intel_pm.c 124 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458
  1. /*
  2. * Copyright © 2012 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eugeni Dodonov <eugeni.dodonov@intel.com>
  25. *
  26. */
  27. #include <linux/cpufreq.h>
  28. #include "i915_drv.h"
  29. #include "intel_drv.h"
  30. #include "../../../platform/x86/intel_ips.h"
  31. #include <linux/module.h>
  32. #define FORCEWAKE_ACK_TIMEOUT_MS 2
  33. /* FBC, or Frame Buffer Compression, is a technique employed to compress the
  34. * framebuffer contents in-memory, aiming at reducing the required bandwidth
  35. * during in-memory transfers and, therefore, reduce the power packet.
  36. *
  37. * The benefits of FBC are mostly visible with solid backgrounds and
  38. * variation-less patterns.
  39. *
  40. * FBC-related functionality can be enabled by the means of the
  41. * i915.i915_enable_fbc parameter
  42. */
  43. static bool intel_crtc_active(struct drm_crtc *crtc)
  44. {
  45. /* Be paranoid as we can arrive here with only partial
  46. * state retrieved from the hardware during setup.
  47. */
  48. return to_intel_crtc(crtc)->active && crtc->fb && crtc->mode.clock;
  49. }
  50. static void i8xx_disable_fbc(struct drm_device *dev)
  51. {
  52. struct drm_i915_private *dev_priv = dev->dev_private;
  53. u32 fbc_ctl;
  54. /* Disable compression */
  55. fbc_ctl = I915_READ(FBC_CONTROL);
  56. if ((fbc_ctl & FBC_CTL_EN) == 0)
  57. return;
  58. fbc_ctl &= ~FBC_CTL_EN;
  59. I915_WRITE(FBC_CONTROL, fbc_ctl);
  60. /* Wait for compressing bit to clear */
  61. if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
  62. DRM_DEBUG_KMS("FBC idle timed out\n");
  63. return;
  64. }
  65. DRM_DEBUG_KMS("disabled FBC\n");
  66. }
  67. static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
  68. {
  69. struct drm_device *dev = crtc->dev;
  70. struct drm_i915_private *dev_priv = dev->dev_private;
  71. struct drm_framebuffer *fb = crtc->fb;
  72. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  73. struct drm_i915_gem_object *obj = intel_fb->obj;
  74. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  75. int cfb_pitch;
  76. int plane, i;
  77. u32 fbc_ctl, fbc_ctl2;
  78. cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
  79. if (fb->pitches[0] < cfb_pitch)
  80. cfb_pitch = fb->pitches[0];
  81. /* FBC_CTL wants 64B units */
  82. cfb_pitch = (cfb_pitch / 64) - 1;
  83. plane = intel_crtc->plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
  84. /* Clear old tags */
  85. for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
  86. I915_WRITE(FBC_TAG + (i * 4), 0);
  87. /* Set it up... */
  88. fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | FBC_CTL_CPU_FENCE;
  89. fbc_ctl2 |= plane;
  90. I915_WRITE(FBC_CONTROL2, fbc_ctl2);
  91. I915_WRITE(FBC_FENCE_OFF, crtc->y);
  92. /* enable it... */
  93. fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
  94. if (IS_I945GM(dev))
  95. fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
  96. fbc_ctl |= (cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
  97. fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
  98. fbc_ctl |= obj->fence_reg;
  99. I915_WRITE(FBC_CONTROL, fbc_ctl);
  100. DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %d, ",
  101. cfb_pitch, crtc->y, intel_crtc->plane);
  102. }
  103. static bool i8xx_fbc_enabled(struct drm_device *dev)
  104. {
  105. struct drm_i915_private *dev_priv = dev->dev_private;
  106. return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
  107. }
  108. static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
  109. {
  110. struct drm_device *dev = crtc->dev;
  111. struct drm_i915_private *dev_priv = dev->dev_private;
  112. struct drm_framebuffer *fb = crtc->fb;
  113. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  114. struct drm_i915_gem_object *obj = intel_fb->obj;
  115. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  116. int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
  117. unsigned long stall_watermark = 200;
  118. u32 dpfc_ctl;
  119. dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
  120. dpfc_ctl |= DPFC_CTL_FENCE_EN | obj->fence_reg;
  121. I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
  122. I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
  123. (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
  124. (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
  125. I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
  126. /* enable it... */
  127. I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
  128. DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
  129. }
  130. static void g4x_disable_fbc(struct drm_device *dev)
  131. {
  132. struct drm_i915_private *dev_priv = dev->dev_private;
  133. u32 dpfc_ctl;
  134. /* Disable compression */
  135. dpfc_ctl = I915_READ(DPFC_CONTROL);
  136. if (dpfc_ctl & DPFC_CTL_EN) {
  137. dpfc_ctl &= ~DPFC_CTL_EN;
  138. I915_WRITE(DPFC_CONTROL, dpfc_ctl);
  139. DRM_DEBUG_KMS("disabled FBC\n");
  140. }
  141. }
  142. static bool g4x_fbc_enabled(struct drm_device *dev)
  143. {
  144. struct drm_i915_private *dev_priv = dev->dev_private;
  145. return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
  146. }
  147. static void sandybridge_blit_fbc_update(struct drm_device *dev)
  148. {
  149. struct drm_i915_private *dev_priv = dev->dev_private;
  150. u32 blt_ecoskpd;
  151. /* Make sure blitter notifies FBC of writes */
  152. gen6_gt_force_wake_get(dev_priv);
  153. blt_ecoskpd = I915_READ(GEN6_BLITTER_ECOSKPD);
  154. blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY <<
  155. GEN6_BLITTER_LOCK_SHIFT;
  156. I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
  157. blt_ecoskpd |= GEN6_BLITTER_FBC_NOTIFY;
  158. I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
  159. blt_ecoskpd &= ~(GEN6_BLITTER_FBC_NOTIFY <<
  160. GEN6_BLITTER_LOCK_SHIFT);
  161. I915_WRITE(GEN6_BLITTER_ECOSKPD, blt_ecoskpd);
  162. POSTING_READ(GEN6_BLITTER_ECOSKPD);
  163. gen6_gt_force_wake_put(dev_priv);
  164. }
  165. static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
  166. {
  167. struct drm_device *dev = crtc->dev;
  168. struct drm_i915_private *dev_priv = dev->dev_private;
  169. struct drm_framebuffer *fb = crtc->fb;
  170. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  171. struct drm_i915_gem_object *obj = intel_fb->obj;
  172. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  173. int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
  174. unsigned long stall_watermark = 200;
  175. u32 dpfc_ctl;
  176. dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
  177. dpfc_ctl &= DPFC_RESERVED;
  178. dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
  179. /* Set persistent mode for front-buffer rendering, ala X. */
  180. dpfc_ctl |= DPFC_CTL_PERSISTENT_MODE;
  181. dpfc_ctl |= (DPFC_CTL_FENCE_EN | obj->fence_reg);
  182. I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
  183. I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
  184. (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
  185. (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
  186. I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
  187. I915_WRITE(ILK_FBC_RT_BASE, obj->gtt_offset | ILK_FBC_RT_VALID);
  188. /* enable it... */
  189. I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
  190. if (IS_GEN6(dev)) {
  191. I915_WRITE(SNB_DPFC_CTL_SA,
  192. SNB_CPU_FENCE_ENABLE | obj->fence_reg);
  193. I915_WRITE(DPFC_CPU_FENCE_OFFSET, crtc->y);
  194. sandybridge_blit_fbc_update(dev);
  195. }
  196. DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
  197. }
  198. static void ironlake_disable_fbc(struct drm_device *dev)
  199. {
  200. struct drm_i915_private *dev_priv = dev->dev_private;
  201. u32 dpfc_ctl;
  202. /* Disable compression */
  203. dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
  204. if (dpfc_ctl & DPFC_CTL_EN) {
  205. dpfc_ctl &= ~DPFC_CTL_EN;
  206. I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
  207. DRM_DEBUG_KMS("disabled FBC\n");
  208. }
  209. }
  210. static bool ironlake_fbc_enabled(struct drm_device *dev)
  211. {
  212. struct drm_i915_private *dev_priv = dev->dev_private;
  213. return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
  214. }
  215. bool intel_fbc_enabled(struct drm_device *dev)
  216. {
  217. struct drm_i915_private *dev_priv = dev->dev_private;
  218. if (!dev_priv->display.fbc_enabled)
  219. return false;
  220. return dev_priv->display.fbc_enabled(dev);
  221. }
  222. static void intel_fbc_work_fn(struct work_struct *__work)
  223. {
  224. struct intel_fbc_work *work =
  225. container_of(to_delayed_work(__work),
  226. struct intel_fbc_work, work);
  227. struct drm_device *dev = work->crtc->dev;
  228. struct drm_i915_private *dev_priv = dev->dev_private;
  229. mutex_lock(&dev->struct_mutex);
  230. if (work == dev_priv->fbc_work) {
  231. /* Double check that we haven't switched fb without cancelling
  232. * the prior work.
  233. */
  234. if (work->crtc->fb == work->fb) {
  235. dev_priv->display.enable_fbc(work->crtc,
  236. work->interval);
  237. dev_priv->cfb_plane = to_intel_crtc(work->crtc)->plane;
  238. dev_priv->cfb_fb = work->crtc->fb->base.id;
  239. dev_priv->cfb_y = work->crtc->y;
  240. }
  241. dev_priv->fbc_work = NULL;
  242. }
  243. mutex_unlock(&dev->struct_mutex);
  244. kfree(work);
  245. }
  246. static void intel_cancel_fbc_work(struct drm_i915_private *dev_priv)
  247. {
  248. if (dev_priv->fbc_work == NULL)
  249. return;
  250. DRM_DEBUG_KMS("cancelling pending FBC enable\n");
  251. /* Synchronisation is provided by struct_mutex and checking of
  252. * dev_priv->fbc_work, so we can perform the cancellation
  253. * entirely asynchronously.
  254. */
  255. if (cancel_delayed_work(&dev_priv->fbc_work->work))
  256. /* tasklet was killed before being run, clean up */
  257. kfree(dev_priv->fbc_work);
  258. /* Mark the work as no longer wanted so that if it does
  259. * wake-up (because the work was already running and waiting
  260. * for our mutex), it will discover that is no longer
  261. * necessary to run.
  262. */
  263. dev_priv->fbc_work = NULL;
  264. }
  265. void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
  266. {
  267. struct intel_fbc_work *work;
  268. struct drm_device *dev = crtc->dev;
  269. struct drm_i915_private *dev_priv = dev->dev_private;
  270. if (!dev_priv->display.enable_fbc)
  271. return;
  272. intel_cancel_fbc_work(dev_priv);
  273. work = kzalloc(sizeof *work, GFP_KERNEL);
  274. if (work == NULL) {
  275. dev_priv->display.enable_fbc(crtc, interval);
  276. return;
  277. }
  278. work->crtc = crtc;
  279. work->fb = crtc->fb;
  280. work->interval = interval;
  281. INIT_DELAYED_WORK(&work->work, intel_fbc_work_fn);
  282. dev_priv->fbc_work = work;
  283. DRM_DEBUG_KMS("scheduling delayed FBC enable\n");
  284. /* Delay the actual enabling to let pageflipping cease and the
  285. * display to settle before starting the compression. Note that
  286. * this delay also serves a second purpose: it allows for a
  287. * vblank to pass after disabling the FBC before we attempt
  288. * to modify the control registers.
  289. *
  290. * A more complicated solution would involve tracking vblanks
  291. * following the termination of the page-flipping sequence
  292. * and indeed performing the enable as a co-routine and not
  293. * waiting synchronously upon the vblank.
  294. */
  295. schedule_delayed_work(&work->work, msecs_to_jiffies(50));
  296. }
  297. void intel_disable_fbc(struct drm_device *dev)
  298. {
  299. struct drm_i915_private *dev_priv = dev->dev_private;
  300. intel_cancel_fbc_work(dev_priv);
  301. if (!dev_priv->display.disable_fbc)
  302. return;
  303. dev_priv->display.disable_fbc(dev);
  304. dev_priv->cfb_plane = -1;
  305. }
  306. /**
  307. * intel_update_fbc - enable/disable FBC as needed
  308. * @dev: the drm_device
  309. *
  310. * Set up the framebuffer compression hardware at mode set time. We
  311. * enable it if possible:
  312. * - plane A only (on pre-965)
  313. * - no pixel mulitply/line duplication
  314. * - no alpha buffer discard
  315. * - no dual wide
  316. * - framebuffer <= 2048 in width, 1536 in height
  317. *
  318. * We can't assume that any compression will take place (worst case),
  319. * so the compressed buffer has to be the same size as the uncompressed
  320. * one. It also must reside (along with the line length buffer) in
  321. * stolen memory.
  322. *
  323. * We need to enable/disable FBC on a global basis.
  324. */
  325. void intel_update_fbc(struct drm_device *dev)
  326. {
  327. struct drm_i915_private *dev_priv = dev->dev_private;
  328. struct drm_crtc *crtc = NULL, *tmp_crtc;
  329. struct intel_crtc *intel_crtc;
  330. struct drm_framebuffer *fb;
  331. struct intel_framebuffer *intel_fb;
  332. struct drm_i915_gem_object *obj;
  333. int enable_fbc;
  334. if (!i915_powersave)
  335. return;
  336. if (!I915_HAS_FBC(dev))
  337. return;
  338. /*
  339. * If FBC is already on, we just have to verify that we can
  340. * keep it that way...
  341. * Need to disable if:
  342. * - more than one pipe is active
  343. * - changing FBC params (stride, fence, mode)
  344. * - new fb is too large to fit in compressed buffer
  345. * - going to an unsupported config (interlace, pixel multiply, etc.)
  346. */
  347. list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
  348. if (intel_crtc_active(tmp_crtc) &&
  349. !to_intel_crtc(tmp_crtc)->primary_disabled) {
  350. if (crtc) {
  351. DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
  352. dev_priv->no_fbc_reason = FBC_MULTIPLE_PIPES;
  353. goto out_disable;
  354. }
  355. crtc = tmp_crtc;
  356. }
  357. }
  358. if (!crtc || crtc->fb == NULL) {
  359. DRM_DEBUG_KMS("no output, disabling\n");
  360. dev_priv->no_fbc_reason = FBC_NO_OUTPUT;
  361. goto out_disable;
  362. }
  363. intel_crtc = to_intel_crtc(crtc);
  364. fb = crtc->fb;
  365. intel_fb = to_intel_framebuffer(fb);
  366. obj = intel_fb->obj;
  367. enable_fbc = i915_enable_fbc;
  368. if (enable_fbc < 0) {
  369. DRM_DEBUG_KMS("fbc set to per-chip default\n");
  370. enable_fbc = 1;
  371. if (INTEL_INFO(dev)->gen <= 6)
  372. enable_fbc = 0;
  373. }
  374. if (!enable_fbc) {
  375. DRM_DEBUG_KMS("fbc disabled per module param\n");
  376. dev_priv->no_fbc_reason = FBC_MODULE_PARAM;
  377. goto out_disable;
  378. }
  379. if (intel_fb->obj->base.size > dev_priv->cfb_size) {
  380. DRM_DEBUG_KMS("framebuffer too large, disabling "
  381. "compression\n");
  382. dev_priv->no_fbc_reason = FBC_STOLEN_TOO_SMALL;
  383. goto out_disable;
  384. }
  385. if ((crtc->mode.flags & DRM_MODE_FLAG_INTERLACE) ||
  386. (crtc->mode.flags & DRM_MODE_FLAG_DBLSCAN)) {
  387. DRM_DEBUG_KMS("mode incompatible with compression, "
  388. "disabling\n");
  389. dev_priv->no_fbc_reason = FBC_UNSUPPORTED_MODE;
  390. goto out_disable;
  391. }
  392. if ((crtc->mode.hdisplay > 2048) ||
  393. (crtc->mode.vdisplay > 1536)) {
  394. DRM_DEBUG_KMS("mode too large for compression, disabling\n");
  395. dev_priv->no_fbc_reason = FBC_MODE_TOO_LARGE;
  396. goto out_disable;
  397. }
  398. if ((IS_I915GM(dev) || IS_I945GM(dev)) && intel_crtc->plane != 0) {
  399. DRM_DEBUG_KMS("plane not 0, disabling compression\n");
  400. dev_priv->no_fbc_reason = FBC_BAD_PLANE;
  401. goto out_disable;
  402. }
  403. /* The use of a CPU fence is mandatory in order to detect writes
  404. * by the CPU to the scanout and trigger updates to the FBC.
  405. */
  406. if (obj->tiling_mode != I915_TILING_X ||
  407. obj->fence_reg == I915_FENCE_REG_NONE) {
  408. DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
  409. dev_priv->no_fbc_reason = FBC_NOT_TILED;
  410. goto out_disable;
  411. }
  412. /* If the kernel debugger is active, always disable compression */
  413. if (in_dbg_master())
  414. goto out_disable;
  415. /* If the scanout has not changed, don't modify the FBC settings.
  416. * Note that we make the fundamental assumption that the fb->obj
  417. * cannot be unpinned (and have its GTT offset and fence revoked)
  418. * without first being decoupled from the scanout and FBC disabled.
  419. */
  420. if (dev_priv->cfb_plane == intel_crtc->plane &&
  421. dev_priv->cfb_fb == fb->base.id &&
  422. dev_priv->cfb_y == crtc->y)
  423. return;
  424. if (intel_fbc_enabled(dev)) {
  425. /* We update FBC along two paths, after changing fb/crtc
  426. * configuration (modeswitching) and after page-flipping
  427. * finishes. For the latter, we know that not only did
  428. * we disable the FBC at the start of the page-flip
  429. * sequence, but also more than one vblank has passed.
  430. *
  431. * For the former case of modeswitching, it is possible
  432. * to switch between two FBC valid configurations
  433. * instantaneously so we do need to disable the FBC
  434. * before we can modify its control registers. We also
  435. * have to wait for the next vblank for that to take
  436. * effect. However, since we delay enabling FBC we can
  437. * assume that a vblank has passed since disabling and
  438. * that we can safely alter the registers in the deferred
  439. * callback.
  440. *
  441. * In the scenario that we go from a valid to invalid
  442. * and then back to valid FBC configuration we have
  443. * no strict enforcement that a vblank occurred since
  444. * disabling the FBC. However, along all current pipe
  445. * disabling paths we do need to wait for a vblank at
  446. * some point. And we wait before enabling FBC anyway.
