slub.c 110 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684
  1. /*
  2. * SLUB: A slab allocator that limits cache line use instead of queuing
  3. * objects in per cpu and per node lists.
  4. *
  5. * The allocator synchronizes using per slab locks and only
  6. * uses a centralized lock to manage a pool of partial slabs.
  7. *
  8. * (C) 2007 SGI, Christoph Lameter
  9. */
  10. #include <linux/mm.h>
  11. #include <linux/swap.h> /* struct reclaim_state */
  12. #include <linux/module.h>
  13. #include <linux/bit_spinlock.h>
  14. #include <linux/interrupt.h>
  15. #include <linux/bitops.h>
  16. #include <linux/slab.h>
  17. #include <linux/proc_fs.h>
  18. #include <linux/seq_file.h>
  19. #include <linux/kmemcheck.h>
  20. #include <linux/cpu.h>
  21. #include <linux/cpuset.h>
  22. #include <linux/mempolicy.h>
  23. #include <linux/ctype.h>
  24. #include <linux/debugobjects.h>
  25. #include <linux/kallsyms.h>
  26. #include <linux/memory.h>
  27. #include <linux/math64.h>
  28. #include <linux/fault-inject.h>
  29. /*
  30. * Lock order:
  31. * 1. slab_lock(page)
  32. * 2. slab->list_lock
  33. *
  34. * The slab_lock protects operations on the object of a particular
  35. * slab and its metadata in the page struct. If the slab lock
  36. * has been taken then no allocations nor frees can be performed
  37. * on the objects in the slab nor can the slab be added or removed
  38. * from the partial or full lists since this would mean modifying
  39. * the page_struct of the slab.
  40. *
  41. * The list_lock protects the partial and full list on each node and
  42. * the partial slab counter. If taken then no new slabs may be added or
  43. * removed from the lists nor make the number of partial slabs be modified.
  44. * (Note that the total number of slabs is an atomic value that may be
  45. * modified without taking the list lock).
  46. *
  47. * The list_lock is a centralized lock and thus we avoid taking it as
  48. * much as possible. As long as SLUB does not have to handle partial
  49. * slabs, operations can continue without any centralized lock. F.e.
  50. * allocating a long series of objects that fill up slabs does not require
  51. * the list lock.
  52. *
  53. * The lock order is sometimes inverted when we are trying to get a slab
  54. * off a list. We take the list_lock and then look for a page on the list
  55. * to use. While we do that objects in the slabs may be freed. We can
  56. * only operate on the slab if we have also taken the slab_lock. So we use
  57. * a slab_trylock() on the slab. If trylock was successful then no frees
  58. * can occur anymore and we can use the slab for allocations etc. If the
  59. * slab_trylock() does not succeed then frees are in progress in the slab and
  60. * we must stay away from it for a while since we may cause a bouncing
  61. * cacheline if we try to acquire the lock. So go onto the next slab.
  62. * If all pages are busy then we may allocate a new slab instead of reusing
  63. * a partial slab. A new slab has noone operating on it and thus there is
  64. * no danger of cacheline contention.
  65. *
  66. * Interrupts are disabled during allocation and deallocation in order to
  67. * make the slab allocator safe to use in the context of an irq. In addition
  68. * interrupts are disabled to ensure that the processor does not change
  69. * while handling per_cpu slabs, due to kernel preemption.
  70. *
  71. * SLUB assigns one slab for allocation to each processor.
  72. * Allocations only occur from these slabs called cpu slabs.
  73. *
  74. * Slabs with free elements are kept on a partial list and during regular
  75. * operations no list for full slabs is used. If an object in a full slab is
  76. * freed then the slab will show up again on the partial lists.
  77. * We track full slabs for debugging purposes though because otherwise we
  78. * cannot scan all objects.
  79. *
  80. * Slabs are freed when they become empty. Teardown and setup is
  81. * minimal so we rely on the page allocators per cpu caches for
  82. * fast frees and allocs.
  83. *
  84. * Overloading of page flags that are otherwise used for LRU management.
  85. *
  86. * PageActive The slab is frozen and exempt from list processing.
  87. * This means that the slab is dedicated to a purpose
  88. * such as satisfying allocations for a specific
  89. * processor. Objects may be freed in the slab while
  90. * it is frozen but slab_free will then skip the usual
  91. * list operations. It is up to the processor holding
  92. * the slab to integrate the slab into the slab lists
  93. * when the slab is no longer needed.
  94. *
  95. * One use of this flag is to mark slabs that are
  96. * used for allocations. Then such a slab becomes a cpu
  97. * slab. The cpu slab may be equipped with an additional
  98. * freelist that allows lockless access to
  99. * free objects in addition to the regular freelist
  100. * that requires the slab lock.
  101. *
  102. * PageError Slab requires special handling due to debug
  103. * options set. This moves slab handling out of
  104. * the fast path and disables lockless freelists.
  105. */
  106. #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
  107. SLAB_TRACE | SLAB_DEBUG_FREE)
  108. static inline int kmem_cache_debug(struct kmem_cache *s)
  109. {
  110. #ifdef CONFIG_SLUB_DEBUG
  111. return unlikely(s->flags & SLAB_DEBUG_FLAGS);
  112. #else
  113. return 0;
  114. #endif
  115. }
  116. /*
  117. * Issues still to be resolved:
  118. *
  119. * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
  120. *
  121. * - Variable sizing of the per node arrays
  122. */
  123. /* Enable to test recovery from slab corruption on boot */
  124. #undef SLUB_RESILIENCY_TEST
  125. /*
  126. * Mininum number of partial slabs. These will be left on the partial
  127. * lists even if they are empty. kmem_cache_shrink may reclaim them.
  128. */
  129. #define MIN_PARTIAL 5
  130. /*
  131. * Maximum number of desirable partial slabs.
  132. * The existence of more partial slabs makes kmem_cache_shrink
  133. * sort the partial list by the number of objects in the.
  134. */
  135. #define MAX_PARTIAL 10
  136. #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
  137. SLAB_POISON | SLAB_STORE_USER)
  138. /*
  139. * Debugging flags that require metadata to be stored in the slab. These get
  140. * disabled when slub_debug=O is used and a cache's min order increases with
  141. * metadata.
  142. */
  143. #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
  144. /*
  145. * Set of flags that will prevent slab merging
  146. */
  147. #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
  148. SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
  149. SLAB_FAILSLAB)
  150. #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
  151. SLAB_CACHE_DMA | SLAB_NOTRACK)
  152. #define OO_SHIFT 16
  153. #define OO_MASK ((1 << OO_SHIFT) - 1)
  154. #define MAX_OBJS_PER_PAGE 65535 /* since page.objects is u16 */
  155. /* Internal SLUB flags */
  156. #define __OBJECT_POISON 0x80000000UL /* Poison object */
  157. static int kmem_size = sizeof(struct kmem_cache);
  158. #ifdef CONFIG_SMP
  159. static struct notifier_block slab_notifier;
  160. #endif
  161. static enum {
  162. DOWN, /* No slab functionality available */
  163. PARTIAL, /* Kmem_cache_node works */
  164. UP, /* Everything works but does not show up in sysfs */
  165. SYSFS /* Sysfs up */
  166. } slab_state = DOWN;
  167. /* A list of all slab caches on the system */
  168. static DECLARE_RWSEM(slub_lock);
  169. static LIST_HEAD(slab_caches);
  170. /*
  171. * Tracking user of a slab.
  172. */
  173. struct track {
  174. unsigned long addr; /* Called from address */
  175. int cpu; /* Was running on cpu */
  176. int pid; /* Pid context */
  177. unsigned long when; /* When did the operation occur */
  178. };
  179. enum track_item { TRACK_ALLOC, TRACK_FREE };
  180. #ifdef CONFIG_SLUB_DEBUG
  181. static int sysfs_slab_add(struct kmem_cache *);
  182. static int sysfs_slab_alias(struct kmem_cache *, const char *);
  183. static void sysfs_slab_remove(struct kmem_cache *);
  184. #else
  185. static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
  186. static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
  187. { return 0; }
  188. static inline void sysfs_slab_remove(struct kmem_cache *s)
  189. {
  190. kfree(s);
  191. }
  192. #endif
  193. static inline void stat(struct kmem_cache *s, enum stat_item si)
  194. {
  195. #ifdef CONFIG_SLUB_STATS
  196. __this_cpu_inc(s->cpu_slab->stat[si]);
  197. #endif
  198. }
  199. /********************************************************************
  200. * Core slab cache functions
  201. *******************************************************************/
  202. int slab_is_available(void)
  203. {
  204. return slab_state >= UP;
  205. }
  206. static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
  207. {
  208. #ifdef CONFIG_NUMA
  209. return s->node[node];
  210. #else
  211. return &s->local_node;
  212. #endif
  213. }
  214. /* Verify that a pointer has an address that is valid within a slab page */
  215. static inline int check_valid_pointer(struct kmem_cache *s,
  216. struct page *page, const void *object)
  217. {
  218. void *base;
  219. if (!object)
  220. return 1;
  221. base = page_address(page);
  222. if (object < base || object >= base + page->objects * s->size ||
  223. (object - base) % s->size) {
  224. return 0;
  225. }
  226. return 1;
  227. }
  228. static inline void *get_freepointer(struct kmem_cache *s, void *object)
  229. {
  230. return *(void **)(object + s->offset);
  231. }
  232. static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
  233. {
  234. *(void **)(object + s->offset) = fp;
  235. }
  236. /* Loop over all objects in a slab */
  237. #define for_each_object(__p, __s, __addr, __objects) \
  238. for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
  239. __p += (__s)->size)
  240. /* Scan freelist */
  241. #define for_each_free_object(__p, __s, __free) \
  242. for (__p = (__free); __p; __p = get_freepointer((__s), __p))
  243. /* Determine object index from a given position */
  244. static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
  245. {
  246. return (p - addr) / s->size;
  247. }
  248. static inline struct kmem_cache_order_objects oo_make(int order,
  249. unsigned long size)
  250. {
  251. struct kmem_cache_order_objects x = {
  252. (order << OO_SHIFT) + (PAGE_SIZE << order) / size
  253. };
  254. return x;
  255. }
  256. static inline int oo_order(struct kmem_cache_order_objects x)
  257. {
  258. return x.x >> OO_SHIFT;
  259. }
  260. static inline int oo_objects(struct kmem_cache_order_objects x)
  261. {
  262. return x.x & OO_MASK;
  263. }
  264. #ifdef CONFIG_SLUB_DEBUG
  265. /*
  266. * Debug settings:
  267. */
  268. #ifdef CONFIG_SLUB_DEBUG_ON
  269. static int slub_debug = DEBUG_DEFAULT_FLAGS;
  270. #else
  271. static int slub_debug;
  272. #endif
  273. static char *slub_debug_slabs;
  274. static int disable_higher_order_debug;
  275. /*
  276. * Object debugging
  277. */
  278. static void print_section(char *text, u8 *addr, unsigned int length)
  279. {
  280. int i, offset;
  281. int newline = 1;
  282. char ascii[17];
  283. ascii[16] = 0;
  284. for (i = 0; i < length; i++) {
  285. if (newline) {
  286. printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
  287. newline = 0;
  288. }
  289. printk(KERN_CONT " %02x", addr[i]);
  290. offset = i % 16;
  291. ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
  292. if (offset == 15) {
  293. printk(KERN_CONT " %s\n", ascii);
  294. newline = 1;
  295. }
  296. }
  297. if (!newline) {
  298. i %= 16;
  299. while (i < 16) {
  300. printk(KERN_CONT " ");
  301. ascii[i] = ' ';
  302. i++;
  303. }
  304. printk(KERN_CONT " %s\n", ascii);
  305. }
  306. }
  307. static struct track *get_track(struct kmem_cache *s, void *object,
  308. enum track_item alloc)
  309. {
  310. struct track *p;
  311. if (s->offset)
  312. p = object + s->offset + sizeof(void *);
  313. else
  314. p = object + s->inuse;
  315. return p + alloc;
  316. }
  317. static void set_track(struct kmem_cache *s, void *object,
  318. enum track_item alloc, unsigned long addr)
  319. {
  320. struct track *p = get_track(s, object, alloc);
  321. if (addr) {
  322. p->addr = addr;
  323. p->cpu = smp_processor_id();
  324. p->pid = current->pid;
  325. p->when = jiffies;
  326. } else
  327. memset(p, 0, sizeof(struct track));
  328. }
  329. static void init_tracking(struct kmem_cache *s, void *object)
  330. {
  331. if (!(s->flags & SLAB_STORE_USER))
  332. return;
  333. set_track(s, object, TRACK_FREE, 0UL);
  334. set_track(s, object, TRACK_ALLOC, 0UL);
  335. }
  336. static void print_track(const char *s, struct track *t)
  337. {
  338. if (!t->addr)
  339. return;
  340. printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
  341. s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
  342. }
  343. static void print_tracking(struct kmem_cache *s, void *object)
  344. {
  345. if (!(s->flags & SLAB_STORE_USER))
  346. return;
  347. print_track("Allocated", get_track(s, object, TRACK_ALLOC));
  348. print_track("Freed", get_track(s, object, TRACK_FREE));
  349. }
  350. static void print_page_info(struct page *page)
  351. {
  352. printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
  353. page, page->objects, page->inuse, page->freelist, page->flags);
  354. }
  355. static void slab_bug(struct kmem_cache *s, char *fmt, ...)
  356. {
  357. va_list args;
  358. char buf[100];
  359. va_start(args, fmt);
  360. vsnprintf(buf, sizeof(buf), fmt, args);
  361. va_end(args);
  362. printk(KERN_ERR "========================================"
  363. "=====================================\n");
  364. printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
  365. printk(KERN_ERR "----------------------------------------"
  366. "-------------------------------------\n\n");
  367. }
  368. static void slab_fix(struct kmem_cache *s, char *fmt, ...)
  369. {
  370. va_list args;
  371. char buf[100];
  372. va_start(args, fmt);
  373. vsnprintf(buf, sizeof(buf), fmt, args);
  374. va_end(args);
  375. printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
  376. }
  377. static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
  378. {
  379. unsigned int off; /* Offset of last byte */
  380. u8 *addr = page_address(page);
  381. print_tracking(s, p);
  382. print_page_info(page);
  383. printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
  384. p, p - addr, get_freepointer(s, p));
  385. if (p > addr + 16)
  386. print_section("Bytes b4", p - 16, 16);
  387. print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE));
  388. if (s->flags & SLAB_RED_ZONE)
  389. print_section("Redzone", p + s->objsize,
  390. s->inuse - s->objsize);
  391. if (s->offset)
  392. off = s->offset + sizeof(void *);
  393. else
  394. off = s->inuse;
  395. if (s->flags & SLAB_STORE_USER)
  396. off += 2 * sizeof(struct track);
  397. if (off != s->size)
  398. /* Beginning of the filler is the free pointer */
  399. print_section("Padding", p + off, s->size - off);
  400. dump_stack();
  401. }
  402. static void object_err(struct kmem_cache *s, struct page *page,
  403. u8 *object, char *reason)
  404. {
  405. slab_bug(s, "%s", reason);
  406. print_trailer(s, page, object);
  407. }
  408. static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
  409. {
  410. va_list args;
  411. char buf[100];
  412. va_start(args, fmt);
  413. vsnprintf(buf, sizeof(buf), fmt, args);
  414. va_end(args);
  415. slab_bug(s, "%s", buf);
  416. print_page_info(page);
  417. dump_stack();
  418. }
  419. static void init_object(struct kmem_cache *s, void *object, int active)
  420. {
  421. u8 *p = object;
  422. if (s->flags & __OBJECT_POISON) {
  423. memset(p, POISON_FREE, s->objsize - 1);
  424. p[s->objsize - 1] = POISON_END;
  425. }
  426. if (s->flags & SLAB_RED_ZONE)
  427. memset(p + s->objsize,
  428. active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
  429. s->inuse - s->objsize);
  430. }
  431. static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
  432. {
  433. while (bytes) {
  434. if (*start != (u8)value)
  435. return start;
  436. start++;
  437. bytes--;
  438. }
  439. return NULL;
  440. }
  441. static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
  442. void *from, void *to)
  443. {
  444. slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
  445. memset(from, data, to - from);
  446. }
  447. static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
  448. u8 *object, char *what,
  449. u8 *start, unsigned int value, unsigned int bytes)
  450. {
  451. u8 *fault;
  452. u8 *end;
  453. fault = check_bytes(start, value, bytes);
  454. if (!fault)
  455. return 1;
  456. end = start + bytes;
  457. while (end > fault && end[-1] == value)
  458. end--;
  459. slab_bug(s, "%s overwritten", what);
  460. printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
  461. fault, end - 1, fault[0], value);
  462. print_trailer(s, page, object);
  463. restore_bytes(s, what, value, fault, end);
  464. return 0;
  465. }
  466. /*
  467. * Object layout:
  468. *
  469. * object address
  470. * Bytes of the object to be managed.
  471. * If the freepointer may overlay the object then the free
  472. * pointer is the first word of the object.
  473. *
  474. * Poisoning uses 0x6b (POISON_FREE) and the last byte is
  475. * 0xa5 (POISON_END)
  476. *
  477. * object + s->objsize
  478. * Padding to reach word boundary. This is also used for Redzoning.
  479. * Padding is extended by another word if Redzoning is enabled and
  480. * objsize == inuse.
  481. *
  482. * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
  483. * 0xcc (RED_ACTIVE) for objects in use.
  484. *
  485. * object + s->inuse
  486. * Meta data starts here.
  487. *
  488. * A. Free pointer (if we cannot overwrite object on free)
  489. * B. Tracking data for SLAB_STORE_USER
  490. * C. Padding to reach required alignment boundary or at mininum
  491. * one word if debugging is on to be able to detect writes
  492. * before the word boundary.
  493. *
  494. * Padding is done using 0x5a (POISON_INUSE)
  495. *
  496. * object + s->size
  497. * Nothing is used beyond s->size.
  498. *
  499. * If slabcaches are merged then the objsize and inuse boundaries are mostly
  500. * ignored. And therefore no slab options that rely on these boundaries
  501. * may be used with merged slabcaches.
