002. static void cfq_put_cfqg(struct cfq_group *cfqg)
  1003. {
  1004. struct cfq_rb_root *st;
  1005. int i, j;
  1006. BUG_ON(cfqg->ref <= 0);
  1007. cfqg->ref--;
  1008. if (cfqg->ref)
  1009. return;
  1010. for_each_cfqg_st(cfqg, i, j, st)
  1011. BUG_ON(!RB_EMPTY_ROOT(&st->rb));
  1012. free_percpu(cfqg->blkg.stats_cpu);
  1013. kfree(cfqg);
  1014. }
  1015. static void cfq_destroy_cfqg(struct cfq_data *cfqd, struct cfq_group *cfqg)
  1016. {
  1017. /* Something wrong if we are trying to remove same group twice */
  1018. BUG_ON(hlist_unhashed(&cfqg->cfqd_node));
  1019. hlist_del_init(&cfqg->cfqd_node);
  1020. /*
  1021. * Put the reference taken at the time of creation so that when all
  1022. * queues are gone, group can be destroyed.
  1023. */
  1024. cfq_put_cfqg(cfqg);
  1025. }
  1026. static void cfq_release_cfq_groups(struct cfq_data *cfqd)
  1027. {
  1028. struct hlist_node *pos, *n;
  1029. struct cfq_group *cfqg;
  1030. hlist_for_each_entry_safe(cfqg, pos, n, &cfqd->cfqg_list, cfqd_node) {
  1031. /*
  1032. * If cgroup removal path got to blk_group first and removed
  1033. * it from cgroup list, then it will take care of destroying
  1034. * cfqg also.
  1035. */
  1036. if (!cfq_blkiocg_del_blkio_group(&cfqg->blkg))
  1037. cfq_destroy_cfqg(cfqd, cfqg);
  1038. }
  1039. }
  1040. /*
  1041. * Blk cgroup controller notification saying that blkio_group object is being
  1042. * delinked as associated cgroup object is going away. That also means that
  1043. * no new IO will come in this group. So get rid of this group as soon as
  1044. * any pending IO in the group is finished.
  1045. *
  1046. * This function is called under rcu_read_lock(). key is the rcu protected
  1047. * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
  1048. * read lock.
  1049. *
  1050. * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
  1051. * it should not be NULL as even if elevator was exiting, cgroup deltion
  1052. * path got to it first.
  1053. */
  1054. void cfq_unlink_blkio_group(void *key, struct blkio_group *blkg)
  1055. {
  1056. unsigned long flags;
  1057. struct cfq_data *cfqd = key;
  1058. spin_lock_irqsave(cfqd->queue->queue_lock, flags);
  1059. cfq_destroy_cfqg(cfqd, cfqg_of_blkg(blkg));
  1060. spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
  1061. }
  1062. #else /* GROUP_IOSCHED */
  1063. static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd)
  1064. {
  1065. return &cfqd->root_group;
  1066. }
  1067. static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
  1068. {
  1069. return cfqg;
  1070. }
  1071. static inline void
  1072. cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
  1073. cfqq->cfqg = cfqg;
  1074. }
  1075. static void cfq_release_cfq_groups(struct cfq_data *cfqd) {}
  1076. static inline void cfq_put_cfqg(struct cfq_group *cfqg) {}
  1077. #endif /* GROUP_IOSCHED */
  1078. /*
  1079. * The cfqd->service_trees holds all pending cfq_queue's that have
  1080. * requests waiting to be processed. It is sorted in the order that
  1081. * we will service the queues.
  1082. */
  1083. static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  1084. bool add_front)
  1085. {
  1086. struct rb_node **p, *parent;
  1087. struct cfq_queue *__cfqq;
  1088. unsigned long rb_key;
  1089. struct cfq_rb_root *service_tree;
  1090. int left;
  1091. int new_cfqq = 1;
  1092. service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
  1093. cfqq_type(cfqq));
  1094. if (cfq_class_idle(cfqq)) {
  1095. rb_key = CFQ_IDLE_DELAY;
  1096. parent = rb_last(&service_tree->rb);
  1097. if (parent && parent != &cfqq->rb_node) {
  1098. __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
  1099. rb_key += __cfqq->rb_key;
  1100. } else
  1101. rb_key += jiffies;
  1102. } else if (!add_front) {
  1103. /*
  1104. * Get our rb key offset. Subtract any residual slice
  1105. * value carried from last service. A negative resid
  1106. * count indicates slice overrun, and this should position
  1107. * the next service time further away in the tree.
  1108. */
  1109. rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
  1110. rb_key -= cfqq->slice_resid;
  1111. cfqq->slice_resid = 0;
  1112. } else {
  1113. rb_key = -HZ;
  1114. __cfqq = cfq_rb_first(service_tree);
  1115. rb_key += __cfqq ? __cfqq->rb_key : jiffies;
  1116. }
  1117. if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
  1118. new_cfqq = 0;
  1119. /*
  1120. * same position, nothing more to do
  1121. */
  1122. if (rb_key == cfqq->rb_key &&
  1123. cfqq->service_tree == service_tree)
  1124. return;
  1125. cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
  1126. cfqq->service_tree = NULL;
  1127. }
  1128. left = 1;
  1129. parent = NULL;
  1130. cfqq->service_tree = service_tree;
  1131. p = &service_tree->rb.rb_node;
  1132. while (*p) {
  1133. struct rb_node **n;
  1134. parent = *p;
  1135. __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
  1136. /*
  1137. * sort by key, that represents service time.
  1138. */
  1139. if (time_before(rb_key, __cfqq->rb_key))
  1140. n = &(*p)->rb_left;
  1141. else {
  1142. n = &(*p)->rb_right;
  1143. left = 0;
  1144. }
  1145. p = n;
  1146. }
  1147. if (left)
  1148. service_tree->left = &cfqq->rb_node;
  1149. cfqq->rb_key = rb_key;
  1150. rb_link_node(&cfqq->rb_node, parent, p);
  1151. rb_insert_color(&cfqq->rb_node, &service_tree->rb);
  1152. service_tree->count++;
  1153. if (add_front || !new_cfqq)
  1154. return;
  1155. cfq_group_notify_queue_add(cfqd, cfqq->cfqg);
  1156. }
  1157. static struct cfq_queue *
  1158. cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
  1159. sector_t sector, struct rb_node **ret_parent,
  1160. struct rb_node ***rb_link)
  1161. {
  1162. struct rb_node **p, *parent;
  1163. struct cfq_queue *cfqq = NULL;
  1164. parent = NULL;
  1165. p = &root->rb_node;
  1166. while (*p) {
  1167. struct rb_node **n;
  1168. parent = *p;
  1169. cfqq = rb_entry(parent, struct cfq_queue, p_node);
  1170. /*
  1171. * Sort strictly based on sector. Smallest to the left,
  1172. * largest to the right.
  1173. */
  1174. if (sector > blk_rq_pos(cfqq->next_rq))
  1175. n = &(*p)->rb_right;
  1176. else if (sector < blk_rq_pos(cfqq->next_rq))
  1177. n = &(*p)->rb_left;
  1178. else
  1179. break;
  1180. p = n;
  1181. cfqq = NULL;
  1182. }
  1183. *ret_parent = parent;
  1184. if (rb_link)
  1185. *rb_link = p;
  1186. return cfqq;
  1187. }
  1188. static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1189. {
  1190. struct rb_node **p, *parent;
  1191. struct cfq_queue *__cfqq;
  1192. if (cfqq->p_root) {
  1193. rb_erase(&cfqq->p_node, cfqq->p_root);
  1194. cfqq->p_root = NULL;
  1195. }
  1196. if (cfq_class_idle(cfqq))
  1197. return;
  1198. if (!cfqq->next_rq)
  1199. return;
  1200. cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
  1201. __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
  1202. blk_rq_pos(cfqq->next_rq), &parent, &p);
  1203. if (!__cfqq) {
  1204. rb_link_node(&cfqq->p_node, parent, p);
  1205. rb_insert_color(&cfqq->p_node, cfqq->p_root);
  1206. } else
  1207. cfqq->p_root = NULL;
  1208. }
  1209. /*
  1210. * Update cfqq's position in the service tree.
  1211. */
  1212. static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1213. {
  1214. /*
  1215. * Resorting requires the cfqq to be on the RR list already.
  1216. */
  1217. if (cfq_cfqq_on_rr(cfqq)) {
  1218. cfq_service_tree_add(cfqd, cfqq, 0);
  1219. cfq_prio_tree_add(cfqd, cfqq);
  1220. }
  1221. }
  1222. /*
  1223. * add to busy list of queues for service, trying to be fair in ordering
  1224. * the pending list according to last request service
  1225. */
  1226. static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1227. {
  1228. cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
  1229. BUG_ON(cfq_cfqq_on_rr(cfqq));
  1230. cfq_mark_cfqq_on_rr(cfqq);
  1231. cfqd->busy_queues++;
  1232. if (cfq_cfqq_sync(cfqq))
  1233. cfqd->busy_sync_queues++;
  1234. cfq_resort_rr_list(cfqd, cfqq);
  1235. }
  1236. /*
  1237. * Called when the cfqq no longer has requests pending, remove it from
  1238. * the service tree.
  1239. */
  1240. static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1241. {
  1242. cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
  1243. BUG_ON(!cfq_cfqq_on_rr(cfqq));
  1244. cfq_clear_cfqq_on_rr(cfqq);
  1245. if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
  1246. cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
  1247. cfqq->service_tree = NULL;
  1248. }
  1249. if (cfqq->p_root) {
  1250. rb_erase(&cfqq->p_node, cfqq->p_root);
  1251. cfqq->p_root = NULL;
  1252. }
  1253. cfq_group_notify_queue_del(cfqd, cfqq->cfqg);
  1254. BUG_ON(!cfqd->busy_queues);
  1255. cfqd->busy_queues--;
  1256. if (cfq_cfqq_sync(cfqq))
  1257. cfqd->busy_sync_queues--;
  1258. }
  1259. /*
  1260. * rb tree support functions
  1261. */
  1262. static void cfq_del_rq_rb(struct request *rq)
  1263. {
  1264. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1265. const int sync = rq_is_sync(rq);
  1266. BUG_ON(!cfqq->queued[sync]);
  1267. cfqq->queued[sync]--;
  1268. elv_rb_del(&cfqq->sort_list, rq);
  1269. if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
  1270. /*
  1271. * Queue will be deleted from service tree when we actually
  1272. * expire it later. Right now just remove it from prio tree
  1273. * as it is empty.
  1274. */
  1275. if (cfqq->p_root) {
  1276. rb_erase(&cfqq->p_node, cfqq->p_root);
  1277. cfqq->p_root = NULL;
  1278. }
  1279. }
  1280. }
  1281. static void cfq_add_rq_rb(struct request *rq)
  1282. {
  1283. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1284. struct cfq_data *cfqd = cfqq->cfqd;
  1285. struct request *__alias, *prev;
  1286. cfqq->queued[rq_is_sync(rq)]++;
  1287. /*
  1288. * looks a little odd, but the first insert might return an alias.
