ste_dma40.c 73 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937
  1. /*
  2. * Copyright (C) ST-Ericsson SA 2007-2010
  3. * Author: Per Forlin <per.forlin@stericsson.com> for ST-Ericsson
  4. * Author: Jonas Aaberg <jonas.aberg@stericsson.com> for ST-Ericsson
  5. * License terms: GNU General Public License (GPL) version 2
  6. */
  7. #include <linux/kernel.h>
  8. #include <linux/slab.h>
  9. #include <linux/dmaengine.h>
  10. #include <linux/platform_device.h>
  11. #include <linux/clk.h>
  12. #include <linux/delay.h>
  13. #include <linux/err.h>
  14. #include <plat/ste_dma40.h>
  15. #include "ste_dma40_ll.h"
  16. #define D40_NAME "dma40"
  17. #define D40_PHY_CHAN -1
  18. /* For masking out/in 2 bit channel positions */
  19. #define D40_CHAN_POS(chan) (2 * (chan / 2))
  20. #define D40_CHAN_POS_MASK(chan) (0x3 << D40_CHAN_POS(chan))
  21. /* Maximum iterations taken before giving up suspending a channel */
  22. #define D40_SUSPEND_MAX_IT 500
  23. /* Hardware requirement on LCLA alignment */
  24. #define LCLA_ALIGNMENT 0x40000
  25. /* Max number of links per event group */
  26. #define D40_LCLA_LINK_PER_EVENT_GRP 128
  27. #define D40_LCLA_END D40_LCLA_LINK_PER_EVENT_GRP
  28. /* Attempts before giving up to trying to get pages that are aligned */
  29. #define MAX_LCLA_ALLOC_ATTEMPTS 256
  30. /* Bit markings for allocation map */
  31. #define D40_ALLOC_FREE (1 << 31)
  32. #define D40_ALLOC_PHY (1 << 30)
  33. #define D40_ALLOC_LOG_FREE 0
  34. /* Hardware designer of the block */
  35. #define D40_HW_DESIGNER 0x8
  36. /**
  37. * enum 40_command - The different commands and/or statuses.
  38. *
  39. * @D40_DMA_STOP: DMA channel command STOP or status STOPPED,
  40. * @D40_DMA_RUN: The DMA channel is RUNNING of the command RUN.
  41. * @D40_DMA_SUSPEND_REQ: Request the DMA to SUSPEND as soon as possible.
  42. * @D40_DMA_SUSPENDED: The DMA channel is SUSPENDED.
  43. */
  44. enum d40_command {
  45. D40_DMA_STOP = 0,
  46. D40_DMA_RUN = 1,
  47. D40_DMA_SUSPEND_REQ = 2,
  48. D40_DMA_SUSPENDED = 3
  49. };
  50. /**
  51. * struct d40_lli_pool - Structure for keeping LLIs in memory
  52. *
  53. * @base: Pointer to memory area when the pre_alloc_lli's are not large
  54. * enough, IE bigger than the most common case, 1 dst and 1 src. NULL if
  55. * pre_alloc_lli is used.
  56. * @size: The size in bytes of the memory at base or the size of pre_alloc_lli.
  57. * @pre_alloc_lli: Pre allocated area for the most common case of transfers,
  58. * one buffer to one buffer.
  59. */
  60. struct d40_lli_pool {
  61. void *base;
  62. int size;
  63. /* Space for dst and src, plus an extra for padding */
  64. u8 pre_alloc_lli[3 * sizeof(struct d40_phy_lli)];
  65. };
  66. /**
  67. * struct d40_desc - A descriptor is one DMA job.
  68. *
  69. * @lli_phy: LLI settings for physical channel. Both src and dst=
  70. * points into the lli_pool, to base if lli_len > 1 or to pre_alloc_lli if
  71. * lli_len equals one.
  72. * @lli_log: Same as above but for logical channels.
  73. * @lli_pool: The pool with two entries pre-allocated.
  74. * @lli_len: Number of llis of current descriptor.
  75. * @lli_current: Number of transfered llis.
  76. * @lcla_alloc: Number of LCLA entries allocated.
  77. * @txd: DMA engine struct. Used for among other things for communication
  78. * during a transfer.
  79. * @node: List entry.
  80. * @is_in_client_list: true if the client owns this descriptor.
  81. * @is_hw_linked: true if this job will automatically be continued for
  82. * the previous one.
  83. *
  84. * This descriptor is used for both logical and physical transfers.
  85. */
  86. struct d40_desc {
  87. /* LLI physical */
  88. struct d40_phy_lli_bidir lli_phy;
  89. /* LLI logical */
  90. struct d40_log_lli_bidir lli_log;
  91. struct d40_lli_pool lli_pool;
  92. int lli_len;
  93. int lli_current;
  94. int lcla_alloc;
  95. struct dma_async_tx_descriptor txd;
  96. struct list_head node;
  97. bool is_in_client_list;
  98. bool is_hw_linked;
  99. };
  100. /**
  101. * struct d40_lcla_pool - LCLA pool settings and data.
  102. *
  103. * @base: The virtual address of LCLA. 18 bit aligned.
  104. * @base_unaligned: The orignal kmalloc pointer, if kmalloc is used.
  105. * This pointer is only there for clean-up on error.
  106. * @pages: The number of pages needed for all physical channels.
  107. * Only used later for clean-up on error
  108. * @lock: Lock to protect the content in this struct.
  109. * @alloc_map: big map over which LCLA entry is own by which job.
  110. */
  111. struct d40_lcla_pool {
  112. void *base;
  113. void *base_unaligned;
  114. int pages;
  115. spinlock_t lock;
  116. struct d40_desc **alloc_map;
  117. };
  118. /**
  119. * struct d40_phy_res - struct for handling eventlines mapped to physical
  120. * channels.
  121. *
  122. * @lock: A lock protection this entity.
  123. * @num: The physical channel number of this entity.
  124. * @allocated_src: Bit mapped to show which src event line's are mapped to
  125. * this physical channel. Can also be free or physically allocated.
  126. * @allocated_dst: Same as for src but is dst.
  127. * allocated_dst and allocated_src uses the D40_ALLOC* defines as well as
  128. * event line number.
  129. */
  130. struct d40_phy_res {
  131. spinlock_t lock;
  132. int num;
  133. u32 allocated_src;
  134. u32 allocated_dst;
  135. };
  136. struct d40_base;
  137. /**
  138. * struct d40_chan - Struct that describes a channel.
  139. *
  140. * @lock: A spinlock to protect this struct.
  141. * @log_num: The logical number, if any of this channel.
  142. * @completed: Starts with 1, after first interrupt it is set to dma engine's
  143. * current cookie.
  144. * @pending_tx: The number of pending transfers. Used between interrupt handler
  145. * and tasklet.
  146. * @busy: Set to true when transfer is ongoing on this channel.
  147. * @phy_chan: Pointer to physical channel which this instance runs on. If this
  148. * point is NULL, then the channel is not allocated.
  149. * @chan: DMA engine handle.
  150. * @tasklet: Tasklet that gets scheduled from interrupt context to complete a
  151. * transfer and call client callback.
  152. * @client: Cliented owned descriptor list.
  153. * @active: Active descriptor.
  154. * @queue: Queued jobs.
  155. * @dma_cfg: The client configuration of this dma channel.
  156. * @configured: whether the dma_cfg configuration is valid
  157. * @base: Pointer to the device instance struct.
  158. * @src_def_cfg: Default cfg register setting for src.
  159. * @dst_def_cfg: Default cfg register setting for dst.
  160. * @log_def: Default logical channel settings.
  161. * @lcla: Space for one dst src pair for logical channel transfers.
  162. * @lcpa: Pointer to dst and src lcpa settings.
  163. *
  164. * This struct can either "be" a logical or a physical channel.
  165. */
  166. struct d40_chan {
  167. spinlock_t lock;
  168. int log_num;
  169. /* ID of the most recent completed transfer */
  170. int completed;
  171. int pending_tx;
  172. bool busy;
  173. struct d40_phy_res *phy_chan;
  174. struct dma_chan chan;
  175. struct tasklet_struct tasklet;
  176. struct list_head client;
  177. struct list_head active;
  178. struct list_head queue;
  179. struct stedma40_chan_cfg dma_cfg;
  180. bool configured;
  181. struct d40_base *base;
  182. /* Default register configurations */
  183. u32 src_def_cfg;
  184. u32 dst_def_cfg;
  185. struct d40_def_lcsp log_def;
  186. struct d40_log_lli_full *lcpa;
  187. /* Runtime reconfiguration */
  188. dma_addr_t runtime_addr;
  189. enum dma_data_direction runtime_direction;
  190. };
  191. /**
  192. * struct d40_base - The big global struct, one for each probe'd instance.
  193. *
  194. * @interrupt_lock: Lock used to make sure one interrupt is handle a time.
  195. * @execmd_lock: Lock for execute command usage since several channels share
  196. * the same physical register.
  197. * @dev: The device structure.
  198. * @virtbase: The virtual base address of the DMA's register.
  199. * @rev: silicon revision detected.
  200. * @clk: Pointer to the DMA clock structure.
  201. * @phy_start: Physical memory start of the DMA registers.
  202. * @phy_size: Size of the DMA register map.
  203. * @irq: The IRQ number.
  204. * @num_phy_chans: The number of physical channels. Read from HW. This
  205. * is the number of available channels for this driver, not counting "Secure
  206. * mode" allocated physical channels.
  207. * @num_log_chans: The number of logical channels. Calculated from
  208. * num_phy_chans.
  209. * @dma_both: dma_device channels that can do both memcpy and slave transfers.
  210. * @dma_slave: dma_device channels that can do only do slave transfers.
  211. * @dma_memcpy: dma_device channels that can do only do memcpy transfers.
  212. * @log_chans: Room for all possible logical channels in system.
  213. * @lookup_log_chans: Used to map interrupt number to logical channel. Points
  214. * to log_chans entries.
  215. * @lookup_phy_chans: Used to map interrupt number to physical channel. Points
  216. * to phy_chans entries.
  217. * @plat_data: Pointer to provided platform_data which is the driver
  218. * configuration.
  219. * @phy_res: Vector containing all physical channels.
  220. * @lcla_pool: lcla pool settings and data.
  221. * @lcpa_base: The virtual mapped address of LCPA.
  222. * @phy_lcpa: The physical address of the LCPA.
  223. * @lcpa_size: The size of the LCPA area.
  224. * @desc_slab: cache for descriptors.
  225. */
  226. struct d40_base {
  227. spinlock_t interrupt_lock;
  228. spinlock_t execmd_lock;
  229. struct device *dev;
  230. void __iomem *virtbase;
  231. u8 rev:4;
  232. struct clk *clk;
  233. phys_addr_t phy_start;
  234. resource_size_t phy_size;
  235. int irq;
  236. int num_phy_chans;
  237. int num_log_chans;
  238. struct dma_device dma_both;
  239. struct dma_device dma_slave;
  240. struct dma_device dma_memcpy;
  241. struct d40_chan *phy_chans;
  242. struct d40_chan *log_chans;
  243. struct d40_chan **lookup_log_chans;
  244. struct d40_chan **lookup_phy_chans;
  245. struct stedma40_platform_data *plat_data;
  246. /* Physical half channels */
  247. struct d40_phy_res *phy_res;
  248. struct d40_lcla_pool lcla_pool;
  249. void *lcpa_base;
  250. dma_addr_t phy_lcpa;
  251. resource_size_t lcpa_size;
  252. struct kmem_cache *desc_slab;
  253. };
  254. /**
  255. * struct d40_interrupt_lookup - lookup table for interrupt handler
  256. *
  257. * @src: Interrupt mask register.
  258. * @clr: Interrupt clear register.
  259. * @is_error: true if this is an error interrupt.
  260. * @offset: start delta in the lookup_log_chans in d40_base. If equals to
  261. * D40_PHY_CHAN, the lookup_phy_chans shall be used instead.
  262. */
  263. struct d40_interrupt_lookup {
  264. u32 src;
  265. u32 clr;
  266. bool is_error;
  267. int offset;
  268. };
  269. /**
  270. * struct d40_reg_val - simple lookup struct
  271. *
  272. * @reg: The register.
  273. * @val: The value that belongs to the register in reg.
  274. */
  275. struct d40_reg_val {
  276. unsigned int reg;
  277. unsigned int val;
  278. };
  279. static int d40_pool_lli_alloc(struct d40_desc *d40d,
  280. int lli_len, bool is_log)
  281. {
  282. u32 align;
  283. void *base;
  284. if (is_log)
  285. align = sizeof(struct d40_log_lli);
  286. else
  287. align = sizeof(struct d40_phy_lli);
  288. if (lli_len == 1) {
  289. base = d40d->lli_pool.pre_alloc_lli;
  290. d40d->lli_pool.size = sizeof(d40d->lli_pool.pre_alloc_lli);
  291. d40d->lli_pool.base = NULL;
  292. } else {
  293. d40d->lli_pool.size = ALIGN(lli_len * 2 * align, align);
  294. base = kmalloc(d40d->lli_pool.size + align, GFP_NOWAIT);
  295. d40d->lli_pool.base = base;
  296. if (d40d->lli_pool.base == NULL)
  297. return -ENOMEM;
  298. }
  299. if (is_log) {
  300. d40d->lli_log.src = PTR_ALIGN((struct d40_log_lli *) base,
  301. align);
  302. d40d->lli_log.dst = PTR_ALIGN(d40d->lli_log.src + lli_len,
  303. align);
  304. } else {
  305. d40d->lli_phy.src = PTR_ALIGN((struct d40_phy_lli *)base,
  306. align);
  307. d40d->lli_phy.dst = PTR_ALIGN(d40d->lli_phy.src + lli_len,
  308. align);
  309. }
  310. return 0;
  311. }
  312. static void d40_pool_lli_free(struct d40_desc *d40d)
  313. {
  314. kfree(d40d->lli_pool.base);
  315. d40d->lli_pool.base = NULL;
  316. d40d->lli_pool.size = 0;
  317. d40d->lli_log.src = NULL;
  318. d40d->lli_log.dst = NULL;
  319. d40d->lli_phy.src = NULL;
  320. d40d->lli_phy.dst = NULL;
  321. }
  322. static int d40_lcla_alloc_one(struct d40_chan *d40c,
  323. struct d40_desc *d40d)
  324. {
  325. unsigned long flags;
  326. int i;
  327. int ret = -EINVAL;
  328. int p;
  329. spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
  330. p = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP;
  331. /*
  332. * Allocate both src and dst at the same time, therefore the half
  333. * start on 1 since 0 can't be used since zero is used as end marker.