  502. */
  503. static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
  504. {
  505. unsigned long off = s->inuse; /* The end of info */
  506. if (s->offset)
  507. /* Freepointer is placed after the object. */
  508. off += sizeof(void *);
  509. if (s->flags & SLAB_STORE_USER)
  510. /* We also have user information there */
  511. off += 2 * sizeof(struct track);
  512. if (s->size == off)
  513. return 1;
  514. return check_bytes_and_report(s, page, p, "Object padding",
  515. p + off, POISON_INUSE, s->size - off);
  516. }
  517. /* Check the pad bytes at the end of a slab page */
  518. static int slab_pad_check(struct kmem_cache *s, struct page *page)
  519. {
  520. u8 *start;
  521. u8 *fault;
  522. u8 *end;
  523. int length;
  524. int remainder;
  525. if (!(s->flags & SLAB_POISON))
  526. return 1;
  527. start = page_address(page);
  528. length = (PAGE_SIZE << compound_order(page));
  529. end = start + length;
  530. remainder = length % s->size;
  531. if (!remainder)
  532. return 1;
  533. fault = check_bytes(end - remainder, POISON_INUSE, remainder);
  534. if (!fault)
  535. return 1;
  536. while (end > fault && end[-1] == POISON_INUSE)
  537. end--;
  538. slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
  539. print_section("Padding", end - remainder, remainder);
  540. restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
  541. return 0;
  542. }
  543. static int check_object(struct kmem_cache *s, struct page *page,
  544. void *object, int active)
  545. {
  546. u8 *p = object;
  547. u8 *endobject = object + s->objsize;
  548. if (s->flags & SLAB_RED_ZONE) {
  549. unsigned int red =
  550. active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
  551. if (!check_bytes_and_report(s, page, object, "Redzone",
  552. endobject, red, s->inuse - s->objsize))
  553. return 0;
  554. } else {
  555. if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
  556. check_bytes_and_report(s, page, p, "Alignment padding",
  557. endobject, POISON_INUSE, s->inuse - s->objsize);
  558. }
  559. }
  560. if (s->flags & SLAB_POISON) {
  561. if (!active && (s->flags & __OBJECT_POISON) &&
  562. (!check_bytes_and_report(s, page, p, "Poison", p,
  563. POISON_FREE, s->objsize - 1) ||
  564. !check_bytes_and_report(s, page, p, "Poison",
  565. p + s->objsize - 1, POISON_END, 1)))
  566. return 0;
  567. /*
  568. * check_pad_bytes cleans up on its own.
  569. */
  570. check_pad_bytes(s, page, p);
  571. }
  572. if (!s->offset && active)
  573. /*
  574. * Object and freepointer overlap. Cannot check
  575. * freepointer while object is allocated.
  576. */
  577. return 1;
  578. /* Check free pointer validity */
  579. if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
  580. object_err(s, page, p, "Freepointer corrupt");
  581. /*
  582. * No choice but to zap it and thus lose the remainder
  583. * of the free objects in this slab. May cause
  584. * another error because the object count is now wrong.
  585. */
  586. set_freepointer(s, p, NULL);
  587. return 0;
  588. }
  589. return 1;
  590. }
  591. static int check_slab(struct kmem_cache *s, struct page *page)
  592. {
  593. int maxobj;
  594. VM_BUG_ON(!irqs_disabled());
  595. if (!PageSlab(page)) {
  596. slab_err(s, page, "Not a valid slab page");
  597. return 0;
  598. }
  599. maxobj = (PAGE_SIZE << compound_order(page)) / s->size;
  600. if (page->objects > maxobj) {
  601. slab_err(s, page, "objects %u > max %u",
  602. s->name, page->objects, maxobj);
  603. return 0;
  604. }
  605. if (page->inuse > page->objects) {
  606. slab_err(s, page, "inuse %u > max %u",
  607. s->name, page->inuse, page->objects);
  608. return 0;
  609. }
  610. /* Slab_pad_check fixes things up after itself */
  611. slab_pad_check(s, page);
  612. return 1;
  613. }
  614. /*
  615. * Determine if a certain object on a page is on the freelist. Must hold the
  616. * slab lock to guarantee that the chains are in a consistent state.
  617. */
  618. static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
  619. {
  620. int nr = 0;
  621. void *fp = page->freelist;
  622. void *object = NULL;
  623. unsigned long max_objects;
  624. while (fp && nr <= page->objects) {
  625. if (fp == search)
  626. return 1;
  627. if (!check_valid_pointer(s, page, fp)) {
  628. if (object) {
  629. object_err(s, page, object,
  630. "Freechain corrupt");
  631. set_freepointer(s, object, NULL);
  632. break;
  633. } else {
  634. slab_err(s, page, "Freepointer corrupt");
  635. page->freelist = NULL;
  636. page->inuse = page->objects;
  637. slab_fix(s, "Freelist cleared");
  638. return 0;
  639. }
  640. break;
  641. }
  642. object = fp;
  643. fp = get_freepointer(s, object);
  644. nr++;
  645. }
  646. max_objects = (PAGE_SIZE << compound_order(page)) / s->size;
  647. if (max_objects > MAX_OBJS_PER_PAGE)
  648. max_objects = MAX_OBJS_PER_PAGE;
  649. if (page->objects != max_objects) {
  650. slab_err(s, page, "Wrong number of objects. Found %d but "
  651. "should be %d", page->objects, max_objects);
  652. page->objects = max_objects;
  653. slab_fix(s, "Number of objects adjusted.");
  654. }
  655. if (page->inuse != page->objects - nr) {
  656. slab_err(s, page, "Wrong object count. Counter is %d but "
  657. "counted were %d", page->inuse, page->objects - nr);
  658. page->inuse = page->objects - nr;
  659. slab_fix(s, "Object count adjusted.");
  660. }
  661. return search == NULL;
  662. }
  663. static void trace(struct kmem_cache *s, struct page *page, void *object,
  664. int alloc)
  665. {
  666. if (s->flags & SLAB_TRACE) {
  667. printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
  668. s->name,
  669. alloc ? "alloc" : "free",
  670. object, page->inuse,
  671. page->freelist);
  672. if (!alloc)
  673. print_section("Object", (void *)object, s->objsize);
  674. dump_stack();
  675. }
  676. }
  677. /*
  678. * Tracking of fully allocated slabs for debugging purposes.
  679. */
  680. static void add_full(struct kmem_cache_node *n, struct page *page)
  681. {
  682. spin_lock(&n->list_lock);
  683. list_add(&page->lru, &n->full);
  684. spin_unlock(&n->list_lock);
  685. }
  686. static void remove_full(struct kmem_cache *s, struct page *page)
  687. {
  688. struct kmem_cache_node *n;
  689. if (!(s->flags & SLAB_STORE_USER))
  690. return;
  691. n = get_node(s, page_to_nid(page));
  692. spin_lock(&n->list_lock);
  693. list_del(&page->lru);
  694. spin_unlock(&n->list_lock);
  695. }
  696. /* Tracking of the number of slabs for debugging purposes */
  697. static inline unsigned long slabs_node(struct kmem_cache *s, int node)
  698. {
  699. struct kmem_cache_node *n = get_node(s, node);
  700. return atomic_long_read(&n->nr_slabs);
  701. }
  702. static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
  703. {
  704. return atomic_long_read(&n->nr_slabs);
  705. }
  706. static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
  707. {
  708. struct kmem_cache_node *n = get_node(s, node);
  709. /*
  710. * May be called early in order to allocate a slab for the
  711. * kmem_cache_node structure. Solve the chicken-egg
  712. * dilemma by deferring the increment of the count during
  713. * bootstrap (see early_kmem_cache_node_alloc).
  714. */
  715. if (!NUMA_BUILD || n) {
  716. atomic_long_inc(&n->nr_slabs);
  717. atomic_long_add(objects, &n->total_objects);
  718. }
  719. }
  720. static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
  721. {
  722. struct kmem_cache_node *n = get_node(s, node);
  723. atomic_long_dec(&n->nr_slabs);
  724. atomic_long_sub(objects, &n->total_objects);
  725. }
  726. /* Object debug checks for alloc/free paths */
  727. static void setup_object_debug(struct kmem_cache *s, struct page *page,
  728. void *object)
  729. {
  730. if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
  731. return;
  732. init_object(s, object, 0);
  733. init_tracking(s, object);
  734. }
  735. static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
  736. void *object, unsigned long addr)
  737. {
  738. if (!check_slab(s, page))
  739. goto bad;
  740. if (!on_freelist(s, page, object)) {
  741. object_err(s, page, object, "Object already allocated");
  742. goto bad;
  743. }
  744. if (!check_valid_pointer(s, page, object)) {
  745. object_err(s, page, object, "Freelist Pointer check fails");
  746. goto bad;
  747. }
  748. if (!check_object(s, page, object, 0))
  749. goto bad;
  750. /* Success perform special debug activities for allocs */
  751. if (s->flags & SLAB_STORE_USER)
  752. set_track(s, object, TRACK_ALLOC, addr);
  753. trace(s, page, object, 1);
  754. init_object(s, object, 1);
  755. return 1;
  756. bad:
  757. if (PageSlab(page)) {
  758. /*
  759. * If this is a slab page then lets do the best we can
  760. * to avoid issues in the future. Marking all objects
  761. * as used avoids touching the remaining objects.
  762. */
  763. slab_fix(s, "Marking all objects used");
  764. page->inuse = page->objects;
  765. page->freelist = NULL;
  766. }
  767. return 0;
  768. }
  769. static noinline int free_debug_processing(struct kmem_cache *s,
  770. struct page *page, void *object, unsigned long addr)
  771. {
  772. if (!check_slab(s, page))
  773. goto fail;
  774. if (!check_valid_pointer(s, page, object)) {
  775. slab_err(s, page, "Invalid object pointer 0x%p", object);
  776. goto fail;
  777. }
  778. if (on_freelist(s, page, object)) {
  779. object_err(s, page, object, "Object already free");
  780. goto fail;
  781. }
  782. if (!check_object(s, page, object, 1))
  783. return 0;
  784. if (unlikely(s != page->slab)) {
  785. if (!PageSlab(page)) {
  786. slab_err(s, page, "Attempt to free object(0x%p) "
  787. "outside of slab", object);
  788. } else if (!page->slab) {
  789. printk(KERN_ERR
  790. "SLUB <none>: no slab for object 0x%p.\n",
  791. object);
  792. dump_stack();
  793. } else
  794. object_err(s, page, object,
  795. "page slab pointer corrupt.");
  796. goto fail;
  797. }
  798. /* Special debug activities for freeing objects */
  799. if (!PageSlubFrozen(page) && !page->freelist)
  800. remove_full(s, page);
  801. if (s->flags & SLAB_STORE_USER)
  802. set_track(s, object, TRACK_FREE, addr);
  803. trace(s, page, object, 0);
  804. init_object(s, object, 0);
  805. return 1;
  806. fail:
  807. slab_fix(s, "Object at 0x%p not freed", object);
  808. return 0;
  809. }
  810. static int __init setup_slub_debug(char *str)
  811. {
  812. slub_debug = DEBUG_DEFAULT_FLAGS;
  813. if (*str++ != '=' || !*str)
  814. /*
  815. * No options specified. Switch on full debugging.
  816. */
  817. goto out;
  818. if (*str == ',')
  819. /*
  820. * No options but restriction on slabs. This means full
  821. * debugging for slabs matching a pattern.
  822. */
  823. goto check_slabs;
  824. if (tolower(*str) == 'o') {
  825. /*
  826. * Avoid enabling debugging on caches if its minimum order
  827. * would increase as a result.
  828. */
  829. disable_higher_order_debug = 1;
  830. goto out;
  831. }
  832. slub_debug = 0;
  833. if (*str == '-')
  834. /*
  835. * Switch off all debugging measures.
  836. */
  837. goto out;
  838. /*
  839. * Determine which debug features should be switched on
  840. */
  841. for (; *str && *str != ','; str++) {
  842. switch (tolower(*str)) {
  843. case 'f':
  844. slub_debug |= SLAB_DEBUG_FREE;
  845. break;
  846. case 'z':
  847. slub_debug |= SLAB_RED_ZONE;
  848. break;
  849. case 'p':
  850. slub_debug |= SLAB_POISON;
  851. break;
  852. case 'u':
  853. slub_debug |= SLAB_STORE_USER;
  854. break;
  855. case 't':
  856. slub_debug |= SLAB_TRACE;
  857. break;
  858. case 'a':
  859. slub_debug |= SLAB_FAILSLAB;
  860. break;
  861. default:
  862. printk(KERN_ERR "slub_debug option '%c' "
  863. "unknown. skipped\n", *str);
  864. }
  865. }
  866. check_slabs:
  867. if (*str == ',')
  868. slub_debug_slabs = str + 1;
  869. out:
  870. return 1;
  871. }
  872. __setup("slub_debug", setup_slub_debug);
  873. static unsigned long kmem_cache_flags(unsigned long objsize,
  874. unsigned long flags, const char *name,
  875. void (*ctor)(void *))
  876. {
  877. /*
  878. * Enable debugging if selected on the kernel commandline.
  879. */
  880. if (slub_debug && (!slub_debug_slabs ||
  881. !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
  882. flags |= slub_debug;
  883. return flags;
  884. }
  885. #else
  886. static inline void setup_object_debug(struct kmem_cache *s,
  887. struct page *page, void *object) {}
  888. static inline int alloc_debug_processing(struct kmem_cache *s,
  889. struct page *page, void *object, unsigned long addr) { return 0; }
  890. static inline int free_debug_processing(struct kmem_cache *s,
  891. struct page *page, void *object, unsigned long addr) { return 0; }
  892. static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
  893. { return 1; }
  894. static inline int check_object(struct kmem_cache *s, struct page *page,
  895. void *object, int active) { return 1; }
  896. static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
  897. static inline unsigned long kmem_cache_flags(unsigned long objsize,
  898. unsigned long flags, const char *name,
  899. void (*ctor)(void *))
  900. {
  901. return flags;
  902. }
  903. #define slub_debug 0
  904. #define disable_higher_order_debug 0
  905. static inline unsigned long slabs_node(struct kmem_cache *s, int node)
  906. { return 0; }
  907. static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
  908. { return 0; }
  909. static inline void inc_slabs_node(struct kmem_cache *s, int node,
  910. int objects) {}
  911. static inline void dec_slabs_node(struct kmem_cache *s, int node,
  912. int objects) {}
  913. #endif
  914. /*
  915. * Slab allocation and freeing
  916. */
  917. static inline struct page *alloc_slab_page(gfp_t flags, int node,
  918. struct kmem_cache_order_objects oo)
  919. {
  920. int order = oo_order(oo);
  921. flags |= __GFP_NOTRACK;
  922. if (node == NUMA_NO_NODE)
  923. return alloc_pages(flags, order);
  924. else
  925. return alloc_pages_exact_node(node, flags, order);
  926. }
  927. static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
  928. {
  929. struct page *page;
  930. struct kmem_cache_order_objects oo = s->oo;
  931. gfp_t alloc_gfp;
  932. flags |= s->allocflags;
  933. /*
  934. * Let the initial higher-order allocation fail under memory pressure
  935. * so we fall-back to the minimum order allocation.
  936. */
  937. alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
  938. page = alloc_slab_page(alloc_gfp, node, oo);
  939. if (unlikely(!page)) {
  940. oo = s->min;
  941. /*
  942. * Allocation may have failed due to fragmentation.
  943. * Try a lower order alloc if possible
  944. */
  945. page = alloc_slab_page(flags, node, oo);
  946. if (!page)
  947. return NULL;
  948. stat(s, ORDER_FALLBACK);
  949. }
  950. if (kmemcheck_enabled
  951. && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
  952. int pages = 1 << oo_order(oo);
  953. kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
  954. /*
  955. * Objects from caches that have a constructor don't get
  956. * cleared when they're allocated, so we need to do it here.
  957. */
  958. if (s->ctor)
  959. kmemcheck_mark_uninitialized_pages(page, pages);
  960. else
  961. kmemcheck_mark_unallocated_pages(page, pages);
  962. }
  963. page->objects = oo_objects(oo);
  964. mod_zone_page_state(page_zone(page),
  965. (s->flags & SLAB_RECLAIM_ACCOUNT) ?
  966. NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
  967. 1 << oo_order(oo));
  968. return page;
  969. }
  970. static void setup_object(struct kmem_cache *s, struct page *page,
  971. void *object)
  972. {
  973. setup_object_debug(s, page, object);
  974. if (unlikely(s->ctor))
  975. s->ctor(object);
  976. }
  977. static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
  978. {
  979. struct page *page;
  980. void *start;
  981. void *last;
  982. void *p;
  983. BUG_ON(flags & GFP_SLAB_BUG_MASK);
  984. page = allocate_slab(s,
  985. flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
  986. if (!page)
  987. goto out;
  988. inc_slabs_node(s, page_to_nid(page), page->objects);
  989. page->slab = s;
  990. page->flags |= 1 << PG_slab;
  991. start = page_address(page);
  992. if (unlikely(s->flags & SLAB_POISON))
  993. memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
  994. last = start;
  995. for_each_object(p, s, start, page->objects) {
  996. setup_object(s, page, last);
  997. set_freepointer(s, last, p);
  998. last = p;
  999. }
  1000. setup_object(s, page, last);
  1001. set_freepointer(s, last, NULL);
  1002. page->freelist = start;
  1003. page->inuse = 0;
  1004. out:
  1005. return page;
  1006. }
  1007. static void __free_slab(struct kmem_cache *s, struct page *page)
  1008. {
  1009. int order = compound_order(page);
  1010. int pages = 1 << order;
  1011. if (kmem_cache_debug(s)) {
  1012. void *p;
  1013. slab_pad_check(s, page);
  1014. for_each_object(p, s, page_address(page),
  1015. page->objects)
  1016. check_object(s, page, p, 0);
  1017. }
  1018. kmemcheck_free_shadow(page, compound_order(page));
  1019. mod_zone_page_state(page_zone(page),
  1020. (s->flags & SLAB_RECLAIM_ACCOUNT) ?