  1289. * if that happens, put the alias on the dispatch list
  1290. */
  1291. while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
  1292. cfq_dispatch_insert(cfqd->queue, __alias);
  1293. if (!cfq_cfqq_on_rr(cfqq))
  1294. cfq_add_cfqq_rr(cfqd, cfqq);
  1295. /*
  1296. * check if this request is a better next-serve candidate
  1297. */
  1298. prev = cfqq->next_rq;
  1299. cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
  1300. /*
  1301. * adjust priority tree position, if ->next_rq changes
  1302. */
  1303. if (prev != cfqq->next_rq)
  1304. cfq_prio_tree_add(cfqd, cfqq);
  1305. BUG_ON(!cfqq->next_rq);
  1306. }
  1307. static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
  1308. {
  1309. elv_rb_del(&cfqq->sort_list, rq);
  1310. cfqq->queued[rq_is_sync(rq)]--;
  1311. cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
  1312. rq_data_dir(rq), rq_is_sync(rq));
  1313. cfq_add_rq_rb(rq);
  1314. cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
  1315. &cfqq->cfqd->serving_group->blkg, rq_data_dir(rq),
  1316. rq_is_sync(rq));
  1317. }
  1318. static struct request *
  1319. cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
  1320. {
  1321. struct task_struct *tsk = current;
  1322. struct cfq_io_context *cic;
  1323. struct cfq_queue *cfqq;
  1324. cic = cfq_cic_lookup(cfqd, tsk->io_context);
  1325. if (!cic)
  1326. return NULL;
  1327. cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
  1328. if (cfqq) {
  1329. sector_t sector = bio->bi_sector + bio_sectors(bio);
  1330. return elv_rb_find(&cfqq->sort_list, sector);
  1331. }
  1332. return NULL;
  1333. }
  1334. static void cfq_activate_request(struct request_queue *q, struct request *rq)
  1335. {
  1336. struct cfq_data *cfqd = q->elevator->elevator_data;
  1337. cfqd->rq_in_driver++;
  1338. cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
  1339. cfqd->rq_in_driver);
  1340. cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
  1341. }
  1342. static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
  1343. {
  1344. struct cfq_data *cfqd = q->elevator->elevator_data;
  1345. WARN_ON(!cfqd->rq_in_driver);
  1346. cfqd->rq_in_driver--;
  1347. cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
  1348. cfqd->rq_in_driver);
  1349. }
  1350. static void cfq_remove_request(struct request *rq)
  1351. {
  1352. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1353. if (cfqq->next_rq == rq)
  1354. cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
  1355. list_del_init(&rq->queuelist);
  1356. cfq_del_rq_rb(rq);
  1357. cfqq->cfqd->rq_queued--;
  1358. cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
  1359. rq_data_dir(rq), rq_is_sync(rq));
  1360. if (rq->cmd_flags & REQ_META) {
  1361. WARN_ON(!cfqq->meta_pending);
  1362. cfqq->meta_pending--;
  1363. }
  1364. }
  1365. static int cfq_merge(struct request_queue *q, struct request **req,
  1366. struct bio *bio)
  1367. {
  1368. struct cfq_data *cfqd = q->elevator->elevator_data;
  1369. struct request *__rq;
  1370. __rq = cfq_find_rq_fmerge(cfqd, bio);
  1371. if (__rq && elv_rq_merge_ok(__rq, bio)) {
  1372. *req = __rq;
  1373. return ELEVATOR_FRONT_MERGE;
  1374. }
  1375. return ELEVATOR_NO_MERGE;
  1376. }
  1377. static void cfq_merged_request(struct request_queue *q, struct request *req,
  1378. int type)
  1379. {
  1380. if (type == ELEVATOR_FRONT_MERGE) {
  1381. struct cfq_queue *cfqq = RQ_CFQQ(req);
  1382. cfq_reposition_rq_rb(cfqq, req);
  1383. }
  1384. }
  1385. static void cfq_bio_merged(struct request_queue *q, struct request *req,
  1386. struct bio *bio)
  1387. {
  1388. cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(req))->blkg,
  1389. bio_data_dir(bio), cfq_bio_sync(bio));
  1390. }
  1391. static void
  1392. cfq_merged_requests(struct request_queue *q, struct request *rq,
  1393. struct request *next)
  1394. {
  1395. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1396. /*
  1397. * reposition in fifo if next is older than rq
  1398. */
  1399. if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
  1400. time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
  1401. list_move(&rq->queuelist, &next->queuelist);
  1402. rq_set_fifo_time(rq, rq_fifo_time(next));
  1403. }
  1404. if (cfqq->next_rq == next)
  1405. cfqq->next_rq = rq;
  1406. cfq_remove_request(next);
  1407. cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(rq))->blkg,
  1408. rq_data_dir(next), rq_is_sync(next));
  1409. }
  1410. static int cfq_allow_merge(struct request_queue *q, struct request *rq,
  1411. struct bio *bio)
  1412. {
  1413. struct cfq_data *cfqd = q->elevator->elevator_data;
  1414. struct cfq_io_context *cic;
  1415. struct cfq_queue *cfqq;
  1416. /*
  1417. * Disallow merge of a sync bio into an async request.
  1418. */
  1419. if (cfq_bio_sync(bio) && !rq_is_sync(rq))
  1420. return false;
  1421. /*
  1422. * Lookup the cfqq that this bio will be queued with. Allow
  1423. * merge only if rq is queued there.
  1424. */
  1425. cic = cfq_cic_lookup(cfqd, current->io_context);
  1426. if (!cic)
  1427. return false;
  1428. cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
  1429. return cfqq == RQ_CFQQ(rq);
  1430. }
  1431. static inline void cfq_del_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1432. {
  1433. del_timer(&cfqd->idle_slice_timer);
  1434. cfq_blkiocg_update_idle_time_stats(&cfqq->cfqg->blkg);
  1435. }
  1436. static void __cfq_set_active_queue(struct cfq_data *cfqd,
  1437. struct cfq_queue *cfqq)
  1438. {
  1439. if (cfqq) {
  1440. cfq_log_cfqq(cfqd, cfqq, "set_active wl_prio:%d wl_type:%d",
  1441. cfqd->serving_prio, cfqd->serving_type);
  1442. cfq_blkiocg_update_avg_queue_size_stats(&cfqq->cfqg->blkg);
  1443. cfqq->slice_start = 0;
  1444. cfqq->dispatch_start = jiffies;
  1445. cfqq->allocated_slice = 0;
  1446. cfqq->slice_end = 0;
  1447. cfqq->slice_dispatch = 0;
  1448. cfqq->nr_sectors = 0;
  1449. cfq_clear_cfqq_wait_request(cfqq);
  1450. cfq_clear_cfqq_must_dispatch(cfqq);
  1451. cfq_clear_cfqq_must_alloc_slice(cfqq);
  1452. cfq_clear_cfqq_fifo_expire(cfqq);
  1453. cfq_mark_cfqq_slice_new(cfqq);
  1454. cfq_del_timer(cfqd, cfqq);
  1455. }
  1456. cfqd->active_queue = cfqq;
  1457. }
  1458. /*
  1459. * current cfqq expired its slice (or was too idle), select new one
  1460. */
  1461. static void
  1462. __cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  1463. bool timed_out)
  1464. {
  1465. cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
  1466. if (cfq_cfqq_wait_request(cfqq))
  1467. cfq_del_timer(cfqd, cfqq);
  1468. cfq_clear_cfqq_wait_request(cfqq);
  1469. cfq_clear_cfqq_wait_busy(cfqq);
  1470. /*
  1471. * If this cfqq is shared between multiple processes, check to
  1472. * make sure that those processes are still issuing I/Os within
  1473. * the mean seek distance. If not, it may be time to break the
  1474. * queues apart again.
  1475. */
  1476. if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
  1477. cfq_mark_cfqq_split_coop(cfqq);
  1478. /*
  1479. * store what was left of this slice, if the queue idled/timed out
  1480. */
  1481. if (timed_out) {
  1482. if (cfq_cfqq_slice_new(cfqq))
  1483. cfqq->slice_resid = cfq_scaled_cfqq_slice(cfqd, cfqq);
  1484. else
  1485. cfqq->slice_resid = cfqq->slice_end - jiffies;
  1486. cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
  1487. }
  1488. cfq_group_served(cfqd, cfqq->cfqg, cfqq);
  1489. if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
  1490. cfq_del_cfqq_rr(cfqd, cfqq);
  1491. cfq_resort_rr_list(cfqd, cfqq);
  1492. if (cfqq == cfqd->active_queue)
  1493. cfqd->active_queue = NULL;
  1494. if (cfqd->active_cic) {
  1495. put_io_context(cfqd->active_cic->ioc);
  1496. cfqd->active_cic = NULL;
  1497. }
  1498. }
  1499. static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
  1500. {
  1501. struct cfq_queue *cfqq = cfqd->active_queue;
  1502. if (cfqq)
  1503. __cfq_slice_expired(cfqd, cfqq, timed_out);
  1504. }
  1505. /*
  1506. * Get next queue for service. Unless we have a queue preemption,
  1507. * we'll simply select the first cfqq in the service tree.
  1508. */
  1509. static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
  1510. {
  1511. struct cfq_rb_root *service_tree =
  1512. service_tree_for(cfqd->serving_group, cfqd->serving_prio,
  1513. cfqd->serving_type);
  1514. if (!cfqd->rq_queued)
  1515. return NULL;
  1516. /* There is nothing to dispatch */
  1517. if (!service_tree)
  1518. return NULL;
  1519. if (RB_EMPTY_ROOT(&service_tree->rb))
  1520. return NULL;
  1521. return cfq_rb_first(service_tree);
  1522. }
  1523. static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
  1524. {
  1525. struct cfq_group *cfqg;
  1526. struct cfq_queue *cfqq;
  1527. int i, j;
  1528. struct cfq_rb_root *st;
  1529. if (!cfqd->rq_queued)
  1530. return NULL;
  1531. cfqg = cfq_get_next_cfqg(cfqd);
  1532. if (!cfqg)
  1533. return NULL;
  1534. for_each_cfqg_st(cfqg, i, j, st)
  1535. if ((cfqq = cfq_rb_first(st)) != NULL)
  1536. return cfqq;
  1537. return NULL;
  1538. }
  1539. /*
  1540. * Get and set a new active queue for service.
  1541. */
  1542. static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
  1543. struct cfq_queue *cfqq)
  1544. {
  1545. if (!cfqq)
  1546. cfqq = cfq_get_next_queue(cfqd);
  1547. __cfq_set_active_queue(cfqd, cfqq);
  1548. return cfqq;
  1549. }
  1550. static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
  1551. struct request *rq)
  1552. {
  1553. if (blk_rq_pos(rq) >= cfqd->last_position)
  1554. return blk_rq_pos(rq) - cfqd->last_position;
  1555. else
  1556. return cfqd->last_position - blk_rq_pos(rq);
  1557. }
  1558. static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  1559. struct request *rq)
  1560. {
  1561. return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
  1562. }
  1563. static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
  1564. struct cfq_queue *cur_cfqq)
  1565. {
  1566. struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
  1567. struct rb_node *parent, *node;
  1568. struct cfq_queue *__cfqq;
  1569. sector_t sector = cfqd->last_position;
  1570. if (RB_EMPTY_ROOT(root))
  1571. return NULL;
  1572. /*
  1573. * First, if we find a request starting at the end of the last
  1574. * request, choose it.
  1575. */
  1576. __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
  1577. if (__cfqq)
  1578. return __cfqq;
  1579. /*
  1580. * If the exact sector wasn't found, the parent of the NULL leaf
  1581. * will contain the closest sector.
  1582. */
  1583. __cfqq = rb_entry(parent, struct cfq_queue, p_node);
  1584. if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
  1585. return __cfqq;
  1586. if (blk_rq_pos(__cfqq->next_rq) < sector)
  1587. node = rb_next(&__cfqq->p_node);
  1588. else
  1589. node = rb_prev(&__cfqq->p_node);
  1590. if (!node)
  1591. return NULL;
  1592. __cfqq = rb_entry(node, struct cfq_queue, p_node);
  1593. if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
  1594. return __cfqq;
  1595. return NULL;
  1596. }
  1597. /*
  1598. * cfqd - obvious
  1599. * cur_cfqq - passed in so that we don't decide that the current queue is
  1600. * closely cooperating with itself.
  1601. *
  1602. * So, basically we're assuming that that cur_cfqq has dispatched at least
  1603. * one request, and that cfqd->last_position reflects a position on the disk
  1604. * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
  1605. * assumption.
  1606. */
  1607. static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
  1608. struct cfq_queue *cur_cfqq)
  1609. {
  1610. struct cfq_queue *cfqq;
  1611. if (cfq_class_idle(cur_cfqq))
  1612. return NULL;
  1613. if (!cfq_cfqq_sync(cur_cfqq))
  1614. return NULL;
  1615. if (CFQQ_SEEKY(cur_cfqq))
  1616. return NULL;
  1617. /*
  1618. * Don't search priority tree if it's the only queue in the group.
  1619. */
  1620. if (cur_cfqq->cfqg->nr_cfqq == 1)
  1621. return NULL;
  1622. /*
  1623. * We should notice if some of the queues are cooperating, eg
  1624. * working closely on the same area of the disk. In that case,
  1625. * we can group them together and don't waste time idling.
  1626. */
  1627. cfqq = cfqq_close(cfqd, cur_cfqq);
  1628. if (!cfqq)
  1629. return NULL;
  1630. /* If new queue belongs to different cfq_group, don't choose it */
  1631. if (cur_cfqq->cfqg != cfqq->cfqg)
  1632. return NULL;
  1633. /*
  1634. * It only makes sense to merge sync queues.
  1635. */
  1636. if (!cfq_cfqq_sync(cfqq))
  1637. return NULL;
  1638. if (CFQQ_SEEKY(cfqq))
  1639. return NULL;
  1640. /*
  1641. * Do not merge queues of different priority classes
  1642. */
  1643. if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
  1644. return NULL;
  1645. return cfqq;
  1646. }
  1647. /*
  1648. * Determine whether we should enforce idle window for this queue.
  1649. */
  1650. static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1651. {
  1652. enum wl_prio_t prio = cfqq_prio(cfqq);
  1653. struct cfq_rb_root *service_tree = cfqq->service_tree;
  1654. BUG_ON(!service_tree);
  1655. BUG_ON(!service_tree->count);
  1656. if (!cfqd->cfq_slice_idle)
  1657. return false;
  1658. /* We never do for idle class queues. */
  1659. if (prio == IDLE_WORKLOAD)
  1660. return false;
  1661. /* We do for queues that were marked with idle window flag. */
  1662. if (cfq_cfqq_idle_window(cfqq) &&
  1663. !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
  1664. return true;
  1665. /*
  1666. * Otherwise, we do only if they are the last ones
  1667. * in their service tree.