  447. */
  448. DRM_DEBUG_KMS("disabling active FBC for update\n");
  449. intel_disable_fbc(dev);
  450. }
  451. intel_enable_fbc(crtc, 500);
  452. return;
  453. out_disable:
  454. /* Multiple disables should be harmless */
  455. if (intel_fbc_enabled(dev)) {
  456. DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
  457. intel_disable_fbc(dev);
  458. }
  459. }
  460. static void i915_pineview_get_mem_freq(struct drm_device *dev)
  461. {
  462. drm_i915_private_t *dev_priv = dev->dev_private;
  463. u32 tmp;
  464. tmp = I915_READ(CLKCFG);
  465. switch (tmp & CLKCFG_FSB_MASK) {
  466. case CLKCFG_FSB_533:
  467. dev_priv->fsb_freq = 533; /* 133*4 */
  468. break;
  469. case CLKCFG_FSB_800:
  470. dev_priv->fsb_freq = 800; /* 200*4 */
  471. break;
  472. case CLKCFG_FSB_667:
  473. dev_priv->fsb_freq = 667; /* 167*4 */
  474. break;
  475. case CLKCFG_FSB_400:
  476. dev_priv->fsb_freq = 400; /* 100*4 */
  477. break;
  478. }
  479. switch (tmp & CLKCFG_MEM_MASK) {
  480. case CLKCFG_MEM_533:
  481. dev_priv->mem_freq = 533;
  482. break;
  483. case CLKCFG_MEM_667:
  484. dev_priv->mem_freq = 667;
  485. break;
  486. case CLKCFG_MEM_800:
  487. dev_priv->mem_freq = 800;
  488. break;
  489. }
  490. /* detect pineview DDR3 setting */
  491. tmp = I915_READ(CSHRDDR3CTL);
  492. dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
  493. }
  494. static void i915_ironlake_get_mem_freq(struct drm_device *dev)
  495. {
  496. drm_i915_private_t *dev_priv = dev->dev_private;
  497. u16 ddrpll, csipll;
  498. ddrpll = I915_READ16(DDRMPLL1);
  499. csipll = I915_READ16(CSIPLL0);
  500. switch (ddrpll & 0xff) {
  501. case 0xc:
  502. dev_priv->mem_freq = 800;
  503. break;
  504. case 0x10:
  505. dev_priv->mem_freq = 1066;
  506. break;
  507. case 0x14:
  508. dev_priv->mem_freq = 1333;
  509. break;
  510. case 0x18:
  511. dev_priv->mem_freq = 1600;
  512. break;
  513. default:
  514. DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
  515. ddrpll & 0xff);
  516. dev_priv->mem_freq = 0;
  517. break;
  518. }
  519. dev_priv->ips.r_t = dev_priv->mem_freq;
  520. switch (csipll & 0x3ff) {
  521. case 0x00c:
  522. dev_priv->fsb_freq = 3200;
  523. break;
  524. case 0x00e:
  525. dev_priv->fsb_freq = 3733;
  526. break;
  527. case 0x010:
  528. dev_priv->fsb_freq = 4266;
  529. break;
  530. case 0x012:
  531. dev_priv->fsb_freq = 4800;
  532. break;
  533. case 0x014:
  534. dev_priv->fsb_freq = 5333;
  535. break;
  536. case 0x016:
  537. dev_priv->fsb_freq = 5866;
  538. break;
  539. case 0x018:
  540. dev_priv->fsb_freq = 6400;
  541. break;
  542. default:
  543. DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
  544. csipll & 0x3ff);
  545. dev_priv->fsb_freq = 0;
  546. break;
  547. }
  548. if (dev_priv->fsb_freq == 3200) {
  549. dev_priv->ips.c_m = 0;
  550. } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
  551. dev_priv->ips.c_m = 1;
  552. } else {
  553. dev_priv->ips.c_m = 2;
  554. }
  555. }
  556. static const struct cxsr_latency cxsr_latency_table[] = {
  557. {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
  558. {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
  559. {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
  560. {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
  561. {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
  562. {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
  563. {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
  564. {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
  565. {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
  566. {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
  567. {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
  568. {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
  569. {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
  570. {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
  571. {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
  572. {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
  573. {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
  574. {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
  575. {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
  576. {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
  577. {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
  578. {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
  579. {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
  580. {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
  581. {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
  582. {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
  583. {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
  584. {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
  585. {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
  586. {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
  587. };
  588. static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
  589. int is_ddr3,
  590. int fsb,
  591. int mem)
  592. {
  593. const struct cxsr_latency *latency;
  594. int i;
  595. if (fsb == 0 || mem == 0)
  596. return NULL;
  597. for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
  598. latency = &cxsr_latency_table[i];
  599. if (is_desktop == latency->is_desktop &&
  600. is_ddr3 == latency->is_ddr3 &&
  601. fsb == latency->fsb_freq && mem == latency->mem_freq)
  602. return latency;
  603. }
  604. DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
  605. return NULL;
  606. }
  607. static void pineview_disable_cxsr(struct drm_device *dev)
  608. {
  609. struct drm_i915_private *dev_priv = dev->dev_private;
  610. /* deactivate cxsr */
  611. I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
  612. }
  613. /*
  614. * Latency for FIFO fetches is dependent on several factors:
  615. * - memory configuration (speed, channels)
  616. * - chipset
  617. * - current MCH state
  618. * It can be fairly high in some situations, so here we assume a fairly
  619. * pessimal value. It's a tradeoff between extra memory fetches (if we
  620. * set this value too high, the FIFO will fetch frequently to stay full)
  621. * and power consumption (set it too low to save power and we might see
  622. * FIFO underruns and display "flicker").
  623. *
  624. * A value of 5us seems to be a good balance; safe for very low end
  625. * platforms but not overly aggressive on lower latency configs.
  626. */
  627. static const int latency_ns = 5000;
  628. static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
  629. {
  630. struct drm_i915_private *dev_priv = dev->dev_private;
  631. uint32_t dsparb = I915_READ(DSPARB);
  632. int size;
  633. size = dsparb & 0x7f;
  634. if (plane)
  635. size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
  636. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  637. plane ? "B" : "A", size);
  638. return size;
  639. }
  640. static int i85x_get_fifo_size(struct drm_device *dev, int plane)
  641. {
  642. struct drm_i915_private *dev_priv = dev->dev_private;
  643. uint32_t dsparb = I915_READ(DSPARB);
  644. int size;
  645. size = dsparb & 0x1ff;
  646. if (plane)
  647. size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
  648. size >>= 1; /* Convert to cachelines */
  649. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  650. plane ? "B" : "A", size);
  651. return size;
  652. }
  653. static int i845_get_fifo_size(struct drm_device *dev, int plane)
  654. {
  655. struct drm_i915_private *dev_priv = dev->dev_private;
  656. uint32_t dsparb = I915_READ(DSPARB);
  657. int size;
  658. size = dsparb & 0x7f;
  659. size >>= 2; /* Convert to cachelines */
  660. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  661. plane ? "B" : "A",
  662. size);
  663. return size;
  664. }
  665. static int i830_get_fifo_size(struct drm_device *dev, int plane)
  666. {
  667. struct drm_i915_private *dev_priv = dev->dev_private;
  668. uint32_t dsparb = I915_READ(DSPARB);
  669. int size;
  670. size = dsparb & 0x7f;
  671. size >>= 1; /* Convert to cachelines */
  672. DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
  673. plane ? "B" : "A", size);
  674. return size;
  675. }
  676. /* Pineview has different values for various configs */
  677. static const struct intel_watermark_params pineview_display_wm = {
  678. PINEVIEW_DISPLAY_FIFO,
  679. PINEVIEW_MAX_WM,
  680. PINEVIEW_DFT_WM,
  681. PINEVIEW_GUARD_WM,
  682. PINEVIEW_FIFO_LINE_SIZE
  683. };
  684. static const struct intel_watermark_params pineview_display_hplloff_wm = {
  685. PINEVIEW_DISPLAY_FIFO,
  686. PINEVIEW_MAX_WM,
  687. PINEVIEW_DFT_HPLLOFF_WM,
  688. PINEVIEW_GUARD_WM,
  689. PINEVIEW_FIFO_LINE_SIZE
  690. };
  691. static const struct intel_watermark_params pineview_cursor_wm = {
  692. PINEVIEW_CURSOR_FIFO,
  693. PINEVIEW_CURSOR_MAX_WM,
  694. PINEVIEW_CURSOR_DFT_WM,
  695. PINEVIEW_CURSOR_GUARD_WM,
  696. PINEVIEW_FIFO_LINE_SIZE,
  697. };
  698. static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
  699. PINEVIEW_CURSOR_FIFO,
  700. PINEVIEW_CURSOR_MAX_WM,
  701. PINEVIEW_CURSOR_DFT_WM,
  702. PINEVIEW_CURSOR_GUARD_WM,
  703. PINEVIEW_FIFO_LINE_SIZE
  704. };
  705. static const struct intel_watermark_params g4x_wm_info = {
  706. G4X_FIFO_SIZE,
  707. G4X_MAX_WM,
  708. G4X_MAX_WM,
  709. 2,
  710. G4X_FIFO_LINE_SIZE,
  711. };
  712. static const struct intel_watermark_params g4x_cursor_wm_info = {
  713. I965_CURSOR_FIFO,
  714. I965_CURSOR_MAX_WM,
  715. I965_CURSOR_DFT_WM,
  716. 2,
  717. G4X_FIFO_LINE_SIZE,
  718. };
  719. static const struct intel_watermark_params valleyview_wm_info = {
  720. VALLEYVIEW_FIFO_SIZE,
  721. VALLEYVIEW_MAX_WM,
  722. VALLEYVIEW_MAX_WM,
  723. 2,
  724. G4X_FIFO_LINE_SIZE,
  725. };
  726. static const struct intel_watermark_params valleyview_cursor_wm_info = {
  727. I965_CURSOR_FIFO,
  728. VALLEYVIEW_CURSOR_MAX_WM,
  729. I965_CURSOR_DFT_WM,
  730. 2,
  731. G4X_FIFO_LINE_SIZE,
  732. };
  733. static const struct intel_watermark_params i965_cursor_wm_info = {
  734. I965_CURSOR_FIFO,
  735. I965_CURSOR_MAX_WM,
  736. I965_CURSOR_DFT_WM,
  737. 2,
  738. I915_FIFO_LINE_SIZE,
  739. };
  740. static const struct intel_watermark_params i945_wm_info = {
  741. I945_FIFO_SIZE,
  742. I915_MAX_WM,
  743. 1,
  744. 2,
  745. I915_FIFO_LINE_SIZE
  746. };
  747. static const struct intel_watermark_params i915_wm_info = {
  748. I915_FIFO_SIZE,
  749. I915_MAX_WM,
  750. 1,
  751. 2,
  752. I915_FIFO_LINE_SIZE
  753. };
  754. static const struct intel_watermark_params i855_wm_info = {
  755. I855GM_FIFO_SIZE,
  756. I915_MAX_WM,
  757. 1,
  758. 2,
  759. I830_FIFO_LINE_SIZE
  760. };
  761. static const struct intel_watermark_params i830_wm_info = {
  762. I830_FIFO_SIZE,
  763. I915_MAX_WM,
  764. 1,
  765. 2,
  766. I830_FIFO_LINE_SIZE
  767. };
  768. static const struct intel_watermark_params ironlake_display_wm_info = {
  769. ILK_DISPLAY_FIFO,
  770. ILK_DISPLAY_MAXWM,
  771. ILK_DISPLAY_DFTWM,
  772. 2,
  773. ILK_FIFO_LINE_SIZE
  774. };
  775. static const struct intel_watermark_params ironlake_cursor_wm_info = {
  776. ILK_CURSOR_FIFO,
  777. ILK_CURSOR_MAXWM,
  778. ILK_CURSOR_DFTWM,
  779. 2,
  780. ILK_FIFO_LINE_SIZE
  781. };
  782. static const struct intel_watermark_params ironlake_display_srwm_info = {
  783. ILK_DISPLAY_SR_FIFO,
  784. ILK_DISPLAY_MAX_SRWM,
  785. ILK_DISPLAY_DFT_SRWM,
  786. 2,
  787. ILK_FIFO_LINE_SIZE
  788. };
  789. static const struct intel_watermark_params ironlake_cursor_srwm_info = {
  790. ILK_CURSOR_SR_FIFO,
  791. ILK_CURSOR_MAX_SRWM,
  792. ILK_CURSOR_DFT_SRWM,
  793. 2,
  794. ILK_FIFO_LINE_SIZE
  795. };
  796. static const struct intel_watermark_params sandybridge_display_wm_info = {
  797. SNB_DISPLAY_FIFO,
  798. SNB_DISPLAY_MAXWM,
  799. SNB_DISPLAY_DFTWM,
  800. 2,
  801. SNB_FIFO_LINE_SIZE
  802. };
  803. static const struct intel_watermark_params sandybridge_cursor_wm_info = {
  804. SNB_CURSOR_FIFO,
  805. SNB_CURSOR_MAXWM,
  806. SNB_CURSOR_DFTWM,
  807. 2,
  808. SNB_FIFO_LINE_SIZE
  809. };
  810. static const struct intel_watermark_params sandybridge_display_srwm_info = {
  811. SNB_DISPLAY_SR_FIFO,
  812. SNB_DISPLAY_MAX_SRWM,
  813. SNB_DISPLAY_DFT_SRWM,
  814. 2,
  815. SNB_FIFO_LINE_SIZE
  816. };
  817. static const struct intel_watermark_params sandybridge_cursor_srwm_info = {
  818. SNB_CURSOR_SR_FIFO,
  819. SNB_CURSOR_MAX_SRWM,
  820. SNB_CURSOR_DFT_SRWM,
  821. 2,
  822. SNB_FIFO_LINE_SIZE
  823. };
  824. /**
  825. * intel_calculate_wm - calculate watermark level
  826. * @clock_in_khz: pixel clock
  827. * @wm: chip FIFO params
  828. * @pixel_size: display pixel size
  829. * @latency_ns: memory latency for the platform
  830. *
  831. * Calculate the watermark level (the level at which the display plane will
  832. * start fetching from memory again). Each chip has a different display
  833. * FIFO size and allocation, so the caller needs to figure that out and pass
  834. * in the correct intel_watermark_params structure.
  835. *
  836. * As the pixel clock runs, the FIFO will be drained at a rate that depends
  837. * on the pixel size. When it reaches the watermark level, it'll start
  838. * fetching FIFO line sized based chunks from memory until the FIFO fills
  839. * past the watermark point. If the FIFO drains completely, a FIFO underrun
  840. * will occur, and a display engine hang could result.
  841. */
  842. static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
  843. const struct intel_watermark_params *wm,
  844. int fifo_size,
  845. int pixel_size,
  846. unsigned long latency_ns)
  847. {
  848. long entries_required, wm_size;
  849. /*
  850. * Note: we need to make sure we don't overflow for various clock &
  851. * latency values.
  852. * clocks go from a few thousand to several hundred thousand.
  853. * latency is usually a few thousand
  854. */
  855. entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
  856. 1000;
  857. entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
  858. DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
  859. wm_size = fifo_size - (entries_required + wm->guard_size);
  860. DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
  861. /* Don't promote wm_size to unsigned... */
  862. if (wm_size > (long)wm->max_wm)
  863. wm_size = wm->max_wm;
  864. if (wm_size <= 0)
  865. wm_size = wm->default_wm;
  866. return wm_size;
  867. }
  868. static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
  869. {
  870. struct drm_crtc *crtc, *enabled = NULL;
  871. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  872. if (intel_crtc_active(crtc)) {
  873. if (enabled)
  874. return NULL;
  875. enabled = crtc;
  876. }
  877. }
  878. return enabled;
  879. }
  880. static void pineview_update_wm(struct drm_device *dev)
  881. {
  882. struct drm_i915_private *dev_priv = dev->dev_private;
  883. struct drm_crtc *crtc;
  884. const struct cxsr_latency *latency;
  885. u32 reg;
  886. unsigned long wm;
  887. latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
  888. dev_priv->fsb_freq, dev_priv->mem_freq);
  889. if (!latency) {
  890. DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
  891. pineview_disable_cxsr(dev);
  892. return;
  893. }
  894. crtc = single_enabled_crtc(dev);
  895. if (crtc) {
  896. int clock = crtc->mode.clock;
  897. int pixel_size = crtc->fb->bits_per_pixel / 8;
  898. /* Display SR */
  899. wm = intel_calculate_wm(clock, &pineview_display_wm,
  900. pineview_display_wm.fifo_size,
  901. pixel_size, latency->display_sr);
  902. reg = I915_READ(DSPFW1);
  903. reg &= ~DSPFW_SR_MASK;
  904. reg |= wm << DSPFW_SR_SHIFT;
  905. I915_WRITE(DSPFW1, reg);
  906. DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
  907. /* cursor SR */
  908. wm = intel_calculate_wm(clock, &pineview_cursor_wm,
  909. pineview_display_wm.fifo_size,
  910. pixel_size, latency->cursor_sr);
  911. reg = I915_READ(DSPFW3);
  912. reg &= ~DSPFW_CURSOR_SR_MASK;
  913. reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
  914. I915_WRITE(DSPFW3, reg);
  915. /* Display HPLL off SR */
  916. wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
  917. pineview_display_hplloff_wm.fifo_size,
  918. pixel_size, latency->display_hpll_disable);
  919. reg = I915_READ(DSPFW3);
  920. reg &= ~DSPFW_HPLL_SR_MASK;
  921. reg |= wm & DSPFW_HPLL_SR_MASK;
  922. I915_WRITE(DSPFW3, reg);
  923. /* cursor HPLL off SR */
  924. wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
  925. pineview_display_hplloff_wm.fifo_size,
  926. pixel_size, latency->cursor_hpll_disable);
  927. reg = I915_READ(DSPFW3);
  928. reg &= ~DSPFW_HPLL_CURSOR_MASK;
  929. reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
  930. I915_WRITE(DSPFW3, reg);
  931. DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
  932. /* activate cxsr */
  933. I915_WRITE(DSPFW3,
  934. I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
  935. DRM_DEBUG_KMS("Self-refresh is enabled\n");
  936. } else {
  937. pineview_disable_cxsr(dev);
  938. DRM_DEBUG_KMS("Self-refresh is disabled\n");
  939. }
  940. }
  941. static bool g4x_compute_wm0(struct drm_device *dev,
  942. int plane,
  943. const struct intel_watermark_params *display,
  944. int display_latency_ns,
  945. const struct intel_watermark_params *cursor,
  946. int cursor_latency_ns,
  947. int *plane_wm,
  948. int *cursor_wm)
  949. {
  950. struct drm_crtc *crtc;
  951. int htotal, hdisplay, clock, pixel_size;
  952. int line_time_us, line_count;
  953. int entries, tlb_miss;
  954. crtc = intel_get_crtc_for_plane(dev, plane);
  955. if (!intel_crtc_active(crtc)) {
  956. *cursor_wm = cursor->guard_size;
  957. *plane_wm = display->guard_size;
  958. return false;
  959. }
  960. htotal = crtc->mode.htotal;
  961. hdisplay = crtc->mode.hdisplay;
  962. clock = crtc->mode.clock;
  963. pixel_size = crtc->fb->bits_per_pixel / 8;
  964. /* Use the small buffer method to calculate plane watermark */
  965. entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
  966. tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
  967. if (tlb_miss > 0)
  968. entries += tlb_miss;
  969. entries = DIV_ROUND_UP(entries, display->cacheline_size);
  970. *plane_wm = entries + display->guard_size;
  971. if (*plane_wm > (int)display->max_wm)
  972. *plane_wm = display->max_wm;
  973. /* Use the large buffer method to calculate cursor watermark */
  974. line_time_us = ((htotal * 1000) / clock);
  975. line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
  976. entries = line_count * 64 * pixel_size;
  977. tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
  978. if (tlb_miss > 0)
  979. entries += tlb_miss;
  980. entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
  981. *cursor_wm = entries + cursor->guard_size;
  982. if (*cursor_wm > (int)cursor->max_wm)
  983. *cursor_wm = (int)cursor->max_wm;
  984. return true;
  985. }
  986. /*
  987. * Check the wm result.
  988. *
  989. * If any calculated watermark values is larger than the maximum value that
  990. * can be programmed into the associated watermark register, that watermark
  991. * must be disabled.
  992. */
  993. static bool g4x_check_srwm(struct drm_device *dev,
  994. int display_wm, int cursor_wm,
  995. const struct intel_watermark_params *display,
  996. const struct intel_watermark_params *cursor)
  997. {
  998. DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
  999. display_wm, cursor_wm);
  1000. if (display_wm > display->max_wm) {
  1001. DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
  1002. display_wm, display->max_wm);
  1003. return false;
  1004. }
  1005. if (cursor_wm > cursor->max_wm) {
  1006. DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
  1007. cursor_wm, cursor->max_wm);
  1008. return false;
  1009. }
  1010. if (!(display_wm || cursor_wm)) {
  1011. DRM_DEBUG_KMS("SR latency is 0, disabling\n");
  1012. return false;
  1013. }
  1014. return true;
  1015. }
  1016. static bool g4x_compute_srwm(struct drm_device *dev,
  1017. int plane,
  1018. int latency_ns,
  1019. const struct intel_watermark_params *display,
  1020. const struct intel_watermark_params *cursor,
  1021. int *display_wm, int *cursor_wm)
  1022. {
  1023. struct drm_crtc *crtc;
  1024. int hdisplay, htotal, pixel_size, clock;
  1025. unsigned long line_time_us;
  1026. int line_count, line_size;
  1027. int small, large;
  1028. int entries;
  1029. if (!latency_ns) {
  1030. *display_wm = *cursor_wm = 0;
  1031. return false;
  1032. }
  1033. crtc = intel_get_crtc_for_plane(dev, plane);
  1034. hdisplay = crtc->mode.hdisplay;
  1035. htotal = crtc->mode.htotal;
  1036. clock = crtc->mode.clock;
  1037. pixel_size = crtc->fb->bits_per_pixel / 8;
  1038. line_time_us = (htotal * 1000) / clock;
  1039. line_count = (latency_ns / line_time_us + 1000) / 1000;
  1040. line_size = hdisplay * pixel_size;
  1041. /* Use the minimum of the small and large buffer method for primary */
  1042. small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
  1043. large = line_count * line_size;
  1044. entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
  1045. *display_wm = entries + display->guard_size;
  1046. /* calculate the self-refresh watermark for display cursor */
  1047. entries = line_count * pixel_size * 64;
  1048. entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
  1049. *cursor_wm = entries + cursor->guard_size;
  1050. return g4x_check_srwm(dev,
  1051. *display_wm, *cursor_wm,
  1052. display, cursor);
  1053. }
  1054. static bool vlv_compute_drain_latency(struct drm_device *dev,
  1055. int plane,
  1056. int *plane_prec_mult,
  1057. int *plane_dl,
  1058. int *cursor_prec_mult,
  1059. int *cursor_dl)
  1060. {
  1061. struct drm_crtc *crtc;
  1062. int clock, pixel_size;
  1063. int entries;
  1064. crtc = intel_get_crtc_for_plane(dev, plane);
  1065. if (!intel_crtc_active(crtc))
  1066. return false;
  1067. clock = crtc->mode.clock; /* VESA DOT Clock */
  1068. pixel_size = crtc->fb->bits_per_pixel / 8; /* BPP */
  1069. entries = (clock / 1000) * pixel_size;
  1070. *plane_prec_mult = (entries > 256) ?
  1071. DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
  1072. *plane_dl = (64 * (*plane_prec_mult) * 4) / ((clock / 1000) *
  1073. pixel_size);
  1074. entries = (clock / 1000) * 4; /* BPP is always 4 for cursor */
  1075. *cursor_prec_mult = (entries > 256) ?
