vmx.c 206 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  9. *
  10. * Authors:
  11. * Avi Kivity <avi@qumranet.com>
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. *
  14. * This work is licensed under the terms of the GNU GPL, version 2. See
  15. * the COPYING file in the top-level directory.
  16. *
  17. */
  18. #include "irq.h"
  19. #include "mmu.h"
  20. #include <linux/kvm_host.h>
  21. #include <linux/module.h>
  22. #include <linux/kernel.h>
  23. #include <linux/mm.h>
  24. #include <linux/highmem.h>
  25. #include <linux/sched.h>
  26. #include <linux/moduleparam.h>
  27. #include <linux/ftrace_event.h>
  28. #include <linux/slab.h>
  29. #include <linux/tboot.h>
  30. #include "kvm_cache_regs.h"
  31. #include "x86.h"
  32. #include <asm/io.h>
  33. #include <asm/desc.h>
  34. #include <asm/vmx.h>
  35. #include <asm/virtext.h>
  36. #include <asm/mce.h>
  37. #include <asm/i387.h>
  38. #include <asm/xcr.h>
  39. #include <asm/perf_event.h>
  40. #include "trace.h"
  41. #define __ex(x) __kvm_handle_fault_on_reboot(x)
  42. #define __ex_clear(x, reg) \
  43. ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
  44. MODULE_AUTHOR("Qumranet");
  45. MODULE_LICENSE("GPL");
  46. static int __read_mostly enable_vpid = 1;
  47. module_param_named(vpid, enable_vpid, bool, 0444);
  48. static int __read_mostly flexpriority_enabled = 1;
  49. module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
  50. static int __read_mostly enable_ept = 1;
  51. module_param_named(ept, enable_ept, bool, S_IRUGO);
  52. static int __read_mostly enable_unrestricted_guest = 1;
  53. module_param_named(unrestricted_guest,
  54. enable_unrestricted_guest, bool, S_IRUGO);
  55. static int __read_mostly emulate_invalid_guest_state = 0;
  56. module_param(emulate_invalid_guest_state, bool, S_IRUGO);
  57. static int __read_mostly vmm_exclusive = 1;
  58. module_param(vmm_exclusive, bool, S_IRUGO);
  59. static int __read_mostly yield_on_hlt = 1;
  60. module_param(yield_on_hlt, bool, S_IRUGO);
  61. static int __read_mostly fasteoi = 1;
  62. module_param(fasteoi, bool, S_IRUGO);
  63. /*
  64. * If nested=1, nested virtualization is supported, i.e., guests may use
  65. * VMX and be a hypervisor for its own guests. If nested=0, guests may not
  66. * use VMX instructions.
  67. */
  68. static int __read_mostly nested = 0;
  69. module_param(nested, bool, S_IRUGO);
  70. #define KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST \
  71. (X86_CR0_WP | X86_CR0_NE | X86_CR0_NW | X86_CR0_CD)
  72. #define KVM_GUEST_CR0_MASK \
  73. (KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
  74. #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST \
  75. (X86_CR0_WP | X86_CR0_NE)
  76. #define KVM_VM_CR0_ALWAYS_ON \
  77. (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
  78. #define KVM_CR4_GUEST_OWNED_BITS \
  79. (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \
  80. | X86_CR4_OSXMMEXCPT)
  81. #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
  82. #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
  83. #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
  84. /*
  85. * These 2 parameters are used to config the controls for Pause-Loop Exiting:
  86. * ple_gap: upper bound on the amount of time between two successive
  87. * executions of PAUSE in a loop. Also indicate if ple enabled.
  88. * According to test, this time is usually smaller than 128 cycles.
  89. * ple_window: upper bound on the amount of time a guest is allowed to execute
  90. * in a PAUSE loop. Tests indicate that most spinlocks are held for
  91. * less than 2^12 cycles
  92. * Time is measured based on a counter that runs at the same rate as the TSC,
  93. * refer SDM volume 3b section 21.6.13 & 22.1.3.
  94. */
  95. #define KVM_VMX_DEFAULT_PLE_GAP 128
  96. #define KVM_VMX_DEFAULT_PLE_WINDOW 4096
  97. static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
  98. module_param(ple_gap, int, S_IRUGO);
  99. static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
  100. module_param(ple_window, int, S_IRUGO);
  101. #define NR_AUTOLOAD_MSRS 8
  102. #define VMCS02_POOL_SIZE 1
  103. struct vmcs {
  104. u32 revision_id;
  105. u32 abort;
  106. char data[0];
  107. };
  108. /*
  109. * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
  110. * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
  111. * loaded on this CPU (so we can clear them if the CPU goes down).
  112. */
  113. struct loaded_vmcs {
  114. struct vmcs *vmcs;
  115. int cpu;
  116. int launched;
  117. struct list_head loaded_vmcss_on_cpu_link;
  118. };
  119. struct shared_msr_entry {
  120. unsigned index;
  121. u64 data;
  122. u64 mask;
  123. };
  124. /*
  125. * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
  126. * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
  127. * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
  128. * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
  129. * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
  130. * More than one of these structures may exist, if L1 runs multiple L2 guests.
  131. * nested_vmx_run() will use the data here to build a vmcs02: a VMCS for the
  132. * underlying hardware which will be used to run L2.
  133. * This structure is packed to ensure that its layout is identical across
  134. * machines (necessary for live migration).
  135. * If there are changes in this struct, VMCS12_REVISION must be changed.
  136. */
  137. typedef u64 natural_width;
  138. struct __packed vmcs12 {
  139. /* According to the Intel spec, a VMCS region must start with the
  140. * following two fields. Then follow implementation-specific data.
  141. */
  142. u32 revision_id;
  143. u32 abort;
  144. u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
  145. u32 padding[7]; /* room for future expansion */
  146. u64 io_bitmap_a;
  147. u64 io_bitmap_b;
  148. u64 msr_bitmap;
  149. u64 vm_exit_msr_store_addr;
  150. u64 vm_exit_msr_load_addr;
  151. u64 vm_entry_msr_load_addr;
  152. u64 tsc_offset;
  153. u64 virtual_apic_page_addr;
  154. u64 apic_access_addr;
  155. u64 ept_pointer;
  156. u64 guest_physical_address;
  157. u64 vmcs_link_pointer;
  158. u64 guest_ia32_debugctl;
  159. u64 guest_ia32_pat;
  160. u64 guest_ia32_efer;
  161. u64 guest_ia32_perf_global_ctrl;
  162. u64 guest_pdptr0;
  163. u64 guest_pdptr1;
  164. u64 guest_pdptr2;
  165. u64 guest_pdptr3;
  166. u64 host_ia32_pat;
  167. u64 host_ia32_efer;
  168. u64 host_ia32_perf_global_ctrl;
  169. u64 padding64[8]; /* room for future expansion */
  170. /*
  171. * To allow migration of L1 (complete with its L2 guests) between
  172. * machines of different natural widths (32 or 64 bit), we cannot have
  173. * unsigned long fields with no explict size. We use u64 (aliased
  174. * natural_width) instead. Luckily, x86 is little-endian.
  175. */
  176. natural_width cr0_guest_host_mask;
  177. natural_width cr4_guest_host_mask;
  178. natural_width cr0_read_shadow;
  179. natural_width cr4_read_shadow;
  180. natural_width cr3_target_value0;
  181. natural_width cr3_target_value1;
  182. natural_width cr3_target_value2;
  183. natural_width cr3_target_value3;
  184. natural_width exit_qualification;
  185. natural_width guest_linear_address;
  186. natural_width guest_cr0;
  187. natural_width guest_cr3;
  188. natural_width guest_cr4;
  189. natural_width guest_es_base;
  190. natural_width guest_cs_base;
  191. natural_width guest_ss_base;
  192. natural_width guest_ds_base;
  193. natural_width guest_fs_base;
  194. natural_width guest_gs_base;
  195. natural_width guest_ldtr_base;
  196. natural_width guest_tr_base;
  197. natural_width guest_gdtr_base;
  198. natural_width guest_idtr_base;
  199. natural_width guest_dr7;
  200. natural_width guest_rsp;
  201. natural_width guest_rip;
  202. natural_width guest_rflags;
  203. natural_width guest_pending_dbg_exceptions;
  204. natural_width guest_sysenter_esp;
  205. natural_width guest_sysenter_eip;
  206. natural_width host_cr0;
  207. natural_width host_cr3;
  208. natural_width host_cr4;
  209. natural_width host_fs_base;
  210. natural_width host_gs_base;
  211. natural_width host_tr_base;
  212. natural_width host_gdtr_base;
  213. natural_width host_idtr_base;
  214. natural_width host_ia32_sysenter_esp;
  215. natural_width host_ia32_sysenter_eip;
  216. natural_width host_rsp;
  217. natural_width host_rip;
  218. natural_width paddingl[8]; /* room for future expansion */
  219. u32 pin_based_vm_exec_control;
  220. u32 cpu_based_vm_exec_control;
  221. u32 exception_bitmap;
  222. u32 page_fault_error_code_mask;
  223. u32 page_fault_error_code_match;
  224. u32 cr3_target_count;
  225. u32 vm_exit_controls;
  226. u32 vm_exit_msr_store_count;
  227. u32 vm_exit_msr_load_count;
  228. u32 vm_entry_controls;
  229. u32 vm_entry_msr_load_count;
  230. u32 vm_entry_intr_info_field;
  231. u32 vm_entry_exception_error_code;
  232. u32 vm_entry_instruction_len;
  233. u32 tpr_threshold;
  234. u32 secondary_vm_exec_control;
  235. u32 vm_instruction_error;
  236. u32 vm_exit_reason;
  237. u32 vm_exit_intr_info;
  238. u32 vm_exit_intr_error_code;
  239. u32 idt_vectoring_info_field;
  240. u32 idt_vectoring_error_code;
  241. u32 vm_exit_instruction_len;
  242. u32 vmx_instruction_info;
  243. u32 guest_es_limit;
  244. u32 guest_cs_limit;
  245. u32 guest_ss_limit;
  246. u32 guest_ds_limit;
  247. u32 guest_fs_limit;
  248. u32 guest_gs_limit;
  249. u32 guest_ldtr_limit;
  250. u32 guest_tr_limit;
  251. u32 guest_gdtr_limit;
  252. u32 guest_idtr_limit;
  253. u32 guest_es_ar_bytes;
  254. u32 guest_cs_ar_bytes;
  255. u32 guest_ss_ar_bytes;
  256. u32 guest_ds_ar_bytes;
  257. u32 guest_fs_ar_bytes;
  258. u32 guest_gs_ar_bytes;
  259. u32 guest_ldtr_ar_bytes;
  260. u32 guest_tr_ar_bytes;
  261. u32 guest_interruptibility_info;
  262. u32 guest_activity_state;
  263. u32 guest_sysenter_cs;
  264. u32 host_ia32_sysenter_cs;
  265. u32 padding32[8]; /* room for future expansion */
  266. u16 virtual_processor_id;
  267. u16 guest_es_selector;
  268. u16 guest_cs_selector;
  269. u16 guest_ss_selector;
  270. u16 guest_ds_selector;
  271. u16 guest_fs_selector;
  272. u16 guest_gs_selector;
  273. u16 guest_ldtr_selector;
  274. u16 guest_tr_selector;
  275. u16 host_es_selector;
  276. u16 host_cs_selector;
  277. u16 host_ss_selector;
  278. u16 host_ds_selector;
  279. u16 host_fs_selector;
  280. u16 host_gs_selector;
  281. u16 host_tr_selector;
  282. };
  283. /*
  284. * VMCS12_REVISION is an arbitrary id that should be changed if the content or
  285. * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
  286. * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
  287. */
  288. #define VMCS12_REVISION 0x11e57ed0
  289. /*
  290. * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
  291. * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
  292. * current implementation, 4K are reserved to avoid future complications.
  293. */
  294. #define VMCS12_SIZE 0x1000
  295. /* Used to remember the last vmcs02 used for some recently used vmcs12s */
  296. struct vmcs02_list {
  297. struct list_head list;
  298. gpa_t vmptr;
  299. struct loaded_vmcs vmcs02;
  300. };
  301. /*
  302. * The nested_vmx structure is part of vcpu_vmx, and holds information we need
  303. * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
  304. */
  305. struct nested_vmx {
  306. /* Has the level1 guest done vmxon? */
  307. bool vmxon;
  308. /* The guest-physical address of the current VMCS L1 keeps for L2 */
  309. gpa_t current_vmptr;
  310. /* The host-usable pointer to the above */
  311. struct page *current_vmcs12_page;
  312. struct vmcs12 *current_vmcs12;
  313. /* vmcs02_list cache of VMCSs recently used to run L2 guests */
  314. struct list_head vmcs02_pool;
  315. int vmcs02_num;
  316. u64 vmcs01_tsc_offset;
  317. /* L2 must run next, and mustn't decide to exit to L1. */
  318. bool nested_run_pending;
  319. /*
  320. * Guest pages referred to in vmcs02 with host-physical pointers, so
  321. * we must keep them pinned while L2 runs.
  322. */
  323. struct page *apic_access_page;
  324. };
  325. struct vcpu_vmx {
  326. struct kvm_vcpu vcpu;
  327. unsigned long host_rsp;
  328. u8 fail;
  329. u8 cpl;
  330. bool nmi_known_unmasked;
  331. u32 exit_intr_info;
  332. u32 idt_vectoring_info;
  333. ulong rflags;
  334. struct shared_msr_entry *guest_msrs;
  335. int nmsrs;
  336. int save_nmsrs;
  337. #ifdef CONFIG_X86_64
  338. u64 msr_host_kernel_gs_base;
  339. u64 msr_guest_kernel_gs_base;
  340. #endif
  341. /*
  342. * loaded_vmcs points to the VMCS currently used in this vcpu. For a
  343. * non-nested (L1) guest, it always points to vmcs01. For a nested
  344. * guest (L2), it points to a different VMCS.