  1668. */
  1669. if (service_tree->count == 1 && cfq_cfqq_sync(cfqq))
  1670. return true;
  1671. cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d",
  1672. service_tree->count);
  1673. return false;
  1674. }
  1675. static void cfq_arm_slice_timer(struct cfq_data *cfqd)
  1676. {
  1677. struct cfq_queue *cfqq = cfqd->active_queue;
  1678. struct cfq_io_context *cic;
  1679. unsigned long sl, group_idle = 0;
  1680. /*
  1681. * SSD device without seek penalty, disable idling. But only do so
  1682. * for devices that support queuing, otherwise we still have a problem
  1683. * with sync vs async workloads.
  1684. */
  1685. if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
  1686. return;
  1687. WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
  1688. WARN_ON(cfq_cfqq_slice_new(cfqq));
  1689. /*
  1690. * idle is disabled, either manually or by past process history
  1691. */
  1692. if (!cfq_should_idle(cfqd, cfqq)) {
  1693. /* no queue idling. Check for group idling */
  1694. if (cfqd->cfq_group_idle)
  1695. group_idle = cfqd->cfq_group_idle;
  1696. else
  1697. return;
  1698. }
  1699. /*
  1700. * still active requests from this queue, don't idle
  1701. */
  1702. if (cfqq->dispatched)
  1703. return;
  1704. /*
  1705. * task has exited, don't wait
  1706. */
  1707. cic = cfqd->active_cic;
  1708. if (!cic || !atomic_read(&cic->ioc->nr_tasks))
  1709. return;
  1710. /*
  1711. * If our average think time is larger than the remaining time
  1712. * slice, then don't idle. This avoids overrunning the allotted
  1713. * time slice.
  1714. */
  1715. if (sample_valid(cic->ttime_samples) &&
  1716. (cfqq->slice_end - jiffies < cic->ttime_mean)) {
  1717. cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%lu",
  1718. cic->ttime_mean);
  1719. return;
  1720. }
  1721. /* There are other queues in the group, don't do group idle */
  1722. if (group_idle && cfqq->cfqg->nr_cfqq > 1)
  1723. return;
  1724. cfq_mark_cfqq_wait_request(cfqq);
  1725. if (group_idle)
  1726. sl = cfqd->cfq_group_idle;
  1727. else
  1728. sl = cfqd->cfq_slice_idle;
  1729. mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
  1730. cfq_blkiocg_update_set_idle_time_stats(&cfqq->cfqg->blkg);
  1731. cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu group_idle: %d", sl,
  1732. group_idle ? 1 : 0);
  1733. }
  1734. /*
  1735. * Move request from internal lists to the request queue dispatch list.
  1736. */
  1737. static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
  1738. {
  1739. struct cfq_data *cfqd = q->elevator->elevator_data;
  1740. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  1741. cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
  1742. cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
  1743. cfq_remove_request(rq);
  1744. cfqq->dispatched++;
  1745. (RQ_CFQG(rq))->dispatched++;
  1746. elv_dispatch_sort(q, rq);
  1747. cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
  1748. cfqq->nr_sectors += blk_rq_sectors(rq);
  1749. cfq_blkiocg_update_dispatch_stats(&cfqq->cfqg->blkg, blk_rq_bytes(rq),
  1750. rq_data_dir(rq), rq_is_sync(rq));
  1751. }
  1752. /*
  1753. * return expired entry, or NULL to just start from scratch in rbtree
  1754. */
  1755. static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
  1756. {
  1757. struct request *rq = NULL;
  1758. if (cfq_cfqq_fifo_expire(cfqq))
  1759. return NULL;
  1760. cfq_mark_cfqq_fifo_expire(cfqq);
  1761. if (list_empty(&cfqq->fifo))
  1762. return NULL;
  1763. rq = rq_entry_fifo(cfqq->fifo.next);
  1764. if (time_before(jiffies, rq_fifo_time(rq)))
  1765. rq = NULL;
  1766. cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
  1767. return rq;
  1768. }
  1769. static inline int
  1770. cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  1771. {
  1772. const int base_rq = cfqd->cfq_slice_async_rq;
  1773. WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
  1774. return 2 * base_rq * (IOPRIO_BE_NR - cfqq->ioprio);
  1775. }
  1776. /*
  1777. * Must be called with the queue_lock held.
  1778. */
  1779. static int cfqq_process_refs(struct cfq_queue *cfqq)
  1780. {
  1781. int process_refs, io_refs;
  1782. io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
  1783. process_refs = cfqq->ref - io_refs;
  1784. BUG_ON(process_refs < 0);
  1785. return process_refs;
  1786. }
  1787. static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
  1788. {
  1789. int process_refs, new_process_refs;
  1790. struct cfq_queue *__cfqq;
  1791. /*
  1792. * If there are no process references on the new_cfqq, then it is
  1793. * unsafe to follow the ->new_cfqq chain as other cfqq's in the
  1794. * chain may have dropped their last reference (not just their
  1795. * last process reference).
  1796. */
  1797. if (!cfqq_process_refs(new_cfqq))
  1798. return;
  1799. /* Avoid a circular list and skip interim queue merges */
  1800. while ((__cfqq = new_cfqq->new_cfqq)) {
  1801. if (__cfqq == cfqq)
  1802. return;
  1803. new_cfqq = __cfqq;
  1804. }
  1805. process_refs = cfqq_process_refs(cfqq);
  1806. new_process_refs = cfqq_process_refs(new_cfqq);
  1807. /*
  1808. * If the process for the cfqq has gone away, there is no
  1809. * sense in merging the queues.
  1810. */
  1811. if (process_refs == 0 || new_process_refs == 0)
  1812. return;
  1813. /*
  1814. * Merge in the direction of the lesser amount of work.
  1815. */
  1816. if (new_process_refs >= process_refs) {
  1817. cfqq->new_cfqq = new_cfqq;
  1818. new_cfqq->ref += process_refs;
  1819. } else {
  1820. new_cfqq->new_cfqq = cfqq;
  1821. cfqq->ref += new_process_refs;
  1822. }
  1823. }
  1824. static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
  1825. struct cfq_group *cfqg, enum wl_prio_t prio)
  1826. {
  1827. struct cfq_queue *queue;
  1828. int i;
  1829. bool key_valid = false;
  1830. unsigned long lowest_key = 0;
  1831. enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
  1832. for (i = 0; i <= SYNC_WORKLOAD; ++i) {
  1833. /* select the one with lowest rb_key */
  1834. queue = cfq_rb_first(service_tree_for(cfqg, prio, i));
  1835. if (queue &&
  1836. (!key_valid || time_before(queue->rb_key, lowest_key))) {
  1837. lowest_key = queue->rb_key;
  1838. cur_best = i;
  1839. key_valid = true;
  1840. }
  1841. }
  1842. return cur_best;
  1843. }
  1844. static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
  1845. {
  1846. unsigned slice;
  1847. unsigned count;
  1848. struct cfq_rb_root *st;
  1849. unsigned group_slice;
  1850. enum wl_prio_t original_prio = cfqd->serving_prio;
  1851. /* Choose next priority. RT > BE > IDLE */
  1852. if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
  1853. cfqd->serving_prio = RT_WORKLOAD;
  1854. else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
  1855. cfqd->serving_prio = BE_WORKLOAD;
  1856. else {
  1857. cfqd->serving_prio = IDLE_WORKLOAD;
  1858. cfqd->workload_expires = jiffies + 1;
  1859. return;
  1860. }
  1861. if (original_prio != cfqd->serving_prio)
  1862. goto new_workload;
  1863. /*
  1864. * For RT and BE, we have to choose also the type
  1865. * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
  1866. * expiration time
  1867. */
  1868. st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
  1869. count = st->count;
  1870. /*
  1871. * check workload expiration, and that we still have other queues ready
  1872. */
  1873. if (count && !time_after(jiffies, cfqd->workload_expires))
  1874. return;
  1875. new_workload:
  1876. /* otherwise select new workload type */
  1877. cfqd->serving_type =
  1878. cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio);
  1879. st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
  1880. count = st->count;
  1881. /*
  1882. * the workload slice is computed as a fraction of target latency
  1883. * proportional to the number of queues in that workload, over
  1884. * all the queues in the same priority class
  1885. */
  1886. group_slice = cfq_group_slice(cfqd, cfqg);
  1887. slice = group_slice * count /
  1888. max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
  1889. cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
  1890. if (cfqd->serving_type == ASYNC_WORKLOAD) {
  1891. unsigned int tmp;
  1892. /*
  1893. * Async queues are currently system wide. Just taking
  1894. * proportion of queues with-in same group will lead to higher
  1895. * async ratio system wide as generally root group is going
  1896. * to have higher weight. A more accurate thing would be to
  1897. * calculate system wide asnc/sync ratio.
  1898. */
  1899. tmp = cfq_target_latency * cfqg_busy_async_queues(cfqd, cfqg);
  1900. tmp = tmp/cfqd->busy_queues;
  1901. slice = min_t(unsigned, slice, tmp);
  1902. /* async workload slice is scaled down according to
  1903. * the sync/async slice ratio. */
  1904. slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
  1905. } else
  1906. /* sync workload slice is at least 2 * cfq_slice_idle */
  1907. slice = max(slice, 2 * cfqd->cfq_slice_idle);
  1908. slice = max_t(unsigned, slice, CFQ_MIN_TT);
  1909. cfq_log(cfqd, "workload slice:%d", slice);
  1910. cfqd->workload_expires = jiffies + slice;
  1911. }
  1912. static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
  1913. {
  1914. struct cfq_rb_root *st = &cfqd->grp_service_tree;
  1915. struct cfq_group *cfqg;
  1916. if (RB_EMPTY_ROOT(&st->rb))
  1917. return NULL;
  1918. cfqg = cfq_rb_first_group(st);
  1919. update_min_vdisktime(st);
  1920. return cfqg;
  1921. }
  1922. static void cfq_choose_cfqg(struct cfq_data *cfqd)
  1923. {
  1924. struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
  1925. cfqd->serving_group = cfqg;
  1926. /* Restore the workload type data */
  1927. if (cfqg->saved_workload_slice) {
  1928. cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
  1929. cfqd->serving_type = cfqg->saved_workload;
  1930. cfqd->serving_prio = cfqg->saved_serving_prio;
  1931. } else
  1932. cfqd->workload_expires = jiffies - 1;
  1933. choose_service_tree(cfqd, cfqg);
  1934. }
  1935. /*
  1936. * Select a queue for service. If we have a current active queue,
  1937. * check whether to continue servicing it, or retrieve and set a new one.
  1938. */
  1939. static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
  1940. {
  1941. struct cfq_queue *cfqq, *new_cfqq = NULL;
  1942. cfqq = cfqd->active_queue;
  1943. if (!cfqq)
  1944. goto new_queue;
  1945. if (!cfqd->rq_queued)
  1946. return NULL;
  1947. /*
  1948. * We were waiting for group to get backlogged. Expire the queue
  1949. */
  1950. if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
  1951. goto expire;
  1952. /*
  1953. * The active queue has run out of time, expire it and select new.
  1954. */
  1955. if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
  1956. /*
  1957. * If slice had not expired at the completion of last request
  1958. * we might not have turned on wait_busy flag. Don't expire
  1959. * the queue yet. Allow the group to get backlogged.
  1960. *
  1961. * The very fact that we have used the slice, that means we
  1962. * have been idling all along on this queue and it should be
  1963. * ok to wait for this request to complete.
  1964. */
  1965. if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
  1966. && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
  1967. cfqq = NULL;
  1968. goto keep_queue;
  1969. } else
  1970. goto check_group_idle;
  1971. }
  1972. /*
  1973. * The active queue has requests and isn't expired, allow it to
  1974. * dispatch.
  1975. */
  1976. if (!RB_EMPTY_ROOT(&cfqq->sort_list))
  1977. goto keep_queue;
  1978. /*
  1979. * If another queue has a request waiting within our mean seek
  1980. * distance, let it run. The expire code will check for close
  1981. * cooperators and put the close queue at the front of the service
  1982. * tree. If possible, merge the expiring queue with the new cfqq.
  1983. */
  1984. new_cfqq = cfq_close_cooperator(cfqd, cfqq);
  1985. if (new_cfqq) {
  1986. if (!cfqq->new_cfqq)
  1987. cfq_setup_merge(cfqq, new_cfqq);
  1988. goto expire;
  1989. }
  1990. /*
  1991. * No requests pending. If the active queue still has requests in
  1992. * flight or is idling for a new request, allow either of these
  1993. * conditions to happen (or time out) before selecting a new queue.