  1076. DRAIN_LATENCY_PRECISION_32 : DRAIN_LATENCY_PRECISION_16;
  1077. *cursor_dl = (64 * (*cursor_prec_mult) * 4) / ((clock / 1000) * 4);
  1078. return true;
  1079. }
  1080. /*
  1081. * Update drain latency registers of memory arbiter
  1082. *
  1083. * Valleyview SoC has a new memory arbiter and needs drain latency registers
  1084. * to be programmed. Each plane has a drain latency multiplier and a drain
  1085. * latency value.
  1086. */
  1087. static void vlv_update_drain_latency(struct drm_device *dev)
  1088. {
  1089. struct drm_i915_private *dev_priv = dev->dev_private;
  1090. int planea_prec, planea_dl, planeb_prec, planeb_dl;
  1091. int cursora_prec, cursora_dl, cursorb_prec, cursorb_dl;
  1092. int plane_prec_mult, cursor_prec_mult; /* Precision multiplier is
  1093. either 16 or 32 */
  1094. /* For plane A, Cursor A */
  1095. if (vlv_compute_drain_latency(dev, 0, &plane_prec_mult, &planea_dl,
  1096. &cursor_prec_mult, &cursora_dl)) {
  1097. cursora_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
  1098. DDL_CURSORA_PRECISION_32 : DDL_CURSORA_PRECISION_16;
  1099. planea_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
  1100. DDL_PLANEA_PRECISION_32 : DDL_PLANEA_PRECISION_16;
  1101. I915_WRITE(VLV_DDL1, cursora_prec |
  1102. (cursora_dl << DDL_CURSORA_SHIFT) |
  1103. planea_prec | planea_dl);
  1104. }
  1105. /* For plane B, Cursor B */
  1106. if (vlv_compute_drain_latency(dev, 1, &plane_prec_mult, &planeb_dl,
  1107. &cursor_prec_mult, &cursorb_dl)) {
  1108. cursorb_prec = (cursor_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
  1109. DDL_CURSORB_PRECISION_32 : DDL_CURSORB_PRECISION_16;
  1110. planeb_prec = (plane_prec_mult == DRAIN_LATENCY_PRECISION_32) ?
  1111. DDL_PLANEB_PRECISION_32 : DDL_PLANEB_PRECISION_16;
  1112. I915_WRITE(VLV_DDL2, cursorb_prec |
  1113. (cursorb_dl << DDL_CURSORB_SHIFT) |
  1114. planeb_prec | planeb_dl);
  1115. }
  1116. }
  1117. #define single_plane_enabled(mask) is_power_of_2(mask)
  1118. static void valleyview_update_wm(struct drm_device *dev)
  1119. {
  1120. static const int sr_latency_ns = 12000;
  1121. struct drm_i915_private *dev_priv = dev->dev_private;
  1122. int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
  1123. int plane_sr, cursor_sr;
  1124. int ignore_plane_sr, ignore_cursor_sr;
  1125. unsigned int enabled = 0;
  1126. vlv_update_drain_latency(dev);
  1127. if (g4x_compute_wm0(dev, 0,
  1128. &valleyview_wm_info, latency_ns,
  1129. &valleyview_cursor_wm_info, latency_ns,
  1130. &planea_wm, &cursora_wm))
  1131. enabled |= 1;
  1132. if (g4x_compute_wm0(dev, 1,
  1133. &valleyview_wm_info, latency_ns,
  1134. &valleyview_cursor_wm_info, latency_ns,
  1135. &planeb_wm, &cursorb_wm))
  1136. enabled |= 2;
  1137. if (single_plane_enabled(enabled) &&
  1138. g4x_compute_srwm(dev, ffs(enabled) - 1,
  1139. sr_latency_ns,
  1140. &valleyview_wm_info,
  1141. &valleyview_cursor_wm_info,
  1142. &plane_sr, &ignore_cursor_sr) &&
  1143. g4x_compute_srwm(dev, ffs(enabled) - 1,
  1144. 2*sr_latency_ns,
  1145. &valleyview_wm_info,
  1146. &valleyview_cursor_wm_info,
  1147. &ignore_plane_sr, &cursor_sr)) {
  1148. I915_WRITE(FW_BLC_SELF_VLV, FW_CSPWRDWNEN);
  1149. } else {
  1150. I915_WRITE(FW_BLC_SELF_VLV,
  1151. I915_READ(FW_BLC_SELF_VLV) & ~FW_CSPWRDWNEN);
  1152. plane_sr = cursor_sr = 0;
  1153. }
  1154. DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
  1155. planea_wm, cursora_wm,
  1156. planeb_wm, cursorb_wm,
  1157. plane_sr, cursor_sr);
  1158. I915_WRITE(DSPFW1,
  1159. (plane_sr << DSPFW_SR_SHIFT) |
  1160. (cursorb_wm << DSPFW_CURSORB_SHIFT) |
  1161. (planeb_wm << DSPFW_PLANEB_SHIFT) |
  1162. planea_wm);
  1163. I915_WRITE(DSPFW2,
  1164. (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
  1165. (cursora_wm << DSPFW_CURSORA_SHIFT));
  1166. I915_WRITE(DSPFW3,
  1167. (I915_READ(DSPFW3) & ~DSPFW_CURSOR_SR_MASK) |
  1168. (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
  1169. }
  1170. static void g4x_update_wm(struct drm_device *dev)
  1171. {
  1172. static const int sr_latency_ns = 12000;
  1173. struct drm_i915_private *dev_priv = dev->dev_private;
  1174. int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
  1175. int plane_sr, cursor_sr;
  1176. unsigned int enabled = 0;
  1177. if (g4x_compute_wm0(dev, 0,
  1178. &g4x_wm_info, latency_ns,
  1179. &g4x_cursor_wm_info, latency_ns,
  1180. &planea_wm, &cursora_wm))
  1181. enabled |= 1;
  1182. if (g4x_compute_wm0(dev, 1,
  1183. &g4x_wm_info, latency_ns,
  1184. &g4x_cursor_wm_info, latency_ns,
  1185. &planeb_wm, &cursorb_wm))
  1186. enabled |= 2;
  1187. if (single_plane_enabled(enabled) &&
  1188. g4x_compute_srwm(dev, ffs(enabled) - 1,
  1189. sr_latency_ns,
  1190. &g4x_wm_info,
  1191. &g4x_cursor_wm_info,
  1192. &plane_sr, &cursor_sr)) {
  1193. I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
  1194. } else {
  1195. I915_WRITE(FW_BLC_SELF,
  1196. I915_READ(FW_BLC_SELF) & ~FW_BLC_SELF_EN);
  1197. plane_sr = cursor_sr = 0;
  1198. }
  1199. DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
  1200. planea_wm, cursora_wm,
  1201. planeb_wm, cursorb_wm,
  1202. plane_sr, cursor_sr);
  1203. I915_WRITE(DSPFW1,
  1204. (plane_sr << DSPFW_SR_SHIFT) |
  1205. (cursorb_wm << DSPFW_CURSORB_SHIFT) |
  1206. (planeb_wm << DSPFW_PLANEB_SHIFT) |
  1207. planea_wm);
  1208. I915_WRITE(DSPFW2,
  1209. (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
  1210. (cursora_wm << DSPFW_CURSORA_SHIFT));
  1211. /* HPLL off in SR has some issues on G4x... disable it */
  1212. I915_WRITE(DSPFW3,
  1213. (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
  1214. (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
  1215. }
  1216. static void i965_update_wm(struct drm_device *dev)
  1217. {
  1218. struct drm_i915_private *dev_priv = dev->dev_private;
  1219. struct drm_crtc *crtc;
  1220. int srwm = 1;
  1221. int cursor_sr = 16;
  1222. /* Calc sr entries for one plane configs */
  1223. crtc = single_enabled_crtc(dev);
  1224. if (crtc) {
  1225. /* self-refresh has much higher latency */
  1226. static const int sr_latency_ns = 12000;
  1227. int clock = crtc->mode.clock;
  1228. int htotal = crtc->mode.htotal;
  1229. int hdisplay = crtc->mode.hdisplay;
  1230. int pixel_size = crtc->fb->bits_per_pixel / 8;
  1231. unsigned long line_time_us;
  1232. int entries;
  1233. line_time_us = ((htotal * 1000) / clock);
  1234. /* Use ns/us then divide to preserve precision */
  1235. entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
  1236. pixel_size * hdisplay;
  1237. entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
  1238. srwm = I965_FIFO_SIZE - entries;
  1239. if (srwm < 0)
  1240. srwm = 1;
  1241. srwm &= 0x1ff;
  1242. DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
  1243. entries, srwm);
  1244. entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
  1245. pixel_size * 64;
  1246. entries = DIV_ROUND_UP(entries,
  1247. i965_cursor_wm_info.cacheline_size);
  1248. cursor_sr = i965_cursor_wm_info.fifo_size -
  1249. (entries + i965_cursor_wm_info.guard_size);
  1250. if (cursor_sr > i965_cursor_wm_info.max_wm)
  1251. cursor_sr = i965_cursor_wm_info.max_wm;
  1252. DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
  1253. "cursor %d\n", srwm, cursor_sr);
  1254. if (IS_CRESTLINE(dev))
  1255. I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
  1256. } else {
  1257. /* Turn off self refresh if both pipes are enabled */
  1258. if (IS_CRESTLINE(dev))
  1259. I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
  1260. & ~FW_BLC_SELF_EN);
  1261. }
  1262. DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
  1263. srwm);
  1264. /* 965 has limitations... */
  1265. I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) |
  1266. (8 << 16) | (8 << 8) | (8 << 0));
  1267. I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
  1268. /* update cursor SR watermark */
  1269. I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
  1270. }
  1271. static void i9xx_update_wm(struct drm_device *dev)
  1272. {
  1273. struct drm_i915_private *dev_priv = dev->dev_private;
  1274. const struct intel_watermark_params *wm_info;
  1275. uint32_t fwater_lo;
  1276. uint32_t fwater_hi;
  1277. int cwm, srwm = 1;
  1278. int fifo_size;
  1279. int planea_wm, planeb_wm;
  1280. struct drm_crtc *crtc, *enabled = NULL;
  1281. if (IS_I945GM(dev))
  1282. wm_info = &i945_wm_info;
  1283. else if (!IS_GEN2(dev))
  1284. wm_info = &i915_wm_info;
  1285. else
  1286. wm_info = &i855_wm_info;
  1287. fifo_size = dev_priv->display.get_fifo_size(dev, 0);
  1288. crtc = intel_get_crtc_for_plane(dev, 0);
  1289. if (intel_crtc_active(crtc)) {
  1290. int cpp = crtc->fb->bits_per_pixel / 8;
  1291. if (IS_GEN2(dev))
  1292. cpp = 4;
  1293. planea_wm = intel_calculate_wm(crtc->mode.clock,
  1294. wm_info, fifo_size, cpp,
  1295. latency_ns);
  1296. enabled = crtc;
  1297. } else
  1298. planea_wm = fifo_size - wm_info->guard_size;
  1299. fifo_size = dev_priv->display.get_fifo_size(dev, 1);
  1300. crtc = intel_get_crtc_for_plane(dev, 1);
  1301. if (intel_crtc_active(crtc)) {
  1302. int cpp = crtc->fb->bits_per_pixel / 8;
  1303. if (IS_GEN2(dev))
  1304. cpp = 4;
  1305. planeb_wm = intel_calculate_wm(crtc->mode.clock,
  1306. wm_info, fifo_size, cpp,
  1307. latency_ns);
  1308. if (enabled == NULL)
  1309. enabled = crtc;
  1310. else
  1311. enabled = NULL;
  1312. } else
  1313. planeb_wm = fifo_size - wm_info->guard_size;
  1314. DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
  1315. /*
  1316. * Overlay gets an aggressive default since video jitter is bad.
  1317. */
  1318. cwm = 2;
  1319. /* Play safe and disable self-refresh before adjusting watermarks. */
  1320. if (IS_I945G(dev) || IS_I945GM(dev))
  1321. I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | 0);
  1322. else if (IS_I915GM(dev))
  1323. I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
  1324. /* Calc sr entries for one plane configs */
  1325. if (HAS_FW_BLC(dev) && enabled) {
  1326. /* self-refresh has much higher latency */
  1327. static const int sr_latency_ns = 6000;
  1328. int clock = enabled->mode.clock;
  1329. int htotal = enabled->mode.htotal;
  1330. int hdisplay = enabled->mode.hdisplay;
  1331. int pixel_size = enabled->fb->bits_per_pixel / 8;
  1332. unsigned long line_time_us;
  1333. int entries;
  1334. line_time_us = (htotal * 1000) / clock;
  1335. /* Use ns/us then divide to preserve precision */
  1336. entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
  1337. pixel_size * hdisplay;
  1338. entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
  1339. DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
  1340. srwm = wm_info->fifo_size - entries;
  1341. if (srwm < 0)
  1342. srwm = 1;
  1343. if (IS_I945G(dev) || IS_I945GM(dev))
  1344. I915_WRITE(FW_BLC_SELF,
  1345. FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
  1346. else if (IS_I915GM(dev))
  1347. I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
  1348. }
  1349. DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
  1350. planea_wm, planeb_wm, cwm, srwm);
  1351. fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
  1352. fwater_hi = (cwm & 0x1f);
  1353. /* Set request length to 8 cachelines per fetch */
  1354. fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
  1355. fwater_hi = fwater_hi | (1 << 8);
  1356. I915_WRITE(FW_BLC, fwater_lo);
  1357. I915_WRITE(FW_BLC2, fwater_hi);
  1358. if (HAS_FW_BLC(dev)) {
  1359. if (enabled) {
  1360. if (IS_I945G(dev) || IS_I945GM(dev))
  1361. I915_WRITE(FW_BLC_SELF,
  1362. FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
  1363. else if (IS_I915GM(dev))
  1364. I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
  1365. DRM_DEBUG_KMS("memory self refresh enabled\n");
  1366. } else
  1367. DRM_DEBUG_KMS("memory self refresh disabled\n");
  1368. }
  1369. }
  1370. static void i830_update_wm(struct drm_device *dev)
  1371. {
  1372. struct drm_i915_private *dev_priv = dev->dev_private;
  1373. struct drm_crtc *crtc;
  1374. uint32_t fwater_lo;
  1375. int planea_wm;
  1376. crtc = single_enabled_crtc(dev);
  1377. if (crtc == NULL)
  1378. return;
  1379. planea_wm = intel_calculate_wm(crtc->mode.clock, &i830_wm_info,
  1380. dev_priv->display.get_fifo_size(dev, 0),
  1381. 4, latency_ns);
  1382. fwater_lo = I915_READ(FW_BLC) & ~0xfff;
  1383. fwater_lo |= (3<<8) | planea_wm;
  1384. DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
  1385. I915_WRITE(FW_BLC, fwater_lo);
  1386. }
  1387. #define ILK_LP0_PLANE_LATENCY 700
  1388. #define ILK_LP0_CURSOR_LATENCY 1300
  1389. /*
  1390. * Check the wm result.
  1391. *
  1392. * If any calculated watermark values is larger than the maximum value that
  1393. * can be programmed into the associated watermark register, that watermark
  1394. * must be disabled.
  1395. */
  1396. static bool ironlake_check_srwm(struct drm_device *dev, int level,
  1397. int fbc_wm, int display_wm, int cursor_wm,
  1398. const struct intel_watermark_params *display,
  1399. const struct intel_watermark_params *cursor)
  1400. {
  1401. struct drm_i915_private *dev_priv = dev->dev_private;
  1402. DRM_DEBUG_KMS("watermark %d: display plane %d, fbc lines %d,"
  1403. " cursor %d\n", level, display_wm, fbc_wm, cursor_wm);
  1404. if (fbc_wm > SNB_FBC_MAX_SRWM) {
  1405. DRM_DEBUG_KMS("fbc watermark(%d) is too large(%d), disabling wm%d+\n",
  1406. fbc_wm, SNB_FBC_MAX_SRWM, level);
  1407. /* fbc has it's own way to disable FBC WM */
  1408. I915_WRITE(DISP_ARB_CTL,
  1409. I915_READ(DISP_ARB_CTL) | DISP_FBC_WM_DIS);
  1410. return false;
  1411. }
  1412. if (display_wm > display->max_wm) {
  1413. DRM_DEBUG_KMS("display watermark(%d) is too large(%d), disabling wm%d+\n",
  1414. display_wm, SNB_DISPLAY_MAX_SRWM, level);
  1415. return false;
  1416. }
  1417. if (cursor_wm > cursor->max_wm) {
  1418. DRM_DEBUG_KMS("cursor watermark(%d) is too large(%d), disabling wm%d+\n",
  1419. cursor_wm, SNB_CURSOR_MAX_SRWM, level);
  1420. return false;
  1421. }
  1422. if (!(fbc_wm || display_wm || cursor_wm)) {
  1423. DRM_DEBUG_KMS("latency %d is 0, disabling wm%d+\n", level, level);
  1424. return false;
  1425. }
  1426. return true;
  1427. }
  1428. /*
  1429. * Compute watermark values of WM[1-3],
  1430. */
  1431. static bool ironlake_compute_srwm(struct drm_device *dev, int level, int plane,
  1432. int latency_ns,
  1433. const struct intel_watermark_params *display,
  1434. const struct intel_watermark_params *cursor,
  1435. int *fbc_wm, int *display_wm, int *cursor_wm)
  1436. {
  1437. struct drm_crtc *crtc;
  1438. unsigned long line_time_us;
  1439. int hdisplay, htotal, pixel_size, clock;
  1440. int line_count, line_size;
  1441. int small, large;
  1442. int entries;
  1443. if (!latency_ns) {
  1444. *fbc_wm = *display_wm = *cursor_wm = 0;
  1445. return false;
  1446. }
  1447. crtc = intel_get_crtc_for_plane(dev, plane);
  1448. hdisplay = crtc->mode.hdisplay;
  1449. htotal = crtc->mode.htotal;
  1450. clock = crtc->mode.clock;
  1451. pixel_size = crtc->fb->bits_per_pixel / 8;
  1452. line_time_us = (htotal * 1000) / clock;
  1453. line_count = (latency_ns / line_time_us + 1000) / 1000;
  1454. line_size = hdisplay * pixel_size;
  1455. /* Use the minimum of the small and large buffer method for primary */
  1456. small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
  1457. large = line_count * line_size;
  1458. entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
  1459. *display_wm = entries + display->guard_size;
  1460. /*
  1461. * Spec says:
  1462. * FBC WM = ((Final Primary WM * 64) / number of bytes per line) + 2
  1463. */
  1464. *fbc_wm = DIV_ROUND_UP(*display_wm * 64, line_size) + 2;
  1465. /* calculate the self-refresh watermark for display cursor */
  1466. entries = line_count * pixel_size * 64;
  1467. entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
  1468. *cursor_wm = entries + cursor->guard_size;
  1469. return ironlake_check_srwm(dev, level,
  1470. *fbc_wm, *display_wm, *cursor_wm,
  1471. display, cursor);
  1472. }
  1473. static void ironlake_update_wm(struct drm_device *dev)
  1474. {
  1475. struct drm_i915_private *dev_priv = dev->dev_private;
  1476. int fbc_wm, plane_wm, cursor_wm;
  1477. unsigned int enabled;
  1478. enabled = 0;
  1479. if (g4x_compute_wm0(dev, 0,
  1480. &ironlake_display_wm_info,
  1481. ILK_LP0_PLANE_LATENCY,
  1482. &ironlake_cursor_wm_info,
  1483. ILK_LP0_CURSOR_LATENCY,
  1484. &plane_wm, &cursor_wm)) {
  1485. I915_WRITE(WM0_PIPEA_ILK,
  1486. (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
  1487. DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
  1488. " plane %d, " "cursor: %d\n",
  1489. plane_wm, cursor_wm);
  1490. enabled |= 1;
  1491. }
  1492. if (g4x_compute_wm0(dev, 1,
  1493. &ironlake_display_wm_info,
  1494. ILK_LP0_PLANE_LATENCY,
  1495. &ironlake_cursor_wm_info,
  1496. ILK_LP0_CURSOR_LATENCY,
  1497. &plane_wm, &cursor_wm)) {
  1498. I915_WRITE(WM0_PIPEB_ILK,
  1499. (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
  1500. DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
  1501. " plane %d, cursor: %d\n",
  1502. plane_wm, cursor_wm);
  1503. enabled |= 2;
  1504. }
  1505. /*
  1506. * Calculate and update the self-refresh watermark only when one
  1507. * display plane is used.