  345. */
  346. struct loaded_vmcs vmcs01;
  347. struct loaded_vmcs *loaded_vmcs;
  348. bool __launched; /* temporary, used in vmx_vcpu_run */
  349. struct msr_autoload {
  350. unsigned nr;
  351. struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
  352. struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
  353. } msr_autoload;
  354. struct {
  355. int loaded;
  356. u16 fs_sel, gs_sel, ldt_sel;
  357. int gs_ldt_reload_needed;
  358. int fs_reload_needed;
  359. } host_state;
  360. struct {
  361. int vm86_active;
  362. ulong save_rflags;
  363. struct kvm_save_segment {
  364. u16 selector;
  365. unsigned long base;
  366. u32 limit;
  367. u32 ar;
  368. } tr, es, ds, fs, gs;
  369. } rmode;
  370. struct {
  371. u32 bitmask; /* 4 bits per segment (1 bit per field) */
  372. struct kvm_save_segment seg[8];
  373. } segment_cache;
  374. int vpid;
  375. bool emulation_required;
  376. /* Support for vnmi-less CPUs */
  377. int soft_vnmi_blocked;
  378. ktime_t entry_time;
  379. s64 vnmi_blocked_time;
  380. u32 exit_reason;
  381. bool rdtscp_enabled;
  382. /* Support for a guest hypervisor (nested VMX) */
  383. struct nested_vmx nested;
  384. };
  385. enum segment_cache_field {
  386. SEG_FIELD_SEL = 0,
  387. SEG_FIELD_BASE = 1,
  388. SEG_FIELD_LIMIT = 2,
  389. SEG_FIELD_AR = 3,
  390. SEG_FIELD_NR = 4
  391. };
  392. static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
  393. {
  394. return container_of(vcpu, struct vcpu_vmx, vcpu);
  395. }
  396. #define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
  397. #define FIELD(number, name) [number] = VMCS12_OFFSET(name)
  398. #define FIELD64(number, name) [number] = VMCS12_OFFSET(name), \
  399. [number##_HIGH] = VMCS12_OFFSET(name)+4
  400. static unsigned short vmcs_field_to_offset_table[] = {
  401. FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id),
  402. FIELD(GUEST_ES_SELECTOR, guest_es_selector),
  403. FIELD(GUEST_CS_SELECTOR, guest_cs_selector),
  404. FIELD(GUEST_SS_SELECTOR, guest_ss_selector),
  405. FIELD(GUEST_DS_SELECTOR, guest_ds_selector),
  406. FIELD(GUEST_FS_SELECTOR, guest_fs_selector),
  407. FIELD(GUEST_GS_SELECTOR, guest_gs_selector),
  408. FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector),
  409. FIELD(GUEST_TR_SELECTOR, guest_tr_selector),
  410. FIELD(HOST_ES_SELECTOR, host_es_selector),
  411. FIELD(HOST_CS_SELECTOR, host_cs_selector),
  412. FIELD(HOST_SS_SELECTOR, host_ss_selector),
  413. FIELD(HOST_DS_SELECTOR, host_ds_selector),
  414. FIELD(HOST_FS_SELECTOR, host_fs_selector),
  415. FIELD(HOST_GS_SELECTOR, host_gs_selector),
  416. FIELD(HOST_TR_SELECTOR, host_tr_selector),
  417. FIELD64(IO_BITMAP_A, io_bitmap_a),
  418. FIELD64(IO_BITMAP_B, io_bitmap_b),
  419. FIELD64(MSR_BITMAP, msr_bitmap),
  420. FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr),
  421. FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr),
  422. FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr),
  423. FIELD64(TSC_OFFSET, tsc_offset),
  424. FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr),
  425. FIELD64(APIC_ACCESS_ADDR, apic_access_addr),
  426. FIELD64(EPT_POINTER, ept_pointer),
  427. FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address),
  428. FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer),
  429. FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl),
  430. FIELD64(GUEST_IA32_PAT, guest_ia32_pat),
  431. FIELD64(GUEST_IA32_EFER, guest_ia32_efer),
  432. FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl),
  433. FIELD64(GUEST_PDPTR0, guest_pdptr0),
  434. FIELD64(GUEST_PDPTR1, guest_pdptr1),
  435. FIELD64(GUEST_PDPTR2, guest_pdptr2),
  436. FIELD64(GUEST_PDPTR3, guest_pdptr3),
  437. FIELD64(HOST_IA32_PAT, host_ia32_pat),
  438. FIELD64(HOST_IA32_EFER, host_ia32_efer),
  439. FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl),
  440. FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control),
  441. FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control),
  442. FIELD(EXCEPTION_BITMAP, exception_bitmap),
  443. FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask),
  444. FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match),
  445. FIELD(CR3_TARGET_COUNT, cr3_target_count),
  446. FIELD(VM_EXIT_CONTROLS, vm_exit_controls),
  447. FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count),
  448. FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count),
  449. FIELD(VM_ENTRY_CONTROLS, vm_entry_controls),
  450. FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count),
  451. FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field),
  452. FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code),
  453. FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len),
  454. FIELD(TPR_THRESHOLD, tpr_threshold),
  455. FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control),
  456. FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error),
  457. FIELD(VM_EXIT_REASON, vm_exit_reason),
  458. FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info),
  459. FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code),
  460. FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field),
  461. FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code),
  462. FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len),
  463. FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info),
  464. FIELD(GUEST_ES_LIMIT, guest_es_limit),
  465. FIELD(GUEST_CS_LIMIT, guest_cs_limit),
  466. FIELD(GUEST_SS_LIMIT, guest_ss_limit),
  467. FIELD(GUEST_DS_LIMIT, guest_ds_limit),
  468. FIELD(GUEST_FS_LIMIT, guest_fs_limit),
  469. FIELD(GUEST_GS_LIMIT, guest_gs_limit),
  470. FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit),
  471. FIELD(GUEST_TR_LIMIT, guest_tr_limit),
  472. FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit),
  473. FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit),
  474. FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes),
  475. FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes),
  476. FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes),
  477. FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes),
  478. FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes),
  479. FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes),
  480. FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes),
  481. FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes),
  482. FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info),
  483. FIELD(GUEST_ACTIVITY_STATE, guest_activity_state),
  484. FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs),
  485. FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs),
  486. FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask),
  487. FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask),
  488. FIELD(CR0_READ_SHADOW, cr0_read_shadow),
  489. FIELD(CR4_READ_SHADOW, cr4_read_shadow),
  490. FIELD(CR3_TARGET_VALUE0, cr3_target_value0),
  491. FIELD(CR3_TARGET_VALUE1, cr3_target_value1),
  492. FIELD(CR3_TARGET_VALUE2, cr3_target_value2),
  493. FIELD(CR3_TARGET_VALUE3, cr3_target_value3),
  494. FIELD(EXIT_QUALIFICATION, exit_qualification),
  495. FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address),
  496. FIELD(GUEST_CR0, guest_cr0),
  497. FIELD(GUEST_CR3, guest_cr3),
  498. FIELD(GUEST_CR4, guest_cr4),
  499. FIELD(GUEST_ES_BASE, guest_es_base),
  500. FIELD(GUEST_CS_BASE, guest_cs_base),
  501. FIELD(GUEST_SS_BASE, guest_ss_base),
  502. FIELD(GUEST_DS_BASE, guest_ds_base),
  503. FIELD(GUEST_FS_BASE, guest_fs_base),
  504. FIELD(GUEST_GS_BASE, guest_gs_base),
  505. FIELD(GUEST_LDTR_BASE, guest_ldtr_base),
  506. FIELD(GUEST_TR_BASE, guest_tr_base),
  507. FIELD(GUEST_GDTR_BASE, guest_gdtr_base),
  508. FIELD(GUEST_IDTR_BASE, guest_idtr_base),
  509. FIELD(GUEST_DR7, guest_dr7),
  510. FIELD(GUEST_RSP, guest_rsp),
  511. FIELD(GUEST_RIP, guest_rip),
  512. FIELD(GUEST_RFLAGS, guest_rflags),
  513. FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions),
  514. FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp),
  515. FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip),
  516. FIELD(HOST_CR0, host_cr0),
  517. FIELD(HOST_CR3, host_cr3),
  518. FIELD(HOST_CR4, host_cr4),
  519. FIELD(HOST_FS_BASE, host_fs_base),
  520. FIELD(HOST_GS_BASE, host_gs_base),
  521. FIELD(HOST_TR_BASE, host_tr_base),
  522. FIELD(HOST_GDTR_BASE, host_gdtr_base),
  523. FIELD(HOST_IDTR_BASE, host_idtr_base),
  524. FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp),
  525. FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip),
  526. FIELD(HOST_RSP, host_rsp),
  527. FIELD(HOST_RIP, host_rip),
  528. };
  529. static const int max_vmcs_field = ARRAY_SIZE(vmcs_field_to_offset_table);
  530. static inline short vmcs_field_to_offset(unsigned long field)
  531. {
  532. if (field >= max_vmcs_field || vmcs_field_to_offset_table[field] == 0)
  533. return -1;
  534. return vmcs_field_to_offset_table[field];
  535. }
  536. static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
  537. {
  538. return to_vmx(vcpu)->nested.current_vmcs12;
  539. }
  540. static struct page *nested_get_page(struct kvm_vcpu *vcpu, gpa_t addr)
  541. {
  542. struct page *page = gfn_to_page(vcpu->kvm, addr >> PAGE_SHIFT);
  543. if (is_error_page(page)) {
  544. kvm_release_page_clean(page);
  545. return NULL;
  546. }
  547. return page;
  548. }
  549. static void nested_release_page(struct page *page)
  550. {
  551. kvm_release_page_dirty(page);
  552. }
  553. static void nested_release_page_clean(struct page *page)
  554. {
  555. kvm_release_page_clean(page);
  556. }
  557. static u64 construct_eptp(unsigned long root_hpa);
  558. static void kvm_cpu_vmxon(u64 addr);
  559. static void kvm_cpu_vmxoff(void);
  560. static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3);
  561. static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr);
  562. static DEFINE_PER_CPU(struct vmcs *, vmxarea);
  563. static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
  564. /*
  565. * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
  566. * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
  567. */
  568. static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
  569. static DEFINE_PER_CPU(struct desc_ptr, host_gdt);
  570. static unsigned long *vmx_io_bitmap_a;
  571. static unsigned long *vmx_io_bitmap_b;
  572. static unsigned long *vmx_msr_bitmap_legacy;
  573. static unsigned long *vmx_msr_bitmap_longmode;
  574. static bool cpu_has_load_ia32_efer;
  575. static bool cpu_has_load_perf_global_ctrl;
  576. static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
  577. static DEFINE_SPINLOCK(vmx_vpid_lock);
  578. static struct vmcs_config {
  579. int size;
  580. int order;
  581. u32 revision_id;
  582. u32 pin_based_exec_ctrl;
  583. u32 cpu_based_exec_ctrl;
  584. u32 cpu_based_2nd_exec_ctrl;
  585. u32 vmexit_ctrl;
  586. u32 vmentry_ctrl;
  587. } vmcs_config;
  588. static struct vmx_capability {
  589. u32 ept;
  590. u32 vpid;
  591. } vmx_capability;
  592. #define VMX_SEGMENT_FIELD(seg) \
  593. [VCPU_SREG_##seg] = { \
  594. .selector = GUEST_##seg##_SELECTOR, \
  595. .base = GUEST_##seg##_BASE, \
  596. .limit = GUEST_##seg##_LIMIT, \
  597. .ar_bytes = GUEST_##seg##_AR_BYTES, \
  598. }
  599. static struct kvm_vmx_segment_field {
  600. unsigned selector;
  601. unsigned base;
  602. unsigned limit;
  603. unsigned ar_bytes;
  604. } kvm_vmx_segment_fields[] = {
  605. VMX_SEGMENT_FIELD(CS),
  606. VMX_SEGMENT_FIELD(DS),
  607. VMX_SEGMENT_FIELD(ES),
  608. VMX_SEGMENT_FIELD(FS),
  609. VMX_SEGMENT_FIELD(GS),
  610. VMX_SEGMENT_FIELD(SS),
  611. VMX_SEGMENT_FIELD(TR),
  612. VMX_SEGMENT_FIELD(LDTR),
  613. };
  614. static u64 host_efer;
  615. static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
  616. /*
  617. * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
  618. * away by decrementing the array size.