  1994. */
  1995. if (timer_pending(&cfqd->idle_slice_timer)) {
  1996. cfqq = NULL;
  1997. goto keep_queue;
  1998. }
  1999. /*
  2000. * This is a deep seek queue, but the device is much faster than
  2001. * the queue can deliver, don't idle
  2002. **/
  2003. if (CFQQ_SEEKY(cfqq) && cfq_cfqq_idle_window(cfqq) &&
  2004. (cfq_cfqq_slice_new(cfqq) ||
  2005. (cfqq->slice_end - jiffies > jiffies - cfqq->slice_start))) {
  2006. cfq_clear_cfqq_deep(cfqq);
  2007. cfq_clear_cfqq_idle_window(cfqq);
  2008. }
  2009. if (cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
  2010. cfqq = NULL;
  2011. goto keep_queue;
  2012. }
  2013. /*
  2014. * If group idle is enabled and there are requests dispatched from
  2015. * this group, wait for requests to complete.
  2016. */
  2017. check_group_idle:
  2018. if (cfqd->cfq_group_idle && cfqq->cfqg->nr_cfqq == 1
  2019. && cfqq->cfqg->dispatched) {
  2020. cfqq = NULL;
  2021. goto keep_queue;
  2022. }
  2023. expire:
  2024. cfq_slice_expired(cfqd, 0);
  2025. new_queue:
  2026. /*
  2027. * Current queue expired. Check if we have to switch to a new
  2028. * service tree
  2029. */
  2030. if (!new_cfqq)
  2031. cfq_choose_cfqg(cfqd);
  2032. cfqq = cfq_set_active_queue(cfqd, new_cfqq);
  2033. keep_queue:
  2034. return cfqq;
  2035. }
  2036. static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
  2037. {
  2038. int dispatched = 0;
  2039. while (cfqq->next_rq) {
  2040. cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
  2041. dispatched++;
  2042. }
  2043. BUG_ON(!list_empty(&cfqq->fifo));
  2044. /* By default cfqq is not expired if it is empty. Do it explicitly */
  2045. __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
  2046. return dispatched;
  2047. }
  2048. /*
  2049. * Drain our current requests. Used for barriers and when switching
  2050. * io schedulers on-the-fly.
  2051. */
  2052. static int cfq_forced_dispatch(struct cfq_data *cfqd)
  2053. {
  2054. struct cfq_queue *cfqq;
  2055. int dispatched = 0;
  2056. /* Expire the timeslice of the current active queue first */
  2057. cfq_slice_expired(cfqd, 0);
  2058. while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL) {
  2059. __cfq_set_active_queue(cfqd, cfqq);
  2060. dispatched += __cfq_forced_dispatch_cfqq(cfqq);
  2061. }
  2062. BUG_ON(cfqd->busy_queues);
  2063. cfq_log(cfqd, "forced_dispatch=%d", dispatched);
  2064. return dispatched;
  2065. }
  2066. static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
  2067. struct cfq_queue *cfqq)
  2068. {
  2069. /* the queue hasn't finished any request, can't estimate */
  2070. if (cfq_cfqq_slice_new(cfqq))
  2071. return true;
  2072. if (time_after(jiffies + cfqd->cfq_slice_idle * cfqq->dispatched,
  2073. cfqq->slice_end))
  2074. return true;
  2075. return false;
  2076. }
  2077. static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2078. {
  2079. unsigned int max_dispatch;
  2080. /*
  2081. * Drain async requests before we start sync IO
  2082. */
  2083. if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
  2084. return false;
  2085. /*
  2086. * If this is an async queue and we have sync IO in flight, let it wait
  2087. */
  2088. if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
  2089. return false;
  2090. max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
  2091. if (cfq_class_idle(cfqq))
  2092. max_dispatch = 1;
  2093. /*
  2094. * Does this cfqq already have too much IO in flight?
  2095. */
  2096. if (cfqq->dispatched >= max_dispatch) {
  2097. bool promote_sync = false;
  2098. /*
  2099. * idle queue must always only have a single IO in flight
  2100. */
  2101. if (cfq_class_idle(cfqq))
  2102. return false;
  2103. /*
  2104. * If there is only one sync queue
  2105. * we can ignore async queue here and give the sync
  2106. * queue no dispatch limit. The reason is a sync queue can
  2107. * preempt async queue, limiting the sync queue doesn't make
  2108. * sense. This is useful for aiostress test.
  2109. */
  2110. if (cfq_cfqq_sync(cfqq) && cfqd->busy_sync_queues == 1)
  2111. promote_sync = true;
  2112. /*
  2113. * We have other queues, don't allow more IO from this one
  2114. */
  2115. if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq) &&
  2116. !promote_sync)
  2117. return false;
  2118. /*
  2119. * Sole queue user, no limit
  2120. */
  2121. if (cfqd->busy_queues == 1 || promote_sync)
  2122. max_dispatch = -1;
  2123. else
  2124. /*
  2125. * Normally we start throttling cfqq when cfq_quantum/2
  2126. * requests have been dispatched. But we can drive
  2127. * deeper queue depths at the beginning of slice
  2128. * subjected to upper limit of cfq_quantum.
  2129. * */
  2130. max_dispatch = cfqd->cfq_quantum;
  2131. }
  2132. /*
  2133. * Async queues must wait a bit before being allowed dispatch.
  2134. * We also ramp up the dispatch depth gradually for async IO,
  2135. * based on the last sync IO we serviced
  2136. */
  2137. if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
  2138. unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
  2139. unsigned int depth;
  2140. depth = last_sync / cfqd->cfq_slice[1];
  2141. if (!depth && !cfqq->dispatched)
  2142. depth = 1;
  2143. if (depth < max_dispatch)
  2144. max_dispatch = depth;
  2145. }
  2146. /*
  2147. * If we're below the current max, allow a dispatch
  2148. */
  2149. return cfqq->dispatched < max_dispatch;
  2150. }
  2151. /*
  2152. * Dispatch a request from cfqq, moving them to the request queue
  2153. * dispatch list.
  2154. */
  2155. static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2156. {
  2157. struct request *rq;
  2158. BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
  2159. if (!cfq_may_dispatch(cfqd, cfqq))
  2160. return false;
  2161. /*
  2162. * follow expired path, else get first next available
  2163. */
  2164. rq = cfq_check_fifo(cfqq);
  2165. if (!rq)
  2166. rq = cfqq->next_rq;
  2167. /*
  2168. * insert request into driver dispatch list
  2169. */
  2170. cfq_dispatch_insert(cfqd->queue, rq);
  2171. if (!cfqd->active_cic) {
  2172. struct cfq_io_context *cic = RQ_CIC(rq);
  2173. atomic_long_inc(&cic->ioc->refcount);
  2174. cfqd->active_cic = cic;
  2175. }
  2176. return true;
  2177. }
  2178. /*
  2179. * Find the cfqq that we need to service and move a request from that to the
  2180. * dispatch list
  2181. */
  2182. static int cfq_dispatch_requests(struct request_queue *q, int force)
  2183. {
  2184. struct cfq_data *cfqd = q->elevator->elevator_data;
  2185. struct cfq_queue *cfqq;
  2186. if (!cfqd->busy_queues)
  2187. return 0;
  2188. if (unlikely(force))
  2189. return cfq_forced_dispatch(cfqd);
  2190. cfqq = cfq_select_queue(cfqd);
  2191. if (!cfqq)
  2192. return 0;
  2193. /*
  2194. * Dispatch a request from this cfqq, if it is allowed
  2195. */
  2196. if (!cfq_dispatch_request(cfqd, cfqq))
  2197. return 0;
  2198. cfqq->slice_dispatch++;
  2199. cfq_clear_cfqq_must_dispatch(cfqq);
  2200. /*
  2201. * expire an async queue immediately if it has used up its slice. idle
  2202. * queue always expire after 1 dispatch round.
  2203. */
  2204. if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
  2205. cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
  2206. cfq_class_idle(cfqq))) {
  2207. cfqq->slice_end = jiffies + 1;
  2208. cfq_slice_expired(cfqd, 0);
  2209. }
  2210. cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
  2211. return 1;
  2212. }
  2213. /*
  2214. * task holds one reference to the queue, dropped when task exits. each rq
  2215. * in-flight on this queue also holds a reference, dropped when rq is freed.
  2216. *
  2217. * Each cfq queue took a reference on the parent group. Drop it now.
  2218. * queue lock must be held here.
  2219. */
  2220. static void cfq_put_queue(struct cfq_queue *cfqq)
  2221. {
  2222. struct cfq_data *cfqd = cfqq->cfqd;
  2223. struct cfq_group *cfqg;
  2224. BUG_ON(cfqq->ref <= 0);
  2225. cfqq->ref--;
  2226. if (cfqq->ref)
  2227. return;
  2228. cfq_log_cfqq(cfqd, cfqq, "put_queue");
  2229. BUG_ON(rb_first(&cfqq->sort_list));
  2230. BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
  2231. cfqg = cfqq->cfqg;
  2232. if (unlikely(cfqd->active_queue == cfqq)) {
  2233. __cfq_slice_expired(cfqd, cfqq, 0);
  2234. cfq_schedule_dispatch(cfqd);
  2235. }
  2236. BUG_ON(cfq_cfqq_on_rr(cfqq));
  2237. kmem_cache_free(cfq_pool, cfqq);
  2238. cfq_put_cfqg(cfqg);
  2239. }
  2240. /*
  2241. * Call func for each cic attached to this ioc.
  2242. */
  2243. static void
  2244. call_for_each_cic(struct io_context *ioc,
  2245. void (*func)(struct io_context *, struct cfq_io_context *))
  2246. {
  2247. struct cfq_io_context *cic;
  2248. struct hlist_node *n;
  2249. rcu_read_lock();
  2250. hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
  2251. func(ioc, cic);
  2252. rcu_read_unlock();
  2253. }
  2254. static void cfq_cic_free_rcu(struct rcu_head *head)
  2255. {
  2256. struct cfq_io_context *cic;
  2257. cic = container_of(head, struct cfq_io_context, rcu_head);
  2258. kmem_cache_free(cfq_ioc_pool, cic);
  2259. elv_ioc_count_dec(cfq_ioc_count);
  2260. if (ioc_gone) {
  2261. /*
  2262. * CFQ scheduler is exiting, grab exit lock and check
  2263. * the pending io context count. If it hits zero,
  2264. * complete ioc_gone and set it back to NULL
  2265. */
  2266. spin_lock(&ioc_gone_lock);
  2267. if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
  2268. complete(ioc_gone);
  2269. ioc_gone = NULL;
  2270. }
  2271. spin_unlock(&ioc_gone_lock);
  2272. }
  2273. }
  2274. static void cfq_cic_free(struct cfq_io_context *cic)
  2275. {
  2276. call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
  2277. }
  2278. static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
  2279. {
  2280. unsigned long flags;
  2281. unsigned long dead_key = (unsigned long) cic->key;
  2282. BUG_ON(!(dead_key & CIC_DEAD_KEY));
  2283. spin_lock_irqsave(&ioc->lock, flags);
  2284. radix_tree_delete(&ioc->radix_root, dead_key >> CIC_DEAD_INDEX_SHIFT);
  2285. hlist_del_rcu(&cic->cic_list);
  2286. spin_unlock_irqrestore(&ioc->lock, flags);
  2287. cfq_cic_free(cic);
  2288. }
  2289. /*
  2290. * Must be called with rcu_read_lock() held or preemption otherwise disabled.
  2291. * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
  2292. * and ->trim() which is called with the task lock held
  2293. */
  2294. static void cfq_free_io_context(struct io_context *ioc)
  2295. {
  2296. /*
  2297. * ioc->refcount is zero here, or we are called from elv_unregister(),
  2298. * so no more cic's are allowed to be linked into this ioc. So it
  2299. * should be ok to iterate over the known list, we will see all cic's
  2300. * since no new ones are added.
