ll_rw_blk.c 108 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244
  1. /*
  2. * Copyright (C) 1991, 1992 Linus Torvalds
  3. * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
  4. * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
  5. * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
  6. * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> - July2000
  7. * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
  8. */
  9. /*
  10. * This handles all read/write requests to block devices
  11. */
  12. #include <linux/kernel.h>
  13. #include <linux/module.h>
  14. #include <linux/backing-dev.h>
  15. #include <linux/bio.h>
  16. #include <linux/blkdev.h>
  17. #include <linux/highmem.h>
  18. #include <linux/mm.h>
  19. #include <linux/kernel_stat.h>
  20. #include <linux/string.h>
  21. #include <linux/init.h>
  22. #include <linux/bootmem.h> /* for max_pfn/max_low_pfn */
  23. #include <linux/completion.h>
  24. #include <linux/slab.h>
  25. #include <linux/swap.h>
  26. #include <linux/writeback.h>
  27. #include <linux/task_io_accounting_ops.h>
  28. #include <linux/interrupt.h>
  29. #include <linux/cpu.h>
  30. #include <linux/blktrace_api.h>
  31. #include <linux/fault-inject.h>
  32. #include <linux/scatterlist.h>
  33. /*
  34. * for max sense size
  35. */
  36. #include <scsi/scsi_cmnd.h>
  37. static void blk_unplug_work(struct work_struct *work);
  38. static void blk_unplug_timeout(unsigned long data);
  39. static void drive_stat_acct(struct request *rq, int new_io);
  40. static void init_request_from_bio(struct request *req, struct bio *bio);
  41. static int __make_request(struct request_queue *q, struct bio *bio);
  42. static struct io_context *current_io_context(gfp_t gfp_flags, int node);
  43. static void blk_recalc_rq_segments(struct request *rq);
  44. static void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
  45. struct bio *bio);
  46. /*
  47. * For the allocated request tables
  48. */
  49. static struct kmem_cache *request_cachep;
  50. /*
  51. * For queue allocation
  52. */
  53. static struct kmem_cache *requestq_cachep;
  54. /*
  55. * For io context allocations
  56. */
  57. static struct kmem_cache *iocontext_cachep;
  58. /*
  59. * Controlling structure to kblockd
  60. */
  61. static struct workqueue_struct *kblockd_workqueue;
  62. unsigned long blk_max_low_pfn, blk_max_pfn;
  63. EXPORT_SYMBOL(blk_max_low_pfn);
  64. EXPORT_SYMBOL(blk_max_pfn);
  65. static DEFINE_PER_CPU(struct list_head, blk_cpu_done);
  66. /* Amount of time in which a process may batch requests */
  67. #define BLK_BATCH_TIME (HZ/50UL)
  68. /* Number of requests a "batching" process may submit */
  69. #define BLK_BATCH_REQ 32
  70. /*
  71. * Return the threshold (number of used requests) at which the queue is
  72. * considered to be congested. It include a little hysteresis to keep the
  73. * context switch rate down.
  74. */
  75. static inline int queue_congestion_on_threshold(struct request_queue *q)
  76. {
  77. return q->nr_congestion_on;
  78. }
  79. /*
  80. * The threshold at which a queue is considered to be uncongested
  81. */
  82. static inline int queue_congestion_off_threshold(struct request_queue *q)
  83. {
  84. return q->nr_congestion_off;
  85. }
  86. static void blk_queue_congestion_threshold(struct request_queue *q)
  87. {
  88. int nr;
  89. nr = q->nr_requests - (q->nr_requests / 8) + 1;
  90. if (nr > q->nr_requests)
  91. nr = q->nr_requests;
  92. q->nr_congestion_on = nr;
  93. nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
  94. if (nr < 1)
  95. nr = 1;
  96. q->nr_congestion_off = nr;
  97. }
  98. /**
  99. * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
  100. * @bdev: device
  101. *
  102. * Locates the passed device's request queue and returns the address of its
  103. * backing_dev_info
  104. *
  105. * Will return NULL if the request queue cannot be located.
  106. */
  107. struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
  108. {
  109. struct backing_dev_info *ret = NULL;
  110. struct request_queue *q = bdev_get_queue(bdev);
  111. if (q)
  112. ret = &q->backing_dev_info;
  113. return ret;
  114. }
  115. EXPORT_SYMBOL(blk_get_backing_dev_info);
  116. /**
  117. * blk_queue_prep_rq - set a prepare_request function for queue
  118. * @q: queue
  119. * @pfn: prepare_request function
  120. *
  121. * It's possible for a queue to register a prepare_request callback which
  122. * is invoked before the request is handed to the request_fn. The goal of
  123. * the function is to prepare a request for I/O, it can be used to build a
  124. * cdb from the request data for instance.
  125. *
  126. */
  127. void blk_queue_prep_rq(struct request_queue *q, prep_rq_fn *pfn)
  128. {
  129. q->prep_rq_fn = pfn;
  130. }
  131. EXPORT_SYMBOL(blk_queue_prep_rq);
  132. /**
  133. * blk_queue_merge_bvec - set a merge_bvec function for queue
  134. * @q: queue
  135. * @mbfn: merge_bvec_fn
  136. *
  137. * Usually queues have static limitations on the max sectors or segments that
  138. * we can put in a request. Stacking drivers may have some settings that
  139. * are dynamic, and thus we have to query the queue whether it is ok to
  140. * add a new bio_vec to a bio at a given offset or not. If the block device
  141. * has such limitations, it needs to register a merge_bvec_fn to control
  142. * the size of bio's sent to it. Note that a block device *must* allow a
  143. * single page to be added to an empty bio. The block device driver may want
  144. * to use the bio_split() function to deal with these bio's. By default
  145. * no merge_bvec_fn is defined for a queue, and only the fixed limits are
  146. * honored.
  147. */
  148. void blk_queue_merge_bvec(struct request_queue *q, merge_bvec_fn *mbfn)
  149. {
  150. q->merge_bvec_fn = mbfn;
  151. }
  152. EXPORT_SYMBOL(blk_queue_merge_bvec);
  153. void blk_queue_softirq_done(struct request_queue *q, softirq_done_fn *fn)
  154. {
  155. q->softirq_done_fn = fn;
  156. }
  157. EXPORT_SYMBOL(blk_queue_softirq_done);
  158. /**
  159. * blk_queue_make_request - define an alternate make_request function for a device
  160. * @q: the request queue for the device to be affected
  161. * @mfn: the alternate make_request function
  162. *
  163. * Description:
  164. * The normal way for &struct bios to be passed to a device
  165. * driver is for them to be collected into requests on a request
  166. * queue, and then to allow the device driver to select requests
  167. * off that queue when it is ready. This works well for many block
  168. * devices. However some block devices (typically virtual devices
  169. * such as md or lvm) do not benefit from the processing on the
  170. * request queue, and are served best by having the requests passed
  171. * directly to them. This can be achieved by providing a function
  172. * to blk_queue_make_request().
  173. *
  174. * Caveat:
  175. * The driver that does this *must* be able to deal appropriately
  176. * with buffers in "highmemory". This can be accomplished by either calling
  177. * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
  178. * blk_queue_bounce() to create a buffer in normal memory.
  179. **/
  180. void blk_queue_make_request(struct request_queue * q, make_request_fn * mfn)
  181. {
  182. /*
  183. * set defaults
  184. */
  185. q->nr_requests = BLKDEV_MAX_RQ;
  186. blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
  187. blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
  188. q->make_request_fn = mfn;
  189. q->backing_dev_info.ra_pages = (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
  190. q->backing_dev_info.state = 0;
  191. q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
  192. blk_queue_max_sectors(q, SAFE_MAX_SECTORS);
  193. blk_queue_hardsect_size(q, 512);
  194. blk_queue_dma_alignment(q, 511);
  195. blk_queue_congestion_threshold(q);
  196. q->nr_batching = BLK_BATCH_REQ;
  197. q->unplug_thresh = 4; /* hmm */
  198. q->unplug_delay = (3 * HZ) / 1000; /* 3 milliseconds */
  199. if (q->unplug_delay == 0)
  200. q->unplug_delay = 1;
  201. INIT_WORK(&q->unplug_work, blk_unplug_work);
  202. q->unplug_timer.function = blk_unplug_timeout;
  203. q->unplug_timer.data = (unsigned long)q;
  204. /*
  205. * by default assume old behaviour and bounce for any highmem page
  206. */
  207. blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH);
  208. }
  209. EXPORT_SYMBOL(blk_queue_make_request);
  210. static void rq_init(struct request_queue *q, struct request *rq)
  211. {
  212. INIT_LIST_HEAD(&rq->queuelist);
  213. INIT_LIST_HEAD(&rq->donelist);
  214. rq->errors = 0;
  215. rq->bio = rq->biotail = NULL;
  216. INIT_HLIST_NODE(&rq->hash);
  217. RB_CLEAR_NODE(&rq->rb_node);
  218. rq->ioprio = 0;
  219. rq->buffer = NULL;
  220. rq->ref_count = 1;
  221. rq->q = q;
  222. rq->special = NULL;
  223. rq->data_len = 0;
  224. rq->data = NULL;
  225. rq->nr_phys_segments = 0;
  226. rq->sense = NULL;
  227. rq->end_io = NULL;
  228. rq->end_io_data = NULL;
  229. rq->completion_data = NULL;
  230. rq->next_rq = NULL;
  231. }
  232. /**
  233. * blk_queue_ordered - does this queue support ordered writes
  234. * @q: the request queue
  235. * @ordered: one of QUEUE_ORDERED_*
  236. * @prepare_flush_fn: rq setup helper for cache flush ordered writes
  237. *
  238. * Description:
  239. * For journalled file systems, doing ordered writes on a commit
  240. * block instead of explicitly doing wait_on_buffer (which is bad
  241. * for performance) can be a big win. Block drivers supporting this
  242. * feature should call this function and indicate so.
  243. *
  244. **/
  245. int blk_queue_ordered(struct request_queue *q, unsigned ordered,
  246. prepare_flush_fn *prepare_flush_fn)
  247. {
  248. if (ordered & (QUEUE_ORDERED_PREFLUSH | QUEUE_ORDERED_POSTFLUSH) &&
  249. prepare_flush_fn == NULL) {
  250. printk(KERN_ERR "blk_queue_ordered: prepare_flush_fn required\n");
  251. return -EINVAL;
  252. }
  253. if (ordered != QUEUE_ORDERED_NONE &&
  254. ordered != QUEUE_ORDERED_DRAIN &&
  255. ordered != QUEUE_ORDERED_DRAIN_FLUSH &&
  256. ordered != QUEUE_ORDERED_DRAIN_FUA &&
  257. ordered != QUEUE_ORDERED_TAG &&
  258. ordered != QUEUE_ORDERED_TAG_FLUSH &&
  259. ordered != QUEUE_ORDERED_TAG_FUA) {
  260. printk(KERN_ERR "blk_queue_ordered: bad value %d\n", ordered);
  261. return -EINVAL;
  262. }
  263. q->ordered = ordered;
  264. q->next_ordered = ordered;
  265. q->prepare_flush_fn = prepare_flush_fn;
  266. return 0;
  267. }
  268. EXPORT_SYMBOL(blk_queue_ordered);
  269. /*
  270. * Cache flushing for ordered writes handling
  271. */
  272. inline unsigned blk_ordered_cur_seq(struct request_queue *q)
  273. {
  274. if (!q->ordseq)
  275. return 0;
  276. return 1 << ffz(q->ordseq);
  277. }
  278. unsigned blk_ordered_req_seq(struct request *rq)
  279. {
  280. struct request_queue *q = rq->q;
  281. BUG_ON(q->ordseq == 0);
  282. if (rq == &q->pre_flush_rq)
  283. return QUEUE_ORDSEQ_PREFLUSH;
  284. if (rq == &q->bar_rq)
  285. return QUEUE_ORDSEQ_BAR;
  286. if (rq == &q->post_flush_rq)
  287. return QUEUE_ORDSEQ_POSTFLUSH;
  288. /*
  289. * !fs requests don't need to follow barrier ordering. Always
  290. * put them at the front. This fixes the following deadlock.
  291. *
  292. * http://thread.gmane.org/gmane.linux.kernel/537473
  293. */
  294. if (!blk_fs_request(rq))
  295. return QUEUE_ORDSEQ_DRAIN;
  296. if ((rq->cmd_flags & REQ_ORDERED_COLOR) ==
  297. (q->orig_bar_rq->cmd_flags & REQ_ORDERED_COLOR))
  298. return QUEUE_ORDSEQ_DRAIN;
  299. else
  300. return QUEUE_ORDSEQ_DONE;
  301. }
  302. void blk_ordered_complete_seq(struct request_queue *q, unsigned seq, int error)
  303. {
  304. struct request *rq;
  305. int uptodate;
  306. if (error && !q->orderr)
  307. q->orderr = error;
  308. BUG_ON(q->ordseq & seq);
  309. q->ordseq |= seq;
  310. if (blk_ordered_cur_seq(q) != QUEUE_ORDSEQ_DONE)
  311. return;
  312. /*
  313. * Okay, sequence complete.
  314. */
  315. uptodate = 1;
  316. if (q->orderr)
  317. uptodate = q->orderr;
  318. q->ordseq = 0;
  319. rq = q->orig_bar_rq;
  320. end_that_request_first(rq, uptodate, rq->hard_nr_sectors);
  321. end_that_request_last(rq, uptodate);
  322. }
  323. static void pre_flush_end_io(struct request *rq, int error)
  324. {
  325. elv_completed_request(rq->q, rq);
  326. blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_PREFLUSH, error);
  327. }
  328. static void bar_end_io(struct request *rq, int error)
  329. {
  330. elv_completed_request(rq->q, rq);
  331. blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_BAR, error);
  332. }
  333. static void post_flush_end_io(struct request *rq, int error)
  334. {
  335. elv_completed_request(rq->q, rq);
  336. blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_POSTFLUSH, error);
  337. }
  338. static void queue_flush(struct request_queue *q, unsigned which)
  339. {
  340. struct request *rq;
  341. rq_end_io_fn *end_io;
  342. if (which == QUEUE_ORDERED_PREFLUSH) {
  343. rq = &q->pre_flush_rq;
  344. end_io = pre_flush_end_io;
  345. } else {
  346. rq = &q->post_flush_rq;
  347. end_io = post_flush_end_io;
  348. }
  349. rq->cmd_flags = REQ_HARDBARRIER;
  350. rq_init(q, rq);
  351. rq->elevator_private = NULL;
  352. rq->elevator_private2 = NULL;
  353. rq->rq_disk = q->bar_rq.rq_disk;
  354. rq->end_io = end_io;
  355. q->prepare_flush_fn(q, rq);
  356. elv_insert(q, rq, ELEVATOR_INSERT_FRONT);
  357. }
  358. static inline struct request *start_ordered(struct request_queue *q,
  359. struct request *rq)
  360. {
  361. q->orderr = 0;
  362. q->ordered = q->next_ordered;
  363. q->ordseq |= QUEUE_ORDSEQ_STARTED;
  364. /*
  365. * Prep proxy barrier request.
  366. */
  367. blkdev_dequeue_request(rq);
  368. q->orig_bar_rq = rq;
  369. rq = &q->bar_rq;
  370. rq->cmd_flags = 0;
  371. rq_init(q, rq);
  372. if (bio_data_dir(q->orig_bar_rq->bio) == WRITE)
  373. rq->cmd_flags |= REQ_RW;
  374. if (q->ordered & QUEUE_ORDERED_FUA)
  375. rq->cmd_flags |= REQ_FUA;
  376. rq->elevator_private = NULL;
  377. rq->elevator_private2 = NULL;
  378. init_request_from_bio(rq, q->orig_bar_rq->bio);
  379. rq->end_io = bar_end_io;
  380. /*
  381. * Queue ordered sequence. As we stack them at the head, we
  382. * need to queue in reverse order. Note that we rely on that
  383. * no fs request uses ELEVATOR_INSERT_FRONT and thus no fs
  384. * request gets inbetween ordered sequence. If this request is
  385. * an empty barrier, we don't need to do a postflush ever since
  386. * there will be no data written between the pre and post flush.
  387. * Hence a single flush will suffice.
  388. */
  389. if ((q->ordered & QUEUE_ORDERED_POSTFLUSH) && !blk_empty_barrier(rq))
  390. queue_flush(q, QUEUE_ORDERED_POSTFLUSH);
  391. else
  392. q->ordseq |= QUEUE_ORDSEQ_POSTFLUSH;
  393. elv_insert(q, rq, ELEVATOR_INSERT_FRONT);
  394. if (q->ordered & QUEUE_ORDERED_PREFLUSH) {
  395. queue_flush(q, QUEUE_ORDERED_PREFLUSH);
  396. rq = &q->pre_flush_rq;
  397. } else
  398. q->ordseq |= QUEUE_ORDSEQ_PREFLUSH;
  399. if ((q->ordered & QUEUE_ORDERED_TAG) || q->in_flight == 0)
  400. q->ordseq |= QUEUE_ORDSEQ_DRAIN;
  401. else
  402. rq = NULL;
  403. return rq;
  404. }
  405. int blk_do_ordered(struct request_queue *q, struct request **rqp)
  406. {
  407. struct request *rq = *rqp;
  408. const int is_barrier = blk_fs_request(rq) && blk_barrier_rq(rq);
  409. if (!q->ordseq) {
  410. if (!is_barrier)
  411. return 1;
  412. if (q->next_ordered != QUEUE_ORDERED_NONE) {
  413. *rqp = start_ordered(q, rq);
  414. return 1;
  415. } else {
  416. /*
  417. * This can happen when the queue switches to
  418. * ORDERED_NONE while this request is on it.