  334. */
  335. for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
  336. if (!d40c->base->lcla_pool.alloc_map[p + i]) {
  337. d40c->base->lcla_pool.alloc_map[p + i] = d40d;
  338. d40d->lcla_alloc++;
  339. ret = i;
  340. break;
  341. }
  342. }
  343. spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
  344. return ret;
  345. }
  346. static int d40_lcla_free_all(struct d40_chan *d40c,
  347. struct d40_desc *d40d)
  348. {
  349. unsigned long flags;
  350. int i;
  351. int ret = -EINVAL;
  352. if (d40c->log_num == D40_PHY_CHAN)
  353. return 0;
  354. spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
  355. for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
  356. if (d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num *
  357. D40_LCLA_LINK_PER_EVENT_GRP + i] == d40d) {
  358. d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num *
  359. D40_LCLA_LINK_PER_EVENT_GRP + i] = NULL;
  360. d40d->lcla_alloc--;
  361. if (d40d->lcla_alloc == 0) {
  362. ret = 0;
  363. break;
  364. }
  365. }
  366. }
  367. spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
  368. return ret;
  369. }
  370. static void d40_desc_remove(struct d40_desc *d40d)
  371. {
  372. list_del(&d40d->node);
  373. }
  374. static struct d40_desc *d40_desc_get(struct d40_chan *d40c)
  375. {
  376. struct d40_desc *desc = NULL;
  377. if (!list_empty(&d40c->client)) {
  378. struct d40_desc *d;
  379. struct d40_desc *_d;
  380. list_for_each_entry_safe(d, _d, &d40c->client, node)
  381. if (async_tx_test_ack(&d->txd)) {
  382. d40_pool_lli_free(d);
  383. d40_desc_remove(d);
  384. desc = d;
  385. memset(desc, 0, sizeof(*desc));
  386. break;
  387. }
  388. }
  389. if (!desc)
  390. desc = kmem_cache_zalloc(d40c->base->desc_slab, GFP_NOWAIT);
  391. if (desc)
  392. INIT_LIST_HEAD(&desc->node);
  393. return desc;
  394. }
  395. static void d40_desc_free(struct d40_chan *d40c, struct d40_desc *d40d)
  396. {
  397. d40_lcla_free_all(d40c, d40d);
  398. kmem_cache_free(d40c->base->desc_slab, d40d);
  399. }
  400. static void d40_desc_submit(struct d40_chan *d40c, struct d40_desc *desc)
  401. {
  402. list_add_tail(&desc->node, &d40c->active);
  403. }
  404. static void d40_desc_load(struct d40_chan *d40c, struct d40_desc *d40d)
  405. {
  406. int curr_lcla = -EINVAL, next_lcla;
  407. if (d40c->log_num == D40_PHY_CHAN) {
  408. d40_phy_lli_write(d40c->base->virtbase,
  409. d40c->phy_chan->num,
  410. d40d->lli_phy.dst,
  411. d40d->lli_phy.src);
  412. d40d->lli_current = d40d->lli_len;
  413. } else {
  414. if ((d40d->lli_len - d40d->lli_current) > 1)
  415. curr_lcla = d40_lcla_alloc_one(d40c, d40d);
  416. d40_log_lli_lcpa_write(d40c->lcpa,
  417. &d40d->lli_log.dst[d40d->lli_current],
  418. &d40d->lli_log.src[d40d->lli_current],
  419. curr_lcla);
  420. d40d->lli_current++;
  421. for (; d40d->lli_current < d40d->lli_len; d40d->lli_current++) {
  422. struct d40_log_lli *lcla;
  423. if (d40d->lli_current + 1 < d40d->lli_len)
  424. next_lcla = d40_lcla_alloc_one(d40c, d40d);
  425. else
  426. next_lcla = -EINVAL;
  427. lcla = d40c->base->lcla_pool.base +
  428. d40c->phy_chan->num * 1024 +
  429. 8 * curr_lcla * 2;
  430. d40_log_lli_lcla_write(lcla,
  431. &d40d->lli_log.dst[d40d->lli_current],
  432. &d40d->lli_log.src[d40d->lli_current],
  433. next_lcla);
  434. (void) dma_map_single(d40c->base->dev, lcla,
  435. 2 * sizeof(struct d40_log_lli),
  436. DMA_TO_DEVICE);
  437. curr_lcla = next_lcla;
  438. if (curr_lcla == -EINVAL) {
  439. d40d->lli_current++;
  440. break;
  441. }
  442. }
  443. }
  444. }
  445. static struct d40_desc *d40_first_active_get(struct d40_chan *d40c)
  446. {
  447. struct d40_desc *d;
  448. if (list_empty(&d40c->active))
  449. return NULL;
  450. d = list_first_entry(&d40c->active,
  451. struct d40_desc,
  452. node);
  453. return d;
  454. }
  455. static void d40_desc_queue(struct d40_chan *d40c, struct d40_desc *desc)
  456. {
  457. list_add_tail(&desc->node, &d40c->queue);
  458. }
  459. static struct d40_desc *d40_first_queued(struct d40_chan *d40c)
  460. {
  461. struct d40_desc *d;
  462. if (list_empty(&d40c->queue))
  463. return NULL;
  464. d = list_first_entry(&d40c->queue,
  465. struct d40_desc,
  466. node);
  467. return d;
  468. }
  469. static struct d40_desc *d40_last_queued(struct d40_chan *d40c)
  470. {
  471. struct d40_desc *d;
  472. if (list_empty(&d40c->queue))
  473. return NULL;
  474. list_for_each_entry(d, &d40c->queue, node)
  475. if (list_is_last(&d->node, &d40c->queue))
  476. break;
  477. return d;
  478. }
  479. /* Support functions for logical channels */
  480. static int d40_channel_execute_command(struct d40_chan *d40c,
  481. enum d40_command command)
  482. {
  483. u32 status;
  484. int i;
  485. void __iomem *active_reg;
  486. int ret = 0;
  487. unsigned long flags;
  488. u32 wmask;
  489. spin_lock_irqsave(&d40c->base->execmd_lock, flags);
  490. if (d40c->phy_chan->num % 2 == 0)
  491. active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
  492. else
  493. active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
  494. if (command == D40_DMA_SUSPEND_REQ) {
  495. status = (readl(active_reg) &
  496. D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
  497. D40_CHAN_POS(d40c->phy_chan->num);
  498. if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
  499. goto done;
  500. }
  501. wmask = 0xffffffff & ~(D40_CHAN_POS_MASK(d40c->phy_chan->num));
  502. writel(wmask | (command << D40_CHAN_POS(d40c->phy_chan->num)),
  503. active_reg);
  504. if (command == D40_DMA_SUSPEND_REQ) {
  505. for (i = 0 ; i < D40_SUSPEND_MAX_IT; i++) {
  506. status = (readl(active_reg) &
  507. D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
  508. D40_CHAN_POS(d40c->phy_chan->num);
  509. cpu_relax();
  510. /*
  511. * Reduce the number of bus accesses while
  512. * waiting for the DMA to suspend.
  513. */
  514. udelay(3);
  515. if (status == D40_DMA_STOP ||
  516. status == D40_DMA_SUSPENDED)
  517. break;
  518. }
  519. if (i == D40_SUSPEND_MAX_IT) {
  520. dev_err(&d40c->chan.dev->device,
  521. "[%s]: unable to suspend the chl %d (log: %d) status %x\n",
  522. __func__, d40c->phy_chan->num, d40c->log_num,
  523. status);
  524. dump_stack();
  525. ret = -EBUSY;
  526. }
  527. }
  528. done:
  529. spin_unlock_irqrestore(&d40c->base->execmd_lock, flags);
  530. return ret;
  531. }
  532. static void d40_term_all(struct d40_chan *d40c)
  533. {
  534. struct d40_desc *d40d;
  535. /* Release active descriptors */
  536. while ((d40d = d40_first_active_get(d40c))) {
  537. d40_desc_remove(d40d);
  538. d40_desc_free(d40c, d40d);
  539. }
  540. /* Release queued descriptors waiting for transfer */
  541. while ((d40d = d40_first_queued(d40c))) {
  542. d40_desc_remove(d40d);
  543. d40_desc_free(d40c, d40d);
  544. }
  545. d40c->pending_tx = 0;
  546. d40c->busy = false;
  547. }
  548. static void d40_config_set_event(struct d40_chan *d40c, bool do_enable)
  549. {
  550. u32 val;
  551. unsigned long flags;
  552. /* Notice, that disable requires the physical channel to be stopped */
  553. if (do_enable)
  554. val = D40_ACTIVATE_EVENTLINE;
  555. else
  556. val = D40_DEACTIVATE_EVENTLINE;
  557. spin_lock_irqsave(&d40c->phy_chan->lock, flags);
  558. /* Enable event line connected to device (or memcpy) */
  559. if ((d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) ||
  560. (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH)) {
  561. u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
  562. writel((val << D40_EVENTLINE_POS(event)) |
  563. ~D40_EVENTLINE_MASK(event),
  564. d40c->base->virtbase + D40_DREG_PCBASE +
  565. d40c->phy_chan->num * D40_DREG_PCDELTA +
  566. D40_CHAN_REG_SSLNK);
  567. }
  568. if (d40c->dma_cfg.dir != STEDMA40_PERIPH_TO_MEM) {
  569. u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
  570. writel((val << D40_EVENTLINE_POS(event)) |
  571. ~D40_EVENTLINE_MASK(event),
  572. d40c->base->virtbase + D40_DREG_PCBASE +
  573. d40c->phy_chan->num * D40_DREG_PCDELTA +
  574. D40_CHAN_REG_SDLNK);
  575. }
  576. spin_unlock_irqrestore(&d40c->phy_chan->lock, flags);
  577. }
  578. static u32 d40_chan_has_events(struct d40_chan *d40c)
  579. {
  580. u32 val;
  581. val = readl(d40c->base->virtbase + D40_DREG_PCBASE +
  582. d40c->phy_chan->num * D40_DREG_PCDELTA +
  583. D40_CHAN_REG_SSLNK);
  584. val |= readl(d40c->base->virtbase + D40_DREG_PCBASE +
  585. d40c->phy_chan->num * D40_DREG_PCDELTA +
  586. D40_CHAN_REG_SDLNK);
  587. return val;
  588. }
  589. static u32 d40_get_prmo(struct d40_chan *d40c)
  590. {
  591. static const unsigned int phy_map[] = {
  592. [STEDMA40_PCHAN_BASIC_MODE]
  593. = D40_DREG_PRMO_PCHAN_BASIC,
  594. [STEDMA40_PCHAN_MODULO_MODE]
  595. = D40_DREG_PRMO_PCHAN_MODULO,
  596. [STEDMA40_PCHAN_DOUBLE_DST_MODE]
  597. = D40_DREG_PRMO_PCHAN_DOUBLE_DST,
  598. };
  599. static const unsigned int log_map[] = {
  600. [STEDMA40_LCHAN_SRC_PHY_DST_LOG]
  601. = D40_DREG_PRMO_LCHAN_SRC_PHY_DST_LOG,
  602. [STEDMA40_LCHAN_SRC_LOG_DST_PHY]
  603. = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_PHY,
  604. [STEDMA40_LCHAN_SRC_LOG_DST_LOG]
  605. = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_LOG,
  606. };
  607. if (d40c->log_num == D40_PHY_CHAN)
  608. return phy_map[d40c->dma_cfg.mode_opt];
  609. else
  610. return log_map[d40c->dma_cfg.mode_opt];
  611. }
  612. static void d40_config_write(struct d40_chan *d40c)