  2301. */
  2302. call_for_each_cic(ioc, cic_free_func);
  2303. }
  2304. static void cfq_put_cooperator(struct cfq_queue *cfqq)
  2305. {
  2306. struct cfq_queue *__cfqq, *next;
  2307. /*
  2308. * If this queue was scheduled to merge with another queue, be
  2309. * sure to drop the reference taken on that queue (and others in
  2310. * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
  2311. */
  2312. __cfqq = cfqq->new_cfqq;
  2313. while (__cfqq) {
  2314. if (__cfqq == cfqq) {
  2315. WARN(1, "cfqq->new_cfqq loop detected\n");
  2316. break;
  2317. }
  2318. next = __cfqq->new_cfqq;
  2319. cfq_put_queue(__cfqq);
  2320. __cfqq = next;
  2321. }
  2322. }
  2323. static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2324. {
  2325. if (unlikely(cfqq == cfqd->active_queue)) {
  2326. __cfq_slice_expired(cfqd, cfqq, 0);
  2327. cfq_schedule_dispatch(cfqd);
  2328. }
  2329. cfq_put_cooperator(cfqq);
  2330. cfq_put_queue(cfqq);
  2331. }
  2332. static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
  2333. struct cfq_io_context *cic)
  2334. {
  2335. struct io_context *ioc = cic->ioc;
  2336. list_del_init(&cic->queue_list);
  2337. /*
  2338. * Make sure dead mark is seen for dead queues
  2339. */
  2340. smp_wmb();
  2341. cic->key = cfqd_dead_key(cfqd);
  2342. if (rcu_dereference(ioc->ioc_data) == cic) {
  2343. spin_lock(&ioc->lock);
  2344. rcu_assign_pointer(ioc->ioc_data, NULL);
  2345. spin_unlock(&ioc->lock);
  2346. }
  2347. if (cic->cfqq[BLK_RW_ASYNC]) {
  2348. cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
  2349. cic->cfqq[BLK_RW_ASYNC] = NULL;
  2350. }
  2351. if (cic->cfqq[BLK_RW_SYNC]) {
  2352. cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
  2353. cic->cfqq[BLK_RW_SYNC] = NULL;
  2354. }
  2355. }
  2356. static void cfq_exit_single_io_context(struct io_context *ioc,
  2357. struct cfq_io_context *cic)
  2358. {
  2359. struct cfq_data *cfqd = cic_to_cfqd(cic);
  2360. if (cfqd) {
  2361. struct request_queue *q = cfqd->queue;
  2362. unsigned long flags;
  2363. spin_lock_irqsave(q->queue_lock, flags);
  2364. /*
  2365. * Ensure we get a fresh copy of the ->key to prevent
  2366. * race between exiting task and queue
  2367. */
  2368. smp_read_barrier_depends();
  2369. if (cic->key == cfqd)
  2370. __cfq_exit_single_io_context(cfqd, cic);
  2371. spin_unlock_irqrestore(q->queue_lock, flags);
  2372. }
  2373. }
  2374. /*
  2375. * The process that ioc belongs to has exited, we need to clean up
  2376. * and put the internal structures we have that belongs to that process.
  2377. */
  2378. static void cfq_exit_io_context(struct io_context *ioc)
  2379. {
  2380. call_for_each_cic(ioc, cfq_exit_single_io_context);
  2381. }
  2382. static struct cfq_io_context *
  2383. cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
  2384. {
  2385. struct cfq_io_context *cic;
  2386. cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
  2387. cfqd->queue->node);
  2388. if (cic) {
  2389. cic->last_end_request = jiffies;
  2390. INIT_LIST_HEAD(&cic->queue_list);
  2391. INIT_HLIST_NODE(&cic->cic_list);
  2392. cic->dtor = cfq_free_io_context;
  2393. cic->exit = cfq_exit_io_context;
  2394. elv_ioc_count_inc(cfq_ioc_count);
  2395. }
  2396. return cic;
  2397. }
  2398. static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
  2399. {
  2400. struct task_struct *tsk = current;
  2401. int ioprio_class;
  2402. if (!cfq_cfqq_prio_changed(cfqq))
  2403. return;
  2404. ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
  2405. switch (ioprio_class) {
  2406. default:
  2407. printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
  2408. case IOPRIO_CLASS_NONE:
  2409. /*
  2410. * no prio set, inherit CPU scheduling settings
  2411. */
  2412. cfqq->ioprio = task_nice_ioprio(tsk);
  2413. cfqq->ioprio_class = task_nice_ioclass(tsk);
  2414. break;
  2415. case IOPRIO_CLASS_RT:
  2416. cfqq->ioprio = task_ioprio(ioc);
  2417. cfqq->ioprio_class = IOPRIO_CLASS_RT;
  2418. break;
  2419. case IOPRIO_CLASS_BE:
  2420. cfqq->ioprio = task_ioprio(ioc);
  2421. cfqq->ioprio_class = IOPRIO_CLASS_BE;
  2422. break;
  2423. case IOPRIO_CLASS_IDLE:
  2424. cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
  2425. cfqq->ioprio = 7;
  2426. cfq_clear_cfqq_idle_window(cfqq);
  2427. break;
  2428. }
  2429. /*
  2430. * keep track of original prio settings in case we have to temporarily
  2431. * elevate the priority of this queue
  2432. */
  2433. cfqq->org_ioprio = cfqq->ioprio;
  2434. cfqq->org_ioprio_class = cfqq->ioprio_class;
  2435. cfq_clear_cfqq_prio_changed(cfqq);
  2436. }
  2437. static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
  2438. {
  2439. struct cfq_data *cfqd = cic_to_cfqd(cic);
  2440. struct cfq_queue *cfqq;
  2441. unsigned long flags;
  2442. if (unlikely(!cfqd))
  2443. return;
  2444. spin_lock_irqsave(cfqd->queue->queue_lock, flags);
  2445. cfqq = cic->cfqq[BLK_RW_ASYNC];
  2446. if (cfqq) {
  2447. struct cfq_queue *new_cfqq;
  2448. new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
  2449. GFP_ATOMIC);
  2450. if (new_cfqq) {
  2451. cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
  2452. cfq_put_queue(cfqq);
  2453. }
  2454. }
  2455. cfqq = cic->cfqq[BLK_RW_SYNC];
  2456. if (cfqq)
  2457. cfq_mark_cfqq_prio_changed(cfqq);
  2458. spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
  2459. }
  2460. static void cfq_ioc_set_ioprio(struct io_context *ioc)
  2461. {
  2462. call_for_each_cic(ioc, changed_ioprio);
  2463. ioc->ioprio_changed = 0;
  2464. }
  2465. static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2466. pid_t pid, bool is_sync)
  2467. {
  2468. RB_CLEAR_NODE(&cfqq->rb_node);
  2469. RB_CLEAR_NODE(&cfqq->p_node);
  2470. INIT_LIST_HEAD(&cfqq->fifo);
  2471. cfqq->ref = 0;
  2472. cfqq->cfqd = cfqd;
  2473. cfq_mark_cfqq_prio_changed(cfqq);
  2474. if (is_sync) {
  2475. if (!cfq_class_idle(cfqq))
  2476. cfq_mark_cfqq_idle_window(cfqq);
  2477. cfq_mark_cfqq_sync(cfqq);
  2478. }
  2479. cfqq->pid = pid;
  2480. }
  2481. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  2482. static void changed_cgroup(struct io_context *ioc, struct cfq_io_context *cic)
  2483. {
  2484. struct cfq_queue *sync_cfqq = cic_to_cfqq(cic, 1);
  2485. struct cfq_data *cfqd = cic_to_cfqd(cic);
  2486. unsigned long flags;
  2487. struct request_queue *q;
  2488. if (unlikely(!cfqd))
  2489. return;
  2490. q = cfqd->queue;
  2491. spin_lock_irqsave(q->queue_lock, flags);
  2492. if (sync_cfqq) {
  2493. /*
  2494. * Drop reference to sync queue. A new sync queue will be
  2495. * assigned in new group upon arrival of a fresh request.
  2496. */
  2497. cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
  2498. cic_set_cfqq(cic, NULL, 1);
  2499. cfq_put_queue(sync_cfqq);
  2500. }
  2501. spin_unlock_irqrestore(q->queue_lock, flags);
  2502. }
  2503. static void cfq_ioc_set_cgroup(struct io_context *ioc)
  2504. {
  2505. call_for_each_cic(ioc, changed_cgroup);
  2506. ioc->cgroup_changed = 0;
  2507. }
  2508. #endif /* CONFIG_CFQ_GROUP_IOSCHED */
  2509. static struct cfq_queue *
  2510. cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
  2511. struct io_context *ioc, gfp_t gfp_mask)
  2512. {
  2513. struct cfq_queue *cfqq, *new_cfqq = NULL;
  2514. struct cfq_io_context *cic;
  2515. struct cfq_group *cfqg;
  2516. retry:
  2517. cfqg = cfq_get_cfqg(cfqd);
  2518. cic = cfq_cic_lookup(cfqd, ioc);
  2519. /* cic always exists here */
  2520. cfqq = cic_to_cfqq(cic, is_sync);
  2521. /*
  2522. * Always try a new alloc if we fell back to the OOM cfqq
  2523. * originally, since it should just be a temporary situation.
  2524. */
  2525. if (!cfqq || cfqq == &cfqd->oom_cfqq) {
  2526. cfqq = NULL;
  2527. if (new_cfqq) {
  2528. cfqq = new_cfqq;
  2529. new_cfqq = NULL;
  2530. } else if (gfp_mask & __GFP_WAIT) {
  2531. spin_unlock_irq(cfqd->queue->queue_lock);
  2532. new_cfqq = kmem_cache_alloc_node(cfq_pool,
  2533. gfp_mask | __GFP_ZERO,
  2534. cfqd->queue->node);
  2535. spin_lock_irq(cfqd->queue->queue_lock);
  2536. if (new_cfqq)
  2537. goto retry;
  2538. } else {
  2539. cfqq = kmem_cache_alloc_node(cfq_pool,
  2540. gfp_mask | __GFP_ZERO,
  2541. cfqd->queue->node);
  2542. }
  2543. if (cfqq) {
  2544. cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
  2545. cfq_init_prio_data(cfqq, ioc);
  2546. cfq_link_cfqq_cfqg(cfqq, cfqg);
  2547. cfq_log_cfqq(cfqd, cfqq, "alloced");
  2548. } else
  2549. cfqq = &cfqd->oom_cfqq;
  2550. }
  2551. if (new_cfqq)
  2552. kmem_cache_free(cfq_pool, new_cfqq);
  2553. return cfqq;
  2554. }
  2555. static struct cfq_queue **
  2556. cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
  2557. {
  2558. switch (ioprio_class) {
  2559. case IOPRIO_CLASS_RT:
  2560. return &cfqd->async_cfqq[0][ioprio];
  2561. case IOPRIO_CLASS_BE:
  2562. return &cfqd->async_cfqq[1][ioprio];
  2563. case IOPRIO_CLASS_IDLE:
  2564. return &cfqd->async_idle_cfqq;
  2565. default:
  2566. BUG();
  2567. }
  2568. }
  2569. static struct cfq_queue *
  2570. cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
  2571. gfp_t gfp_mask)
  2572. {
  2573. const int ioprio = task_ioprio(ioc);
  2574. const int ioprio_class = task_ioprio_class(ioc);
  2575. struct cfq_queue **async_cfqq = NULL;
  2576. struct cfq_queue *cfqq = NULL;
  2577. if (!is_sync) {
  2578. async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
  2579. cfqq = *async_cfqq;
  2580. }
  2581. if (!cfqq)
  2582. cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
  2583. /*
  2584. * pin the queue now that it's allocated, scheduler exit will prune it
  2585. */
  2586. if (!is_sync && !(*async_cfqq)) {
  2587. cfqq->ref++;
  2588. *async_cfqq = cfqq;
  2589. }
  2590. cfqq->ref++;
  2591. return cfqq;
  2592. }
  2593. /*
  2594. * We drop cfq io contexts lazily, so we may find a dead one.
  2595. */
  2596. static void
  2597. cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
  2598. struct cfq_io_context *cic)
  2599. {
  2600. unsigned long flags;
  2601. WARN_ON(!list_empty(&cic->queue_list));
  2602. BUG_ON(cic->key != cfqd_dead_key(cfqd));
  2603. spin_lock_irqsave(&ioc->lock, flags);
  2604. BUG_ON(ioc->ioc_data == cic);
  2605. radix_tree_delete(&ioc->radix_root, cfqd->cic_index);
  2606. hlist_del_rcu(&cic->cic_list);
  2607. spin_unlock_irqrestore(&ioc->lock, flags);
  2608. cfq_cic_free(cic);
  2609. }
  2610. static struct cfq_io_context *
  2611. cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
  2612. {
  2613. struct cfq_io_context *cic;
  2614. unsigned long flags;
  2615. if (unlikely(!ioc))
  2616. return NULL;
  2617. rcu_read_lock();
  2618. /*
  2619. * we maintain a last-hit cache, to avoid browsing over the tree
  2620. */
  2621. cic = rcu_dereference(ioc->ioc_data);
  2622. if (cic && cic->key == cfqd) {
  2623. rcu_read_unlock();
  2624. return cic;
  2625. }
  2626. do {
  2627. cic = radix_tree_lookup(&ioc->radix_root, cfqd->cic_index);
  2628. rcu_read_unlock();
  2629. if (!cic)
  2630. break;
  2631. if (unlikely(cic->key != cfqd)) {
  2632. cfq_drop_dead_cic(cfqd, ioc, cic);
  2633. rcu_read_lock();
  2634. continue;
  2635. }
  2636. spin_lock_irqsave(&ioc->lock, flags);
  2637. rcu_assign_pointer(ioc->ioc_data, cic);
  2638. spin_unlock_irqrestore(&ioc->lock, flags);
  2639. break;
  2640. } while (1);
  2641. return cic;
  2642. }
  2643. /*
  2644. * Add cic into ioc, using cfqd as the search key. This enables us to lookup
  2645. * the process specific cfq io context when entered from the block layer.
  2646. * Also adds the cic to a per-cfqd list, used when this queue is removed.