  419. */
  420. blkdev_dequeue_request(rq);
  421. end_that_request_first(rq, -EOPNOTSUPP,
  422. rq->hard_nr_sectors);
  423. end_that_request_last(rq, -EOPNOTSUPP);
  424. *rqp = NULL;
  425. return 0;
  426. }
  427. }
  428. /*
  429. * Ordered sequence in progress
  430. */
  431. /* Special requests are not subject to ordering rules. */
  432. if (!blk_fs_request(rq) &&
  433. rq != &q->pre_flush_rq && rq != &q->post_flush_rq)
  434. return 1;
  435. if (q->ordered & QUEUE_ORDERED_TAG) {
  436. /* Ordered by tag. Blocking the next barrier is enough. */
  437. if (is_barrier && rq != &q->bar_rq)
  438. *rqp = NULL;
  439. } else {
  440. /* Ordered by draining. Wait for turn. */
  441. WARN_ON(blk_ordered_req_seq(rq) < blk_ordered_cur_seq(q));
  442. if (blk_ordered_req_seq(rq) > blk_ordered_cur_seq(q))
  443. *rqp = NULL;
  444. }
  445. return 1;
  446. }
  447. static void req_bio_endio(struct request *rq, struct bio *bio,
  448. unsigned int nbytes, int error)
  449. {
  450. struct request_queue *q = rq->q;
  451. if (&q->bar_rq != rq) {
  452. if (error)
  453. clear_bit(BIO_UPTODATE, &bio->bi_flags);
  454. else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
  455. error = -EIO;
  456. if (unlikely(nbytes > bio->bi_size)) {
  457. printk("%s: want %u bytes done, only %u left\n",
  458. __FUNCTION__, nbytes, bio->bi_size);
  459. nbytes = bio->bi_size;
  460. }
  461. bio->bi_size -= nbytes;
  462. bio->bi_sector += (nbytes >> 9);
  463. if (bio->bi_size == 0)
  464. bio_endio(bio, error);
  465. } else {
  466. /*
  467. * Okay, this is the barrier request in progress, just
  468. * record the error;
  469. */
  470. if (error && !q->orderr)
  471. q->orderr = error;
  472. }
  473. }
  474. /**
  475. * blk_queue_bounce_limit - set bounce buffer limit for queue
  476. * @q: the request queue for the device
  477. * @dma_addr: bus address limit
  478. *
  479. * Description:
  480. * Different hardware can have different requirements as to what pages
  481. * it can do I/O directly to. A low level driver can call
  482. * blk_queue_bounce_limit to have lower memory pages allocated as bounce
  483. * buffers for doing I/O to pages residing above @page.
  484. **/
  485. void blk_queue_bounce_limit(struct request_queue *q, u64 dma_addr)
  486. {
  487. unsigned long bounce_pfn = dma_addr >> PAGE_SHIFT;
  488. int dma = 0;
  489. q->bounce_gfp = GFP_NOIO;
  490. #if BITS_PER_LONG == 64
  491. /* Assume anything <= 4GB can be handled by IOMMU.
  492. Actually some IOMMUs can handle everything, but I don't
  493. know of a way to test this here. */
  494. if (bounce_pfn < (min_t(u64,0xffffffff,BLK_BOUNCE_HIGH) >> PAGE_SHIFT))
  495. dma = 1;
  496. q->bounce_pfn = max_low_pfn;
  497. #else
  498. if (bounce_pfn < blk_max_low_pfn)
  499. dma = 1;
  500. q->bounce_pfn = bounce_pfn;
  501. #endif
  502. if (dma) {
  503. init_emergency_isa_pool();
  504. q->bounce_gfp = GFP_NOIO | GFP_DMA;
  505. q->bounce_pfn = bounce_pfn;
  506. }
  507. }
  508. EXPORT_SYMBOL(blk_queue_bounce_limit);
  509. /**
  510. * blk_queue_max_sectors - set max sectors for a request for this queue
  511. * @q: the request queue for the device
  512. * @max_sectors: max sectors in the usual 512b unit
  513. *
  514. * Description:
  515. * Enables a low level driver to set an upper limit on the size of
  516. * received requests.
  517. **/
  518. void blk_queue_max_sectors(struct request_queue *q, unsigned int max_sectors)
  519. {
  520. if ((max_sectors << 9) < PAGE_CACHE_SIZE) {
  521. max_sectors = 1 << (PAGE_CACHE_SHIFT - 9);
  522. printk("%s: set to minimum %d\n", __FUNCTION__, max_sectors);
  523. }
  524. if (BLK_DEF_MAX_SECTORS > max_sectors)
  525. q->max_hw_sectors = q->max_sectors = max_sectors;
  526. else {
  527. q->max_sectors = BLK_DEF_MAX_SECTORS;
  528. q->max_hw_sectors = max_sectors;
  529. }
  530. }
  531. EXPORT_SYMBOL(blk_queue_max_sectors);
  532. /**
  533. * blk_queue_max_phys_segments - set max phys segments for a request for this queue
  534. * @q: the request queue for the device
  535. * @max_segments: max number of segments
  536. *
  537. * Description:
  538. * Enables a low level driver to set an upper limit on the number of
  539. * physical data segments in a request. This would be the largest sized
  540. * scatter list the driver could handle.
  541. **/
  542. void blk_queue_max_phys_segments(struct request_queue *q,
  543. unsigned short max_segments)
  544. {
  545. if (!max_segments) {
  546. max_segments = 1;
  547. printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
  548. }
  549. q->max_phys_segments = max_segments;
  550. }
  551. EXPORT_SYMBOL(blk_queue_max_phys_segments);
  552. /**
  553. * blk_queue_max_hw_segments - set max hw segments for a request for this queue
  554. * @q: the request queue for the device
  555. * @max_segments: max number of segments
  556. *
  557. * Description:
  558. * Enables a low level driver to set an upper limit on the number of
  559. * hw data segments in a request. This would be the largest number of
  560. * address/length pairs the host adapter can actually give as once
  561. * to the device.
  562. **/
  563. void blk_queue_max_hw_segments(struct request_queue *q,
  564. unsigned short max_segments)
  565. {
  566. if (!max_segments) {
  567. max_segments = 1;
  568. printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
  569. }
  570. q->max_hw_segments = max_segments;
  571. }
  572. EXPORT_SYMBOL(blk_queue_max_hw_segments);
  573. /**
  574. * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
  575. * @q: the request queue for the device
  576. * @max_size: max size of segment in bytes
  577. *
  578. * Description:
  579. * Enables a low level driver to set an upper limit on the size of a
  580. * coalesced segment
  581. **/
  582. void blk_queue_max_segment_size(struct request_queue *q, unsigned int max_size)
  583. {
  584. if (max_size < PAGE_CACHE_SIZE) {
  585. max_size = PAGE_CACHE_SIZE;
  586. printk("%s: set to minimum %d\n", __FUNCTION__, max_size);
  587. }
  588. q->max_segment_size = max_size;
  589. }
  590. EXPORT_SYMBOL(blk_queue_max_segment_size);
  591. /**
  592. * blk_queue_hardsect_size - set hardware sector size for the queue
  593. * @q: the request queue for the device
  594. * @size: the hardware sector size, in bytes
  595. *
  596. * Description:
  597. * This should typically be set to the lowest possible sector size
  598. * that the hardware can operate on (possible without reverting to
  599. * even internal read-modify-write operations). Usually the default
  600. * of 512 covers most hardware.
  601. **/
  602. void blk_queue_hardsect_size(struct request_queue *q, unsigned short size)
  603. {
  604. q->hardsect_size = size;
  605. }
  606. EXPORT_SYMBOL(blk_queue_hardsect_size);
  607. /*
  608. * Returns the minimum that is _not_ zero, unless both are zero.
  609. */
  610. #define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r))
  611. /**
  612. * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
  613. * @t: the stacking driver (top)
  614. * @b: the underlying device (bottom)
  615. **/
  616. void blk_queue_stack_limits(struct request_queue *t, struct request_queue *b)
  617. {
  618. /* zero is "infinity" */
  619. t->max_sectors = min_not_zero(t->max_sectors,b->max_sectors);
  620. t->max_hw_sectors = min_not_zero(t->max_hw_sectors,b->max_hw_sectors);
  621. t->max_phys_segments = min(t->max_phys_segments,b->max_phys_segments);
  622. t->max_hw_segments = min(t->max_hw_segments,b->max_hw_segments);
  623. t->max_segment_size = min(t->max_segment_size,b->max_segment_size);
  624. t->hardsect_size = max(t->hardsect_size,b->hardsect_size);
  625. if (!test_bit(QUEUE_FLAG_CLUSTER, &b->queue_flags))
  626. clear_bit(QUEUE_FLAG_CLUSTER, &t->queue_flags);
  627. }
  628. EXPORT_SYMBOL(blk_queue_stack_limits);
  629. /**
  630. * blk_queue_segment_boundary - set boundary rules for segment merging
  631. * @q: the request queue for the device
  632. * @mask: the memory boundary mask
  633. **/
  634. void blk_queue_segment_boundary(struct request_queue *q, unsigned long mask)
  635. {
  636. if (mask < PAGE_CACHE_SIZE - 1) {
  637. mask = PAGE_CACHE_SIZE - 1;
  638. printk("%s: set to minimum %lx\n", __FUNCTION__, mask);
  639. }
  640. q->seg_boundary_mask = mask;
  641. }
  642. EXPORT_SYMBOL(blk_queue_segment_boundary);
  643. /**
  644. * blk_queue_dma_alignment - set dma length and memory alignment
  645. * @q: the request queue for the device
  646. * @mask: alignment mask
  647. *
  648. * description:
  649. * set required memory and length aligment for direct dma transactions.
  650. * this is used when buiding direct io requests for the queue.
  651. *
  652. **/
  653. void blk_queue_dma_alignment(struct request_queue *q, int mask)
  654. {
  655. q->dma_alignment = mask;
  656. }
  657. EXPORT_SYMBOL(blk_queue_dma_alignment);
  658. /**
  659. * blk_queue_find_tag - find a request by its tag and queue
  660. * @q: The request queue for the device
  661. * @tag: The tag of the request
  662. *
  663. * Notes:
  664. * Should be used when a device returns a tag and you want to match
  665. * it with a request.
  666. *
  667. * no locks need be held.
  668. **/
  669. struct request *blk_queue_find_tag(struct request_queue *q, int tag)
  670. {
  671. return blk_map_queue_find_tag(q->queue_tags, tag);
  672. }
  673. EXPORT_SYMBOL(blk_queue_find_tag);
  674. /**
  675. * __blk_free_tags - release a given set of tag maintenance info
  676. * @bqt: the tag map to free
  677. *
  678. * Tries to free the specified @bqt@. Returns true if it was
  679. * actually freed and false if there are still references using it
  680. */
  681. static int __blk_free_tags(struct blk_queue_tag *bqt)
  682. {
  683. int retval;
  684. retval = atomic_dec_and_test(&bqt->refcnt);
  685. if (retval) {
  686. BUG_ON(bqt->busy);
  687. kfree(bqt->tag_index);
  688. bqt->tag_index = NULL;
  689. kfree(bqt->tag_map);
  690. bqt->tag_map = NULL;
  691. kfree(bqt);
  692. }
  693. return retval;
  694. }
  695. /**
  696. * __blk_queue_free_tags - release tag maintenance info
  697. * @q: the request queue for the device
  698. *
  699. * Notes:
  700. * blk_cleanup_queue() will take care of calling this function, if tagging
  701. * has been used. So there's no need to call this directly.
  702. **/
  703. static void __blk_queue_free_tags(struct request_queue *q)
  704. {
  705. struct blk_queue_tag *bqt = q->queue_tags;
  706. if (!bqt)
  707. return;
  708. __blk_free_tags(bqt);
  709. q->queue_tags = NULL;
  710. q->queue_flags &= ~(1 << QUEUE_FLAG_QUEUED);
  711. }
  712. /**
  713. * blk_free_tags - release a given set of tag maintenance info
  714. * @bqt: the tag map to free
  715. *
  716. * For externally managed @bqt@ frees the map. Callers of this
  717. * function must guarantee to have released all the queues that
  718. * might have been using this tag map.
  719. */
  720. void blk_free_tags(struct blk_queue_tag *bqt)
  721. {
  722. if (unlikely(!__blk_free_tags(bqt)))
  723. BUG();
  724. }
  725. EXPORT_SYMBOL(blk_free_tags);
  726. /**
  727. * blk_queue_free_tags - release tag maintenance info
  728. * @q: the request queue for the device
  729. *
  730. * Notes:
  731. * This is used to disabled tagged queuing to a device, yet leave
  732. * queue in function.
  733. **/
  734. void blk_queue_free_tags(struct request_queue *q)
  735. {
  736. clear_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
  737. }
  738. EXPORT_SYMBOL(blk_queue_free_tags);
  739. static int
  740. init_tag_map(struct request_queue *q, struct blk_queue_tag *tags, int depth)
  741. {
  742. struct request **tag_index;
  743. unsigned long *tag_map;
  744. int nr_ulongs;
  745. if (q && depth > q->nr_requests * 2) {
  746. depth = q->nr_requests * 2;
  747. printk(KERN_ERR "%s: adjusted depth to %d\n",
  748. __FUNCTION__, depth);
  749. }
  750. tag_index = kzalloc(depth * sizeof(struct request *), GFP_ATOMIC);
  751. if (!tag_index)
  752. goto fail;
  753. nr_ulongs = ALIGN(depth, BITS_PER_LONG) / BITS_PER_LONG;
  754. tag_map = kzalloc(nr_ulongs * sizeof(unsigned long), GFP_ATOMIC);
  755. if (!tag_map)
  756. goto fail;
  757. tags->real_max_depth = depth;
  758. tags->max_depth = depth;
  759. tags->tag_index = tag_index;
  760. tags->tag_map = tag_map;
  761. return 0;
  762. fail:
  763. kfree(tag_index);
  764. return -ENOMEM;
  765. }
  766. static struct blk_queue_tag *__blk_queue_init_tags(struct request_queue *q,
  767. int depth)
  768. {
  769. struct blk_queue_tag *tags;
  770. tags = kmalloc(sizeof(struct blk_queue_tag), GFP_ATOMIC);
  771. if (!tags)
  772. goto fail;
  773. if (init_tag_map(q, tags, depth))
  774. goto fail;
  775. tags->busy = 0;
  776. atomic_set(&tags->refcnt, 1);
  777. return tags;
  778. fail:
  779. kfree(tags);
  780. return NULL;
  781. }
  782. /**
  783. * blk_init_tags - initialize the tag info for an external tag map
  784. * @depth: the maximum queue depth supported
  785. * @tags: the tag to use
  786. **/
  787. struct blk_queue_tag *blk_init_tags(int depth)
  788. {
  789. return __blk_queue_init_tags(NULL, depth);
  790. }
  791. EXPORT_SYMBOL(blk_init_tags);
  792. /**
  793. * blk_queue_init_tags - initialize the queue tag info
  794. * @q: the request queue for the device
  795. * @depth: the maximum queue depth supported
  796. * @tags: the tag to use
  797. **/
  798. int blk_queue_init_tags(struct request_queue *q, int depth,
  799. struct blk_queue_tag *tags)
  800. {
  801. int rc;
  802. BUG_ON(tags && q->queue_tags && tags != q->queue_tags);
  803. if (!tags && !q->queue_tags) {
  804. tags = __blk_queue_init_tags(q, depth);
  805. if (!tags)
  806. goto fail;
  807. } else if (q->queue_tags) {
  808. if ((rc = blk_queue_resize_tags(q, depth)))
  809. return rc;
  810. set_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
  811. return 0;
  812. } else
  813. atomic_inc(&tags->refcnt);
  814. /*
  815. * assign it, all done
  816. */
  817. q->queue_tags = tags;
  818. q->queue_flags |= (1 << QUEUE_FLAG_QUEUED);
  819. INIT_LIST_HEAD(&q->tag_busy_list);
  820. return 0;
  821. fail:
  822. kfree(tags);
  823. return -ENOMEM;
  824. }
  825. EXPORT_SYMBOL(blk_queue_init_tags);
  826. /**
  827. * blk_queue_resize_tags - change the queueing depth
  828. * @q: the request queue for the device
  829. * @new_depth: the new max command queueing depth
  830. *
  831. * Notes:
  832. * Must be called with the queue lock held.
  833. **/
  834. int blk_queue_resize_tags(struct request_queue *q, int new_depth)
  835. {
  836. struct blk_queue_tag *bqt = q->queue_tags;
  837. struct request **tag_index;
  838. unsigned long *tag_map;
  839. int max_depth, nr_ulongs;
  840. if (!bqt)
  841. return -ENXIO;
  842. /*
  843. * if we already have large enough real_max_depth. just
  844. * adjust max_depth. *NOTE* as requests with tag value
  845. * between new_depth and real_max_depth can be in-flight, tag
  846. * map can not be shrunk blindly here.
  847. */
  848. if (new_depth <= bqt->real_max_depth) {
  849. bqt->max_depth = new_depth;
  850. return 0;
  851. }
  852. /*
  853. * Currently cannot replace a shared tag map with a new
  854. * one, so error out if this is the case
  855. */
  856. if (atomic_read(&bqt->refcnt) != 1)
  857. return -EBUSY;
  858. /*
  859. * save the old state info, so we can copy it back
  860. */
  861. tag_index = bqt->tag_index;
  862. tag_map = bqt->tag_map;
  863. max_depth = bqt->real_max_depth;
  864. if (init_tag_map(q, bqt, new_depth))
  865. return -ENOMEM;
  866. memcpy(bqt->tag_index, tag_index, max_depth * sizeof(struct request *));
  867. nr_ulongs = ALIGN(max_depth, BITS_PER_LONG) / BITS_PER_LONG;
  868. memcpy(bqt->tag_map, tag_map, nr_ulongs * sizeof(unsigned long));
  869. kfree(tag_index);
  870. kfree(tag_map);
  871. return 0;
  872. }
  873. EXPORT_SYMBOL(blk_queue_resize_tags);
  874. /**
  875. * blk_queue_end_tag - end tag operations for a request
  876. * @q: the request queue for the device
  877. * @rq: the request that has completed
  878. *
  879. * Description:
  880. * Typically called when end_that_request_first() returns 0, meaning
  881. * all transfers have been done for a request. It's important to call
  882. * this function before end_that_request_last(), as that will put the
  883. * request back on the free list thus corrupting the internal tag list.
  884. *
  885. * Notes:
  886. * queue lock must be held.
  887. **/
  888. void blk_queue_end_tag(struct request_queue *q, struct request *rq)
  889. {
  890. struct blk_queue_tag *bqt = q->queue_tags;
  891. int tag = rq->tag;
  892. BUG_ON(tag == -1);
  893. if (unlikely(tag >= bqt->real_max_depth))
  894. /*
  895. * This can happen after tag depth has been reduced.
  896. * FIXME: how about a warning or info message here?
  897. */
  898. return;
  899. list_del_init(&rq->queuelist);
  900. rq->cmd_flags &= ~REQ_QUEUED;
  901. rq->tag = -1;
  902. if (unlikely(bqt->tag_index[tag] == NULL))
  903. printk(KERN_ERR "%s: tag %d is missing\n",
  904. __FUNCTION__, tag);
  905. bqt->tag_index[tag] = NULL;
  906. if (unlikely(!test_bit(tag, bqt->tag_map))) {
  907. printk(KERN_ERR "%s: attempt to clear non-busy tag (%d)\n",
  908. __FUNCTION__, tag);
  909. return;
  910. }
  911. /*
  912. * The tag_map bit acts as a lock for tag_index[bit], so we need
  913. * unlock memory barrier semantics.