  1021. NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
  1022. -pages);
  1023. __ClearPageSlab(page);
  1024. reset_page_mapcount(page);
  1025. if (current->reclaim_state)
  1026. current->reclaim_state->reclaimed_slab += pages;
  1027. __free_pages(page, order);
  1028. }
  1029. static void rcu_free_slab(struct rcu_head *h)
  1030. {
  1031. struct page *page;
  1032. page = container_of((struct list_head *)h, struct page, lru);
  1033. __free_slab(page->slab, page);
  1034. }
  1035. static void free_slab(struct kmem_cache *s, struct page *page)
  1036. {
  1037. if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
  1038. /*
  1039. * RCU free overloads the RCU head over the LRU
  1040. */
  1041. struct rcu_head *head = (void *)&page->lru;
  1042. call_rcu(head, rcu_free_slab);
  1043. } else
  1044. __free_slab(s, page);
  1045. }
  1046. static void discard_slab(struct kmem_cache *s, struct page *page)
  1047. {
  1048. dec_slabs_node(s, page_to_nid(page), page->objects);
  1049. free_slab(s, page);
  1050. }
  1051. /*
  1052. * Per slab locking using the pagelock
  1053. */
  1054. static __always_inline void slab_lock(struct page *page)
  1055. {
  1056. bit_spin_lock(PG_locked, &page->flags);
  1057. }
  1058. static __always_inline void slab_unlock(struct page *page)
  1059. {
  1060. __bit_spin_unlock(PG_locked, &page->flags);
  1061. }
  1062. static __always_inline int slab_trylock(struct page *page)
  1063. {
  1064. int rc = 1;
  1065. rc = bit_spin_trylock(PG_locked, &page->flags);
  1066. return rc;
  1067. }
  1068. /*
  1069. * Management of partially allocated slabs
  1070. */
  1071. static void add_partial(struct kmem_cache_node *n,
  1072. struct page *page, int tail)
  1073. {
  1074. spin_lock(&n->list_lock);
  1075. n->nr_partial++;
  1076. if (tail)
  1077. list_add_tail(&page->lru, &n->partial);
  1078. else
  1079. list_add(&page->lru, &n->partial);
  1080. spin_unlock(&n->list_lock);
  1081. }
  1082. static void remove_partial(struct kmem_cache *s, struct page *page)
  1083. {
  1084. struct kmem_cache_node *n = get_node(s, page_to_nid(page));
  1085. spin_lock(&n->list_lock);
  1086. list_del(&page->lru);
  1087. n->nr_partial--;
  1088. spin_unlock(&n->list_lock);
  1089. }
  1090. /*
  1091. * Lock slab and remove from the partial list.
  1092. *
  1093. * Must hold list_lock.
  1094. */
  1095. static inline int lock_and_freeze_slab(struct kmem_cache_node *n,
  1096. struct page *page)
  1097. {
  1098. if (slab_trylock(page)) {
  1099. list_del(&page->lru);
  1100. n->nr_partial--;
  1101. __SetPageSlubFrozen(page);
  1102. return 1;
  1103. }
  1104. return 0;
  1105. }
  1106. /*
  1107. * Try to allocate a partial slab from a specific node.
  1108. */
  1109. static struct page *get_partial_node(struct kmem_cache_node *n)
  1110. {
  1111. struct page *page;
  1112. /*
  1113. * Racy check. If we mistakenly see no partial slabs then we
  1114. * just allocate an empty slab. If we mistakenly try to get a
  1115. * partial slab and there is none available then get_partials()
  1116. * will return NULL.
  1117. */
  1118. if (!n || !n->nr_partial)
  1119. return NULL;
  1120. spin_lock(&n->list_lock);
  1121. list_for_each_entry(page, &n->partial, lru)
  1122. if (lock_and_freeze_slab(n, page))
  1123. goto out;
  1124. page = NULL;
  1125. out:
  1126. spin_unlock(&n->list_lock);
  1127. return page;
  1128. }
  1129. /*
  1130. * Get a page from somewhere. Search in increasing NUMA distances.
  1131. */
  1132. static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
  1133. {
  1134. #ifdef CONFIG_NUMA
  1135. struct zonelist *zonelist;
  1136. struct zoneref *z;
  1137. struct zone *zone;
  1138. enum zone_type high_zoneidx = gfp_zone(flags);
  1139. struct page *page;
  1140. /*
  1141. * The defrag ratio allows a configuration of the tradeoffs between
  1142. * inter node defragmentation and node local allocations. A lower
  1143. * defrag_ratio increases the tendency to do local allocations
  1144. * instead of attempting to obtain partial slabs from other nodes.
  1145. *
  1146. * If the defrag_ratio is set to 0 then kmalloc() always
  1147. * returns node local objects. If the ratio is higher then kmalloc()
  1148. * may return off node objects because partial slabs are obtained
  1149. * from other nodes and filled up.
  1150. *
  1151. * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
  1152. * defrag_ratio = 1000) then every (well almost) allocation will
  1153. * first attempt to defrag slab caches on other nodes. This means
  1154. * scanning over all nodes to look for partial slabs which may be
  1155. * expensive if we do it every time we are trying to find a slab
  1156. * with available objects.
  1157. */
  1158. if (!s->remote_node_defrag_ratio ||
  1159. get_cycles() % 1024 > s->remote_node_defrag_ratio)
  1160. return NULL;
  1161. get_mems_allowed();
  1162. zonelist = node_zonelist(slab_node(current->mempolicy), flags);
  1163. for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
  1164. struct kmem_cache_node *n;
  1165. n = get_node(s, zone_to_nid(zone));
  1166. if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
  1167. n->nr_partial > s->min_partial) {
  1168. page = get_partial_node(n);
  1169. if (page) {
  1170. put_mems_allowed();
  1171. return page;
  1172. }
  1173. }
  1174. }
  1175. put_mems_allowed();
  1176. #endif
  1177. return NULL;
  1178. }
  1179. /*
  1180. * Get a partial page, lock it and return it.
  1181. */
  1182. static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
  1183. {
  1184. struct page *page;
  1185. int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
  1186. page = get_partial_node(get_node(s, searchnode));
  1187. if (page || node != -1)
  1188. return page;
  1189. return get_any_partial(s, flags);
  1190. }
  1191. /*
  1192. * Move a page back to the lists.
  1193. *
  1194. * Must be called with the slab lock held.
  1195. *
  1196. * On exit the slab lock will have been dropped.
  1197. */
  1198. static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
  1199. {
  1200. struct kmem_cache_node *n = get_node(s, page_to_nid(page));
  1201. __ClearPageSlubFrozen(page);
  1202. if (page->inuse) {
  1203. if (page->freelist) {
  1204. add_partial(n, page, tail);
  1205. stat(s, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
  1206. } else {
  1207. stat(s, DEACTIVATE_FULL);
  1208. if (kmem_cache_debug(s) && (s->flags & SLAB_STORE_USER))
  1209. add_full(n, page);
  1210. }
  1211. slab_unlock(page);
  1212. } else {
  1213. stat(s, DEACTIVATE_EMPTY);
  1214. if (n->nr_partial < s->min_partial) {
  1215. /*
  1216. * Adding an empty slab to the partial slabs in order
  1217. * to avoid page allocator overhead. This slab needs
  1218. * to come after the other slabs with objects in
  1219. * so that the others get filled first. That way the
  1220. * size of the partial list stays small.
  1221. *
  1222. * kmem_cache_shrink can reclaim any empty slabs from
  1223. * the partial list.
  1224. */
  1225. add_partial(n, page, 1);
  1226. slab_unlock(page);
  1227. } else {
  1228. slab_unlock(page);
  1229. stat(s, FREE_SLAB);
  1230. discard_slab(s, page);
  1231. }
  1232. }
  1233. }
  1234. /*
  1235. * Remove the cpu slab
  1236. */
  1237. static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
  1238. {
  1239. struct page *page = c->page;
  1240. int tail = 1;
  1241. if (page->freelist)
  1242. stat(s, DEACTIVATE_REMOTE_FREES);
  1243. /*
  1244. * Merge cpu freelist into slab freelist. Typically we get here
  1245. * because both freelists are empty. So this is unlikely
  1246. * to occur.
  1247. */
  1248. while (unlikely(c->freelist)) {
  1249. void **object;
  1250. tail = 0; /* Hot objects. Put the slab first */
  1251. /* Retrieve object from cpu_freelist */
  1252. object = c->freelist;
  1253. c->freelist = get_freepointer(s, c->freelist);
  1254. /* And put onto the regular freelist */
  1255. set_freepointer(s, object, page->freelist);
  1256. page->freelist = object;
  1257. page->inuse--;
  1258. }
  1259. c->page = NULL;
  1260. unfreeze_slab(s, page, tail);
  1261. }
  1262. static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
  1263. {
  1264. stat(s, CPUSLAB_FLUSH);
  1265. slab_lock(c->page);
  1266. deactivate_slab(s, c);
  1267. }
  1268. /*
  1269. * Flush cpu slab.
  1270. *
  1271. * Called from IPI handler with interrupts disabled.
  1272. */
  1273. static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
  1274. {
  1275. struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
  1276. if (likely(c && c->page))
  1277. flush_slab(s, c);
  1278. }
  1279. static void flush_cpu_slab(void *d)
  1280. {
  1281. struct kmem_cache *s = d;
  1282. __flush_cpu_slab(s, smp_processor_id());
  1283. }
  1284. static void flush_all(struct kmem_cache *s)
  1285. {
  1286. on_each_cpu(flush_cpu_slab, s, 1);
  1287. }
  1288. /*
  1289. * Check if the objects in a per cpu structure fit numa
  1290. * locality expectations.
  1291. */
  1292. static inline int node_match(struct kmem_cache_cpu *c, int node)
  1293. {
  1294. #ifdef CONFIG_NUMA
  1295. if (node != NUMA_NO_NODE && c->node != node)
  1296. return 0;
  1297. #endif
  1298. return 1;
  1299. }
  1300. static int count_free(struct page *page)
  1301. {
  1302. return page->objects - page->inuse;
  1303. }
  1304. static unsigned long count_partial(struct kmem_cache_node *n,
  1305. int (*get_count)(struct page *))
  1306. {
  1307. unsigned long flags;
  1308. unsigned long x = 0;
  1309. struct page *page;
  1310. spin_lock_irqsave(&n->list_lock, flags);
  1311. list_for_each_entry(page, &n->partial, lru)
  1312. x += get_count(page);
  1313. spin_unlock_irqrestore(&n->list_lock, flags);
  1314. return x;
  1315. }
  1316. static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
  1317. {
  1318. #ifdef CONFIG_SLUB_DEBUG
  1319. return atomic_long_read(&n->total_objects);
  1320. #else
  1321. return 0;
  1322. #endif
  1323. }
  1324. static noinline void
  1325. slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
  1326. {
  1327. int node;
  1328. printk(KERN_WARNING
  1329. "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
  1330. nid, gfpflags);
  1331. printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
  1332. "default order: %d, min order: %d\n", s->name, s->objsize,
  1333. s->size, oo_order(s->oo), oo_order(s->min));
  1334. if (oo_order(s->min) > get_order(s->objsize))
  1335. printk(KERN_WARNING " %s debugging increased min order, use "
  1336. "slub_debug=O to disable.\n", s->name);
  1337. for_each_online_node(node) {
  1338. struct kmem_cache_node *n = get_node(s, node);
  1339. unsigned long nr_slabs;
  1340. unsigned long nr_objs;
  1341. unsigned long nr_free;
  1342. if (!n)
  1343. continue;
  1344. nr_free = count_partial(n, count_free);
  1345. nr_slabs = node_nr_slabs(n);
  1346. nr_objs = node_nr_objs(n);
  1347. printk(KERN_WARNING
  1348. " node %d: slabs: %ld, objs: %ld, free: %ld\n",
  1349. node, nr_slabs, nr_objs, nr_free);
  1350. }
  1351. }
  1352. /*
  1353. * Slow path. The lockless freelist is empty or we need to perform
  1354. * debugging duties.
  1355. *
  1356. * Interrupts are disabled.
  1357. *
  1358. * Processing is still very fast if new objects have been freed to the
  1359. * regular freelist. In that case we simply take over the regular freelist
  1360. * as the lockless freelist and zap the regular freelist.
  1361. *
  1362. * If that is not working then we fall back to the partial lists. We take the
  1363. * first element of the freelist as the object to allocate now and move the
  1364. * rest of the freelist to the lockless freelist.
  1365. *
  1366. * And if we were unable to get a new slab from the partial slab lists then
  1367. * we need to allocate a new slab. This is the slowest path since it involves
  1368. * a call to the page allocator and the setup of a new slab.
  1369. */
  1370. static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
  1371. unsigned long addr, struct kmem_cache_cpu *c)
  1372. {
  1373. void **object;
  1374. struct page *new;
  1375. /* We handle __GFP_ZERO in the caller */
  1376. gfpflags &= ~__GFP_ZERO;
  1377. if (!c->page)
  1378. goto new_slab;
  1379. slab_lock(c->page);
  1380. if (unlikely(!node_match(c, node)))
  1381. goto another_slab;
  1382. stat(s, ALLOC_REFILL);
  1383. load_freelist:
  1384. object = c->page->freelist;
  1385. if (unlikely(!object))
  1386. goto another_slab;
  1387. if (kmem_cache_debug(s))
  1388. goto debug;
  1389. c->freelist = get_freepointer(s, object);
  1390. c->page->inuse = c->page->objects;
  1391. c->page->freelist = NULL;
  1392. c->node = page_to_nid(c->page);
  1393. unlock_out:
  1394. slab_unlock(c->page);
  1395. stat(s, ALLOC_SLOWPATH);
  1396. return object;
  1397. another_slab:
  1398. deactivate_slab(s, c);
  1399. new_slab:
  1400. new = get_partial(s, gfpflags, node);
  1401. if (new) {
  1402. c->page = new;
  1403. stat(s, ALLOC_FROM_PARTIAL);
  1404. goto load_freelist;
  1405. }
  1406. if (gfpflags & __GFP_WAIT)
  1407. local_irq_enable();
  1408. new = new_slab(s, gfpflags, node);
  1409. if (gfpflags & __GFP_WAIT)
  1410. local_irq_disable();
  1411. if (new) {
  1412. c = __this_cpu_ptr(s->cpu_slab);
  1413. stat(s, ALLOC_SLAB);
  1414. if (c->page)
  1415. flush_slab(s, c);
  1416. slab_lock(new);
  1417. __SetPageSlubFrozen(new);
  1418. c->page = new;
  1419. goto load_freelist;
  1420. }
  1421. if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
  1422. slab_out_of_memory(s, gfpflags, node);
  1423. return NULL;
  1424. debug:
  1425. if (!alloc_debug_processing(s, c->page, object, addr))
  1426. goto another_slab;
  1427. c->page->inuse++;
  1428. c->page->freelist = get_freepointer(s, object);
  1429. c->node = -1;
  1430. goto unlock_out;
  1431. }
  1432. /*
  1433. * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
  1434. * have the fastpath folded into their functions. So no function call
  1435. * overhead for requests that can be satisfied on the fastpath.
  1436. *
  1437. * The fastpath works by first checking if the lockless freelist can be used.
  1438. * If not then __slab_alloc is called for slow processing.
  1439. *
  1440. * Otherwise we can simply pick the next object from the lockless free list.
  1441. */
  1442. static __always_inline void *slab_alloc(struct kmem_cache *s,
  1443. gfp_t gfpflags, int node, unsigned long addr)
  1444. {
  1445. void **object;
  1446. struct kmem_cache_cpu *c;
  1447. unsigned long flags;
  1448. gfpflags &= gfp_allowed_mask;
  1449. lockdep_trace_alloc(gfpflags);
  1450. might_sleep_if(gfpflags & __GFP_WAIT);
  1451. if (should_failslab(s->objsize, gfpflags, s->flags))
  1452. return NULL;
  1453. local_irq_save(flags);
  1454. c = __this_cpu_ptr(s->cpu_slab);
  1455. object = c->freelist;
  1456. if (unlikely(!object || !node_match(c, node)))
  1457. object = __slab_alloc(s, gfpflags, node, addr, c);
  1458. else {
  1459. c->freelist = get_freepointer(s, object);
  1460. stat(s, ALLOC_FASTPATH);
  1461. }
  1462. local_irq_restore(flags);
  1463. if (unlikely(gfpflags & __GFP_ZERO) && object)
  1464. memset(object, 0, s->objsize);
  1465. kmemcheck_slab_alloc(s, gfpflags, object, s->objsize);
  1466. kmemleak_alloc_recursive(object, s->objsize, 1, s->flags, gfpflags);
  1467. return object;
  1468. }
  1469. void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
  1470. {
  1471. void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
  1472. trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags);
  1473. return ret;
  1474. }
  1475. EXPORT_SYMBOL(kmem_cache_alloc);
  1476. #ifdef CONFIG_TRACING
  1477. void *kmem_cache_alloc_notrace(struct kmem_cache *s, gfp_t gfpflags)
  1478. {
  1479. return slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
  1480. }
  1481. EXPORT_SYMBOL(kmem_cache_alloc_notrace);
  1482. #endif
  1483. #ifdef CONFIG_NUMA
  1484. void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
  1485. {
  1486. void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
  1487. trace_kmem_cache_alloc_node(_RET_IP_, ret,
  1488. s->objsize, s->size, gfpflags, node);
  1489. return ret;
  1490. }
  1491. EXPORT_SYMBOL(kmem_cache_alloc_node);
  1492. #endif
  1493. #ifdef CONFIG_TRACING
  1494. void *kmem_cache_alloc_node_notrace(struct kmem_cache *s,
  1495. gfp_t gfpflags,
  1496. int node)
  1497. {
  1498. return slab_alloc(s, gfpflags, node, _RET_IP_);
  1499. }
  1500. EXPORT_SYMBOL(kmem_cache_alloc_node_notrace);
  1501. #endif
  1502. /*
  1503. * Slow patch handling. This may still be called frequently since objects
  1504. * have a longer lifetime than the cpu slabs in most processing loads.
  1505. *
  1506. * So we still attempt to reduce cache line usage. Just take the slab
  1507. * lock and free the item. If there is no additional partial page
  1508. * handling required then we can return immediately.
  1509. */
  1510. static void __slab_free(struct kmem_cache *s, struct page *page,
  1511. void *x, unsigned long addr)
  1512. {
  1513. void *prior;
  1514. void **object = (void *)x;
  1515. stat(s, FREE_SLOWPATH);
  1516. slab_lock(page);
  1517. if (kmem_cache_debug(s))
  1518. goto debug;
  1519. checks_ok:
  1520. prior = page->freelist;
  1521. set_freepointer(s, object, prior);
  1522. page->freelist = object;
  1523. page->inuse--;
  1524. if (unlikely(PageSlubFrozen(page))) {
  1525. stat(s, FREE_FROZEN);
  1526. goto out_unlock;
  1527. }
  1528. if (unlikely(!page->inuse))
  1529. goto slab_empty;
  1530. /*
  1531. * Objects left in the slab. If it was not on the partial list before
  1532. * then add it.