  1508. */
  1509. I915_WRITE(WM3_LP_ILK, 0);
  1510. I915_WRITE(WM2_LP_ILK, 0);
  1511. I915_WRITE(WM1_LP_ILK, 0);
  1512. if (!single_plane_enabled(enabled))
  1513. return;
  1514. enabled = ffs(enabled) - 1;
  1515. /* WM1 */
  1516. if (!ironlake_compute_srwm(dev, 1, enabled,
  1517. ILK_READ_WM1_LATENCY() * 500,
  1518. &ironlake_display_srwm_info,
  1519. &ironlake_cursor_srwm_info,
  1520. &fbc_wm, &plane_wm, &cursor_wm))
  1521. return;
  1522. I915_WRITE(WM1_LP_ILK,
  1523. WM1_LP_SR_EN |
  1524. (ILK_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
  1525. (fbc_wm << WM1_LP_FBC_SHIFT) |
  1526. (plane_wm << WM1_LP_SR_SHIFT) |
  1527. cursor_wm);
  1528. /* WM2 */
  1529. if (!ironlake_compute_srwm(dev, 2, enabled,
  1530. ILK_READ_WM2_LATENCY() * 500,
  1531. &ironlake_display_srwm_info,
  1532. &ironlake_cursor_srwm_info,
  1533. &fbc_wm, &plane_wm, &cursor_wm))
  1534. return;
  1535. I915_WRITE(WM2_LP_ILK,
  1536. WM2_LP_EN |
  1537. (ILK_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
  1538. (fbc_wm << WM1_LP_FBC_SHIFT) |
  1539. (plane_wm << WM1_LP_SR_SHIFT) |
  1540. cursor_wm);
  1541. /*
  1542. * WM3 is unsupported on ILK, probably because we don't have latency
  1543. * data for that power state
  1544. */
  1545. }
  1546. static void sandybridge_update_wm(struct drm_device *dev)
  1547. {
  1548. struct drm_i915_private *dev_priv = dev->dev_private;
  1549. int latency = SNB_READ_WM0_LATENCY() * 100; /* In unit 0.1us */
  1550. u32 val;
  1551. int fbc_wm, plane_wm, cursor_wm;
  1552. unsigned int enabled;
  1553. enabled = 0;
  1554. if (g4x_compute_wm0(dev, 0,
  1555. &sandybridge_display_wm_info, latency,
  1556. &sandybridge_cursor_wm_info, latency,
  1557. &plane_wm, &cursor_wm)) {
  1558. val = I915_READ(WM0_PIPEA_ILK);
  1559. val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
  1560. I915_WRITE(WM0_PIPEA_ILK, val |
  1561. ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
  1562. DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
  1563. " plane %d, " "cursor: %d\n",
  1564. plane_wm, cursor_wm);
  1565. enabled |= 1;
  1566. }
  1567. if (g4x_compute_wm0(dev, 1,
  1568. &sandybridge_display_wm_info, latency,
  1569. &sandybridge_cursor_wm_info, latency,
  1570. &plane_wm, &cursor_wm)) {
  1571. val = I915_READ(WM0_PIPEB_ILK);
  1572. val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
  1573. I915_WRITE(WM0_PIPEB_ILK, val |
  1574. ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
  1575. DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
  1576. " plane %d, cursor: %d\n",
  1577. plane_wm, cursor_wm);
  1578. enabled |= 2;
  1579. }
  1580. /*
  1581. * Calculate and update the self-refresh watermark only when one
  1582. * display plane is used.
  1583. *
  1584. * SNB support 3 levels of watermark.
  1585. *
  1586. * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
  1587. * and disabled in the descending order
  1588. *
  1589. */
  1590. I915_WRITE(WM3_LP_ILK, 0);
  1591. I915_WRITE(WM2_LP_ILK, 0);
  1592. I915_WRITE(WM1_LP_ILK, 0);
  1593. if (!single_plane_enabled(enabled) ||
  1594. dev_priv->sprite_scaling_enabled)
  1595. return;
  1596. enabled = ffs(enabled) - 1;
  1597. /* WM1 */
  1598. if (!ironlake_compute_srwm(dev, 1, enabled,
  1599. SNB_READ_WM1_LATENCY() * 500,
  1600. &sandybridge_display_srwm_info,
  1601. &sandybridge_cursor_srwm_info,
  1602. &fbc_wm, &plane_wm, &cursor_wm))
  1603. return;
  1604. I915_WRITE(WM1_LP_ILK,
  1605. WM1_LP_SR_EN |
  1606. (SNB_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
  1607. (fbc_wm << WM1_LP_FBC_SHIFT) |
  1608. (plane_wm << WM1_LP_SR_SHIFT) |
  1609. cursor_wm);
  1610. /* WM2 */
  1611. if (!ironlake_compute_srwm(dev, 2, enabled,
  1612. SNB_READ_WM2_LATENCY() * 500,
  1613. &sandybridge_display_srwm_info,
  1614. &sandybridge_cursor_srwm_info,
  1615. &fbc_wm, &plane_wm, &cursor_wm))
  1616. return;
  1617. I915_WRITE(WM2_LP_ILK,
  1618. WM2_LP_EN |
  1619. (SNB_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
  1620. (fbc_wm << WM1_LP_FBC_SHIFT) |
  1621. (plane_wm << WM1_LP_SR_SHIFT) |
  1622. cursor_wm);
  1623. /* WM3 */
  1624. if (!ironlake_compute_srwm(dev, 3, enabled,
  1625. SNB_READ_WM3_LATENCY() * 500,
  1626. &sandybridge_display_srwm_info,
  1627. &sandybridge_cursor_srwm_info,
  1628. &fbc_wm, &plane_wm, &cursor_wm))
  1629. return;
  1630. I915_WRITE(WM3_LP_ILK,
  1631. WM3_LP_EN |
  1632. (SNB_READ_WM3_LATENCY() << WM1_LP_LATENCY_SHIFT) |
  1633. (fbc_wm << WM1_LP_FBC_SHIFT) |
  1634. (plane_wm << WM1_LP_SR_SHIFT) |
  1635. cursor_wm);
  1636. }
  1637. static void ivybridge_update_wm(struct drm_device *dev)
  1638. {
  1639. struct drm_i915_private *dev_priv = dev->dev_private;
  1640. int latency = SNB_READ_WM0_LATENCY() * 100; /* In unit 0.1us */
  1641. u32 val;
  1642. int fbc_wm, plane_wm, cursor_wm;
  1643. int ignore_fbc_wm, ignore_plane_wm, ignore_cursor_wm;
  1644. unsigned int enabled;
  1645. enabled = 0;
  1646. if (g4x_compute_wm0(dev, 0,
  1647. &sandybridge_display_wm_info, latency,
  1648. &sandybridge_cursor_wm_info, latency,
  1649. &plane_wm, &cursor_wm)) {
  1650. val = I915_READ(WM0_PIPEA_ILK);
  1651. val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
  1652. I915_WRITE(WM0_PIPEA_ILK, val |
  1653. ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
  1654. DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
  1655. " plane %d, " "cursor: %d\n",
  1656. plane_wm, cursor_wm);
  1657. enabled |= 1;
  1658. }
  1659. if (g4x_compute_wm0(dev, 1,
  1660. &sandybridge_display_wm_info, latency,
  1661. &sandybridge_cursor_wm_info, latency,
  1662. &plane_wm, &cursor_wm)) {
  1663. val = I915_READ(WM0_PIPEB_ILK);
  1664. val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
  1665. I915_WRITE(WM0_PIPEB_ILK, val |
  1666. ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
  1667. DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
  1668. " plane %d, cursor: %d\n",
  1669. plane_wm, cursor_wm);
  1670. enabled |= 2;
  1671. }
  1672. if (g4x_compute_wm0(dev, 2,
  1673. &sandybridge_display_wm_info, latency,
  1674. &sandybridge_cursor_wm_info, latency,
  1675. &plane_wm, &cursor_wm)) {
  1676. val = I915_READ(WM0_PIPEC_IVB);
  1677. val &= ~(WM0_PIPE_PLANE_MASK | WM0_PIPE_CURSOR_MASK);
  1678. I915_WRITE(WM0_PIPEC_IVB, val |
  1679. ((plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm));
  1680. DRM_DEBUG_KMS("FIFO watermarks For pipe C -"
  1681. " plane %d, cursor: %d\n",
  1682. plane_wm, cursor_wm);
  1683. enabled |= 3;
  1684. }
  1685. /*
  1686. * Calculate and update the self-refresh watermark only when one
  1687. * display plane is used.
  1688. *
  1689. * SNB support 3 levels of watermark.
  1690. *
  1691. * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
  1692. * and disabled in the descending order
  1693. *
  1694. */
  1695. I915_WRITE(WM3_LP_ILK, 0);
  1696. I915_WRITE(WM2_LP_ILK, 0);
  1697. I915_WRITE(WM1_LP_ILK, 0);
  1698. if (!single_plane_enabled(enabled) ||
  1699. dev_priv->sprite_scaling_enabled)
  1700. return;
  1701. enabled = ffs(enabled) - 1;
  1702. /* WM1 */
  1703. if (!ironlake_compute_srwm(dev, 1, enabled,
  1704. SNB_READ_WM1_LATENCY() * 500,
  1705. &sandybridge_display_srwm_info,
  1706. &sandybridge_cursor_srwm_info,
  1707. &fbc_wm, &plane_wm, &cursor_wm))
  1708. return;
  1709. I915_WRITE(WM1_LP_ILK,
  1710. WM1_LP_SR_EN |
  1711. (SNB_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT) |
  1712. (fbc_wm << WM1_LP_FBC_SHIFT) |
  1713. (plane_wm << WM1_LP_SR_SHIFT) |
  1714. cursor_wm);
  1715. /* WM2 */
  1716. if (!ironlake_compute_srwm(dev, 2, enabled,
  1717. SNB_READ_WM2_LATENCY() * 500,
  1718. &sandybridge_display_srwm_info,
  1719. &sandybridge_cursor_srwm_info,
  1720. &fbc_wm, &plane_wm, &cursor_wm))
  1721. return;
  1722. I915_WRITE(WM2_LP_ILK,
  1723. WM2_LP_EN |
  1724. (SNB_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT) |
  1725. (fbc_wm << WM1_LP_FBC_SHIFT) |
  1726. (plane_wm << WM1_LP_SR_SHIFT) |
  1727. cursor_wm);
  1728. /* WM3, note we have to correct the cursor latency */
  1729. if (!ironlake_compute_srwm(dev, 3, enabled,
  1730. SNB_READ_WM3_LATENCY() * 500,
  1731. &sandybridge_display_srwm_info,
  1732. &sandybridge_cursor_srwm_info,
  1733. &fbc_wm, &plane_wm, &ignore_cursor_wm) ||
  1734. !ironlake_compute_srwm(dev, 3, enabled,
  1735. 2 * SNB_READ_WM3_LATENCY() * 500,
  1736. &sandybridge_display_srwm_info,
  1737. &sandybridge_cursor_srwm_info,
  1738. &ignore_fbc_wm, &ignore_plane_wm, &cursor_wm))
  1739. return;
  1740. I915_WRITE(WM3_LP_ILK,
  1741. WM3_LP_EN |
  1742. (SNB_READ_WM3_LATENCY() << WM1_LP_LATENCY_SHIFT) |
  1743. (fbc_wm << WM1_LP_FBC_SHIFT) |
  1744. (plane_wm << WM1_LP_SR_SHIFT) |
  1745. cursor_wm);
  1746. }
  1747. static void
  1748. haswell_update_linetime_wm(struct drm_device *dev, int pipe,
  1749. struct drm_display_mode *mode)
  1750. {
  1751. struct drm_i915_private *dev_priv = dev->dev_private;
  1752. u32 temp;
  1753. temp = I915_READ(PIPE_WM_LINETIME(pipe));
  1754. temp &= ~PIPE_WM_LINETIME_MASK;
  1755. /* The WM are computed with base on how long it takes to fill a single
  1756. * row at the given clock rate, multiplied by 8.
  1757. * */
  1758. temp |= PIPE_WM_LINETIME_TIME(
  1759. ((mode->crtc_hdisplay * 1000) / mode->clock) * 8);
  1760. /* IPS watermarks are only used by pipe A, and are ignored by
  1761. * pipes B and C. They are calculated similarly to the common
  1762. * linetime values, except that we are using CD clock frequency
  1763. * in MHz instead of pixel rate for the division.
  1764. *
  1765. * This is a placeholder for the IPS watermark calculation code.
  1766. */
  1767. I915_WRITE(PIPE_WM_LINETIME(pipe), temp);
  1768. }
  1769. static bool
  1770. sandybridge_compute_sprite_wm(struct drm_device *dev, int plane,
  1771. uint32_t sprite_width, int pixel_size,
  1772. const struct intel_watermark_params *display,
  1773. int display_latency_ns, int *sprite_wm)
  1774. {
  1775. struct drm_crtc *crtc;
  1776. int clock;
  1777. int entries, tlb_miss;
  1778. crtc = intel_get_crtc_for_plane(dev, plane);
  1779. if (!intel_crtc_active(crtc)) {
  1780. *sprite_wm = display->guard_size;
  1781. return false;
  1782. }
  1783. clock = crtc->mode.clock;
  1784. /* Use the small buffer method to calculate the sprite watermark */
  1785. entries = ((clock * pixel_size / 1000) * display_latency_ns) / 1000;
  1786. tlb_miss = display->fifo_size*display->cacheline_size -
  1787. sprite_width * 8;
  1788. if (tlb_miss > 0)
  1789. entries += tlb_miss;
  1790. entries = DIV_ROUND_UP(entries, display->cacheline_size);
  1791. *sprite_wm = entries + display->guard_size;
  1792. if (*sprite_wm > (int)display->max_wm)
  1793. *sprite_wm = display->max_wm;
  1794. return true;
  1795. }
  1796. static bool
  1797. sandybridge_compute_sprite_srwm(struct drm_device *dev, int plane,
  1798. uint32_t sprite_width, int pixel_size,
  1799. const struct intel_watermark_params *display,
  1800. int latency_ns, int *sprite_wm)
  1801. {
  1802. struct drm_crtc *crtc;
  1803. unsigned long line_time_us;
  1804. int clock;
  1805. int line_count, line_size;
  1806. int small, large;
  1807. int entries;
  1808. if (!latency_ns) {
  1809. *sprite_wm = 0;
  1810. return false;
  1811. }
  1812. crtc = intel_get_crtc_for_plane(dev, plane);
  1813. clock = crtc->mode.clock;
  1814. if (!clock) {
  1815. *sprite_wm = 0;
  1816. return false;
  1817. }
  1818. line_time_us = (sprite_width * 1000) / clock;
  1819. if (!line_time_us) {
  1820. *sprite_wm = 0;
  1821. return false;
  1822. }
  1823. line_count = (latency_ns / line_time_us + 1000) / 1000;
  1824. line_size = sprite_width * pixel_size;
  1825. /* Use the minimum of the small and large buffer method for primary */
  1826. small = ((clock * pixel_size / 1000) * latency_ns) / 1000;
  1827. large = line_count * line_size;
  1828. entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
  1829. *sprite_wm = entries + display->guard_size;
  1830. return *sprite_wm > 0x3ff ? false : true;
  1831. }
  1832. static void sandybridge_update_sprite_wm(struct drm_device *dev, int pipe,
  1833. uint32_t sprite_width, int pixel_size)
  1834. {
  1835. struct drm_i915_private *dev_priv = dev->dev_private;
  1836. int latency = SNB_READ_WM0_LATENCY() * 100; /* In unit 0.1us */
  1837. u32 val;
  1838. int sprite_wm, reg;
  1839. int ret;
  1840. switch (pipe) {
  1841. case 0:
  1842. reg = WM0_PIPEA_ILK;
  1843. break;
  1844. case 1:
  1845. reg = WM0_PIPEB_ILK;
  1846. break;
  1847. case 2:
  1848. reg = WM0_PIPEC_IVB;
  1849. break;
  1850. default:
  1851. return; /* bad pipe */
  1852. }
  1853. ret = sandybridge_compute_sprite_wm(dev, pipe, sprite_width, pixel_size,
  1854. &sandybridge_display_wm_info,
  1855. latency, &sprite_wm);
  1856. if (!ret) {
  1857. DRM_DEBUG_KMS("failed to compute sprite wm for pipe %d\n",
  1858. pipe);
  1859. return;
  1860. }
  1861. val = I915_READ(reg);
  1862. val &= ~WM0_PIPE_SPRITE_MASK;
  1863. I915_WRITE(reg, val | (sprite_wm << WM0_PIPE_SPRITE_SHIFT));
  1864. DRM_DEBUG_KMS("sprite watermarks For pipe %d - %d\n", pipe, sprite_wm);
  1865. ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
  1866. pixel_size,
  1867. &sandybridge_display_srwm_info,
  1868. SNB_READ_WM1_LATENCY() * 500,
  1869. &sprite_wm);
  1870. if (!ret) {
  1871. DRM_DEBUG_KMS("failed to compute sprite lp1 wm on pipe %d\n",
  1872. pipe);
  1873. return;
  1874. }
  1875. I915_WRITE(WM1S_LP_ILK, sprite_wm);
  1876. /* Only IVB has two more LP watermarks for sprite */
  1877. if (!IS_IVYBRIDGE(dev))
  1878. return;
  1879. ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
  1880. pixel_size,
  1881. &sandybridge_display_srwm_info,
  1882. SNB_READ_WM2_LATENCY() * 500,
  1883. &sprite_wm);
  1884. if (!ret) {
  1885. DRM_DEBUG_KMS("failed to compute sprite lp2 wm on pipe %d\n",
  1886. pipe);
  1887. return;
  1888. }
  1889. I915_WRITE(WM2S_LP_IVB, sprite_wm);
  1890. ret = sandybridge_compute_sprite_srwm(dev, pipe, sprite_width,
  1891. pixel_size,
  1892. &sandybridge_display_srwm_info,
  1893. SNB_READ_WM3_LATENCY() * 500,
  1894. &sprite_wm);
  1895. if (!ret) {
  1896. DRM_DEBUG_KMS("failed to compute sprite lp3 wm on pipe %d\n",
  1897. pipe);
  1898. return;
  1899. }
  1900. I915_WRITE(WM3S_LP_IVB, sprite_wm);
  1901. }
  1902. /**
  1903. * intel_update_watermarks - update FIFO watermark values based on current modes
  1904. *
  1905. * Calculate watermark values for the various WM regs based on current mode
  1906. * and plane configuration.
  1907. *
  1908. * There are several cases to deal with here:
  1909. * - normal (i.e. non-self-refresh)
  1910. * - self-refresh (SR) mode
  1911. * - lines are large relative to FIFO size (buffer can hold up to 2)
  1912. * - lines are small relative to FIFO size (buffer can hold more than 2
  1913. * lines), so need to account for TLB latency
  1914. *
  1915. * The normal calculation is:
  1916. * watermark = dotclock * bytes per pixel * latency
  1917. * where latency is platform & configuration dependent (we assume pessimal
  1918. * values here).
  1919. *
  1920. * The SR calculation is:
  1921. * watermark = (trunc(latency/line time)+1) * surface width *
  1922. * bytes per pixel
  1923. * where
  1924. * line time = htotal / dotclock
  1925. * surface width = hdisplay for normal plane and 64 for cursor
  1926. * and latency is assumed to be high, as above.
  1927. *
  1928. * The final value programmed to the register should always be rounded up,
  1929. * and include an extra 2 entries to account for clock crossings.
  1930. *
  1931. * We don't use the sprite, so we can ignore that. And on Crestline we have
  1932. * to set the non-SR watermarks to 8.