  914. */
  915. clear_bit_unlock(tag, bqt->tag_map);
  916. bqt->busy--;
  917. }
  918. EXPORT_SYMBOL(blk_queue_end_tag);
  919. /**
  920. * blk_queue_start_tag - find a free tag and assign it
  921. * @q: the request queue for the device
  922. * @rq: the block request that needs tagging
  923. *
  924. * Description:
  925. * This can either be used as a stand-alone helper, or possibly be
  926. * assigned as the queue &prep_rq_fn (in which case &struct request
  927. * automagically gets a tag assigned). Note that this function
  928. * assumes that any type of request can be queued! if this is not
  929. * true for your device, you must check the request type before
  930. * calling this function. The request will also be removed from
  931. * the request queue, so it's the drivers responsibility to readd
  932. * it if it should need to be restarted for some reason.
  933. *
  934. * Notes:
  935. * queue lock must be held.
  936. **/
  937. int blk_queue_start_tag(struct request_queue *q, struct request *rq)
  938. {
  939. struct blk_queue_tag *bqt = q->queue_tags;
  940. int tag;
  941. if (unlikely((rq->cmd_flags & REQ_QUEUED))) {
  942. printk(KERN_ERR
  943. "%s: request %p for device [%s] already tagged %d",
  944. __FUNCTION__, rq,
  945. rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->tag);
  946. BUG();
  947. }
  948. /*
  949. * Protect against shared tag maps, as we may not have exclusive
  950. * access to the tag map.
  951. */
  952. do {
  953. tag = find_first_zero_bit(bqt->tag_map, bqt->max_depth);
  954. if (tag >= bqt->max_depth)
  955. return 1;
  956. } while (test_and_set_bit_lock(tag, bqt->tag_map));
  957. /*
  958. * We need lock ordering semantics given by test_and_set_bit_lock.
  959. * See blk_queue_end_tag for details.
  960. */
  961. rq->cmd_flags |= REQ_QUEUED;
  962. rq->tag = tag;
  963. bqt->tag_index[tag] = rq;
  964. blkdev_dequeue_request(rq);
  965. list_add(&rq->queuelist, &q->tag_busy_list);
  966. bqt->busy++;
  967. return 0;
  968. }
  969. EXPORT_SYMBOL(blk_queue_start_tag);
  970. /**
  971. * blk_queue_invalidate_tags - invalidate all pending tags
  972. * @q: the request queue for the device
  973. *
  974. * Description:
  975. * Hardware conditions may dictate a need to stop all pending requests.
  976. * In this case, we will safely clear the block side of the tag queue and
  977. * readd all requests to the request queue in the right order.
  978. *
  979. * Notes:
  980. * queue lock must be held.
  981. **/
  982. void blk_queue_invalidate_tags(struct request_queue *q)
  983. {
  984. struct list_head *tmp, *n;
  985. struct request *rq;
  986. list_for_each_safe(tmp, n, &q->tag_busy_list) {
  987. rq = list_entry_rq(tmp);
  988. if (rq->tag == -1) {
  989. printk(KERN_ERR
  990. "%s: bad tag found on list\n", __FUNCTION__);
  991. list_del_init(&rq->queuelist);
  992. rq->cmd_flags &= ~REQ_QUEUED;
  993. } else
  994. blk_queue_end_tag(q, rq);
  995. rq->cmd_flags &= ~REQ_STARTED;
  996. __elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 0);
  997. }
  998. }
  999. EXPORT_SYMBOL(blk_queue_invalidate_tags);
  1000. void blk_dump_rq_flags(struct request *rq, char *msg)
  1001. {
  1002. int bit;
  1003. printk("%s: dev %s: type=%x, flags=%x\n", msg,
  1004. rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
  1005. rq->cmd_flags);
  1006. printk("\nsector %llu, nr/cnr %lu/%u\n", (unsigned long long)rq->sector,
  1007. rq->nr_sectors,
  1008. rq->current_nr_sectors);
  1009. printk("bio %p, biotail %p, buffer %p, data %p, len %u\n", rq->bio, rq->biotail, rq->buffer, rq->data, rq->data_len);
  1010. if (blk_pc_request(rq)) {
  1011. printk("cdb: ");
  1012. for (bit = 0; bit < sizeof(rq->cmd); bit++)
  1013. printk("%02x ", rq->cmd[bit]);
  1014. printk("\n");
  1015. }
  1016. }
  1017. EXPORT_SYMBOL(blk_dump_rq_flags);
  1018. void blk_recount_segments(struct request_queue *q, struct bio *bio)
  1019. {
  1020. struct request rq;
  1021. struct bio *nxt = bio->bi_next;
  1022. rq.q = q;
  1023. rq.bio = rq.biotail = bio;
  1024. bio->bi_next = NULL;
  1025. blk_recalc_rq_segments(&rq);
  1026. bio->bi_next = nxt;
  1027. bio->bi_phys_segments = rq.nr_phys_segments;
  1028. bio->bi_hw_segments = rq.nr_hw_segments;
  1029. bio->bi_flags |= (1 << BIO_SEG_VALID);
  1030. }
  1031. EXPORT_SYMBOL(blk_recount_segments);
  1032. static void blk_recalc_rq_segments(struct request *rq)
  1033. {
  1034. int nr_phys_segs;
  1035. int nr_hw_segs;
  1036. unsigned int phys_size;
  1037. unsigned int hw_size;
  1038. struct bio_vec *bv, *bvprv = NULL;
  1039. int seg_size;
  1040. int hw_seg_size;
  1041. int cluster;
  1042. struct req_iterator iter;
  1043. int high, highprv = 1;
  1044. struct request_queue *q = rq->q;
  1045. if (!rq->bio)
  1046. return;
  1047. cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
  1048. hw_seg_size = seg_size = 0;
  1049. phys_size = hw_size = nr_phys_segs = nr_hw_segs = 0;
  1050. rq_for_each_segment(bv, rq, iter) {
  1051. /*
  1052. * the trick here is making sure that a high page is never
  1053. * considered part of another segment, since that might
  1054. * change with the bounce page.
  1055. */
  1056. high = page_to_pfn(bv->bv_page) > q->bounce_pfn;
  1057. if (high || highprv)
  1058. goto new_hw_segment;
  1059. if (cluster) {
  1060. if (seg_size + bv->bv_len > q->max_segment_size)
  1061. goto new_segment;
  1062. if (!BIOVEC_PHYS_MERGEABLE(bvprv, bv))
  1063. goto new_segment;
  1064. if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bv))
  1065. goto new_segment;
  1066. if (BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len))
  1067. goto new_hw_segment;
  1068. seg_size += bv->bv_len;
  1069. hw_seg_size += bv->bv_len;
  1070. bvprv = bv;
  1071. continue;
  1072. }
  1073. new_segment:
  1074. if (BIOVEC_VIRT_MERGEABLE(bvprv, bv) &&
  1075. !BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len))
  1076. hw_seg_size += bv->bv_len;
  1077. else {
  1078. new_hw_segment:
  1079. if (nr_hw_segs == 1 &&
  1080. hw_seg_size > rq->bio->bi_hw_front_size)
  1081. rq->bio->bi_hw_front_size = hw_seg_size;
  1082. hw_seg_size = BIOVEC_VIRT_START_SIZE(bv) + bv->bv_len;
  1083. nr_hw_segs++;
  1084. }
  1085. nr_phys_segs++;
  1086. bvprv = bv;
  1087. seg_size = bv->bv_len;
  1088. highprv = high;
  1089. }
  1090. if (nr_hw_segs == 1 &&
  1091. hw_seg_size > rq->bio->bi_hw_front_size)
  1092. rq->bio->bi_hw_front_size = hw_seg_size;
  1093. if (hw_seg_size > rq->biotail->bi_hw_back_size)
  1094. rq->biotail->bi_hw_back_size = hw_seg_size;
  1095. rq->nr_phys_segments = nr_phys_segs;
  1096. rq->nr_hw_segments = nr_hw_segs;
  1097. }
  1098. static int blk_phys_contig_segment(struct request_queue *q, struct bio *bio,
  1099. struct bio *nxt)
  1100. {
  1101. if (!(q->queue_flags & (1 << QUEUE_FLAG_CLUSTER)))
  1102. return 0;
  1103. if (!BIOVEC_PHYS_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)))
  1104. return 0;
  1105. if (bio->bi_size + nxt->bi_size > q->max_segment_size)
  1106. return 0;
  1107. /*
  1108. * bio and nxt are contigous in memory, check if the queue allows
  1109. * these two to be merged into one
  1110. */
  1111. if (BIO_SEG_BOUNDARY(q, bio, nxt))
  1112. return 1;
  1113. return 0;
  1114. }
  1115. static int blk_hw_contig_segment(struct request_queue *q, struct bio *bio,
  1116. struct bio *nxt)
  1117. {
  1118. if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
  1119. blk_recount_segments(q, bio);
  1120. if (unlikely(!bio_flagged(nxt, BIO_SEG_VALID)))
  1121. blk_recount_segments(q, nxt);
  1122. if (!BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)) ||
  1123. BIOVEC_VIRT_OVERSIZE(bio->bi_hw_back_size + nxt->bi_hw_front_size))
  1124. return 0;
  1125. if (bio->bi_hw_back_size + nxt->bi_hw_front_size > q->max_segment_size)
  1126. return 0;
  1127. return 1;
  1128. }
  1129. /*
  1130. * map a request to scatterlist, return number of sg entries setup. Caller
  1131. * must make sure sg can hold rq->nr_phys_segments entries
  1132. */
  1133. int blk_rq_map_sg(struct request_queue *q, struct request *rq,
  1134. struct scatterlist *sglist)
  1135. {
  1136. struct bio_vec *bvec, *bvprv;
  1137. struct req_iterator iter;
  1138. struct scatterlist *sg;
  1139. int nsegs, cluster;
  1140. nsegs = 0;
  1141. cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
  1142. /*
  1143. * for each bio in rq
  1144. */
  1145. bvprv = NULL;
  1146. sg = NULL;
  1147. rq_for_each_segment(bvec, rq, iter) {
  1148. int nbytes = bvec->bv_len;
  1149. if (bvprv && cluster) {
  1150. if (sg->length + nbytes > q->max_segment_size)
  1151. goto new_segment;
  1152. if (!BIOVEC_PHYS_MERGEABLE(bvprv, bvec))
  1153. goto new_segment;
  1154. if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bvec))
  1155. goto new_segment;
  1156. sg->length += nbytes;
  1157. } else {
  1158. new_segment:
  1159. if (!sg)
  1160. sg = sglist;
  1161. else {
  1162. /*
  1163. * If the driver previously mapped a shorter
  1164. * list, we could see a termination bit
  1165. * prematurely unless it fully inits the sg
  1166. * table on each mapping. We KNOW that there
  1167. * must be more entries here or the driver
  1168. * would be buggy, so force clear the
  1169. * termination bit to avoid doing a full
  1170. * sg_init_table() in drivers for each command.
  1171. */
  1172. sg->page_link &= ~0x02;
  1173. sg = sg_next(sg);
  1174. }
  1175. sg_set_page(sg, bvec->bv_page, nbytes, bvec->bv_offset);
  1176. nsegs++;
  1177. }
  1178. bvprv = bvec;
  1179. } /* segments in rq */
  1180. if (sg)
  1181. __sg_mark_end(sg);
  1182. return nsegs;
  1183. }
  1184. EXPORT_SYMBOL(blk_rq_map_sg);
  1185. /*
  1186. * the standard queue merge functions, can be overridden with device
  1187. * specific ones if so desired
  1188. */
  1189. static inline int ll_new_mergeable(struct request_queue *q,
  1190. struct request *req,
  1191. struct bio *bio)
  1192. {
  1193. int nr_phys_segs = bio_phys_segments(q, bio);
  1194. if (req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
  1195. req->cmd_flags |= REQ_NOMERGE;
  1196. if (req == q->last_merge)
  1197. q->last_merge = NULL;
  1198. return 0;
  1199. }
  1200. /*
  1201. * A hw segment is just getting larger, bump just the phys
  1202. * counter.
  1203. */
  1204. req->nr_phys_segments += nr_phys_segs;
  1205. return 1;
  1206. }
  1207. static inline int ll_new_hw_segment(struct request_queue *q,
  1208. struct request *req,
  1209. struct bio *bio)
  1210. {
  1211. int nr_hw_segs = bio_hw_segments(q, bio);
  1212. int nr_phys_segs = bio_phys_segments(q, bio);
  1213. if (req->nr_hw_segments + nr_hw_segs > q->max_hw_segments
  1214. || req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
  1215. req->cmd_flags |= REQ_NOMERGE;
  1216. if (req == q->last_merge)
  1217. q->last_merge = NULL;
  1218. return 0;
  1219. }
  1220. /*
  1221. * This will form the start of a new hw segment. Bump both
  1222. * counters.
  1223. */
  1224. req->nr_hw_segments += nr_hw_segs;
  1225. req->nr_phys_segments += nr_phys_segs;
  1226. return 1;
  1227. }
  1228. static int ll_back_merge_fn(struct request_queue *q, struct request *req,
  1229. struct bio *bio)
  1230. {
  1231. unsigned short max_sectors;
  1232. int len;
  1233. if (unlikely(blk_pc_request(req)))
  1234. max_sectors = q->max_hw_sectors;
  1235. else
  1236. max_sectors = q->max_sectors;
  1237. if (req->nr_sectors + bio_sectors(bio) > max_sectors) {
  1238. req->cmd_flags |= REQ_NOMERGE;
  1239. if (req == q->last_merge)
  1240. q->last_merge = NULL;
  1241. return 0;
  1242. }
  1243. if (unlikely(!bio_flagged(req->biotail, BIO_SEG_VALID)))
  1244. blk_recount_segments(q, req->biotail);
  1245. if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
  1246. blk_recount_segments(q, bio);
  1247. len = req->biotail->bi_hw_back_size + bio->bi_hw_front_size;
  1248. if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(req->biotail), __BVEC_START(bio)) &&
  1249. !BIOVEC_VIRT_OVERSIZE(len)) {
  1250. int mergeable = ll_new_mergeable(q, req, bio);
  1251. if (mergeable) {
  1252. if (req->nr_hw_segments == 1)
  1253. req->bio->bi_hw_front_size = len;
  1254. if (bio->bi_hw_segments == 1)
  1255. bio->bi_hw_back_size = len;
  1256. }
  1257. return mergeable;
  1258. }
  1259. return ll_new_hw_segment(q, req, bio);
  1260. }
  1261. static int ll_front_merge_fn(struct request_queue *q, struct request *req,
  1262. struct bio *bio)
  1263. {
  1264. unsigned short max_sectors;
  1265. int len;
  1266. if (unlikely(blk_pc_request(req)))
  1267. max_sectors = q->max_hw_sectors;
  1268. else
  1269. max_sectors = q->max_sectors;
  1270. if (req->nr_sectors + bio_sectors(bio) > max_sectors) {
  1271. req->cmd_flags |= REQ_NOMERGE;
  1272. if (req == q->last_merge)
  1273. q->last_merge = NULL;
  1274. return 0;
  1275. }
  1276. len = bio->bi_hw_back_size + req->bio->bi_hw_front_size;
  1277. if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
  1278. blk_recount_segments(q, bio);
  1279. if (unlikely(!bio_flagged(req->bio, BIO_SEG_VALID)))
  1280. blk_recount_segments(q, req->bio);
  1281. if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(req->bio)) &&
  1282. !BIOVEC_VIRT_OVERSIZE(len)) {
  1283. int mergeable = ll_new_mergeable(q, req, bio);
  1284. if (mergeable) {
  1285. if (bio->bi_hw_segments == 1)
  1286. bio->bi_hw_front_size = len;
  1287. if (req->nr_hw_segments == 1)
  1288. req->biotail->bi_hw_back_size = len;
  1289. }
  1290. return mergeable;
  1291. }
  1292. return ll_new_hw_segment(q, req, bio);
  1293. }
  1294. static int ll_merge_requests_fn(struct request_queue *q, struct request *req,
  1295. struct request *next)
  1296. {
  1297. int total_phys_segments;
  1298. int total_hw_segments;
  1299. /*
  1300. * First check if the either of the requests are re-queued
  1301. * requests. Can't merge them if they are.
  1302. */
  1303. if (req->special || next->special)
  1304. return 0;
  1305. /*
  1306. * Will it become too large?
  1307. */
  1308. if ((req->nr_sectors + next->nr_sectors) > q->max_sectors)
  1309. return 0;
  1310. total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
  1311. if (blk_phys_contig_segment(q, req->biotail, next->bio))
  1312. total_phys_segments--;
  1313. if (total_phys_segments > q->max_phys_segments)
  1314. return 0;
  1315. total_hw_segments = req->nr_hw_segments + next->nr_hw_segments;
  1316. if (blk_hw_contig_segment(q, req->biotail, next->bio)) {
  1317. int len = req->biotail->bi_hw_back_size + next->bio->bi_hw_front_size;
  1318. /*
  1319. * propagate the combined length to the end of the requests
  1320. */
  1321. if (req->nr_hw_segments == 1)
  1322. req->bio->bi_hw_front_size = len;
  1323. if (next->nr_hw_segments == 1)
  1324. next->biotail->bi_hw_back_size = len;
  1325. total_hw_segments--;
  1326. }
  1327. if (total_hw_segments > q->max_hw_segments)
  1328. return 0;
  1329. /* Merge is OK... */
  1330. req->nr_phys_segments = total_phys_segments;
  1331. req->nr_hw_segments = total_hw_segments;
  1332. return 1;
  1333. }
  1334. /*
  1335. * "plug" the device if there are no outstanding requests: this will
  1336. * force the transfer to start only after we have put all the requests
  1337. * on the list.
  1338. *
  1339. * This is called with interrupts off and no requests on the queue and
  1340. * with the queue lock held.
  1341. */
  1342. void blk_plug_device(struct request_queue *q)
  1343. {
  1344. WARN_ON(!irqs_disabled());
  1345. /*
  1346. * don't plug a stopped queue, it must be paired with blk_start_queue()
  1347. * which will restart the queueing
  1348. */
  1349. if (blk_queue_stopped(q))
  1350. return;
  1351. if (!test_and_set_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags)) {
  1352. mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
  1353. blk_add_trace_generic(q, NULL, 0, BLK_TA_PLUG);
  1354. }
  1355. }
  1356. EXPORT_SYMBOL(blk_plug_device);
  1357. /*
  1358. * remove the queue from the plugged list, if present. called with
  1359. * queue lock held and interrupts disabled.
  1360. */
  1361. int blk_remove_plug(struct request_queue *q)
  1362. {
  1363. WARN_ON(!irqs_disabled());
  1364. if (!test_and_clear_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags))
  1365. return 0;
  1366. del_timer(&q->unplug_timer);
  1367. return 1;
  1368. }
  1369. EXPORT_SYMBOL(blk_remove_plug);
  1370. /*
  1371. * remove the plug and let it rip..