  1533. */
  1534. if (unlikely(!prior)) {
  1535. add_partial(get_node(s, page_to_nid(page)), page, 1);
  1536. stat(s, FREE_ADD_PARTIAL);
  1537. }
  1538. out_unlock:
  1539. slab_unlock(page);
  1540. return;
  1541. slab_empty:
  1542. if (prior) {
  1543. /*
  1544. * Slab still on the partial list.
  1545. */
  1546. remove_partial(s, page);
  1547. stat(s, FREE_REMOVE_PARTIAL);
  1548. }
  1549. slab_unlock(page);
  1550. stat(s, FREE_SLAB);
  1551. discard_slab(s, page);
  1552. return;
  1553. debug:
  1554. if (!free_debug_processing(s, page, x, addr))
  1555. goto out_unlock;
  1556. goto checks_ok;
  1557. }
  1558. /*
  1559. * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
  1560. * can perform fastpath freeing without additional function calls.
  1561. *
  1562. * The fastpath is only possible if we are freeing to the current cpu slab
  1563. * of this processor. This typically the case if we have just allocated
  1564. * the item before.
  1565. *
  1566. * If fastpath is not possible then fall back to __slab_free where we deal
  1567. * with all sorts of special processing.
  1568. */
  1569. static __always_inline void slab_free(struct kmem_cache *s,
  1570. struct page *page, void *x, unsigned long addr)
  1571. {
  1572. void **object = (void *)x;
  1573. struct kmem_cache_cpu *c;
  1574. unsigned long flags;
  1575. kmemleak_free_recursive(x, s->flags);
  1576. local_irq_save(flags);
  1577. c = __this_cpu_ptr(s->cpu_slab);
  1578. kmemcheck_slab_free(s, object, s->objsize);
  1579. debug_check_no_locks_freed(object, s->objsize);
  1580. if (!(s->flags & SLAB_DEBUG_OBJECTS))
  1581. debug_check_no_obj_freed(object, s->objsize);
  1582. if (likely(page == c->page && c->node >= 0)) {
  1583. set_freepointer(s, object, c->freelist);
  1584. c->freelist = object;
  1585. stat(s, FREE_FASTPATH);
  1586. } else
  1587. __slab_free(s, page, x, addr);
  1588. local_irq_restore(flags);
  1589. }
  1590. void kmem_cache_free(struct kmem_cache *s, void *x)
  1591. {
  1592. struct page *page;
  1593. page = virt_to_head_page(x);
  1594. slab_free(s, page, x, _RET_IP_);
  1595. trace_kmem_cache_free(_RET_IP_, x);
  1596. }
  1597. EXPORT_SYMBOL(kmem_cache_free);
  1598. /* Figure out on which slab page the object resides */
  1599. static struct page *get_object_page(const void *x)
  1600. {
  1601. struct page *page = virt_to_head_page(x);
  1602. if (!PageSlab(page))
  1603. return NULL;
  1604. return page;
  1605. }
  1606. /*
  1607. * Object placement in a slab is made very easy because we always start at
  1608. * offset 0. If we tune the size of the object to the alignment then we can
  1609. * get the required alignment by putting one properly sized object after
  1610. * another.
  1611. *
  1612. * Notice that the allocation order determines the sizes of the per cpu
  1613. * caches. Each processor has always one slab available for allocations.
  1614. * Increasing the allocation order reduces the number of times that slabs
  1615. * must be moved on and off the partial lists and is therefore a factor in
  1616. * locking overhead.
  1617. */
  1618. /*
  1619. * Mininum / Maximum order of slab pages. This influences locking overhead
  1620. * and slab fragmentation. A higher order reduces the number of partial slabs
  1621. * and increases the number of allocations possible without having to
  1622. * take the list_lock.
  1623. */
  1624. static int slub_min_order;
  1625. static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
  1626. static int slub_min_objects;
  1627. /*
  1628. * Merge control. If this is set then no merging of slab caches will occur.
  1629. * (Could be removed. This was introduced to pacify the merge skeptics.)
  1630. */
  1631. static int slub_nomerge;
  1632. /*
  1633. * Calculate the order of allocation given an slab object size.
  1634. *
  1635. * The order of allocation has significant impact on performance and other
  1636. * system components. Generally order 0 allocations should be preferred since
  1637. * order 0 does not cause fragmentation in the page allocator. Larger objects
  1638. * be problematic to put into order 0 slabs because there may be too much
  1639. * unused space left. We go to a higher order if more than 1/16th of the slab
  1640. * would be wasted.
  1641. *
  1642. * In order to reach satisfactory performance we must ensure that a minimum
  1643. * number of objects is in one slab. Otherwise we may generate too much
  1644. * activity on the partial lists which requires taking the list_lock. This is
  1645. * less a concern for large slabs though which are rarely used.
  1646. *
  1647. * slub_max_order specifies the order where we begin to stop considering the
  1648. * number of objects in a slab as critical. If we reach slub_max_order then
  1649. * we try to keep the page order as low as possible. So we accept more waste
  1650. * of space in favor of a small page order.
  1651. *
  1652. * Higher order allocations also allow the placement of more objects in a
  1653. * slab and thereby reduce object handling overhead. If the user has
  1654. * requested a higher mininum order then we start with that one instead of
  1655. * the smallest order which will fit the object.
  1656. */
  1657. static inline int slab_order(int size, int min_objects,
  1658. int max_order, int fract_leftover)
  1659. {
  1660. int order;
  1661. int rem;
  1662. int min_order = slub_min_order;
  1663. if ((PAGE_SIZE << min_order) / size > MAX_OBJS_PER_PAGE)
  1664. return get_order(size * MAX_OBJS_PER_PAGE) - 1;
  1665. for (order = max(min_order,
  1666. fls(min_objects * size - 1) - PAGE_SHIFT);
  1667. order <= max_order; order++) {
  1668. unsigned long slab_size = PAGE_SIZE << order;
  1669. if (slab_size < min_objects * size)
  1670. continue;
  1671. rem = slab_size % size;
  1672. if (rem <= slab_size / fract_leftover)
  1673. break;
  1674. }
  1675. return order;
  1676. }
  1677. static inline int calculate_order(int size)
  1678. {
  1679. int order;
  1680. int min_objects;
  1681. int fraction;
  1682. int max_objects;
  1683. /*
  1684. * Attempt to find best configuration for a slab. This
  1685. * works by first attempting to generate a layout with
  1686. * the best configuration and backing off gradually.
  1687. *
  1688. * First we reduce the acceptable waste in a slab. Then
  1689. * we reduce the minimum objects required in a slab.
  1690. */
  1691. min_objects = slub_min_objects;
  1692. if (!min_objects)
  1693. min_objects = 4 * (fls(nr_cpu_ids) + 1);
  1694. max_objects = (PAGE_SIZE << slub_max_order)/size;
  1695. min_objects = min(min_objects, max_objects);
  1696. while (min_objects > 1) {
  1697. fraction = 16;
  1698. while (fraction >= 4) {
  1699. order = slab_order(size, min_objects,
  1700. slub_max_order, fraction);
  1701. if (order <= slub_max_order)
  1702. return order;
  1703. fraction /= 2;
  1704. }
  1705. min_objects--;
  1706. }
  1707. /*
  1708. * We were unable to place multiple objects in a slab. Now
  1709. * lets see if we can place a single object there.
  1710. */
  1711. order = slab_order(size, 1, slub_max_order, 1);
  1712. if (order <= slub_max_order)
  1713. return order;
  1714. /*
  1715. * Doh this slab cannot be placed using slub_max_order.
  1716. */
  1717. order = slab_order(size, 1, MAX_ORDER, 1);
  1718. if (order < MAX_ORDER)
  1719. return order;
  1720. return -ENOSYS;
  1721. }
  1722. /*
  1723. * Figure out what the alignment of the objects will be.
  1724. */
  1725. static unsigned long calculate_alignment(unsigned long flags,
  1726. unsigned long align, unsigned long size)
  1727. {
  1728. /*
  1729. * If the user wants hardware cache aligned objects then follow that
  1730. * suggestion if the object is sufficiently large.
  1731. *
  1732. * The hardware cache alignment cannot override the specified
  1733. * alignment though. If that is greater then use it.
  1734. */
  1735. if (flags & SLAB_HWCACHE_ALIGN) {
  1736. unsigned long ralign = cache_line_size();
  1737. while (size <= ralign / 2)
  1738. ralign /= 2;
  1739. align = max(align, ralign);
  1740. }
  1741. if (align < ARCH_SLAB_MINALIGN)
  1742. align = ARCH_SLAB_MINALIGN;
  1743. return ALIGN(align, sizeof(void *));
  1744. }
  1745. static void
  1746. init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
  1747. {
  1748. n->nr_partial = 0;
  1749. spin_lock_init(&n->list_lock);
  1750. INIT_LIST_HEAD(&n->partial);
  1751. #ifdef CONFIG_SLUB_DEBUG
  1752. atomic_long_set(&n->nr_slabs, 0);
  1753. atomic_long_set(&n->total_objects, 0);
  1754. INIT_LIST_HEAD(&n->full);
  1755. #endif
  1756. }
  1757. static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
  1758. {
  1759. BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
  1760. SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu));
  1761. s->cpu_slab = alloc_percpu(struct kmem_cache_cpu);
  1762. return s->cpu_slab != NULL;
  1763. }
  1764. #ifdef CONFIG_NUMA
  1765. static struct kmem_cache *kmem_cache_node;
  1766. /*
  1767. * No kmalloc_node yet so do it by hand. We know that this is the first
  1768. * slab on the node for this slabcache. There are no concurrent accesses
  1769. * possible.
  1770. *
  1771. * Note that this function only works on the kmalloc_node_cache
  1772. * when allocating for the kmalloc_node_cache. This is used for bootstrapping
  1773. * memory on a fresh node that has no slab structures yet.
  1774. */
  1775. static void early_kmem_cache_node_alloc(int node)
  1776. {
  1777. struct page *page;
  1778. struct kmem_cache_node *n;
  1779. unsigned long flags;
  1780. BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
  1781. page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
  1782. BUG_ON(!page);
  1783. if (page_to_nid(page) != node) {
  1784. printk(KERN_ERR "SLUB: Unable to allocate memory from "
  1785. "node %d\n", node);
  1786. printk(KERN_ERR "SLUB: Allocating a useless per node structure "
  1787. "in order to be able to continue\n");
  1788. }
  1789. n = page->freelist;
  1790. BUG_ON(!n);
  1791. page->freelist = get_freepointer(kmem_cache_node, n);
  1792. page->inuse++;
  1793. kmem_cache_node->node[node] = n;
  1794. #ifdef CONFIG_SLUB_DEBUG
  1795. init_object(kmem_cache_node, n, 1);
  1796. init_tracking(kmem_cache_node, n);
  1797. #endif
  1798. init_kmem_cache_node(n, kmem_cache_node);
  1799. inc_slabs_node(kmem_cache_node, node, page->objects);
  1800. /*
  1801. * lockdep requires consistent irq usage for each lock
  1802. * so even though there cannot be a race this early in
  1803. * the boot sequence, we still disable irqs.
  1804. */
  1805. local_irq_save(flags);
  1806. add_partial(n, page, 0);
  1807. local_irq_restore(flags);
  1808. }
  1809. static void free_kmem_cache_nodes(struct kmem_cache *s)
  1810. {
  1811. int node;
  1812. for_each_node_state(node, N_NORMAL_MEMORY) {
  1813. struct kmem_cache_node *n = s->node[node];
  1814. if (n)
  1815. kmem_cache_free(kmem_cache_node, n);
  1816. s->node[node] = NULL;
  1817. }
  1818. }
  1819. static int init_kmem_cache_nodes(struct kmem_cache *s)
  1820. {
  1821. int node;
  1822. for_each_node_state(node, N_NORMAL_MEMORY) {
  1823. struct kmem_cache_node *n;
  1824. if (slab_state == DOWN) {
  1825. early_kmem_cache_node_alloc(node);
  1826. continue;
  1827. }
  1828. n = kmem_cache_alloc_node(kmem_cache_node,
  1829. GFP_KERNEL, node);
  1830. if (!n) {
  1831. free_kmem_cache_nodes(s);
  1832. return 0;
  1833. }
  1834. s->node[node] = n;
  1835. init_kmem_cache_node(n, s);
  1836. }
  1837. return 1;
  1838. }
  1839. #else
  1840. static void free_kmem_cache_nodes(struct kmem_cache *s)
  1841. {
  1842. }
  1843. static int init_kmem_cache_nodes(struct kmem_cache *s)
  1844. {
  1845. init_kmem_cache_node(&s->local_node, s);
  1846. return 1;
  1847. }
  1848. #endif
  1849. static void set_min_partial(struct kmem_cache *s, unsigned long min)
  1850. {
  1851. if (min < MIN_PARTIAL)
  1852. min = MIN_PARTIAL;
  1853. else if (min > MAX_PARTIAL)
  1854. min = MAX_PARTIAL;
  1855. s->min_partial = min;
  1856. }
  1857. /*
  1858. * calculate_sizes() determines the order and the distribution of data within
  1859. * a slab object.
  1860. */
  1861. static int calculate_sizes(struct kmem_cache *s, int forced_order)
  1862. {
  1863. unsigned long flags = s->flags;
  1864. unsigned long size = s->objsize;
  1865. unsigned long align = s->align;
  1866. int order;
  1867. /*
  1868. * Round up object size to the next word boundary. We can only
  1869. * place the free pointer at word boundaries and this determines
  1870. * the possible location of the free pointer.
  1871. */
  1872. size = ALIGN(size, sizeof(void *));
  1873. #ifdef CONFIG_SLUB_DEBUG
  1874. /*
  1875. * Determine if we can poison the object itself. If the user of
  1876. * the slab may touch the object after free or before allocation
  1877. * then we should never poison the object itself.
  1878. */
  1879. if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
  1880. !s->ctor)
  1881. s->flags |= __OBJECT_POISON;
  1882. else
  1883. s->flags &= ~__OBJECT_POISON;
  1884. /*
  1885. * If we are Redzoning then check if there is some space between the
  1886. * end of the object and the free pointer. If not then add an
  1887. * additional word to have some bytes to store Redzone information.
  1888. */
  1889. if ((flags & SLAB_RED_ZONE) && size == s->objsize)
  1890. size += sizeof(void *);
  1891. #endif
  1892. /*
  1893. * With that we have determined the number of bytes in actual use
  1894. * by the object. This is the potential offset to the free pointer.
  1895. */
  1896. s->inuse = size;
  1897. if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
  1898. s->ctor)) {
  1899. /*
  1900. * Relocate free pointer after the object if it is not
  1901. * permitted to overwrite the first word of the object on
  1902. * kmem_cache_free.
  1903. *
  1904. * This is the case if we do RCU, have a constructor or
  1905. * destructor or are poisoning the objects.
  1906. */
  1907. s->offset = size;
  1908. size += sizeof(void *);
  1909. }
  1910. #ifdef CONFIG_SLUB_DEBUG
  1911. if (flags & SLAB_STORE_USER)
  1912. /*
  1913. * Need to store information about allocs and frees after
  1914. * the object.
  1915. */
  1916. size += 2 * sizeof(struct track);
  1917. if (flags & SLAB_RED_ZONE)
  1918. /*
  1919. * Add some empty padding so that we can catch
  1920. * overwrites from earlier objects rather than let
  1921. * tracking information or the free pointer be
  1922. * corrupted if a user writes before the start
  1923. * of the object.
  1924. */
  1925. size += sizeof(void *);
  1926. #endif
  1927. /*
  1928. * Determine the alignment based on various parameters that the
  1929. * user specified and the dynamic determination of cache line size
  1930. * on bootup.
  1931. */
  1932. align = calculate_alignment(flags, align, s->objsize);
  1933. s->align = align;
  1934. /*
  1935. * SLUB stores one object immediately after another beginning from
  1936. * offset 0. In order to align the objects we have to simply size
  1937. * each object to conform to the alignment.
  1938. */
  1939. size = ALIGN(size, align);
  1940. s->size = size;
  1941. if (forced_order >= 0)
  1942. order = forced_order;
  1943. else
  1944. order = calculate_order(size);
  1945. if (order < 0)
  1946. return 0;
  1947. s->allocflags = 0;
  1948. if (order)
  1949. s->allocflags |= __GFP_COMP;
  1950. if (s->flags & SLAB_CACHE_DMA)
  1951. s->allocflags |= SLUB_DMA;
  1952. if (s->flags & SLAB_RECLAIM_ACCOUNT)
  1953. s->allocflags |= __GFP_RECLAIMABLE;
  1954. /*
  1955. * Determine the number of objects per slab
  1956. */
  1957. s->oo = oo_make(order, size);
  1958. s->min = oo_make(get_order(size), size);
  1959. if (oo_objects(s->oo) > oo_objects(s->max))
  1960. s->max = s->oo;
  1961. return !!oo_objects(s->oo);
  1962. }
  1963. static int kmem_cache_open(struct kmem_cache *s,
  1964. const char *name, size_t size,
  1965. size_t align, unsigned long flags,
  1966. void (*ctor)(void *))
  1967. {
  1968. memset(s, 0, kmem_size);
  1969. s->name = name;
  1970. s->ctor = ctor;
  1971. s->objsize = size;
  1972. s->align = align;
  1973. s->flags = kmem_cache_flags(size, flags, name, ctor);
  1974. if (!calculate_sizes(s, -1))
  1975. goto error;
  1976. if (disable_higher_order_debug) {
  1977. /*
  1978. * Disable debugging flags that store metadata if the min slab
  1979. * order increased.
  1980. */
  1981. if (get_order(s->size) > get_order(s->objsize)) {
  1982. s->flags &= ~DEBUG_METADATA_FLAGS;
  1983. s->offset = 0;
  1984. if (!calculate_sizes(s, -1))
  1985. goto error;
  1986. }
  1987. }
  1988. /*
  1989. * The larger the object size is, the more pages we want on the partial
  1990. * list to avoid pounding the page allocator excessively.