  1933. */
  1934. void intel_update_watermarks(struct drm_device *dev)
  1935. {
  1936. struct drm_i915_private *dev_priv = dev->dev_private;
  1937. if (dev_priv->display.update_wm)
  1938. dev_priv->display.update_wm(dev);
  1939. }
  1940. void intel_update_linetime_watermarks(struct drm_device *dev,
  1941. int pipe, struct drm_display_mode *mode)
  1942. {
  1943. struct drm_i915_private *dev_priv = dev->dev_private;
  1944. if (dev_priv->display.update_linetime_wm)
  1945. dev_priv->display.update_linetime_wm(dev, pipe, mode);
  1946. }
  1947. void intel_update_sprite_watermarks(struct drm_device *dev, int pipe,
  1948. uint32_t sprite_width, int pixel_size)
  1949. {
  1950. struct drm_i915_private *dev_priv = dev->dev_private;
  1951. if (dev_priv->display.update_sprite_wm)
  1952. dev_priv->display.update_sprite_wm(dev, pipe, sprite_width,
  1953. pixel_size);
  1954. }
  1955. static struct drm_i915_gem_object *
  1956. intel_alloc_context_page(struct drm_device *dev)
  1957. {
  1958. struct drm_i915_gem_object *ctx;
  1959. int ret;
  1960. WARN_ON(!mutex_is_locked(&dev->struct_mutex));
  1961. ctx = i915_gem_alloc_object(dev, 4096);
  1962. if (!ctx) {
  1963. DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
  1964. return NULL;
  1965. }
  1966. ret = i915_gem_object_pin(ctx, 4096, true, false);
  1967. if (ret) {
  1968. DRM_ERROR("failed to pin power context: %d\n", ret);
  1969. goto err_unref;
  1970. }
  1971. ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
  1972. if (ret) {
  1973. DRM_ERROR("failed to set-domain on power context: %d\n", ret);
  1974. goto err_unpin;
  1975. }
  1976. return ctx;
  1977. err_unpin:
  1978. i915_gem_object_unpin(ctx);
  1979. err_unref:
  1980. drm_gem_object_unreference(&ctx->base);
  1981. mutex_unlock(&dev->struct_mutex);
  1982. return NULL;
  1983. }
  1984. /**
  1985. * Lock protecting IPS related data structures
  1986. */
  1987. DEFINE_SPINLOCK(mchdev_lock);
  1988. /* Global for IPS driver to get at the current i915 device. Protected by
  1989. * mchdev_lock. */
  1990. static struct drm_i915_private *i915_mch_dev;
  1991. bool ironlake_set_drps(struct drm_device *dev, u8 val)
  1992. {
  1993. struct drm_i915_private *dev_priv = dev->dev_private;
  1994. u16 rgvswctl;
  1995. assert_spin_locked(&mchdev_lock);
  1996. rgvswctl = I915_READ16(MEMSWCTL);
  1997. if (rgvswctl & MEMCTL_CMD_STS) {
  1998. DRM_DEBUG("gpu busy, RCS change rejected\n");
  1999. return false; /* still busy with another command */
  2000. }
  2001. rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
  2002. (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
  2003. I915_WRITE16(MEMSWCTL, rgvswctl);
  2004. POSTING_READ16(MEMSWCTL);
  2005. rgvswctl |= MEMCTL_CMD_STS;
  2006. I915_WRITE16(MEMSWCTL, rgvswctl);
  2007. return true;
  2008. }
  2009. static void ironlake_enable_drps(struct drm_device *dev)
  2010. {
  2011. struct drm_i915_private *dev_priv = dev->dev_private;
  2012. u32 rgvmodectl = I915_READ(MEMMODECTL);
  2013. u8 fmax, fmin, fstart, vstart;
  2014. spin_lock_irq(&mchdev_lock);
  2015. /* Enable temp reporting */
  2016. I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
  2017. I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
  2018. /* 100ms RC evaluation intervals */
  2019. I915_WRITE(RCUPEI, 100000);
  2020. I915_WRITE(RCDNEI, 100000);
  2021. /* Set max/min thresholds to 90ms and 80ms respectively */
  2022. I915_WRITE(RCBMAXAVG, 90000);
  2023. I915_WRITE(RCBMINAVG, 80000);
  2024. I915_WRITE(MEMIHYST, 1);
  2025. /* Set up min, max, and cur for interrupt handling */
  2026. fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
  2027. fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
  2028. fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
  2029. MEMMODE_FSTART_SHIFT;
  2030. vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
  2031. PXVFREQ_PX_SHIFT;
  2032. dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
  2033. dev_priv->ips.fstart = fstart;
  2034. dev_priv->ips.max_delay = fstart;
  2035. dev_priv->ips.min_delay = fmin;
  2036. dev_priv->ips.cur_delay = fstart;
  2037. DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
  2038. fmax, fmin, fstart);
  2039. I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
  2040. /*
  2041. * Interrupts will be enabled in ironlake_irq_postinstall
  2042. */
  2043. I915_WRITE(VIDSTART, vstart);
  2044. POSTING_READ(VIDSTART);
  2045. rgvmodectl |= MEMMODE_SWMODE_EN;
  2046. I915_WRITE(MEMMODECTL, rgvmodectl);
  2047. if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
  2048. DRM_ERROR("stuck trying to change perf mode\n");
  2049. mdelay(1);
  2050. ironlake_set_drps(dev, fstart);
  2051. dev_priv->ips.last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
  2052. I915_READ(0x112e0);
  2053. dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
  2054. dev_priv->ips.last_count2 = I915_READ(0x112f4);
  2055. getrawmonotonic(&dev_priv->ips.last_time2);
  2056. spin_unlock_irq(&mchdev_lock);
  2057. }
  2058. static void ironlake_disable_drps(struct drm_device *dev)
  2059. {
  2060. struct drm_i915_private *dev_priv = dev->dev_private;
  2061. u16 rgvswctl;
  2062. spin_lock_irq(&mchdev_lock);
  2063. rgvswctl = I915_READ16(MEMSWCTL);
  2064. /* Ack interrupts, disable EFC interrupt */
  2065. I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
  2066. I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
  2067. I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
  2068. I915_WRITE(DEIIR, DE_PCU_EVENT);
  2069. I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
  2070. /* Go back to the starting frequency */
  2071. ironlake_set_drps(dev, dev_priv->ips.fstart);
  2072. mdelay(1);
  2073. rgvswctl |= MEMCTL_CMD_STS;
  2074. I915_WRITE(MEMSWCTL, rgvswctl);
  2075. mdelay(1);
  2076. spin_unlock_irq(&mchdev_lock);
  2077. }
  2078. /* There's a funny hw issue where the hw returns all 0 when reading from
  2079. * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
  2080. * ourselves, instead of doing a rmw cycle (which might result in us clearing
  2081. * all limits and the gpu stuck at whatever frequency it is at atm).
  2082. */
  2083. static u32 gen6_rps_limits(struct drm_i915_private *dev_priv, u8 *val)
  2084. {
  2085. u32 limits;
  2086. limits = 0;
  2087. if (*val >= dev_priv->rps.max_delay)
  2088. *val = dev_priv->rps.max_delay;
  2089. limits |= dev_priv->rps.max_delay << 24;
  2090. /* Only set the down limit when we've reached the lowest level to avoid
  2091. * getting more interrupts, otherwise leave this clear. This prevents a
  2092. * race in the hw when coming out of rc6: There's a tiny window where
  2093. * the hw runs at the minimal clock before selecting the desired
  2094. * frequency, if the down threshold expires in that window we will not
  2095. * receive a down interrupt. */
  2096. if (*val <= dev_priv->rps.min_delay) {
  2097. *val = dev_priv->rps.min_delay;
  2098. limits |= dev_priv->rps.min_delay << 16;
  2099. }
  2100. return limits;
  2101. }
  2102. void gen6_set_rps(struct drm_device *dev, u8 val)
  2103. {
  2104. struct drm_i915_private *dev_priv = dev->dev_private;
  2105. u32 limits = gen6_rps_limits(dev_priv, &val);
  2106. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  2107. WARN_ON(val > dev_priv->rps.max_delay);
  2108. WARN_ON(val < dev_priv->rps.min_delay);
  2109. if (val == dev_priv->rps.cur_delay)
  2110. return;
  2111. I915_WRITE(GEN6_RPNSWREQ,
  2112. GEN6_FREQUENCY(val) |
  2113. GEN6_OFFSET(0) |
  2114. GEN6_AGGRESSIVE_TURBO);
  2115. /* Make sure we continue to get interrupts
  2116. * until we hit the minimum or maximum frequencies.
  2117. */
  2118. I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, limits);
  2119. POSTING_READ(GEN6_RPNSWREQ);
  2120. dev_priv->rps.cur_delay = val;
  2121. trace_intel_gpu_freq_change(val * 50);
  2122. }
  2123. static void gen6_disable_rps(struct drm_device *dev)
  2124. {
  2125. struct drm_i915_private *dev_priv = dev->dev_private;
  2126. I915_WRITE(GEN6_RC_CONTROL, 0);
  2127. I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
  2128. I915_WRITE(GEN6_PMINTRMSK, 0xffffffff);
  2129. I915_WRITE(GEN6_PMIER, 0);
  2130. /* Complete PM interrupt masking here doesn't race with the rps work
  2131. * item again unmasking PM interrupts because that is using a different
  2132. * register (PMIMR) to mask PM interrupts. The only risk is in leaving
  2133. * stale bits in PMIIR and PMIMR which gen6_enable_rps will clean up. */
  2134. spin_lock_irq(&dev_priv->rps.lock);
  2135. dev_priv->rps.pm_iir = 0;
  2136. spin_unlock_irq(&dev_priv->rps.lock);
  2137. I915_WRITE(GEN6_PMIIR, I915_READ(GEN6_PMIIR));
  2138. }
  2139. int intel_enable_rc6(const struct drm_device *dev)
  2140. {
  2141. /* Respect the kernel parameter if it is set */
  2142. if (i915_enable_rc6 >= 0)
  2143. return i915_enable_rc6;
  2144. /* Disable RC6 on Ironlake */
  2145. if (INTEL_INFO(dev)->gen == 5)
  2146. return 0;
  2147. if (IS_HASWELL(dev)) {
  2148. DRM_DEBUG_DRIVER("Haswell: only RC6 available\n");
  2149. return INTEL_RC6_ENABLE;
  2150. }
  2151. /* snb/ivb have more than one rc6 state. */
  2152. if (INTEL_INFO(dev)->gen == 6) {
  2153. DRM_DEBUG_DRIVER("Sandybridge: deep RC6 disabled\n");
  2154. return INTEL_RC6_ENABLE;
  2155. }
  2156. DRM_DEBUG_DRIVER("RC6 and deep RC6 enabled\n");
  2157. return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
  2158. }
  2159. static void gen6_enable_rps(struct drm_device *dev)
  2160. {
  2161. struct drm_i915_private *dev_priv = dev->dev_private;
  2162. struct intel_ring_buffer *ring;
  2163. u32 rp_state_cap;
  2164. u32 gt_perf_status;
  2165. u32 rc6vids, pcu_mbox, rc6_mask = 0;
  2166. u32 gtfifodbg;
  2167. int rc6_mode;
  2168. int i, ret;
  2169. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  2170. /* Here begins a magic sequence of register writes to enable
  2171. * auto-downclocking.
  2172. *
  2173. * Perhaps there might be some value in exposing these to
  2174. * userspace...
  2175. */
  2176. I915_WRITE(GEN6_RC_STATE, 0);
  2177. /* Clear the DBG now so we don't confuse earlier errors */
  2178. if ((gtfifodbg = I915_READ(GTFIFODBG))) {
  2179. DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
  2180. I915_WRITE(GTFIFODBG, gtfifodbg);
  2181. }
  2182. gen6_gt_force_wake_get(dev_priv);
  2183. rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
  2184. gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
  2185. /* In units of 100MHz */
  2186. dev_priv->rps.max_delay = rp_state_cap & 0xff;
  2187. dev_priv->rps.min_delay = (rp_state_cap & 0xff0000) >> 16;
  2188. dev_priv->rps.cur_delay = 0;
  2189. /* disable the counters and set deterministic thresholds */
  2190. I915_WRITE(GEN6_RC_CONTROL, 0);
  2191. I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
  2192. I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
  2193. I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
  2194. I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
  2195. I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
  2196. for_each_ring(ring, dev_priv, i)
  2197. I915_WRITE(RING_MAX_IDLE(ring->mmio_base), 10);
  2198. I915_WRITE(GEN6_RC_SLEEP, 0);
  2199. I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
  2200. I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
  2201. I915_WRITE(GEN6_RC6p_THRESHOLD, 100000);
  2202. I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
  2203. /* Check if we are enabling RC6 */
  2204. rc6_mode = intel_enable_rc6(dev_priv->dev);
  2205. if (rc6_mode & INTEL_RC6_ENABLE)
  2206. rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
  2207. /* We don't use those on Haswell */
  2208. if (!IS_HASWELL(dev)) {
  2209. if (rc6_mode & INTEL_RC6p_ENABLE)
  2210. rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
  2211. if (rc6_mode & INTEL_RC6pp_ENABLE)
  2212. rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
  2213. }
  2214. DRM_INFO("Enabling RC6 states: RC6 %s, RC6p %s, RC6pp %s\n",
  2215. (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ? "on" : "off",
  2216. (rc6_mask & GEN6_RC_CTL_RC6p_ENABLE) ? "on" : "off",
  2217. (rc6_mask & GEN6_RC_CTL_RC6pp_ENABLE) ? "on" : "off");
  2218. I915_WRITE(GEN6_RC_CONTROL,
  2219. rc6_mask |
  2220. GEN6_RC_CTL_EI_MODE(1) |
  2221. GEN6_RC_CTL_HW_ENABLE);
  2222. I915_WRITE(GEN6_RPNSWREQ,
  2223. GEN6_FREQUENCY(10) |
  2224. GEN6_OFFSET(0) |
  2225. GEN6_AGGRESSIVE_TURBO);
  2226. I915_WRITE(GEN6_RC_VIDEO_FREQ,
  2227. GEN6_FREQUENCY(12));
  2228. I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
  2229. I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
  2230. dev_priv->rps.max_delay << 24 |
  2231. dev_priv->rps.min_delay << 16);
  2232. I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
  2233. I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
  2234. I915_WRITE(GEN6_RP_UP_EI, 66000);
  2235. I915_WRITE(GEN6_RP_DOWN_EI, 350000);
  2236. I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
  2237. I915_WRITE(GEN6_RP_CONTROL,
  2238. GEN6_RP_MEDIA_TURBO |
  2239. GEN6_RP_MEDIA_HW_NORMAL_MODE |
  2240. GEN6_RP_MEDIA_IS_GFX |
  2241. GEN6_RP_ENABLE |
  2242. GEN6_RP_UP_BUSY_AVG |
  2243. (IS_HASWELL(dev) ? GEN7_RP_DOWN_IDLE_AVG : GEN6_RP_DOWN_IDLE_CONT));
  2244. ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
  2245. if (!ret) {
  2246. pcu_mbox = 0;
  2247. ret = sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &pcu_mbox);
  2248. if (ret && pcu_mbox & (1<<31)) { /* OC supported */
  2249. dev_priv->rps.max_delay = pcu_mbox & 0xff;
  2250. DRM_DEBUG_DRIVER("overclocking supported, adjusting frequency max to %dMHz\n", pcu_mbox * 50);
  2251. }
  2252. } else {
  2253. DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
  2254. }
  2255. gen6_set_rps(dev_priv->dev, (gt_perf_status & 0xff00) >> 8);
  2256. /* requires MSI enabled */
  2257. I915_WRITE(GEN6_PMIER, GEN6_PM_DEFERRED_EVENTS);
  2258. spin_lock_irq(&dev_priv->rps.lock);
  2259. WARN_ON(dev_priv->rps.pm_iir != 0);
  2260. I915_WRITE(GEN6_PMIMR, 0);
  2261. spin_unlock_irq(&dev_priv->rps.lock);
  2262. /* enable all PM interrupts */
  2263. I915_WRITE(GEN6_PMINTRMSK, 0);
  2264. rc6vids = 0;
  2265. ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
  2266. if (IS_GEN6(dev) && ret) {
  2267. DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
  2268. } else if (IS_GEN6(dev) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
  2269. DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
  2270. GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
  2271. rc6vids &= 0xffff00;
  2272. rc6vids |= GEN6_ENCODE_RC6_VID(450);
  2273. ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
  2274. if (ret)
  2275. DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
  2276. }
  2277. gen6_gt_force_wake_put(dev_priv);
  2278. }
  2279. static void gen6_update_ring_freq(struct drm_device *dev)
  2280. {
  2281. struct drm_i915_private *dev_priv = dev->dev_private;
  2282. int min_freq = 15;
  2283. int gpu_freq;
  2284. unsigned int ia_freq, max_ia_freq;
  2285. int scaling_factor = 180;
  2286. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  2287. max_ia_freq = cpufreq_quick_get_max(0);
  2288. /*
  2289. * Default to measured freq if none found, PCU will ensure we don't go
  2290. * over
  2291. */
  2292. if (!max_ia_freq)
  2293. max_ia_freq = tsc_khz;
  2294. /* Convert from kHz to MHz */
  2295. max_ia_freq /= 1000;
  2296. /*
  2297. * For each potential GPU frequency, load a ring frequency we'd like
  2298. * to use for memory access. We do this by specifying the IA frequency
  2299. * the PCU should use as a reference to determine the ring frequency.
  2300. */
  2301. for (gpu_freq = dev_priv->rps.max_delay; gpu_freq >= dev_priv->rps.min_delay;
  2302. gpu_freq--) {
  2303. int diff = dev_priv->rps.max_delay - gpu_freq;
  2304. /*
  2305. * For GPU frequencies less than 750MHz, just use the lowest
  2306. * ring freq.
  2307. */
  2308. if (gpu_freq < min_freq)
  2309. ia_freq = 800;
  2310. else
  2311. ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
  2312. ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
  2313. ia_freq <<= GEN6_PCODE_FREQ_IA_RATIO_SHIFT;
  2314. sandybridge_pcode_write(dev_priv,
  2315. GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
  2316. ia_freq | gpu_freq);
  2317. }
  2318. }
  2319. void ironlake_teardown_rc6(struct drm_device *dev)
  2320. {
  2321. struct drm_i915_private *dev_priv = dev->dev_private;
  2322. if (dev_priv->ips.renderctx) {
  2323. i915_gem_object_unpin(dev_priv->ips.renderctx);
  2324. drm_gem_object_unreference(&dev_priv->ips.renderctx->base);
  2325. dev_priv->ips.renderctx = NULL;
  2326. }
  2327. if (dev_priv->ips.pwrctx) {
  2328. i915_gem_object_unpin(dev_priv->ips.pwrctx);
  2329. drm_gem_object_unreference(&dev_priv->ips.pwrctx->base);
  2330. dev_priv->ips.pwrctx = NULL;
  2331. }
  2332. }
  2333. static void ironlake_disable_rc6(struct drm_device *dev)
  2334. {
  2335. struct drm_i915_private *dev_priv = dev->dev_private;
  2336. if (I915_READ(PWRCTXA)) {
  2337. /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
  2338. I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) | RCX_SW_EXIT);
  2339. wait_for(((I915_READ(RSTDBYCTL) & RSX_STATUS_MASK) == RSX_STATUS_ON),
  2340. 50);
  2341. I915_WRITE(PWRCTXA, 0);
  2342. POSTING_READ(PWRCTXA);
  2343. I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
  2344. POSTING_READ(RSTDBYCTL);
  2345. }
  2346. }
  2347. static int ironlake_setup_rc6(struct drm_device *dev)
  2348. {
  2349. struct drm_i915_private *dev_priv = dev->dev_private;
  2350. if (dev_priv->ips.renderctx == NULL)
  2351. dev_priv->ips.renderctx = intel_alloc_context_page(dev);
  2352. if (!dev_priv->ips.renderctx)
  2353. return -ENOMEM;
  2354. if (dev_priv->ips.pwrctx == NULL)
  2355. dev_priv->ips.pwrctx = intel_alloc_context_page(dev);
  2356. if (!dev_priv->ips.pwrctx) {
  2357. ironlake_teardown_rc6(dev);
  2358. return -ENOMEM;
  2359. }
  2360. return 0;
  2361. }
  2362. static void ironlake_enable_rc6(struct drm_device *dev)
  2363. {
  2364. struct drm_i915_private *dev_priv = dev->dev_private;
  2365. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  2366. bool was_interruptible;
  2367. int ret;
  2368. /* rc6 disabled by default due to repeated reports of hanging during
  2369. * boot and resume.
  2370. */
  2371. if (!intel_enable_rc6(dev))
  2372. return;
  2373. WARN_ON(!mutex_is_locked(&dev->struct_mutex));
  2374. ret = ironlake_setup_rc6(dev);
  2375. if (ret)
  2376. return;
  2377. was_interruptible = dev_priv->mm.interruptible;
  2378. dev_priv->mm.interruptible = false;
  2379. /*
  2380. * GPU can automatically power down the render unit if given a page
  2381. * to save state.
  2382. */
  2383. ret = intel_ring_begin(ring, 6);
  2384. if (ret) {
  2385. ironlake_teardown_rc6(dev);
  2386. dev_priv->mm.interruptible = was_interruptible;
  2387. return;
  2388. }
  2389. intel_ring_emit(ring, MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN);
  2390. intel_ring_emit(ring, MI_SET_CONTEXT);
  2391. intel_ring_emit(ring, dev_priv->ips.renderctx->gtt_offset |
  2392. MI_MM_SPACE_GTT |
  2393. MI_SAVE_EXT_STATE_EN |
  2394. MI_RESTORE_EXT_STATE_EN |
  2395. MI_RESTORE_INHIBIT);
  2396. intel_ring_emit(ring, MI_SUSPEND_FLUSH);
  2397. intel_ring_emit(ring, MI_NOOP);
  2398. intel_ring_emit(ring, MI_FLUSH);
  2399. intel_ring_advance(ring);
  2400. /*
  2401. * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
  2402. * does an implicit flush, combined with MI_FLUSH above, it should be
  2403. * safe to assume that renderctx is valid
  2404. */
  2405. ret = intel_ring_idle(ring);
  2406. dev_priv->mm.interruptible = was_interruptible;
  2407. if (ret) {
  2408. DRM_ERROR("failed to enable ironlake power power savings\n");
  2409. ironlake_teardown_rc6(dev);
  2410. return;
  2411. }
  2412. I915_WRITE(PWRCTXA, dev_priv->ips.pwrctx->gtt_offset | PWRCTX_EN);
  2413. I915_WRITE(RSTDBYCTL, I915_READ(RSTDBYCTL) & ~RCX_SW_EXIT);
  2414. }
  2415. static unsigned long intel_pxfreq(u32 vidfreq)
  2416. {
  2417. unsigned long freq;
  2418. int div = (vidfreq & 0x3f0000) >> 16;
  2419. int post = (vidfreq & 0x3000) >> 12;
  2420. int pre = (vidfreq & 0x7);
  2421. if (!pre)
  2422. return 0;
  2423. freq = ((div * 133333) / ((1<<post) * pre));
  2424. return freq;
  2425. }
  2426. static const struct cparams {
  2427. u16 i;
  2428. u16 t;
  2429. u16 m;
  2430. u16 c;
  2431. } cparams[] = {
  2432. { 1, 1333, 301, 28664 },
  2433. { 1, 1066, 294, 24460 },
  2434. { 1, 800, 294, 25192 },
  2435. { 0, 1333, 276, 27605 },
  2436. { 0, 1066, 276, 27605 },
  2437. { 0, 800, 231, 23784 },
  2438. };
  2439. static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
  2440. {
  2441. u64 total_count, diff, ret;
  2442. u32 count1, count2, count3, m = 0, c = 0;
  2443. unsigned long now = jiffies_to_msecs(jiffies), diff1;
  2444. int i;
  2445. assert_spin_locked(&mchdev_lock);
  2446. diff1 = now - dev_priv->ips.last_time1;
  2447. /* Prevent division-by-zero if we are asking too fast.