  1372. */
  1373. void __generic_unplug_device(struct request_queue *q)
  1374. {
  1375. if (unlikely(blk_queue_stopped(q)))
  1376. return;
  1377. if (!blk_remove_plug(q))
  1378. return;
  1379. q->request_fn(q);
  1380. }
  1381. EXPORT_SYMBOL(__generic_unplug_device);
  1382. /**
  1383. * generic_unplug_device - fire a request queue
  1384. * @q: The &struct request_queue in question
  1385. *
  1386. * Description:
  1387. * Linux uses plugging to build bigger requests queues before letting
  1388. * the device have at them. If a queue is plugged, the I/O scheduler
  1389. * is still adding and merging requests on the queue. Once the queue
  1390. * gets unplugged, the request_fn defined for the queue is invoked and
  1391. * transfers started.
  1392. **/
  1393. void generic_unplug_device(struct request_queue *q)
  1394. {
  1395. spin_lock_irq(q->queue_lock);
  1396. __generic_unplug_device(q);
  1397. spin_unlock_irq(q->queue_lock);
  1398. }
  1399. EXPORT_SYMBOL(generic_unplug_device);
  1400. static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
  1401. struct page *page)
  1402. {
  1403. struct request_queue *q = bdi->unplug_io_data;
  1404. /*
  1405. * devices don't necessarily have an ->unplug_fn defined
  1406. */
  1407. if (q->unplug_fn) {
  1408. blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
  1409. q->rq.count[READ] + q->rq.count[WRITE]);
  1410. q->unplug_fn(q);
  1411. }
  1412. }
  1413. static void blk_unplug_work(struct work_struct *work)
  1414. {
  1415. struct request_queue *q =
  1416. container_of(work, struct request_queue, unplug_work);
  1417. blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
  1418. q->rq.count[READ] + q->rq.count[WRITE]);
  1419. q->unplug_fn(q);
  1420. }
  1421. static void blk_unplug_timeout(unsigned long data)
  1422. {
  1423. struct request_queue *q = (struct request_queue *)data;
  1424. blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_TIMER, NULL,
  1425. q->rq.count[READ] + q->rq.count[WRITE]);
  1426. kblockd_schedule_work(&q->unplug_work);
  1427. }
  1428. /**
  1429. * blk_start_queue - restart a previously stopped queue
  1430. * @q: The &struct request_queue in question
  1431. *
  1432. * Description:
  1433. * blk_start_queue() will clear the stop flag on the queue, and call
  1434. * the request_fn for the queue if it was in a stopped state when
  1435. * entered. Also see blk_stop_queue(). Queue lock must be held.
  1436. **/
  1437. void blk_start_queue(struct request_queue *q)
  1438. {
  1439. WARN_ON(!irqs_disabled());
  1440. clear_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
  1441. /*
  1442. * one level of recursion is ok and is much faster than kicking
  1443. * the unplug handling
  1444. */
  1445. if (!test_and_set_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
  1446. q->request_fn(q);
  1447. clear_bit(QUEUE_FLAG_REENTER, &q->queue_flags);
  1448. } else {
  1449. blk_plug_device(q);
  1450. kblockd_schedule_work(&q->unplug_work);
  1451. }
  1452. }
  1453. EXPORT_SYMBOL(blk_start_queue);
  1454. /**
  1455. * blk_stop_queue - stop a queue
  1456. * @q: The &struct request_queue in question
  1457. *
  1458. * Description:
  1459. * The Linux block layer assumes that a block driver will consume all
  1460. * entries on the request queue when the request_fn strategy is called.
  1461. * Often this will not happen, because of hardware limitations (queue
  1462. * depth settings). If a device driver gets a 'queue full' response,
  1463. * or if it simply chooses not to queue more I/O at one point, it can
  1464. * call this function to prevent the request_fn from being called until
  1465. * the driver has signalled it's ready to go again. This happens by calling
  1466. * blk_start_queue() to restart queue operations. Queue lock must be held.
  1467. **/
  1468. void blk_stop_queue(struct request_queue *q)
  1469. {
  1470. blk_remove_plug(q);
  1471. set_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
  1472. }
  1473. EXPORT_SYMBOL(blk_stop_queue);
  1474. /**
  1475. * blk_sync_queue - cancel any pending callbacks on a queue
  1476. * @q: the queue
  1477. *
  1478. * Description:
  1479. * The block layer may perform asynchronous callback activity
  1480. * on a queue, such as calling the unplug function after a timeout.
  1481. * A block device may call blk_sync_queue to ensure that any
  1482. * such activity is cancelled, thus allowing it to release resources
  1483. * that the callbacks might use. The caller must already have made sure
  1484. * that its ->make_request_fn will not re-add plugging prior to calling
  1485. * this function.
  1486. *
  1487. */
  1488. void blk_sync_queue(struct request_queue *q)
  1489. {
  1490. del_timer_sync(&q->unplug_timer);
  1491. kblockd_flush_work(&q->unplug_work);
  1492. }
  1493. EXPORT_SYMBOL(blk_sync_queue);
  1494. /**
  1495. * blk_run_queue - run a single device queue
  1496. * @q: The queue to run
  1497. */
  1498. void blk_run_queue(struct request_queue *q)
  1499. {
  1500. unsigned long flags;
  1501. spin_lock_irqsave(q->queue_lock, flags);
  1502. blk_remove_plug(q);
  1503. /*
  1504. * Only recurse once to avoid overrunning the stack, let the unplug
  1505. * handling reinvoke the handler shortly if we already got there.
  1506. */
  1507. if (!elv_queue_empty(q)) {
  1508. if (!test_and_set_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
  1509. q->request_fn(q);
  1510. clear_bit(QUEUE_FLAG_REENTER, &q->queue_flags);
  1511. } else {
  1512. blk_plug_device(q);
  1513. kblockd_schedule_work(&q->unplug_work);
  1514. }
  1515. }
  1516. spin_unlock_irqrestore(q->queue_lock, flags);
  1517. }
  1518. EXPORT_SYMBOL(blk_run_queue);
  1519. /**
  1520. * blk_cleanup_queue: - release a &struct request_queue when it is no longer needed
  1521. * @kobj: the kobj belonging of the request queue to be released
  1522. *
  1523. * Description:
  1524. * blk_cleanup_queue is the pair to blk_init_queue() or
  1525. * blk_queue_make_request(). It should be called when a request queue is
  1526. * being released; typically when a block device is being de-registered.
  1527. * Currently, its primary task it to free all the &struct request
  1528. * structures that were allocated to the queue and the queue itself.
  1529. *
  1530. * Caveat:
  1531. * Hopefully the low level driver will have finished any
  1532. * outstanding requests first...
  1533. **/
  1534. static void blk_release_queue(struct kobject *kobj)
  1535. {
  1536. struct request_queue *q =
  1537. container_of(kobj, struct request_queue, kobj);
  1538. struct request_list *rl = &q->rq;
  1539. blk_sync_queue(q);
  1540. if (rl->rq_pool)
  1541. mempool_destroy(rl->rq_pool);
  1542. if (q->queue_tags)
  1543. __blk_queue_free_tags(q);
  1544. blk_trace_shutdown(q);
  1545. bdi_destroy(&q->backing_dev_info);
  1546. kmem_cache_free(requestq_cachep, q);
  1547. }
  1548. void blk_put_queue(struct request_queue *q)
  1549. {
  1550. kobject_put(&q->kobj);
  1551. }
  1552. EXPORT_SYMBOL(blk_put_queue);
  1553. void blk_cleanup_queue(struct request_queue * q)
  1554. {
  1555. mutex_lock(&q->sysfs_lock);
  1556. set_bit(QUEUE_FLAG_DEAD, &q->queue_flags);
  1557. mutex_unlock(&q->sysfs_lock);
  1558. if (q->elevator)
  1559. elevator_exit(q->elevator);
  1560. blk_put_queue(q);
  1561. }
  1562. EXPORT_SYMBOL(blk_cleanup_queue);
  1563. static int blk_init_free_list(struct request_queue *q)
  1564. {
  1565. struct request_list *rl = &q->rq;
  1566. rl->count[READ] = rl->count[WRITE] = 0;
  1567. rl->starved[READ] = rl->starved[WRITE] = 0;
  1568. rl->elvpriv = 0;
  1569. init_waitqueue_head(&rl->wait[READ]);
  1570. init_waitqueue_head(&rl->wait[WRITE]);
  1571. rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
  1572. mempool_free_slab, request_cachep, q->node);
  1573. if (!rl->rq_pool)
  1574. return -ENOMEM;
  1575. return 0;
  1576. }
  1577. struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
  1578. {
  1579. return blk_alloc_queue_node(gfp_mask, -1);
  1580. }
  1581. EXPORT_SYMBOL(blk_alloc_queue);
  1582. static struct kobj_type queue_ktype;
  1583. struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
  1584. {
  1585. struct request_queue *q;
  1586. int err;
  1587. q = kmem_cache_alloc_node(requestq_cachep,
  1588. gfp_mask | __GFP_ZERO, node_id);
  1589. if (!q)
  1590. return NULL;
  1591. q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
  1592. q->backing_dev_info.unplug_io_data = q;
  1593. err = bdi_init(&q->backing_dev_info);
  1594. if (err) {
  1595. kmem_cache_free(requestq_cachep, q);
  1596. return NULL;
  1597. }
  1598. init_timer(&q->unplug_timer);
  1599. kobject_set_name(&q->kobj, "%s", "queue");
  1600. q->kobj.ktype = &queue_ktype;
  1601. kobject_init(&q->kobj);
  1602. mutex_init(&q->sysfs_lock);
  1603. return q;
  1604. }
  1605. EXPORT_SYMBOL(blk_alloc_queue_node);
  1606. /**
  1607. * blk_init_queue - prepare a request queue for use with a block device
  1608. * @rfn: The function to be called to process requests that have been
  1609. * placed on the queue.
  1610. * @lock: Request queue spin lock
  1611. *
  1612. * Description:
  1613. * If a block device wishes to use the standard request handling procedures,
  1614. * which sorts requests and coalesces adjacent requests, then it must
  1615. * call blk_init_queue(). The function @rfn will be called when there
  1616. * are requests on the queue that need to be processed. If the device
  1617. * supports plugging, then @rfn may not be called immediately when requests
  1618. * are available on the queue, but may be called at some time later instead.
  1619. * Plugged queues are generally unplugged when a buffer belonging to one
  1620. * of the requests on the queue is needed, or due to memory pressure.
  1621. *
  1622. * @rfn is not required, or even expected, to remove all requests off the
  1623. * queue, but only as many as it can handle at a time. If it does leave
  1624. * requests on the queue, it is responsible for arranging that the requests
  1625. * get dealt with eventually.
  1626. *
  1627. * The queue spin lock must be held while manipulating the requests on the
  1628. * request queue; this lock will be taken also from interrupt context, so irq
  1629. * disabling is needed for it.
  1630. *
  1631. * Function returns a pointer to the initialized request queue, or NULL if
  1632. * it didn't succeed.
  1633. *
  1634. * Note:
  1635. * blk_init_queue() must be paired with a blk_cleanup_queue() call
  1636. * when the block device is deactivated (such as at module unload).
  1637. **/
  1638. struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
  1639. {
  1640. return blk_init_queue_node(rfn, lock, -1);
  1641. }
  1642. EXPORT_SYMBOL(blk_init_queue);
  1643. struct request_queue *
  1644. blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
  1645. {
  1646. struct request_queue *q = blk_alloc_queue_node(GFP_KERNEL, node_id);
  1647. if (!q)
  1648. return NULL;
  1649. q->node = node_id;
  1650. if (blk_init_free_list(q)) {
  1651. kmem_cache_free(requestq_cachep, q);
  1652. return NULL;
  1653. }
  1654. /*
  1655. * if caller didn't supply a lock, they get per-queue locking with
  1656. * our embedded lock
  1657. */
  1658. if (!lock) {
  1659. spin_lock_init(&q->__queue_lock);
  1660. lock = &q->__queue_lock;
  1661. }
  1662. q->request_fn = rfn;
  1663. q->prep_rq_fn = NULL;
  1664. q->unplug_fn = generic_unplug_device;
  1665. q->queue_flags = (1 << QUEUE_FLAG_CLUSTER);
  1666. q->queue_lock = lock;
  1667. blk_queue_segment_boundary(q, 0xffffffff);
  1668. blk_queue_make_request(q, __make_request);
  1669. blk_queue_max_segment_size(q, MAX_SEGMENT_SIZE);
  1670. blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
  1671. blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
  1672. q->sg_reserved_size = INT_MAX;
  1673. /*
  1674. * all done
  1675. */
  1676. if (!elevator_init(q, NULL)) {
  1677. blk_queue_congestion_threshold(q);
  1678. return q;
  1679. }
  1680. blk_put_queue(q);
  1681. return NULL;
  1682. }
  1683. EXPORT_SYMBOL(blk_init_queue_node);
  1684. int blk_get_queue(struct request_queue *q)
  1685. {
  1686. if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
  1687. kobject_get(&q->kobj);
  1688. return 0;
  1689. }
  1690. return 1;
  1691. }
  1692. EXPORT_SYMBOL(blk_get_queue);
  1693. static inline void blk_free_request(struct request_queue *q, struct request *rq)
  1694. {
  1695. if (rq->cmd_flags & REQ_ELVPRIV)
  1696. elv_put_request(q, rq);
  1697. mempool_free(rq, q->rq.rq_pool);
  1698. }
  1699. static struct request *
  1700. blk_alloc_request(struct request_queue *q, int rw, int priv, gfp_t gfp_mask)
  1701. {
  1702. struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
  1703. if (!rq)
  1704. return NULL;
  1705. /*
  1706. * first three bits are identical in rq->cmd_flags and bio->bi_rw,
  1707. * see bio.h and blkdev.h
  1708. */
  1709. rq->cmd_flags = rw | REQ_ALLOCED;
  1710. if (priv) {
  1711. if (unlikely(elv_set_request(q, rq, gfp_mask))) {
  1712. mempool_free(rq, q->rq.rq_pool);
  1713. return NULL;
  1714. }
  1715. rq->cmd_flags |= REQ_ELVPRIV;
  1716. }
  1717. return rq;
  1718. }
  1719. /*
  1720. * ioc_batching returns true if the ioc is a valid batching request and
  1721. * should be given priority access to a request.
  1722. */
  1723. static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
  1724. {
  1725. if (!ioc)
  1726. return 0;
  1727. /*
  1728. * Make sure the process is able to allocate at least 1 request
  1729. * even if the batch times out, otherwise we could theoretically
  1730. * lose wakeups.
  1731. */
  1732. return ioc->nr_batch_requests == q->nr_batching ||
  1733. (ioc->nr_batch_requests > 0
  1734. && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
  1735. }
  1736. /*
  1737. * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
  1738. * will cause the process to be a "batcher" on all queues in the system. This
  1739. * is the behaviour we want though - once it gets a wakeup it should be given
  1740. * a nice run.
  1741. */
  1742. static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
  1743. {
  1744. if (!ioc || ioc_batching(q, ioc))
  1745. return;
  1746. ioc->nr_batch_requests = q->nr_batching;
  1747. ioc->last_waited = jiffies;
  1748. }
  1749. static void __freed_request(struct request_queue *q, int rw)
  1750. {
  1751. struct request_list *rl = &q->rq;
  1752. if (rl->count[rw] < queue_congestion_off_threshold(q))
  1753. blk_clear_queue_congested(q, rw);
  1754. if (rl->count[rw] + 1 <= q->nr_requests) {
  1755. if (waitqueue_active(&rl->wait[rw]))
  1756. wake_up(&rl->wait[rw]);
  1757. blk_clear_queue_full(q, rw);
  1758. }
  1759. }
  1760. /*
  1761. * A request has just been released. Account for it, update the full and
  1762. * congestion status, wake up any waiters. Called under q->queue_lock.
  1763. */
  1764. static void freed_request(struct request_queue *q, int rw, int priv)
  1765. {
  1766. struct request_list *rl = &q->rq;
  1767. rl->count[rw]--;
  1768. if (priv)
  1769. rl->elvpriv--;
  1770. __freed_request(q, rw);
  1771. if (unlikely(rl->starved[rw ^ 1]))
  1772. __freed_request(q, rw ^ 1);
  1773. }
  1774. #define blkdev_free_rq(list) list_entry((list)->next, struct request, queuelist)
  1775. /*
  1776. * Get a free request, queue_lock must be held.
  1777. * Returns NULL on failure, with queue_lock held.
  1778. * Returns !NULL on success, with queue_lock *not held*.
  1779. */
  1780. static struct request *get_request(struct request_queue *q, int rw_flags,
  1781. struct bio *bio, gfp_t gfp_mask)
  1782. {
  1783. struct request *rq = NULL;
  1784. struct request_list *rl = &q->rq;
  1785. struct io_context *ioc = NULL;
  1786. const int rw = rw_flags & 0x01;
  1787. int may_queue, priv;
  1788. may_queue = elv_may_queue(q, rw_flags);
  1789. if (may_queue == ELV_MQUEUE_NO)
  1790. goto rq_starved;
  1791. if (rl->count[rw]+1 >= queue_congestion_on_threshold(q)) {
  1792. if (rl->count[rw]+1 >= q->nr_requests) {
  1793. ioc = current_io_context(GFP_ATOMIC, q->node);
  1794. /*
  1795. * The queue will fill after this allocation, so set
  1796. * it as full, and mark this process as "batching".
  1797. * This process will be allowed to complete a batch of
  1798. * requests, others will be blocked.
  1799. */
  1800. if (!blk_queue_full(q, rw)) {
  1801. ioc_set_batching(q, ioc);
  1802. blk_set_queue_full(q, rw);
  1803. } else {
  1804. if (may_queue != ELV_MQUEUE_MUST
  1805. && !ioc_batching(q, ioc)) {
  1806. /*
  1807. * The queue is full and the allocating
  1808. * process is not a "batcher", and not
  1809. * exempted by the IO scheduler
  1810. */
  1811. goto out;
  1812. }
  1813. }
  1814. }
  1815. blk_set_queue_congested(q, rw);
  1816. }
  1817. /*
  1818. * Only allow batching queuers to allocate up to 50% over the defined
  1819. * limit of requests, otherwise we could have thousands of requests
  1820. * allocated with any setting of ->nr_requests
  1821. */
  1822. if (rl->count[rw] >= (3 * q->nr_requests / 2))
  1823. goto out;
  1824. rl->count[rw]++;
  1825. rl->starved[rw] = 0;
  1826. priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
  1827. if (priv)
  1828. rl->elvpriv++;
  1829. spin_unlock_irq(q->queue_lock);
  1830. rq = blk_alloc_request(q, rw_flags, priv, gfp_mask);
  1831. if (unlikely(!rq)) {
  1832. /*
  1833. * Allocation failed presumably due to memory. Undo anything
  1834. * we might have messed up.