  613. {
  614. u32 addr_base;
  615. u32 var;
  616. /* Odd addresses are even addresses + 4 */
  617. addr_base = (d40c->phy_chan->num % 2) * 4;
  618. /* Setup channel mode to logical or physical */
  619. var = ((u32)(d40c->log_num != D40_PHY_CHAN) + 1) <<
  620. D40_CHAN_POS(d40c->phy_chan->num);
  621. writel(var, d40c->base->virtbase + D40_DREG_PRMSE + addr_base);
  622. /* Setup operational mode option register */
  623. var = d40_get_prmo(d40c) << D40_CHAN_POS(d40c->phy_chan->num);
  624. writel(var, d40c->base->virtbase + D40_DREG_PRMOE + addr_base);
  625. if (d40c->log_num != D40_PHY_CHAN) {
  626. /* Set default config for CFG reg */
  627. writel(d40c->src_def_cfg,
  628. d40c->base->virtbase + D40_DREG_PCBASE +
  629. d40c->phy_chan->num * D40_DREG_PCDELTA +
  630. D40_CHAN_REG_SSCFG);
  631. writel(d40c->dst_def_cfg,
  632. d40c->base->virtbase + D40_DREG_PCBASE +
  633. d40c->phy_chan->num * D40_DREG_PCDELTA +
  634. D40_CHAN_REG_SDCFG);
  635. /* Set LIDX for lcla */
  636. writel((d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS) &
  637. D40_SREG_ELEM_LOG_LIDX_MASK,
  638. d40c->base->virtbase + D40_DREG_PCBASE +
  639. d40c->phy_chan->num * D40_DREG_PCDELTA +
  640. D40_CHAN_REG_SDELT);
  641. writel((d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS) &
  642. D40_SREG_ELEM_LOG_LIDX_MASK,
  643. d40c->base->virtbase + D40_DREG_PCBASE +
  644. d40c->phy_chan->num * D40_DREG_PCDELTA +
  645. D40_CHAN_REG_SSELT);
  646. }
  647. }
  648. static u32 d40_residue(struct d40_chan *d40c)
  649. {
  650. u32 num_elt;
  651. if (d40c->log_num != D40_PHY_CHAN)
  652. num_elt = (readl(&d40c->lcpa->lcsp2) & D40_MEM_LCSP2_ECNT_MASK)
  653. >> D40_MEM_LCSP2_ECNT_POS;
  654. else
  655. num_elt = (readl(d40c->base->virtbase + D40_DREG_PCBASE +
  656. d40c->phy_chan->num * D40_DREG_PCDELTA +
  657. D40_CHAN_REG_SDELT) &
  658. D40_SREG_ELEM_PHY_ECNT_MASK) >>
  659. D40_SREG_ELEM_PHY_ECNT_POS;
  660. return num_elt * (1 << d40c->dma_cfg.dst_info.data_width);
  661. }
  662. static bool d40_tx_is_linked(struct d40_chan *d40c)
  663. {
  664. bool is_link;
  665. if (d40c->log_num != D40_PHY_CHAN)
  666. is_link = readl(&d40c->lcpa->lcsp3) & D40_MEM_LCSP3_DLOS_MASK;
  667. else
  668. is_link = readl(d40c->base->virtbase + D40_DREG_PCBASE +
  669. d40c->phy_chan->num * D40_DREG_PCDELTA +
  670. D40_CHAN_REG_SDLNK) &
  671. D40_SREG_LNK_PHYS_LNK_MASK;
  672. return is_link;
  673. }
  674. static int d40_pause(struct dma_chan *chan)
  675. {
  676. struct d40_chan *d40c =
  677. container_of(chan, struct d40_chan, chan);
  678. int res = 0;
  679. unsigned long flags;
  680. if (!d40c->busy)
  681. return 0;
  682. spin_lock_irqsave(&d40c->lock, flags);
  683. res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
  684. if (res == 0) {
  685. if (d40c->log_num != D40_PHY_CHAN) {
  686. d40_config_set_event(d40c, false);
  687. /* Resume the other logical channels if any */
  688. if (d40_chan_has_events(d40c))
  689. res = d40_channel_execute_command(d40c,
  690. D40_DMA_RUN);
  691. }
  692. }
  693. spin_unlock_irqrestore(&d40c->lock, flags);
  694. return res;
  695. }
  696. static int d40_resume(struct dma_chan *chan)
  697. {
  698. struct d40_chan *d40c =
  699. container_of(chan, struct d40_chan, chan);
  700. int res = 0;
  701. unsigned long flags;
  702. if (!d40c->busy)
  703. return 0;
  704. spin_lock_irqsave(&d40c->lock, flags);
  705. if (d40c->base->rev == 0)
  706. if (d40c->log_num != D40_PHY_CHAN) {
  707. res = d40_channel_execute_command(d40c,
  708. D40_DMA_SUSPEND_REQ);
  709. goto no_suspend;
  710. }
  711. /* If bytes left to transfer or linked tx resume job */
  712. if (d40_residue(d40c) || d40_tx_is_linked(d40c)) {
  713. if (d40c->log_num != D40_PHY_CHAN)
  714. d40_config_set_event(d40c, true);
  715. res = d40_channel_execute_command(d40c, D40_DMA_RUN);
  716. }
  717. no_suspend:
  718. spin_unlock_irqrestore(&d40c->lock, flags);
  719. return res;
  720. }
  721. static void d40_tx_submit_log(struct d40_chan *d40c, struct d40_desc *d40d)
  722. {
  723. /* TODO: Write */
  724. }
  725. static void d40_tx_submit_phy(struct d40_chan *d40c, struct d40_desc *d40d)
  726. {
  727. struct d40_desc *d40d_prev = NULL;
  728. int i;
  729. u32 val;
  730. if (!list_empty(&d40c->queue))
  731. d40d_prev = d40_last_queued(d40c);
  732. else if (!list_empty(&d40c->active))
  733. d40d_prev = d40_first_active_get(d40c);
  734. if (!d40d_prev)
  735. return;
  736. /* Here we try to join this job with previous jobs */
  737. val = readl(d40c->base->virtbase + D40_DREG_PCBASE +
  738. d40c->phy_chan->num * D40_DREG_PCDELTA +
  739. D40_CHAN_REG_SSLNK);
  740. /* Figure out which link we're currently transmitting */
  741. for (i = 0; i < d40d_prev->lli_len; i++)
  742. if (val == d40d_prev->lli_phy.src[i].reg_lnk)
  743. break;
  744. val = readl(d40c->base->virtbase + D40_DREG_PCBASE +
  745. d40c->phy_chan->num * D40_DREG_PCDELTA +
  746. D40_CHAN_REG_SSELT) >> D40_SREG_ELEM_LOG_ECNT_POS;
  747. if (i == (d40d_prev->lli_len - 1) && val > 0) {
  748. /* Change the current one */
  749. writel(virt_to_phys(d40d->lli_phy.src),
  750. d40c->base->virtbase + D40_DREG_PCBASE +
  751. d40c->phy_chan->num * D40_DREG_PCDELTA +
  752. D40_CHAN_REG_SSLNK);
  753. writel(virt_to_phys(d40d->lli_phy.dst),
  754. d40c->base->virtbase + D40_DREG_PCBASE +
  755. d40c->phy_chan->num * D40_DREG_PCDELTA +
  756. D40_CHAN_REG_SDLNK);
  757. d40d->is_hw_linked = true;
  758. } else if (i < d40d_prev->lli_len) {
  759. (void) dma_unmap_single(d40c->base->dev,
  760. virt_to_phys(d40d_prev->lli_phy.src),
  761. d40d_prev->lli_pool.size,
  762. DMA_TO_DEVICE);
  763. /* Keep the settings */
  764. val = d40d_prev->lli_phy.src[d40d_prev->lli_len - 1].reg_lnk &
  765. ~D40_SREG_LNK_PHYS_LNK_MASK;
  766. d40d_prev->lli_phy.src[d40d_prev->lli_len - 1].reg_lnk =
  767. val | virt_to_phys(d40d->lli_phy.src);
  768. val = d40d_prev->lli_phy.dst[d40d_prev->lli_len - 1].reg_lnk &
  769. ~D40_SREG_LNK_PHYS_LNK_MASK;
  770. d40d_prev->lli_phy.dst[d40d_prev->lli_len - 1].reg_lnk =
  771. val | virt_to_phys(d40d->lli_phy.dst);
  772. (void) dma_map_single(d40c->base->dev,
  773. d40d_prev->lli_phy.src,
  774. d40d_prev->lli_pool.size,
  775. DMA_TO_DEVICE);
  776. d40d->is_hw_linked = true;
  777. }
  778. }
  779. static dma_cookie_t d40_tx_submit(struct dma_async_tx_descriptor *tx)
  780. {
  781. struct d40_chan *d40c = container_of(tx->chan,
  782. struct d40_chan,
  783. chan);
  784. struct d40_desc *d40d = container_of(tx, struct d40_desc, txd);
  785. unsigned long flags;
  786. (void) d40_pause(&d40c->chan);
  787. spin_lock_irqsave(&d40c->lock, flags);
  788. d40c->chan.cookie++;
  789. if (d40c->chan.cookie < 0)
  790. d40c->chan.cookie = 1;
  791. d40d->txd.cookie = d40c->chan.cookie;
  792. if (d40c->log_num == D40_PHY_CHAN)
  793. d40_tx_submit_phy(d40c, d40d);
  794. else
  795. d40_tx_submit_log(d40c, d40d);
  796. d40_desc_queue(d40c, d40d);
  797. spin_unlock_irqrestore(&d40c->lock, flags);
  798. (void) d40_resume(&d40c->chan);
  799. return tx->cookie;
  800. }
  801. static int d40_start(struct d40_chan *d40c)
  802. {
  803. if (d40c->base->rev == 0) {
  804. int err;
  805. if (d40c->log_num != D40_PHY_CHAN) {
  806. err = d40_channel_execute_command(d40c,
  807. D40_DMA_SUSPEND_REQ);
  808. if (err)
  809. return err;
  810. }
  811. }
  812. if (d40c->log_num != D40_PHY_CHAN)
  813. d40_config_set_event(d40c, true);
  814. return d40_channel_execute_command(d40c, D40_DMA_RUN);
  815. }
  816. static struct d40_desc *d40_queue_start(struct d40_chan *d40c)
  817. {
  818. struct d40_desc *d40d;
  819. int err;
  820. /* Start queued jobs, if any */
  821. d40d = d40_first_queued(d40c);
  822. if (d40d != NULL) {
  823. d40c->busy = true;
  824. /* Remove from queue */
  825. d40_desc_remove(d40d);
  826. /* Add to active queue */
  827. d40_desc_submit(d40c, d40d);
  828. /*
  829. * If this job is already linked in hw,
  830. * do not submit it.
  831. */
  832. if (!d40d->is_hw_linked) {
  833. /* Initiate DMA job */
  834. d40_desc_load(d40c, d40d);
  835. /* Start dma job */
  836. err = d40_start(d40c);
  837. if (err)
  838. return NULL;
  839. }
  840. }
  841. return d40d;
  842. }
  843. /* called from interrupt context */
  844. static void dma_tc_handle(struct d40_chan *d40c)
  845. {
  846. struct d40_desc *d40d;
  847. /* Get first active entry from list */
  848. d40d = d40_first_active_get(d40c);
  849. if (d40d == NULL)
  850. return;
  851. d40_lcla_free_all(d40c, d40d);
  852. if (d40d->lli_current < d40d->lli_len) {
  853. d40_desc_load(d40c, d40d);
  854. /* Start dma job */
  855. (void) d40_start(d40c);
  856. return;
  857. }
  858. if (d40_queue_start(d40c) == NULL)
  859. d40c->busy = false;
  860. d40c->pending_tx++;
  861. tasklet_schedule(&d40c->tasklet);
  862. }
  863. static void dma_tasklet(unsigned long data)
  864. {
  865. struct d40_chan *d40c = (struct d40_chan *) data;
  866. struct d40_desc *d40d;
  867. unsigned long flags;
  868. dma_async_tx_callback callback;
  869. void *callback_param;
  870. spin_lock_irqsave(&d40c->lock, flags);
  871. /* Get first active entry from list */
  872. d40d = d40_first_active_get(d40c);
  873. if (d40d == NULL)
  874. goto err;
  875. d40c->completed = d40d->txd.cookie;
  876. /*
  877. * If terminating a channel pending_tx is set to zero.
  878. * This prevents any finished active jobs to return to the client.