  619. */
  620. static const u32 vmx_msr_index[] = {
  621. #ifdef CONFIG_X86_64
  622. MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
  623. #endif
  624. MSR_EFER, MSR_TSC_AUX, MSR_STAR,
  625. };
  626. #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
  627. static inline bool is_page_fault(u32 intr_info)
  628. {
  629. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  630. INTR_INFO_VALID_MASK)) ==
  631. (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
  632. }
  633. static inline bool is_no_device(u32 intr_info)
  634. {
  635. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  636. INTR_INFO_VALID_MASK)) ==
  637. (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
  638. }
  639. static inline bool is_invalid_opcode(u32 intr_info)
  640. {
  641. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  642. INTR_INFO_VALID_MASK)) ==
  643. (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
  644. }
  645. static inline bool is_external_interrupt(u32 intr_info)
  646. {
  647. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
  648. == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  649. }
  650. static inline bool is_machine_check(u32 intr_info)
  651. {
  652. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  653. INTR_INFO_VALID_MASK)) ==
  654. (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
  655. }
  656. static inline bool cpu_has_vmx_msr_bitmap(void)
  657. {
  658. return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
  659. }
  660. static inline bool cpu_has_vmx_tpr_shadow(void)
  661. {
  662. return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
  663. }
  664. static inline bool vm_need_tpr_shadow(struct kvm *kvm)
  665. {
  666. return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
  667. }
  668. static inline bool cpu_has_secondary_exec_ctrls(void)
  669. {
  670. return vmcs_config.cpu_based_exec_ctrl &
  671. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
  672. }
  673. static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
  674. {
  675. return vmcs_config.cpu_based_2nd_exec_ctrl &
  676. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  677. }
  678. static inline bool cpu_has_vmx_flexpriority(void)
  679. {
  680. return cpu_has_vmx_tpr_shadow() &&
  681. cpu_has_vmx_virtualize_apic_accesses();
  682. }
  683. static inline bool cpu_has_vmx_ept_execute_only(void)
  684. {
  685. return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
  686. }
  687. static inline bool cpu_has_vmx_eptp_uncacheable(void)
  688. {
  689. return vmx_capability.ept & VMX_EPTP_UC_BIT;
  690. }
  691. static inline bool cpu_has_vmx_eptp_writeback(void)
  692. {
  693. return vmx_capability.ept & VMX_EPTP_WB_BIT;
  694. }
  695. static inline bool cpu_has_vmx_ept_2m_page(void)
  696. {
  697. return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
  698. }
  699. static inline bool cpu_has_vmx_ept_1g_page(void)
  700. {
  701. return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
  702. }
  703. static inline bool cpu_has_vmx_ept_4levels(void)
  704. {
  705. return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
  706. }
  707. static inline bool cpu_has_vmx_invept_individual_addr(void)
  708. {
  709. return vmx_capability.ept & VMX_EPT_EXTENT_INDIVIDUAL_BIT;
  710. }
  711. static inline bool cpu_has_vmx_invept_context(void)
  712. {
  713. return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
  714. }
  715. static inline bool cpu_has_vmx_invept_global(void)
  716. {
  717. return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
  718. }
  719. static inline bool cpu_has_vmx_invvpid_single(void)
  720. {
  721. return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
  722. }
  723. static inline bool cpu_has_vmx_invvpid_global(void)
  724. {
  725. return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
  726. }
  727. static inline bool cpu_has_vmx_ept(void)
  728. {
  729. return vmcs_config.cpu_based_2nd_exec_ctrl &
  730. SECONDARY_EXEC_ENABLE_EPT;
  731. }
  732. static inline bool cpu_has_vmx_unrestricted_guest(void)
  733. {
  734. return vmcs_config.cpu_based_2nd_exec_ctrl &
  735. SECONDARY_EXEC_UNRESTRICTED_GUEST;
  736. }
  737. static inline bool cpu_has_vmx_ple(void)
  738. {
  739. return vmcs_config.cpu_based_2nd_exec_ctrl &
  740. SECONDARY_EXEC_PAUSE_LOOP_EXITING;
  741. }
  742. static inline bool vm_need_virtualize_apic_accesses(struct kvm *kvm)
  743. {
  744. return flexpriority_enabled && irqchip_in_kernel(kvm);
  745. }
  746. static inline bool cpu_has_vmx_vpid(void)
  747. {
  748. return vmcs_config.cpu_based_2nd_exec_ctrl &
  749. SECONDARY_EXEC_ENABLE_VPID;
  750. }
  751. static inline bool cpu_has_vmx_rdtscp(void)
  752. {
  753. return vmcs_config.cpu_based_2nd_exec_ctrl &
  754. SECONDARY_EXEC_RDTSCP;
  755. }
  756. static inline bool cpu_has_virtual_nmis(void)
  757. {
  758. return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
  759. }
  760. static inline bool cpu_has_vmx_wbinvd_exit(void)
  761. {
  762. return vmcs_config.cpu_based_2nd_exec_ctrl &
  763. SECONDARY_EXEC_WBINVD_EXITING;
  764. }
  765. static inline bool report_flexpriority(void)
  766. {
  767. return flexpriority_enabled;
  768. }
  769. static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit)
  770. {
  771. return vmcs12->cpu_based_vm_exec_control & bit;
  772. }
  773. static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit)
  774. {
  775. return (vmcs12->cpu_based_vm_exec_control &
  776. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
  777. (vmcs12->secondary_vm_exec_control & bit);
  778. }
  779. static inline bool nested_cpu_has_virtual_nmis(struct vmcs12 *vmcs12,
  780. struct kvm_vcpu *vcpu)
  781. {
  782. return vmcs12->pin_based_vm_exec_control & PIN_BASED_VIRTUAL_NMIS;
  783. }
  784. static inline bool is_exception(u32 intr_info)
  785. {
  786. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
  787. == (INTR_TYPE_HARD_EXCEPTION | INTR_INFO_VALID_MASK);
  788. }
  789. static void nested_vmx_vmexit(struct kvm_vcpu *vcpu);
  790. static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
  791. struct vmcs12 *vmcs12,
  792. u32 reason, unsigned long qualification);
  793. static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
  794. {
  795. int i;
  796. for (i = 0; i < vmx->nmsrs; ++i)
  797. if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
  798. return i;
  799. return -1;
  800. }
  801. static inline void __invvpid(int ext, u16 vpid, gva_t gva)
  802. {
  803. struct {
  804. u64 vpid : 16;
  805. u64 rsvd : 48;
  806. u64 gva;
  807. } operand = { vpid, 0, gva };
  808. asm volatile (__ex(ASM_VMX_INVVPID)
  809. /* CF==1 or ZF==1 --> rc = -1 */
  810. "; ja 1f ; ud2 ; 1:"
  811. : : "a"(&operand), "c"(ext) : "cc", "memory");
  812. }
  813. static inline void __invept(int ext, u64 eptp, gpa_t gpa)
  814. {
  815. struct {
  816. u64 eptp, gpa;
  817. } operand = {eptp, gpa};
  818. asm volatile (__ex(ASM_VMX_INVEPT)
  819. /* CF==1 or ZF==1 --> rc = -1 */
  820. "; ja 1f ; ud2 ; 1:\n"
  821. : : "a" (&operand), "c" (ext) : "cc", "memory");
  822. }
  823. static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
  824. {
  825. int i;
  826. i = __find_msr_index(vmx, msr);
  827. if (i >= 0)
  828. return &vmx->guest_msrs[i];
  829. return NULL;
  830. }
  831. static void vmcs_clear(struct vmcs *vmcs)
  832. {
  833. u64 phys_addr = __pa(vmcs);
  834. u8 error;
  835. asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
  836. : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
  837. : "cc", "memory");
  838. if (error)
  839. printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
  840. vmcs, phys_addr);
  841. }
  842. static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
  843. {
  844. vmcs_clear(loaded_vmcs->vmcs);
  845. loaded_vmcs->cpu = -1;
  846. loaded_vmcs->launched = 0;
  847. }
  848. static void vmcs_load(struct vmcs *vmcs)
  849. {
  850. u64 phys_addr = __pa(vmcs);
  851. u8 error;
  852. asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
  853. : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
  854. : "cc", "memory");
  855. if (error)
  856. printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n",
  857. vmcs, phys_addr);
  858. }
  859. static void __loaded_vmcs_clear(void *arg)
  860. {
  861. struct loaded_vmcs *loaded_vmcs = arg;
  862. int cpu = raw_smp_processor_id();
  863. if (loaded_vmcs->cpu != cpu)
  864. return; /* vcpu migration can race with cpu offline */
  865. if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
  866. per_cpu(current_vmcs, cpu) = NULL;
  867. list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
  868. loaded_vmcs_init(loaded_vmcs);
  869. }
  870. static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
  871. {
  872. if (loaded_vmcs->cpu != -1)
  873. smp_call_function_single(
  874. loaded_vmcs->cpu, __loaded_vmcs_clear, loaded_vmcs, 1);
  875. }
  876. static inline void vpid_sync_vcpu_single(struct vcpu_vmx *vmx)
  877. {
  878. if (vmx->vpid == 0)
  879. return;
  880. if (cpu_has_vmx_invvpid_single())
  881. __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
  882. }
  883. static inline void vpid_sync_vcpu_global(void)
  884. {
  885. if (cpu_has_vmx_invvpid_global())
  886. __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
  887. }
  888. static inline void vpid_sync_context(struct vcpu_vmx *vmx)
  889. {
  890. if (cpu_has_vmx_invvpid_single())
  891. vpid_sync_vcpu_single(vmx);
  892. else
  893. vpid_sync_vcpu_global();
  894. }
  895. static inline void ept_sync_global(void)
  896. {
  897. if (cpu_has_vmx_invept_global())
  898. __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
  899. }
  900. static inline void ept_sync_context(u64 eptp)
  901. {
  902. if (enable_ept) {
  903. if (cpu_has_vmx_invept_context())
  904. __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
  905. else
  906. ept_sync_global();
  907. }
  908. }
  909. static inline void ept_sync_individual_addr(u64 eptp, gpa_t gpa)
  910. {
  911. if (enable_ept) {
  912. if (cpu_has_vmx_invept_individual_addr())
  913. __invept(VMX_EPT_EXTENT_INDIVIDUAL_ADDR,
  914. eptp, gpa);
  915. else
  916. ept_sync_context(eptp);
  917. }
  918. }
  919. static __always_inline unsigned long vmcs_readl(unsigned long field)
  920. {
  921. unsigned long value;
  922. asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0")
  923. : "=a"(value) : "d"(field) : "cc");
  924. return value;
  925. }
  926. static __always_inline u16 vmcs_read16(unsigned long field)
  927. {
  928. return vmcs_readl(field);
  929. }
  930. static __always_inline u32 vmcs_read32(unsigned long field)
  931. {
  932. return vmcs_readl(field);
  933. }
  934. static __always_inline u64 vmcs_read64(unsigned long field)
  935. {
  936. #ifdef CONFIG_X86_64
  937. return vmcs_readl(field);
  938. #else
  939. return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
  940. #endif
  941. }
  942. static noinline void vmwrite_error(unsigned long field, unsigned long value)
  943. {
  944. printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
  945. field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
  946. dump_stack();
  947. }
  948. static void vmcs_writel(unsigned long field, unsigned long value)
  949. {
  950. u8 error;
  951. asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
  952. : "=q"(error) : "a"(value), "d"(field) : "cc");
  953. if (unlikely(error))
  954. vmwrite_error(field, value);
  955. }
  956. static void vmcs_write16(unsigned long field, u16 value)
  957. {
  958. vmcs_writel(field, value);
  959. }
  960. static void vmcs_write32(unsigned long field, u32 value)
  961. {
  962. vmcs_writel(field, value);
  963. }
  964. static void vmcs_write64(unsigned long field, u64 value)
  965. {
  966. vmcs_writel(field, value);
  967. #ifndef CONFIG_X86_64
  968. asm volatile ("");
  969. vmcs_writel(field+1, value >> 32);
  970. #endif
  971. }
  972. static void vmcs_clear_bits(unsigned long field, u32 mask)
  973. {
  974. vmcs_writel(field, vmcs_readl(field) & ~mask);
  975. }
  976. static void vmcs_set_bits(unsigned long field, u32 mask)
  977. {
  978. vmcs_writel(field, vmcs_readl(field) | mask);
  979. }
  980. static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
  981. {
  982. vmx->segment_cache.bitmask = 0;
  983. }
  984. static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
  985. unsigned field)
  986. {
  987. bool ret;
  988. u32 mask = 1 << (seg * SEG_FIELD_NR + field);
  989. if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
  990. vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
  991. vmx->segment_cache.bitmask = 0;
  992. }
  993. ret = vmx->segment_cache.bitmask & mask;
  994. vmx->segment_cache.bitmask |= mask;
  995. return ret;
  996. }
  997. static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
  998. {
  999. u16 *p = &vmx->segment_cache.seg[seg].selector;
  1000. if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
  1001. *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
  1002. return *p;
  1003. }
  1004. static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
  1005. {
  1006. ulong *p = &vmx->segment_cache.seg[seg].base;
  1007. if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
  1008. *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
  1009. return *p;
  1010. }
  1011. static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
  1012. {
  1013. u32 *p = &vmx->segment_cache.seg[seg].limit;
  1014. if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
  1015. *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
  1016. return *p;
  1017. }
  1018. static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
  1019. {
  1020. u32 *p = &vmx->segment_cache.seg[seg].ar;
  1021. if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
  1022. *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
  1023. return *p;
  1024. }
  1025. static void update_exception_bitmap(struct kvm_vcpu *vcpu)
  1026. {
  1027. u32 eb;
  1028. eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
  1029. (1u << NM_VECTOR) | (1u << DB_VECTOR);
  1030. if ((vcpu->guest_debug &
  1031. (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
  1032. (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
  1033. eb |= 1u << BP_VECTOR;
  1034. if (to_vmx(vcpu)->rmode.vm86_active)
  1035. eb = ~0;
  1036. if (enable_ept)
  1037. eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
  1038. if (vcpu->fpu_active)
  1039. eb &= ~(1u << NM_VECTOR);
  1040. /* When we are running a nested L2 guest and L1 specified for it a
  1041. * certain exception bitmap, we must trap the same exceptions and pass
  1042. * them to L1. When running L2, we will only handle the exceptions
  1043. * specified above if L1 did not want them.
  1044. */
  1045. if (is_guest_mode(vcpu))
  1046. eb |= get_vmcs12(vcpu)->exception_bitmap;
  1047. vmcs_write32(EXCEPTION_BITMAP, eb);
  1048. }
  1049. static void clear_atomic_switch_msr_special(unsigned long entry,
  1050. unsigned long exit)
  1051. {
  1052. vmcs_clear_bits(VM_ENTRY_CONTROLS, entry);
  1053. vmcs_clear_bits(VM_EXIT_CONTROLS, exit);
  1054. }
  1055. static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
  1056. {
  1057. unsigned i;
  1058. struct msr_autoload *m = &vmx->msr_autoload;
  1059. switch (msr) {
  1060. case MSR_EFER:
  1061. if (cpu_has_load_ia32_efer) {
  1062. clear_atomic_switch_msr_special(VM_ENTRY_LOAD_IA32_EFER,
  1063. VM_EXIT_LOAD_IA32_EFER);
  1064. return;
  1065. }
  1066. break;
  1067. case MSR_CORE_PERF_GLOBAL_CTRL:
  1068. if (cpu_has_load_perf_global_ctrl) {
  1069. clear_atomic_switch_msr_special(
  1070. VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
  1071. VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
  1072. return;
  1073. }
  1074. break;
  1075. }
  1076. for (i = 0; i < m->nr; ++i)
  1077. if (m->guest[i].index == msr)
  1078. break;
  1079. if (i == m->nr)
  1080. return;
  1081. --m->nr;
  1082. m->guest[i] = m->guest[m->nr];
  1083. m->host[i] = m->host[m->nr];
  1084. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
  1085. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
  1086. }
  1087. static void add_atomic_switch_msr_special(unsigned long entry,
  1088. unsigned long exit, unsigned long guest_val_vmcs,
  1089. unsigned long host_val_vmcs, u64 guest_val, u64 host_val)
  1090. {
  1091. vmcs_write64(guest_val_vmcs, guest_val);
  1092. vmcs_write64(host_val_vmcs, host_val);
  1093. vmcs_set_bits(VM_ENTRY_CONTROLS, entry);
  1094. vmcs_set_bits(VM_EXIT_CONTROLS, exit);
  1095. }
  1096. static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
  1097. u64 guest_val, u64 host_val)
  1098. {
  1099. unsigned i;
  1100. struct msr_autoload *m = &vmx->msr_autoload;
  1101. switch (msr) {
  1102. case MSR_EFER:
  1103. if (cpu_has_load_ia32_efer) {
  1104. add_atomic_switch_msr_special(VM_ENTRY_LOAD_IA32_EFER,
  1105. VM_EXIT_LOAD_IA32_EFER,
  1106. GUEST_IA32_EFER,
  1107. HOST_IA32_EFER,
  1108. guest_val, host_val);
  1109. return;
  1110. }
  1111. break;
  1112. case MSR_CORE_PERF_GLOBAL_CTRL:
  1113. if (cpu_has_load_perf_global_ctrl) {
  1114. add_atomic_switch_msr_special(
  1115. VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
  1116. VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
  1117. GUEST_IA32_PERF_GLOBAL_CTRL,
  1118. HOST_IA32_PERF_GLOBAL_CTRL,
  1119. guest_val, host_val);
  1120. return;
  1121. }
  1122. break;
  1123. }
  1124. for (i = 0; i < m->nr; ++i)
  1125. if (m->guest[i].index == msr)
  1126. break;
  1127. if (i == NR_AUTOLOAD_MSRS) {
  1128. printk_once(KERN_WARNING"Not enough mst switch entries. "
  1129. "Can't add msr %x\n", msr);
  1130. return;
  1131. } else if (i == m->nr) {
  1132. ++m->nr;
  1133. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
  1134. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
  1135. }
  1136. m->guest[i].index = msr;
  1137. m->guest[i].value = guest_val;
  1138. m->host[i].index = msr;
  1139. m->host[i].value = host_val;
  1140. }
  1141. static void reload_tss(void)
  1142. {
  1143. /*
  1144. * VT restores TR but not its size. Useless.