  1991. */
  1992. set_min_partial(s, ilog2(s->size));
  1993. s->refcount = 1;
  1994. #ifdef CONFIG_NUMA
  1995. s->remote_node_defrag_ratio = 1000;
  1996. #endif
  1997. if (!init_kmem_cache_nodes(s))
  1998. goto error;
  1999. if (alloc_kmem_cache_cpus(s))
  2000. return 1;
  2001. free_kmem_cache_nodes(s);
  2002. error:
  2003. if (flags & SLAB_PANIC)
  2004. panic("Cannot create slab %s size=%lu realsize=%u "
  2005. "order=%u offset=%u flags=%lx\n",
  2006. s->name, (unsigned long)size, s->size, oo_order(s->oo),
  2007. s->offset, flags);
  2008. return 0;
  2009. }
  2010. /*
  2011. * Check if a given pointer is valid
  2012. */
  2013. int kmem_ptr_validate(struct kmem_cache *s, const void *object)
  2014. {
  2015. struct page *page;
  2016. if (!kern_ptr_validate(object, s->size))
  2017. return 0;
  2018. page = get_object_page(object);
  2019. if (!page || s != page->slab)
  2020. /* No slab or wrong slab */
  2021. return 0;
  2022. if (!check_valid_pointer(s, page, object))
  2023. return 0;
  2024. /*
  2025. * We could also check if the object is on the slabs freelist.
  2026. * But this would be too expensive and it seems that the main
  2027. * purpose of kmem_ptr_valid() is to check if the object belongs
  2028. * to a certain slab.
  2029. */
  2030. return 1;
  2031. }
  2032. EXPORT_SYMBOL(kmem_ptr_validate);
  2033. /*
  2034. * Determine the size of a slab object
  2035. */
  2036. unsigned int kmem_cache_size(struct kmem_cache *s)
  2037. {
  2038. return s->objsize;
  2039. }
  2040. EXPORT_SYMBOL(kmem_cache_size);
  2041. const char *kmem_cache_name(struct kmem_cache *s)
  2042. {
  2043. return s->name;
  2044. }
  2045. EXPORT_SYMBOL(kmem_cache_name);
  2046. static void list_slab_objects(struct kmem_cache *s, struct page *page,
  2047. const char *text)
  2048. {
  2049. #ifdef CONFIG_SLUB_DEBUG
  2050. void *addr = page_address(page);
  2051. void *p;
  2052. long *map = kzalloc(BITS_TO_LONGS(page->objects) * sizeof(long),
  2053. GFP_ATOMIC);
  2054. if (!map)
  2055. return;
  2056. slab_err(s, page, "%s", text);
  2057. slab_lock(page);
  2058. for_each_free_object(p, s, page->freelist)
  2059. set_bit(slab_index(p, s, addr), map);
  2060. for_each_object(p, s, addr, page->objects) {
  2061. if (!test_bit(slab_index(p, s, addr), map)) {
  2062. printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
  2063. p, p - addr);
  2064. print_tracking(s, p);
  2065. }
  2066. }
  2067. slab_unlock(page);
  2068. kfree(map);
  2069. #endif
  2070. }
  2071. /*
  2072. * Attempt to free all partial slabs on a node.
  2073. */
  2074. static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
  2075. {
  2076. unsigned long flags;
  2077. struct page *page, *h;
  2078. spin_lock_irqsave(&n->list_lock, flags);
  2079. list_for_each_entry_safe(page, h, &n->partial, lru) {
  2080. if (!page->inuse) {
  2081. list_del(&page->lru);
  2082. discard_slab(s, page);
  2083. n->nr_partial--;
  2084. } else {
  2085. list_slab_objects(s, page,
  2086. "Objects remaining on kmem_cache_close()");
  2087. }
  2088. }
  2089. spin_unlock_irqrestore(&n->list_lock, flags);
  2090. }
  2091. /*
  2092. * Release all resources used by a slab cache.
  2093. */
  2094. static inline int kmem_cache_close(struct kmem_cache *s)
  2095. {
  2096. int node;
  2097. flush_all(s);
  2098. free_percpu(s->cpu_slab);
  2099. /* Attempt to free all objects */
  2100. for_each_node_state(node, N_NORMAL_MEMORY) {
  2101. struct kmem_cache_node *n = get_node(s, node);
  2102. free_partial(s, n);
  2103. if (n->nr_partial || slabs_node(s, node))
  2104. return 1;
  2105. }
  2106. free_kmem_cache_nodes(s);
  2107. return 0;
  2108. }
  2109. /*
  2110. * Close a cache and release the kmem_cache structure
  2111. * (must be used for caches created using kmem_cache_create)
  2112. */
  2113. void kmem_cache_destroy(struct kmem_cache *s)
  2114. {
  2115. down_write(&slub_lock);
  2116. s->refcount--;
  2117. if (!s->refcount) {
  2118. list_del(&s->list);
  2119. if (kmem_cache_close(s)) {
  2120. printk(KERN_ERR "SLUB %s: %s called for cache that "
  2121. "still has objects.\n", s->name, __func__);
  2122. dump_stack();
  2123. }
  2124. if (s->flags & SLAB_DESTROY_BY_RCU)
  2125. rcu_barrier();
  2126. sysfs_slab_remove(s);
  2127. }
  2128. up_write(&slub_lock);
  2129. }
  2130. EXPORT_SYMBOL(kmem_cache_destroy);
  2131. /********************************************************************
  2132. * Kmalloc subsystem
  2133. *******************************************************************/
  2134. struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
  2135. EXPORT_SYMBOL(kmalloc_caches);
  2136. static struct kmem_cache *kmem_cache;
  2137. #ifdef CONFIG_ZONE_DMA
  2138. static struct kmem_cache *kmalloc_dma_caches[SLUB_PAGE_SHIFT];
  2139. #endif
  2140. static int __init setup_slub_min_order(char *str)
  2141. {
  2142. get_option(&str, &slub_min_order);
  2143. return 1;
  2144. }
  2145. __setup("slub_min_order=", setup_slub_min_order);
  2146. static int __init setup_slub_max_order(char *str)
  2147. {
  2148. get_option(&str, &slub_max_order);
  2149. slub_max_order = min(slub_max_order, MAX_ORDER - 1);
  2150. return 1;
  2151. }
  2152. __setup("slub_max_order=", setup_slub_max_order);
  2153. static int __init setup_slub_min_objects(char *str)
  2154. {
  2155. get_option(&str, &slub_min_objects);
  2156. return 1;
  2157. }
  2158. __setup("slub_min_objects=", setup_slub_min_objects);
  2159. static int __init setup_slub_nomerge(char *str)
  2160. {
  2161. slub_nomerge = 1;
  2162. return 1;
  2163. }
  2164. __setup("slub_nomerge", setup_slub_nomerge);
  2165. static struct kmem_cache *__init create_kmalloc_cache(const char *name,
  2166. int size, unsigned int flags)
  2167. {
  2168. struct kmem_cache *s;
  2169. s = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
  2170. /*
  2171. * This function is called with IRQs disabled during early-boot on
  2172. * single CPU so there's no need to take slub_lock here.
  2173. */
  2174. if (!kmem_cache_open(s, name, size, ARCH_KMALLOC_MINALIGN,
  2175. flags, NULL))
  2176. goto panic;
  2177. list_add(&s->list, &slab_caches);
  2178. return s;
  2179. panic:
  2180. panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
  2181. return NULL;
  2182. }
  2183. /*
  2184. * Conversion table for small slabs sizes / 8 to the index in the
  2185. * kmalloc array. This is necessary for slabs < 192 since we have non power
  2186. * of two cache sizes there. The size of larger slabs can be determined using
  2187. * fls.
  2188. */
  2189. static s8 size_index[24] = {
  2190. 3, /* 8 */
  2191. 4, /* 16 */
  2192. 5, /* 24 */
  2193. 5, /* 32 */
  2194. 6, /* 40 */
  2195. 6, /* 48 */
  2196. 6, /* 56 */
  2197. 6, /* 64 */
  2198. 1, /* 72 */
  2199. 1, /* 80 */
  2200. 1, /* 88 */
  2201. 1, /* 96 */
  2202. 7, /* 104 */
  2203. 7, /* 112 */
  2204. 7, /* 120 */
  2205. 7, /* 128 */
  2206. 2, /* 136 */
  2207. 2, /* 144 */
  2208. 2, /* 152 */
  2209. 2, /* 160 */
  2210. 2, /* 168 */
  2211. 2, /* 176 */
  2212. 2, /* 184 */
  2213. 2 /* 192 */
  2214. };
  2215. static inline int size_index_elem(size_t bytes)
  2216. {
  2217. return (bytes - 1) / 8;
  2218. }
  2219. static struct kmem_cache *get_slab(size_t size, gfp_t flags)
  2220. {
  2221. int index;
  2222. if (size <= 192) {
  2223. if (!size)
  2224. return ZERO_SIZE_PTR;
  2225. index = size_index[size_index_elem(size)];
  2226. } else
  2227. index = fls(size - 1);
  2228. #ifdef CONFIG_ZONE_DMA
  2229. if (unlikely((flags & SLUB_DMA)))
  2230. return kmalloc_dma_caches[index];
  2231. #endif
  2232. return kmalloc_caches[index];
  2233. }
  2234. void *__kmalloc(size_t size, gfp_t flags)
  2235. {
  2236. struct kmem_cache *s;
  2237. void *ret;
  2238. if (unlikely(size > SLUB_MAX_SIZE))
  2239. return kmalloc_large(size, flags);
  2240. s = get_slab(size, flags);
  2241. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2242. return s;
  2243. ret = slab_alloc(s, flags, NUMA_NO_NODE, _RET_IP_);
  2244. trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
  2245. return ret;
  2246. }
  2247. EXPORT_SYMBOL(__kmalloc);
  2248. static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
  2249. {
  2250. struct page *page;
  2251. void *ptr = NULL;
  2252. flags |= __GFP_COMP | __GFP_NOTRACK;
  2253. page = alloc_pages_node(node, flags, get_order(size));
  2254. if (page)
  2255. ptr = page_address(page);
  2256. kmemleak_alloc(ptr, size, 1, flags);
  2257. return ptr;
  2258. }
  2259. #ifdef CONFIG_NUMA
  2260. void *__kmalloc_node(size_t size, gfp_t flags, int node)
  2261. {
  2262. struct kmem_cache *s;
  2263. void *ret;
  2264. if (unlikely(size > SLUB_MAX_SIZE)) {
  2265. ret = kmalloc_large_node(size, flags, node);
  2266. trace_kmalloc_node(_RET_IP_, ret,
  2267. size, PAGE_SIZE << get_order(size),
  2268. flags, node);
  2269. return ret;
  2270. }
  2271. s = get_slab(size, flags);
  2272. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2273. return s;
  2274. ret = slab_alloc(s, flags, node, _RET_IP_);
  2275. trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
  2276. return ret;
  2277. }
  2278. EXPORT_SYMBOL(__kmalloc_node);
  2279. #endif
  2280. size_t ksize(const void *object)
  2281. {
  2282. struct page *page;
  2283. struct kmem_cache *s;
  2284. if (unlikely(object == ZERO_SIZE_PTR))
  2285. return 0;
  2286. page = virt_to_head_page(object);
  2287. if (unlikely(!PageSlab(page))) {
  2288. WARN_ON(!PageCompound(page));
  2289. return PAGE_SIZE << compound_order(page);
  2290. }
  2291. s = page->slab;
  2292. #ifdef CONFIG_SLUB_DEBUG
  2293. /*
  2294. * Debugging requires use of the padding between object
  2295. * and whatever may come after it.
  2296. */
  2297. if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
  2298. return s->objsize;
  2299. #endif
  2300. /*
  2301. * If we have the need to store the freelist pointer
  2302. * back there or track user information then we can
  2303. * only use the space before that information.
  2304. */
  2305. if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
  2306. return s->inuse;
  2307. /*
  2308. * Else we can use all the padding etc for the allocation
  2309. */
  2310. return s->size;
  2311. }
  2312. EXPORT_SYMBOL(ksize);
  2313. void kfree(const void *x)
  2314. {
  2315. struct page *page;
  2316. void *object = (void *)x;
  2317. trace_kfree(_RET_IP_, x);
  2318. if (unlikely(ZERO_OR_NULL_PTR(x)))
  2319. return;
  2320. page = virt_to_head_page(x);
  2321. if (unlikely(!PageSlab(page))) {
  2322. BUG_ON(!PageCompound(page));
  2323. kmemleak_free(x);
  2324. put_page(page);
  2325. return;
  2326. }
  2327. slab_free(page->slab, page, object, _RET_IP_);
  2328. }
  2329. EXPORT_SYMBOL(kfree);
  2330. /*
  2331. * kmem_cache_shrink removes empty slabs from the partial lists and sorts
  2332. * the remaining slabs by the number of items in use. The slabs with the
  2333. * most items in use come first. New allocations will then fill those up
  2334. * and thus they can be removed from the partial lists.
  2335. *
  2336. * The slabs with the least items are placed last. This results in them
  2337. * being allocated from last increasing the chance that the last objects
  2338. * are freed in them.
  2339. */
  2340. int kmem_cache_shrink(struct kmem_cache *s)
  2341. {
  2342. int node;
  2343. int i;
  2344. struct kmem_cache_node *n;
  2345. struct page *page;
  2346. struct page *t;
  2347. int objects = oo_objects(s->max);
  2348. struct list_head *slabs_by_inuse =
  2349. kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
  2350. unsigned long flags;
  2351. if (!slabs_by_inuse)
  2352. return -ENOMEM;
  2353. flush_all(s);
  2354. for_each_node_state(node, N_NORMAL_MEMORY) {
  2355. n = get_node(s, node);
  2356. if (!n->nr_partial)
  2357. continue;
  2358. for (i = 0; i < objects; i++)
  2359. INIT_LIST_HEAD(slabs_by_inuse + i);
  2360. spin_lock_irqsave(&n->list_lock, flags);
  2361. /*
  2362. * Build lists indexed by the items in use in each slab.
  2363. *
  2364. * Note that concurrent frees may occur while we hold the
  2365. * list_lock. page->inuse here is the upper limit.
  2366. */
  2367. list_for_each_entry_safe(page, t, &n->partial, lru) {
  2368. if (!page->inuse && slab_trylock(page)) {
  2369. /*
  2370. * Must hold slab lock here because slab_free
  2371. * may have freed the last object and be
  2372. * waiting to release the slab.
  2373. */
  2374. list_del(&page->lru);
  2375. n->nr_partial--;
  2376. slab_unlock(page);
  2377. discard_slab(s, page);
  2378. } else {
  2379. list_move(&page->lru,
  2380. slabs_by_inuse + page->inuse);
  2381. }
  2382. }
  2383. /*
  2384. * Rebuild the partial list with the slabs filled up most
  2385. * first and the least used slabs at the end.
  2386. */
  2387. for (i = objects - 1; i >= 0; i--)
  2388. list_splice(slabs_by_inuse + i, n->partial.prev);
  2389. spin_unlock_irqrestore(&n->list_lock, flags);
  2390. }
  2391. kfree(slabs_by_inuse);
  2392. return 0;
  2393. }
  2394. EXPORT_SYMBOL(kmem_cache_shrink);
  2395. #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
  2396. static int slab_mem_going_offline_callback(void *arg)
  2397. {
  2398. struct kmem_cache *s;
  2399. down_read(&slub_lock);
  2400. list_for_each_entry(s, &slab_caches, list)
  2401. kmem_cache_shrink(s);
  2402. up_read(&slub_lock);
  2403. return 0;
  2404. }
  2405. static void slab_mem_offline_callback(void *arg)
  2406. {
  2407. struct kmem_cache_node *n;
  2408. struct kmem_cache *s;
  2409. struct memory_notify *marg = arg;
  2410. int offline_node;
  2411. offline_node = marg->status_change_nid;
  2412. /*
  2413. * If the node still has available memory. we need kmem_cache_node
  2414. * for it yet.
  2415. */
  2416. if (offline_node < 0)
  2417. return;
  2418. down_read(&slub_lock);
  2419. list_for_each_entry(s, &slab_caches, list) {
  2420. n = get_node(s, offline_node);
  2421. if (n) {
  2422. /*
  2423. * if n->nr_slabs > 0, slabs still exist on the node
  2424. * that is going down. We were unable to free them,
  2425. * and offline_pages() function shouldn't call this
  2426. * callback. So, we must fail.
  2427. */
  2428. BUG_ON(slabs_node(s, offline_node));
  2429. s->node[offline_node] = NULL;
  2430. kmem_cache_free(kmalloc_caches, n);
  2431. }
  2432. }
  2433. up_read(&slub_lock);
  2434. }
  2435. static int slab_mem_going_online_callback(void *arg)
  2436. {
  2437. struct kmem_cache_node *n;
  2438. struct kmem_cache *s;
  2439. struct memory_notify *marg = arg;
  2440. int nid = marg->status_change_nid;
  2441. int ret = 0;
  2442. /*
  2443. * If the node's memory is already available, then kmem_cache_node is
  2444. * already created. Nothing to do.
  2445. */
  2446. if (nid < 0)
  2447. return 0;
  2448. /*
  2449. * We are bringing a node online. No memory is available yet. We must
  2450. * allocate a kmem_cache_node structure in order to bring the node
  2451. * online.
  2452. */
  2453. down_read(&slub_lock);
  2454. list_for_each_entry(s, &slab_caches, list) {
  2455. /*
  2456. * XXX: kmem_cache_alloc_node will fallback to other nodes
  2457. * since memory is not yet available from the node that
  2458. * is brought up.