  879. */
  880. if (d40c->pending_tx == 0) {
  881. spin_unlock_irqrestore(&d40c->lock, flags);
  882. return;
  883. }
  884. /* Callback to client */
  885. callback = d40d->txd.callback;
  886. callback_param = d40d->txd.callback_param;
  887. if (async_tx_test_ack(&d40d->txd)) {
  888. d40_pool_lli_free(d40d);
  889. d40_desc_remove(d40d);
  890. d40_desc_free(d40c, d40d);
  891. } else {
  892. if (!d40d->is_in_client_list) {
  893. d40_desc_remove(d40d);
  894. d40_lcla_free_all(d40c, d40d);
  895. list_add_tail(&d40d->node, &d40c->client);
  896. d40d->is_in_client_list = true;
  897. }
  898. }
  899. d40c->pending_tx--;
  900. if (d40c->pending_tx)
  901. tasklet_schedule(&d40c->tasklet);
  902. spin_unlock_irqrestore(&d40c->lock, flags);
  903. if (callback && (d40d->txd.flags & DMA_PREP_INTERRUPT))
  904. callback(callback_param);
  905. return;
  906. err:
  907. /* Rescue manouver if receiving double interrupts */
  908. if (d40c->pending_tx > 0)
  909. d40c->pending_tx--;
  910. spin_unlock_irqrestore(&d40c->lock, flags);
  911. }
  912. static irqreturn_t d40_handle_interrupt(int irq, void *data)
  913. {
  914. static const struct d40_interrupt_lookup il[] = {
  915. {D40_DREG_LCTIS0, D40_DREG_LCICR0, false, 0},
  916. {D40_DREG_LCTIS1, D40_DREG_LCICR1, false, 32},
  917. {D40_DREG_LCTIS2, D40_DREG_LCICR2, false, 64},
  918. {D40_DREG_LCTIS3, D40_DREG_LCICR3, false, 96},
  919. {D40_DREG_LCEIS0, D40_DREG_LCICR0, true, 0},
  920. {D40_DREG_LCEIS1, D40_DREG_LCICR1, true, 32},
  921. {D40_DREG_LCEIS2, D40_DREG_LCICR2, true, 64},
  922. {D40_DREG_LCEIS3, D40_DREG_LCICR3, true, 96},
  923. {D40_DREG_PCTIS, D40_DREG_PCICR, false, D40_PHY_CHAN},
  924. {D40_DREG_PCEIS, D40_DREG_PCICR, true, D40_PHY_CHAN},
  925. };
  926. int i;
  927. u32 regs[ARRAY_SIZE(il)];
  928. u32 idx;
  929. u32 row;
  930. long chan = -1;
  931. struct d40_chan *d40c;
  932. unsigned long flags;
  933. struct d40_base *base = data;
  934. spin_lock_irqsave(&base->interrupt_lock, flags);
  935. /* Read interrupt status of both logical and physical channels */
  936. for (i = 0; i < ARRAY_SIZE(il); i++)
  937. regs[i] = readl(base->virtbase + il[i].src);
  938. for (;;) {
  939. chan = find_next_bit((unsigned long *)regs,
  940. BITS_PER_LONG * ARRAY_SIZE(il), chan + 1);
  941. /* No more set bits found? */
  942. if (chan == BITS_PER_LONG * ARRAY_SIZE(il))
  943. break;
  944. row = chan / BITS_PER_LONG;
  945. idx = chan & (BITS_PER_LONG - 1);
  946. /* ACK interrupt */
  947. writel(1 << idx, base->virtbase + il[row].clr);
  948. if (il[row].offset == D40_PHY_CHAN)
  949. d40c = base->lookup_phy_chans[idx];
  950. else
  951. d40c = base->lookup_log_chans[il[row].offset + idx];
  952. spin_lock(&d40c->lock);
  953. if (!il[row].is_error)
  954. dma_tc_handle(d40c);
  955. else
  956. dev_err(base->dev,
  957. "[%s] IRQ chan: %ld offset %d idx %d\n",
  958. __func__, chan, il[row].offset, idx);
  959. spin_unlock(&d40c->lock);
  960. }
  961. spin_unlock_irqrestore(&base->interrupt_lock, flags);
  962. return IRQ_HANDLED;
  963. }
  964. static int d40_validate_conf(struct d40_chan *d40c,
  965. struct stedma40_chan_cfg *conf)
  966. {
  967. int res = 0;
  968. u32 dst_event_group = D40_TYPE_TO_GROUP(conf->dst_dev_type);
  969. u32 src_event_group = D40_TYPE_TO_GROUP(conf->src_dev_type);
  970. bool is_log = conf->mode == STEDMA40_MODE_LOGICAL;
  971. if (!conf->dir) {
  972. dev_err(&d40c->chan.dev->device, "[%s] Invalid direction.\n",
  973. __func__);
  974. res = -EINVAL;
  975. }
  976. if (conf->dst_dev_type != STEDMA40_DEV_DST_MEMORY &&
  977. d40c->base->plat_data->dev_tx[conf->dst_dev_type] == 0 &&
  978. d40c->runtime_addr == 0) {
  979. dev_err(&d40c->chan.dev->device,
  980. "[%s] Invalid TX channel address (%d)\n",
  981. __func__, conf->dst_dev_type);
  982. res = -EINVAL;
  983. }
  984. if (conf->src_dev_type != STEDMA40_DEV_SRC_MEMORY &&
  985. d40c->base->plat_data->dev_rx[conf->src_dev_type] == 0 &&
  986. d40c->runtime_addr == 0) {
  987. dev_err(&d40c->chan.dev->device,
  988. "[%s] Invalid RX channel address (%d)\n",
  989. __func__, conf->src_dev_type);
  990. res = -EINVAL;
  991. }
  992. if (conf->dir == STEDMA40_MEM_TO_PERIPH &&
  993. dst_event_group == STEDMA40_DEV_DST_MEMORY) {
  994. dev_err(&d40c->chan.dev->device, "[%s] Invalid dst\n",
  995. __func__);
  996. res = -EINVAL;
  997. }
  998. if (conf->dir == STEDMA40_PERIPH_TO_MEM &&
  999. src_event_group == STEDMA40_DEV_SRC_MEMORY) {
  1000. dev_err(&d40c->chan.dev->device, "[%s] Invalid src\n",
  1001. __func__);
  1002. res = -EINVAL;
  1003. }
  1004. if (src_event_group == STEDMA40_DEV_SRC_MEMORY &&
  1005. dst_event_group == STEDMA40_DEV_DST_MEMORY && is_log) {
  1006. dev_err(&d40c->chan.dev->device,
  1007. "[%s] No event line\n", __func__);
  1008. res = -EINVAL;
  1009. }
  1010. if (conf->dir == STEDMA40_PERIPH_TO_PERIPH &&
  1011. (src_event_group != dst_event_group)) {
  1012. dev_err(&d40c->chan.dev->device,
  1013. "[%s] Invalid event group\n", __func__);
  1014. res = -EINVAL;
  1015. }
  1016. if (conf->dir == STEDMA40_PERIPH_TO_PERIPH) {
  1017. /*
  1018. * DMAC HW supports it. Will be added to this driver,
  1019. * in case any dma client requires it.
  1020. */
  1021. dev_err(&d40c->chan.dev->device,
  1022. "[%s] periph to periph not supported\n",
  1023. __func__);
  1024. res = -EINVAL;
  1025. }
  1026. return res;
  1027. }
  1028. static bool d40_alloc_mask_set(struct d40_phy_res *phy, bool is_src,
  1029. int log_event_line, bool is_log)
  1030. {
  1031. unsigned long flags;
  1032. spin_lock_irqsave(&phy->lock, flags);
  1033. if (!is_log) {
  1034. /* Physical interrupts are masked per physical full channel */
  1035. if (phy->allocated_src == D40_ALLOC_FREE &&
  1036. phy->allocated_dst == D40_ALLOC_FREE) {
  1037. phy->allocated_dst = D40_ALLOC_PHY;
  1038. phy->allocated_src = D40_ALLOC_PHY;
  1039. goto found;
  1040. } else
  1041. goto not_found;
  1042. }
  1043. /* Logical channel */
  1044. if (is_src) {
  1045. if (phy->allocated_src == D40_ALLOC_PHY)
  1046. goto not_found;
  1047. if (phy->allocated_src == D40_ALLOC_FREE)
  1048. phy->allocated_src = D40_ALLOC_LOG_FREE;
  1049. if (!(phy->allocated_src & (1 << log_event_line))) {
  1050. phy->allocated_src |= 1 << log_event_line;
  1051. goto found;
  1052. } else
  1053. goto not_found;
  1054. } else {
  1055. if (phy->allocated_dst == D40_ALLOC_PHY)
  1056. goto not_found;
  1057. if (phy->allocated_dst == D40_ALLOC_FREE)
  1058. phy->allocated_dst = D40_ALLOC_LOG_FREE;
  1059. if (!(phy->allocated_dst & (1 << log_event_line))) {
  1060. phy->allocated_dst |= 1 << log_event_line;
  1061. goto found;
  1062. } else
  1063. goto not_found;
  1064. }
  1065. not_found:
  1066. spin_unlock_irqrestore(&phy->lock, flags);
  1067. return false;
  1068. found:
  1069. spin_unlock_irqrestore(&phy->lock, flags);
  1070. return true;
  1071. }
  1072. static bool d40_alloc_mask_free(struct d40_phy_res *phy, bool is_src,
  1073. int log_event_line)
  1074. {
  1075. unsigned long flags;
  1076. bool is_free = false;
  1077. spin_lock_irqsave(&phy->lock, flags);
  1078. if (!log_event_line) {
  1079. phy->allocated_dst = D40_ALLOC_FREE;
  1080. phy->allocated_src = D40_ALLOC_FREE;
  1081. is_free = true;
  1082. goto out;
  1083. }
  1084. /* Logical channel */
  1085. if (is_src) {
  1086. phy->allocated_src &= ~(1 << log_event_line);
  1087. if (phy->allocated_src == D40_ALLOC_LOG_FREE)
  1088. phy->allocated_src = D40_ALLOC_FREE;
  1089. } else {
  1090. phy->allocated_dst &= ~(1 << log_event_line);
  1091. if (phy->allocated_dst == D40_ALLOC_LOG_FREE)
  1092. phy->allocated_dst = D40_ALLOC_FREE;
  1093. }
  1094. is_free = ((phy->allocated_src | phy->allocated_dst) ==
  1095. D40_ALLOC_FREE);
  1096. out:
  1097. spin_unlock_irqrestore(&phy->lock, flags);
  1098. return is_free;
  1099. }
  1100. static int d40_allocate_channel(struct d40_chan *d40c)
  1101. {
  1102. int dev_type;
  1103. int event_group;
  1104. int event_line;
  1105. struct d40_phy_res *phys;
  1106. int i;
  1107. int j;
  1108. int log_num;
  1109. bool is_src;
  1110. bool is_log = d40c->dma_cfg.mode == STEDMA40_MODE_LOGICAL;
  1111. phys = d40c->base->phy_res;
  1112. if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
  1113. dev_type = d40c->dma_cfg.src_dev_type;
  1114. log_num = 2 * dev_type;
  1115. is_src = true;
  1116. } else if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
  1117. d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
  1118. /* dst event lines are used for logical memcpy */
  1119. dev_type = d40c->dma_cfg.dst_dev_type;
  1120. log_num = 2 * dev_type + 1;
  1121. is_src = false;
  1122. } else
  1123. return -EINVAL;
  1124. event_group = D40_TYPE_TO_GROUP(dev_type);
  1125. event_line = D40_TYPE_TO_EVENT(dev_type);
  1126. if (!is_log) {
  1127. if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
  1128. /* Find physical half channel */
  1129. for (i = 0; i < d40c->base->num_phy_chans; i++) {
  1130. if (d40_alloc_mask_set(&phys[i], is_src,
  1131. 0, is_log))
  1132. goto found_phy;
  1133. }
  1134. } else
  1135. for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
  1136. int phy_num = j + event_group * 2;
  1137. for (i = phy_num; i < phy_num + 2; i++) {
  1138. if (d40_alloc_mask_set(&phys[i],
  1139. is_src,
  1140. 0,
  1141. is_log))
  1142. goto found_phy;
  1143. }
  1144. }
  1145. return -EINVAL;
  1146. found_phy:
  1147. d40c->phy_chan = &phys[i];
  1148. d40c->log_num = D40_PHY_CHAN;
  1149. goto out;
  1150. }
  1151. if (dev_type == -1)
  1152. return -EINVAL;
  1153. /* Find logical channel */
  1154. for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
  1155. int phy_num = j + event_group * 2;
  1156. /*
  1157. * Spread logical channels across all available physical rather
  1158. * than pack every logical channel at the first available phy
  1159. * channels.
  1160. */
  1161. if (is_src) {
  1162. for (i = phy_num; i < phy_num + 2; i++) {
  1163. if (d40_alloc_mask_set(&phys[i], is_src,
  1164. event_line, is_log))
  1165. goto found_log;
  1166. }
  1167. } else {
  1168. for (i = phy_num + 1; i >= phy_num; i--) {
  1169. if (d40_alloc_mask_set(&phys[i], is_src,
  1170. event_line, is_log))
  1171. goto found_log;
  1172. }
  1173. }
  1174. }
  1175. return -EINVAL;
  1176. found_log:
  1177. d40c->phy_chan = &phys[i];
  1178. d40c->log_num = log_num;
  1179. out:
  1180. if (is_log)
  1181. d40c->base->lookup_log_chans[d40c->log_num] = d40c;
  1182. else
  1183. d40c->base->lookup_phy_chans[d40c->phy_chan->num] = d40c;
  1184. return 0;
  1185. }
  1186. static int d40_config_memcpy(struct d40_chan *d40c)
  1187. {
  1188. dma_cap_mask_t cap = d40c->chan.device->cap_mask;
  1189. if (dma_has_cap(DMA_MEMCPY, cap) && !dma_has_cap(DMA_SLAVE, cap)) {
  1190. d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_log;
  1191. d40c->dma_cfg.src_dev_type = STEDMA40_DEV_SRC_MEMORY;
  1192. d40c->dma_cfg.dst_dev_type = d40c->base->plat_data->
  1193. memcpy[d40c->chan.chan_id];
  1194. } else if (dma_has_cap(DMA_MEMCPY, cap) &&
  1195. dma_has_cap(DMA_SLAVE, cap)) {
  1196. d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_phy;
  1197. } else {
  1198. dev_err(&d40c->chan.dev->device, "[%s] No memcpy\n",
  1199. __func__);
  1200. return -EINVAL;
  1201. }
  1202. return 0;
  1203. }
  1204. static int d40_free_dma(struct d40_chan *d40c)
  1205. {
  1206. int res = 0;
  1207. u32 event;
  1208. struct d40_phy_res *phy = d40c->phy_chan;
  1209. bool is_src;
  1210. struct d40_desc *d;
  1211. struct d40_desc *_d;
  1212. /* Terminate all queued and active transfers */
  1213. d40_term_all(d40c);
  1214. /* Release client owned descriptors */
  1215. if (!list_empty(&d40c->client))
  1216. list_for_each_entry_safe(d, _d, &d40c->client, node) {
  1217. d40_pool_lli_free(d);
  1218. d40_desc_remove(d);
  1219. d40_desc_free(d40c, d);
  1220. }
  1221. if (phy == NULL) {
  1222. dev_err(&d40c->chan.dev->device, "[%s] phy == null\n",
  1223. __func__);
  1224. return -EINVAL;
  1225. }
  1226. if (phy->allocated_src == D40_ALLOC_FREE &&
  1227. phy->allocated_dst == D40_ALLOC_FREE) {
  1228. dev_err(&d40c->chan.dev->device, "[%s] channel already free\n",
  1229. __func__);
  1230. return -EINVAL;
  1231. }
  1232. if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
  1233. d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
  1234. event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
  1235. is_src = false;
  1236. } else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
  1237. event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
  1238. is_src = true;
  1239. } else {
  1240. dev_err(&d40c->chan.dev->device,
  1241. "[%s] Unknown direction\n", __func__);
  1242. return -EINVAL;
  1243. }
  1244. res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
  1245. if (res) {
  1246. dev_err(&d40c->chan.dev->device, "[%s] suspend failed\n",
  1247. __func__);
  1248. return res;
  1249. }
  1250. if (d40c->log_num != D40_PHY_CHAN) {
  1251. /* Release logical channel, deactivate the event line */
  1252. d40_config_set_event(d40c, false);
  1253. d40c->base->lookup_log_chans[d40c->log_num] = NULL;
  1254. /*
  1255. * Check if there are more logical allocation
  1256. * on this phy channel.