  2448. * Also, we don't get interesting results if we are polling
  2449. * faster than once in 10ms, so just return the saved value
  2450. * in such cases.
  2451. */
  2452. if (diff1 <= 10)
  2453. return dev_priv->ips.chipset_power;
  2454. count1 = I915_READ(DMIEC);
  2455. count2 = I915_READ(DDREC);
  2456. count3 = I915_READ(CSIEC);
  2457. total_count = count1 + count2 + count3;
  2458. /* FIXME: handle per-counter overflow */
  2459. if (total_count < dev_priv->ips.last_count1) {
  2460. diff = ~0UL - dev_priv->ips.last_count1;
  2461. diff += total_count;
  2462. } else {
  2463. diff = total_count - dev_priv->ips.last_count1;
  2464. }
  2465. for (i = 0; i < ARRAY_SIZE(cparams); i++) {
  2466. if (cparams[i].i == dev_priv->ips.c_m &&
  2467. cparams[i].t == dev_priv->ips.r_t) {
  2468. m = cparams[i].m;
  2469. c = cparams[i].c;
  2470. break;
  2471. }
  2472. }
  2473. diff = div_u64(diff, diff1);
  2474. ret = ((m * diff) + c);
  2475. ret = div_u64(ret, 10);
  2476. dev_priv->ips.last_count1 = total_count;
  2477. dev_priv->ips.last_time1 = now;
  2478. dev_priv->ips.chipset_power = ret;
  2479. return ret;
  2480. }
  2481. unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
  2482. {
  2483. unsigned long val;
  2484. if (dev_priv->info->gen != 5)
  2485. return 0;
  2486. spin_lock_irq(&mchdev_lock);
  2487. val = __i915_chipset_val(dev_priv);
  2488. spin_unlock_irq(&mchdev_lock);
  2489. return val;
  2490. }
  2491. unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
  2492. {
  2493. unsigned long m, x, b;
  2494. u32 tsfs;
  2495. tsfs = I915_READ(TSFS);
  2496. m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
  2497. x = I915_READ8(TR1);
  2498. b = tsfs & TSFS_INTR_MASK;
  2499. return ((m * x) / 127) - b;
  2500. }
  2501. static u16 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
  2502. {
  2503. static const struct v_table {
  2504. u16 vd; /* in .1 mil */
  2505. u16 vm; /* in .1 mil */
  2506. } v_table[] = {
  2507. { 0, 0, },
  2508. { 375, 0, },
  2509. { 500, 0, },
  2510. { 625, 0, },
  2511. { 750, 0, },
  2512. { 875, 0, },
  2513. { 1000, 0, },
  2514. { 1125, 0, },
  2515. { 4125, 3000, },
  2516. { 4125, 3000, },
  2517. { 4125, 3000, },
  2518. { 4125, 3000, },
  2519. { 4125, 3000, },
  2520. { 4125, 3000, },
  2521. { 4125, 3000, },
  2522. { 4125, 3000, },
  2523. { 4125, 3000, },
  2524. { 4125, 3000, },
  2525. { 4125, 3000, },
  2526. { 4125, 3000, },
  2527. { 4125, 3000, },
  2528. { 4125, 3000, },
  2529. { 4125, 3000, },
  2530. { 4125, 3000, },
  2531. { 4125, 3000, },
  2532. { 4125, 3000, },
  2533. { 4125, 3000, },
  2534. { 4125, 3000, },
  2535. { 4125, 3000, },
  2536. { 4125, 3000, },
  2537. { 4125, 3000, },
  2538. { 4125, 3000, },
  2539. { 4250, 3125, },
  2540. { 4375, 3250, },
  2541. { 4500, 3375, },
  2542. { 4625, 3500, },
  2543. { 4750, 3625, },
  2544. { 4875, 3750, },
  2545. { 5000, 3875, },
  2546. { 5125, 4000, },
  2547. { 5250, 4125, },
  2548. { 5375, 4250, },
  2549. { 5500, 4375, },
  2550. { 5625, 4500, },
  2551. { 5750, 4625, },
  2552. { 5875, 4750, },
  2553. { 6000, 4875, },
  2554. { 6125, 5000, },
  2555. { 6250, 5125, },
  2556. { 6375, 5250, },
  2557. { 6500, 5375, },
  2558. { 6625, 5500, },
  2559. { 6750, 5625, },
  2560. { 6875, 5750, },
  2561. { 7000, 5875, },
  2562. { 7125, 6000, },
  2563. { 7250, 6125, },
  2564. { 7375, 6250, },
  2565. { 7500, 6375, },
  2566. { 7625, 6500, },
  2567. { 7750, 6625, },
  2568. { 7875, 6750, },
  2569. { 8000, 6875, },
  2570. { 8125, 7000, },
  2571. { 8250, 7125, },
  2572. { 8375, 7250, },
  2573. { 8500, 7375, },
  2574. { 8625, 7500, },
  2575. { 8750, 7625, },
  2576. { 8875, 7750, },
  2577. { 9000, 7875, },
  2578. { 9125, 8000, },
  2579. { 9250, 8125, },
  2580. { 9375, 8250, },
  2581. { 9500, 8375, },
  2582. { 9625, 8500, },
  2583. { 9750, 8625, },
  2584. { 9875, 8750, },
  2585. { 10000, 8875, },
  2586. { 10125, 9000, },
  2587. { 10250, 9125, },
  2588. { 10375, 9250, },
  2589. { 10500, 9375, },
  2590. { 10625, 9500, },
  2591. { 10750, 9625, },
  2592. { 10875, 9750, },
  2593. { 11000, 9875, },
  2594. { 11125, 10000, },
  2595. { 11250, 10125, },
  2596. { 11375, 10250, },
  2597. { 11500, 10375, },
  2598. { 11625, 10500, },
  2599. { 11750, 10625, },
  2600. { 11875, 10750, },
  2601. { 12000, 10875, },
  2602. { 12125, 11000, },
  2603. { 12250, 11125, },
  2604. { 12375, 11250, },
  2605. { 12500, 11375, },
  2606. { 12625, 11500, },
  2607. { 12750, 11625, },
  2608. { 12875, 11750, },
  2609. { 13000, 11875, },
  2610. { 13125, 12000, },
  2611. { 13250, 12125, },
  2612. { 13375, 12250, },
  2613. { 13500, 12375, },
  2614. { 13625, 12500, },
  2615. { 13750, 12625, },
  2616. { 13875, 12750, },
  2617. { 14000, 12875, },
  2618. { 14125, 13000, },
  2619. { 14250, 13125, },
  2620. { 14375, 13250, },
  2621. { 14500, 13375, },
  2622. { 14625, 13500, },
  2623. { 14750, 13625, },
  2624. { 14875, 13750, },
  2625. { 15000, 13875, },
  2626. { 15125, 14000, },
  2627. { 15250, 14125, },
  2628. { 15375, 14250, },
  2629. { 15500, 14375, },
  2630. { 15625, 14500, },
  2631. { 15750, 14625, },
  2632. { 15875, 14750, },
  2633. { 16000, 14875, },
  2634. { 16125, 15000, },
  2635. };
  2636. if (dev_priv->info->is_mobile)
  2637. return v_table[pxvid].vm;
  2638. else
  2639. return v_table[pxvid].vd;
  2640. }
  2641. static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
  2642. {
  2643. struct timespec now, diff1;
  2644. u64 diff;
  2645. unsigned long diffms;
  2646. u32 count;
  2647. assert_spin_locked(&mchdev_lock);
  2648. getrawmonotonic(&now);
  2649. diff1 = timespec_sub(now, dev_priv->ips.last_time2);
  2650. /* Don't divide by 0 */
  2651. diffms = diff1.tv_sec * 1000 + diff1.tv_nsec / 1000000;
  2652. if (!diffms)
  2653. return;
  2654. count = I915_READ(GFXEC);
  2655. if (count < dev_priv->ips.last_count2) {
  2656. diff = ~0UL - dev_priv->ips.last_count2;
  2657. diff += count;
  2658. } else {
  2659. diff = count - dev_priv->ips.last_count2;
  2660. }
  2661. dev_priv->ips.last_count2 = count;
  2662. dev_priv->ips.last_time2 = now;
  2663. /* More magic constants... */
  2664. diff = diff * 1181;
  2665. diff = div_u64(diff, diffms * 10);
  2666. dev_priv->ips.gfx_power = diff;
  2667. }
  2668. void i915_update_gfx_val(struct drm_i915_private *dev_priv)
  2669. {
  2670. if (dev_priv->info->gen != 5)
  2671. return;
  2672. spin_lock_irq(&mchdev_lock);
  2673. __i915_update_gfx_val(dev_priv);
  2674. spin_unlock_irq(&mchdev_lock);
  2675. }
  2676. static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
  2677. {
  2678. unsigned long t, corr, state1, corr2, state2;
  2679. u32 pxvid, ext_v;
  2680. assert_spin_locked(&mchdev_lock);
  2681. pxvid = I915_READ(PXVFREQ_BASE + (dev_priv->rps.cur_delay * 4));
  2682. pxvid = (pxvid >> 24) & 0x7f;
  2683. ext_v = pvid_to_extvid(dev_priv, pxvid);
  2684. state1 = ext_v;
  2685. t = i915_mch_val(dev_priv);
  2686. /* Revel in the empirically derived constants */
  2687. /* Correction factor in 1/100000 units */
  2688. if (t > 80)
  2689. corr = ((t * 2349) + 135940);
  2690. else if (t >= 50)
  2691. corr = ((t * 964) + 29317);
  2692. else /* < 50 */
  2693. corr = ((t * 301) + 1004);
  2694. corr = corr * ((150142 * state1) / 10000 - 78642);
  2695. corr /= 100000;
  2696. corr2 = (corr * dev_priv->ips.corr);
  2697. state2 = (corr2 * state1) / 10000;
  2698. state2 /= 100; /* convert to mW */
  2699. __i915_update_gfx_val(dev_priv);
  2700. return dev_priv->ips.gfx_power + state2;
  2701. }
  2702. unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
  2703. {
  2704. unsigned long val;
  2705. if (dev_priv->info->gen != 5)
  2706. return 0;
  2707. spin_lock_irq(&mchdev_lock);
  2708. val = __i915_gfx_val(dev_priv);
  2709. spin_unlock_irq(&mchdev_lock);
  2710. return val;
  2711. }
  2712. /**
  2713. * i915_read_mch_val - return value for IPS use
  2714. *
  2715. * Calculate and return a value for the IPS driver to use when deciding whether
  2716. * we have thermal and power headroom to increase CPU or GPU power budget.
  2717. */
  2718. unsigned long i915_read_mch_val(void)
  2719. {
  2720. struct drm_i915_private *dev_priv;
  2721. unsigned long chipset_val, graphics_val, ret = 0;
  2722. spin_lock_irq(&mchdev_lock);
  2723. if (!i915_mch_dev)
  2724. goto out_unlock;
  2725. dev_priv = i915_mch_dev;
  2726. chipset_val = __i915_chipset_val(dev_priv);
  2727. graphics_val = __i915_gfx_val(dev_priv);
  2728. ret = chipset_val + graphics_val;
  2729. out_unlock:
  2730. spin_unlock_irq(&mchdev_lock);
  2731. return ret;
  2732. }
  2733. EXPORT_SYMBOL_GPL(i915_read_mch_val);
  2734. /**
  2735. * i915_gpu_raise - raise GPU frequency limit
  2736. *
  2737. * Raise the limit; IPS indicates we have thermal headroom.
  2738. */
  2739. bool i915_gpu_raise(void)
  2740. {
  2741. struct drm_i915_private *dev_priv;
  2742. bool ret = true;
  2743. spin_lock_irq(&mchdev_lock);
  2744. if (!i915_mch_dev) {
  2745. ret = false;
  2746. goto out_unlock;
  2747. }
  2748. dev_priv = i915_mch_dev;
  2749. if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
  2750. dev_priv->ips.max_delay--;
  2751. out_unlock:
  2752. spin_unlock_irq(&mchdev_lock);
  2753. return ret;
  2754. }
  2755. EXPORT_SYMBOL_GPL(i915_gpu_raise);
  2756. /**
  2757. * i915_gpu_lower - lower GPU frequency limit
  2758. *
  2759. * IPS indicates we're close to a thermal limit, so throttle back the GPU
  2760. * frequency maximum.
  2761. */
  2762. bool i915_gpu_lower(void)
  2763. {
  2764. struct drm_i915_private *dev_priv;
  2765. bool ret = true;
  2766. spin_lock_irq(&mchdev_lock);
  2767. if (!i915_mch_dev) {
  2768. ret = false;
  2769. goto out_unlock;
  2770. }
  2771. dev_priv = i915_mch_dev;
  2772. if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
  2773. dev_priv->ips.max_delay++;
  2774. out_unlock:
  2775. spin_unlock_irq(&mchdev_lock);
  2776. return ret;
  2777. }
  2778. EXPORT_SYMBOL_GPL(i915_gpu_lower);
  2779. /**
  2780. * i915_gpu_busy - indicate GPU business to IPS
  2781. *
  2782. * Tell the IPS driver whether or not the GPU is busy.
  2783. */
  2784. bool i915_gpu_busy(void)
  2785. {
  2786. struct drm_i915_private *dev_priv;
  2787. struct intel_ring_buffer *ring;
  2788. bool ret = false;
  2789. int i;
  2790. spin_lock_irq(&mchdev_lock);
  2791. if (!i915_mch_dev)
  2792. goto out_unlock;
  2793. dev_priv = i915_mch_dev;
  2794. for_each_ring(ring, dev_priv, i)
  2795. ret |= !list_empty(&ring->request_list);
  2796. out_unlock:
  2797. spin_unlock_irq(&mchdev_lock);
  2798. return ret;
  2799. }
  2800. EXPORT_SYMBOL_GPL(i915_gpu_busy);
  2801. /**
  2802. * i915_gpu_turbo_disable - disable graphics turbo
  2803. *
  2804. * Disable graphics turbo by resetting the max frequency and setting the
  2805. * current frequency to the default.
  2806. */
  2807. bool i915_gpu_turbo_disable(void)
  2808. {
  2809. struct drm_i915_private *dev_priv;
  2810. bool ret = true;
  2811. spin_lock_irq(&mchdev_lock);
  2812. if (!i915_mch_dev) {
  2813. ret = false;
  2814. goto out_unlock;
  2815. }
  2816. dev_priv = i915_mch_dev;
  2817. dev_priv->ips.max_delay = dev_priv->ips.fstart;
  2818. if (!ironlake_set_drps(dev_priv->dev, dev_priv->ips.fstart))
  2819. ret = false;
  2820. out_unlock:
  2821. spin_unlock_irq(&mchdev_lock);
  2822. return ret;
  2823. }
  2824. EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
  2825. /**
  2826. * Tells the intel_ips driver that the i915 driver is now loaded, if
  2827. * IPS got loaded first.
  2828. *
  2829. * This awkward dance is so that neither module has to depend on the
  2830. * other in order for IPS to do the appropriate communication of
  2831. * GPU turbo limits to i915.
  2832. */
  2833. static void
  2834. ips_ping_for_i915_load(void)
  2835. {
  2836. void (*link)(void);
  2837. link = symbol_get(ips_link_to_i915_driver);
  2838. if (link) {
  2839. link();
  2840. symbol_put(ips_link_to_i915_driver);
  2841. }
  2842. }
  2843. void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
  2844. {
  2845. /* We only register the i915 ips part with intel-ips once everything is
  2846. * set up, to avoid intel-ips sneaking in and reading bogus values. */
  2847. spin_lock_irq(&mchdev_lock);
  2848. i915_mch_dev = dev_priv;
  2849. spin_unlock_irq(&mchdev_lock);
  2850. ips_ping_for_i915_load();
  2851. }
  2852. void intel_gpu_ips_teardown(void)
  2853. {
  2854. spin_lock_irq(&mchdev_lock);
  2855. i915_mch_dev = NULL;
  2856. spin_unlock_irq(&mchdev_lock);
  2857. }
  2858. static void intel_init_emon(struct drm_device *dev)
  2859. {
  2860. struct drm_i915_private *dev_priv = dev->dev_private;
  2861. u32 lcfuse;
  2862. u8 pxw[16];
  2863. int i;
  2864. /* Disable to program */
  2865. I915_WRITE(ECR, 0);
  2866. POSTING_READ(ECR);
  2867. /* Program energy weights for various events */
  2868. I915_WRITE(SDEW, 0x15040d00);
  2869. I915_WRITE(CSIEW0, 0x007f0000);
  2870. I915_WRITE(CSIEW1, 0x1e220004);
  2871. I915_WRITE(CSIEW2, 0x04000004);
  2872. for (i = 0; i < 5; i++)
  2873. I915_WRITE(PEW + (i * 4), 0);
  2874. for (i = 0; i < 3; i++)
  2875. I915_WRITE(DEW + (i * 4), 0);
  2876. /* Program P-state weights to account for frequency power adjustment */
  2877. for (i = 0; i < 16; i++) {
  2878. u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
  2879. unsigned long freq = intel_pxfreq(pxvidfreq);
  2880. unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
  2881. PXVFREQ_PX_SHIFT;
  2882. unsigned long val;
  2883. val = vid * vid;
  2884. val *= (freq / 1000);
  2885. val *= 255;
  2886. val /= (127*127*900);
  2887. if (val > 0xff)
  2888. DRM_ERROR("bad pxval: %ld\n", val);
  2889. pxw[i] = val;
  2890. }
  2891. /* Render standby states get 0 weight */
  2892. pxw[14] = 0;
  2893. pxw[15] = 0;
  2894. for (i = 0; i < 4; i++) {
  2895. u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
  2896. (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
  2897. I915_WRITE(PXW + (i * 4), val);
  2898. }
  2899. /* Adjust magic regs to magic values (more experimental results) */
  2900. I915_WRITE(OGW0, 0);
  2901. I915_WRITE(OGW1, 0);
  2902. I915_WRITE(EG0, 0x00007f00);
  2903. I915_WRITE(EG1, 0x0000000e);
  2904. I915_WRITE(EG2, 0x000e0000);
  2905. I915_WRITE(EG3, 0x68000300);
  2906. I915_WRITE(EG4, 0x42000000);
  2907. I915_WRITE(EG5, 0x00140031);
  2908. I915_WRITE(EG6, 0);
  2909. I915_WRITE(EG7, 0);
  2910. for (i = 0; i < 8; i++)
  2911. I915_WRITE(PXWL + (i * 4), 0);
  2912. /* Enable PMON + select events */
  2913. I915_WRITE(ECR, 0x80000019);
  2914. lcfuse = I915_READ(LCFUSE02);
  2915. dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
  2916. }
  2917. void intel_disable_gt_powersave(struct drm_device *dev)
  2918. {
  2919. struct drm_i915_private *dev_priv = dev->dev_private;
  2920. if (IS_IRONLAKE_M(dev)) {
  2921. ironlake_disable_drps(dev);
  2922. ironlake_disable_rc6(dev);
  2923. } else if (INTEL_INFO(dev)->gen >= 6 && !IS_VALLEYVIEW(dev)) {
  2924. cancel_delayed_work_sync(&dev_priv->rps.delayed_resume_work);
  2925. mutex_lock(&dev_priv->rps.hw_lock);
  2926. gen6_disable_rps(dev);
  2927. mutex_unlock(&dev_priv->rps.hw_lock);
  2928. }
  2929. }
  2930. static void intel_gen6_powersave_work(struct work_struct *work)
  2931. {
  2932. struct drm_i915_private *dev_priv =
  2933. container_of(work, struct drm_i915_private,
  2934. rps.delayed_resume_work.work);
  2935. struct drm_device *dev = dev_priv->dev;
  2936. mutex_lock(&dev_priv->rps.hw_lock);
  2937. gen6_enable_rps(dev);
  2938. gen6_update_ring_freq(dev);
  2939. mutex_unlock(&dev_priv->rps.hw_lock);
  2940. }
  2941. void intel_enable_gt_powersave(struct drm_device *dev)
  2942. {
  2943. struct drm_i915_private *dev_priv = dev->dev_private;
  2944. if (IS_IRONLAKE_M(dev)) {
  2945. ironlake_enable_drps(dev);
  2946. ironlake_enable_rc6(dev);
  2947. intel_init_emon(dev);
  2948. } else if ((IS_GEN6(dev) || IS_GEN7(dev)) && !IS_VALLEYVIEW(dev)) {
  2949. /*
  2950. * PCU communication is slow and this doesn't need to be
  2951. * done at any specific time, so do this out of our fast path
  2952. * to make resume and init faster.