  1145. */
  1146. struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
  1147. struct desc_struct *descs;
  1148. descs = (void *)gdt->address;
  1149. descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
  1150. load_TR_desc();
  1151. }
  1152. static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
  1153. {
  1154. u64 guest_efer;
  1155. u64 ignore_bits;
  1156. guest_efer = vmx->vcpu.arch.efer;
  1157. /*
  1158. * NX is emulated; LMA and LME handled by hardware; SCE meaninless
  1159. * outside long mode
  1160. */
  1161. ignore_bits = EFER_NX | EFER_SCE;
  1162. #ifdef CONFIG_X86_64
  1163. ignore_bits |= EFER_LMA | EFER_LME;
  1164. /* SCE is meaningful only in long mode on Intel */
  1165. if (guest_efer & EFER_LMA)
  1166. ignore_bits &= ~(u64)EFER_SCE;
  1167. #endif
  1168. guest_efer &= ~ignore_bits;
  1169. guest_efer |= host_efer & ignore_bits;
  1170. vmx->guest_msrs[efer_offset].data = guest_efer;
  1171. vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
  1172. clear_atomic_switch_msr(vmx, MSR_EFER);
  1173. /* On ept, can't emulate nx, and must switch nx atomically */
  1174. if (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX)) {
  1175. guest_efer = vmx->vcpu.arch.efer;
  1176. if (!(guest_efer & EFER_LMA))
  1177. guest_efer &= ~EFER_LME;
  1178. add_atomic_switch_msr(vmx, MSR_EFER, guest_efer, host_efer);
  1179. return false;
  1180. }
  1181. return true;
  1182. }
  1183. static unsigned long segment_base(u16 selector)
  1184. {
  1185. struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
  1186. struct desc_struct *d;
  1187. unsigned long table_base;
  1188. unsigned long v;
  1189. if (!(selector & ~3))
  1190. return 0;
  1191. table_base = gdt->address;
  1192. if (selector & 4) { /* from ldt */
  1193. u16 ldt_selector = kvm_read_ldt();
  1194. if (!(ldt_selector & ~3))
  1195. return 0;
  1196. table_base = segment_base(ldt_selector);
  1197. }
  1198. d = (struct desc_struct *)(table_base + (selector & ~7));
  1199. v = get_desc_base(d);
  1200. #ifdef CONFIG_X86_64
  1201. if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
  1202. v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
  1203. #endif
  1204. return v;
  1205. }
  1206. static inline unsigned long kvm_read_tr_base(void)
  1207. {
  1208. u16 tr;
  1209. asm("str %0" : "=g"(tr));
  1210. return segment_base(tr);
  1211. }
  1212. static void vmx_save_host_state(struct kvm_vcpu *vcpu)
  1213. {
  1214. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1215. int i;
  1216. if (vmx->host_state.loaded)
  1217. return;
  1218. vmx->host_state.loaded = 1;
  1219. /*
  1220. * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
  1221. * allow segment selectors with cpl > 0 or ti == 1.
  1222. */
  1223. vmx->host_state.ldt_sel = kvm_read_ldt();
  1224. vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
  1225. savesegment(fs, vmx->host_state.fs_sel);
  1226. if (!(vmx->host_state.fs_sel & 7)) {
  1227. vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
  1228. vmx->host_state.fs_reload_needed = 0;
  1229. } else {
  1230. vmcs_write16(HOST_FS_SELECTOR, 0);
  1231. vmx->host_state.fs_reload_needed = 1;
  1232. }
  1233. savesegment(gs, vmx->host_state.gs_sel);
  1234. if (!(vmx->host_state.gs_sel & 7))
  1235. vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
  1236. else {
  1237. vmcs_write16(HOST_GS_SELECTOR, 0);
  1238. vmx->host_state.gs_ldt_reload_needed = 1;
  1239. }
  1240. #ifdef CONFIG_X86_64
  1241. vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
  1242. vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
  1243. #else
  1244. vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
  1245. vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
  1246. #endif
  1247. #ifdef CONFIG_X86_64
  1248. rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
  1249. if (is_long_mode(&vmx->vcpu))
  1250. wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
  1251. #endif
  1252. for (i = 0; i < vmx->save_nmsrs; ++i)
  1253. kvm_set_shared_msr(vmx->guest_msrs[i].index,
  1254. vmx->guest_msrs[i].data,
  1255. vmx->guest_msrs[i].mask);
  1256. }
  1257. static void __vmx_load_host_state(struct vcpu_vmx *vmx)
  1258. {
  1259. if (!vmx->host_state.loaded)
  1260. return;
  1261. ++vmx->vcpu.stat.host_state_reload;
  1262. vmx->host_state.loaded = 0;
  1263. #ifdef CONFIG_X86_64
  1264. if (is_long_mode(&vmx->vcpu))
  1265. rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
  1266. #endif
  1267. if (vmx->host_state.gs_ldt_reload_needed) {
  1268. kvm_load_ldt(vmx->host_state.ldt_sel);
  1269. #ifdef CONFIG_X86_64
  1270. load_gs_index(vmx->host_state.gs_sel);
  1271. #else
  1272. loadsegment(gs, vmx->host_state.gs_sel);
  1273. #endif
  1274. }
  1275. if (vmx->host_state.fs_reload_needed)
  1276. loadsegment(fs, vmx->host_state.fs_sel);
  1277. reload_tss();
  1278. #ifdef CONFIG_X86_64
  1279. wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
  1280. #endif
  1281. if (current_thread_info()->status & TS_USEDFPU)
  1282. clts();
  1283. load_gdt(&__get_cpu_var(host_gdt));
  1284. }
  1285. static void vmx_load_host_state(struct vcpu_vmx *vmx)
  1286. {
  1287. preempt_disable();
  1288. __vmx_load_host_state(vmx);
  1289. preempt_enable();
  1290. }
  1291. /*
  1292. * Switches to specified vcpu, until a matching vcpu_put(), but assumes
  1293. * vcpu mutex is already taken.
  1294. */
  1295. static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  1296. {
  1297. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1298. u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
  1299. if (!vmm_exclusive)
  1300. kvm_cpu_vmxon(phys_addr);
  1301. else if (vmx->loaded_vmcs->cpu != cpu)
  1302. loaded_vmcs_clear(vmx->loaded_vmcs);
  1303. if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
  1304. per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
  1305. vmcs_load(vmx->loaded_vmcs->vmcs);
  1306. }
  1307. if (vmx->loaded_vmcs->cpu != cpu) {
  1308. struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
  1309. unsigned long sysenter_esp;
  1310. kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
  1311. local_irq_disable();
  1312. list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
  1313. &per_cpu(loaded_vmcss_on_cpu, cpu));
  1314. local_irq_enable();
  1315. /*
  1316. * Linux uses per-cpu TSS and GDT, so set these when switching
  1317. * processors.
  1318. */
  1319. vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
  1320. vmcs_writel(HOST_GDTR_BASE, gdt->address); /* 22.2.4 */
  1321. rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
  1322. vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
  1323. vmx->loaded_vmcs->cpu = cpu;
  1324. }
  1325. }
  1326. static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
  1327. {
  1328. __vmx_load_host_state(to_vmx(vcpu));
  1329. if (!vmm_exclusive) {
  1330. __loaded_vmcs_clear(to_vmx(vcpu)->loaded_vmcs);
  1331. vcpu->cpu = -1;
  1332. kvm_cpu_vmxoff();
  1333. }
  1334. }
  1335. static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
  1336. {
  1337. ulong cr0;
  1338. if (vcpu->fpu_active)
  1339. return;
  1340. vcpu->fpu_active = 1;
  1341. cr0 = vmcs_readl(GUEST_CR0);
  1342. cr0 &= ~(X86_CR0_TS | X86_CR0_MP);
  1343. cr0 |= kvm_read_cr0_bits(vcpu, X86_CR0_TS | X86_CR0_MP);
  1344. vmcs_writel(GUEST_CR0, cr0);
  1345. update_exception_bitmap(vcpu);
  1346. vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
  1347. if (is_guest_mode(vcpu))
  1348. vcpu->arch.cr0_guest_owned_bits &=
  1349. ~get_vmcs12(vcpu)->cr0_guest_host_mask;
  1350. vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
  1351. }
  1352. static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
  1353. /*
  1354. * Return the cr0 value that a nested guest would read. This is a combination
  1355. * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
  1356. * its hypervisor (cr0_read_shadow).
  1357. */
  1358. static inline unsigned long nested_read_cr0(struct vmcs12 *fields)
  1359. {
  1360. return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) |
  1361. (fields->cr0_read_shadow & fields->cr0_guest_host_mask);
  1362. }
  1363. static inline unsigned long nested_read_cr4(struct vmcs12 *fields)
  1364. {
  1365. return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) |
  1366. (fields->cr4_read_shadow & fields->cr4_guest_host_mask);
  1367. }
  1368. static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
  1369. {
  1370. /* Note that there is no vcpu->fpu_active = 0 here. The caller must
  1371. * set this *before* calling this function.
  1372. */
  1373. vmx_decache_cr0_guest_bits(vcpu);
  1374. vmcs_set_bits(GUEST_CR0, X86_CR0_TS | X86_CR0_MP);
  1375. update_exception_bitmap(vcpu);
  1376. vcpu->arch.cr0_guest_owned_bits = 0;
  1377. vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
  1378. if (is_guest_mode(vcpu)) {
  1379. /*
  1380. * L1's specified read shadow might not contain the TS bit,
  1381. * so now that we turned on shadowing of this bit, we need to
  1382. * set this bit of the shadow. Like in nested_vmx_run we need
  1383. * nested_read_cr0(vmcs12), but vmcs12->guest_cr0 is not yet
  1384. * up-to-date here because we just decached cr0.TS (and we'll
  1385. * only update vmcs12->guest_cr0 on nested exit).
  1386. */
  1387. struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
  1388. vmcs12->guest_cr0 = (vmcs12->guest_cr0 & ~X86_CR0_TS) |
  1389. (vcpu->arch.cr0 & X86_CR0_TS);
  1390. vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
  1391. } else
  1392. vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
  1393. }
  1394. static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
  1395. {
  1396. unsigned long rflags, save_rflags;
  1397. if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
  1398. __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
  1399. rflags = vmcs_readl(GUEST_RFLAGS);
  1400. if (to_vmx(vcpu)->rmode.vm86_active) {
  1401. rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
  1402. save_rflags = to_vmx(vcpu)->rmode.save_rflags;
  1403. rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
  1404. }
  1405. to_vmx(vcpu)->rflags = rflags;
  1406. }
  1407. return to_vmx(vcpu)->rflags;
  1408. }
  1409. static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  1410. {
  1411. __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
  1412. __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
  1413. to_vmx(vcpu)->rflags = rflags;
  1414. if (to_vmx(vcpu)->rmode.vm86_active) {
  1415. to_vmx(vcpu)->rmode.save_rflags = rflags;
  1416. rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  1417. }
  1418. vmcs_writel(GUEST_RFLAGS, rflags);
  1419. }
  1420. static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
  1421. {
  1422. u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  1423. int ret = 0;
  1424. if (interruptibility & GUEST_INTR_STATE_STI)
  1425. ret |= KVM_X86_SHADOW_INT_STI;
  1426. if (interruptibility & GUEST_INTR_STATE_MOV_SS)
  1427. ret |= KVM_X86_SHADOW_INT_MOV_SS;
  1428. return ret & mask;
  1429. }
  1430. static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
  1431. {
  1432. u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  1433. u32 interruptibility = interruptibility_old;
  1434. interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
  1435. if (mask & KVM_X86_SHADOW_INT_MOV_SS)
  1436. interruptibility |= GUEST_INTR_STATE_MOV_SS;
  1437. else if (mask & KVM_X86_SHADOW_INT_STI)
  1438. interruptibility |= GUEST_INTR_STATE_STI;
  1439. if ((interruptibility != interruptibility_old))
  1440. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
  1441. }
  1442. static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
  1443. {
  1444. unsigned long rip;
  1445. rip = kvm_rip_read(vcpu);
  1446. rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  1447. kvm_rip_write(vcpu, rip);
  1448. /* skipping an emulated instruction also counts */
  1449. vmx_set_interrupt_shadow(vcpu, 0);
  1450. }
  1451. static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
  1452. {
  1453. /* Ensure that we clear the HLT state in the VMCS. We don't need to
  1454. * explicitly skip the instruction because if the HLT state is set, then
  1455. * the instruction is already executing and RIP has already been
  1456. * advanced. */
  1457. if (!yield_on_hlt &&
  1458. vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
  1459. vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
  1460. }
  1461. /*
  1462. * KVM wants to inject page-faults which it got to the guest. This function
  1463. * checks whether in a nested guest, we need to inject them to L1 or L2.
  1464. * This function assumes it is called with the exit reason in vmcs02 being
  1465. * a #PF exception (this is the only case in which KVM injects a #PF when L2
  1466. * is running).