  1257. */
  1258. if (!d40_alloc_mask_free(phy, is_src, event)) {
  1259. /* Resume the other logical channels if any */
  1260. if (d40_chan_has_events(d40c)) {
  1261. res = d40_channel_execute_command(d40c,
  1262. D40_DMA_RUN);
  1263. if (res) {
  1264. dev_err(&d40c->chan.dev->device,
  1265. "[%s] Executing RUN command\n",
  1266. __func__);
  1267. return res;
  1268. }
  1269. }
  1270. return 0;
  1271. }
  1272. } else {
  1273. (void) d40_alloc_mask_free(phy, is_src, 0);
  1274. }
  1275. /* Release physical channel */
  1276. res = d40_channel_execute_command(d40c, D40_DMA_STOP);
  1277. if (res) {
  1278. dev_err(&d40c->chan.dev->device,
  1279. "[%s] Failed to stop channel\n", __func__);
  1280. return res;
  1281. }
  1282. d40c->phy_chan = NULL;
  1283. d40c->configured = false;
  1284. d40c->base->lookup_phy_chans[phy->num] = NULL;
  1285. return 0;
  1286. }
  1287. static bool d40_is_paused(struct d40_chan *d40c)
  1288. {
  1289. bool is_paused = false;
  1290. unsigned long flags;
  1291. void __iomem *active_reg;
  1292. u32 status;
  1293. u32 event;
  1294. spin_lock_irqsave(&d40c->lock, flags);
  1295. if (d40c->log_num == D40_PHY_CHAN) {
  1296. if (d40c->phy_chan->num % 2 == 0)
  1297. active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
  1298. else
  1299. active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
  1300. status = (readl(active_reg) &
  1301. D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
  1302. D40_CHAN_POS(d40c->phy_chan->num);
  1303. if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
  1304. is_paused = true;
  1305. goto _exit;
  1306. }
  1307. if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
  1308. d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
  1309. event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
  1310. status = readl(d40c->base->virtbase + D40_DREG_PCBASE +
  1311. d40c->phy_chan->num * D40_DREG_PCDELTA +
  1312. D40_CHAN_REG_SDLNK);
  1313. } else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
  1314. event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
  1315. status = readl(d40c->base->virtbase + D40_DREG_PCBASE +
  1316. d40c->phy_chan->num * D40_DREG_PCDELTA +
  1317. D40_CHAN_REG_SSLNK);
  1318. } else {
  1319. dev_err(&d40c->chan.dev->device,
  1320. "[%s] Unknown direction\n", __func__);
  1321. goto _exit;
  1322. }
  1323. status = (status & D40_EVENTLINE_MASK(event)) >>
  1324. D40_EVENTLINE_POS(event);
  1325. if (status != D40_DMA_RUN)
  1326. is_paused = true;
  1327. _exit:
  1328. spin_unlock_irqrestore(&d40c->lock, flags);
  1329. return is_paused;
  1330. }
  1331. static u32 stedma40_residue(struct dma_chan *chan)
  1332. {
  1333. struct d40_chan *d40c =
  1334. container_of(chan, struct d40_chan, chan);
  1335. u32 bytes_left;
  1336. unsigned long flags;
  1337. spin_lock_irqsave(&d40c->lock, flags);
  1338. bytes_left = d40_residue(d40c);
  1339. spin_unlock_irqrestore(&d40c->lock, flags);
  1340. return bytes_left;
  1341. }
  1342. struct dma_async_tx_descriptor *stedma40_memcpy_sg(struct dma_chan *chan,
  1343. struct scatterlist *sgl_dst,
  1344. struct scatterlist *sgl_src,
  1345. unsigned int sgl_len,
  1346. unsigned long dma_flags)
  1347. {
  1348. int res;
  1349. struct d40_desc *d40d;
  1350. struct d40_chan *d40c = container_of(chan, struct d40_chan,
  1351. chan);
  1352. unsigned long flags;
  1353. if (d40c->phy_chan == NULL) {
  1354. dev_err(&d40c->chan.dev->device,
  1355. "[%s] Unallocated channel.\n", __func__);
  1356. return ERR_PTR(-EINVAL);
  1357. }
  1358. spin_lock_irqsave(&d40c->lock, flags);
  1359. d40d = d40_desc_get(d40c);
  1360. if (d40d == NULL)
  1361. goto err;
  1362. d40d->lli_len = sgl_len;
  1363. d40d->lli_current = 0;
  1364. d40d->txd.flags = dma_flags;
  1365. if (d40c->log_num != D40_PHY_CHAN) {
  1366. if (d40_pool_lli_alloc(d40d, sgl_len, true) < 0) {
  1367. dev_err(&d40c->chan.dev->device,
  1368. "[%s] Out of memory\n", __func__);
  1369. goto err;
  1370. }
  1371. (void) d40_log_sg_to_lli(sgl_src,
  1372. sgl_len,
  1373. d40d->lli_log.src,
  1374. d40c->log_def.lcsp1,
  1375. d40c->dma_cfg.src_info.data_width);
  1376. (void) d40_log_sg_to_lli(sgl_dst,
  1377. sgl_len,
  1378. d40d->lli_log.dst,
  1379. d40c->log_def.lcsp3,
  1380. d40c->dma_cfg.dst_info.data_width);
  1381. } else {
  1382. if (d40_pool_lli_alloc(d40d, sgl_len, false) < 0) {
  1383. dev_err(&d40c->chan.dev->device,
  1384. "[%s] Out of memory\n", __func__);
  1385. goto err;
  1386. }
  1387. res = d40_phy_sg_to_lli(sgl_src,
  1388. sgl_len,
  1389. 0,
  1390. d40d->lli_phy.src,
  1391. virt_to_phys(d40d->lli_phy.src),
  1392. d40c->src_def_cfg,
  1393. d40c->dma_cfg.src_info.data_width,
  1394. d40c->dma_cfg.src_info.psize);
  1395. if (res < 0)
  1396. goto err;
  1397. res = d40_phy_sg_to_lli(sgl_dst,
  1398. sgl_len,
  1399. 0,
  1400. d40d->lli_phy.dst,
  1401. virt_to_phys(d40d->lli_phy.dst),
  1402. d40c->dst_def_cfg,
  1403. d40c->dma_cfg.dst_info.data_width,
  1404. d40c->dma_cfg.dst_info.psize);
  1405. if (res < 0)
  1406. goto err;
  1407. (void) dma_map_single(d40c->base->dev, d40d->lli_phy.src,
  1408. d40d->lli_pool.size, DMA_TO_DEVICE);
  1409. }
  1410. dma_async_tx_descriptor_init(&d40d->txd, chan);
  1411. d40d->txd.tx_submit = d40_tx_submit;
  1412. spin_unlock_irqrestore(&d40c->lock, flags);
  1413. return &d40d->txd;
  1414. err:
  1415. if (d40d)
  1416. d40_desc_free(d40c, d40d);
  1417. spin_unlock_irqrestore(&d40c->lock, flags);
  1418. return NULL;
  1419. }
  1420. EXPORT_SYMBOL(stedma40_memcpy_sg);
  1421. bool stedma40_filter(struct dma_chan *chan, void *data)
  1422. {
  1423. struct stedma40_chan_cfg *info = data;
  1424. struct d40_chan *d40c =
  1425. container_of(chan, struct d40_chan, chan);
  1426. int err;
  1427. if (data) {
  1428. err = d40_validate_conf(d40c, info);
  1429. if (!err)
  1430. d40c->dma_cfg = *info;
  1431. } else
  1432. err = d40_config_memcpy(d40c);
  1433. if (!err)
  1434. d40c->configured = true;
  1435. return err == 0;
  1436. }
  1437. EXPORT_SYMBOL(stedma40_filter);
  1438. /* DMA ENGINE functions */
  1439. static int d40_alloc_chan_resources(struct dma_chan *chan)
  1440. {
  1441. int err;
  1442. unsigned long flags;
  1443. struct d40_chan *d40c =
  1444. container_of(chan, struct d40_chan, chan);
  1445. bool is_free_phy;
  1446. spin_lock_irqsave(&d40c->lock, flags);
  1447. d40c->completed = chan->cookie = 1;
  1448. /* If no dma configuration is set use default configuration (memcpy) */
  1449. if (!d40c->configured) {
  1450. err = d40_config_memcpy(d40c);
  1451. if (err) {
  1452. dev_err(&d40c->chan.dev->device,
  1453. "[%s] Failed to configure memcpy channel\n",
  1454. __func__);
  1455. goto fail;
  1456. }
  1457. }
  1458. is_free_phy = (d40c->phy_chan == NULL);
  1459. err = d40_allocate_channel(d40c);
  1460. if (err) {
  1461. dev_err(&d40c->chan.dev->device,
  1462. "[%s] Failed to allocate channel\n", __func__);
  1463. goto fail;
  1464. }
  1465. /* Fill in basic CFG register values */
  1466. d40_phy_cfg(&d40c->dma_cfg, &d40c->src_def_cfg,
  1467. &d40c->dst_def_cfg, d40c->log_num != D40_PHY_CHAN);
  1468. if (d40c->log_num != D40_PHY_CHAN) {
  1469. d40_log_cfg(&d40c->dma_cfg,
  1470. &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
  1471. if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM)
  1472. d40c->lcpa = d40c->base->lcpa_base +
  1473. d40c->dma_cfg.src_dev_type * D40_LCPA_CHAN_SIZE;
  1474. else
  1475. d40c->lcpa = d40c->base->lcpa_base +
  1476. d40c->dma_cfg.dst_dev_type *
  1477. D40_LCPA_CHAN_SIZE + D40_LCPA_CHAN_DST_DELTA;
  1478. }
  1479. /*
  1480. * Only write channel configuration to the DMA if the physical
  1481. * resource is free. In case of multiple logical channels
  1482. * on the same physical resource, only the first write is necessary.