  2953. */
  2954. schedule_delayed_work(&dev_priv->rps.delayed_resume_work,
  2955. round_jiffies_up_relative(HZ));
  2956. }
  2957. }
  2958. static void ibx_init_clock_gating(struct drm_device *dev)
  2959. {
  2960. struct drm_i915_private *dev_priv = dev->dev_private;
  2961. /*
  2962. * On Ibex Peak and Cougar Point, we need to disable clock
  2963. * gating for the panel power sequencer or it will fail to
  2964. * start up when no ports are active.
  2965. */
  2966. I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
  2967. }
  2968. static void ironlake_init_clock_gating(struct drm_device *dev)
  2969. {
  2970. struct drm_i915_private *dev_priv = dev->dev_private;
  2971. uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
  2972. /* Required for FBC */
  2973. dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
  2974. ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
  2975. ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
  2976. I915_WRITE(PCH_3DCGDIS0,
  2977. MARIUNIT_CLOCK_GATE_DISABLE |
  2978. SVSMUNIT_CLOCK_GATE_DISABLE);
  2979. I915_WRITE(PCH_3DCGDIS1,
  2980. VFMUNIT_CLOCK_GATE_DISABLE);
  2981. /*
  2982. * According to the spec the following bits should be set in
  2983. * order to enable memory self-refresh
  2984. * The bit 22/21 of 0x42004
  2985. * The bit 5 of 0x42020
  2986. * The bit 15 of 0x45000
  2987. */
  2988. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  2989. (I915_READ(ILK_DISPLAY_CHICKEN2) |
  2990. ILK_DPARB_GATE | ILK_VSDPFD_FULL));
  2991. dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
  2992. I915_WRITE(DISP_ARB_CTL,
  2993. (I915_READ(DISP_ARB_CTL) |
  2994. DISP_FBC_WM_DIS));
  2995. I915_WRITE(WM3_LP_ILK, 0);
  2996. I915_WRITE(WM2_LP_ILK, 0);
  2997. I915_WRITE(WM1_LP_ILK, 0);
  2998. /*
  2999. * Based on the document from hardware guys the following bits
  3000. * should be set unconditionally in order to enable FBC.
  3001. * The bit 22 of 0x42000
  3002. * The bit 22 of 0x42004
  3003. * The bit 7,8,9 of 0x42020.
  3004. */
  3005. if (IS_IRONLAKE_M(dev)) {
  3006. I915_WRITE(ILK_DISPLAY_CHICKEN1,
  3007. I915_READ(ILK_DISPLAY_CHICKEN1) |
  3008. ILK_FBCQ_DIS);
  3009. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  3010. I915_READ(ILK_DISPLAY_CHICKEN2) |
  3011. ILK_DPARB_GATE);
  3012. }
  3013. I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
  3014. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  3015. I915_READ(ILK_DISPLAY_CHICKEN2) |
  3016. ILK_ELPIN_409_SELECT);
  3017. I915_WRITE(_3D_CHICKEN2,
  3018. _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
  3019. _3D_CHICKEN2_WM_READ_PIPELINED);
  3020. /* WaDisableRenderCachePipelinedFlush */
  3021. I915_WRITE(CACHE_MODE_0,
  3022. _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
  3023. ibx_init_clock_gating(dev);
  3024. }
  3025. static void cpt_init_clock_gating(struct drm_device *dev)
  3026. {
  3027. struct drm_i915_private *dev_priv = dev->dev_private;
  3028. int pipe;
  3029. /*
  3030. * On Ibex Peak and Cougar Point, we need to disable clock
  3031. * gating for the panel power sequencer or it will fail to
  3032. * start up when no ports are active.
  3033. */
  3034. I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
  3035. I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
  3036. DPLS_EDP_PPS_FIX_DIS);
  3037. /* The below fixes the weird display corruption, a few pixels shifted
  3038. * downward, on (only) LVDS of some HP laptops with IVY.
  3039. */
  3040. for_each_pipe(pipe)
  3041. I915_WRITE(TRANS_CHICKEN2(pipe), TRANS_CHICKEN2_TIMING_OVERRIDE);
  3042. /* WADP0ClockGatingDisable */
  3043. for_each_pipe(pipe) {
  3044. I915_WRITE(TRANS_CHICKEN1(pipe),
  3045. TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
  3046. }
  3047. }
  3048. static void gen6_init_clock_gating(struct drm_device *dev)
  3049. {
  3050. struct drm_i915_private *dev_priv = dev->dev_private;
  3051. int pipe;
  3052. uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
  3053. I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
  3054. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  3055. I915_READ(ILK_DISPLAY_CHICKEN2) |
  3056. ILK_ELPIN_409_SELECT);
  3057. /* WaDisableHiZPlanesWhenMSAAEnabled */
  3058. I915_WRITE(_3D_CHICKEN,
  3059. _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
  3060. /* WaSetupGtModeTdRowDispatch */
  3061. if (IS_SNB_GT1(dev))
  3062. I915_WRITE(GEN6_GT_MODE,
  3063. _MASKED_BIT_ENABLE(GEN6_TD_FOUR_ROW_DISPATCH_DISABLE));
  3064. I915_WRITE(WM3_LP_ILK, 0);
  3065. I915_WRITE(WM2_LP_ILK, 0);
  3066. I915_WRITE(WM1_LP_ILK, 0);
  3067. I915_WRITE(CACHE_MODE_0,
  3068. _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
  3069. I915_WRITE(GEN6_UCGCTL1,
  3070. I915_READ(GEN6_UCGCTL1) |
  3071. GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
  3072. GEN6_CSUNIT_CLOCK_GATE_DISABLE);
  3073. /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
  3074. * gating disable must be set. Failure to set it results in
  3075. * flickering pixels due to Z write ordering failures after
  3076. * some amount of runtime in the Mesa "fire" demo, and Unigine
  3077. * Sanctuary and Tropics, and apparently anything else with
  3078. * alpha test or pixel discard.
  3079. *
  3080. * According to the spec, bit 11 (RCCUNIT) must also be set,
  3081. * but we didn't debug actual testcases to find it out.
  3082. *
  3083. * Also apply WaDisableVDSUnitClockGating and
  3084. * WaDisableRCPBUnitClockGating.
  3085. */
  3086. I915_WRITE(GEN6_UCGCTL2,
  3087. GEN7_VDSUNIT_CLOCK_GATE_DISABLE |
  3088. GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
  3089. GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
  3090. /* Bspec says we need to always set all mask bits. */
  3091. I915_WRITE(_3D_CHICKEN3, (0xFFFF << 16) |
  3092. _3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL);
  3093. /*
  3094. * According to the spec the following bits should be
  3095. * set in order to enable memory self-refresh and fbc:
  3096. * The bit21 and bit22 of 0x42000
  3097. * The bit21 and bit22 of 0x42004
  3098. * The bit5 and bit7 of 0x42020
  3099. * The bit14 of 0x70180
  3100. * The bit14 of 0x71180
  3101. */
  3102. I915_WRITE(ILK_DISPLAY_CHICKEN1,
  3103. I915_READ(ILK_DISPLAY_CHICKEN1) |
  3104. ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
  3105. I915_WRITE(ILK_DISPLAY_CHICKEN2,
  3106. I915_READ(ILK_DISPLAY_CHICKEN2) |
  3107. ILK_DPARB_GATE | ILK_VSDPFD_FULL);
  3108. I915_WRITE(ILK_DSPCLK_GATE_D,
  3109. I915_READ(ILK_DSPCLK_GATE_D) |
  3110. ILK_DPARBUNIT_CLOCK_GATE_ENABLE |
  3111. ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
  3112. /* WaMbcDriverBootEnable */
  3113. I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
  3114. GEN6_MBCTL_ENABLE_BOOT_FETCH);
  3115. for_each_pipe(pipe) {
  3116. I915_WRITE(DSPCNTR(pipe),
  3117. I915_READ(DSPCNTR(pipe)) |
  3118. DISPPLANE_TRICKLE_FEED_DISABLE);
  3119. intel_flush_display_plane(dev_priv, pipe);
  3120. }
  3121. /* The default value should be 0x200 according to docs, but the two
  3122. * platforms I checked have a 0 for this. (Maybe BIOS overrides?) */
  3123. I915_WRITE(GEN6_GT_MODE, _MASKED_BIT_DISABLE(0xffff));
  3124. I915_WRITE(GEN6_GT_MODE, _MASKED_BIT_ENABLE(GEN6_GT_MODE_HI));
  3125. cpt_init_clock_gating(dev);
  3126. }
  3127. static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
  3128. {
  3129. uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
  3130. reg &= ~GEN7_FF_SCHED_MASK;
  3131. reg |= GEN7_FF_TS_SCHED_HW;
  3132. reg |= GEN7_FF_VS_SCHED_HW;
  3133. reg |= GEN7_FF_DS_SCHED_HW;
  3134. I915_WRITE(GEN7_FF_THREAD_MODE, reg);
  3135. }
  3136. static void lpt_init_clock_gating(struct drm_device *dev)
  3137. {
  3138. struct drm_i915_private *dev_priv = dev->dev_private;
  3139. /*
  3140. * TODO: this bit should only be enabled when really needed, then
  3141. * disabled when not needed anymore in order to save power.
  3142. */
  3143. if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE)
  3144. I915_WRITE(SOUTH_DSPCLK_GATE_D,
  3145. I915_READ(SOUTH_DSPCLK_GATE_D) |
  3146. PCH_LP_PARTITION_LEVEL_DISABLE);
  3147. }
  3148. static void haswell_init_clock_gating(struct drm_device *dev)
  3149. {
  3150. struct drm_i915_private *dev_priv = dev->dev_private;
  3151. int pipe;
  3152. I915_WRITE(WM3_LP_ILK, 0);
  3153. I915_WRITE(WM2_LP_ILK, 0);
  3154. I915_WRITE(WM1_LP_ILK, 0);
  3155. /* According to the spec, bit 13 (RCZUNIT) must be set on IVB.
  3156. * This implements the WaDisableRCZUnitClockGating workaround.
  3157. */
  3158. I915_WRITE(GEN6_UCGCTL2, GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
  3159. /* Apply the WaDisableRHWOOptimizationForRenderHang workaround. */
  3160. I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
  3161. GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
  3162. /* WaApplyL3ControlAndL3ChickenMode requires those two on Ivy Bridge */
  3163. I915_WRITE(GEN7_L3CNTLREG1,
  3164. GEN7_WA_FOR_GEN7_L3_CONTROL);
  3165. I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
  3166. GEN7_WA_L3_CHICKEN_MODE);
  3167. /* This is required by WaCatErrorRejectionIssue */
  3168. I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
  3169. I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
  3170. GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
  3171. for_each_pipe(pipe) {
  3172. I915_WRITE(DSPCNTR(pipe),
  3173. I915_READ(DSPCNTR(pipe)) |
  3174. DISPPLANE_TRICKLE_FEED_DISABLE);
  3175. intel_flush_display_plane(dev_priv, pipe);
  3176. }
  3177. gen7_setup_fixed_func_scheduler(dev_priv);
  3178. /* WaDisable4x2SubspanOptimization */
  3179. I915_WRITE(CACHE_MODE_1,
  3180. _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
  3181. /* WaMbcDriverBootEnable */
  3182. I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
  3183. GEN6_MBCTL_ENABLE_BOOT_FETCH);
  3184. /* XXX: This is a workaround for early silicon revisions and should be
  3185. * removed later.
  3186. */
  3187. I915_WRITE(WM_DBG,
  3188. I915_READ(WM_DBG) |
  3189. WM_DBG_DISALLOW_MULTIPLE_LP |
  3190. WM_DBG_DISALLOW_SPRITE |
  3191. WM_DBG_DISALLOW_MAXFIFO);
  3192. lpt_init_clock_gating(dev);
  3193. }
  3194. static void ivybridge_init_clock_gating(struct drm_device *dev)
  3195. {
  3196. struct drm_i915_private *dev_priv = dev->dev_private;
  3197. int pipe;
  3198. uint32_t snpcr;
  3199. I915_WRITE(WM3_LP_ILK, 0);
  3200. I915_WRITE(WM2_LP_ILK, 0);
  3201. I915_WRITE(WM1_LP_ILK, 0);
  3202. I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
  3203. /* WaDisableEarlyCull */
  3204. I915_WRITE(_3D_CHICKEN3,
  3205. _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
  3206. /* WaDisableBackToBackFlipFix */
  3207. I915_WRITE(IVB_CHICKEN3,
  3208. CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
  3209. CHICKEN3_DGMG_DONE_FIX_DISABLE);
  3210. /* WaDisablePSDDualDispatchEnable */
  3211. if (IS_IVB_GT1(dev))
  3212. I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
  3213. _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
  3214. else
  3215. I915_WRITE(GEN7_HALF_SLICE_CHICKEN1_GT2,
  3216. _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
  3217. /* Apply the WaDisableRHWOOptimizationForRenderHang workaround. */
  3218. I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
  3219. GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
  3220. /* WaApplyL3ControlAndL3ChickenMode requires those two on Ivy Bridge */
  3221. I915_WRITE(GEN7_L3CNTLREG1,
  3222. GEN7_WA_FOR_GEN7_L3_CONTROL);
  3223. I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
  3224. GEN7_WA_L3_CHICKEN_MODE);
  3225. if (IS_IVB_GT1(dev))
  3226. I915_WRITE(GEN7_ROW_CHICKEN2,
  3227. _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
  3228. else
  3229. I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
  3230. _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
  3231. /* WaForceL3Serialization */
  3232. I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
  3233. ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
  3234. /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
  3235. * gating disable must be set. Failure to set it results in
  3236. * flickering pixels due to Z write ordering failures after
  3237. * some amount of runtime in the Mesa "fire" demo, and Unigine
  3238. * Sanctuary and Tropics, and apparently anything else with
  3239. * alpha test or pixel discard.
  3240. *
  3241. * According to the spec, bit 11 (RCCUNIT) must also be set,
  3242. * but we didn't debug actual testcases to find it out.
  3243. *
  3244. * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
  3245. * This implements the WaDisableRCZUnitClockGating workaround.
  3246. */
  3247. I915_WRITE(GEN6_UCGCTL2,
  3248. GEN6_RCZUNIT_CLOCK_GATE_DISABLE |
  3249. GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
  3250. /* This is required by WaCatErrorRejectionIssue */
  3251. I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
  3252. I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
  3253. GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
  3254. for_each_pipe(pipe) {
  3255. I915_WRITE(DSPCNTR(pipe),
  3256. I915_READ(DSPCNTR(pipe)) |
  3257. DISPPLANE_TRICKLE_FEED_DISABLE);
  3258. intel_flush_display_plane(dev_priv, pipe);
  3259. }
  3260. /* WaMbcDriverBootEnable */
  3261. I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
  3262. GEN6_MBCTL_ENABLE_BOOT_FETCH);
  3263. gen7_setup_fixed_func_scheduler(dev_priv);
  3264. /* WaDisable4x2SubspanOptimization */
  3265. I915_WRITE(CACHE_MODE_1,
  3266. _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
  3267. snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
  3268. snpcr &= ~GEN6_MBC_SNPCR_MASK;
  3269. snpcr |= GEN6_MBC_SNPCR_MED;
  3270. I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
  3271. cpt_init_clock_gating(dev);
  3272. }
  3273. static void valleyview_init_clock_gating(struct drm_device *dev)
  3274. {
  3275. struct drm_i915_private *dev_priv = dev->dev_private;
  3276. int pipe;
  3277. I915_WRITE(WM3_LP_ILK, 0);
  3278. I915_WRITE(WM2_LP_ILK, 0);
  3279. I915_WRITE(WM1_LP_ILK, 0);
  3280. I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
  3281. /* WaDisableEarlyCull */
  3282. I915_WRITE(_3D_CHICKEN3,
  3283. _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
  3284. /* WaDisableBackToBackFlipFix */
  3285. I915_WRITE(IVB_CHICKEN3,
  3286. CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
  3287. CHICKEN3_DGMG_DONE_FIX_DISABLE);
  3288. I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
  3289. _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
  3290. /* Apply the WaDisableRHWOOptimizationForRenderHang workaround. */
  3291. I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
  3292. GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
  3293. /* WaApplyL3ControlAndL3ChickenMode requires those two on Ivy Bridge */
  3294. I915_WRITE(GEN7_L3CNTLREG1, I915_READ(GEN7_L3CNTLREG1) | GEN7_L3AGDIS);
  3295. I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER, GEN7_WA_L3_CHICKEN_MODE);
  3296. /* WaForceL3Serialization */
  3297. I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
  3298. ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
  3299. /* WaDisableDopClockGating */
  3300. I915_WRITE(GEN7_ROW_CHICKEN2,
  3301. _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
  3302. /* WaForceL3Serialization */
  3303. I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
  3304. ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
  3305. /* This is required by WaCatErrorRejectionIssue */
  3306. I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
  3307. I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
  3308. GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
  3309. /* WaMbcDriverBootEnable */
  3310. I915_WRITE(GEN6_MBCTL, I915_READ(GEN6_MBCTL) |
  3311. GEN6_MBCTL_ENABLE_BOOT_FETCH);
  3312. /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
  3313. * gating disable must be set. Failure to set it results in
  3314. * flickering pixels due to Z write ordering failures after
  3315. * some amount of runtime in the Mesa "fire" demo, and Unigine
  3316. * Sanctuary and Tropics, and apparently anything else with
  3317. * alpha test or pixel discard.
  3318. *
  3319. * According to the spec, bit 11 (RCCUNIT) must also be set,
  3320. * but we didn't debug actual testcases to find it out.
  3321. *
  3322. * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
  3323. * This implements the WaDisableRCZUnitClockGating workaround.
  3324. *
  3325. * Also apply WaDisableVDSUnitClockGating and
  3326. * WaDisableRCPBUnitClockGating.
  3327. */
  3328. I915_WRITE(GEN6_UCGCTL2,
  3329. GEN7_VDSUNIT_CLOCK_GATE_DISABLE |
  3330. GEN7_TDLUNIT_CLOCK_GATE_DISABLE |
  3331. GEN6_RCZUNIT_CLOCK_GATE_DISABLE |
  3332. GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
  3333. GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
  3334. I915_WRITE(GEN7_UCGCTL4, GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
  3335. for_each_pipe(pipe) {
  3336. I915_WRITE(DSPCNTR(pipe),
  3337. I915_READ(DSPCNTR(pipe)) |
  3338. DISPPLANE_TRICKLE_FEED_DISABLE);
  3339. intel_flush_display_plane(dev_priv, pipe);
  3340. }
  3341. I915_WRITE(CACHE_MODE_1,
  3342. _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
  3343. /*
  3344. * On ValleyView, the GUnit needs to signal the GT
  3345. * when flip and other events complete. So enable
  3346. * all the GUnit->GT interrupts here
  3347. */
  3348. I915_WRITE(VLV_DPFLIPSTAT, PIPEB_LINE_COMPARE_INT_EN |
  3349. PIPEB_HLINE_INT_EN | PIPEB_VBLANK_INT_EN |
  3350. SPRITED_FLIPDONE_INT_EN | SPRITEC_FLIPDONE_INT_EN |
  3351. PLANEB_FLIPDONE_INT_EN | PIPEA_LINE_COMPARE_INT_EN |
  3352. PIPEA_HLINE_INT_EN | PIPEA_VBLANK_INT_EN |
  3353. SPRITEB_FLIPDONE_INT_EN | SPRITEA_FLIPDONE_INT_EN |
  3354. PLANEA_FLIPDONE_INT_EN);
  3355. /*
  3356. * WaDisableVLVClockGating_VBIIssue
  3357. * Disable clock gating on th GCFG unit to prevent a delay
  3358. * in the reporting of vblank events.