  2647. */
  2648. static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
  2649. struct cfq_io_context *cic, gfp_t gfp_mask)
  2650. {
  2651. unsigned long flags;
  2652. int ret;
  2653. ret = radix_tree_preload(gfp_mask);
  2654. if (!ret) {
  2655. cic->ioc = ioc;
  2656. cic->key = cfqd;
  2657. spin_lock_irqsave(&ioc->lock, flags);
  2658. ret = radix_tree_insert(&ioc->radix_root,
  2659. cfqd->cic_index, cic);
  2660. if (!ret)
  2661. hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
  2662. spin_unlock_irqrestore(&ioc->lock, flags);
  2663. radix_tree_preload_end();
  2664. if (!ret) {
  2665. spin_lock_irqsave(cfqd->queue->queue_lock, flags);
  2666. list_add(&cic->queue_list, &cfqd->cic_list);
  2667. spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
  2668. }
  2669. }
  2670. if (ret)
  2671. printk(KERN_ERR "cfq: cic link failed!\n");
  2672. return ret;
  2673. }
  2674. /*
  2675. * Setup general io context and cfq io context. There can be several cfq
  2676. * io contexts per general io context, if this process is doing io to more
  2677. * than one device managed by cfq.
  2678. */
  2679. static struct cfq_io_context *
  2680. cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
  2681. {
  2682. struct io_context *ioc = NULL;
  2683. struct cfq_io_context *cic;
  2684. might_sleep_if(gfp_mask & __GFP_WAIT);
  2685. ioc = get_io_context(gfp_mask, cfqd->queue->node);
  2686. if (!ioc)
  2687. return NULL;
  2688. cic = cfq_cic_lookup(cfqd, ioc);
  2689. if (cic)
  2690. goto out;
  2691. cic = cfq_alloc_io_context(cfqd, gfp_mask);
  2692. if (cic == NULL)
  2693. goto err;
  2694. if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
  2695. goto err_free;
  2696. out:
  2697. smp_read_barrier_depends();
  2698. if (unlikely(ioc->ioprio_changed))
  2699. cfq_ioc_set_ioprio(ioc);
  2700. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  2701. if (unlikely(ioc->cgroup_changed))
  2702. cfq_ioc_set_cgroup(ioc);
  2703. #endif
  2704. return cic;
  2705. err_free:
  2706. cfq_cic_free(cic);
  2707. err:
  2708. put_io_context(ioc);
  2709. return NULL;
  2710. }
  2711. static void
  2712. cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
  2713. {
  2714. unsigned long elapsed = jiffies - cic->last_end_request;
  2715. unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
  2716. cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
  2717. cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
  2718. cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
  2719. }
  2720. static void
  2721. cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2722. struct request *rq)
  2723. {
  2724. sector_t sdist = 0;
  2725. sector_t n_sec = blk_rq_sectors(rq);
  2726. if (cfqq->last_request_pos) {
  2727. if (cfqq->last_request_pos < blk_rq_pos(rq))
  2728. sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
  2729. else
  2730. sdist = cfqq->last_request_pos - blk_rq_pos(rq);
  2731. }
  2732. cfqq->seek_history <<= 1;
  2733. if (blk_queue_nonrot(cfqd->queue))
  2734. cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
  2735. else
  2736. cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
  2737. }
  2738. /*
  2739. * Disable idle window if the process thinks too long or seeks so much that
  2740. * it doesn't matter
  2741. */
  2742. static void
  2743. cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2744. struct cfq_io_context *cic)
  2745. {
  2746. int old_idle, enable_idle;
  2747. /*
  2748. * Don't idle for async or idle io prio class
  2749. */
  2750. if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
  2751. return;
  2752. enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
  2753. if (cfqq->queued[0] + cfqq->queued[1] >= 4)
  2754. cfq_mark_cfqq_deep(cfqq);
  2755. if (cfqq->next_rq && (cfqq->next_rq->cmd_flags & REQ_NOIDLE))
  2756. enable_idle = 0;
  2757. else if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
  2758. (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
  2759. enable_idle = 0;
  2760. else if (sample_valid(cic->ttime_samples)) {
  2761. if (cic->ttime_mean > cfqd->cfq_slice_idle)
  2762. enable_idle = 0;
  2763. else
  2764. enable_idle = 1;
  2765. }
  2766. if (old_idle != enable_idle) {
  2767. cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
  2768. if (enable_idle)
  2769. cfq_mark_cfqq_idle_window(cfqq);
  2770. else
  2771. cfq_clear_cfqq_idle_window(cfqq);
  2772. }
  2773. }
  2774. /*
  2775. * Check if new_cfqq should preempt the currently active queue. Return 0 for
  2776. * no or if we aren't sure, a 1 will cause a preempt.
  2777. */
  2778. static bool
  2779. cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
  2780. struct request *rq)
  2781. {
  2782. struct cfq_queue *cfqq;
  2783. cfqq = cfqd->active_queue;
  2784. if (!cfqq)
  2785. return false;
  2786. if (cfq_class_idle(new_cfqq))
  2787. return false;
  2788. if (cfq_class_idle(cfqq))
  2789. return true;
  2790. /*
  2791. * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
  2792. */
  2793. if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
  2794. return false;
  2795. /*
  2796. * if the new request is sync, but the currently running queue is
  2797. * not, let the sync request have priority.
  2798. */
  2799. if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
  2800. return true;
  2801. if (new_cfqq->cfqg != cfqq->cfqg)
  2802. return false;
  2803. if (cfq_slice_used(cfqq))
  2804. return true;
  2805. /* Allow preemption only if we are idling on sync-noidle tree */
  2806. if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
  2807. cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
  2808. new_cfqq->service_tree->count == 2 &&
  2809. RB_EMPTY_ROOT(&cfqq->sort_list))
  2810. return true;
  2811. /*
  2812. * So both queues are sync. Let the new request get disk time if
  2813. * it's a metadata request and the current queue is doing regular IO.
  2814. */
  2815. if ((rq->cmd_flags & REQ_META) && !cfqq->meta_pending)
  2816. return true;
  2817. /*
  2818. * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
  2819. */
  2820. if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
  2821. return true;
  2822. /* An idle queue should not be idle now for some reason */
  2823. if (RB_EMPTY_ROOT(&cfqq->sort_list) && !cfq_should_idle(cfqd, cfqq))
  2824. return true;
  2825. if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
  2826. return false;
  2827. /*
  2828. * if this request is as-good as one we would expect from the
  2829. * current cfqq, let it preempt
  2830. */
  2831. if (cfq_rq_close(cfqd, cfqq, rq))
  2832. return true;
  2833. return false;
  2834. }
  2835. /*
  2836. * cfqq preempts the active queue. if we allowed preempt with no slice left,
  2837. * let it have half of its nominal slice.
  2838. */
  2839. static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2840. {
  2841. struct cfq_queue *old_cfqq = cfqd->active_queue;
  2842. cfq_log_cfqq(cfqd, cfqq, "preempt");
  2843. cfq_slice_expired(cfqd, 1);
  2844. /*
  2845. * workload type is changed, don't save slice, otherwise preempt
  2846. * doesn't happen
  2847. */
  2848. if (cfqq_type(old_cfqq) != cfqq_type(cfqq))
  2849. cfqq->cfqg->saved_workload_slice = 0;
  2850. /*
  2851. * Put the new queue at the front of the of the current list,
  2852. * so we know that it will be selected next.
  2853. */
  2854. BUG_ON(!cfq_cfqq_on_rr(cfqq));
  2855. cfq_service_tree_add(cfqd, cfqq, 1);
  2856. cfqq->slice_end = 0;
  2857. cfq_mark_cfqq_slice_new(cfqq);
  2858. }
  2859. /*
  2860. * Called when a new fs request (rq) is added (to cfqq). Check if there's
  2861. * something we should do about it
  2862. */
  2863. static void
  2864. cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
  2865. struct request *rq)
  2866. {
  2867. struct cfq_io_context *cic = RQ_CIC(rq);
  2868. cfqd->rq_queued++;
  2869. if (rq->cmd_flags & REQ_META)
  2870. cfqq->meta_pending++;
  2871. cfq_update_io_thinktime(cfqd, cic);
  2872. cfq_update_io_seektime(cfqd, cfqq, rq);
  2873. cfq_update_idle_window(cfqd, cfqq, cic);
  2874. cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
  2875. if (cfqq == cfqd->active_queue) {
  2876. /*
  2877. * Remember that we saw a request from this process, but
  2878. * don't start queuing just yet. Otherwise we risk seeing lots
  2879. * of tiny requests, because we disrupt the normal plugging
  2880. * and merging. If the request is already larger than a single
  2881. * page, let it rip immediately. For that case we assume that
  2882. * merging is already done. Ditto for a busy system that
  2883. * has other work pending, don't risk delaying until the
  2884. * idle timer unplug to continue working.
  2885. */
  2886. if (cfq_cfqq_wait_request(cfqq)) {
  2887. if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
  2888. cfqd->busy_queues > 1) {
  2889. cfq_del_timer(cfqd, cfqq);
  2890. cfq_clear_cfqq_wait_request(cfqq);
  2891. __blk_run_queue(cfqd->queue);
  2892. } else {
  2893. cfq_blkiocg_update_idle_time_stats(
  2894. &cfqq->cfqg->blkg);
  2895. cfq_mark_cfqq_must_dispatch(cfqq);
  2896. }
  2897. }
  2898. } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
  2899. /*
  2900. * not the active queue - expire current slice if it is
  2901. * idle and has expired it's mean thinktime or this new queue
  2902. * has some old slice time left and is of higher priority or
  2903. * this new queue is RT and the current one is BE
  2904. */
  2905. cfq_preempt_queue(cfqd, cfqq);
  2906. __blk_run_queue(cfqd->queue);
  2907. }
  2908. }
  2909. static void cfq_insert_request(struct request_queue *q, struct request *rq)
  2910. {
  2911. struct cfq_data *cfqd = q->elevator->elevator_data;
  2912. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  2913. cfq_log_cfqq(cfqd, cfqq, "insert_request");
  2914. cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
  2915. rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
  2916. list_add_tail(&rq->queuelist, &cfqq->fifo);
  2917. cfq_add_rq_rb(rq);
  2918. cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
  2919. &cfqd->serving_group->blkg, rq_data_dir(rq),
  2920. rq_is_sync(rq));
  2921. cfq_rq_enqueued(cfqd, cfqq, rq);
  2922. }
  2923. /*
  2924. * Update hw_tag based on peak queue depth over 50 samples under
  2925. * sufficient load.
  2926. */
  2927. static void cfq_update_hw_tag(struct cfq_data *cfqd)
  2928. {
  2929. struct cfq_queue *cfqq = cfqd->active_queue;
  2930. if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
  2931. cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
  2932. if (cfqd->hw_tag == 1)
  2933. return;
  2934. if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
  2935. cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
  2936. return;
  2937. /*
  2938. * If active queue hasn't enough requests and can idle, cfq might not
  2939. * dispatch sufficient requests to hardware. Don't zero hw_tag in this
  2940. * case
  2941. */
  2942. if (cfqq && cfq_cfqq_idle_window(cfqq) &&
  2943. cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
  2944. CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
  2945. return;
  2946. if (cfqd->hw_tag_samples++ < 50)
  2947. return;
  2948. if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
  2949. cfqd->hw_tag = 1;
  2950. else
  2951. cfqd->hw_tag = 0;
  2952. }
  2953. static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
  2954. {
  2955. struct cfq_io_context *cic = cfqd->active_cic;
  2956. /* If the queue already has requests, don't wait */
  2957. if (!RB_EMPTY_ROOT(&cfqq->sort_list))
  2958. return false;
  2959. /* If there are other queues in the group, don't wait */
  2960. if (cfqq->cfqg->nr_cfqq > 1)
  2961. return false;
  2962. if (cfq_slice_used(cfqq))
  2963. return true;
  2964. /* if slice left is less than think time, wait busy */
  2965. if (cic && sample_valid(cic->ttime_samples)
  2966. && (cfqq->slice_end - jiffies < cic->ttime_mean))
  2967. return true;
  2968. /*
  2969. * If think times is less than a jiffy than ttime_mean=0 and above
  2970. * will not be true. It might happen that slice has not expired yet
  2971. * but will expire soon (4-5 ns) during select_queue(). To cover the
  2972. * case where think time is less than a jiffy, mark the queue wait
  2973. * busy if only 1 jiffy is left in the slice.