  1483. */
  1484. if (is_free_phy)
  1485. d40_config_write(d40c);
  1486. fail:
  1487. spin_unlock_irqrestore(&d40c->lock, flags);
  1488. return err;
  1489. }
  1490. static void d40_free_chan_resources(struct dma_chan *chan)
  1491. {
  1492. struct d40_chan *d40c =
  1493. container_of(chan, struct d40_chan, chan);
  1494. int err;
  1495. unsigned long flags;
  1496. if (d40c->phy_chan == NULL) {
  1497. dev_err(&d40c->chan.dev->device,
  1498. "[%s] Cannot free unallocated channel\n", __func__);
  1499. return;
  1500. }
  1501. spin_lock_irqsave(&d40c->lock, flags);
  1502. err = d40_free_dma(d40c);
  1503. if (err)
  1504. dev_err(&d40c->chan.dev->device,
  1505. "[%s] Failed to free channel\n", __func__);
  1506. spin_unlock_irqrestore(&d40c->lock, flags);
  1507. }
  1508. static struct dma_async_tx_descriptor *d40_prep_memcpy(struct dma_chan *chan,
  1509. dma_addr_t dst,
  1510. dma_addr_t src,
  1511. size_t size,
  1512. unsigned long dma_flags)
  1513. {
  1514. struct d40_desc *d40d;
  1515. struct d40_chan *d40c = container_of(chan, struct d40_chan,
  1516. chan);
  1517. unsigned long flags;
  1518. int err = 0;
  1519. if (d40c->phy_chan == NULL) {
  1520. dev_err(&d40c->chan.dev->device,
  1521. "[%s] Channel is not allocated.\n", __func__);
  1522. return ERR_PTR(-EINVAL);
  1523. }
  1524. spin_lock_irqsave(&d40c->lock, flags);
  1525. d40d = d40_desc_get(d40c);
  1526. if (d40d == NULL) {
  1527. dev_err(&d40c->chan.dev->device,
  1528. "[%s] Descriptor is NULL\n", __func__);
  1529. goto err;
  1530. }
  1531. d40d->txd.flags = dma_flags;
  1532. dma_async_tx_descriptor_init(&d40d->txd, chan);
  1533. d40d->txd.tx_submit = d40_tx_submit;
  1534. if (d40c->log_num != D40_PHY_CHAN) {
  1535. if (d40_pool_lli_alloc(d40d, 1, true) < 0) {
  1536. dev_err(&d40c->chan.dev->device,
  1537. "[%s] Out of memory\n", __func__);
  1538. goto err;
  1539. }
  1540. d40d->lli_len = 1;
  1541. d40d->lli_current = 0;
  1542. d40_log_fill_lli(d40d->lli_log.src,
  1543. src,
  1544. size,
  1545. d40c->log_def.lcsp1,
  1546. d40c->dma_cfg.src_info.data_width,
  1547. true);
  1548. d40_log_fill_lli(d40d->lli_log.dst,
  1549. dst,
  1550. size,
  1551. d40c->log_def.lcsp3,
  1552. d40c->dma_cfg.dst_info.data_width,
  1553. true);
  1554. } else {
  1555. if (d40_pool_lli_alloc(d40d, 1, false) < 0) {
  1556. dev_err(&d40c->chan.dev->device,
  1557. "[%s] Out of memory\n", __func__);
  1558. goto err;
  1559. }
  1560. err = d40_phy_fill_lli(d40d->lli_phy.src,
  1561. src,
  1562. size,
  1563. d40c->dma_cfg.src_info.psize,
  1564. 0,
  1565. d40c->src_def_cfg,
  1566. true,
  1567. d40c->dma_cfg.src_info.data_width,
  1568. false);
  1569. if (err)
  1570. goto err_fill_lli;
  1571. err = d40_phy_fill_lli(d40d->lli_phy.dst,
  1572. dst,
  1573. size,
  1574. d40c->dma_cfg.dst_info.psize,
  1575. 0,
  1576. d40c->dst_def_cfg,
  1577. true,
  1578. d40c->dma_cfg.dst_info.data_width,
  1579. false);
  1580. if (err)
  1581. goto err_fill_lli;
  1582. (void) dma_map_single(d40c->base->dev, d40d->lli_phy.src,
  1583. d40d->lli_pool.size, DMA_TO_DEVICE);
  1584. }
  1585. spin_unlock_irqrestore(&d40c->lock, flags);
  1586. return &d40d->txd;
  1587. err_fill_lli:
  1588. dev_err(&d40c->chan.dev->device,
  1589. "[%s] Failed filling in PHY LLI\n", __func__);
  1590. err:
  1591. if (d40d)
  1592. d40_desc_free(d40c, d40d);
  1593. spin_unlock_irqrestore(&d40c->lock, flags);
  1594. return NULL;
  1595. }
  1596. static int d40_prep_slave_sg_log(struct d40_desc *d40d,
  1597. struct d40_chan *d40c,
  1598. struct scatterlist *sgl,
  1599. unsigned int sg_len,
  1600. enum dma_data_direction direction,
  1601. unsigned long dma_flags)
  1602. {
  1603. dma_addr_t dev_addr = 0;
  1604. int total_size;
  1605. if (d40_pool_lli_alloc(d40d, sg_len, true) < 0) {
  1606. dev_err(&d40c->chan.dev->device,
  1607. "[%s] Out of memory\n", __func__);
  1608. return -ENOMEM;
  1609. }
  1610. d40d->lli_len = sg_len;
  1611. d40d->lli_current = 0;
  1612. if (direction == DMA_FROM_DEVICE)
  1613. if (d40c->runtime_addr)
  1614. dev_addr = d40c->runtime_addr;
  1615. else
  1616. dev_addr = d40c->base->plat_data->dev_rx[d40c->dma_cfg.src_dev_type];
  1617. else if (direction == DMA_TO_DEVICE)
  1618. if (d40c->runtime_addr)
  1619. dev_addr = d40c->runtime_addr;
  1620. else
  1621. dev_addr = d40c->base->plat_data->dev_tx[d40c->dma_cfg.dst_dev_type];
  1622. else
  1623. return -EINVAL;
  1624. total_size = d40_log_sg_to_dev(sgl, sg_len,
  1625. &d40d->lli_log,
  1626. &d40c->log_def,
  1627. d40c->dma_cfg.src_info.data_width,
  1628. d40c->dma_cfg.dst_info.data_width,
  1629. direction,
  1630. dev_addr);
  1631. if (total_size < 0)
  1632. return -EINVAL;
  1633. return 0;
  1634. }
  1635. static int d40_prep_slave_sg_phy(struct d40_desc *d40d,
  1636. struct d40_chan *d40c,
  1637. struct scatterlist *sgl,
  1638. unsigned int sgl_len,
  1639. enum dma_data_direction direction,
  1640. unsigned long dma_flags)
  1641. {
  1642. dma_addr_t src_dev_addr;
  1643. dma_addr_t dst_dev_addr;
  1644. int res;
  1645. if (d40_pool_lli_alloc(d40d, sgl_len, false) < 0) {
  1646. dev_err(&d40c->chan.dev->device,
  1647. "[%s] Out of memory\n", __func__);
  1648. return -ENOMEM;
  1649. }
  1650. d40d->lli_len = sgl_len;
  1651. d40d->lli_current = 0;
  1652. if (direction == DMA_FROM_DEVICE) {
  1653. dst_dev_addr = 0;
  1654. if (d40c->runtime_addr)
  1655. src_dev_addr = d40c->runtime_addr;
  1656. else
  1657. src_dev_addr = d40c->base->plat_data->dev_rx[d40c->dma_cfg.src_dev_type];
  1658. } else if (direction == DMA_TO_DEVICE) {
  1659. if (d40c->runtime_addr)
  1660. dst_dev_addr = d40c->runtime_addr;
  1661. else
  1662. dst_dev_addr = d40c->base->plat_data->dev_tx[d40c->dma_cfg.dst_dev_type];
  1663. src_dev_addr = 0;
  1664. } else
  1665. return -EINVAL;
  1666. res = d40_phy_sg_to_lli(sgl,
  1667. sgl_len,
  1668. src_dev_addr,
  1669. d40d->lli_phy.src,
  1670. virt_to_phys(d40d->lli_phy.src),
  1671. d40c->src_def_cfg,
  1672. d40c->dma_cfg.src_info.data_width,
  1673. d40c->dma_cfg.src_info.psize);
  1674. if (res < 0)
  1675. return res;
  1676. res = d40_phy_sg_to_lli(sgl,
  1677. sgl_len,
  1678. dst_dev_addr,
  1679. d40d->lli_phy.dst,
  1680. virt_to_phys(d40d->lli_phy.dst),
  1681. d40c->dst_def_cfg,
  1682. d40c->dma_cfg.dst_info.data_width,
  1683. d40c->dma_cfg.dst_info.psize);
  1684. if (res < 0)
  1685. return res;
  1686. (void) dma_map_single(d40c->base->dev, d40d->lli_phy.src,
  1687. d40d->lli_pool.size, DMA_TO_DEVICE);
  1688. return 0;
  1689. }
  1690. static struct dma_async_tx_descriptor *d40_prep_slave_sg(struct dma_chan *chan,
  1691. struct scatterlist *sgl,
  1692. unsigned int sg_len,
  1693. enum dma_data_direction direction,
  1694. unsigned long dma_flags)
  1695. {
  1696. struct d40_desc *d40d;
  1697. struct d40_chan *d40c = container_of(chan, struct d40_chan,
  1698. chan);
  1699. unsigned long flags;
  1700. int err;
  1701. if (d40c->phy_chan == NULL) {
  1702. dev_err(&d40c->chan.dev->device,
  1703. "[%s] Cannot prepare unallocated channel\n", __func__);
  1704. return ERR_PTR(-EINVAL);
  1705. }
  1706. spin_lock_irqsave(&d40c->lock, flags);
  1707. d40d = d40_desc_get(d40c);
  1708. if (d40d == NULL)
  1709. goto err;
  1710. if (d40c->log_num != D40_PHY_CHAN)
  1711. err = d40_prep_slave_sg_log(d40d, d40c, sgl, sg_len,
  1712. direction, dma_flags);
  1713. else
  1714. err = d40_prep_slave_sg_phy(d40d, d40c, sgl, sg_len,
  1715. direction, dma_flags);
  1716. if (err) {
  1717. dev_err(&d40c->chan.dev->device,
  1718. "[%s] Failed to prepare %s slave sg job: %d\n",
  1719. __func__,
  1720. d40c->log_num != D40_PHY_CHAN ? "log" : "phy", err);
  1721. goto err;
  1722. }
  1723. d40d->txd.flags = dma_flags;
  1724. dma_async_tx_descriptor_init(&d40d->txd, chan);
  1725. d40d->txd.tx_submit = d40_tx_submit;
  1726. spin_unlock_irqrestore(&d40c->lock, flags);
  1727. return &d40d->txd;
  1728. err:
  1729. if (d40d)
  1730. d40_desc_free(d40c, d40d);
  1731. spin_unlock_irqrestore(&d40c->lock, flags);
  1732. return NULL;
  1733. }
  1734. static enum dma_status d40_tx_status(struct dma_chan *chan,
  1735. dma_cookie_t cookie,
  1736. struct dma_tx_state *txstate)
  1737. {
  1738. struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
  1739. dma_cookie_t last_used;
  1740. dma_cookie_t last_complete;
  1741. int ret;
  1742. if (d40c->phy_chan == NULL) {
  1743. dev_err(&d40c->chan.dev->device,
  1744. "[%s] Cannot read status of unallocated channel\n",
  1745. __func__);
  1746. return -EINVAL;
  1747. }
  1748. last_complete = d40c->completed;
  1749. last_used = chan->cookie;
  1750. if (d40_is_paused(d40c))
  1751. ret = DMA_PAUSED;
  1752. else
  1753. ret = dma_async_is_complete(cookie, last_complete, last_used);
  1754. dma_set_tx_state(txstate, last_complete, last_used,
  1755. stedma40_residue(chan));
  1756. return ret;
  1757. }
  1758. static void d40_issue_pending(struct dma_chan *chan)
  1759. {
  1760. struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
  1761. unsigned long flags;
  1762. if (d40c->phy_chan == NULL) {
  1763. dev_err(&d40c->chan.dev->device,
  1764. "[%s] Channel is not allocated!\n", __func__);
  1765. return;
  1766. }
  1767. spin_lock_irqsave(&d40c->lock, flags);
  1768. /* Busy means that pending jobs are already being processed */
  1769. if (!d40c->busy)
  1770. (void) d40_queue_start(d40c);
  1771. spin_unlock_irqrestore(&d40c->lock, flags);
  1772. }
  1773. /* Runtime reconfiguration extension */
  1774. static void d40_set_runtime_config(struct dma_chan *chan,
  1775. struct dma_slave_config *config)
  1776. {
  1777. struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
  1778. struct stedma40_chan_cfg *cfg = &d40c->dma_cfg;
  1779. enum dma_slave_buswidth config_addr_width;
  1780. dma_addr_t config_addr;
  1781. u32 config_maxburst;
  1782. enum stedma40_periph_data_width addr_width;
  1783. int psize;
  1784. if (config->direction == DMA_FROM_DEVICE) {
  1785. dma_addr_t dev_addr_rx =
  1786. d40c->base->plat_data->dev_rx[cfg->src_dev_type];
  1787. config_addr = config->src_addr;
  1788. if (dev_addr_rx)
  1789. dev_dbg(d40c->base->dev,
  1790. "channel has a pre-wired RX address %08x "
  1791. "overriding with %08x\n",
  1792. dev_addr_rx, config_addr);
  1793. if (cfg->dir != STEDMA40_PERIPH_TO_MEM)
  1794. dev_dbg(d40c->base->dev,
  1795. "channel was not configured for peripheral "
  1796. "to memory transfer (%d) overriding\n",
  1797. cfg->dir);
  1798. cfg->dir = STEDMA40_PERIPH_TO_MEM;
  1799. config_addr_width = config->src_addr_width;
  1800. config_maxburst = config->src_maxburst;
  1801. } else if (config->direction == DMA_TO_DEVICE) {
  1802. dma_addr_t dev_addr_tx =
  1803. d40c->base->plat_data->dev_tx[cfg->dst_dev_type];
  1804. config_addr = config->dst_addr;
  1805. if (dev_addr_tx)
  1806. dev_dbg(d40c->base->dev,
  1807. "channel has a pre-wired TX address %08x "
  1808. "overriding with %08x\n",
  1809. dev_addr_tx, config_addr);
  1810. if (cfg->dir != STEDMA40_MEM_TO_PERIPH)
  1811. dev_dbg(d40c->base->dev,
  1812. "channel was not configured for memory "
  1813. "to peripheral transfer (%d) overriding\n",
  1814. cfg->dir);
  1815. cfg->dir = STEDMA40_MEM_TO_PERIPH;
  1816. config_addr_width = config->dst_addr_width;
  1817. config_maxburst = config->dst_maxburst;
  1818. } else {
  1819. dev_err(d40c->base->dev,
  1820. "unrecognized channel direction %d\n",