  3359. */
  3360. I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
  3361. }
  3362. static void g4x_init_clock_gating(struct drm_device *dev)
  3363. {
  3364. struct drm_i915_private *dev_priv = dev->dev_private;
  3365. uint32_t dspclk_gate;
  3366. I915_WRITE(RENCLK_GATE_D1, 0);
  3367. I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
  3368. GS_UNIT_CLOCK_GATE_DISABLE |
  3369. CL_UNIT_CLOCK_GATE_DISABLE);
  3370. I915_WRITE(RAMCLK_GATE_D, 0);
  3371. dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
  3372. OVRUNIT_CLOCK_GATE_DISABLE |
  3373. OVCUNIT_CLOCK_GATE_DISABLE;
  3374. if (IS_GM45(dev))
  3375. dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
  3376. I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
  3377. /* WaDisableRenderCachePipelinedFlush */
  3378. I915_WRITE(CACHE_MODE_0,
  3379. _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
  3380. }
  3381. static void crestline_init_clock_gating(struct drm_device *dev)
  3382. {
  3383. struct drm_i915_private *dev_priv = dev->dev_private;
  3384. I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
  3385. I915_WRITE(RENCLK_GATE_D2, 0);
  3386. I915_WRITE(DSPCLK_GATE_D, 0);
  3387. I915_WRITE(RAMCLK_GATE_D, 0);
  3388. I915_WRITE16(DEUC, 0);
  3389. }
  3390. static void broadwater_init_clock_gating(struct drm_device *dev)
  3391. {
  3392. struct drm_i915_private *dev_priv = dev->dev_private;
  3393. I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
  3394. I965_RCC_CLOCK_GATE_DISABLE |
  3395. I965_RCPB_CLOCK_GATE_DISABLE |
  3396. I965_ISC_CLOCK_GATE_DISABLE |
  3397. I965_FBC_CLOCK_GATE_DISABLE);
  3398. I915_WRITE(RENCLK_GATE_D2, 0);
  3399. }
  3400. static void gen3_init_clock_gating(struct drm_device *dev)
  3401. {
  3402. struct drm_i915_private *dev_priv = dev->dev_private;
  3403. u32 dstate = I915_READ(D_STATE);
  3404. dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
  3405. DSTATE_DOT_CLOCK_GATING;
  3406. I915_WRITE(D_STATE, dstate);
  3407. if (IS_PINEVIEW(dev))
  3408. I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
  3409. /* IIR "flip pending" means done if this bit is set */
  3410. I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
  3411. }
  3412. static void i85x_init_clock_gating(struct drm_device *dev)
  3413. {
  3414. struct drm_i915_private *dev_priv = dev->dev_private;
  3415. I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
  3416. }
  3417. static void i830_init_clock_gating(struct drm_device *dev)
  3418. {
  3419. struct drm_i915_private *dev_priv = dev->dev_private;
  3420. I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
  3421. }
  3422. void intel_init_clock_gating(struct drm_device *dev)
  3423. {
  3424. struct drm_i915_private *dev_priv = dev->dev_private;
  3425. dev_priv->display.init_clock_gating(dev);
  3426. }
  3427. /* Starting with Haswell, we have different power wells for
  3428. * different parts of the GPU. This attempts to enable them all.
  3429. */
  3430. void intel_init_power_wells(struct drm_device *dev)
  3431. {
  3432. struct drm_i915_private *dev_priv = dev->dev_private;
  3433. unsigned long power_wells[] = {
  3434. HSW_PWR_WELL_CTL1,
  3435. HSW_PWR_WELL_CTL2,
  3436. HSW_PWR_WELL_CTL4
  3437. };
  3438. int i;
  3439. if (!IS_HASWELL(dev))
  3440. return;
  3441. mutex_lock(&dev->struct_mutex);
  3442. for (i = 0; i < ARRAY_SIZE(power_wells); i++) {
  3443. int well = I915_READ(power_wells[i]);
  3444. if ((well & HSW_PWR_WELL_STATE) == 0) {
  3445. I915_WRITE(power_wells[i], well & HSW_PWR_WELL_ENABLE);
  3446. if (wait_for((I915_READ(power_wells[i]) & HSW_PWR_WELL_STATE), 20))
  3447. DRM_ERROR("Error enabling power well %lx\n", power_wells[i]);
  3448. }
  3449. }
  3450. mutex_unlock(&dev->struct_mutex);
  3451. }
  3452. /* Set up chip specific power management-related functions */
  3453. void intel_init_pm(struct drm_device *dev)
  3454. {
  3455. struct drm_i915_private *dev_priv = dev->dev_private;
  3456. if (I915_HAS_FBC(dev)) {
  3457. if (HAS_PCH_SPLIT(dev)) {
  3458. dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
  3459. dev_priv->display.enable_fbc = ironlake_enable_fbc;
  3460. dev_priv->display.disable_fbc = ironlake_disable_fbc;
  3461. } else if (IS_GM45(dev)) {
  3462. dev_priv->display.fbc_enabled = g4x_fbc_enabled;
  3463. dev_priv->display.enable_fbc = g4x_enable_fbc;
  3464. dev_priv->display.disable_fbc = g4x_disable_fbc;
  3465. } else if (IS_CRESTLINE(dev)) {
  3466. dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
  3467. dev_priv->display.enable_fbc = i8xx_enable_fbc;
  3468. dev_priv->display.disable_fbc = i8xx_disable_fbc;
  3469. }
  3470. /* 855GM needs testing */
  3471. }
  3472. /* For cxsr */
  3473. if (IS_PINEVIEW(dev))
  3474. i915_pineview_get_mem_freq(dev);
  3475. else if (IS_GEN5(dev))
  3476. i915_ironlake_get_mem_freq(dev);
  3477. /* For FIFO watermark updates */
  3478. if (HAS_PCH_SPLIT(dev)) {
  3479. if (IS_GEN5(dev)) {
  3480. if (I915_READ(MLTR_ILK) & ILK_SRLT_MASK)
  3481. dev_priv->display.update_wm = ironlake_update_wm;
  3482. else {
  3483. DRM_DEBUG_KMS("Failed to get proper latency. "
  3484. "Disable CxSR\n");
  3485. dev_priv->display.update_wm = NULL;
  3486. }
  3487. dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
  3488. } else if (IS_GEN6(dev)) {
  3489. if (SNB_READ_WM0_LATENCY()) {
  3490. dev_priv->display.update_wm = sandybridge_update_wm;
  3491. dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
  3492. } else {
  3493. DRM_DEBUG_KMS("Failed to read display plane latency. "
  3494. "Disable CxSR\n");
  3495. dev_priv->display.update_wm = NULL;
  3496. }
  3497. dev_priv->display.init_clock_gating = gen6_init_clock_gating;
  3498. } else if (IS_IVYBRIDGE(dev)) {
  3499. /* FIXME: detect B0+ stepping and use auto training */
  3500. if (SNB_READ_WM0_LATENCY()) {
  3501. dev_priv->display.update_wm = ivybridge_update_wm;
  3502. dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
  3503. } else {
  3504. DRM_DEBUG_KMS("Failed to read display plane latency. "
  3505. "Disable CxSR\n");
  3506. dev_priv->display.update_wm = NULL;
  3507. }
  3508. dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
  3509. } else if (IS_HASWELL(dev)) {
  3510. if (SNB_READ_WM0_LATENCY()) {
  3511. dev_priv->display.update_wm = sandybridge_update_wm;
  3512. dev_priv->display.update_sprite_wm = sandybridge_update_sprite_wm;
  3513. dev_priv->display.update_linetime_wm = haswell_update_linetime_wm;
  3514. } else {
  3515. DRM_DEBUG_KMS("Failed to read display plane latency. "
  3516. "Disable CxSR\n");
  3517. dev_priv->display.update_wm = NULL;
  3518. }
  3519. dev_priv->display.init_clock_gating = haswell_init_clock_gating;
  3520. } else
  3521. dev_priv->display.update_wm = NULL;
  3522. } else if (IS_VALLEYVIEW(dev)) {
  3523. dev_priv->display.update_wm = valleyview_update_wm;
  3524. dev_priv->display.init_clock_gating =
  3525. valleyview_init_clock_gating;
  3526. } else if (IS_PINEVIEW(dev)) {
  3527. if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
  3528. dev_priv->is_ddr3,
  3529. dev_priv->fsb_freq,
  3530. dev_priv->mem_freq)) {
  3531. DRM_INFO("failed to find known CxSR latency "
  3532. "(found ddr%s fsb freq %d, mem freq %d), "
  3533. "disabling CxSR\n",
  3534. (dev_priv->is_ddr3 == 1) ? "3" : "2",
  3535. dev_priv->fsb_freq, dev_priv->mem_freq);
  3536. /* Disable CxSR and never update its watermark again */
  3537. pineview_disable_cxsr(dev);
  3538. dev_priv->display.update_wm = NULL;
  3539. } else
  3540. dev_priv->display.update_wm = pineview_update_wm;
  3541. dev_priv->display.init_clock_gating = gen3_init_clock_gating;
  3542. } else if (IS_G4X(dev)) {
  3543. dev_priv->display.update_wm = g4x_update_wm;
  3544. dev_priv->display.init_clock_gating = g4x_init_clock_gating;
  3545. } else if (IS_GEN4(dev)) {
  3546. dev_priv->display.update_wm = i965_update_wm;
  3547. if (IS_CRESTLINE(dev))
  3548. dev_priv->display.init_clock_gating = crestline_init_clock_gating;
  3549. else if (IS_BROADWATER(dev))
  3550. dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
  3551. } else if (IS_GEN3(dev)) {
  3552. dev_priv->display.update_wm = i9xx_update_wm;
  3553. dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
  3554. dev_priv->display.init_clock_gating = gen3_init_clock_gating;
  3555. } else if (IS_I865G(dev)) {
  3556. dev_priv->display.update_wm = i830_update_wm;
  3557. dev_priv->display.init_clock_gating = i85x_init_clock_gating;
  3558. dev_priv->display.get_fifo_size = i830_get_fifo_size;
  3559. } else if (IS_I85X(dev)) {
  3560. dev_priv->display.update_wm = i9xx_update_wm;
  3561. dev_priv->display.get_fifo_size = i85x_get_fifo_size;
  3562. dev_priv->display.init_clock_gating = i85x_init_clock_gating;
  3563. } else {
  3564. dev_priv->display.update_wm = i830_update_wm;
  3565. dev_priv->display.init_clock_gating = i830_init_clock_gating;
  3566. if (IS_845G(dev))
  3567. dev_priv->display.get_fifo_size = i845_get_fifo_size;
  3568. else
  3569. dev_priv->display.get_fifo_size = i830_get_fifo_size;
  3570. }
  3571. }
  3572. static void __gen6_gt_wait_for_thread_c0(struct drm_i915_private *dev_priv)
  3573. {
  3574. u32 gt_thread_status_mask;
  3575. if (IS_HASWELL(dev_priv->dev))
  3576. gt_thread_status_mask = GEN6_GT_THREAD_STATUS_CORE_MASK_HSW;
  3577. else
  3578. gt_thread_status_mask = GEN6_GT_THREAD_STATUS_CORE_MASK;
  3579. /* w/a for a sporadic read returning 0 by waiting for the GT
  3580. * thread to wake up.
  3581. */
  3582. if (wait_for_atomic_us((I915_READ_NOTRACE(GEN6_GT_THREAD_STATUS_REG) & gt_thread_status_mask) == 0, 500))
  3583. DRM_ERROR("GT thread status wait timed out\n");
  3584. }
  3585. static void __gen6_gt_force_wake_reset(struct drm_i915_private *dev_priv)
  3586. {
  3587. I915_WRITE_NOTRACE(FORCEWAKE, 0);
  3588. POSTING_READ(ECOBUS); /* something from same cacheline, but !FORCEWAKE */
  3589. }
  3590. static void __gen6_gt_force_wake_get(struct drm_i915_private *dev_priv)
  3591. {
  3592. u32 forcewake_ack;
  3593. if (IS_HASWELL(dev_priv->dev))
  3594. forcewake_ack = FORCEWAKE_ACK_HSW;
  3595. else
  3596. forcewake_ack = FORCEWAKE_ACK;
  3597. if (wait_for_atomic((I915_READ_NOTRACE(forcewake_ack) & 1) == 0,
  3598. FORCEWAKE_ACK_TIMEOUT_MS))
  3599. DRM_ERROR("Timed out waiting for forcewake old ack to clear.\n");
  3600. I915_WRITE_NOTRACE(FORCEWAKE, FORCEWAKE_KERNEL);
  3601. POSTING_READ(ECOBUS); /* something from same cacheline, but !FORCEWAKE */
  3602. if (wait_for_atomic((I915_READ_NOTRACE(forcewake_ack) & 1),
  3603. FORCEWAKE_ACK_TIMEOUT_MS))
  3604. DRM_ERROR("Timed out waiting for forcewake to ack request.\n");
  3605. __gen6_gt_wait_for_thread_c0(dev_priv);
  3606. }
  3607. static void __gen6_gt_force_wake_mt_reset(struct drm_i915_private *dev_priv)
  3608. {
  3609. I915_WRITE_NOTRACE(FORCEWAKE_MT, _MASKED_BIT_DISABLE(0xffff));
  3610. POSTING_READ(ECOBUS); /* something from same cacheline, but !FORCEWAKE */
  3611. }
  3612. static void __gen6_gt_force_wake_mt_get(struct drm_i915_private *dev_priv)
  3613. {
  3614. u32 forcewake_ack;
  3615. if (IS_HASWELL(dev_priv->dev))
  3616. forcewake_ack = FORCEWAKE_ACK_HSW;
  3617. else
  3618. forcewake_ack = FORCEWAKE_MT_ACK;
  3619. if (wait_for_atomic((I915_READ_NOTRACE(forcewake_ack) & 1) == 0,
  3620. FORCEWAKE_ACK_TIMEOUT_MS))
  3621. DRM_ERROR("Timed out waiting for forcewake old ack to clear.\n");
  3622. I915_WRITE_NOTRACE(FORCEWAKE_MT, _MASKED_BIT_ENABLE(FORCEWAKE_KERNEL));
  3623. POSTING_READ(ECOBUS); /* something from same cacheline, but !FORCEWAKE */
  3624. if (wait_for_atomic((I915_READ_NOTRACE(forcewake_ack) & 1),
  3625. FORCEWAKE_ACK_TIMEOUT_MS))
  3626. DRM_ERROR("Timed out waiting for forcewake to ack request.\n");
  3627. __gen6_gt_wait_for_thread_c0(dev_priv);
  3628. }
  3629. /*
  3630. * Generally this is called implicitly by the register read function. However,
  3631. * if some sequence requires the GT to not power down then this function should
  3632. * be called at the beginning of the sequence followed by a call to
  3633. * gen6_gt_force_wake_put() at the end of the sequence.
  3634. */
  3635. void gen6_gt_force_wake_get(struct drm_i915_private *dev_priv)
  3636. {
  3637. unsigned long irqflags;
  3638. spin_lock_irqsave(&dev_priv->gt_lock, irqflags);
  3639. if (dev_priv->forcewake_count++ == 0)
  3640. dev_priv->gt.force_wake_get(dev_priv);
  3641. spin_unlock_irqrestore(&dev_priv->gt_lock, irqflags);
  3642. }
  3643. void gen6_gt_check_fifodbg(struct drm_i915_private *dev_priv)
  3644. {
  3645. u32 gtfifodbg;
  3646. gtfifodbg = I915_READ_NOTRACE(GTFIFODBG);
  3647. if (WARN(gtfifodbg & GT_FIFO_CPU_ERROR_MASK,
  3648. "MMIO read or write has been dropped %x\n", gtfifodbg))
  3649. I915_WRITE_NOTRACE(GTFIFODBG, GT_FIFO_CPU_ERROR_MASK);
  3650. }
  3651. static void __gen6_gt_force_wake_put(struct drm_i915_private *dev_priv)
  3652. {
  3653. I915_WRITE_NOTRACE(FORCEWAKE, 0);
  3654. /* gen6_gt_check_fifodbg doubles as the POSTING_READ */
  3655. gen6_gt_check_fifodbg(dev_priv);
  3656. }
  3657. static void __gen6_gt_force_wake_mt_put(struct drm_i915_private *dev_priv)
  3658. {
  3659. I915_WRITE_NOTRACE(FORCEWAKE_MT, _MASKED_BIT_DISABLE(FORCEWAKE_KERNEL));
  3660. /* gen6_gt_check_fifodbg doubles as the POSTING_READ */
  3661. gen6_gt_check_fifodbg(dev_priv);
  3662. }
  3663. /*
  3664. * see gen6_gt_force_wake_get()
  3665. */
  3666. void gen6_gt_force_wake_put(struct drm_i915_private *dev_priv)
  3667. {
  3668. unsigned long irqflags;
  3669. spin_lock_irqsave(&dev_priv->gt_lock, irqflags);
  3670. if (--dev_priv->forcewake_count == 0)
  3671. dev_priv->gt.force_wake_put(dev_priv);
  3672. spin_unlock_irqrestore(&dev_priv->gt_lock, irqflags);
  3673. }
  3674. int __gen6_gt_wait_for_fifo(struct drm_i915_private *dev_priv)
  3675. {
  3676. int ret = 0;
  3677. if (dev_priv->gt_fifo_count < GT_FIFO_NUM_RESERVED_ENTRIES) {
  3678. int loop = 500;
  3679. u32 fifo = I915_READ_NOTRACE(GT_FIFO_FREE_ENTRIES);
  3680. while (fifo <= GT_FIFO_NUM_RESERVED_ENTRIES && loop--) {
  3681. udelay(10);
  3682. fifo = I915_READ_NOTRACE(GT_FIFO_FREE_ENTRIES);
  3683. }
  3684. if (WARN_ON(loop < 0 && fifo <= GT_FIFO_NUM_RESERVED_ENTRIES))
  3685. ++ret;
  3686. dev_priv->gt_fifo_count = fifo;
  3687. }
  3688. dev_priv->gt_fifo_count--;
  3689. return ret;
  3690. }
  3691. static void vlv_force_wake_reset(struct drm_i915_private *dev_priv)
  3692. {
  3693. I915_WRITE_NOTRACE(FORCEWAKE_VLV, _MASKED_BIT_DISABLE(0xffff));
  3694. }
  3695. static void vlv_force_wake_get(struct drm_i915_private *dev_priv)
  3696. {
  3697. if (wait_for_atomic((I915_READ_NOTRACE(FORCEWAKE_ACK_VLV) & 1) == 0,
  3698. FORCEWAKE_ACK_TIMEOUT_MS))
  3699. DRM_ERROR("Timed out waiting for forcewake old ack to clear.\n");
  3700. I915_WRITE_NOTRACE(FORCEWAKE_VLV, _MASKED_BIT_ENABLE(FORCEWAKE_KERNEL));
  3701. if (wait_for_atomic((I915_READ_NOTRACE(FORCEWAKE_ACK_VLV) & 1),
  3702. FORCEWAKE_ACK_TIMEOUT_MS))
  3703. DRM_ERROR("Timed out waiting for forcewake to ack request.\n");
  3704. __gen6_gt_wait_for_thread_c0(dev_priv);
  3705. }
  3706. static void vlv_force_wake_put(struct drm_i915_private *dev_priv)
  3707. {
  3708. I915_WRITE_NOTRACE(FORCEWAKE_VLV, _MASKED_BIT_DISABLE(FORCEWAKE_KERNEL));
  3709. /* The below doubles as a POSTING_READ */
  3710. gen6_gt_check_fifodbg(dev_priv);
  3711. }
  3712. void intel_gt_reset(struct drm_device *dev)
  3713. {
  3714. struct drm_i915_private *dev_priv = dev->dev_private;
  3715. if (IS_VALLEYVIEW(dev)) {
  3716. vlv_force_wake_reset(dev_priv);
  3717. } else if (INTEL_INFO(dev)->gen >= 6) {
  3718. __gen6_gt_force_wake_reset(dev_priv);
  3719. if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
  3720. __gen6_gt_force_wake_mt_reset(dev_priv);
  3721. }
  3722. }
  3723. void intel_gt_init(struct drm_device *dev)
  3724. {
  3725. struct drm_i915_private *dev_priv = dev->dev_private;
  3726. spin_lock_init(&dev_priv->gt_lock);
  3727. intel_gt_reset(dev);
  3728. if (IS_VALLEYVIEW(dev)) {
  3729. dev_priv->gt.force_wake_get = vlv_force_wake_get;
  3730. dev_priv->gt.force_wake_put = vlv_force_wake_put;
  3731. } else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
  3732. dev_priv->gt.force_wake_get = __gen6_gt_force_wake_mt_get;
  3733. dev_priv->gt.force_wake_put = __gen6_gt_force_wake_mt_put;
  3734. } else if (IS_GEN6(dev)) {
  3735. dev_priv->gt.force_wake_get = __gen6_gt_force_wake_get;
  3736. dev_priv->gt.force_wake_put = __gen6_gt_force_wake_put;
  3737. }
  3738. INIT_DELAYED_WORK(&dev_priv->rps.delayed_resume_work,
  3739. intel_gen6_powersave_work);
  3740. }
  3741. int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u8 mbox, u32 *val)
  3742. {
  3743. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  3744. if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
  3745. DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
  3746. return -EAGAIN;
  3747. }
  3748. I915_WRITE(GEN6_PCODE_DATA, *val);
  3749. I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
  3750. if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
  3751. 500)) {
  3752. DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
  3753. return -ETIMEDOUT;
  3754. }
  3755. *val = I915_READ(GEN6_PCODE_DATA);
  3756. I915_WRITE(GEN6_PCODE_DATA, 0);
  3757. return 0;
  3758. }
  3759. int sandybridge_pcode_write(struct drm_i915_private *dev_priv, u8 mbox, u32 val)
  3760. {
  3761. WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
  3762. if (I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
  3763. DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
  3764. return -EAGAIN;
  3765. }
  3766. I915_WRITE(GEN6_PCODE_DATA, val);
  3767. I915_WRITE(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
  3768. if (wait_for((I915_READ(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) == 0,
  3769. 500)) {
  3770. DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
  3771. return -ETIMEDOUT;
  3772. }
  3773. I915_WRITE(GEN6_PCODE_DATA, 0);
  3774. return 0;
  3775. }