  1835. *
  1836. * Allocating task should really be put onto the front of the
  1837. * wait queue, but this is pretty rare.
  1838. */
  1839. spin_lock_irq(q->queue_lock);
  1840. freed_request(q, rw, priv);
  1841. /*
  1842. * in the very unlikely event that allocation failed and no
  1843. * requests for this direction was pending, mark us starved
  1844. * so that freeing of a request in the other direction will
  1845. * notice us. another possible fix would be to split the
  1846. * rq mempool into READ and WRITE
  1847. */
  1848. rq_starved:
  1849. if (unlikely(rl->count[rw] == 0))
  1850. rl->starved[rw] = 1;
  1851. goto out;
  1852. }
  1853. /*
  1854. * ioc may be NULL here, and ioc_batching will be false. That's
  1855. * OK, if the queue is under the request limit then requests need
  1856. * not count toward the nr_batch_requests limit. There will always
  1857. * be some limit enforced by BLK_BATCH_TIME.
  1858. */
  1859. if (ioc_batching(q, ioc))
  1860. ioc->nr_batch_requests--;
  1861. rq_init(q, rq);
  1862. blk_add_trace_generic(q, bio, rw, BLK_TA_GETRQ);
  1863. out:
  1864. return rq;
  1865. }
  1866. /*
  1867. * No available requests for this queue, unplug the device and wait for some
  1868. * requests to become available.
  1869. *
  1870. * Called with q->queue_lock held, and returns with it unlocked.
  1871. */
  1872. static struct request *get_request_wait(struct request_queue *q, int rw_flags,
  1873. struct bio *bio)
  1874. {
  1875. const int rw = rw_flags & 0x01;
  1876. struct request *rq;
  1877. rq = get_request(q, rw_flags, bio, GFP_NOIO);
  1878. while (!rq) {
  1879. DEFINE_WAIT(wait);
  1880. struct request_list *rl = &q->rq;
  1881. prepare_to_wait_exclusive(&rl->wait[rw], &wait,
  1882. TASK_UNINTERRUPTIBLE);
  1883. rq = get_request(q, rw_flags, bio, GFP_NOIO);
  1884. if (!rq) {
  1885. struct io_context *ioc;
  1886. blk_add_trace_generic(q, bio, rw, BLK_TA_SLEEPRQ);
  1887. __generic_unplug_device(q);
  1888. spin_unlock_irq(q->queue_lock);
  1889. io_schedule();
  1890. /*
  1891. * After sleeping, we become a "batching" process and
  1892. * will be able to allocate at least one request, and
  1893. * up to a big batch of them for a small period time.
  1894. * See ioc_batching, ioc_set_batching
  1895. */
  1896. ioc = current_io_context(GFP_NOIO, q->node);
  1897. ioc_set_batching(q, ioc);
  1898. spin_lock_irq(q->queue_lock);
  1899. }
  1900. finish_wait(&rl->wait[rw], &wait);
  1901. }
  1902. return rq;
  1903. }
  1904. struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
  1905. {
  1906. struct request *rq;
  1907. BUG_ON(rw != READ && rw != WRITE);
  1908. spin_lock_irq(q->queue_lock);
  1909. if (gfp_mask & __GFP_WAIT) {
  1910. rq = get_request_wait(q, rw, NULL);
  1911. } else {
  1912. rq = get_request(q, rw, NULL, gfp_mask);
  1913. if (!rq)
  1914. spin_unlock_irq(q->queue_lock);
  1915. }
  1916. /* q->queue_lock is unlocked at this point */
  1917. return rq;
  1918. }
  1919. EXPORT_SYMBOL(blk_get_request);
  1920. /**
  1921. * blk_start_queueing - initiate dispatch of requests to device
  1922. * @q: request queue to kick into gear
  1923. *
  1924. * This is basically a helper to remove the need to know whether a queue
  1925. * is plugged or not if someone just wants to initiate dispatch of requests
  1926. * for this queue.
  1927. *
  1928. * The queue lock must be held with interrupts disabled.
  1929. */
  1930. void blk_start_queueing(struct request_queue *q)
  1931. {
  1932. if (!blk_queue_plugged(q))
  1933. q->request_fn(q);
  1934. else
  1935. __generic_unplug_device(q);
  1936. }
  1937. EXPORT_SYMBOL(blk_start_queueing);
  1938. /**
  1939. * blk_requeue_request - put a request back on queue
  1940. * @q: request queue where request should be inserted
  1941. * @rq: request to be inserted
  1942. *
  1943. * Description:
  1944. * Drivers often keep queueing requests until the hardware cannot accept
  1945. * more, when that condition happens we need to put the request back
  1946. * on the queue. Must be called with queue lock held.
  1947. */
  1948. void blk_requeue_request(struct request_queue *q, struct request *rq)
  1949. {
  1950. blk_add_trace_rq(q, rq, BLK_TA_REQUEUE);
  1951. if (blk_rq_tagged(rq))
  1952. blk_queue_end_tag(q, rq);
  1953. elv_requeue_request(q, rq);
  1954. }
  1955. EXPORT_SYMBOL(blk_requeue_request);
  1956. /**
  1957. * blk_insert_request - insert a special request in to a request queue
  1958. * @q: request queue where request should be inserted
  1959. * @rq: request to be inserted
  1960. * @at_head: insert request at head or tail of queue
  1961. * @data: private data
  1962. *
  1963. * Description:
  1964. * Many block devices need to execute commands asynchronously, so they don't
  1965. * block the whole kernel from preemption during request execution. This is
  1966. * accomplished normally by inserting aritficial requests tagged as
  1967. * REQ_SPECIAL in to the corresponding request queue, and letting them be
  1968. * scheduled for actual execution by the request queue.
  1969. *
  1970. * We have the option of inserting the head or the tail of the queue.
  1971. * Typically we use the tail for new ioctls and so forth. We use the head
  1972. * of the queue for things like a QUEUE_FULL message from a device, or a
  1973. * host that is unable to accept a particular command.
  1974. */
  1975. void blk_insert_request(struct request_queue *q, struct request *rq,
  1976. int at_head, void *data)
  1977. {
  1978. int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
  1979. unsigned long flags;
  1980. /*
  1981. * tell I/O scheduler that this isn't a regular read/write (ie it
  1982. * must not attempt merges on this) and that it acts as a soft
  1983. * barrier
  1984. */
  1985. rq->cmd_type = REQ_TYPE_SPECIAL;
  1986. rq->cmd_flags |= REQ_SOFTBARRIER;
  1987. rq->special = data;
  1988. spin_lock_irqsave(q->queue_lock, flags);
  1989. /*
  1990. * If command is tagged, release the tag
  1991. */
  1992. if (blk_rq_tagged(rq))
  1993. blk_queue_end_tag(q, rq);
  1994. drive_stat_acct(rq, 1);
  1995. __elv_add_request(q, rq, where, 0);
  1996. blk_start_queueing(q);
  1997. spin_unlock_irqrestore(q->queue_lock, flags);
  1998. }
  1999. EXPORT_SYMBOL(blk_insert_request);
  2000. static int __blk_rq_unmap_user(struct bio *bio)
  2001. {
  2002. int ret = 0;
  2003. if (bio) {
  2004. if (bio_flagged(bio, BIO_USER_MAPPED))
  2005. bio_unmap_user(bio);
  2006. else
  2007. ret = bio_uncopy_user(bio);
  2008. }
  2009. return ret;
  2010. }
  2011. int blk_rq_append_bio(struct request_queue *q, struct request *rq,
  2012. struct bio *bio)
  2013. {
  2014. if (!rq->bio)
  2015. blk_rq_bio_prep(q, rq, bio);
  2016. else if (!ll_back_merge_fn(q, rq, bio))
  2017. return -EINVAL;
  2018. else {
  2019. rq->biotail->bi_next = bio;
  2020. rq->biotail = bio;
  2021. rq->data_len += bio->bi_size;
  2022. }
  2023. return 0;
  2024. }
  2025. EXPORT_SYMBOL(blk_rq_append_bio);
  2026. static int __blk_rq_map_user(struct request_queue *q, struct request *rq,
  2027. void __user *ubuf, unsigned int len)
  2028. {
  2029. unsigned long uaddr;
  2030. struct bio *bio, *orig_bio;
  2031. int reading, ret;
  2032. reading = rq_data_dir(rq) == READ;
  2033. /*
  2034. * if alignment requirement is satisfied, map in user pages for
  2035. * direct dma. else, set up kernel bounce buffers
  2036. */
  2037. uaddr = (unsigned long) ubuf;
  2038. if (!(uaddr & queue_dma_alignment(q)) && !(len & queue_dma_alignment(q)))
  2039. bio = bio_map_user(q, NULL, uaddr, len, reading);
  2040. else
  2041. bio = bio_copy_user(q, uaddr, len, reading);
  2042. if (IS_ERR(bio))
  2043. return PTR_ERR(bio);
  2044. orig_bio = bio;
  2045. blk_queue_bounce(q, &bio);
  2046. /*
  2047. * We link the bounce buffer in and could have to traverse it
  2048. * later so we have to get a ref to prevent it from being freed
  2049. */
  2050. bio_get(bio);
  2051. ret = blk_rq_append_bio(q, rq, bio);
  2052. if (!ret)
  2053. return bio->bi_size;
  2054. /* if it was boucned we must call the end io function */
  2055. bio_endio(bio, 0);
  2056. __blk_rq_unmap_user(orig_bio);
  2057. bio_put(bio);
  2058. return ret;
  2059. }
  2060. /**
  2061. * blk_rq_map_user - map user data to a request, for REQ_BLOCK_PC usage
  2062. * @q: request queue where request should be inserted
  2063. * @rq: request structure to fill
  2064. * @ubuf: the user buffer
  2065. * @len: length of user data
  2066. *
  2067. * Description:
  2068. * Data will be mapped directly for zero copy io, if possible. Otherwise
  2069. * a kernel bounce buffer is used.
  2070. *
  2071. * A matching blk_rq_unmap_user() must be issued at the end of io, while
  2072. * still in process context.
  2073. *
  2074. * Note: The mapped bio may need to be bounced through blk_queue_bounce()
  2075. * before being submitted to the device, as pages mapped may be out of
  2076. * reach. It's the callers responsibility to make sure this happens. The
  2077. * original bio must be passed back in to blk_rq_unmap_user() for proper
  2078. * unmapping.
  2079. */
  2080. int blk_rq_map_user(struct request_queue *q, struct request *rq,
  2081. void __user *ubuf, unsigned long len)
  2082. {
  2083. unsigned long bytes_read = 0;
  2084. struct bio *bio = NULL;
  2085. int ret;
  2086. if (len > (q->max_hw_sectors << 9))
  2087. return -EINVAL;
  2088. if (!len || !ubuf)
  2089. return -EINVAL;
  2090. while (bytes_read != len) {
  2091. unsigned long map_len, end, start;
  2092. map_len = min_t(unsigned long, len - bytes_read, BIO_MAX_SIZE);
  2093. end = ((unsigned long)ubuf + map_len + PAGE_SIZE - 1)
  2094. >> PAGE_SHIFT;
  2095. start = (unsigned long)ubuf >> PAGE_SHIFT;
  2096. /*
  2097. * A bad offset could cause us to require BIO_MAX_PAGES + 1
  2098. * pages. If this happens we just lower the requested
  2099. * mapping len by a page so that we can fit
  2100. */
  2101. if (end - start > BIO_MAX_PAGES)
  2102. map_len -= PAGE_SIZE;
  2103. ret = __blk_rq_map_user(q, rq, ubuf, map_len);
  2104. if (ret < 0)
  2105. goto unmap_rq;
  2106. if (!bio)
  2107. bio = rq->bio;
  2108. bytes_read += ret;
  2109. ubuf += ret;
  2110. }
  2111. rq->buffer = rq->data = NULL;
  2112. return 0;
  2113. unmap_rq:
  2114. blk_rq_unmap_user(bio);
  2115. return ret;
  2116. }
  2117. EXPORT_SYMBOL(blk_rq_map_user);
  2118. /**
  2119. * blk_rq_map_user_iov - map user data to a request, for REQ_BLOCK_PC usage
  2120. * @q: request queue where request should be inserted
  2121. * @rq: request to map data to
  2122. * @iov: pointer to the iovec
  2123. * @iov_count: number of elements in the iovec
  2124. * @len: I/O byte count
  2125. *
  2126. * Description:
  2127. * Data will be mapped directly for zero copy io, if possible. Otherwise
  2128. * a kernel bounce buffer is used.
  2129. *
  2130. * A matching blk_rq_unmap_user() must be issued at the end of io, while
  2131. * still in process context.
  2132. *
  2133. * Note: The mapped bio may need to be bounced through blk_queue_bounce()
  2134. * before being submitted to the device, as pages mapped may be out of
  2135. * reach. It's the callers responsibility to make sure this happens. The
  2136. * original bio must be passed back in to blk_rq_unmap_user() for proper
  2137. * unmapping.
  2138. */
  2139. int blk_rq_map_user_iov(struct request_queue *q, struct request *rq,
  2140. struct sg_iovec *iov, int iov_count, unsigned int len)
  2141. {
  2142. struct bio *bio;
  2143. if (!iov || iov_count <= 0)
  2144. return -EINVAL;
  2145. /* we don't allow misaligned data like bio_map_user() does. If the
  2146. * user is using sg, they're expected to know the alignment constraints
  2147. * and respect them accordingly */
  2148. bio = bio_map_user_iov(q, NULL, iov, iov_count, rq_data_dir(rq)== READ);
  2149. if (IS_ERR(bio))
  2150. return PTR_ERR(bio);
  2151. if (bio->bi_size != len) {
  2152. bio_endio(bio, 0);
  2153. bio_unmap_user(bio);
  2154. return -EINVAL;
  2155. }
  2156. bio_get(bio);
  2157. blk_rq_bio_prep(q, rq, bio);
  2158. rq->buffer = rq->data = NULL;
  2159. return 0;
  2160. }
  2161. EXPORT_SYMBOL(blk_rq_map_user_iov);
  2162. /**
  2163. * blk_rq_unmap_user - unmap a request with user data
  2164. * @bio: start of bio list
  2165. *
  2166. * Description:
  2167. * Unmap a rq previously mapped by blk_rq_map_user(). The caller must
  2168. * supply the original rq->bio from the blk_rq_map_user() return, since
  2169. * the io completion may have changed rq->bio.
  2170. */
  2171. int blk_rq_unmap_user(struct bio *bio)
  2172. {
  2173. struct bio *mapped_bio;
  2174. int ret = 0, ret2;
  2175. while (bio) {
  2176. mapped_bio = bio;
  2177. if (unlikely(bio_flagged(bio, BIO_BOUNCED)))
  2178. mapped_bio = bio->bi_private;
  2179. ret2 = __blk_rq_unmap_user(mapped_bio);
  2180. if (ret2 && !ret)
  2181. ret = ret2;
  2182. mapped_bio = bio;
  2183. bio = bio->bi_next;
  2184. bio_put(mapped_bio);
  2185. }
  2186. return ret;
  2187. }
  2188. EXPORT_SYMBOL(blk_rq_unmap_user);
  2189. /**
  2190. * blk_rq_map_kern - map kernel data to a request, for REQ_BLOCK_PC usage
  2191. * @q: request queue where request should be inserted
  2192. * @rq: request to fill
  2193. * @kbuf: the kernel buffer
  2194. * @len: length of user data
  2195. * @gfp_mask: memory allocation flags
  2196. */
  2197. int blk_rq_map_kern(struct request_queue *q, struct request *rq, void *kbuf,
  2198. unsigned int len, gfp_t gfp_mask)
  2199. {
  2200. struct bio *bio;
  2201. if (len > (q->max_hw_sectors << 9))
  2202. return -EINVAL;
  2203. if (!len || !kbuf)
  2204. return -EINVAL;
  2205. bio = bio_map_kern(q, kbuf, len, gfp_mask);
  2206. if (IS_ERR(bio))
  2207. return PTR_ERR(bio);
  2208. if (rq_data_dir(rq) == WRITE)
  2209. bio->bi_rw |= (1 << BIO_RW);
  2210. blk_rq_bio_prep(q, rq, bio);
  2211. blk_queue_bounce(q, &rq->bio);
  2212. rq->buffer = rq->data = NULL;
  2213. return 0;
  2214. }
  2215. EXPORT_SYMBOL(blk_rq_map_kern);
  2216. /**
  2217. * blk_execute_rq_nowait - insert a request into queue for execution
  2218. * @q: queue to insert the request in
  2219. * @bd_disk: matching gendisk
  2220. * @rq: request to insert
  2221. * @at_head: insert request at head or tail of queue
  2222. * @done: I/O completion handler
  2223. *
  2224. * Description:
  2225. * Insert a fully prepared request at the back of the io scheduler queue
  2226. * for execution. Don't wait for completion.
  2227. */
  2228. void blk_execute_rq_nowait(struct request_queue *q, struct gendisk *bd_disk,
  2229. struct request *rq, int at_head,
  2230. rq_end_io_fn *done)
  2231. {
  2232. int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
  2233. rq->rq_disk = bd_disk;
  2234. rq->cmd_flags |= REQ_NOMERGE;
  2235. rq->end_io = done;
  2236. WARN_ON(irqs_disabled());
  2237. spin_lock_irq(q->queue_lock);
  2238. __elv_add_request(q, rq, where, 1);
  2239. __generic_unplug_device(q);
  2240. spin_unlock_irq(q->queue_lock);
  2241. }
  2242. EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
  2243. /**
  2244. * blk_execute_rq - insert a request into queue for execution
  2245. * @q: queue to insert the request in
  2246. * @bd_disk: matching gendisk
  2247. * @rq: request to insert
  2248. * @at_head: insert request at head or tail of queue
  2249. *
  2250. * Description:
  2251. * Insert a fully prepared request at the back of the io scheduler queue
  2252. * for execution and wait for completion.