  1467. */
  1468. static int nested_pf_handled(struct kvm_vcpu *vcpu)
  1469. {
  1470. struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
  1471. /* TODO: also check PFEC_MATCH/MASK, not just EB.PF. */
  1472. if (!(vmcs12->exception_bitmap & PF_VECTOR))
  1473. return 0;
  1474. nested_vmx_vmexit(vcpu);
  1475. return 1;
  1476. }
  1477. static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
  1478. bool has_error_code, u32 error_code,
  1479. bool reinject)
  1480. {
  1481. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1482. u32 intr_info = nr | INTR_INFO_VALID_MASK;
  1483. if (nr == PF_VECTOR && is_guest_mode(vcpu) &&
  1484. nested_pf_handled(vcpu))
  1485. return;
  1486. if (has_error_code) {
  1487. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
  1488. intr_info |= INTR_INFO_DELIVER_CODE_MASK;
  1489. }
  1490. if (vmx->rmode.vm86_active) {
  1491. int inc_eip = 0;
  1492. if (kvm_exception_is_soft(nr))
  1493. inc_eip = vcpu->arch.event_exit_inst_len;
  1494. if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
  1495. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  1496. return;
  1497. }
  1498. if (kvm_exception_is_soft(nr)) {
  1499. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
  1500. vmx->vcpu.arch.event_exit_inst_len);
  1501. intr_info |= INTR_TYPE_SOFT_EXCEPTION;
  1502. } else
  1503. intr_info |= INTR_TYPE_HARD_EXCEPTION;
  1504. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
  1505. vmx_clear_hlt(vcpu);
  1506. }
  1507. static bool vmx_rdtscp_supported(void)
  1508. {
  1509. return cpu_has_vmx_rdtscp();
  1510. }
  1511. /*
  1512. * Swap MSR entry in host/guest MSR entry array.
  1513. */
  1514. static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
  1515. {
  1516. struct shared_msr_entry tmp;
  1517. tmp = vmx->guest_msrs[to];
  1518. vmx->guest_msrs[to] = vmx->guest_msrs[from];
  1519. vmx->guest_msrs[from] = tmp;
  1520. }
  1521. /*
  1522. * Set up the vmcs to automatically save and restore system
  1523. * msrs. Don't touch the 64-bit msrs if the guest is in legacy
  1524. * mode, as fiddling with msrs is very expensive.
  1525. */
  1526. static void setup_msrs(struct vcpu_vmx *vmx)
  1527. {
  1528. int save_nmsrs, index;
  1529. unsigned long *msr_bitmap;
  1530. vmx_load_host_state(vmx);
  1531. save_nmsrs = 0;
  1532. #ifdef CONFIG_X86_64
  1533. if (is_long_mode(&vmx->vcpu)) {
  1534. index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
  1535. if (index >= 0)
  1536. move_msr_up(vmx, index, save_nmsrs++);
  1537. index = __find_msr_index(vmx, MSR_LSTAR);
  1538. if (index >= 0)
  1539. move_msr_up(vmx, index, save_nmsrs++);
  1540. index = __find_msr_index(vmx, MSR_CSTAR);
  1541. if (index >= 0)
  1542. move_msr_up(vmx, index, save_nmsrs++);
  1543. index = __find_msr_index(vmx, MSR_TSC_AUX);
  1544. if (index >= 0 && vmx->rdtscp_enabled)
  1545. move_msr_up(vmx, index, save_nmsrs++);
  1546. /*
  1547. * MSR_STAR is only needed on long mode guests, and only
  1548. * if efer.sce is enabled.
  1549. */
  1550. index = __find_msr_index(vmx, MSR_STAR);
  1551. if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
  1552. move_msr_up(vmx, index, save_nmsrs++);
  1553. }
  1554. #endif
  1555. index = __find_msr_index(vmx, MSR_EFER);
  1556. if (index >= 0 && update_transition_efer(vmx, index))
  1557. move_msr_up(vmx, index, save_nmsrs++);
  1558. vmx->save_nmsrs = save_nmsrs;
  1559. if (cpu_has_vmx_msr_bitmap()) {
  1560. if (is_long_mode(&vmx->vcpu))
  1561. msr_bitmap = vmx_msr_bitmap_longmode;
  1562. else
  1563. msr_bitmap = vmx_msr_bitmap_legacy;
  1564. vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
  1565. }
  1566. }
  1567. /*
  1568. * reads and returns guest's timestamp counter "register"
  1569. * guest_tsc = host_tsc + tsc_offset -- 21.3
  1570. */
  1571. static u64 guest_read_tsc(void)
  1572. {
  1573. u64 host_tsc, tsc_offset;
  1574. rdtscll(host_tsc);
  1575. tsc_offset = vmcs_read64(TSC_OFFSET);
  1576. return host_tsc + tsc_offset;
  1577. }
  1578. /*
  1579. * Like guest_read_tsc, but always returns L1's notion of the timestamp
  1580. * counter, even if a nested guest (L2) is currently running.
  1581. */
  1582. u64 vmx_read_l1_tsc(struct kvm_vcpu *vcpu)
  1583. {
  1584. u64 host_tsc, tsc_offset;
  1585. rdtscll(host_tsc);
  1586. tsc_offset = is_guest_mode(vcpu) ?
  1587. to_vmx(vcpu)->nested.vmcs01_tsc_offset :
  1588. vmcs_read64(TSC_OFFSET);
  1589. return host_tsc + tsc_offset;
  1590. }
  1591. /*
  1592. * Empty call-back. Needs to be implemented when VMX enables the SET_TSC_KHZ
  1593. * ioctl. In this case the call-back should update internal vmx state to make
  1594. * the changes effective.
  1595. */
  1596. static void vmx_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
  1597. {
  1598. /* Nothing to do here */
  1599. }
  1600. /*
  1601. * writes 'offset' into guest's timestamp counter offset register
  1602. */
  1603. static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
  1604. {
  1605. if (is_guest_mode(vcpu)) {
  1606. /*
  1607. * We're here if L1 chose not to trap WRMSR to TSC. According
  1608. * to the spec, this should set L1's TSC; The offset that L1
  1609. * set for L2 remains unchanged, and still needs to be added
  1610. * to the newly set TSC to get L2's TSC.
  1611. */
  1612. struct vmcs12 *vmcs12;
  1613. to_vmx(vcpu)->nested.vmcs01_tsc_offset = offset;
  1614. /* recalculate vmcs02.TSC_OFFSET: */
  1615. vmcs12 = get_vmcs12(vcpu);
  1616. vmcs_write64(TSC_OFFSET, offset +
  1617. (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETING) ?
  1618. vmcs12->tsc_offset : 0));
  1619. } else {
  1620. vmcs_write64(TSC_OFFSET, offset);
  1621. }
  1622. }
  1623. static void vmx_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment)
  1624. {
  1625. u64 offset = vmcs_read64(TSC_OFFSET);
  1626. vmcs_write64(TSC_OFFSET, offset + adjustment);
  1627. if (is_guest_mode(vcpu)) {
  1628. /* Even when running L2, the adjustment needs to apply to L1 */
  1629. to_vmx(vcpu)->nested.vmcs01_tsc_offset += adjustment;
  1630. }
  1631. }
  1632. static u64 vmx_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
  1633. {
  1634. return target_tsc - native_read_tsc();
  1635. }
  1636. static bool guest_cpuid_has_vmx(struct kvm_vcpu *vcpu)
  1637. {
  1638. struct kvm_cpuid_entry2 *best = kvm_find_cpuid_entry(vcpu, 1, 0);
  1639. return best && (best->ecx & (1 << (X86_FEATURE_VMX & 31)));
  1640. }
  1641. /*
  1642. * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
  1643. * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
  1644. * all guests if the "nested" module option is off, and can also be disabled
  1645. * for a single guest by disabling its VMX cpuid bit.
  1646. */
  1647. static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
  1648. {
  1649. return nested && guest_cpuid_has_vmx(vcpu);
  1650. }
  1651. /*
  1652. * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
  1653. * returned for the various VMX controls MSRs when nested VMX is enabled.
  1654. * The same values should also be used to verify that vmcs12 control fields are
  1655. * valid during nested entry from L1 to L2.
  1656. * Each of these control msrs has a low and high 32-bit half: A low bit is on
  1657. * if the corresponding bit in the (32-bit) control field *must* be on, and a
  1658. * bit in the high half is on if the corresponding bit in the control field
  1659. * may be on. See also vmx_control_verify().
  1660. * TODO: allow these variables to be modified (downgraded) by module options
  1661. * or other means.
  1662. */
  1663. static u32 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high;
  1664. static u32 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high;
  1665. static u32 nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high;
  1666. static u32 nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high;
  1667. static u32 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high;
  1668. static __init void nested_vmx_setup_ctls_msrs(void)
  1669. {
  1670. /*
  1671. * Note that as a general rule, the high half of the MSRs (bits in
  1672. * the control fields which may be 1) should be initialized by the
  1673. * intersection of the underlying hardware's MSR (i.e., features which
  1674. * can be supported) and the list of features we want to expose -
  1675. * because they are known to be properly supported in our code.
  1676. * Also, usually, the low half of the MSRs (bits which must be 1) can
  1677. * be set to 0, meaning that L1 may turn off any of these bits. The
  1678. * reason is that if one of these bits is necessary, it will appear
  1679. * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
  1680. * fields of vmcs01 and vmcs02, will turn these bits off - and
  1681. * nested_vmx_exit_handled() will not pass related exits to L1.
  1682. * These rules have exceptions below.
  1683. */
  1684. /* pin-based controls */
  1685. /*
  1686. * According to the Intel spec, if bit 55 of VMX_BASIC is off (as it is
  1687. * in our case), bits 1, 2 and 4 (i.e., 0x16) must be 1 in this MSR.
  1688. */
  1689. nested_vmx_pinbased_ctls_low = 0x16 ;
  1690. nested_vmx_pinbased_ctls_high = 0x16 |
  1691. PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING |
  1692. PIN_BASED_VIRTUAL_NMIS;
  1693. /* exit controls */
  1694. nested_vmx_exit_ctls_low = 0;
  1695. /* Note that guest use of VM_EXIT_ACK_INTR_ON_EXIT is not supported. */
  1696. #ifdef CONFIG_X86_64
  1697. nested_vmx_exit_ctls_high = VM_EXIT_HOST_ADDR_SPACE_SIZE;
  1698. #else
  1699. nested_vmx_exit_ctls_high = 0;
  1700. #endif
  1701. /* entry controls */
  1702. rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
  1703. nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high);
  1704. nested_vmx_entry_ctls_low = 0;
  1705. nested_vmx_entry_ctls_high &=
  1706. VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_IA32E_MODE;
  1707. /* cpu-based controls */
  1708. rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
  1709. nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high);
  1710. nested_vmx_procbased_ctls_low = 0;
  1711. nested_vmx_procbased_ctls_high &=
  1712. CPU_BASED_VIRTUAL_INTR_PENDING | CPU_BASED_USE_TSC_OFFSETING |
  1713. CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
  1714. CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
  1715. CPU_BASED_CR3_STORE_EXITING |
  1716. #ifdef CONFIG_X86_64
  1717. CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
  1718. #endif
  1719. CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
  1720. CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_EXITING |
  1721. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
  1722. /*
  1723. * We can allow some features even when not supported by the
  1724. * hardware. For example, L1 can specify an MSR bitmap - and we
  1725. * can use it to avoid exits to L1 - even when L0 runs L2
  1726. * without MSR bitmaps.
  1727. */
  1728. nested_vmx_procbased_ctls_high |= CPU_BASED_USE_MSR_BITMAPS;
  1729. /* secondary cpu-based controls */
  1730. rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
  1731. nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high);
  1732. nested_vmx_secondary_ctls_low = 0;
  1733. nested_vmx_secondary_ctls_high &=
  1734. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  1735. }
  1736. static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
  1737. {
  1738. /*
  1739. * Bits 0 in high must be 0, and bits 1 in low must be 1.
  1740. */
  1741. return ((control & high) | low) == control;
  1742. }
  1743. static inline u64 vmx_control_msr(u32 low, u32 high)
  1744. {
  1745. return low | ((u64)high << 32);
  1746. }
  1747. /*
  1748. * If we allow our guest to use VMX instructions (i.e., nested VMX), we should
  1749. * also let it use VMX-specific MSRs.
  1750. * vmx_get_vmx_msr() and vmx_set_vmx_msr() return 1 when we handled a
  1751. * VMX-specific MSR, or 0 when we haven't (and the caller should handle it
  1752. * like all other MSRs).
  1753. */
  1754. static int vmx_get_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  1755. {
  1756. if (!nested_vmx_allowed(vcpu) && msr_index >= MSR_IA32_VMX_BASIC &&
  1757. msr_index <= MSR_IA32_VMX_TRUE_ENTRY_CTLS) {
  1758. /*
  1759. * According to the spec, processors which do not support VMX
  1760. * should throw a #GP(0) when VMX capability MSRs are read.
  1761. */
  1762. kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
  1763. return 1;
  1764. }
  1765. switch (msr_index) {
  1766. case MSR_IA32_FEATURE_CONTROL:
  1767. *pdata = 0;
  1768. break;
  1769. case MSR_IA32_VMX_BASIC:
  1770. /*
  1771. * This MSR reports some information about VMX support. We
  1772. * should return information about the VMX we emulate for the
  1773. * guest, and the VMCS structure we give it - not about the
  1774. * VMX support of the underlying hardware.
  1775. */
  1776. *pdata = VMCS12_REVISION |
  1777. ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
  1778. (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
  1779. break;
  1780. case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
  1781. case MSR_IA32_VMX_PINBASED_CTLS:
  1782. *pdata = vmx_control_msr(nested_vmx_pinbased_ctls_low,
  1783. nested_vmx_pinbased_ctls_high);
  1784. break;
  1785. case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
  1786. case MSR_IA32_VMX_PROCBASED_CTLS:
  1787. *pdata = vmx_control_msr(nested_vmx_procbased_ctls_low,
  1788. nested_vmx_procbased_ctls_high);
  1789. break;
  1790. case MSR_IA32_VMX_TRUE_EXIT_CTLS:
  1791. case MSR_IA32_VMX_EXIT_CTLS:
  1792. *pdata = vmx_control_msr(nested_vmx_exit_ctls_low,
  1793. nested_vmx_exit_ctls_high);
  1794. break;
  1795. case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
  1796. case MSR_IA32_VMX_ENTRY_CTLS:
  1797. *pdata = vmx_control_msr(nested_vmx_entry_ctls_low,
  1798. nested_vmx_entry_ctls_high);
  1799. break;
  1800. case MSR_IA32_VMX_MISC:
  1801. *pdata = 0;
  1802. break;
  1803. /*
  1804. * These MSRs specify bits which the guest must keep fixed (on or off)
  1805. * while L1 is in VMXON mode (in L1's root mode, or running an L2).
  1806. * We picked the standard core2 setting.