  2974. */
  2975. if (cfqq->slice_end - jiffies == 1)
  2976. return true;
  2977. return false;
  2978. }
  2979. static void cfq_completed_request(struct request_queue *q, struct request *rq)
  2980. {
  2981. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  2982. struct cfq_data *cfqd = cfqq->cfqd;
  2983. const int sync = rq_is_sync(rq);
  2984. unsigned long now;
  2985. now = jiffies;
  2986. cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d",
  2987. !!(rq->cmd_flags & REQ_NOIDLE));
  2988. cfq_update_hw_tag(cfqd);
  2989. WARN_ON(!cfqd->rq_in_driver);
  2990. WARN_ON(!cfqq->dispatched);
  2991. cfqd->rq_in_driver--;
  2992. cfqq->dispatched--;
  2993. (RQ_CFQG(rq))->dispatched--;
  2994. cfq_blkiocg_update_completion_stats(&cfqq->cfqg->blkg,
  2995. rq_start_time_ns(rq), rq_io_start_time_ns(rq),
  2996. rq_data_dir(rq), rq_is_sync(rq));
  2997. cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
  2998. if (sync) {
  2999. RQ_CIC(rq)->last_end_request = now;
  3000. if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
  3001. cfqd->last_delayed_sync = now;
  3002. }
  3003. /*
  3004. * If this is the active queue, check if it needs to be expired,
  3005. * or if we want to idle in case it has no pending requests.
  3006. */
  3007. if (cfqd->active_queue == cfqq) {
  3008. const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
  3009. if (cfq_cfqq_slice_new(cfqq)) {
  3010. cfq_set_prio_slice(cfqd, cfqq);
  3011. cfq_clear_cfqq_slice_new(cfqq);
  3012. }
  3013. /*
  3014. * Should we wait for next request to come in before we expire
  3015. * the queue.
  3016. */
  3017. if (cfq_should_wait_busy(cfqd, cfqq)) {
  3018. unsigned long extend_sl = cfqd->cfq_slice_idle;
  3019. if (!cfqd->cfq_slice_idle)
  3020. extend_sl = cfqd->cfq_group_idle;
  3021. cfqq->slice_end = jiffies + extend_sl;
  3022. cfq_mark_cfqq_wait_busy(cfqq);
  3023. cfq_log_cfqq(cfqd, cfqq, "will busy wait");
  3024. }
  3025. /*
  3026. * Idling is not enabled on:
  3027. * - expired queues
  3028. * - idle-priority queues
  3029. * - async queues
  3030. * - queues with still some requests queued
  3031. * - when there is a close cooperator
  3032. */
  3033. if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
  3034. cfq_slice_expired(cfqd, 1);
  3035. else if (sync && cfqq_empty &&
  3036. !cfq_close_cooperator(cfqd, cfqq)) {
  3037. cfq_arm_slice_timer(cfqd);
  3038. }
  3039. }
  3040. if (!cfqd->rq_in_driver)
  3041. cfq_schedule_dispatch(cfqd);
  3042. }
  3043. /*
  3044. * we temporarily boost lower priority queues if they are holding fs exclusive
  3045. * resources. they are boosted to normal prio (CLASS_BE/4)
  3046. */
  3047. static void cfq_prio_boost(struct cfq_queue *cfqq)
  3048. {
  3049. if (has_fs_excl()) {
  3050. /*
  3051. * boost idle prio on transactions that would lock out other
  3052. * users of the filesystem
  3053. */
  3054. if (cfq_class_idle(cfqq))
  3055. cfqq->ioprio_class = IOPRIO_CLASS_BE;
  3056. if (cfqq->ioprio > IOPRIO_NORM)
  3057. cfqq->ioprio = IOPRIO_NORM;
  3058. } else {
  3059. /*
  3060. * unboost the queue (if needed)
  3061. */
  3062. cfqq->ioprio_class = cfqq->org_ioprio_class;
  3063. cfqq->ioprio = cfqq->org_ioprio;
  3064. }
  3065. }
  3066. static inline int __cfq_may_queue(struct cfq_queue *cfqq)
  3067. {
  3068. if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
  3069. cfq_mark_cfqq_must_alloc_slice(cfqq);
  3070. return ELV_MQUEUE_MUST;
  3071. }
  3072. return ELV_MQUEUE_MAY;
  3073. }
  3074. static int cfq_may_queue(struct request_queue *q, int rw)
  3075. {
  3076. struct cfq_data *cfqd = q->elevator->elevator_data;
  3077. struct task_struct *tsk = current;
  3078. struct cfq_io_context *cic;
  3079. struct cfq_queue *cfqq;
  3080. /*
  3081. * don't force setup of a queue from here, as a call to may_queue
  3082. * does not necessarily imply that a request actually will be queued.
  3083. * so just lookup a possibly existing queue, or return 'may queue'
  3084. * if that fails
  3085. */
  3086. cic = cfq_cic_lookup(cfqd, tsk->io_context);
  3087. if (!cic)
  3088. return ELV_MQUEUE_MAY;
  3089. cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
  3090. if (cfqq) {
  3091. cfq_init_prio_data(cfqq, cic->ioc);
  3092. cfq_prio_boost(cfqq);
  3093. return __cfq_may_queue(cfqq);
  3094. }
  3095. return ELV_MQUEUE_MAY;
  3096. }
  3097. /*
  3098. * queue lock held here
  3099. */
  3100. static void cfq_put_request(struct request *rq)
  3101. {
  3102. struct cfq_queue *cfqq = RQ_CFQQ(rq);
  3103. if (cfqq) {
  3104. const int rw = rq_data_dir(rq);
  3105. BUG_ON(!cfqq->allocated[rw]);
  3106. cfqq->allocated[rw]--;
  3107. put_io_context(RQ_CIC(rq)->ioc);
  3108. rq->elevator_private[0] = NULL;
  3109. rq->elevator_private[1] = NULL;
  3110. /* Put down rq reference on cfqg */
  3111. cfq_put_cfqg(RQ_CFQG(rq));
  3112. rq->elevator_private[2] = NULL;
  3113. cfq_put_queue(cfqq);
  3114. }
  3115. }
  3116. static struct cfq_queue *
  3117. cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
  3118. struct cfq_queue *cfqq)
  3119. {
  3120. cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
  3121. cic_set_cfqq(cic, cfqq->new_cfqq, 1);
  3122. cfq_mark_cfqq_coop(cfqq->new_cfqq);
  3123. cfq_put_queue(cfqq);
  3124. return cic_to_cfqq(cic, 1);
  3125. }
  3126. /*
  3127. * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
  3128. * was the last process referring to said cfqq.
  3129. */
  3130. static struct cfq_queue *
  3131. split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
  3132. {
  3133. if (cfqq_process_refs(cfqq) == 1) {
  3134. cfqq->pid = current->pid;
  3135. cfq_clear_cfqq_coop(cfqq);
  3136. cfq_clear_cfqq_split_coop(cfqq);
  3137. return cfqq;
  3138. }
  3139. cic_set_cfqq(cic, NULL, 1);
  3140. cfq_put_cooperator(cfqq);
  3141. cfq_put_queue(cfqq);
  3142. return NULL;
  3143. }
  3144. /*
  3145. * Allocate cfq data structures associated with this request.
  3146. */
  3147. static int
  3148. cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
  3149. {
  3150. struct cfq_data *cfqd = q->elevator->elevator_data;
  3151. struct cfq_io_context *cic;
  3152. const int rw = rq_data_dir(rq);
  3153. const bool is_sync = rq_is_sync(rq);
  3154. struct cfq_queue *cfqq;
  3155. unsigned long flags;
  3156. might_sleep_if(gfp_mask & __GFP_WAIT);
  3157. cic = cfq_get_io_context(cfqd, gfp_mask);
  3158. spin_lock_irqsave(q->queue_lock, flags);
  3159. if (!cic)
  3160. goto queue_fail;
  3161. new_queue:
  3162. cfqq = cic_to_cfqq(cic, is_sync);
  3163. if (!cfqq || cfqq == &cfqd->oom_cfqq) {
  3164. cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
  3165. cic_set_cfqq(cic, cfqq, is_sync);
  3166. } else {
  3167. /*
  3168. * If the queue was seeky for too long, break it apart.
  3169. */
  3170. if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
  3171. cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
  3172. cfqq = split_cfqq(cic, cfqq);
  3173. if (!cfqq)
  3174. goto new_queue;
  3175. }
  3176. /*
  3177. * Check to see if this queue is scheduled to merge with
  3178. * another, closely cooperating queue. The merging of
  3179. * queues happens here as it must be done in process context.
  3180. * The reference on new_cfqq was taken in merge_cfqqs.
  3181. */
  3182. if (cfqq->new_cfqq)
  3183. cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
  3184. }
  3185. cfqq->allocated[rw]++;
  3186. cfqq->ref++;
  3187. rq->elevator_private[0] = cic;
  3188. rq->elevator_private[1] = cfqq;
  3189. rq->elevator_private[2] = cfq_ref_get_cfqg(cfqq->cfqg);
  3190. spin_unlock_irqrestore(q->queue_lock, flags);
  3191. return 0;
  3192. queue_fail:
  3193. cfq_schedule_dispatch(cfqd);
  3194. spin_unlock_irqrestore(q->queue_lock, flags);
  3195. cfq_log(cfqd, "set_request fail");
  3196. return 1;
  3197. }
  3198. static void cfq_kick_queue(struct work_struct *work)
  3199. {
  3200. struct cfq_data *cfqd =
  3201. container_of(work, struct cfq_data, unplug_work);
  3202. struct request_queue *q = cfqd->queue;
  3203. spin_lock_irq(q->queue_lock);
  3204. __blk_run_queue(cfqd->queue);
  3205. spin_unlock_irq(q->queue_lock);
  3206. }
  3207. /*
  3208. * Timer running if the active_queue is currently idling inside its time slice
  3209. */
  3210. static void cfq_idle_slice_timer(unsigned long data)
  3211. {
  3212. struct cfq_data *cfqd = (struct cfq_data *) data;
  3213. struct cfq_queue *cfqq;
  3214. unsigned long flags;
  3215. int timed_out = 1;
  3216. cfq_log(cfqd, "idle timer fired");
  3217. spin_lock_irqsave(cfqd->queue->queue_lock, flags);
  3218. cfqq = cfqd->active_queue;
  3219. if (cfqq) {
  3220. timed_out = 0;
  3221. /*
  3222. * We saw a request before the queue expired, let it through
  3223. */
  3224. if (cfq_cfqq_must_dispatch(cfqq))
  3225. goto out_kick;
  3226. /*
  3227. * expired
  3228. */
  3229. if (cfq_slice_used(cfqq))
  3230. goto expire;
  3231. /*
  3232. * only expire and reinvoke request handler, if there are
  3233. * other queues with pending requests
  3234. */
  3235. if (!cfqd->busy_queues)
  3236. goto out_cont;
  3237. /*
  3238. * not expired and it has a request pending, let it dispatch
  3239. */
  3240. if (!RB_EMPTY_ROOT(&cfqq->sort_list))
  3241. goto out_kick;
  3242. /*
  3243. * Queue depth flag is reset only when the idle didn't succeed
  3244. */
  3245. cfq_clear_cfqq_deep(cfqq);
  3246. }
  3247. expire:
  3248. cfq_slice_expired(cfqd, timed_out);
  3249. out_kick:
  3250. cfq_schedule_dispatch(cfqd);
  3251. out_cont:
  3252. spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
  3253. }
  3254. static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
  3255. {
  3256. del_timer_sync(&cfqd->idle_slice_timer);
  3257. cancel_work_sync(&cfqd->unplug_work);
  3258. }
  3259. static void cfq_put_async_queues(struct cfq_data *cfqd)
  3260. {
  3261. int i;
  3262. for (i = 0; i < IOPRIO_BE_NR; i++) {
  3263. if (cfqd->async_cfqq[0][i])
  3264. cfq_put_queue(cfqd->async_cfqq[0][i]);
  3265. if (cfqd->async_cfqq[1][i])
  3266. cfq_put_queue(cfqd->async_cfqq[1][i]);
  3267. }
  3268. if (cfqd->async_idle_cfqq)
  3269. cfq_put_queue(cfqd->async_idle_cfqq);
  3270. }
  3271. static void cfq_exit_queue(struct elevator_queue *e)
  3272. {
  3273. struct cfq_data *cfqd = e->elevator_data;
  3274. struct request_queue *q = cfqd->queue;
  3275. bool wait = false;
  3276. cfq_shutdown_timer_wq(cfqd);
  3277. spin_lock_irq(q->queue_lock);
  3278. if (cfqd->active_queue)
  3279. __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
  3280. while (!list_empty(&cfqd->cic_list)) {
  3281. struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
  3282. struct cfq_io_context,
  3283. queue_list);
  3284. __cfq_exit_single_io_context(cfqd, cic);
  3285. }
  3286. cfq_put_async_queues(cfqd);
  3287. cfq_release_cfq_groups(cfqd);
  3288. /*
  3289. * If there are groups which we could not unlink from blkcg list,
  3290. * wait for a rcu period for them to be freed.
  3291. */
  3292. if (cfqd->nr_blkcg_linked_grps)
  3293. wait = true;
  3294. spin_unlock_irq(q->queue_lock);
  3295. cfq_shutdown_timer_wq(cfqd);
  3296. spin_lock(&cic_index_lock);
  3297. ida_remove(&cic_index_ida, cfqd->cic_index);
  3298. spin_unlock(&cic_index_lock);
  3299. /*
  3300. * Wait for cfqg->blkg->key accessors to exit their grace periods.