  2253. */
  2254. int blk_execute_rq(struct request_queue *q, struct gendisk *bd_disk,
  2255. struct request *rq, int at_head)
  2256. {
  2257. DECLARE_COMPLETION_ONSTACK(wait);
  2258. char sense[SCSI_SENSE_BUFFERSIZE];
  2259. int err = 0;
  2260. /*
  2261. * we need an extra reference to the request, so we can look at
  2262. * it after io completion
  2263. */
  2264. rq->ref_count++;
  2265. if (!rq->sense) {
  2266. memset(sense, 0, sizeof(sense));
  2267. rq->sense = sense;
  2268. rq->sense_len = 0;
  2269. }
  2270. rq->end_io_data = &wait;
  2271. blk_execute_rq_nowait(q, bd_disk, rq, at_head, blk_end_sync_rq);
  2272. wait_for_completion(&wait);
  2273. if (rq->errors)
  2274. err = -EIO;
  2275. return err;
  2276. }
  2277. EXPORT_SYMBOL(blk_execute_rq);
  2278. static void bio_end_empty_barrier(struct bio *bio, int err)
  2279. {
  2280. if (err)
  2281. clear_bit(BIO_UPTODATE, &bio->bi_flags);
  2282. complete(bio->bi_private);
  2283. }
  2284. /**
  2285. * blkdev_issue_flush - queue a flush
  2286. * @bdev: blockdev to issue flush for
  2287. * @error_sector: error sector
  2288. *
  2289. * Description:
  2290. * Issue a flush for the block device in question. Caller can supply
  2291. * room for storing the error offset in case of a flush error, if they
  2292. * wish to. Caller must run wait_for_completion() on its own.
  2293. */
  2294. int blkdev_issue_flush(struct block_device *bdev, sector_t *error_sector)
  2295. {
  2296. DECLARE_COMPLETION_ONSTACK(wait);
  2297. struct request_queue *q;
  2298. struct bio *bio;
  2299. int ret;
  2300. if (bdev->bd_disk == NULL)
  2301. return -ENXIO;
  2302. q = bdev_get_queue(bdev);
  2303. if (!q)
  2304. return -ENXIO;
  2305. bio = bio_alloc(GFP_KERNEL, 0);
  2306. if (!bio)
  2307. return -ENOMEM;
  2308. bio->bi_end_io = bio_end_empty_barrier;
  2309. bio->bi_private = &wait;
  2310. bio->bi_bdev = bdev;
  2311. submit_bio(1 << BIO_RW_BARRIER, bio);
  2312. wait_for_completion(&wait);
  2313. /*
  2314. * The driver must store the error location in ->bi_sector, if
  2315. * it supports it. For non-stacked drivers, this should be copied
  2316. * from rq->sector.
  2317. */
  2318. if (error_sector)
  2319. *error_sector = bio->bi_sector;
  2320. ret = 0;
  2321. if (!bio_flagged(bio, BIO_UPTODATE))
  2322. ret = -EIO;
  2323. bio_put(bio);
  2324. return ret;
  2325. }
  2326. EXPORT_SYMBOL(blkdev_issue_flush);
  2327. static void drive_stat_acct(struct request *rq, int new_io)
  2328. {
  2329. int rw = rq_data_dir(rq);
  2330. if (!blk_fs_request(rq) || !rq->rq_disk)
  2331. return;
  2332. if (!new_io) {
  2333. __disk_stat_inc(rq->rq_disk, merges[rw]);
  2334. } else {
  2335. disk_round_stats(rq->rq_disk);
  2336. rq->rq_disk->in_flight++;
  2337. }
  2338. }
  2339. /*
  2340. * add-request adds a request to the linked list.
  2341. * queue lock is held and interrupts disabled, as we muck with the
  2342. * request queue list.
  2343. */
  2344. static inline void add_request(struct request_queue * q, struct request * req)
  2345. {
  2346. drive_stat_acct(req, 1);
  2347. /*
  2348. * elevator indicated where it wants this request to be
  2349. * inserted at elevator_merge time
  2350. */
  2351. __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0);
  2352. }
  2353. /*
  2354. * disk_round_stats() - Round off the performance stats on a struct
  2355. * disk_stats.
  2356. *
  2357. * The average IO queue length and utilisation statistics are maintained
  2358. * by observing the current state of the queue length and the amount of
  2359. * time it has been in this state for.
  2360. *
  2361. * Normally, that accounting is done on IO completion, but that can result
  2362. * in more than a second's worth of IO being accounted for within any one
  2363. * second, leading to >100% utilisation. To deal with that, we call this
  2364. * function to do a round-off before returning the results when reading
  2365. * /proc/diskstats. This accounts immediately for all queue usage up to
  2366. * the current jiffies and restarts the counters again.
  2367. */
  2368. void disk_round_stats(struct gendisk *disk)
  2369. {
  2370. unsigned long now = jiffies;
  2371. if (now == disk->stamp)
  2372. return;
  2373. if (disk->in_flight) {
  2374. __disk_stat_add(disk, time_in_queue,
  2375. disk->in_flight * (now - disk->stamp));
  2376. __disk_stat_add(disk, io_ticks, (now - disk->stamp));
  2377. }
  2378. disk->stamp = now;
  2379. }
  2380. EXPORT_SYMBOL_GPL(disk_round_stats);
  2381. /*
  2382. * queue lock must be held
  2383. */
  2384. void __blk_put_request(struct request_queue *q, struct request *req)
  2385. {
  2386. if (unlikely(!q))
  2387. return;
  2388. if (unlikely(--req->ref_count))
  2389. return;
  2390. elv_completed_request(q, req);
  2391. /*
  2392. * Request may not have originated from ll_rw_blk. if not,
  2393. * it didn't come out of our reserved rq pools
  2394. */
  2395. if (req->cmd_flags & REQ_ALLOCED) {
  2396. int rw = rq_data_dir(req);
  2397. int priv = req->cmd_flags & REQ_ELVPRIV;
  2398. BUG_ON(!list_empty(&req->queuelist));
  2399. BUG_ON(!hlist_unhashed(&req->hash));
  2400. blk_free_request(q, req);
  2401. freed_request(q, rw, priv);
  2402. }
  2403. }
  2404. EXPORT_SYMBOL_GPL(__blk_put_request);
  2405. void blk_put_request(struct request *req)
  2406. {
  2407. unsigned long flags;
  2408. struct request_queue *q = req->q;
  2409. /*
  2410. * Gee, IDE calls in w/ NULL q. Fix IDE and remove the
  2411. * following if (q) test.
  2412. */
  2413. if (q) {
  2414. spin_lock_irqsave(q->queue_lock, flags);
  2415. __blk_put_request(q, req);
  2416. spin_unlock_irqrestore(q->queue_lock, flags);
  2417. }
  2418. }
  2419. EXPORT_SYMBOL(blk_put_request);
  2420. /**
  2421. * blk_end_sync_rq - executes a completion event on a request
  2422. * @rq: request to complete
  2423. * @error: end io status of the request
  2424. */
  2425. void blk_end_sync_rq(struct request *rq, int error)
  2426. {
  2427. struct completion *waiting = rq->end_io_data;
  2428. rq->end_io_data = NULL;
  2429. __blk_put_request(rq->q, rq);
  2430. /*
  2431. * complete last, if this is a stack request the process (and thus
  2432. * the rq pointer) could be invalid right after this complete()
  2433. */
  2434. complete(waiting);
  2435. }
  2436. EXPORT_SYMBOL(blk_end_sync_rq);
  2437. /*
  2438. * Has to be called with the request spinlock acquired
  2439. */
  2440. static int attempt_merge(struct request_queue *q, struct request *req,
  2441. struct request *next)
  2442. {
  2443. if (!rq_mergeable(req) || !rq_mergeable(next))
  2444. return 0;
  2445. /*
  2446. * not contiguous
  2447. */
  2448. if (req->sector + req->nr_sectors != next->sector)
  2449. return 0;
  2450. if (rq_data_dir(req) != rq_data_dir(next)
  2451. || req->rq_disk != next->rq_disk
  2452. || next->special)
  2453. return 0;
  2454. /*
  2455. * If we are allowed to merge, then append bio list
  2456. * from next to rq and release next. merge_requests_fn
  2457. * will have updated segment counts, update sector
  2458. * counts here.
  2459. */
  2460. if (!ll_merge_requests_fn(q, req, next))
  2461. return 0;
  2462. /*
  2463. * At this point we have either done a back merge
  2464. * or front merge. We need the smaller start_time of
  2465. * the merged requests to be the current request
  2466. * for accounting purposes.
  2467. */
  2468. if (time_after(req->start_time, next->start_time))
  2469. req->start_time = next->start_time;
  2470. req->biotail->bi_next = next->bio;
  2471. req->biotail = next->biotail;
  2472. req->nr_sectors = req->hard_nr_sectors += next->hard_nr_sectors;
  2473. elv_merge_requests(q, req, next);
  2474. if (req->rq_disk) {
  2475. disk_round_stats(req->rq_disk);
  2476. req->rq_disk->in_flight--;
  2477. }
  2478. req->ioprio = ioprio_best(req->ioprio, next->ioprio);
  2479. __blk_put_request(q, next);
  2480. return 1;
  2481. }
  2482. static inline int attempt_back_merge(struct request_queue *q,
  2483. struct request *rq)
  2484. {
  2485. struct request *next = elv_latter_request(q, rq);
  2486. if (next)
  2487. return attempt_merge(q, rq, next);
  2488. return 0;
  2489. }
  2490. static inline int attempt_front_merge(struct request_queue *q,
  2491. struct request *rq)
  2492. {
  2493. struct request *prev = elv_former_request(q, rq);
  2494. if (prev)
  2495. return attempt_merge(q, prev, rq);
  2496. return 0;
  2497. }
  2498. static void init_request_from_bio(struct request *req, struct bio *bio)
  2499. {
  2500. req->cmd_type = REQ_TYPE_FS;
  2501. /*
  2502. * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST)
  2503. */
  2504. if (bio_rw_ahead(bio) || bio_failfast(bio))
  2505. req->cmd_flags |= REQ_FAILFAST;
  2506. /*
  2507. * REQ_BARRIER implies no merging, but lets make it explicit
  2508. */
  2509. if (unlikely(bio_barrier(bio)))
  2510. req->cmd_flags |= (REQ_HARDBARRIER | REQ_NOMERGE);
  2511. if (bio_sync(bio))
  2512. req->cmd_flags |= REQ_RW_SYNC;
  2513. if (bio_rw_meta(bio))
  2514. req->cmd_flags |= REQ_RW_META;
  2515. req->errors = 0;
  2516. req->hard_sector = req->sector = bio->bi_sector;
  2517. req->ioprio = bio_prio(bio);
  2518. req->start_time = jiffies;
  2519. blk_rq_bio_prep(req->q, req, bio);
  2520. }
  2521. static int __make_request(struct request_queue *q, struct bio *bio)
  2522. {
  2523. struct request *req;
  2524. int el_ret, nr_sectors, barrier, err;
  2525. const unsigned short prio = bio_prio(bio);
  2526. const int sync = bio_sync(bio);
  2527. int rw_flags;
  2528. nr_sectors = bio_sectors(bio);
  2529. /*
  2530. * low level driver can indicate that it wants pages above a
  2531. * certain limit bounced to low memory (ie for highmem, or even
  2532. * ISA dma in theory)
  2533. */
  2534. blk_queue_bounce(q, &bio);
  2535. barrier = bio_barrier(bio);
  2536. if (unlikely(barrier) && (q->next_ordered == QUEUE_ORDERED_NONE)) {
  2537. err = -EOPNOTSUPP;
  2538. goto end_io;
  2539. }
  2540. spin_lock_irq(q->queue_lock);
  2541. if (unlikely(barrier) || elv_queue_empty(q))
  2542. goto get_rq;
  2543. el_ret = elv_merge(q, &req, bio);
  2544. switch (el_ret) {
  2545. case ELEVATOR_BACK_MERGE:
  2546. BUG_ON(!rq_mergeable(req));
  2547. if (!ll_back_merge_fn(q, req, bio))
  2548. break;
  2549. blk_add_trace_bio(q, bio, BLK_TA_BACKMERGE);
  2550. req->biotail->bi_next = bio;
  2551. req->biotail = bio;
  2552. req->nr_sectors = req->hard_nr_sectors += nr_sectors;
  2553. req->ioprio = ioprio_best(req->ioprio, prio);
  2554. drive_stat_acct(req, 0);
  2555. if (!attempt_back_merge(q, req))
  2556. elv_merged_request(q, req, el_ret);
  2557. goto out;
  2558. case ELEVATOR_FRONT_MERGE:
  2559. BUG_ON(!rq_mergeable(req));
  2560. if (!ll_front_merge_fn(q, req, bio))
  2561. break;
  2562. blk_add_trace_bio(q, bio, BLK_TA_FRONTMERGE);
  2563. bio->bi_next = req->bio;
  2564. req->bio = bio;
  2565. /*
  2566. * may not be valid. if the low level driver said
  2567. * it didn't need a bounce buffer then it better
  2568. * not touch req->buffer either...
  2569. */
  2570. req->buffer = bio_data(bio);
  2571. req->current_nr_sectors = bio_cur_sectors(bio);
  2572. req->hard_cur_sectors = req->current_nr_sectors;
  2573. req->sector = req->hard_sector = bio->bi_sector;
  2574. req->nr_sectors = req->hard_nr_sectors += nr_sectors;
  2575. req->ioprio = ioprio_best(req->ioprio, prio);
  2576. drive_stat_acct(req, 0);
  2577. if (!attempt_front_merge(q, req))
  2578. elv_merged_request(q, req, el_ret);
  2579. goto out;
  2580. /* ELV_NO_MERGE: elevator says don't/can't merge. */
  2581. default:
  2582. ;
  2583. }
  2584. get_rq:
  2585. /*
  2586. * This sync check and mask will be re-done in init_request_from_bio(),
  2587. * but we need to set it earlier to expose the sync flag to the
  2588. * rq allocator and io schedulers.
  2589. */
  2590. rw_flags = bio_data_dir(bio);
  2591. if (sync)
  2592. rw_flags |= REQ_RW_SYNC;
  2593. /*
  2594. * Grab a free request. This is might sleep but can not fail.
  2595. * Returns with the queue unlocked.
  2596. */
  2597. req = get_request_wait(q, rw_flags, bio);
  2598. /*
  2599. * After dropping the lock and possibly sleeping here, our request
  2600. * may now be mergeable after it had proven unmergeable (above).
  2601. * We don't worry about that case for efficiency. It won't happen
  2602. * often, and the elevators are able to handle it.
  2603. */
  2604. init_request_from_bio(req, bio);
  2605. spin_lock_irq(q->queue_lock);
  2606. if (elv_queue_empty(q))
  2607. blk_plug_device(q);
  2608. add_request(q, req);
  2609. out:
  2610. if (sync)
  2611. __generic_unplug_device(q);
  2612. spin_unlock_irq(q->queue_lock);
  2613. return 0;
  2614. end_io:
  2615. bio_endio(bio, err);
  2616. return 0;
  2617. }
  2618. /*
  2619. * If bio->bi_dev is a partition, remap the location
  2620. */
  2621. static inline void blk_partition_remap(struct bio *bio)
  2622. {
  2623. struct block_device *bdev = bio->bi_bdev;
  2624. if (bio_sectors(bio) && bdev != bdev->bd_contains) {
  2625. struct hd_struct *p = bdev->bd_part;
  2626. const int rw = bio_data_dir(bio);
  2627. p->sectors[rw] += bio_sectors(bio);
  2628. p->ios[rw]++;
  2629. bio->bi_sector += p->start_sect;
  2630. bio->bi_bdev = bdev->bd_contains;
  2631. blk_add_trace_remap(bdev_get_queue(bio->bi_bdev), bio,
  2632. bdev->bd_dev, bio->bi_sector,
  2633. bio->bi_sector - p->start_sect);
  2634. }
  2635. }
  2636. static void handle_bad_sector(struct bio *bio)
  2637. {
  2638. char b[BDEVNAME_SIZE];
  2639. printk(KERN_INFO "attempt to access beyond end of device\n");
  2640. printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
  2641. bdevname(bio->bi_bdev, b),
  2642. bio->bi_rw,
  2643. (unsigned long long)bio->bi_sector + bio_sectors(bio),
  2644. (long long)(bio->bi_bdev->bd_inode->i_size >> 9));
  2645. set_bit(BIO_EOF, &bio->bi_flags);
  2646. }
  2647. #ifdef CONFIG_FAIL_MAKE_REQUEST
  2648. static DECLARE_FAULT_ATTR(fail_make_request);
  2649. static int __init setup_fail_make_request(char *str)
  2650. {
  2651. return setup_fault_attr(&fail_make_request, str);
  2652. }
  2653. __setup("fail_make_request=", setup_fail_make_request);
  2654. static int should_fail_request(struct bio *bio)
  2655. {
  2656. if ((bio->bi_bdev->bd_disk->flags & GENHD_FL_FAIL) ||
  2657. (bio->bi_bdev->bd_part && bio->bi_bdev->bd_part->make_it_fail))
  2658. return should_fail(&fail_make_request, bio->bi_size);
  2659. return 0;
  2660. }
  2661. static int __init fail_make_request_debugfs(void)
  2662. {
  2663. return init_fault_attr_dentries(&fail_make_request,
  2664. "fail_make_request");
  2665. }
  2666. late_initcall(fail_make_request_debugfs);
  2667. #else /* CONFIG_FAIL_MAKE_REQUEST */
  2668. static inline int should_fail_request(struct bio *bio)
  2669. {
  2670. return 0;
  2671. }
  2672. #endif /* CONFIG_FAIL_MAKE_REQUEST */
  2673. /*
  2674. * Check whether this bio extends beyond the end of the device.
  2675. */
  2676. static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
  2677. {
  2678. sector_t maxsector;
  2679. if (!nr_sectors)
  2680. return 0;
  2681. /* Test device or partition size, when known. */
  2682. maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
  2683. if (maxsector) {
  2684. sector_t sector = bio->bi_sector;
  2685. if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
  2686. /*
  2687. * This may well happen - the kernel calls bread()
  2688. * without checking the size of the device, e.g., when
  2689. * mounting a device.
  2690. */
  2691. handle_bad_sector(bio);
  2692. return 1;
  2693. }
  2694. }
  2695. return 0;
  2696. }
  2697. /**
  2698. * generic_make_request: hand a buffer to its device driver for I/O
  2699. * @bio: The bio describing the location in memory and on the device.
  2700. *
  2701. * generic_make_request() is used to make I/O requests of block
  2702. * devices. It is passed a &struct bio, which describes the I/O that needs
  2703. * to be done.
  2704. *
  2705. * generic_make_request() does not return any status. The
  2706. * success/failure status of the request, along with notification of
  2707. * completion, is delivered asynchronously through the bio->bi_end_io
  2708. * function described (one day) else where.
  2709. *
  2710. * The caller of generic_make_request must make sure that bi_io_vec
  2711. * are set to describe the memory buffer, and that bi_dev and bi_sector are
  2712. * set to describe the device address, and the
  2713. * bi_end_io and optionally bi_private are set to describe how
  2714. * completion notification should be signaled.