  2459. */
  2460. n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL);
  2461. if (!n) {
  2462. ret = -ENOMEM;
  2463. goto out;
  2464. }
  2465. init_kmem_cache_node(n, s);
  2466. s->node[nid] = n;
  2467. }
  2468. out:
  2469. up_read(&slub_lock);
  2470. return ret;
  2471. }
  2472. static int slab_memory_callback(struct notifier_block *self,
  2473. unsigned long action, void *arg)
  2474. {
  2475. int ret = 0;
  2476. switch (action) {
  2477. case MEM_GOING_ONLINE:
  2478. ret = slab_mem_going_online_callback(arg);
  2479. break;
  2480. case MEM_GOING_OFFLINE:
  2481. ret = slab_mem_going_offline_callback(arg);
  2482. break;
  2483. case MEM_OFFLINE:
  2484. case MEM_CANCEL_ONLINE:
  2485. slab_mem_offline_callback(arg);
  2486. break;
  2487. case MEM_ONLINE:
  2488. case MEM_CANCEL_OFFLINE:
  2489. break;
  2490. }
  2491. if (ret)
  2492. ret = notifier_from_errno(ret);
  2493. else
  2494. ret = NOTIFY_OK;
  2495. return ret;
  2496. }
  2497. #endif /* CONFIG_MEMORY_HOTPLUG */
  2498. /********************************************************************
  2499. * Basic setup of slabs
  2500. *******************************************************************/
  2501. /*
  2502. * Used for early kmem_cache structures that were allocated using
  2503. * the page allocator
  2504. */
  2505. static void __init kmem_cache_bootstrap_fixup(struct kmem_cache *s)
  2506. {
  2507. int node;
  2508. list_add(&s->list, &slab_caches);
  2509. s->refcount = -1;
  2510. for_each_node_state(node, N_NORMAL_MEMORY) {
  2511. struct kmem_cache_node *n = get_node(s, node);
  2512. struct page *p;
  2513. if (n) {
  2514. list_for_each_entry(p, &n->partial, lru)
  2515. p->slab = s;
  2516. #ifdef CONFIG_SLAB_DEBUG
  2517. list_for_each_entry(p, &n->full, lru)
  2518. p->slab = s;
  2519. #endif
  2520. }
  2521. }
  2522. }
  2523. void __init kmem_cache_init(void)
  2524. {
  2525. int i;
  2526. int caches = 0;
  2527. struct kmem_cache *temp_kmem_cache;
  2528. int order;
  2529. #ifdef CONFIG_NUMA
  2530. struct kmem_cache *temp_kmem_cache_node;
  2531. unsigned long kmalloc_size;
  2532. kmem_size = offsetof(struct kmem_cache, node) +
  2533. nr_node_ids * sizeof(struct kmem_cache_node *);
  2534. /* Allocate two kmem_caches from the page allocator */
  2535. kmalloc_size = ALIGN(kmem_size, cache_line_size());
  2536. order = get_order(2 * kmalloc_size);
  2537. kmem_cache = (void *)__get_free_pages(GFP_NOWAIT, order);
  2538. /*
  2539. * Must first have the slab cache available for the allocations of the
  2540. * struct kmem_cache_node's. There is special bootstrap code in
  2541. * kmem_cache_open for slab_state == DOWN.
  2542. */
  2543. kmem_cache_node = (void *)kmem_cache + kmalloc_size;
  2544. kmem_cache_open(kmem_cache_node, "kmem_cache_node",
  2545. sizeof(struct kmem_cache_node),
  2546. 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
  2547. hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
  2548. #else
  2549. /* Allocate a single kmem_cache from the page allocator */
  2550. kmem_size = sizeof(struct kmem_cache);
  2551. order = get_order(kmem_size);
  2552. kmem_cache = (void *)__get_free_pages(GFP_NOWAIT, order);
  2553. #endif
  2554. /* Able to allocate the per node structures */
  2555. slab_state = PARTIAL;
  2556. temp_kmem_cache = kmem_cache;
  2557. kmem_cache_open(kmem_cache, "kmem_cache", kmem_size,
  2558. 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
  2559. kmem_cache = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
  2560. memcpy(kmem_cache, temp_kmem_cache, kmem_size);
  2561. #ifdef CONFIG_NUMA
  2562. /*
  2563. * Allocate kmem_cache_node properly from the kmem_cache slab.
  2564. * kmem_cache_node is separately allocated so no need to
  2565. * update any list pointers.
  2566. */
  2567. temp_kmem_cache_node = kmem_cache_node;
  2568. kmem_cache_node = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
  2569. memcpy(kmem_cache_node, temp_kmem_cache_node, kmem_size);
  2570. kmem_cache_bootstrap_fixup(kmem_cache_node);
  2571. caches++;
  2572. #else
  2573. /*
  2574. * kmem_cache has kmem_cache_node embedded and we moved it!
  2575. * Update the list heads
  2576. */
  2577. INIT_LIST_HEAD(&kmem_cache->local_node.partial);
  2578. list_splice(&temp_kmem_cache->local_node.partial, &kmem_cache->local_node.partial);
  2579. #ifdef CONFIG_SLUB_DEBUG
  2580. INIT_LIST_HEAD(&kmem_cache->local_node.full);
  2581. list_splice(&temp_kmem_cache->local_node.full, &kmem_cache->local_node.full);
  2582. #endif
  2583. #endif
  2584. kmem_cache_bootstrap_fixup(kmem_cache);
  2585. caches++;
  2586. /* Free temporary boot structure */
  2587. free_pages((unsigned long)temp_kmem_cache, order);
  2588. /* Now we can use the kmem_cache to allocate kmalloc slabs */
  2589. /*
  2590. * Patch up the size_index table if we have strange large alignment
  2591. * requirements for the kmalloc array. This is only the case for
  2592. * MIPS it seems. The standard arches will not generate any code here.
  2593. *
  2594. * Largest permitted alignment is 256 bytes due to the way we
  2595. * handle the index determination for the smaller caches.
  2596. *
  2597. * Make sure that nothing crazy happens if someone starts tinkering
  2598. * around with ARCH_KMALLOC_MINALIGN
  2599. */
  2600. BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
  2601. (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
  2602. for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
  2603. int elem = size_index_elem(i);
  2604. if (elem >= ARRAY_SIZE(size_index))
  2605. break;
  2606. size_index[elem] = KMALLOC_SHIFT_LOW;
  2607. }
  2608. if (KMALLOC_MIN_SIZE == 64) {
  2609. /*
  2610. * The 96 byte size cache is not used if the alignment
  2611. * is 64 byte.
  2612. */
  2613. for (i = 64 + 8; i <= 96; i += 8)
  2614. size_index[size_index_elem(i)] = 7;
  2615. } else if (KMALLOC_MIN_SIZE == 128) {
  2616. /*
  2617. * The 192 byte sized cache is not used if the alignment
  2618. * is 128 byte. Redirect kmalloc to use the 256 byte cache
  2619. * instead.
  2620. */
  2621. for (i = 128 + 8; i <= 192; i += 8)
  2622. size_index[size_index_elem(i)] = 8;
  2623. }
  2624. /* Caches that are not of the two-to-the-power-of size */
  2625. if (KMALLOC_MIN_SIZE <= 32) {
  2626. kmalloc_caches[1] = create_kmalloc_cache("kmalloc-96", 96, 0);
  2627. caches++;
  2628. }
  2629. if (KMALLOC_MIN_SIZE <= 64) {
  2630. kmalloc_caches[2] = create_kmalloc_cache("kmalloc-192", 192, 0);
  2631. caches++;
  2632. }
  2633. for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
  2634. kmalloc_caches[i] = create_kmalloc_cache("kmalloc", 1 << i, 0);
  2635. caches++;
  2636. }
  2637. slab_state = UP;
  2638. /* Provide the correct kmalloc names now that the caches are up */
  2639. for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
  2640. char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
  2641. BUG_ON(!s);
  2642. kmalloc_caches[i]->name = s;
  2643. }
  2644. #ifdef CONFIG_SMP
  2645. register_cpu_notifier(&slab_notifier);
  2646. #endif
  2647. #ifdef CONFIG_ZONE_DMA
  2648. for (i = 0; i < SLUB_PAGE_SHIFT; i++) {
  2649. struct kmem_cache *s = kmalloc_caches[i];
  2650. if (s && s->size) {
  2651. char *name = kasprintf(GFP_NOWAIT,
  2652. "dma-kmalloc-%d", s->objsize);
  2653. BUG_ON(!name);
  2654. kmalloc_dma_caches[i] = create_kmalloc_cache(name,
  2655. s->objsize, SLAB_CACHE_DMA);
  2656. }
  2657. }
  2658. #endif
  2659. printk(KERN_INFO
  2660. "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
  2661. " CPUs=%d, Nodes=%d\n",
  2662. caches, cache_line_size(),
  2663. slub_min_order, slub_max_order, slub_min_objects,
  2664. nr_cpu_ids, nr_node_ids);
  2665. }
  2666. void __init kmem_cache_init_late(void)
  2667. {
  2668. }
  2669. /*
  2670. * Find a mergeable slab cache
  2671. */
  2672. static int slab_unmergeable(struct kmem_cache *s)
  2673. {
  2674. if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
  2675. return 1;
  2676. if (s->ctor)
  2677. return 1;
  2678. /*
  2679. * We may have set a slab to be unmergeable during bootstrap.
  2680. */
  2681. if (s->refcount < 0)
  2682. return 1;
  2683. return 0;
  2684. }
  2685. static struct kmem_cache *find_mergeable(size_t size,
  2686. size_t align, unsigned long flags, const char *name,
  2687. void (*ctor)(void *))
  2688. {
  2689. struct kmem_cache *s;
  2690. if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
  2691. return NULL;
  2692. if (ctor)
  2693. return NULL;
  2694. size = ALIGN(size, sizeof(void *));
  2695. align = calculate_alignment(flags, align, size);
  2696. size = ALIGN(size, align);
  2697. flags = kmem_cache_flags(size, flags, name, NULL);
  2698. list_for_each_entry(s, &slab_caches, list) {
  2699. if (slab_unmergeable(s))
  2700. continue;
  2701. if (size > s->size)
  2702. continue;
  2703. if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
  2704. continue;
  2705. /*
  2706. * Check if alignment is compatible.
  2707. * Courtesy of Adrian Drzewiecki
  2708. */
  2709. if ((s->size & ~(align - 1)) != s->size)
  2710. continue;
  2711. if (s->size - size >= sizeof(void *))
  2712. continue;
  2713. return s;
  2714. }
  2715. return NULL;
  2716. }
  2717. struct kmem_cache *kmem_cache_create(const char *name, size_t size,
  2718. size_t align, unsigned long flags, void (*ctor)(void *))
  2719. {
  2720. struct kmem_cache *s;
  2721. if (WARN_ON(!name))
  2722. return NULL;
  2723. down_write(&slub_lock);
  2724. s = find_mergeable(size, align, flags, name, ctor);
  2725. if (s) {
  2726. s->refcount++;
  2727. /*
  2728. * Adjust the object sizes so that we clear
  2729. * the complete object on kzalloc.
  2730. */
  2731. s->objsize = max(s->objsize, (int)size);
  2732. s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
  2733. if (sysfs_slab_alias(s, name)) {
  2734. s->refcount--;
  2735. goto err;
  2736. }
  2737. up_write(&slub_lock);
  2738. return s;
  2739. }
  2740. s = kmalloc(kmem_size, GFP_KERNEL);
  2741. if (s) {
  2742. if (kmem_cache_open(s, name,
  2743. size, align, flags, ctor)) {
  2744. list_add(&s->list, &slab_caches);
  2745. if (sysfs_slab_add(s)) {
  2746. list_del(&s->list);
  2747. kfree(s);
  2748. goto err;
  2749. }
  2750. up_write(&slub_lock);
  2751. return s;
  2752. }
  2753. kfree(s);
  2754. }
  2755. up_write(&slub_lock);
  2756. err:
  2757. if (flags & SLAB_PANIC)
  2758. panic("Cannot create slabcache %s\n", name);
  2759. else
  2760. s = NULL;
  2761. return s;
  2762. }
  2763. EXPORT_SYMBOL(kmem_cache_create);
  2764. #ifdef CONFIG_SMP
  2765. /*
  2766. * Use the cpu notifier to insure that the cpu slabs are flushed when
  2767. * necessary.
  2768. */
  2769. static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
  2770. unsigned long action, void *hcpu)
  2771. {
  2772. long cpu = (long)hcpu;
  2773. struct kmem_cache *s;
  2774. unsigned long flags;
  2775. switch (action) {
  2776. case CPU_UP_CANCELED:
  2777. case CPU_UP_CANCELED_FROZEN:
  2778. case CPU_DEAD:
  2779. case CPU_DEAD_FROZEN:
  2780. down_read(&slub_lock);
  2781. list_for_each_entry(s, &slab_caches, list) {
  2782. local_irq_save(flags);
  2783. __flush_cpu_slab(s, cpu);
  2784. local_irq_restore(flags);
  2785. }
  2786. up_read(&slub_lock);
  2787. break;
  2788. default:
  2789. break;
  2790. }
  2791. return NOTIFY_OK;
  2792. }
  2793. static struct notifier_block __cpuinitdata slab_notifier = {
  2794. .notifier_call = slab_cpuup_callback
  2795. };
  2796. #endif
  2797. void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
  2798. {
  2799. struct kmem_cache *s;
  2800. void *ret;
  2801. if (unlikely(size > SLUB_MAX_SIZE))
  2802. return kmalloc_large(size, gfpflags);
  2803. s = get_slab(size, gfpflags);
  2804. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2805. return s;
  2806. ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, caller);
  2807. /* Honor the call site pointer we recieved. */
  2808. trace_kmalloc(caller, ret, size, s->size, gfpflags);
  2809. return ret;
  2810. }
  2811. void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
  2812. int node, unsigned long caller)
  2813. {
  2814. struct kmem_cache *s;
  2815. void *ret;
  2816. if (unlikely(size > SLUB_MAX_SIZE)) {
  2817. ret = kmalloc_large_node(size, gfpflags, node);
  2818. trace_kmalloc_node(caller, ret,
  2819. size, PAGE_SIZE << get_order(size),
  2820. gfpflags, node);
  2821. return ret;
  2822. }
  2823. s = get_slab(size, gfpflags);
  2824. if (unlikely(ZERO_OR_NULL_PTR(s)))
  2825. return s;
  2826. ret = slab_alloc(s, gfpflags, node, caller);
  2827. /* Honor the call site pointer we recieved. */
  2828. trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
  2829. return ret;
  2830. }
  2831. #ifdef CONFIG_SLUB_DEBUG
  2832. static int count_inuse(struct page *page)
  2833. {
  2834. return page->inuse;
  2835. }
  2836. static int count_total(struct page *page)
  2837. {
  2838. return page->objects;
  2839. }
  2840. static int validate_slab(struct kmem_cache *s, struct page *page,
  2841. unsigned long *map)
  2842. {
  2843. void *p;
  2844. void *addr = page_address(page);
  2845. if (!check_slab(s, page) ||
  2846. !on_freelist(s, page, NULL))
  2847. return 0;
  2848. /* Now we know that a valid freelist exists */
  2849. bitmap_zero(map, page->objects);
  2850. for_each_free_object(p, s, page->freelist) {
  2851. set_bit(slab_index(p, s, addr), map);
  2852. if (!check_object(s, page, p, 0))
  2853. return 0;
  2854. }
  2855. for_each_object(p, s, addr, page->objects)
  2856. if (!test_bit(slab_index(p, s, addr), map))
  2857. if (!check_object(s, page, p, 1))
  2858. return 0;
  2859. return 1;
  2860. }
  2861. static void validate_slab_slab(struct kmem_cache *s, struct page *page,
  2862. unsigned long *map)
  2863. {
  2864. if (slab_trylock(page)) {
  2865. validate_slab(s, page, map);
  2866. slab_unlock(page);
  2867. } else
  2868. printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
  2869. s->name, page);
  2870. }
  2871. static int validate_slab_node(struct kmem_cache *s,
  2872. struct kmem_cache_node *n, unsigned long *map)
  2873. {
  2874. unsigned long count = 0;
  2875. struct page *page;
  2876. unsigned long flags;
  2877. spin_lock_irqsave(&n->list_lock, flags);
  2878. list_for_each_entry(page, &n->partial, lru) {
  2879. validate_slab_slab(s, page, map);
  2880. count++;
  2881. }
  2882. if (count != n->nr_partial)
  2883. printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
  2884. "counter=%ld\n", s->name, count, n->nr_partial);
  2885. if (!(s->flags & SLAB_STORE_USER))
  2886. goto out;
  2887. list_for_each_entry(page, &n->full, lru) {
  2888. validate_slab_slab(s, page, map);
  2889. count++;
  2890. }
  2891. if (count != atomic_long_read(&n->nr_slabs))
  2892. printk(KERN_ERR "SLUB: %s %ld slabs counted but "
  2893. "counter=%ld\n", s->name, count,
  2894. atomic_long_read(&n->nr_slabs));
  2895. out:
  2896. spin_unlock_irqrestore(&n->list_lock, flags);
  2897. return count;
  2898. }
  2899. static long validate_slab_cache(struct kmem_cache *s)
  2900. {
  2901. int node;
  2902. unsigned long count = 0;
  2903. unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
  2904. sizeof(unsigned long), GFP_KERNEL);
  2905. if (!map)
  2906. return -ENOMEM;
  2907. flush_all(s);
  2908. for_each_node_state(node, N_NORMAL_MEMORY) {
  2909. struct kmem_cache_node *n = get_node(s, node);
  2910. count += validate_slab_node(s, n, map);
  2911. }
  2912. kfree(map);
  2913. return count;
  2914. }
  2915. #ifdef SLUB_RESILIENCY_TEST
  2916. static void resiliency_test(void)
  2917. {
  2918. u8 *p;
  2919. printk(KERN_ERR "SLUB resiliency testing\n");
  2920. printk(KERN_ERR "-----------------------\n");
  2921. printk(KERN_ERR "A. Corruption after allocation\n");
  2922. p = kzalloc(16, GFP_KERNEL);
  2923. p[16] = 0x12;
  2924. printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
  2925. " 0x12->0x%p\n\n", p + 16);
  2926. validate_slab_cache(kmalloc_caches + 4);
  2927. /* Hmmm... The next two are dangerous */
  2928. p = kzalloc(32, GFP_KERNEL);
  2929. p[32 + sizeof(void *)] = 0x34;
  2930. printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
  2931. " 0x34 -> -0x%p\n", p);
  2932. printk(KERN_ERR
  2933. "If allocated object is overwritten then not detectable\n\n");
  2934. validate_slab_cache(kmalloc_caches + 5);
  2935. p = kzalloc(64, GFP_KERNEL);
  2936. p += 64 + (get_cycles() & 0xff) * sizeof(void *);
  2937. *p = 0x56;
  2938. printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
  2939. p);
  2940. printk(KERN_ERR
  2941. "If allocated object is overwritten then not detectable\n\n");
  2942. validate_slab_cache(kmalloc_caches + 6);
  2943. printk(KERN_ERR "\nB. Corruption after free\n");
  2944. p = kzalloc(128, GFP_KERNEL);
  2945. kfree(p);
  2946. *p = 0x78;
  2947. printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
  2948. validate_slab_cache(kmalloc_caches + 7);
  2949. p = kzalloc(256, GFP_KERNEL);
  2950. kfree(p);
  2951. p[50] = 0x9a;
  2952. printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
  2953. p);
  2954. validate_slab_cache(kmalloc_caches + 8);
  2955. p = kzalloc(512, GFP_KERNEL);
  2956. kfree(p);
  2957. p[512] = 0xab;
  2958. printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
  2959. validate_slab_cache(kmalloc_caches + 9);
  2960. }
  2961. #else
  2962. static void resiliency_test(void) {};
  2963. #endif
  2964. /*
  2965. * Generate lists of code addresses where slabcache objects are allocated
  2966. * and freed.