  3301. * Do this wait only if there are other unlinked groups out
  3302. * there. This can happen if cgroup deletion path claimed the
  3303. * responsibility of cleaning up a group before queue cleanup code
  3304. * get to the group.
  3305. *
  3306. * Do not call synchronize_rcu() unconditionally as there are drivers
  3307. * which create/delete request queue hundreds of times during scan/boot
  3308. * and synchronize_rcu() can take significant time and slow down boot.
  3309. */
  3310. if (wait)
  3311. synchronize_rcu();
  3312. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  3313. /* Free up per cpu stats for root group */
  3314. free_percpu(cfqd->root_group.blkg.stats_cpu);
  3315. #endif
  3316. kfree(cfqd);
  3317. }
  3318. static int cfq_alloc_cic_index(void)
  3319. {
  3320. int index, error;
  3321. do {
  3322. if (!ida_pre_get(&cic_index_ida, GFP_KERNEL))
  3323. return -ENOMEM;
  3324. spin_lock(&cic_index_lock);
  3325. error = ida_get_new(&cic_index_ida, &index);
  3326. spin_unlock(&cic_index_lock);
  3327. if (error && error != -EAGAIN)
  3328. return error;
  3329. } while (error);
  3330. return index;
  3331. }
  3332. static void *cfq_init_queue(struct request_queue *q)
  3333. {
  3334. struct cfq_data *cfqd;
  3335. int i, j;
  3336. struct cfq_group *cfqg;
  3337. struct cfq_rb_root *st;
  3338. i = cfq_alloc_cic_index();
  3339. if (i < 0)
  3340. return NULL;
  3341. cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
  3342. if (!cfqd) {
  3343. spin_lock(&cic_index_lock);
  3344. ida_remove(&cic_index_ida, i);
  3345. spin_unlock(&cic_index_lock);
  3346. return NULL;
  3347. }
  3348. /*
  3349. * Don't need take queue_lock in the routine, since we are
  3350. * initializing the ioscheduler, and nobody is using cfqd
  3351. */
  3352. cfqd->cic_index = i;
  3353. /* Init root service tree */
  3354. cfqd->grp_service_tree = CFQ_RB_ROOT;
  3355. /* Init root group */
  3356. cfqg = &cfqd->root_group;
  3357. for_each_cfqg_st(cfqg, i, j, st)
  3358. *st = CFQ_RB_ROOT;
  3359. RB_CLEAR_NODE(&cfqg->rb_node);
  3360. /* Give preference to root group over other groups */
  3361. cfqg->weight = 2*BLKIO_WEIGHT_DEFAULT;
  3362. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  3363. /*
  3364. * Set root group reference to 2. One reference will be dropped when
  3365. * all groups on cfqd->cfqg_list are being deleted during queue exit.
  3366. * Other reference will remain there as we don't want to delete this
  3367. * group as it is statically allocated and gets destroyed when
  3368. * throtl_data goes away.
  3369. */
  3370. cfqg->ref = 2;
  3371. if (blkio_alloc_blkg_stats(&cfqg->blkg)) {
  3372. kfree(cfqg);
  3373. kfree(cfqd);
  3374. return NULL;
  3375. }
  3376. rcu_read_lock();
  3377. cfq_blkiocg_add_blkio_group(&blkio_root_cgroup, &cfqg->blkg,
  3378. (void *)cfqd, 0);
  3379. rcu_read_unlock();
  3380. cfqd->nr_blkcg_linked_grps++;
  3381. /* Add group on cfqd->cfqg_list */
  3382. hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
  3383. #endif
  3384. /*
  3385. * Not strictly needed (since RB_ROOT just clears the node and we
  3386. * zeroed cfqd on alloc), but better be safe in case someone decides
  3387. * to add magic to the rb code
  3388. */
  3389. for (i = 0; i < CFQ_PRIO_LISTS; i++)
  3390. cfqd->prio_trees[i] = RB_ROOT;
  3391. /*
  3392. * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
  3393. * Grab a permanent reference to it, so that the normal code flow
  3394. * will not attempt to free it.
  3395. */
  3396. cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
  3397. cfqd->oom_cfqq.ref++;
  3398. cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
  3399. INIT_LIST_HEAD(&cfqd->cic_list);
  3400. cfqd->queue = q;
  3401. init_timer(&cfqd->idle_slice_timer);
  3402. cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
  3403. cfqd->idle_slice_timer.data = (unsigned long) cfqd;
  3404. INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
  3405. cfqd->cfq_quantum = cfq_quantum;
  3406. cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
  3407. cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
  3408. cfqd->cfq_back_max = cfq_back_max;
  3409. cfqd->cfq_back_penalty = cfq_back_penalty;
  3410. cfqd->cfq_slice[0] = cfq_slice_async;
  3411. cfqd->cfq_slice[1] = cfq_slice_sync;
  3412. cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
  3413. cfqd->cfq_slice_idle = cfq_slice_idle;
  3414. cfqd->cfq_group_idle = cfq_group_idle;
  3415. cfqd->cfq_latency = 1;
  3416. cfqd->hw_tag = -1;
  3417. /*
  3418. * we optimistically start assuming sync ops weren't delayed in last
  3419. * second, in order to have larger depth for async operations.
  3420. */
  3421. cfqd->last_delayed_sync = jiffies - HZ;
  3422. return cfqd;
  3423. }
  3424. static void cfq_slab_kill(void)
  3425. {
  3426. /*
  3427. * Caller already ensured that pending RCU callbacks are completed,
  3428. * so we should have no busy allocations at this point.
  3429. */
  3430. if (cfq_pool)
  3431. kmem_cache_destroy(cfq_pool);
  3432. if (cfq_ioc_pool)
  3433. kmem_cache_destroy(cfq_ioc_pool);
  3434. }
  3435. static int __init cfq_slab_setup(void)
  3436. {
  3437. cfq_pool = KMEM_CACHE(cfq_queue, 0);
  3438. if (!cfq_pool)
  3439. goto fail;
  3440. cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
  3441. if (!cfq_ioc_pool)
  3442. goto fail;
  3443. return 0;
  3444. fail:
  3445. cfq_slab_kill();
  3446. return -ENOMEM;
  3447. }
  3448. /*
  3449. * sysfs parts below -->
  3450. */
  3451. static ssize_t
  3452. cfq_var_show(unsigned int var, char *page)
  3453. {
  3454. return sprintf(page, "%d\n", var);
  3455. }
  3456. static ssize_t
  3457. cfq_var_store(unsigned int *var, const char *page, size_t count)
  3458. {
  3459. char *p = (char *) page;
  3460. *var = simple_strtoul(p, &p, 10);
  3461. return count;
  3462. }
  3463. #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
  3464. static ssize_t __FUNC(struct elevator_queue *e, char *page) \
  3465. { \
  3466. struct cfq_data *cfqd = e->elevator_data; \
  3467. unsigned int __data = __VAR; \
  3468. if (__CONV) \
  3469. __data = jiffies_to_msecs(__data); \
  3470. return cfq_var_show(__data, (page)); \
  3471. }
  3472. SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
  3473. SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
  3474. SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
  3475. SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
  3476. SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
  3477. SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
  3478. SHOW_FUNCTION(cfq_group_idle_show, cfqd->cfq_group_idle, 1);
  3479. SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
  3480. SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
  3481. SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
  3482. SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
  3483. #undef SHOW_FUNCTION
  3484. #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
  3485. static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
  3486. { \
  3487. struct cfq_data *cfqd = e->elevator_data; \
  3488. unsigned int __data; \
  3489. int ret = cfq_var_store(&__data, (page), count); \
  3490. if (__data < (MIN)) \
  3491. __data = (MIN); \
  3492. else if (__data > (MAX)) \
  3493. __data = (MAX); \
  3494. if (__CONV) \
  3495. *(__PTR) = msecs_to_jiffies(__data); \
  3496. else \
  3497. *(__PTR) = __data; \
  3498. return ret; \
  3499. }
  3500. STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
  3501. STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
  3502. UINT_MAX, 1);
  3503. STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
  3504. UINT_MAX, 1);
  3505. STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
  3506. STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
  3507. UINT_MAX, 0);
  3508. STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
  3509. STORE_FUNCTION(cfq_group_idle_store, &cfqd->cfq_group_idle, 0, UINT_MAX, 1);
  3510. STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
  3511. STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
  3512. STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
  3513. UINT_MAX, 0);
  3514. STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
  3515. #undef STORE_FUNCTION
  3516. #define CFQ_ATTR(name) \
  3517. __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
  3518. static struct elv_fs_entry cfq_attrs[] = {
  3519. CFQ_ATTR(quantum),
  3520. CFQ_ATTR(fifo_expire_sync),
  3521. CFQ_ATTR(fifo_expire_async),
  3522. CFQ_ATTR(back_seek_max),
  3523. CFQ_ATTR(back_seek_penalty),
  3524. CFQ_ATTR(slice_sync),
  3525. CFQ_ATTR(slice_async),
  3526. CFQ_ATTR(slice_async_rq),
  3527. CFQ_ATTR(slice_idle),
  3528. CFQ_ATTR(group_idle),
  3529. CFQ_ATTR(low_latency),
  3530. __ATTR_NULL
  3531. };
  3532. static struct elevator_type iosched_cfq = {
  3533. .ops = {
  3534. .elevator_merge_fn = cfq_merge,
  3535. .elevator_merged_fn = cfq_merged_request,
  3536. .elevator_merge_req_fn = cfq_merged_requests,
  3537. .elevator_allow_merge_fn = cfq_allow_merge,
  3538. .elevator_bio_merged_fn = cfq_bio_merged,
  3539. .elevator_dispatch_fn = cfq_dispatch_requests,
  3540. .elevator_add_req_fn = cfq_insert_request,
  3541. .elevator_activate_req_fn = cfq_activate_request,
  3542. .elevator_deactivate_req_fn = cfq_deactivate_request,
  3543. .elevator_completed_req_fn = cfq_completed_request,
  3544. .elevator_former_req_fn = elv_rb_former_request,
  3545. .elevator_latter_req_fn = elv_rb_latter_request,
  3546. .elevator_set_req_fn = cfq_set_request,
  3547. .elevator_put_req_fn = cfq_put_request,
  3548. .elevator_may_queue_fn = cfq_may_queue,
  3549. .elevator_init_fn = cfq_init_queue,
  3550. .elevator_exit_fn = cfq_exit_queue,
  3551. .trim = cfq_free_io_context,
  3552. },
  3553. .elevator_attrs = cfq_attrs,
  3554. .elevator_name = "cfq",
  3555. .elevator_owner = THIS_MODULE,
  3556. };
  3557. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  3558. static struct blkio_policy_type blkio_policy_cfq = {
  3559. .ops = {
  3560. .blkio_unlink_group_fn = cfq_unlink_blkio_group,
  3561. .blkio_update_group_weight_fn = cfq_update_blkio_group_weight,
  3562. },
  3563. .plid = BLKIO_POLICY_PROP,
  3564. };
  3565. #else
  3566. static struct blkio_policy_type blkio_policy_cfq;
  3567. #endif
  3568. static int __init cfq_init(void)
  3569. {
  3570. /*
  3571. * could be 0 on HZ < 1000 setups
  3572. */
  3573. if (!cfq_slice_async)
  3574. cfq_slice_async = 1;
  3575. if (!cfq_slice_idle)
  3576. cfq_slice_idle = 1;
  3577. #ifdef CONFIG_CFQ_GROUP_IOSCHED
  3578. if (!cfq_group_idle)
  3579. cfq_group_idle = 1;
  3580. #else
  3581. cfq_group_idle = 0;
  3582. #endif
  3583. if (cfq_slab_setup())
  3584. return -ENOMEM;
  3585. elv_register(&iosched_cfq);
  3586. blkio_policy_register(&blkio_policy_cfq);
  3587. return 0;
  3588. }
  3589. static void __exit cfq_exit(void)
  3590. {
  3591. DECLARE_COMPLETION_ONSTACK(all_gone);
  3592. blkio_policy_unregister(&blkio_policy_cfq);
  3593. elv_unregister(&iosched_cfq);
  3594. ioc_gone = &all_gone;
  3595. /* ioc_gone's update must be visible before reading ioc_count */
  3596. smp_wmb();
  3597. /*
  3598. * this also protects us from entering cfq_slab_kill() with
  3599. * pending RCU callbacks
  3600. */
  3601. if (elv_ioc_count_read(cfq_ioc_count))
  3602. wait_for_completion(&all_gone);
  3603. ida_destroy(&cic_index_ida);
  3604. cfq_slab_kill();
  3605. }
  3606. module_init(cfq_init);
  3607. module_exit(cfq_exit);
  3608. MODULE_AUTHOR("Jens Axboe");
  3609. MODULE_LICENSE("GPL");
  3610. MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");