  2715. *
  2716. * generic_make_request and the drivers it calls may use bi_next if this
  2717. * bio happens to be merged with someone else, and may change bi_dev and
  2718. * bi_sector for remaps as it sees fit. So the values of these fields
  2719. * should NOT be depended on after the call to generic_make_request.
  2720. */
  2721. static inline void __generic_make_request(struct bio *bio)
  2722. {
  2723. struct request_queue *q;
  2724. sector_t old_sector;
  2725. int ret, nr_sectors = bio_sectors(bio);
  2726. dev_t old_dev;
  2727. int err = -EIO;
  2728. might_sleep();
  2729. if (bio_check_eod(bio, nr_sectors))
  2730. goto end_io;
  2731. /*
  2732. * Resolve the mapping until finished. (drivers are
  2733. * still free to implement/resolve their own stacking
  2734. * by explicitly returning 0)
  2735. *
  2736. * NOTE: we don't repeat the blk_size check for each new device.
  2737. * Stacking drivers are expected to know what they are doing.
  2738. */
  2739. old_sector = -1;
  2740. old_dev = 0;
  2741. do {
  2742. char b[BDEVNAME_SIZE];
  2743. q = bdev_get_queue(bio->bi_bdev);
  2744. if (!q) {
  2745. printk(KERN_ERR
  2746. "generic_make_request: Trying to access "
  2747. "nonexistent block-device %s (%Lu)\n",
  2748. bdevname(bio->bi_bdev, b),
  2749. (long long) bio->bi_sector);
  2750. end_io:
  2751. bio_endio(bio, err);
  2752. break;
  2753. }
  2754. if (unlikely(nr_sectors > q->max_hw_sectors)) {
  2755. printk("bio too big device %s (%u > %u)\n",
  2756. bdevname(bio->bi_bdev, b),
  2757. bio_sectors(bio),
  2758. q->max_hw_sectors);
  2759. goto end_io;
  2760. }
  2761. if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
  2762. goto end_io;
  2763. if (should_fail_request(bio))
  2764. goto end_io;
  2765. /*
  2766. * If this device has partitions, remap block n
  2767. * of partition p to block n+start(p) of the disk.
  2768. */
  2769. blk_partition_remap(bio);
  2770. if (old_sector != -1)
  2771. blk_add_trace_remap(q, bio, old_dev, bio->bi_sector,
  2772. old_sector);
  2773. blk_add_trace_bio(q, bio, BLK_TA_QUEUE);
  2774. old_sector = bio->bi_sector;
  2775. old_dev = bio->bi_bdev->bd_dev;
  2776. if (bio_check_eod(bio, nr_sectors))
  2777. goto end_io;
  2778. if (bio_empty_barrier(bio) && !q->prepare_flush_fn) {
  2779. err = -EOPNOTSUPP;
  2780. goto end_io;
  2781. }
  2782. ret = q->make_request_fn(q, bio);
  2783. } while (ret);
  2784. }
  2785. /*
  2786. * We only want one ->make_request_fn to be active at a time,
  2787. * else stack usage with stacked devices could be a problem.
  2788. * So use current->bio_{list,tail} to keep a list of requests
  2789. * submited by a make_request_fn function.
  2790. * current->bio_tail is also used as a flag to say if
  2791. * generic_make_request is currently active in this task or not.
  2792. * If it is NULL, then no make_request is active. If it is non-NULL,
  2793. * then a make_request is active, and new requests should be added
  2794. * at the tail
  2795. */
  2796. void generic_make_request(struct bio *bio)
  2797. {
  2798. if (current->bio_tail) {
  2799. /* make_request is active */
  2800. *(current->bio_tail) = bio;
  2801. bio->bi_next = NULL;
  2802. current->bio_tail = &bio->bi_next;
  2803. return;
  2804. }
  2805. /* following loop may be a bit non-obvious, and so deserves some
  2806. * explanation.
  2807. * Before entering the loop, bio->bi_next is NULL (as all callers
  2808. * ensure that) so we have a list with a single bio.
  2809. * We pretend that we have just taken it off a longer list, so
  2810. * we assign bio_list to the next (which is NULL) and bio_tail
  2811. * to &bio_list, thus initialising the bio_list of new bios to be
  2812. * added. __generic_make_request may indeed add some more bios
  2813. * through a recursive call to generic_make_request. If it
  2814. * did, we find a non-NULL value in bio_list and re-enter the loop
  2815. * from the top. In this case we really did just take the bio
  2816. * of the top of the list (no pretending) and so fixup bio_list and
  2817. * bio_tail or bi_next, and call into __generic_make_request again.
  2818. *
  2819. * The loop was structured like this to make only one call to
  2820. * __generic_make_request (which is important as it is large and
  2821. * inlined) and to keep the structure simple.
  2822. */
  2823. BUG_ON(bio->bi_next);
  2824. do {
  2825. current->bio_list = bio->bi_next;
  2826. if (bio->bi_next == NULL)
  2827. current->bio_tail = &current->bio_list;
  2828. else
  2829. bio->bi_next = NULL;
  2830. __generic_make_request(bio);
  2831. bio = current->bio_list;
  2832. } while (bio);
  2833. current->bio_tail = NULL; /* deactivate */
  2834. }
  2835. EXPORT_SYMBOL(generic_make_request);
  2836. /**
  2837. * submit_bio: submit a bio to the block device layer for I/O
  2838. * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
  2839. * @bio: The &struct bio which describes the I/O
  2840. *
  2841. * submit_bio() is very similar in purpose to generic_make_request(), and
  2842. * uses that function to do most of the work. Both are fairly rough
  2843. * interfaces, @bio must be presetup and ready for I/O.
  2844. *
  2845. */
  2846. void submit_bio(int rw, struct bio *bio)
  2847. {
  2848. int count = bio_sectors(bio);
  2849. bio->bi_rw |= rw;
  2850. /*
  2851. * If it's a regular read/write or a barrier with data attached,
  2852. * go through the normal accounting stuff before submission.
  2853. */
  2854. if (!bio_empty_barrier(bio)) {
  2855. BIO_BUG_ON(!bio->bi_size);
  2856. BIO_BUG_ON(!bio->bi_io_vec);
  2857. if (rw & WRITE) {
  2858. count_vm_events(PGPGOUT, count);
  2859. } else {
  2860. task_io_account_read(bio->bi_size);
  2861. count_vm_events(PGPGIN, count);
  2862. }
  2863. if (unlikely(block_dump)) {
  2864. char b[BDEVNAME_SIZE];
  2865. printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n",
  2866. current->comm, task_pid_nr(current),
  2867. (rw & WRITE) ? "WRITE" : "READ",
  2868. (unsigned long long)bio->bi_sector,
  2869. bdevname(bio->bi_bdev,b));
  2870. }
  2871. }
  2872. generic_make_request(bio);
  2873. }
  2874. EXPORT_SYMBOL(submit_bio);
  2875. static void blk_recalc_rq_sectors(struct request *rq, int nsect)
  2876. {
  2877. if (blk_fs_request(rq)) {
  2878. rq->hard_sector += nsect;
  2879. rq->hard_nr_sectors -= nsect;
  2880. /*
  2881. * Move the I/O submission pointers ahead if required.
  2882. */
  2883. if ((rq->nr_sectors >= rq->hard_nr_sectors) &&
  2884. (rq->sector <= rq->hard_sector)) {
  2885. rq->sector = rq->hard_sector;
  2886. rq->nr_sectors = rq->hard_nr_sectors;
  2887. rq->hard_cur_sectors = bio_cur_sectors(rq->bio);
  2888. rq->current_nr_sectors = rq->hard_cur_sectors;
  2889. rq->buffer = bio_data(rq->bio);
  2890. }
  2891. /*
  2892. * if total number of sectors is less than the first segment
  2893. * size, something has gone terribly wrong
  2894. */
  2895. if (rq->nr_sectors < rq->current_nr_sectors) {
  2896. printk("blk: request botched\n");
  2897. rq->nr_sectors = rq->current_nr_sectors;
  2898. }
  2899. }
  2900. }
  2901. static int __end_that_request_first(struct request *req, int uptodate,
  2902. int nr_bytes)
  2903. {
  2904. int total_bytes, bio_nbytes, error, next_idx = 0;
  2905. struct bio *bio;
  2906. blk_add_trace_rq(req->q, req, BLK_TA_COMPLETE);
  2907. /*
  2908. * extend uptodate bool to allow < 0 value to be direct io error
  2909. */
  2910. error = 0;
  2911. if (end_io_error(uptodate))
  2912. error = !uptodate ? -EIO : uptodate;
  2913. /*
  2914. * for a REQ_BLOCK_PC request, we want to carry any eventual
  2915. * sense key with us all the way through
  2916. */
  2917. if (!blk_pc_request(req))
  2918. req->errors = 0;
  2919. if (!uptodate) {
  2920. if (blk_fs_request(req) && !(req->cmd_flags & REQ_QUIET))
  2921. printk("end_request: I/O error, dev %s, sector %llu\n",
  2922. req->rq_disk ? req->rq_disk->disk_name : "?",
  2923. (unsigned long long)req->sector);
  2924. }
  2925. if (blk_fs_request(req) && req->rq_disk) {
  2926. const int rw = rq_data_dir(req);
  2927. disk_stat_add(req->rq_disk, sectors[rw], nr_bytes >> 9);
  2928. }
  2929. total_bytes = bio_nbytes = 0;
  2930. while ((bio = req->bio) != NULL) {
  2931. int nbytes;
  2932. /*
  2933. * For an empty barrier request, the low level driver must
  2934. * store a potential error location in ->sector. We pass
  2935. * that back up in ->bi_sector.
  2936. */
  2937. if (blk_empty_barrier(req))
  2938. bio->bi_sector = req->sector;
  2939. if (nr_bytes >= bio->bi_size) {
  2940. req->bio = bio->bi_next;
  2941. nbytes = bio->bi_size;
  2942. req_bio_endio(req, bio, nbytes, error);
  2943. next_idx = 0;
  2944. bio_nbytes = 0;
  2945. } else {
  2946. int idx = bio->bi_idx + next_idx;
  2947. if (unlikely(bio->bi_idx >= bio->bi_vcnt)) {
  2948. blk_dump_rq_flags(req, "__end_that");
  2949. printk("%s: bio idx %d >= vcnt %d\n",
  2950. __FUNCTION__,
  2951. bio->bi_idx, bio->bi_vcnt);
  2952. break;
  2953. }
  2954. nbytes = bio_iovec_idx(bio, idx)->bv_len;
  2955. BIO_BUG_ON(nbytes > bio->bi_size);
  2956. /*
  2957. * not a complete bvec done
  2958. */
  2959. if (unlikely(nbytes > nr_bytes)) {
  2960. bio_nbytes += nr_bytes;
  2961. total_bytes += nr_bytes;
  2962. break;
  2963. }
  2964. /*
  2965. * advance to the next vector
  2966. */
  2967. next_idx++;
  2968. bio_nbytes += nbytes;
  2969. }
  2970. total_bytes += nbytes;
  2971. nr_bytes -= nbytes;
  2972. if ((bio = req->bio)) {
  2973. /*
  2974. * end more in this run, or just return 'not-done'
  2975. */
  2976. if (unlikely(nr_bytes <= 0))
  2977. break;
  2978. }
  2979. }
  2980. /*
  2981. * completely done
  2982. */
  2983. if (!req->bio)
  2984. return 0;
  2985. /*
  2986. * if the request wasn't completed, update state
  2987. */
  2988. if (bio_nbytes) {
  2989. req_bio_endio(req, bio, bio_nbytes, error);
  2990. bio->bi_idx += next_idx;
  2991. bio_iovec(bio)->bv_offset += nr_bytes;
  2992. bio_iovec(bio)->bv_len -= nr_bytes;
  2993. }
  2994. blk_recalc_rq_sectors(req, total_bytes >> 9);
  2995. blk_recalc_rq_segments(req);
  2996. return 1;
  2997. }
  2998. /**
  2999. * end_that_request_first - end I/O on a request
  3000. * @req: the request being processed
  3001. * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
  3002. * @nr_sectors: number of sectors to end I/O on
  3003. *
  3004. * Description:
  3005. * Ends I/O on a number of sectors attached to @req, and sets it up
  3006. * for the next range of segments (if any) in the cluster.
  3007. *
  3008. * Return:
  3009. * 0 - we are done with this request, call end_that_request_last()
  3010. * 1 - still buffers pending for this request
  3011. **/
  3012. int end_that_request_first(struct request *req, int uptodate, int nr_sectors)
  3013. {
  3014. return __end_that_request_first(req, uptodate, nr_sectors << 9);
  3015. }
  3016. EXPORT_SYMBOL(end_that_request_first);
  3017. /**
  3018. * end_that_request_chunk - end I/O on a request
  3019. * @req: the request being processed
  3020. * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
  3021. * @nr_bytes: number of bytes to complete
  3022. *
  3023. * Description:
  3024. * Ends I/O on a number of bytes attached to @req, and sets it up
  3025. * for the next range of segments (if any). Like end_that_request_first(),
  3026. * but deals with bytes instead of sectors.
  3027. *
  3028. * Return:
  3029. * 0 - we are done with this request, call end_that_request_last()
  3030. * 1 - still buffers pending for this request
  3031. **/
  3032. int end_that_request_chunk(struct request *req, int uptodate, int nr_bytes)
  3033. {
  3034. return __end_that_request_first(req, uptodate, nr_bytes);
  3035. }
  3036. EXPORT_SYMBOL(end_that_request_chunk);
  3037. /*
  3038. * splice the completion data to a local structure and hand off to
  3039. * process_completion_queue() to complete the requests
  3040. */
  3041. static void blk_done_softirq(struct softirq_action *h)
  3042. {
  3043. struct list_head *cpu_list, local_list;
  3044. local_irq_disable();
  3045. cpu_list = &__get_cpu_var(blk_cpu_done);
  3046. list_replace_init(cpu_list, &local_list);
  3047. local_irq_enable();
  3048. while (!list_empty(&local_list)) {
  3049. struct request *rq = list_entry(local_list.next, struct request, donelist);
  3050. list_del_init(&rq->donelist);
  3051. rq->q->softirq_done_fn(rq);
  3052. }
  3053. }
  3054. static int __cpuinit blk_cpu_notify(struct notifier_block *self, unsigned long action,
  3055. void *hcpu)
  3056. {
  3057. /*
  3058. * If a CPU goes away, splice its entries to the current CPU
  3059. * and trigger a run of the softirq
  3060. */
  3061. if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
  3062. int cpu = (unsigned long) hcpu;
  3063. local_irq_disable();
  3064. list_splice_init(&per_cpu(blk_cpu_done, cpu),
  3065. &__get_cpu_var(blk_cpu_done));
  3066. raise_softirq_irqoff(BLOCK_SOFTIRQ);
  3067. local_irq_enable();
  3068. }
  3069. return NOTIFY_OK;
  3070. }
  3071. static struct notifier_block blk_cpu_notifier __cpuinitdata = {
  3072. .notifier_call = blk_cpu_notify,
  3073. };
  3074. /**
  3075. * blk_complete_request - end I/O on a request
  3076. * @req: the request being processed
  3077. *
  3078. * Description:
  3079. * Ends all I/O on a request. It does not handle partial completions,
  3080. * unless the driver actually implements this in its completion callback
  3081. * through requeueing. The actual completion happens out-of-order,
  3082. * through a softirq handler. The user must have registered a completion
  3083. * callback through blk_queue_softirq_done().
  3084. **/
  3085. void blk_complete_request(struct request *req)
  3086. {
  3087. struct list_head *cpu_list;
  3088. unsigned long flags;
  3089. BUG_ON(!req->q->softirq_done_fn);
  3090. local_irq_save(flags);
  3091. cpu_list = &__get_cpu_var(blk_cpu_done);
  3092. list_add_tail(&req->donelist, cpu_list);
  3093. raise_softirq_irqoff(BLOCK_SOFTIRQ);
  3094. local_irq_restore(flags);
  3095. }
  3096. EXPORT_SYMBOL(blk_complete_request);
  3097. /*
  3098. * queue lock must be held
  3099. */
  3100. void end_that_request_last(struct request *req, int uptodate)
  3101. {
  3102. struct gendisk *disk = req->rq_disk;
  3103. int error;
  3104. /*
  3105. * extend uptodate bool to allow < 0 value to be direct io error
  3106. */
  3107. error = 0;
  3108. if (end_io_error(uptodate))
  3109. error = !uptodate ? -EIO : uptodate;
  3110. if (unlikely(laptop_mode) && blk_fs_request(req))
  3111. laptop_io_completion();
  3112. /*
  3113. * Account IO completion. bar_rq isn't accounted as a normal
  3114. * IO on queueing nor completion. Accounting the containing
  3115. * request is enough.
  3116. */
  3117. if (disk && blk_fs_request(req) && req != &req->q->bar_rq) {
  3118. unsigned long duration = jiffies - req->start_time;
  3119. const int rw = rq_data_dir(req);
  3120. __disk_stat_inc(disk, ios[rw]);
  3121. __disk_stat_add(disk, ticks[rw], duration);
  3122. disk_round_stats(disk);
  3123. disk->in_flight--;
  3124. }
  3125. if (req->end_io)
  3126. req->end_io(req, error);
  3127. else
  3128. __blk_put_request(req->q, req);
  3129. }
  3130. EXPORT_SYMBOL(end_that_request_last);
  3131. static inline void __end_request(struct request *rq, int uptodate,
  3132. unsigned int nr_bytes, int dequeue)
  3133. {
  3134. if (!end_that_request_chunk(rq, uptodate, nr_bytes)) {
  3135. if (dequeue)
  3136. blkdev_dequeue_request(rq);
  3137. add_disk_randomness(rq->rq_disk);
  3138. end_that_request_last(rq, uptodate);
  3139. }
  3140. }
  3141. static unsigned int rq_byte_size(struct request *rq)
  3142. {
  3143. if (blk_fs_request(rq))
  3144. return rq->hard_nr_sectors << 9;
  3145. return rq->data_len;
  3146. }
  3147. /**
  3148. * end_queued_request - end all I/O on a queued request
  3149. * @rq: the request being processed
  3150. * @uptodate: error value or 0/1 uptodate flag
  3151. *
  3152. * Description:
  3153. * Ends all I/O on a request, and removes it from the block layer queues.
  3154. * Not suitable for normal IO completion, unless the driver still has
  3155. * the request attached to the block layer.