  2967. */
  2968. struct location {
  2969. unsigned long count;
  2970. unsigned long addr;
  2971. long long sum_time;
  2972. long min_time;
  2973. long max_time;
  2974. long min_pid;
  2975. long max_pid;
  2976. DECLARE_BITMAP(cpus, NR_CPUS);
  2977. nodemask_t nodes;
  2978. };
  2979. struct loc_track {
  2980. unsigned long max;
  2981. unsigned long count;
  2982. struct location *loc;
  2983. };
  2984. static void free_loc_track(struct loc_track *t)
  2985. {
  2986. if (t->max)
  2987. free_pages((unsigned long)t->loc,
  2988. get_order(sizeof(struct location) * t->max));
  2989. }
  2990. static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
  2991. {
  2992. struct location *l;
  2993. int order;
  2994. order = get_order(sizeof(struct location) * max);
  2995. l = (void *)__get_free_pages(flags, order);
  2996. if (!l)
  2997. return 0;
  2998. if (t->count) {
  2999. memcpy(l, t->loc, sizeof(struct location) * t->count);
  3000. free_loc_track(t);
  3001. }
  3002. t->max = max;
  3003. t->loc = l;
  3004. return 1;
  3005. }
  3006. static int add_location(struct loc_track *t, struct kmem_cache *s,
  3007. const struct track *track)
  3008. {
  3009. long start, end, pos;
  3010. struct location *l;
  3011. unsigned long caddr;
  3012. unsigned long age = jiffies - track->when;
  3013. start = -1;
  3014. end = t->count;
  3015. for ( ; ; ) {
  3016. pos = start + (end - start + 1) / 2;
  3017. /*
  3018. * There is nothing at "end". If we end up there
  3019. * we need to add something to before end.
  3020. */
  3021. if (pos == end)
  3022. break;
  3023. caddr = t->loc[pos].addr;
  3024. if (track->addr == caddr) {
  3025. l = &t->loc[pos];
  3026. l->count++;
  3027. if (track->when) {
  3028. l->sum_time += age;
  3029. if (age < l->min_time)
  3030. l->min_time = age;
  3031. if (age > l->max_time)
  3032. l->max_time = age;
  3033. if (track->pid < l->min_pid)
  3034. l->min_pid = track->pid;
  3035. if (track->pid > l->max_pid)
  3036. l->max_pid = track->pid;
  3037. cpumask_set_cpu(track->cpu,
  3038. to_cpumask(l->cpus));
  3039. }
  3040. node_set(page_to_nid(virt_to_page(track)), l->nodes);
  3041. return 1;
  3042. }
  3043. if (track->addr < caddr)
  3044. end = pos;
  3045. else
  3046. start = pos;
  3047. }
  3048. /*
  3049. * Not found. Insert new tracking element.
  3050. */
  3051. if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
  3052. return 0;
  3053. l = t->loc + pos;
  3054. if (pos < t->count)
  3055. memmove(l + 1, l,
  3056. (t->count - pos) * sizeof(struct location));
  3057. t->count++;
  3058. l->count = 1;
  3059. l->addr = track->addr;
  3060. l->sum_time = age;
  3061. l->min_time = age;
  3062. l->max_time = age;
  3063. l->min_pid = track->pid;
  3064. l->max_pid = track->pid;
  3065. cpumask_clear(to_cpumask(l->cpus));
  3066. cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
  3067. nodes_clear(l->nodes);
  3068. node_set(page_to_nid(virt_to_page(track)), l->nodes);
  3069. return 1;
  3070. }
  3071. static void process_slab(struct loc_track *t, struct kmem_cache *s,
  3072. struct page *page, enum track_item alloc,
  3073. long *map)
  3074. {
  3075. void *addr = page_address(page);
  3076. void *p;
  3077. bitmap_zero(map, page->objects);
  3078. for_each_free_object(p, s, page->freelist)
  3079. set_bit(slab_index(p, s, addr), map);
  3080. for_each_object(p, s, addr, page->objects)
  3081. if (!test_bit(slab_index(p, s, addr), map))
  3082. add_location(t, s, get_track(s, p, alloc));
  3083. }
  3084. static int list_locations(struct kmem_cache *s, char *buf,
  3085. enum track_item alloc)
  3086. {
  3087. int len = 0;
  3088. unsigned long i;
  3089. struct loc_track t = { 0, 0, NULL };
  3090. int node;
  3091. unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
  3092. sizeof(unsigned long), GFP_KERNEL);
  3093. if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
  3094. GFP_TEMPORARY)) {
  3095. kfree(map);
  3096. return sprintf(buf, "Out of memory\n");
  3097. }
  3098. /* Push back cpu slabs */
  3099. flush_all(s);
  3100. for_each_node_state(node, N_NORMAL_MEMORY) {
  3101. struct kmem_cache_node *n = get_node(s, node);
  3102. unsigned long flags;
  3103. struct page *page;
  3104. if (!atomic_long_read(&n->nr_slabs))
  3105. continue;
  3106. spin_lock_irqsave(&n->list_lock, flags);
  3107. list_for_each_entry(page, &n->partial, lru)
  3108. process_slab(&t, s, page, alloc, map);
  3109. list_for_each_entry(page, &n->full, lru)
  3110. process_slab(&t, s, page, alloc, map);
  3111. spin_unlock_irqrestore(&n->list_lock, flags);
  3112. }
  3113. for (i = 0; i < t.count; i++) {
  3114. struct location *l = &t.loc[i];
  3115. if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
  3116. break;
  3117. len += sprintf(buf + len, "%7ld ", l->count);
  3118. if (l->addr)
  3119. len += sprint_symbol(buf + len, (unsigned long)l->addr);
  3120. else
  3121. len += sprintf(buf + len, "<not-available>");
  3122. if (l->sum_time != l->min_time) {
  3123. len += sprintf(buf + len, " age=%ld/%ld/%ld",
  3124. l->min_time,
  3125. (long)div_u64(l->sum_time, l->count),
  3126. l->max_time);
  3127. } else
  3128. len += sprintf(buf + len, " age=%ld",
  3129. l->min_time);
  3130. if (l->min_pid != l->max_pid)
  3131. len += sprintf(buf + len, " pid=%ld-%ld",
  3132. l->min_pid, l->max_pid);
  3133. else
  3134. len += sprintf(buf + len, " pid=%ld",
  3135. l->min_pid);
  3136. if (num_online_cpus() > 1 &&
  3137. !cpumask_empty(to_cpumask(l->cpus)) &&
  3138. len < PAGE_SIZE - 60) {
  3139. len += sprintf(buf + len, " cpus=");
  3140. len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
  3141. to_cpumask(l->cpus));
  3142. }
  3143. if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
  3144. len < PAGE_SIZE - 60) {
  3145. len += sprintf(buf + len, " nodes=");
  3146. len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
  3147. l->nodes);
  3148. }
  3149. len += sprintf(buf + len, "\n");
  3150. }
  3151. free_loc_track(&t);
  3152. kfree(map);
  3153. if (!t.count)
  3154. len += sprintf(buf, "No data\n");
  3155. return len;
  3156. }
  3157. enum slab_stat_type {
  3158. SL_ALL, /* All slabs */
  3159. SL_PARTIAL, /* Only partially allocated slabs */
  3160. SL_CPU, /* Only slabs used for cpu caches */
  3161. SL_OBJECTS, /* Determine allocated objects not slabs */
  3162. SL_TOTAL /* Determine object capacity not slabs */
  3163. };
  3164. #define SO_ALL (1 << SL_ALL)
  3165. #define SO_PARTIAL (1 << SL_PARTIAL)
  3166. #define SO_CPU (1 << SL_CPU)
  3167. #define SO_OBJECTS (1 << SL_OBJECTS)
  3168. #define SO_TOTAL (1 << SL_TOTAL)
  3169. static ssize_t show_slab_objects(struct kmem_cache *s,
  3170. char *buf, unsigned long flags)
  3171. {
  3172. unsigned long total = 0;
  3173. int node;
  3174. int x;
  3175. unsigned long *nodes;
  3176. unsigned long *per_cpu;
  3177. nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
  3178. if (!nodes)
  3179. return -ENOMEM;
  3180. per_cpu = nodes + nr_node_ids;
  3181. if (flags & SO_CPU) {
  3182. int cpu;
  3183. for_each_possible_cpu(cpu) {
  3184. struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
  3185. if (!c || c->node < 0)
  3186. continue;
  3187. if (c->page) {
  3188. if (flags & SO_TOTAL)
  3189. x = c->page->objects;
  3190. else if (flags & SO_OBJECTS)
  3191. x = c->page->inuse;
  3192. else
  3193. x = 1;
  3194. total += x;
  3195. nodes[c->node] += x;
  3196. }
  3197. per_cpu[c->node]++;
  3198. }
  3199. }
  3200. if (flags & SO_ALL) {
  3201. for_each_node_state(node, N_NORMAL_MEMORY) {
  3202. struct kmem_cache_node *n = get_node(s, node);
  3203. if (flags & SO_TOTAL)
  3204. x = atomic_long_read(&n->total_objects);
  3205. else if (flags & SO_OBJECTS)
  3206. x = atomic_long_read(&n->total_objects) -
  3207. count_partial(n, count_free);
  3208. else
  3209. x = atomic_long_read(&n->nr_slabs);
  3210. total += x;
  3211. nodes[node] += x;
  3212. }
  3213. } else if (flags & SO_PARTIAL) {
  3214. for_each_node_state(node, N_NORMAL_MEMORY) {
  3215. struct kmem_cache_node *n = get_node(s, node);
  3216. if (flags & SO_TOTAL)
  3217. x = count_partial(n, count_total);
  3218. else if (flags & SO_OBJECTS)
  3219. x = count_partial(n, count_inuse);
  3220. else
  3221. x = n->nr_partial;
  3222. total += x;
  3223. nodes[node] += x;
  3224. }
  3225. }
  3226. x = sprintf(buf, "%lu", total);
  3227. #ifdef CONFIG_NUMA
  3228. for_each_node_state(node, N_NORMAL_MEMORY)
  3229. if (nodes[node])
  3230. x += sprintf(buf + x, " N%d=%lu",
  3231. node, nodes[node]);
  3232. #endif
  3233. kfree(nodes);
  3234. return x + sprintf(buf + x, "\n");
  3235. }
  3236. static int any_slab_objects(struct kmem_cache *s)
  3237. {
  3238. int node;
  3239. for_each_online_node(node) {
  3240. struct kmem_cache_node *n = get_node(s, node);
  3241. if (!n)
  3242. continue;
  3243. if (atomic_long_read(&n->total_objects))
  3244. return 1;
  3245. }
  3246. return 0;
  3247. }
  3248. #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
  3249. #define to_slab(n) container_of(n, struct kmem_cache, kobj);
  3250. struct slab_attribute {
  3251. struct attribute attr;
  3252. ssize_t (*show)(struct kmem_cache *s, char *buf);
  3253. ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
  3254. };
  3255. #define SLAB_ATTR_RO(_name) \
  3256. static struct slab_attribute _name##_attr = __ATTR_RO(_name)
  3257. #define SLAB_ATTR(_name) \
  3258. static struct slab_attribute _name##_attr = \
  3259. __ATTR(_name, 0644, _name##_show, _name##_store)
  3260. static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
  3261. {
  3262. return sprintf(buf, "%d\n", s->size);
  3263. }
  3264. SLAB_ATTR_RO(slab_size);
  3265. static ssize_t align_show(struct kmem_cache *s, char *buf)
  3266. {
  3267. return sprintf(buf, "%d\n", s->align);
  3268. }
  3269. SLAB_ATTR_RO(align);
  3270. static ssize_t object_size_show(struct kmem_cache *s, char *buf)
  3271. {
  3272. return sprintf(buf, "%d\n", s->objsize);
  3273. }
  3274. SLAB_ATTR_RO(object_size);
  3275. static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
  3276. {
  3277. return sprintf(buf, "%d\n", oo_objects(s->oo));
  3278. }
  3279. SLAB_ATTR_RO(objs_per_slab);
  3280. static ssize_t order_store(struct kmem_cache *s,
  3281. const char *buf, size_t length)
  3282. {
  3283. unsigned long order;
  3284. int err;
  3285. err = strict_strtoul(buf, 10, &order);
  3286. if (err)
  3287. return err;
  3288. if (order > slub_max_order || order < slub_min_order)
  3289. return -EINVAL;
  3290. calculate_sizes(s, order);
  3291. return length;
  3292. }
  3293. static ssize_t order_show(struct kmem_cache *s, char *buf)
  3294. {
  3295. return sprintf(buf, "%d\n", oo_order(s->oo));
  3296. }
  3297. SLAB_ATTR(order);
  3298. static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
  3299. {
  3300. return sprintf(buf, "%lu\n", s->min_partial);
  3301. }
  3302. static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
  3303. size_t length)
  3304. {
  3305. unsigned long min;
  3306. int err;
  3307. err = strict_strtoul(buf, 10, &min);
  3308. if (err)
  3309. return err;
  3310. set_min_partial(s, min);
  3311. return length;
  3312. }
  3313. SLAB_ATTR(min_partial);
  3314. static ssize_t ctor_show(struct kmem_cache *s, char *buf)
  3315. {
  3316. if (s->ctor) {
  3317. int n = sprint_symbol(buf, (unsigned long)s->ctor);
  3318. return n + sprintf(buf + n, "\n");
  3319. }
  3320. return 0;
  3321. }
  3322. SLAB_ATTR_RO(ctor);
  3323. static ssize_t aliases_show(struct kmem_cache *s, char *buf)
  3324. {
  3325. return sprintf(buf, "%d\n", s->refcount - 1);
  3326. }
  3327. SLAB_ATTR_RO(aliases);
  3328. static ssize_t slabs_show(struct kmem_cache *s, char *buf)
  3329. {
  3330. return show_slab_objects(s, buf, SO_ALL);
  3331. }
  3332. SLAB_ATTR_RO(slabs);
  3333. static ssize_t partial_show(struct kmem_cache *s, char *buf)
  3334. {
  3335. return show_slab_objects(s, buf, SO_PARTIAL);
  3336. }
  3337. SLAB_ATTR_RO(partial);
  3338. static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
  3339. {
  3340. return show_slab_objects(s, buf, SO_CPU);
  3341. }
  3342. SLAB_ATTR_RO(cpu_slabs);
  3343. static ssize_t objects_show(struct kmem_cache *s, char *buf)
  3344. {
  3345. return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
  3346. }
  3347. SLAB_ATTR_RO(objects);
  3348. static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
  3349. {
  3350. return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
  3351. }
  3352. SLAB_ATTR_RO(objects_partial);
  3353. static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
  3354. {
  3355. return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
  3356. }
  3357. SLAB_ATTR_RO(total_objects);
  3358. static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
  3359. {
  3360. return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
  3361. }
  3362. static ssize_t sanity_checks_store(struct kmem_cache *s,
  3363. const char *buf, size_t length)
  3364. {
  3365. s->flags &= ~SLAB_DEBUG_FREE;
  3366. if (buf[0] == '1')
  3367. s->flags |= SLAB_DEBUG_FREE;
  3368. return length;
  3369. }
  3370. SLAB_ATTR(sanity_checks);
  3371. static ssize_t trace_show(struct kmem_cache *s, char *buf)
  3372. {
  3373. return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
  3374. }
  3375. static ssize_t trace_store(struct kmem_cache *s, const char *buf,
  3376. size_t length)
  3377. {
  3378. s->flags &= ~SLAB_TRACE;
  3379. if (buf[0] == '1')
  3380. s->flags |= SLAB_TRACE;
  3381. return length;
  3382. }
  3383. SLAB_ATTR(trace);
  3384. #ifdef CONFIG_FAILSLAB
  3385. static ssize_t failslab_show(struct kmem_cache *s, char *buf)
  3386. {
  3387. return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
  3388. }
  3389. static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
  3390. size_t length)
  3391. {
  3392. s->flags &= ~SLAB_FAILSLAB;
  3393. if (buf[0] == '1')
  3394. s->flags |= SLAB_FAILSLAB;
  3395. return length;
  3396. }
  3397. SLAB_ATTR(failslab);
  3398. #endif
  3399. static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
  3400. {
  3401. return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
  3402. }
  3403. static ssize_t reclaim_account_store(struct kmem_cache *s,
  3404. const char *buf, size_t length)
  3405. {
  3406. s->flags &= ~SLAB_RECLAIM_ACCOUNT;
  3407. if (buf[0] == '1')
  3408. s->flags |= SLAB_RECLAIM_ACCOUNT;
  3409. return length;
  3410. }
  3411. SLAB_ATTR(reclaim_account);
  3412. static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
  3413. {
  3414. return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
  3415. }
  3416. SLAB_ATTR_RO(hwcache_align);
  3417. #ifdef CONFIG_ZONE_DMA
  3418. static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
  3419. {
  3420. return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
  3421. }
  3422. SLAB_ATTR_RO(cache_dma);
  3423. #endif
  3424. static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
  3425. {
  3426. return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
  3427. }
  3428. SLAB_ATTR_RO(destroy_by_rcu);
  3429. static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
  3430. {
  3431. return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
  3432. }
  3433. static ssize_t red_zone_store(struct kmem_cache *s,
  3434. const char *buf, size_t length)
  3435. {
  3436. if (any_slab_objects(s))
  3437. return -EBUSY;
  3438. s->flags &= ~SLAB_RED_ZONE;
  3439. if (buf[0] == '1')
  3440. s->flags |= SLAB_RED_ZONE;
  3441. calculate_sizes(s, -1);
  3442. return length;
  3443. }
  3444. SLAB_ATTR(red_zone);
  3445. static ssize_t poison_show(struct kmem_cache *s, char *buf)
  3446. {
  3447. return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
  3448. }
  3449. static ssize_t poison_store(struct kmem_cache *s,
  3450. const char *buf, size_t length)
  3451. {