  1807. */
  1808. #define VMXON_CR0_ALWAYSON (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
  1809. #define VMXON_CR4_ALWAYSON X86_CR4_VMXE
  1810. case MSR_IA32_VMX_CR0_FIXED0:
  1811. *pdata = VMXON_CR0_ALWAYSON;
  1812. break;
  1813. case MSR_IA32_VMX_CR0_FIXED1:
  1814. *pdata = -1ULL;
  1815. break;
  1816. case MSR_IA32_VMX_CR4_FIXED0:
  1817. *pdata = VMXON_CR4_ALWAYSON;
  1818. break;
  1819. case MSR_IA32_VMX_CR4_FIXED1:
  1820. *pdata = -1ULL;
  1821. break;
  1822. case MSR_IA32_VMX_VMCS_ENUM:
  1823. *pdata = 0x1f;
  1824. break;
  1825. case MSR_IA32_VMX_PROCBASED_CTLS2:
  1826. *pdata = vmx_control_msr(nested_vmx_secondary_ctls_low,
  1827. nested_vmx_secondary_ctls_high);
  1828. break;
  1829. case MSR_IA32_VMX_EPT_VPID_CAP:
  1830. /* Currently, no nested ept or nested vpid */
  1831. *pdata = 0;
  1832. break;
  1833. default:
  1834. return 0;
  1835. }
  1836. return 1;
  1837. }
  1838. static int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  1839. {
  1840. if (!nested_vmx_allowed(vcpu))
  1841. return 0;
  1842. if (msr_index == MSR_IA32_FEATURE_CONTROL)
  1843. /* TODO: the right thing. */
  1844. return 1;
  1845. /*
  1846. * No need to treat VMX capability MSRs specially: If we don't handle
  1847. * them, handle_wrmsr will #GP(0), which is correct (they are readonly)
  1848. */
  1849. return 0;
  1850. }
  1851. /*
  1852. * Reads an msr value (of 'msr_index') into 'pdata'.
  1853. * Returns 0 on success, non-0 otherwise.
  1854. * Assumes vcpu_load() was already called.
  1855. */
  1856. static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  1857. {
  1858. u64 data;
  1859. struct shared_msr_entry *msr;
  1860. if (!pdata) {
  1861. printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
  1862. return -EINVAL;
  1863. }
  1864. switch (msr_index) {
  1865. #ifdef CONFIG_X86_64
  1866. case MSR_FS_BASE:
  1867. data = vmcs_readl(GUEST_FS_BASE);
  1868. break;
  1869. case MSR_GS_BASE:
  1870. data = vmcs_readl(GUEST_GS_BASE);
  1871. break;
  1872. case MSR_KERNEL_GS_BASE:
  1873. vmx_load_host_state(to_vmx(vcpu));
  1874. data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
  1875. break;
  1876. #endif
  1877. case MSR_EFER:
  1878. return kvm_get_msr_common(vcpu, msr_index, pdata);
  1879. case MSR_IA32_TSC:
  1880. data = guest_read_tsc();
  1881. break;
  1882. case MSR_IA32_SYSENTER_CS:
  1883. data = vmcs_read32(GUEST_SYSENTER_CS);
  1884. break;
  1885. case MSR_IA32_SYSENTER_EIP:
  1886. data = vmcs_readl(GUEST_SYSENTER_EIP);
  1887. break;
  1888. case MSR_IA32_SYSENTER_ESP:
  1889. data = vmcs_readl(GUEST_SYSENTER_ESP);
  1890. break;
  1891. case MSR_TSC_AUX:
  1892. if (!to_vmx(vcpu)->rdtscp_enabled)
  1893. return 1;
  1894. /* Otherwise falls through */
  1895. default:
  1896. vmx_load_host_state(to_vmx(vcpu));
  1897. if (vmx_get_vmx_msr(vcpu, msr_index, pdata))
  1898. return 0;
  1899. msr = find_msr_entry(to_vmx(vcpu), msr_index);
  1900. if (msr) {
  1901. vmx_load_host_state(to_vmx(vcpu));
  1902. data = msr->data;
  1903. break;
  1904. }
  1905. return kvm_get_msr_common(vcpu, msr_index, pdata);
  1906. }
  1907. *pdata = data;
  1908. return 0;
  1909. }
  1910. /*
  1911. * Writes msr value into into the appropriate "register".
  1912. * Returns 0 on success, non-0 otherwise.
  1913. * Assumes vcpu_load() was already called.
  1914. */
  1915. static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  1916. {
  1917. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1918. struct shared_msr_entry *msr;
  1919. int ret = 0;
  1920. switch (msr_index) {
  1921. case MSR_EFER:
  1922. vmx_load_host_state(vmx);
  1923. ret = kvm_set_msr_common(vcpu, msr_index, data);
  1924. break;
  1925. #ifdef CONFIG_X86_64
  1926. case MSR_FS_BASE:
  1927. vmx_segment_cache_clear(vmx);
  1928. vmcs_writel(GUEST_FS_BASE, data);
  1929. break;
  1930. case MSR_GS_BASE:
  1931. vmx_segment_cache_clear(vmx);
  1932. vmcs_writel(GUEST_GS_BASE, data);
  1933. break;
  1934. case MSR_KERNEL_GS_BASE:
  1935. vmx_load_host_state(vmx);
  1936. vmx->msr_guest_kernel_gs_base = data;
  1937. break;
  1938. #endif
  1939. case MSR_IA32_SYSENTER_CS:
  1940. vmcs_write32(GUEST_SYSENTER_CS, data);
  1941. break;
  1942. case MSR_IA32_SYSENTER_EIP:
  1943. vmcs_writel(GUEST_SYSENTER_EIP, data);
  1944. break;
  1945. case MSR_IA32_SYSENTER_ESP:
  1946. vmcs_writel(GUEST_SYSENTER_ESP, data);
  1947. break;
  1948. case MSR_IA32_TSC:
  1949. kvm_write_tsc(vcpu, data);
  1950. break;
  1951. case MSR_IA32_CR_PAT:
  1952. if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
  1953. vmcs_write64(GUEST_IA32_PAT, data);
  1954. vcpu->arch.pat = data;
  1955. break;
  1956. }
  1957. ret = kvm_set_msr_common(vcpu, msr_index, data);
  1958. break;
  1959. case MSR_TSC_AUX:
  1960. if (!vmx->rdtscp_enabled)
  1961. return 1;
  1962. /* Check reserved bit, higher 32 bits should be zero */
  1963. if ((data >> 32) != 0)
  1964. return 1;
  1965. /* Otherwise falls through */
  1966. default:
  1967. if (vmx_set_vmx_msr(vcpu, msr_index, data))
  1968. break;
  1969. msr = find_msr_entry(vmx, msr_index);
  1970. if (msr) {
  1971. vmx_load_host_state(vmx);
  1972. msr->data = data;
  1973. break;
  1974. }
  1975. ret = kvm_set_msr_common(vcpu, msr_index, data);
  1976. }
  1977. return ret;
  1978. }
  1979. static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
  1980. {
  1981. __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
  1982. switch (reg) {
  1983. case VCPU_REGS_RSP:
  1984. vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
  1985. break;
  1986. case VCPU_REGS_RIP:
  1987. vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
  1988. break;
  1989. case VCPU_EXREG_PDPTR:
  1990. if (enable_ept)
  1991. ept_save_pdptrs(vcpu);
  1992. break;
  1993. default:
  1994. break;
  1995. }
  1996. }
  1997. static void set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
  1998. {
  1999. if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
  2000. vmcs_writel(GUEST_DR7, dbg->arch.debugreg[7]);
  2001. else
  2002. vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
  2003. update_exception_bitmap(vcpu);
  2004. }
  2005. static __init int cpu_has_kvm_support(void)
  2006. {
  2007. return cpu_has_vmx();
  2008. }
  2009. static __init int vmx_disabled_by_bios(void)
  2010. {
  2011. u64 msr;
  2012. rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
  2013. if (msr & FEATURE_CONTROL_LOCKED) {
  2014. /* launched w/ TXT and VMX disabled */
  2015. if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
  2016. && tboot_enabled())
  2017. return 1;
  2018. /* launched w/o TXT and VMX only enabled w/ TXT */
  2019. if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
  2020. && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
  2021. && !tboot_enabled()) {
  2022. printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
  2023. "activate TXT before enabling KVM\n");
  2024. return 1;
  2025. }
  2026. /* launched w/o TXT and VMX disabled */
  2027. if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
  2028. && !tboot_enabled())
  2029. return 1;
  2030. }
  2031. return 0;
  2032. }
  2033. static void kvm_cpu_vmxon(u64 addr)
  2034. {
  2035. asm volatile (ASM_VMX_VMXON_RAX
  2036. : : "a"(&addr), "m"(addr)
  2037. : "memory", "cc");
  2038. }
  2039. static int hardware_enable(void *garbage)
  2040. {
  2041. int cpu = raw_smp_processor_id();
  2042. u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
  2043. u64 old, test_bits;
  2044. if (read_cr4() & X86_CR4_VMXE)
  2045. return -EBUSY;
  2046. INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
  2047. rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
  2048. test_bits = FEATURE_CONTROL_LOCKED;
  2049. test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
  2050. if (tboot_enabled())
  2051. test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
  2052. if ((old & test_bits) != test_bits) {
  2053. /* enable and lock */
  2054. wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
  2055. }
  2056. write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
  2057. if (vmm_exclusive) {
  2058. kvm_cpu_vmxon(phys_addr);
  2059. ept_sync_global();
  2060. }
  2061. store_gdt(&__get_cpu_var(host_gdt));
  2062. return 0;
  2063. }
  2064. static void vmclear_local_loaded_vmcss(void)
  2065. {
  2066. int cpu = raw_smp_processor_id();
  2067. struct loaded_vmcs *v, *n;
  2068. list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
  2069. loaded_vmcss_on_cpu_link)
  2070. __loaded_vmcs_clear(v);
  2071. }
  2072. /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
  2073. * tricks.
  2074. */
  2075. static void kvm_cpu_vmxoff(void)
  2076. {
  2077. asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
  2078. }
  2079. static void hardware_disable(void *garbage)
  2080. {
  2081. if (vmm_exclusive) {
  2082. vmclear_local_loaded_vmcss();
  2083. kvm_cpu_vmxoff();
  2084. }
  2085. write_cr4(read_cr4() & ~X86_CR4_VMXE);
  2086. }
  2087. static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
  2088. u32 msr, u32 *result)
  2089. {
  2090. u32 vmx_msr_low, vmx_msr_high;
  2091. u32 ctl = ctl_min | ctl_opt;
  2092. rdmsr(msr, vmx_msr_low, vmx_msr_high);
  2093. ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
  2094. ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
  2095. /* Ensure minimum (required) set of control bits are supported. */
  2096. if (ctl_min & ~ctl)
  2097. return -EIO;
  2098. *result = ctl;
  2099. return 0;
  2100. }
  2101. static __init bool allow_1_setting(u32 msr, u32 ctl)
  2102. {
  2103. u32 vmx_msr_low, vmx_msr_high;
  2104. rdmsr(msr, vmx_msr_low, vmx_msr_high);
  2105. return vmx_msr_high & ctl;
  2106. }
  2107. static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
  2108. {
  2109. u32 vmx_msr_low, vmx_msr_high;
  2110. u32 min, opt, min2, opt2;
  2111. u32 _pin_based_exec_control = 0;
  2112. u32 _cpu_based_exec_control = 0;
  2113. u32 _cpu_based_2nd_exec_control = 0;
  2114. u32 _vmexit_control = 0;
  2115. u32 _vmentry_control = 0;
  2116. min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
  2117. opt = PIN_BASED_VIRTUAL_NMIS;
  2118. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
  2119. &_pin_based_exec_control) < 0)
  2120. return -EIO;
  2121. min =
  2122. #ifdef CONFIG_X86_64
  2123. CPU_BASED_CR8_LOAD_EXITING |
  2124. CPU_BASED_CR8_STORE_EXITING |
  2125. #endif
  2126. CPU_BASED_CR3_LOAD_EXITING |
  2127. CPU_BASED_CR3_STORE_EXITING |
  2128. CPU_BASED_USE_IO_BITMAPS |
  2129. CPU_BASED_MOV_DR_EXITING |
  2130. CPU_BASED_USE_TSC_OFFSETING |
  2131. CPU_BASED_MWAIT_EXITING |
  2132. CPU_BASED_MONITOR_EXITING |
  2133. CPU_BASED_INVLPG_EXITING;
  2134. if (yield_on_hlt)
  2135. min |= CPU_BASED_HLT_EXITING;
  2136. opt = CPU_BASED_TPR_SHADOW |
  2137. CPU_BASED_USE_MSR_BITMAPS |
  2138. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
  2139. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
  2140. &_cpu_based_exec_control) < 0)
  2141. return -EIO;
  2142. #ifdef CONFIG_X86_64
  2143. if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
  2144. _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
  2145. ~CPU_BASED_CR8_STORE_EXITING;
  2146. #endif
  2147. if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
  2148. min2 = 0;
  2149. opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
  2150. SECONDARY_EXEC_WBINVD_EXITING |
  2151. SECONDARY_EXEC_ENABLE_VPID |
  2152. SECONDARY_EXEC_ENABLE_EPT |
  2153. SECONDARY_EXEC_UNRESTRICTED_GUEST |
  2154. SECONDARY_EXEC_PAUSE_LOOP_EXITING |
  2155. SECONDARY_EXEC_RDTSCP;
  2156. if (adjust_vmx_controls(min2, opt2,
  2157. MSR_IA32_VMX_PROCBASED_CTLS2,
  2158. &_cpu_based_2nd_exec_control) < 0)
  2159. return -EIO;
  2160. }
  2161. #ifndef CONFIG_X86_64
  2162. if (!(_cpu_based_2nd_exec_control &
  2163. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
  2164. _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
  2165. #endif
  2166. if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
  2167. /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
  2168. enabled */
  2169. _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
  2170. CPU_BASED_CR3_STORE_EXITING |
  2171. CPU_BASED_INVLPG_EXITING);
  2172. rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
  2173. vmx_capability.ept, vmx_capability.vpid);
  2174. }
  2175. min = 0;
  2176. #ifdef CONFIG_X86_64
  2177. min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
  2178. #endif
  2179. opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT;
  2180. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
  2181. &_vmexit_control) < 0)
  2182. return -EIO;
  2183. min = 0;
  2184. opt = VM_ENTRY_LOAD_IA32_PAT;
  2185. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
  2186. &_vmentry_control) < 0)
  2187. return -EIO;
  2188. rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
  2189. /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
  2190. if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
  2191. return -EIO;
  2192. #ifdef CONFIG_X86_64
  2193. /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
  2194. if (vmx_msr_high & (1u<<16))
  2195. return -EIO;
  2196. #endif
  2197. /* Require Write-Back (WB) memory type for VMCS accesses. */
  2198. if (((vmx_msr_high >> 18) & 15) != 6)
  2199. return -EIO;
  2200. vmcs_conf->size = vmx_msr_high & 0x1fff;
  2201. vmcs_conf->order = get_order(vmcs_config.size);
  2202. vmcs_conf->revision_id = vmx_msr_low;
  2203. vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
  2204. vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
  2205. vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
  2206. vmcs_conf->vmexit_ctrl = _vmexit_control;
  2207. vmcs_conf->vmentry_ctrl = _vmentry_control;
  2208. cpu_has_load_ia32_efer =
  2209. allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
  2210. VM_ENTRY_LOAD_IA32_EFER)
  2211. && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
  2212. VM_EXIT_LOAD_IA32_EFER);
  2213. cpu_has_load_perf_global_ctrl =
  2214. allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
  2215. VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
  2216. && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
  2217. VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
  2218. /*
  2219. * Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL
  2220. * but due to arrata below it can't be used. Workaround is to use
  2221. * msr load mechanism to switch IA32_PERF_GLOBAL_CTRL.