  1821. config->direction);
  1822. return;
  1823. }
  1824. switch (config_addr_width) {
  1825. case DMA_SLAVE_BUSWIDTH_1_BYTE:
  1826. addr_width = STEDMA40_BYTE_WIDTH;
  1827. break;
  1828. case DMA_SLAVE_BUSWIDTH_2_BYTES:
  1829. addr_width = STEDMA40_HALFWORD_WIDTH;
  1830. break;
  1831. case DMA_SLAVE_BUSWIDTH_4_BYTES:
  1832. addr_width = STEDMA40_WORD_WIDTH;
  1833. break;
  1834. case DMA_SLAVE_BUSWIDTH_8_BYTES:
  1835. addr_width = STEDMA40_DOUBLEWORD_WIDTH;
  1836. break;
  1837. default:
  1838. dev_err(d40c->base->dev,
  1839. "illegal peripheral address width "
  1840. "requested (%d)\n",
  1841. config->src_addr_width);
  1842. return;
  1843. }
  1844. if (d40c->log_num != D40_PHY_CHAN) {
  1845. if (config_maxburst >= 16)
  1846. psize = STEDMA40_PSIZE_LOG_16;
  1847. else if (config_maxburst >= 8)
  1848. psize = STEDMA40_PSIZE_LOG_8;
  1849. else if (config_maxburst >= 4)
  1850. psize = STEDMA40_PSIZE_LOG_4;
  1851. else
  1852. psize = STEDMA40_PSIZE_LOG_1;
  1853. } else {
  1854. if (config_maxburst >= 16)
  1855. psize = STEDMA40_PSIZE_PHY_16;
  1856. else if (config_maxburst >= 8)
  1857. psize = STEDMA40_PSIZE_PHY_8;
  1858. else if (config_maxburst >= 4)
  1859. psize = STEDMA40_PSIZE_PHY_4;
  1860. else
  1861. psize = STEDMA40_PSIZE_PHY_1;
  1862. }
  1863. /* Set up all the endpoint configs */
  1864. cfg->src_info.data_width = addr_width;
  1865. cfg->src_info.psize = psize;
  1866. cfg->src_info.big_endian = false;
  1867. cfg->src_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL;
  1868. cfg->dst_info.data_width = addr_width;
  1869. cfg->dst_info.psize = psize;
  1870. cfg->dst_info.big_endian = false;
  1871. cfg->dst_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL;
  1872. /* Fill in register values */
  1873. if (d40c->log_num != D40_PHY_CHAN)
  1874. d40_log_cfg(cfg, &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
  1875. else
  1876. d40_phy_cfg(cfg, &d40c->src_def_cfg,
  1877. &d40c->dst_def_cfg, false);
  1878. /* These settings will take precedence later */
  1879. d40c->runtime_addr = config_addr;
  1880. d40c->runtime_direction = config->direction;
  1881. dev_dbg(d40c->base->dev,
  1882. "configured channel %s for %s, data width %d, "
  1883. "maxburst %d bytes, LE, no flow control\n",
  1884. dma_chan_name(chan),
  1885. (config->direction == DMA_FROM_DEVICE) ? "RX" : "TX",
  1886. config_addr_width,
  1887. config_maxburst);
  1888. }
  1889. static int d40_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
  1890. unsigned long arg)
  1891. {
  1892. unsigned long flags;
  1893. struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
  1894. if (d40c->phy_chan == NULL) {
  1895. dev_err(&d40c->chan.dev->device,
  1896. "[%s] Channel is not allocated!\n", __func__);
  1897. return -EINVAL;
  1898. }
  1899. switch (cmd) {
  1900. case DMA_TERMINATE_ALL:
  1901. spin_lock_irqsave(&d40c->lock, flags);
  1902. d40_term_all(d40c);
  1903. spin_unlock_irqrestore(&d40c->lock, flags);
  1904. return 0;
  1905. case DMA_PAUSE:
  1906. return d40_pause(chan);
  1907. case DMA_RESUME:
  1908. return d40_resume(chan);
  1909. case DMA_SLAVE_CONFIG:
  1910. d40_set_runtime_config(chan,
  1911. (struct dma_slave_config *) arg);
  1912. return 0;
  1913. default:
  1914. break;
  1915. }
  1916. /* Other commands are unimplemented */
  1917. return -ENXIO;
  1918. }
  1919. /* Initialization functions */
  1920. static void __init d40_chan_init(struct d40_base *base, struct dma_device *dma,
  1921. struct d40_chan *chans, int offset,
  1922. int num_chans)
  1923. {
  1924. int i = 0;
  1925. struct d40_chan *d40c;
  1926. INIT_LIST_HEAD(&dma->channels);
  1927. for (i = offset; i < offset + num_chans; i++) {
  1928. d40c = &chans[i];
  1929. d40c->base = base;
  1930. d40c->chan.device = dma;
  1931. spin_lock_init(&d40c->lock);
  1932. d40c->log_num = D40_PHY_CHAN;
  1933. INIT_LIST_HEAD(&d40c->active);
  1934. INIT_LIST_HEAD(&d40c->queue);
  1935. INIT_LIST_HEAD(&d40c->client);
  1936. tasklet_init(&d40c->tasklet, dma_tasklet,
  1937. (unsigned long) d40c);
  1938. list_add_tail(&d40c->chan.device_node,
  1939. &dma->channels);
  1940. }
  1941. }
  1942. static int __init d40_dmaengine_init(struct d40_base *base,
  1943. int num_reserved_chans)
  1944. {
  1945. int err ;
  1946. d40_chan_init(base, &base->dma_slave, base->log_chans,
  1947. 0, base->num_log_chans);
  1948. dma_cap_zero(base->dma_slave.cap_mask);
  1949. dma_cap_set(DMA_SLAVE, base->dma_slave.cap_mask);
  1950. base->dma_slave.device_alloc_chan_resources = d40_alloc_chan_resources;
  1951. base->dma_slave.device_free_chan_resources = d40_free_chan_resources;
  1952. base->dma_slave.device_prep_dma_memcpy = d40_prep_memcpy;
  1953. base->dma_slave.device_prep_slave_sg = d40_prep_slave_sg;
  1954. base->dma_slave.device_tx_status = d40_tx_status;
  1955. base->dma_slave.device_issue_pending = d40_issue_pending;
  1956. base->dma_slave.device_control = d40_control;
  1957. base->dma_slave.dev = base->dev;
  1958. err = dma_async_device_register(&base->dma_slave);
  1959. if (err) {
  1960. dev_err(base->dev,
  1961. "[%s] Failed to register slave channels\n",
  1962. __func__);
  1963. goto failure1;
  1964. }
  1965. d40_chan_init(base, &base->dma_memcpy, base->log_chans,
  1966. base->num_log_chans, base->plat_data->memcpy_len);
  1967. dma_cap_zero(base->dma_memcpy.cap_mask);
  1968. dma_cap_set(DMA_MEMCPY, base->dma_memcpy.cap_mask);
  1969. base->dma_memcpy.device_alloc_chan_resources = d40_alloc_chan_resources;
  1970. base->dma_memcpy.device_free_chan_resources = d40_free_chan_resources;
  1971. base->dma_memcpy.device_prep_dma_memcpy = d40_prep_memcpy;
  1972. base->dma_memcpy.device_prep_slave_sg = d40_prep_slave_sg;
  1973. base->dma_memcpy.device_tx_status = d40_tx_status;
  1974. base->dma_memcpy.device_issue_pending = d40_issue_pending;
  1975. base->dma_memcpy.device_control = d40_control;
  1976. base->dma_memcpy.dev = base->dev;
  1977. /*
  1978. * This controller can only access address at even
  1979. * 32bit boundaries, i.e. 2^2
  1980. */
  1981. base->dma_memcpy.copy_align = 2;
  1982. err = dma_async_device_register(&base->dma_memcpy);
  1983. if (err) {
  1984. dev_err(base->dev,
  1985. "[%s] Failed to regsiter memcpy only channels\n",
  1986. __func__);
  1987. goto failure2;
  1988. }
  1989. d40_chan_init(base, &base->dma_both, base->phy_chans,
  1990. 0, num_reserved_chans);
  1991. dma_cap_zero(base->dma_both.cap_mask);
  1992. dma_cap_set(DMA_SLAVE, base->dma_both.cap_mask);
  1993. dma_cap_set(DMA_MEMCPY, base->dma_both.cap_mask);
  1994. base->dma_both.device_alloc_chan_resources = d40_alloc_chan_resources;
  1995. base->dma_both.device_free_chan_resources = d40_free_chan_resources;
  1996. base->dma_both.device_prep_dma_memcpy = d40_prep_memcpy;
  1997. base->dma_both.device_prep_slave_sg = d40_prep_slave_sg;
  1998. base->dma_both.device_tx_status = d40_tx_status;
  1999. base->dma_both.device_issue_pending = d40_issue_pending;
  2000. base->dma_both.device_control = d40_control;
  2001. base->dma_both.dev = base->dev;
  2002. base->dma_both.copy_align = 2;
  2003. err = dma_async_device_register(&base->dma_both);
  2004. if (err) {
  2005. dev_err(base->dev,
  2006. "[%s] Failed to register logical and physical capable channels\n",
  2007. __func__);
  2008. goto failure3;
  2009. }
  2010. return 0;
  2011. failure3:
  2012. dma_async_device_unregister(&base->dma_memcpy);
  2013. failure2:
  2014. dma_async_device_unregister(&base->dma_slave);
  2015. failure1:
  2016. return err;
  2017. }
  2018. /* Initialization functions. */
  2019. static int __init d40_phy_res_init(struct d40_base *base)
  2020. {
  2021. int i;
  2022. int num_phy_chans_avail = 0;
  2023. u32 val[2];
  2024. int odd_even_bit = -2;
  2025. val[0] = readl(base->virtbase + D40_DREG_PRSME);
  2026. val[1] = readl(base->virtbase + D40_DREG_PRSMO);
  2027. for (i = 0; i < base->num_phy_chans; i++) {
  2028. base->phy_res[i].num = i;
  2029. odd_even_bit += 2 * ((i % 2) == 0);
  2030. if (((val[i % 2] >> odd_even_bit) & 3) == 1) {
  2031. /* Mark security only channels as occupied */
  2032. base->phy_res[i].allocated_src = D40_ALLOC_PHY;
  2033. base->phy_res[i].allocated_dst = D40_ALLOC_PHY;
  2034. } else {
  2035. base->phy_res[i].allocated_src = D40_ALLOC_FREE;
  2036. base->phy_res[i].allocated_dst = D40_ALLOC_FREE;
  2037. num_phy_chans_avail++;
  2038. }
  2039. spin_lock_init(&base->phy_res[i].lock);
  2040. }
  2041. /* Mark disabled channels as occupied */
  2042. for (i = 0; base->plat_data->disabled_channels[i] != -1; i++) {
  2043. int chan = base->plat_data->disabled_channels[i];
  2044. base->phy_res[chan].allocated_src = D40_ALLOC_PHY;
  2045. base->phy_res[chan].allocated_dst = D40_ALLOC_PHY;
  2046. num_phy_chans_avail--;
  2047. }
  2048. dev_info(base->dev, "%d of %d physical DMA channels available\n",
  2049. num_phy_chans_avail, base->num_phy_chans);
  2050. /* Verify settings extended vs standard */
  2051. val[0] = readl(base->virtbase + D40_DREG_PRTYP);
  2052. for (i = 0; i < base->num_phy_chans; i++) {
  2053. if (base->phy_res[i].allocated_src == D40_ALLOC_FREE &&
  2054. (val[0] & 0x3) != 1)
  2055. dev_info(base->dev,
  2056. "[%s] INFO: channel %d is misconfigured (%d)\n",
  2057. __func__, i, val[0] & 0x3);
  2058. val[0] = val[0] >> 2;
  2059. }
  2060. return num_phy_chans_avail;
  2061. }
  2062. static struct d40_base * __init d40_hw_detect_init(struct platform_device *pdev)
  2063. {
  2064. static const struct d40_reg_val dma_id_regs[] = {
  2065. /* Peripheral Id */
  2066. { .reg = D40_DREG_PERIPHID0, .val = 0x0040},
  2067. { .reg = D40_DREG_PERIPHID1, .val = 0x0000},
  2068. /*
  2069. * D40_DREG_PERIPHID2 Depends on HW revision:
  2070. * MOP500/HREF ED has 0x0008,
  2071. * ? has 0x0018,
  2072. * HREF V1 has 0x0028
  2073. */
  2074. { .reg = D40_DREG_PERIPHID3, .val = 0x0000},
  2075. /* PCell Id */
  2076. { .reg = D40_DREG_CELLID0, .val = 0x000d},
  2077. { .reg = D40_DREG_CELLID1, .val = 0x00f0},
  2078. { .reg = D40_DREG_CELLID2, .val = 0x0005},
  2079. { .reg = D40_DREG_CELLID3, .val = 0x00b1}
  2080. };
  2081. struct stedma40_platform_data *plat_data;
  2082. struct clk *clk = NULL;
  2083. void __iomem *virtbase = NULL;
  2084. struct resource *res = NULL;
  2085. struct d40_base *base = NULL;
  2086. int num_log_chans = 0;
  2087. int num_phy_chans;
  2088. int i;
  2089. u32 val;
  2090. u32 rev;
  2091. clk = clk_get(&pdev->dev, NULL);
  2092. if (IS_ERR(clk)) {
  2093. dev_err(&pdev->dev, "[%s] No matching clock found\n",
  2094. __func__);
  2095. goto failure;
  2096. }
  2097. clk_enable(clk);
  2098. /* Get IO for DMAC base address */
  2099. res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "base");
  2100. if (!res)
  2101. goto failure;
  2102. if (request_mem_region(res->start, resource_size(res),
  2103. D40_NAME " I/O base") == NULL)
  2104. goto failure;
  2105. virtbase = ioremap(res->start, resource_size(res));
  2106. if (!virtbase)
  2107. goto failure;
  2108. /* HW version check */
  2109. for (i = 0; i < ARRAY_SIZE(dma_id_regs); i++) {
  2110. if (dma_id_regs[i].val !=
  2111. readl(virtbase + dma_id_regs[i].reg)) {
  2112. dev_err(&pdev->dev,
  2113. "[%s] Unknown hardware! Expected 0x%x at 0x%x but got 0x%x\n",
  2114. __func__,
  2115. dma_id_regs[i].val,
  2116. dma_id_regs[i].reg,
  2117. readl(virtbase + dma_id_regs[i].reg));
  2118. goto failure;
  2119. }
  2120. }