  3452. if (any_slab_objects(s))
  3453. return -EBUSY;
  3454. s->flags &= ~SLAB_POISON;
  3455. if (buf[0] == '1')
  3456. s->flags |= SLAB_POISON;
  3457. calculate_sizes(s, -1);
  3458. return length;
  3459. }
  3460. SLAB_ATTR(poison);
  3461. static ssize_t store_user_show(struct kmem_cache *s, char *buf)
  3462. {
  3463. return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
  3464. }
  3465. static ssize_t store_user_store(struct kmem_cache *s,
  3466. const char *buf, size_t length)
  3467. {
  3468. if (any_slab_objects(s))
  3469. return -EBUSY;
  3470. s->flags &= ~SLAB_STORE_USER;
  3471. if (buf[0] == '1')
  3472. s->flags |= SLAB_STORE_USER;
  3473. calculate_sizes(s, -1);
  3474. return length;
  3475. }
  3476. SLAB_ATTR(store_user);
  3477. static ssize_t validate_show(struct kmem_cache *s, char *buf)
  3478. {
  3479. return 0;
  3480. }
  3481. static ssize_t validate_store(struct kmem_cache *s,
  3482. const char *buf, size_t length)
  3483. {
  3484. int ret = -EINVAL;
  3485. if (buf[0] == '1') {
  3486. ret = validate_slab_cache(s);
  3487. if (ret >= 0)
  3488. ret = length;
  3489. }
  3490. return ret;
  3491. }
  3492. SLAB_ATTR(validate);
  3493. static ssize_t shrink_show(struct kmem_cache *s, char *buf)
  3494. {
  3495. return 0;
  3496. }
  3497. static ssize_t shrink_store(struct kmem_cache *s,
  3498. const char *buf, size_t length)
  3499. {
  3500. if (buf[0] == '1') {
  3501. int rc = kmem_cache_shrink(s);
  3502. if (rc)
  3503. return rc;
  3504. } else
  3505. return -EINVAL;
  3506. return length;
  3507. }
  3508. SLAB_ATTR(shrink);
  3509. static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
  3510. {
  3511. if (!(s->flags & SLAB_STORE_USER))
  3512. return -ENOSYS;
  3513. return list_locations(s, buf, TRACK_ALLOC);
  3514. }
  3515. SLAB_ATTR_RO(alloc_calls);
  3516. static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
  3517. {
  3518. if (!(s->flags & SLAB_STORE_USER))
  3519. return -ENOSYS;
  3520. return list_locations(s, buf, TRACK_FREE);
  3521. }
  3522. SLAB_ATTR_RO(free_calls);
  3523. #ifdef CONFIG_NUMA
  3524. static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
  3525. {
  3526. return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
  3527. }
  3528. static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
  3529. const char *buf, size_t length)
  3530. {
  3531. unsigned long ratio;
  3532. int err;
  3533. err = strict_strtoul(buf, 10, &ratio);
  3534. if (err)
  3535. return err;
  3536. if (ratio <= 100)
  3537. s->remote_node_defrag_ratio = ratio * 10;
  3538. return length;
  3539. }
  3540. SLAB_ATTR(remote_node_defrag_ratio);
  3541. #endif
  3542. #ifdef CONFIG_SLUB_STATS
  3543. static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
  3544. {
  3545. unsigned long sum = 0;
  3546. int cpu;
  3547. int len;
  3548. int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
  3549. if (!data)
  3550. return -ENOMEM;
  3551. for_each_online_cpu(cpu) {
  3552. unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
  3553. data[cpu] = x;
  3554. sum += x;
  3555. }
  3556. len = sprintf(buf, "%lu", sum);
  3557. #ifdef CONFIG_SMP
  3558. for_each_online_cpu(cpu) {
  3559. if (data[cpu] && len < PAGE_SIZE - 20)
  3560. len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
  3561. }
  3562. #endif
  3563. kfree(data);
  3564. return len + sprintf(buf + len, "\n");
  3565. }
  3566. static void clear_stat(struct kmem_cache *s, enum stat_item si)
  3567. {
  3568. int cpu;
  3569. for_each_online_cpu(cpu)
  3570. per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
  3571. }
  3572. #define STAT_ATTR(si, text) \
  3573. static ssize_t text##_show(struct kmem_cache *s, char *buf) \
  3574. { \
  3575. return show_stat(s, buf, si); \
  3576. } \
  3577. static ssize_t text##_store(struct kmem_cache *s, \
  3578. const char *buf, size_t length) \
  3579. { \
  3580. if (buf[0] != '0') \
  3581. return -EINVAL; \
  3582. clear_stat(s, si); \
  3583. return length; \
  3584. } \
  3585. SLAB_ATTR(text); \
  3586. STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
  3587. STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
  3588. STAT_ATTR(FREE_FASTPATH, free_fastpath);
  3589. STAT_ATTR(FREE_SLOWPATH, free_slowpath);
  3590. STAT_ATTR(FREE_FROZEN, free_frozen);
  3591. STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
  3592. STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
  3593. STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
  3594. STAT_ATTR(ALLOC_SLAB, alloc_slab);
  3595. STAT_ATTR(ALLOC_REFILL, alloc_refill);
  3596. STAT_ATTR(FREE_SLAB, free_slab);
  3597. STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
  3598. STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
  3599. STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
  3600. STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
  3601. STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
  3602. STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
  3603. STAT_ATTR(ORDER_FALLBACK, order_fallback);
  3604. #endif
  3605. static struct attribute *slab_attrs[] = {
  3606. &slab_size_attr.attr,
  3607. &object_size_attr.attr,
  3608. &objs_per_slab_attr.attr,
  3609. &order_attr.attr,
  3610. &min_partial_attr.attr,
  3611. &objects_attr.attr,
  3612. &objects_partial_attr.attr,
  3613. &total_objects_attr.attr,
  3614. &slabs_attr.attr,
  3615. &partial_attr.attr,
  3616. &cpu_slabs_attr.attr,
  3617. &ctor_attr.attr,
  3618. &aliases_attr.attr,
  3619. &align_attr.attr,
  3620. &sanity_checks_attr.attr,
  3621. &trace_attr.attr,
  3622. &hwcache_align_attr.attr,
  3623. &reclaim_account_attr.attr,
  3624. &destroy_by_rcu_attr.attr,
  3625. &red_zone_attr.attr,
  3626. &poison_attr.attr,
  3627. &store_user_attr.attr,
  3628. &validate_attr.attr,
  3629. &shrink_attr.attr,
  3630. &alloc_calls_attr.attr,
  3631. &free_calls_attr.attr,
  3632. #ifdef CONFIG_ZONE_DMA
  3633. &cache_dma_attr.attr,
  3634. #endif
  3635. #ifdef CONFIG_NUMA
  3636. &remote_node_defrag_ratio_attr.attr,
  3637. #endif
  3638. #ifdef CONFIG_SLUB_STATS
  3639. &alloc_fastpath_attr.attr,
  3640. &alloc_slowpath_attr.attr,
  3641. &free_fastpath_attr.attr,
  3642. &free_slowpath_attr.attr,
  3643. &free_frozen_attr.attr,
  3644. &free_add_partial_attr.attr,
  3645. &free_remove_partial_attr.attr,
  3646. &alloc_from_partial_attr.attr,
  3647. &alloc_slab_attr.attr,
  3648. &alloc_refill_attr.attr,
  3649. &free_slab_attr.attr,
  3650. &cpuslab_flush_attr.attr,
  3651. &deactivate_full_attr.attr,
  3652. &deactivate_empty_attr.attr,
  3653. &deactivate_to_head_attr.attr,
  3654. &deactivate_to_tail_attr.attr,
  3655. &deactivate_remote_frees_attr.attr,
  3656. &order_fallback_attr.attr,
  3657. #endif
  3658. #ifdef CONFIG_FAILSLAB
  3659. &failslab_attr.attr,
  3660. #endif
  3661. NULL
  3662. };
  3663. static struct attribute_group slab_attr_group = {
  3664. .attrs = slab_attrs,
  3665. };
  3666. static ssize_t slab_attr_show(struct kobject *kobj,
  3667. struct attribute *attr,
  3668. char *buf)
  3669. {
  3670. struct slab_attribute *attribute;
  3671. struct kmem_cache *s;
  3672. int err;
  3673. attribute = to_slab_attr(attr);
  3674. s = to_slab(kobj);
  3675. if (!attribute->show)
  3676. return -EIO;
  3677. err = attribute->show(s, buf);
  3678. return err;
  3679. }
  3680. static ssize_t slab_attr_store(struct kobject *kobj,
  3681. struct attribute *attr,
  3682. const char *buf, size_t len)
  3683. {
  3684. struct slab_attribute *attribute;
  3685. struct kmem_cache *s;
  3686. int err;
  3687. attribute = to_slab_attr(attr);
  3688. s = to_slab(kobj);
  3689. if (!attribute->store)
  3690. return -EIO;
  3691. err = attribute->store(s, buf, len);
  3692. return err;
  3693. }
  3694. static void kmem_cache_release(struct kobject *kobj)
  3695. {
  3696. struct kmem_cache *s = to_slab(kobj);
  3697. kfree(s);
  3698. }
  3699. static const struct sysfs_ops slab_sysfs_ops = {
  3700. .show = slab_attr_show,
  3701. .store = slab_attr_store,
  3702. };
  3703. static struct kobj_type slab_ktype = {
  3704. .sysfs_ops = &slab_sysfs_ops,
  3705. .release = kmem_cache_release
  3706. };
  3707. static int uevent_filter(struct kset *kset, struct kobject *kobj)
  3708. {
  3709. struct kobj_type *ktype = get_ktype(kobj);
  3710. if (ktype == &slab_ktype)
  3711. return 1;
  3712. return 0;
  3713. }
  3714. static const struct kset_uevent_ops slab_uevent_ops = {
  3715. .filter = uevent_filter,
  3716. };
  3717. static struct kset *slab_kset;
  3718. #define ID_STR_LENGTH 64
  3719. /* Create a unique string id for a slab cache:
  3720. *
  3721. * Format :[flags-]size
  3722. */
  3723. static char *create_unique_id(struct kmem_cache *s)
  3724. {
  3725. char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
  3726. char *p = name;
  3727. BUG_ON(!name);
  3728. *p++ = ':';
  3729. /*
  3730. * First flags affecting slabcache operations. We will only
  3731. * get here for aliasable slabs so we do not need to support
  3732. * too many flags. The flags here must cover all flags that
  3733. * are matched during merging to guarantee that the id is
  3734. * unique.
  3735. */
  3736. if (s->flags & SLAB_CACHE_DMA)
  3737. *p++ = 'd';
  3738. if (s->flags & SLAB_RECLAIM_ACCOUNT)
  3739. *p++ = 'a';
  3740. if (s->flags & SLAB_DEBUG_FREE)
  3741. *p++ = 'F';
  3742. if (!(s->flags & SLAB_NOTRACK))
  3743. *p++ = 't';
  3744. if (p != name + 1)
  3745. *p++ = '-';
  3746. p += sprintf(p, "%07d", s->size);
  3747. BUG_ON(p > name + ID_STR_LENGTH - 1);
  3748. return name;
  3749. }
  3750. static int sysfs_slab_add(struct kmem_cache *s)
  3751. {
  3752. int err;
  3753. const char *name;
  3754. int unmergeable;
  3755. if (slab_state < SYSFS)
  3756. /* Defer until later */
  3757. return 0;
  3758. unmergeable = slab_unmergeable(s);
  3759. if (unmergeable) {
  3760. /*
  3761. * Slabcache can never be merged so we can use the name proper.
  3762. * This is typically the case for debug situations. In that
  3763. * case we can catch duplicate names easily.
  3764. */
  3765. sysfs_remove_link(&slab_kset->kobj, s->name);
  3766. name = s->name;
  3767. } else {
  3768. /*
  3769. * Create a unique name for the slab as a target
  3770. * for the symlinks.
  3771. */
  3772. name = create_unique_id(s);
  3773. }
  3774. s->kobj.kset = slab_kset;
  3775. err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
  3776. if (err) {
  3777. kobject_put(&s->kobj);
  3778. return err;
  3779. }
  3780. err = sysfs_create_group(&s->kobj, &slab_attr_group);
  3781. if (err) {
  3782. kobject_del(&s->kobj);
  3783. kobject_put(&s->kobj);
  3784. return err;
  3785. }
  3786. kobject_uevent(&s->kobj, KOBJ_ADD);
  3787. if (!unmergeable) {
  3788. /* Setup first alias */
  3789. sysfs_slab_alias(s, s->name);
  3790. kfree(name);
  3791. }
  3792. return 0;
  3793. }
  3794. static void sysfs_slab_remove(struct kmem_cache *s)
  3795. {
  3796. if (slab_state < SYSFS)
  3797. /*
  3798. * Sysfs has not been setup yet so no need to remove the
  3799. * cache from sysfs.
  3800. */
  3801. return;
  3802. kobject_uevent(&s->kobj, KOBJ_REMOVE);
  3803. kobject_del(&s->kobj);
  3804. kobject_put(&s->kobj);
  3805. }
  3806. /*
  3807. * Need to buffer aliases during bootup until sysfs becomes
  3808. * available lest we lose that information.
  3809. */
  3810. struct saved_alias {
  3811. struct kmem_cache *s;
  3812. const char *name;
  3813. struct saved_alias *next;
  3814. };
  3815. static struct saved_alias *alias_list;
  3816. static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
  3817. {
  3818. struct saved_alias *al;
  3819. if (slab_state == SYSFS) {
  3820. /*
  3821. * If we have a leftover link then remove it.
  3822. */
  3823. sysfs_remove_link(&slab_kset->kobj, name);
  3824. return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
  3825. }
  3826. al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
  3827. if (!al)
  3828. return -ENOMEM;
  3829. al->s = s;
  3830. al->name = name;
  3831. al->next = alias_list;
  3832. alias_list = al;
  3833. return 0;
  3834. }
  3835. static int __init slab_sysfs_init(void)
  3836. {
  3837. struct kmem_cache *s;
  3838. int err;
  3839. down_write(&slub_lock);
  3840. slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
  3841. if (!slab_kset) {
  3842. up_write(&slub_lock);
  3843. printk(KERN_ERR "Cannot register slab subsystem.\n");
  3844. return -ENOSYS;
  3845. }
  3846. slab_state = SYSFS;
  3847. list_for_each_entry(s, &slab_caches, list) {
  3848. err = sysfs_slab_add(s);
  3849. if (err)
  3850. printk(KERN_ERR "SLUB: Unable to add boot slab %s"
  3851. " to sysfs\n", s->name);
  3852. }
  3853. while (alias_list) {
  3854. struct saved_alias *al = alias_list;
  3855. alias_list = alias_list->next;
  3856. err = sysfs_slab_alias(al->s, al->name);
  3857. if (err)
  3858. printk(KERN_ERR "SLUB: Unable to add boot slab alias"
  3859. " %s to sysfs\n", s->name);
  3860. kfree(al);
  3861. }
  3862. up_write(&slub_lock);
  3863. resiliency_test();
  3864. return 0;
  3865. }
  3866. __initcall(slab_sysfs_init);
  3867. #endif
  3868. /*
  3869. * The /proc/slabinfo ABI
  3870. */
  3871. #ifdef CONFIG_SLABINFO
  3872. static void print_slabinfo_header(struct seq_file *m)
  3873. {
  3874. seq_puts(m, "slabinfo - version: 2.1\n");
  3875. seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
  3876. "<objperslab> <pagesperslab>");
  3877. seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
  3878. seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
  3879. seq_putc(m, '\n');
  3880. }
  3881. static void *s_start(struct seq_file *m, loff_t *pos)
  3882. {
  3883. loff_t n = *pos;
  3884. down_read(&slub_lock);
  3885. if (!n)
  3886. print_slabinfo_header(m);
  3887. return seq_list_start(&slab_caches, *pos);
  3888. }
  3889. static void *s_next(struct seq_file *m, void *p, loff_t *pos)
  3890. {
  3891. return seq_list_next(p, &slab_caches, pos);
  3892. }
  3893. static void s_stop(struct seq_file *m, void *p)
  3894. {
  3895. up_read(&slub_lock);
  3896. }
  3897. static int s_show(struct seq_file *m, void *p)
  3898. {
  3899. unsigned long nr_partials = 0;
  3900. unsigned long nr_slabs = 0;
  3901. unsigned long nr_inuse = 0;
  3902. unsigned long nr_objs = 0;
  3903. unsigned long nr_free = 0;
  3904. struct kmem_cache *s;
  3905. int node;
  3906. s = list_entry(p, struct kmem_cache, list);
  3907. for_each_online_node(node) {
  3908. struct kmem_cache_node *n = get_node(s, node);
  3909. if (!n)
  3910. continue;
  3911. nr_partials += n->nr_partial;
  3912. nr_slabs += atomic_long_read(&n->nr_slabs);
  3913. nr_objs += atomic_long_read(&n->total_objects);
  3914. nr_free += count_partial(n, count_free);
  3915. }
  3916. nr_inuse = nr_objs - nr_free;
  3917. seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
  3918. nr_objs, s->size, oo_objects(s->oo),
  3919. (1 << oo_order(s->oo)));
  3920. seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
  3921. seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
  3922. 0UL);
  3923. seq_putc(m, '\n');
  3924. return 0;
  3925. }
  3926. static const struct seq_operations slabinfo_op = {
  3927. .start = s_start,
  3928. .next = s_next,
  3929. .stop = s_stop,
  3930. .show = s_show,
  3931. };
  3932. static int slabinfo_open(struct inode *inode, struct file *file)
  3933. {
  3934. return seq_open(file, &slabinfo_op);
  3935. }
  3936. static const struct file_operations proc_slabinfo_operations = {
  3937. .open = slabinfo_open,
  3938. .read = seq_read,
  3939. .llseek = seq_lseek,
  3940. .release = seq_release,
  3941. };
  3942. static int __init slab_proc_init(void)
  3943. {
  3944. proc_create("slabinfo", S_IRUGO, NULL, &proc_slabinfo_operations);
  3945. return 0;
  3946. }
  3947. module_init(slab_proc_init);
  3948. #endif /* CONFIG_SLABINFO */