  2222. *
  2223. * VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32]
  2224. *
  2225. * AAK155 (model 26)
  2226. * AAP115 (model 30)
  2227. * AAT100 (model 37)
  2228. * BC86,AAY89,BD102 (model 44)
  2229. * BA97 (model 46)
  2230. *
  2231. */
  2232. if (cpu_has_load_perf_global_ctrl && boot_cpu_data.x86 == 0x6) {
  2233. switch (boot_cpu_data.x86_model) {
  2234. case 26:
  2235. case 30:
  2236. case 37:
  2237. case 44:
  2238. case 46:
  2239. cpu_has_load_perf_global_ctrl = false;
  2240. printk_once(KERN_WARNING"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
  2241. "does not work properly. Using workaround\n");
  2242. break;
  2243. default:
  2244. break;
  2245. }
  2246. }
  2247. return 0;
  2248. }
  2249. static struct vmcs *alloc_vmcs_cpu(int cpu)
  2250. {
  2251. int node = cpu_to_node(cpu);
  2252. struct page *pages;
  2253. struct vmcs *vmcs;
  2254. pages = alloc_pages_exact_node(node, GFP_KERNEL, vmcs_config.order);
  2255. if (!pages)
  2256. return NULL;
  2257. vmcs = page_address(pages);
  2258. memset(vmcs, 0, vmcs_config.size);
  2259. vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
  2260. return vmcs;
  2261. }
  2262. static struct vmcs *alloc_vmcs(void)
  2263. {
  2264. return alloc_vmcs_cpu(raw_smp_processor_id());
  2265. }
  2266. static void free_vmcs(struct vmcs *vmcs)
  2267. {
  2268. free_pages((unsigned long)vmcs, vmcs_config.order);
  2269. }
  2270. /*
  2271. * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
  2272. */
  2273. static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
  2274. {
  2275. if (!loaded_vmcs->vmcs)
  2276. return;
  2277. loaded_vmcs_clear(loaded_vmcs);
  2278. free_vmcs(loaded_vmcs->vmcs);
  2279. loaded_vmcs->vmcs = NULL;
  2280. }
  2281. static void free_kvm_area(void)
  2282. {
  2283. int cpu;
  2284. for_each_possible_cpu(cpu) {
  2285. free_vmcs(per_cpu(vmxarea, cpu));
  2286. per_cpu(vmxarea, cpu) = NULL;
  2287. }
  2288. }
  2289. static __init int alloc_kvm_area(void)
  2290. {
  2291. int cpu;
  2292. for_each_possible_cpu(cpu) {
  2293. struct vmcs *vmcs;
  2294. vmcs = alloc_vmcs_cpu(cpu);
  2295. if (!vmcs) {
  2296. free_kvm_area();
  2297. return -ENOMEM;
  2298. }
  2299. per_cpu(vmxarea, cpu) = vmcs;
  2300. }
  2301. return 0;
  2302. }
  2303. static __init int hardware_setup(void)
  2304. {
  2305. if (setup_vmcs_config(&vmcs_config) < 0)
  2306. return -EIO;
  2307. if (boot_cpu_has(X86_FEATURE_NX))
  2308. kvm_enable_efer_bits(EFER_NX);
  2309. if (!cpu_has_vmx_vpid())
  2310. enable_vpid = 0;
  2311. if (!cpu_has_vmx_ept() ||
  2312. !cpu_has_vmx_ept_4levels()) {
  2313. enable_ept = 0;
  2314. enable_unrestricted_guest = 0;
  2315. }
  2316. if (!cpu_has_vmx_unrestricted_guest())
  2317. enable_unrestricted_guest = 0;
  2318. if (!cpu_has_vmx_flexpriority())
  2319. flexpriority_enabled = 0;
  2320. if (!cpu_has_vmx_tpr_shadow())
  2321. kvm_x86_ops->update_cr8_intercept = NULL;
  2322. if (enable_ept && !cpu_has_vmx_ept_2m_page())
  2323. kvm_disable_largepages();
  2324. if (!cpu_has_vmx_ple())
  2325. ple_gap = 0;
  2326. if (nested)
  2327. nested_vmx_setup_ctls_msrs();
  2328. return alloc_kvm_area();
  2329. }
  2330. static __exit void hardware_unsetup(void)
  2331. {
  2332. free_kvm_area();
  2333. }
  2334. static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
  2335. {
  2336. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  2337. if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
  2338. vmcs_write16(sf->selector, save->selector);
  2339. vmcs_writel(sf->base, save->base);
  2340. vmcs_write32(sf->limit, save->limit);
  2341. vmcs_write32(sf->ar_bytes, save->ar);
  2342. } else {
  2343. u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
  2344. << AR_DPL_SHIFT;
  2345. vmcs_write32(sf->ar_bytes, 0x93 | dpl);
  2346. }
  2347. }
  2348. static void enter_pmode(struct kvm_vcpu *vcpu)
  2349. {
  2350. unsigned long flags;
  2351. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2352. vmx->emulation_required = 1;
  2353. vmx->rmode.vm86_active = 0;
  2354. vmx_segment_cache_clear(vmx);
  2355. vmcs_write16(GUEST_TR_SELECTOR, vmx->rmode.tr.selector);
  2356. vmcs_writel(GUEST_TR_BASE, vmx->rmode.tr.base);
  2357. vmcs_write32(GUEST_TR_LIMIT, vmx->rmode.tr.limit);
  2358. vmcs_write32(GUEST_TR_AR_BYTES, vmx->rmode.tr.ar);
  2359. flags = vmcs_readl(GUEST_RFLAGS);
  2360. flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
  2361. flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
  2362. vmcs_writel(GUEST_RFLAGS, flags);
  2363. vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
  2364. (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
  2365. update_exception_bitmap(vcpu);
  2366. if (emulate_invalid_guest_state)
  2367. return;
  2368. fix_pmode_dataseg(VCPU_SREG_ES, &vmx->rmode.es);
  2369. fix_pmode_dataseg(VCPU_SREG_DS, &vmx->rmode.ds);
  2370. fix_pmode_dataseg(VCPU_SREG_GS, &vmx->rmode.gs);
  2371. fix_pmode_dataseg(VCPU_SREG_FS, &vmx->rmode.fs);
  2372. vmx_segment_cache_clear(vmx);
  2373. vmcs_write16(GUEST_SS_SELECTOR, 0);
  2374. vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
  2375. vmcs_write16(GUEST_CS_SELECTOR,
  2376. vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
  2377. vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
  2378. }
  2379. static gva_t rmode_tss_base(struct kvm *kvm)
  2380. {
  2381. if (!kvm->arch.tss_addr) {
  2382. struct kvm_memslots *slots;
  2383. gfn_t base_gfn;
  2384. slots = kvm_memslots(kvm);
  2385. base_gfn = slots->memslots[0].base_gfn +
  2386. kvm->memslots->memslots[0].npages - 3;
  2387. return base_gfn << PAGE_SHIFT;
  2388. }
  2389. return kvm->arch.tss_addr;
  2390. }
  2391. static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
  2392. {
  2393. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  2394. save->selector = vmcs_read16(sf->selector);
  2395. save->base = vmcs_readl(sf->base);
  2396. save->limit = vmcs_read32(sf->limit);
  2397. save->ar = vmcs_read32(sf->ar_bytes);
  2398. vmcs_write16(sf->selector, save->base >> 4);
  2399. vmcs_write32(sf->base, save->base & 0xffff0);
  2400. vmcs_write32(sf->limit, 0xffff);
  2401. vmcs_write32(sf->ar_bytes, 0xf3);
  2402. if (save->base & 0xf)
  2403. printk_once(KERN_WARNING "kvm: segment base is not paragraph"
  2404. " aligned when entering protected mode (seg=%d)",
  2405. seg);
  2406. }
  2407. static void enter_rmode(struct kvm_vcpu *vcpu)
  2408. {
  2409. unsigned long flags;
  2410. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2411. if (enable_unrestricted_guest)
  2412. return;
  2413. vmx->emulation_required = 1;
  2414. vmx->rmode.vm86_active = 1;
  2415. /*
  2416. * Very old userspace does not call KVM_SET_TSS_ADDR before entering
  2417. * vcpu. Call it here with phys address pointing 16M below 4G.
  2418. */
  2419. if (!vcpu->kvm->arch.tss_addr) {
  2420. printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
  2421. "called before entering vcpu\n");
  2422. srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
  2423. vmx_set_tss_addr(vcpu->kvm, 0xfeffd000);
  2424. vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
  2425. }
  2426. vmx_segment_cache_clear(vmx);
  2427. vmx->rmode.tr.selector = vmcs_read16(GUEST_TR_SELECTOR);
  2428. vmx->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
  2429. vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
  2430. vmx->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
  2431. vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
  2432. vmx->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
  2433. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  2434. flags = vmcs_readl(GUEST_RFLAGS);
  2435. vmx->rmode.save_rflags = flags;
  2436. flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  2437. vmcs_writel(GUEST_RFLAGS, flags);
  2438. vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
  2439. update_exception_bitmap(vcpu);
  2440. if (emulate_invalid_guest_state)
  2441. goto continue_rmode;
  2442. vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
  2443. vmcs_write32(GUEST_SS_LIMIT, 0xffff);
  2444. vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
  2445. vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
  2446. vmcs_write32(GUEST_CS_LIMIT, 0xffff);
  2447. if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
  2448. vmcs_writel(GUEST_CS_BASE, 0xf0000);
  2449. vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
  2450. fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.es);
  2451. fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.ds);
  2452. fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.gs);
  2453. fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.fs);
  2454. continue_rmode:
  2455. kvm_mmu_reset_context(vcpu);
  2456. }
  2457. static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
  2458. {
  2459. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2460. struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
  2461. if (!msr)
  2462. return;
  2463. /*
  2464. * Force kernel_gs_base reloading before EFER changes, as control
  2465. * of this msr depends on is_long_mode().
  2466. */
  2467. vmx_load_host_state(to_vmx(vcpu));
  2468. vcpu->arch.efer = efer;
  2469. if (efer & EFER_LMA) {
  2470. vmcs_write32(VM_ENTRY_CONTROLS,
  2471. vmcs_read32(VM_ENTRY_CONTROLS) |
  2472. VM_ENTRY_IA32E_MODE);
  2473. msr->data = efer;
  2474. } else {
  2475. vmcs_write32(VM_ENTRY_CONTROLS,
  2476. vmcs_read32(VM_ENTRY_CONTROLS) &
  2477. ~VM_ENTRY_IA32E_MODE);
  2478. msr->data = efer & ~EFER_LME;
  2479. }
  2480. setup_msrs(vmx);
  2481. }
  2482. #ifdef CONFIG_X86_64
  2483. static void enter_lmode(struct kvm_vcpu *vcpu)
  2484. {
  2485. u32 guest_tr_ar;
  2486. vmx_segment_cache_clear(to_vmx(vcpu));
  2487. guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
  2488. if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
  2489. pr_debug_ratelimited("%s: tss fixup for long mode. \n",
  2490. __func__);
  2491. vmcs_write32(GUEST_TR_AR_BYTES,
  2492. (guest_tr_ar & ~AR_TYPE_MASK)
  2493. | AR_TYPE_BUSY_64_TSS);
  2494. }
  2495. vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
  2496. }
  2497. static void exit_lmode(struct kvm_vcpu *vcpu)
  2498. {
  2499. vmcs_write32(VM_ENTRY_CONTROLS,
  2500. vmcs_read32(VM_ENTRY_CONTROLS)
  2501. & ~VM_ENTRY_IA32E_MODE);
  2502. vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
  2503. }
  2504. #endif
  2505. static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
  2506. {
  2507. vpid_sync_context(to_vmx(vcpu));
  2508. if (enable_ept) {
  2509. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2510. return;
  2511. ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
  2512. }
  2513. }
  2514. static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
  2515. {
  2516. ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
  2517. vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
  2518. vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
  2519. }
  2520. static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
  2521. {
  2522. if (enable_ept && is_paging(vcpu))
  2523. vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
  2524. __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
  2525. }
  2526. static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
  2527. {
  2528. ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
  2529. vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
  2530. vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
  2531. }
  2532. static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
  2533. {
  2534. if (!test_bit(VCPU_EXREG_PDPTR,
  2535. (unsigned long *)&vcpu->arch.regs_dirty))
  2536. return;
  2537. if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
  2538. vmcs_write64(GUEST_PDPTR0, vcpu->arch.mmu.pdptrs[0]);
  2539. vmcs_write64(GUEST_PDPTR1, vcpu->arch.mmu.pdptrs[1]);
  2540. vmcs_write64(GUEST_PDPTR2, vcpu->arch.mmu.pdptrs[2]);
  2541. vmcs_write64(GUEST_PDPTR3, vcpu->arch.mmu.pdptrs[3]);
  2542. }
  2543. }
  2544. static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
  2545. {
  2546. if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
  2547. vcpu->arch.mmu.pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
  2548. vcpu->arch.mmu.pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
  2549. vcpu->arch.mmu.pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
  2550. vcpu->arch.mmu.pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
  2551. }
  2552. __set_bit(VCPU_EXREG_PDPTR,
  2553. (unsigned long *)&vcpu->arch.regs_avail);
  2554. __set_bit(VCPU_EXREG_PDPTR,
  2555. (unsigned long *)&vcpu->arch.regs_dirty);
  2556. }
  2557. static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
  2558. static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
  2559. unsigned long cr0,
  2560. struct kvm_vcpu *vcpu)
  2561. {
  2562. if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
  2563. vmx_decache_cr3(vcpu);
  2564. if (!(cr0 & X86_CR0_PG)) {
  2565. /* From paging/starting to nonpaging */
  2566. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
  2567. vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
  2568. (CPU_BASED_CR3_LOAD_EXITING |
  2569. CPU_BASED_CR3_STORE_EXITING));
  2570. vcpu->arch.cr0 = cr0;
  2571. vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
  2572. } else if (!is_paging(vcpu)) {
  2573. /* From nonpaging to paging */
  2574. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
  2575. vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
  2576. ~(CPU_BASED_CR3_LOAD_EXITING |
  2577. CPU_BASED_CR3_STORE_EXITING));
  2578. vcpu->arch.cr0 = cr0;
  2579. vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
  2580. }
  2581. if (!(cr0 & X86_CR0_WP))
  2582. *hw_cr0 &= ~X86_CR0_WP;
  2583. }
  2584. static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  2585. {
  2586. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2587. unsigned long hw_cr0;
  2588. if (enable_unrestricted_guest)
  2589. hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST)
  2590. | KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
  2591. else
  2592. hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON;
  2593. if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
  2594. enter_pmode(vcpu);
  2595. if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
  2596. enter_rmode(vcpu);
  2597. #ifdef CONFIG_X86_64
  2598. if (vcpu->arch.efer & EFER_LME) {
  2599. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
  2600. enter_lmode(vcpu);
  2601. if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
  2602. exit_lmode(vcpu);
  2603. }
  2604. #endif
  2605. if (enable_ept)
  2606. ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
  2607. if (!vcpu->fpu_active)
  2608. hw_cr0 |= X86_CR0_TS | X86_CR0_MP;
  2609. vmcs_writel(CR0_READ_SHADOW, cr0);
  2610. vmcs_writel(GUEST_CR0, hw_cr0);
  2611. vcpu->arch.cr0 = cr0;
  2612. __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
  2613. }
  2614. static u64 construct_eptp(unsigned long root_hpa)
  2615. {
  2616. u64 eptp;
  2617. /* TODO write the value reading from MSR */
  2618. eptp = VMX_EPT_DEFAULT_MT |
  2619. VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
  2620. eptp |= (root_hpa & PAGE_MASK);
  2621. return eptp;
  2622. }
  2623. static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  2624. {
  2625. unsigned long guest_cr3;
  2626. u64 eptp;
  2627. guest_cr3 = cr3;
  2628. if (enable_ept) {
  2629. eptp = construct_eptp(cr3);
  2630. vmcs_write64(EPT_POINTER, eptp);
  2631. guest_cr3 = is_paging(vcpu) ? kvm_read_cr3(vcpu) :
  2632. vcpu->kvm->arch.ept_identity_map_addr;
  2633. ept_load_pdptrs(vcpu);
  2634. }
  2635. vmx_flush_tlb(vcpu);
  2636. vmcs_writel(GUEST_CR3, guest_cr3);
  2637. }
  2638. static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  2639. {
  2640. unsigned long hw_cr4 = cr4 | (to_vmx(vcpu)->rmode.vm86_active ?