  3156. *
  3157. **/
  3158. void end_queued_request(struct request *rq, int uptodate)
  3159. {
  3160. __end_request(rq, uptodate, rq_byte_size(rq), 1);
  3161. }
  3162. EXPORT_SYMBOL(end_queued_request);
  3163. /**
  3164. * end_dequeued_request - end all I/O on a dequeued request
  3165. * @rq: the request being processed
  3166. * @uptodate: error value or 0/1 uptodate flag
  3167. *
  3168. * Description:
  3169. * Ends all I/O on a request. The request must already have been
  3170. * dequeued using blkdev_dequeue_request(), as is normally the case
  3171. * for most drivers.
  3172. *
  3173. **/
  3174. void end_dequeued_request(struct request *rq, int uptodate)
  3175. {
  3176. __end_request(rq, uptodate, rq_byte_size(rq), 0);
  3177. }
  3178. EXPORT_SYMBOL(end_dequeued_request);
  3179. /**
  3180. * end_request - end I/O on the current segment of the request
  3181. * @req: the request being processed
  3182. * @uptodate: error value or 0/1 uptodate flag
  3183. *
  3184. * Description:
  3185. * Ends I/O on the current segment of a request. If that is the only
  3186. * remaining segment, the request is also completed and freed.
  3187. *
  3188. * This is a remnant of how older block drivers handled IO completions.
  3189. * Modern drivers typically end IO on the full request in one go, unless
  3190. * they have a residual value to account for. For that case this function
  3191. * isn't really useful, unless the residual just happens to be the
  3192. * full current segment. In other words, don't use this function in new
  3193. * code. Either use end_request_completely(), or the
  3194. * end_that_request_chunk() (along with end_that_request_last()) for
  3195. * partial completions.
  3196. *
  3197. **/
  3198. void end_request(struct request *req, int uptodate)
  3199. {
  3200. __end_request(req, uptodate, req->hard_cur_sectors << 9, 1);
  3201. }
  3202. EXPORT_SYMBOL(end_request);
  3203. static void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
  3204. struct bio *bio)
  3205. {
  3206. /* first two bits are identical in rq->cmd_flags and bio->bi_rw */
  3207. rq->cmd_flags |= (bio->bi_rw & 3);
  3208. rq->nr_phys_segments = bio_phys_segments(q, bio);
  3209. rq->nr_hw_segments = bio_hw_segments(q, bio);
  3210. rq->current_nr_sectors = bio_cur_sectors(bio);
  3211. rq->hard_cur_sectors = rq->current_nr_sectors;
  3212. rq->hard_nr_sectors = rq->nr_sectors = bio_sectors(bio);
  3213. rq->buffer = bio_data(bio);
  3214. rq->data_len = bio->bi_size;
  3215. rq->bio = rq->biotail = bio;
  3216. if (bio->bi_bdev)
  3217. rq->rq_disk = bio->bi_bdev->bd_disk;
  3218. }
  3219. int kblockd_schedule_work(struct work_struct *work)
  3220. {
  3221. return queue_work(kblockd_workqueue, work);
  3222. }
  3223. EXPORT_SYMBOL(kblockd_schedule_work);
  3224. void kblockd_flush_work(struct work_struct *work)
  3225. {
  3226. cancel_work_sync(work);
  3227. }
  3228. EXPORT_SYMBOL(kblockd_flush_work);
  3229. int __init blk_dev_init(void)
  3230. {
  3231. int i;
  3232. kblockd_workqueue = create_workqueue("kblockd");
  3233. if (!kblockd_workqueue)
  3234. panic("Failed to create kblockd\n");
  3235. request_cachep = kmem_cache_create("blkdev_requests",
  3236. sizeof(struct request), 0, SLAB_PANIC, NULL);
  3237. requestq_cachep = kmem_cache_create("blkdev_queue",
  3238. sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
  3239. iocontext_cachep = kmem_cache_create("blkdev_ioc",
  3240. sizeof(struct io_context), 0, SLAB_PANIC, NULL);
  3241. for_each_possible_cpu(i)
  3242. INIT_LIST_HEAD(&per_cpu(blk_cpu_done, i));
  3243. open_softirq(BLOCK_SOFTIRQ, blk_done_softirq, NULL);
  3244. register_hotcpu_notifier(&blk_cpu_notifier);
  3245. blk_max_low_pfn = max_low_pfn - 1;
  3246. blk_max_pfn = max_pfn - 1;
  3247. return 0;
  3248. }
  3249. /*
  3250. * IO Context helper functions
  3251. */
  3252. void put_io_context(struct io_context *ioc)
  3253. {
  3254. if (ioc == NULL)
  3255. return;
  3256. BUG_ON(atomic_read(&ioc->refcount) == 0);
  3257. if (atomic_dec_and_test(&ioc->refcount)) {
  3258. struct cfq_io_context *cic;
  3259. rcu_read_lock();
  3260. if (ioc->aic && ioc->aic->dtor)
  3261. ioc->aic->dtor(ioc->aic);
  3262. if (ioc->cic_root.rb_node != NULL) {
  3263. struct rb_node *n = rb_first(&ioc->cic_root);
  3264. cic = rb_entry(n, struct cfq_io_context, rb_node);
  3265. cic->dtor(ioc);
  3266. }
  3267. rcu_read_unlock();
  3268. kmem_cache_free(iocontext_cachep, ioc);
  3269. }
  3270. }
  3271. EXPORT_SYMBOL(put_io_context);
  3272. /* Called by the exitting task */
  3273. void exit_io_context(void)
  3274. {
  3275. struct io_context *ioc;
  3276. struct cfq_io_context *cic;
  3277. task_lock(current);
  3278. ioc = current->io_context;
  3279. current->io_context = NULL;
  3280. task_unlock(current);
  3281. ioc->task = NULL;
  3282. if (ioc->aic && ioc->aic->exit)
  3283. ioc->aic->exit(ioc->aic);
  3284. if (ioc->cic_root.rb_node != NULL) {
  3285. cic = rb_entry(rb_first(&ioc->cic_root), struct cfq_io_context, rb_node);
  3286. cic->exit(ioc);
  3287. }
  3288. put_io_context(ioc);
  3289. }
  3290. /*
  3291. * If the current task has no IO context then create one and initialise it.
  3292. * Otherwise, return its existing IO context.
  3293. *
  3294. * This returned IO context doesn't have a specifically elevated refcount,
  3295. * but since the current task itself holds a reference, the context can be
  3296. * used in general code, so long as it stays within `current` context.
  3297. */
  3298. static struct io_context *current_io_context(gfp_t gfp_flags, int node)
  3299. {
  3300. struct task_struct *tsk = current;
  3301. struct io_context *ret;
  3302. ret = tsk->io_context;
  3303. if (likely(ret))
  3304. return ret;
  3305. ret = kmem_cache_alloc_node(iocontext_cachep, gfp_flags, node);
  3306. if (ret) {
  3307. atomic_set(&ret->refcount, 1);
  3308. ret->task = current;
  3309. ret->ioprio_changed = 0;
  3310. ret->last_waited = jiffies; /* doesn't matter... */
  3311. ret->nr_batch_requests = 0; /* because this is 0 */
  3312. ret->aic = NULL;
  3313. ret->cic_root.rb_node = NULL;
  3314. ret->ioc_data = NULL;
  3315. /* make sure set_task_ioprio() sees the settings above */
  3316. smp_wmb();
  3317. tsk->io_context = ret;
  3318. }
  3319. return ret;
  3320. }
  3321. /*
  3322. * If the current task has no IO context then create one and initialise it.
  3323. * If it does have a context, take a ref on it.
  3324. *
  3325. * This is always called in the context of the task which submitted the I/O.
  3326. */
  3327. struct io_context *get_io_context(gfp_t gfp_flags, int node)
  3328. {
  3329. struct io_context *ret;
  3330. ret = current_io_context(gfp_flags, node);
  3331. if (likely(ret))
  3332. atomic_inc(&ret->refcount);
  3333. return ret;
  3334. }
  3335. EXPORT_SYMBOL(get_io_context);
  3336. void copy_io_context(struct io_context **pdst, struct io_context **psrc)
  3337. {
  3338. struct io_context *src = *psrc;
  3339. struct io_context *dst = *pdst;
  3340. if (src) {
  3341. BUG_ON(atomic_read(&src->refcount) == 0);
  3342. atomic_inc(&src->refcount);
  3343. put_io_context(dst);
  3344. *pdst = src;
  3345. }
  3346. }
  3347. EXPORT_SYMBOL(copy_io_context);
  3348. void swap_io_context(struct io_context **ioc1, struct io_context **ioc2)
  3349. {
  3350. struct io_context *temp;
  3351. temp = *ioc1;
  3352. *ioc1 = *ioc2;
  3353. *ioc2 = temp;
  3354. }
  3355. EXPORT_SYMBOL(swap_io_context);
  3356. /*
  3357. * sysfs parts below
  3358. */
  3359. struct queue_sysfs_entry {
  3360. struct attribute attr;
  3361. ssize_t (*show)(struct request_queue *, char *);
  3362. ssize_t (*store)(struct request_queue *, const char *, size_t);
  3363. };
  3364. static ssize_t
  3365. queue_var_show(unsigned int var, char *page)
  3366. {
  3367. return sprintf(page, "%d\n", var);
  3368. }
  3369. static ssize_t
  3370. queue_var_store(unsigned long *var, const char *page, size_t count)
  3371. {
  3372. char *p = (char *) page;
  3373. *var = simple_strtoul(p, &p, 10);
  3374. return count;
  3375. }
  3376. static ssize_t queue_requests_show(struct request_queue *q, char *page)
  3377. {
  3378. return queue_var_show(q->nr_requests, (page));
  3379. }
  3380. static ssize_t
  3381. queue_requests_store(struct request_queue *q, const char *page, size_t count)
  3382. {
  3383. struct request_list *rl = &q->rq;
  3384. unsigned long nr;
  3385. int ret = queue_var_store(&nr, page, count);
  3386. if (nr < BLKDEV_MIN_RQ)
  3387. nr = BLKDEV_MIN_RQ;
  3388. spin_lock_irq(q->queue_lock);
  3389. q->nr_requests = nr;
  3390. blk_queue_congestion_threshold(q);
  3391. if (rl->count[READ] >= queue_congestion_on_threshold(q))
  3392. blk_set_queue_congested(q, READ);
  3393. else if (rl->count[READ] < queue_congestion_off_threshold(q))
  3394. blk_clear_queue_congested(q, READ);
  3395. if (rl->count[WRITE] >= queue_congestion_on_threshold(q))
  3396. blk_set_queue_congested(q, WRITE);
  3397. else if (rl->count[WRITE] < queue_congestion_off_threshold(q))
  3398. blk_clear_queue_congested(q, WRITE);
  3399. if (rl->count[READ] >= q->nr_requests) {
  3400. blk_set_queue_full(q, READ);
  3401. } else if (rl->count[READ]+1 <= q->nr_requests) {
  3402. blk_clear_queue_full(q, READ);
  3403. wake_up(&rl->wait[READ]);
  3404. }
  3405. if (rl->count[WRITE] >= q->nr_requests) {
  3406. blk_set_queue_full(q, WRITE);
  3407. } else if (rl->count[WRITE]+1 <= q->nr_requests) {
  3408. blk_clear_queue_full(q, WRITE);
  3409. wake_up(&rl->wait[WRITE]);
  3410. }
  3411. spin_unlock_irq(q->queue_lock);
  3412. return ret;
  3413. }
  3414. static ssize_t queue_ra_show(struct request_queue *q, char *page)
  3415. {
  3416. int ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10);
  3417. return queue_var_show(ra_kb, (page));
  3418. }
  3419. static ssize_t
  3420. queue_ra_store(struct request_queue *q, const char *page, size_t count)
  3421. {
  3422. unsigned long ra_kb;
  3423. ssize_t ret = queue_var_store(&ra_kb, page, count);
  3424. spin_lock_irq(q->queue_lock);
  3425. q->backing_dev_info.ra_pages = ra_kb >> (PAGE_CACHE_SHIFT - 10);
  3426. spin_unlock_irq(q->queue_lock);
  3427. return ret;
  3428. }
  3429. static ssize_t queue_max_sectors_show(struct request_queue *q, char *page)
  3430. {
  3431. int max_sectors_kb = q->max_sectors >> 1;
  3432. return queue_var_show(max_sectors_kb, (page));
  3433. }
  3434. static ssize_t
  3435. queue_max_sectors_store(struct request_queue *q, const char *page, size_t count)
  3436. {
  3437. unsigned long max_sectors_kb,
  3438. max_hw_sectors_kb = q->max_hw_sectors >> 1,
  3439. page_kb = 1 << (PAGE_CACHE_SHIFT - 10);
  3440. ssize_t ret = queue_var_store(&max_sectors_kb, page, count);
  3441. if (max_sectors_kb > max_hw_sectors_kb || max_sectors_kb < page_kb)
  3442. return -EINVAL;
  3443. /*
  3444. * Take the queue lock to update the readahead and max_sectors
  3445. * values synchronously:
  3446. */
  3447. spin_lock_irq(q->queue_lock);
  3448. q->max_sectors = max_sectors_kb << 1;
  3449. spin_unlock_irq(q->queue_lock);
  3450. return ret;
  3451. }
  3452. static ssize_t queue_max_hw_sectors_show(struct request_queue *q, char *page)
  3453. {
  3454. int max_hw_sectors_kb = q->max_hw_sectors >> 1;
  3455. return queue_var_show(max_hw_sectors_kb, (page));
  3456. }
  3457. static ssize_t queue_max_segments_show(struct request_queue *q, char *page)
  3458. {
  3459. return queue_var_show(q->max_phys_segments, page);
  3460. }
  3461. static ssize_t queue_max_segments_store(struct request_queue *q,
  3462. const char *page, size_t count)
  3463. {
  3464. unsigned long segments;
  3465. ssize_t ret = queue_var_store(&segments, page, count);
  3466. spin_lock_irq(q->queue_lock);
  3467. q->max_phys_segments = segments;
  3468. spin_unlock_irq(q->queue_lock);
  3469. return ret;
  3470. }
  3471. static struct queue_sysfs_entry queue_requests_entry = {
  3472. .attr = {.name = "nr_requests", .mode = S_IRUGO | S_IWUSR },
  3473. .show = queue_requests_show,
  3474. .store = queue_requests_store,
  3475. };
  3476. static struct queue_sysfs_entry queue_ra_entry = {
  3477. .attr = {.name = "read_ahead_kb", .mode = S_IRUGO | S_IWUSR },
  3478. .show = queue_ra_show,
  3479. .store = queue_ra_store,
  3480. };
  3481. static struct queue_sysfs_entry queue_max_sectors_entry = {
  3482. .attr = {.name = "max_sectors_kb", .mode = S_IRUGO | S_IWUSR },
  3483. .show = queue_max_sectors_show,
  3484. .store = queue_max_sectors_store,
  3485. };
  3486. static struct queue_sysfs_entry queue_max_hw_sectors_entry = {
  3487. .attr = {.name = "max_hw_sectors_kb", .mode = S_IRUGO },
  3488. .show = queue_max_hw_sectors_show,
  3489. };
  3490. static struct queue_sysfs_entry queue_max_segments_entry = {
  3491. .attr = {.name = "max_segments", .mode = S_IRUGO | S_IWUSR },
  3492. .show = queue_max_segments_show,
  3493. .store = queue_max_segments_store,
  3494. };
  3495. static struct queue_sysfs_entry queue_iosched_entry = {
  3496. .attr = {.name = "scheduler", .mode = S_IRUGO | S_IWUSR },
  3497. .show = elv_iosched_show,
  3498. .store = elv_iosched_store,
  3499. };
  3500. static struct attribute *default_attrs[] = {
  3501. &queue_requests_entry.attr,
  3502. &queue_ra_entry.attr,
  3503. &queue_max_hw_sectors_entry.attr,
  3504. &queue_max_sectors_entry.attr,
  3505. &queue_max_segments_entry.attr,
  3506. &queue_iosched_entry.attr,
  3507. NULL,
  3508. };
  3509. #define to_queue(atr) container_of((atr), struct queue_sysfs_entry, attr)
  3510. static ssize_t
  3511. queue_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
  3512. {
  3513. struct queue_sysfs_entry *entry = to_queue(attr);
  3514. struct request_queue *q =
  3515. container_of(kobj, struct request_queue, kobj);
  3516. ssize_t res;
  3517. if (!entry->show)
  3518. return -EIO;
  3519. mutex_lock(&q->sysfs_lock);
  3520. if (test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)) {
  3521. mutex_unlock(&q->sysfs_lock);
  3522. return -ENOENT;
  3523. }
  3524. res = entry->show(q, page);
  3525. mutex_unlock(&q->sysfs_lock);
  3526. return res;
  3527. }
  3528. static ssize_t
  3529. queue_attr_store(struct kobject *kobj, struct attribute *attr,
  3530. const char *page, size_t length)
  3531. {
  3532. struct queue_sysfs_entry *entry = to_queue(attr);
  3533. struct request_queue *q = container_of(kobj, struct request_queue, kobj);
  3534. ssize_t res;
  3535. if (!entry->store)
  3536. return -EIO;
  3537. mutex_lock(&q->sysfs_lock);
  3538. if (test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)) {
  3539. mutex_unlock(&q->sysfs_lock);
  3540. return -ENOENT;
  3541. }
  3542. res = entry->store(q, page, length);
  3543. mutex_unlock(&q->sysfs_lock);
  3544. return res;
  3545. }
  3546. static struct sysfs_ops queue_sysfs_ops = {
  3547. .show = queue_attr_show,
  3548. .store = queue_attr_store,
  3549. };
  3550. static struct kobj_type queue_ktype = {
  3551. .sysfs_ops = &queue_sysfs_ops,
  3552. .default_attrs = default_attrs,
  3553. .release = blk_release_queue,
  3554. };
  3555. int blk_register_queue(struct gendisk *disk)
  3556. {
  3557. int ret;
  3558. struct request_queue *q = disk->queue;
  3559. if (!q || !q->request_fn)
  3560. return -ENXIO;
  3561. q->kobj.parent = kobject_get(&disk->kobj);
  3562. ret = kobject_add(&q->kobj);
  3563. if (ret < 0)
  3564. return ret;
  3565. kobject_uevent(&q->kobj, KOBJ_ADD);
  3566. ret = elv_register_queue(q);
  3567. if (ret) {
  3568. kobject_uevent(&q->kobj, KOBJ_REMOVE);
  3569. kobject_del(&q->kobj);
  3570. return ret;
  3571. }
  3572. return 0;
  3573. }
  3574. void blk_unregister_queue(struct gendisk *disk)
  3575. {
  3576. struct request_queue *q = disk->queue;
  3577. if (q && q->request_fn) {
  3578. elv_unregister_queue(q);
  3579. kobject_uevent(&q->kobj, KOBJ_REMOVE);
  3580. kobject_del(&q->kobj);
  3581. kobject_put(&disk->kobj);
  3582. }
  3583. }