  2121. /* Get silicon revision and designer */
  2122. val = readl(virtbase + D40_DREG_PERIPHID2);
  2123. if ((val & D40_DREG_PERIPHID2_DESIGNER_MASK) !=
  2124. D40_HW_DESIGNER) {
  2125. dev_err(&pdev->dev,
  2126. "[%s] Unknown designer! Got %x wanted %x\n",
  2127. __func__, val & D40_DREG_PERIPHID2_DESIGNER_MASK,
  2128. D40_HW_DESIGNER);
  2129. goto failure;
  2130. }
  2131. rev = (val & D40_DREG_PERIPHID2_REV_MASK) >>
  2132. D40_DREG_PERIPHID2_REV_POS;
  2133. /* The number of physical channels on this HW */
  2134. num_phy_chans = 4 * (readl(virtbase + D40_DREG_ICFG) & 0x7) + 4;
  2135. dev_info(&pdev->dev, "hardware revision: %d @ 0x%x\n",
  2136. rev, res->start);
  2137. plat_data = pdev->dev.platform_data;
  2138. /* Count the number of logical channels in use */
  2139. for (i = 0; i < plat_data->dev_len; i++)
  2140. if (plat_data->dev_rx[i] != 0)
  2141. num_log_chans++;
  2142. for (i = 0; i < plat_data->dev_len; i++)
  2143. if (plat_data->dev_tx[i] != 0)
  2144. num_log_chans++;
  2145. base = kzalloc(ALIGN(sizeof(struct d40_base), 4) +
  2146. (num_phy_chans + num_log_chans + plat_data->memcpy_len) *
  2147. sizeof(struct d40_chan), GFP_KERNEL);
  2148. if (base == NULL) {
  2149. dev_err(&pdev->dev, "[%s] Out of memory\n", __func__);
  2150. goto failure;
  2151. }
  2152. base->rev = rev;
  2153. base->clk = clk;
  2154. base->num_phy_chans = num_phy_chans;
  2155. base->num_log_chans = num_log_chans;
  2156. base->phy_start = res->start;
  2157. base->phy_size = resource_size(res);
  2158. base->virtbase = virtbase;
  2159. base->plat_data = plat_data;
  2160. base->dev = &pdev->dev;
  2161. base->phy_chans = ((void *)base) + ALIGN(sizeof(struct d40_base), 4);
  2162. base->log_chans = &base->phy_chans[num_phy_chans];
  2163. base->phy_res = kzalloc(num_phy_chans * sizeof(struct d40_phy_res),
  2164. GFP_KERNEL);
  2165. if (!base->phy_res)
  2166. goto failure;
  2167. base->lookup_phy_chans = kzalloc(num_phy_chans *
  2168. sizeof(struct d40_chan *),
  2169. GFP_KERNEL);
  2170. if (!base->lookup_phy_chans)
  2171. goto failure;
  2172. if (num_log_chans + plat_data->memcpy_len) {
  2173. /*
  2174. * The max number of logical channels are event lines for all
  2175. * src devices and dst devices
  2176. */
  2177. base->lookup_log_chans = kzalloc(plat_data->dev_len * 2 *
  2178. sizeof(struct d40_chan *),
  2179. GFP_KERNEL);
  2180. if (!base->lookup_log_chans)
  2181. goto failure;
  2182. }
  2183. base->lcla_pool.alloc_map = kzalloc(num_phy_chans *
  2184. sizeof(struct d40_desc *) *
  2185. D40_LCLA_LINK_PER_EVENT_GRP,
  2186. GFP_KERNEL);
  2187. if (!base->lcla_pool.alloc_map)
  2188. goto failure;
  2189. base->desc_slab = kmem_cache_create(D40_NAME, sizeof(struct d40_desc),
  2190. 0, SLAB_HWCACHE_ALIGN,
  2191. NULL);
  2192. if (base->desc_slab == NULL)
  2193. goto failure;
  2194. return base;
  2195. failure:
  2196. if (!IS_ERR(clk)) {
  2197. clk_disable(clk);
  2198. clk_put(clk);
  2199. }
  2200. if (virtbase)
  2201. iounmap(virtbase);
  2202. if (res)
  2203. release_mem_region(res->start,
  2204. resource_size(res));
  2205. if (virtbase)
  2206. iounmap(virtbase);
  2207. if (base) {
  2208. kfree(base->lcla_pool.alloc_map);
  2209. kfree(base->lookup_log_chans);
  2210. kfree(base->lookup_phy_chans);
  2211. kfree(base->phy_res);
  2212. kfree(base);
  2213. }
  2214. return NULL;
  2215. }
  2216. static void __init d40_hw_init(struct d40_base *base)
  2217. {
  2218. static const struct d40_reg_val dma_init_reg[] = {
  2219. /* Clock every part of the DMA block from start */
  2220. { .reg = D40_DREG_GCC, .val = 0x0000ff01},
  2221. /* Interrupts on all logical channels */
  2222. { .reg = D40_DREG_LCMIS0, .val = 0xFFFFFFFF},
  2223. { .reg = D40_DREG_LCMIS1, .val = 0xFFFFFFFF},
  2224. { .reg = D40_DREG_LCMIS2, .val = 0xFFFFFFFF},
  2225. { .reg = D40_DREG_LCMIS3, .val = 0xFFFFFFFF},
  2226. { .reg = D40_DREG_LCICR0, .val = 0xFFFFFFFF},
  2227. { .reg = D40_DREG_LCICR1, .val = 0xFFFFFFFF},
  2228. { .reg = D40_DREG_LCICR2, .val = 0xFFFFFFFF},
  2229. { .reg = D40_DREG_LCICR3, .val = 0xFFFFFFFF},
  2230. { .reg = D40_DREG_LCTIS0, .val = 0xFFFFFFFF},
  2231. { .reg = D40_DREG_LCTIS1, .val = 0xFFFFFFFF},
  2232. { .reg = D40_DREG_LCTIS2, .val = 0xFFFFFFFF},
  2233. { .reg = D40_DREG_LCTIS3, .val = 0xFFFFFFFF}
  2234. };
  2235. int i;
  2236. u32 prmseo[2] = {0, 0};
  2237. u32 activeo[2] = {0xFFFFFFFF, 0xFFFFFFFF};
  2238. u32 pcmis = 0;
  2239. u32 pcicr = 0;
  2240. for (i = 0; i < ARRAY_SIZE(dma_init_reg); i++)
  2241. writel(dma_init_reg[i].val,
  2242. base->virtbase + dma_init_reg[i].reg);
  2243. /* Configure all our dma channels to default settings */
  2244. for (i = 0; i < base->num_phy_chans; i++) {
  2245. activeo[i % 2] = activeo[i % 2] << 2;
  2246. if (base->phy_res[base->num_phy_chans - i - 1].allocated_src
  2247. == D40_ALLOC_PHY) {
  2248. activeo[i % 2] |= 3;
  2249. continue;
  2250. }
  2251. /* Enable interrupt # */
  2252. pcmis = (pcmis << 1) | 1;
  2253. /* Clear interrupt # */
  2254. pcicr = (pcicr << 1) | 1;
  2255. /* Set channel to physical mode */
  2256. prmseo[i % 2] = prmseo[i % 2] << 2;
  2257. prmseo[i % 2] |= 1;
  2258. }
  2259. writel(prmseo[1], base->virtbase + D40_DREG_PRMSE);
  2260. writel(prmseo[0], base->virtbase + D40_DREG_PRMSO);
  2261. writel(activeo[1], base->virtbase + D40_DREG_ACTIVE);
  2262. writel(activeo[0], base->virtbase + D40_DREG_ACTIVO);
  2263. /* Write which interrupt to enable */
  2264. writel(pcmis, base->virtbase + D40_DREG_PCMIS);
  2265. /* Write which interrupt to clear */
  2266. writel(pcicr, base->virtbase + D40_DREG_PCICR);
  2267. }
  2268. static int __init d40_lcla_allocate(struct d40_base *base)
  2269. {
  2270. unsigned long *page_list;
  2271. int i, j;
  2272. int ret = 0;
  2273. /*
  2274. * This is somewhat ugly. We need 8192 bytes that are 18 bit aligned,
  2275. * To full fill this hardware requirement without wasting 256 kb
  2276. * we allocate pages until we get an aligned one.
  2277. */
  2278. page_list = kmalloc(sizeof(unsigned long) * MAX_LCLA_ALLOC_ATTEMPTS,
  2279. GFP_KERNEL);
  2280. if (!page_list) {
  2281. ret = -ENOMEM;
  2282. goto failure;
  2283. }
  2284. /* Calculating how many pages that are required */
  2285. base->lcla_pool.pages = SZ_1K * base->num_phy_chans / PAGE_SIZE;
  2286. for (i = 0; i < MAX_LCLA_ALLOC_ATTEMPTS; i++) {
  2287. page_list[i] = __get_free_pages(GFP_KERNEL,
  2288. base->lcla_pool.pages);
  2289. if (!page_list[i]) {
  2290. dev_err(base->dev,
  2291. "[%s] Failed to allocate %d pages.\n",
  2292. __func__, base->lcla_pool.pages);
  2293. for (j = 0; j < i; j++)
  2294. free_pages(page_list[j], base->lcla_pool.pages);
  2295. goto failure;
  2296. }
  2297. if ((virt_to_phys((void *)page_list[i]) &
  2298. (LCLA_ALIGNMENT - 1)) == 0)
  2299. break;
  2300. }
  2301. for (j = 0; j < i; j++)
  2302. free_pages(page_list[j], base->lcla_pool.pages);
  2303. if (i < MAX_LCLA_ALLOC_ATTEMPTS) {
  2304. base->lcla_pool.base = (void *)page_list[i];
  2305. } else {
  2306. /*
  2307. * After many attempts and no succees with finding the correct
  2308. * alignment, try with allocating a big buffer.
  2309. */
  2310. dev_warn(base->dev,
  2311. "[%s] Failed to get %d pages @ 18 bit align.\n",
  2312. __func__, base->lcla_pool.pages);
  2313. base->lcla_pool.base_unaligned = kmalloc(SZ_1K *
  2314. base->num_phy_chans +
  2315. LCLA_ALIGNMENT,
  2316. GFP_KERNEL);
  2317. if (!base->lcla_pool.base_unaligned) {
  2318. ret = -ENOMEM;
  2319. goto failure;
  2320. }
  2321. base->lcla_pool.base = PTR_ALIGN(base->lcla_pool.base_unaligned,
  2322. LCLA_ALIGNMENT);
  2323. }
  2324. writel(virt_to_phys(base->lcla_pool.base),
  2325. base->virtbase + D40_DREG_LCLA);
  2326. failure:
  2327. kfree(page_list);
  2328. return ret;
  2329. }
  2330. static int __init d40_probe(struct platform_device *pdev)
  2331. {
  2332. int err;
  2333. int ret = -ENOENT;
  2334. struct d40_base *base;
  2335. struct resource *res = NULL;
  2336. int num_reserved_chans;
  2337. u32 val;
  2338. base = d40_hw_detect_init(pdev);
  2339. if (!base)
  2340. goto failure;
  2341. num_reserved_chans = d40_phy_res_init(base);
  2342. platform_set_drvdata(pdev, base);
  2343. spin_lock_init(&base->interrupt_lock);
  2344. spin_lock_init(&base->execmd_lock);
  2345. /* Get IO for logical channel parameter address */
  2346. res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "lcpa");
  2347. if (!res) {
  2348. ret = -ENOENT;
  2349. dev_err(&pdev->dev,
  2350. "[%s] No \"lcpa\" memory resource\n",
  2351. __func__);
  2352. goto failure;
  2353. }
  2354. base->lcpa_size = resource_size(res);
  2355. base->phy_lcpa = res->start;
  2356. if (request_mem_region(res->start, resource_size(res),
  2357. D40_NAME " I/O lcpa") == NULL) {
  2358. ret = -EBUSY;
  2359. dev_err(&pdev->dev,
  2360. "[%s] Failed to request LCPA region 0x%x-0x%x\n",
  2361. __func__, res->start, res->end);
  2362. goto failure;
  2363. }
  2364. /* We make use of ESRAM memory for this. */
  2365. val = readl(base->virtbase + D40_DREG_LCPA);
  2366. if (res->start != val && val != 0) {
  2367. dev_warn(&pdev->dev,
  2368. "[%s] Mismatch LCPA dma 0x%x, def 0x%x\n",
  2369. __func__, val, res->start);
  2370. } else
  2371. writel(res->start, base->virtbase + D40_DREG_LCPA);
  2372. base->lcpa_base = ioremap(res->start, resource_size(res));
  2373. if (!base->lcpa_base) {
  2374. ret = -ENOMEM;
  2375. dev_err(&pdev->dev,
  2376. "[%s] Failed to ioremap LCPA region\n",
  2377. __func__);
  2378. goto failure;
  2379. }
  2380. ret = d40_lcla_allocate(base);
  2381. if (ret) {
  2382. dev_err(&pdev->dev, "[%s] Failed to allocate LCLA area\n",
  2383. __func__);
  2384. goto failure;
  2385. }
  2386. spin_lock_init(&base->lcla_pool.lock);
  2387. base->irq = platform_get_irq(pdev, 0);
  2388. ret = request_irq(base->irq, d40_handle_interrupt, 0, D40_NAME, base);
  2389. if (ret) {
  2390. dev_err(&pdev->dev, "[%s] No IRQ defined\n", __func__);
  2391. goto failure;
  2392. }
  2393. err = d40_dmaengine_init(base, num_reserved_chans);
  2394. if (err)
  2395. goto failure;
  2396. d40_hw_init(base);
  2397. dev_info(base->dev, "initialized\n");
  2398. return 0;
  2399. failure:
  2400. if (base) {
  2401. if (base->desc_slab)
  2402. kmem_cache_destroy(base->desc_slab);
  2403. if (base->virtbase)
  2404. iounmap(base->virtbase);
  2405. if (!base->lcla_pool.base_unaligned && base->lcla_pool.base)
  2406. free_pages((unsigned long)base->lcla_pool.base,
  2407. base->lcla_pool.pages);
  2408. kfree(base->lcla_pool.base_unaligned);
  2409. if (base->phy_lcpa)
  2410. release_mem_region(base->phy_lcpa,
  2411. base->lcpa_size);
  2412. if (base->phy_start)
  2413. release_mem_region(base->phy_start,
  2414. base->phy_size);
  2415. if (base->clk) {
  2416. clk_disable(base->clk);
  2417. clk_put(base->clk);
  2418. }
  2419. kfree(base->lcla_pool.alloc_map);
  2420. kfree(base->lookup_log_chans);
  2421. kfree(base->lookup_phy_chans);
  2422. kfree(base->phy_res);
  2423. kfree(base);
  2424. }
  2425. dev_err(&pdev->dev, "[%s] probe failed\n", __func__);
  2426. return ret;
  2427. }
  2428. static struct platform_driver d40_driver = {
  2429. .driver = {
  2430. .owner = THIS_MODULE,
  2431. .name = D40_NAME,
  2432. },
  2433. };
  2434. int __init stedma40_init(void)
  2435. {
  2436. return platform_driver_probe(&d40_driver, d40_probe);
  2437. }
  2438. arch_initcall(stedma40_init);