  2641. KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
  2642. if (cr4 & X86_CR4_VMXE) {
  2643. /*
  2644. * To use VMXON (and later other VMX instructions), a guest
  2645. * must first be able to turn on cr4.VMXE (see handle_vmon()).
  2646. * So basically the check on whether to allow nested VMX
  2647. * is here.
  2648. */
  2649. if (!nested_vmx_allowed(vcpu))
  2650. return 1;
  2651. } else if (to_vmx(vcpu)->nested.vmxon)
  2652. return 1;
  2653. vcpu->arch.cr4 = cr4;
  2654. if (enable_ept) {
  2655. if (!is_paging(vcpu)) {
  2656. hw_cr4 &= ~X86_CR4_PAE;
  2657. hw_cr4 |= X86_CR4_PSE;
  2658. } else if (!(cr4 & X86_CR4_PAE)) {
  2659. hw_cr4 &= ~X86_CR4_PAE;
  2660. }
  2661. }
  2662. vmcs_writel(CR4_READ_SHADOW, cr4);
  2663. vmcs_writel(GUEST_CR4, hw_cr4);
  2664. return 0;
  2665. }
  2666. static void vmx_get_segment(struct kvm_vcpu *vcpu,
  2667. struct kvm_segment *var, int seg)
  2668. {
  2669. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2670. struct kvm_save_segment *save;
  2671. u32 ar;
  2672. if (vmx->rmode.vm86_active
  2673. && (seg == VCPU_SREG_TR || seg == VCPU_SREG_ES
  2674. || seg == VCPU_SREG_DS || seg == VCPU_SREG_FS
  2675. || seg == VCPU_SREG_GS)
  2676. && !emulate_invalid_guest_state) {
  2677. switch (seg) {
  2678. case VCPU_SREG_TR: save = &vmx->rmode.tr; break;
  2679. case VCPU_SREG_ES: save = &vmx->rmode.es; break;
  2680. case VCPU_SREG_DS: save = &vmx->rmode.ds; break;
  2681. case VCPU_SREG_FS: save = &vmx->rmode.fs; break;
  2682. case VCPU_SREG_GS: save = &vmx->rmode.gs; break;
  2683. default: BUG();
  2684. }
  2685. var->selector = save->selector;
  2686. var->base = save->base;
  2687. var->limit = save->limit;
  2688. ar = save->ar;
  2689. if (seg == VCPU_SREG_TR
  2690. || var->selector == vmx_read_guest_seg_selector(vmx, seg))
  2691. goto use_saved_rmode_seg;
  2692. }
  2693. var->base = vmx_read_guest_seg_base(vmx, seg);
  2694. var->limit = vmx_read_guest_seg_limit(vmx, seg);
  2695. var->selector = vmx_read_guest_seg_selector(vmx, seg);
  2696. ar = vmx_read_guest_seg_ar(vmx, seg);
  2697. use_saved_rmode_seg:
  2698. if ((ar & AR_UNUSABLE_MASK) && !emulate_invalid_guest_state)
  2699. ar = 0;
  2700. var->type = ar & 15;
  2701. var->s = (ar >> 4) & 1;
  2702. var->dpl = (ar >> 5) & 3;
  2703. var->present = (ar >> 7) & 1;
  2704. var->avl = (ar >> 12) & 1;
  2705. var->l = (ar >> 13) & 1;
  2706. var->db = (ar >> 14) & 1;
  2707. var->g = (ar >> 15) & 1;
  2708. var->unusable = (ar >> 16) & 1;
  2709. }
  2710. static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
  2711. {
  2712. struct kvm_segment s;
  2713. if (to_vmx(vcpu)->rmode.vm86_active) {
  2714. vmx_get_segment(vcpu, &s, seg);
  2715. return s.base;
  2716. }
  2717. return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
  2718. }
  2719. static int __vmx_get_cpl(struct kvm_vcpu *vcpu)
  2720. {
  2721. if (!is_protmode(vcpu))
  2722. return 0;
  2723. if (!is_long_mode(vcpu)
  2724. && (kvm_get_rflags(vcpu) & X86_EFLAGS_VM)) /* if virtual 8086 */
  2725. return 3;
  2726. return vmx_read_guest_seg_selector(to_vmx(vcpu), VCPU_SREG_CS) & 3;
  2727. }
  2728. static int vmx_get_cpl(struct kvm_vcpu *vcpu)
  2729. {
  2730. if (!test_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail)) {
  2731. __set_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
  2732. to_vmx(vcpu)->cpl = __vmx_get_cpl(vcpu);
  2733. }
  2734. return to_vmx(vcpu)->cpl;
  2735. }
  2736. static u32 vmx_segment_access_rights(struct kvm_segment *var)
  2737. {
  2738. u32 ar;
  2739. if (var->unusable)
  2740. ar = 1 << 16;
  2741. else {
  2742. ar = var->type & 15;
  2743. ar |= (var->s & 1) << 4;
  2744. ar |= (var->dpl & 3) << 5;
  2745. ar |= (var->present & 1) << 7;
  2746. ar |= (var->avl & 1) << 12;
  2747. ar |= (var->l & 1) << 13;
  2748. ar |= (var->db & 1) << 14;
  2749. ar |= (var->g & 1) << 15;
  2750. }
  2751. if (ar == 0) /* a 0 value means unusable */
  2752. ar = AR_UNUSABLE_MASK;
  2753. return ar;
  2754. }
  2755. static void vmx_set_segment(struct kvm_vcpu *vcpu,
  2756. struct kvm_segment *var, int seg)
  2757. {
  2758. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2759. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  2760. u32 ar;
  2761. vmx_segment_cache_clear(vmx);
  2762. if (vmx->rmode.vm86_active && seg == VCPU_SREG_TR) {
  2763. vmcs_write16(sf->selector, var->selector);
  2764. vmx->rmode.tr.selector = var->selector;
  2765. vmx->rmode.tr.base = var->base;
  2766. vmx->rmode.tr.limit = var->limit;
  2767. vmx->rmode.tr.ar = vmx_segment_access_rights(var);
  2768. return;
  2769. }
  2770. vmcs_writel(sf->base, var->base);
  2771. vmcs_write32(sf->limit, var->limit);
  2772. vmcs_write16(sf->selector, var->selector);
  2773. if (vmx->rmode.vm86_active && var->s) {
  2774. /*
  2775. * Hack real-mode segments into vm86 compatibility.
  2776. */
  2777. if (var->base == 0xffff0000 && var->selector == 0xf000)
  2778. vmcs_writel(sf->base, 0xf0000);
  2779. ar = 0xf3;
  2780. } else
  2781. ar = vmx_segment_access_rights(var);
  2782. /*
  2783. * Fix the "Accessed" bit in AR field of segment registers for older
  2784. * qemu binaries.
  2785. * IA32 arch specifies that at the time of processor reset the
  2786. * "Accessed" bit in the AR field of segment registers is 1. And qemu
  2787. * is setting it to 0 in the usedland code. This causes invalid guest
  2788. * state vmexit when "unrestricted guest" mode is turned on.
  2789. * Fix for this setup issue in cpu_reset is being pushed in the qemu
  2790. * tree. Newer qemu binaries with that qemu fix would not need this
  2791. * kvm hack.
  2792. */
  2793. if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
  2794. ar |= 0x1; /* Accessed */
  2795. vmcs_write32(sf->ar_bytes, ar);
  2796. __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
  2797. }
  2798. static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  2799. {
  2800. u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
  2801. *db = (ar >> 14) & 1;
  2802. *l = (ar >> 13) & 1;
  2803. }
  2804. static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
  2805. {
  2806. dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
  2807. dt->address = vmcs_readl(GUEST_IDTR_BASE);
  2808. }
  2809. static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
  2810. {
  2811. vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
  2812. vmcs_writel(GUEST_IDTR_BASE, dt->address);
  2813. }
  2814. static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
  2815. {
  2816. dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
  2817. dt->address = vmcs_readl(GUEST_GDTR_BASE);
  2818. }
  2819. static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
  2820. {
  2821. vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
  2822. vmcs_writel(GUEST_GDTR_BASE, dt->address);
  2823. }
  2824. static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
  2825. {
  2826. struct kvm_segment var;
  2827. u32 ar;
  2828. vmx_get_segment(vcpu, &var, seg);
  2829. ar = vmx_segment_access_rights(&var);
  2830. if (var.base != (var.selector << 4))
  2831. return false;
  2832. if (var.limit != 0xffff)
  2833. return false;
  2834. if (ar != 0xf3)
  2835. return false;
  2836. return true;
  2837. }
  2838. static bool code_segment_valid(struct kvm_vcpu *vcpu)
  2839. {
  2840. struct kvm_segment cs;
  2841. unsigned int cs_rpl;
  2842. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  2843. cs_rpl = cs.selector & SELECTOR_RPL_MASK;
  2844. if (cs.unusable)
  2845. return false;
  2846. if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
  2847. return false;
  2848. if (!cs.s)
  2849. return false;
  2850. if (cs.type & AR_TYPE_WRITEABLE_MASK) {
  2851. if (cs.dpl > cs_rpl)
  2852. return false;
  2853. } else {
  2854. if (cs.dpl != cs_rpl)
  2855. return false;
  2856. }
  2857. if (!cs.present)
  2858. return false;
  2859. /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
  2860. return true;
  2861. }
  2862. static bool stack_segment_valid(struct kvm_vcpu *vcpu)
  2863. {
  2864. struct kvm_segment ss;
  2865. unsigned int ss_rpl;
  2866. vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
  2867. ss_rpl = ss.selector & SELECTOR_RPL_MASK;
  2868. if (ss.unusable)
  2869. return true;
  2870. if (ss.type != 3 && ss.type != 7)
  2871. return false;
  2872. if (!ss.s)
  2873. return false;
  2874. if (ss.dpl != ss_rpl) /* DPL != RPL */
  2875. return false;
  2876. if (!ss.present)
  2877. return false;
  2878. return true;
  2879. }
  2880. static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
  2881. {
  2882. struct kvm_segment var;
  2883. unsigned int rpl;
  2884. vmx_get_segment(vcpu, &var, seg);
  2885. rpl = var.selector & SELECTOR_RPL_MASK;
  2886. if (var.unusable)
  2887. return true;
  2888. if (!var.s)
  2889. return false;
  2890. if (!var.present)
  2891. return false;
  2892. if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
  2893. if (var.dpl < rpl) /* DPL < RPL */
  2894. return false;
  2895. }
  2896. /* TODO: Add other members to kvm_segment_field to allow checking for other access
  2897. * rights flags
  2898. */
  2899. return true;
  2900. }
  2901. static bool tr_valid(struct kvm_vcpu *vcpu)
  2902. {
  2903. struct kvm_segment tr;
  2904. vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
  2905. if (tr.unusable)
  2906. return false;
  2907. if (tr.selector & SELECTOR_TI_MASK) /* TI = 1 */
  2908. return false;
  2909. if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
  2910. return false;
  2911. if (!tr.present)
  2912. return false;
  2913. return true;
  2914. }
  2915. static bool ldtr_valid(struct kvm_vcpu *vcpu)
  2916. {
  2917. struct kvm_segment ldtr;
  2918. vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
  2919. if (ldtr.unusable)
  2920. return true;
  2921. if (ldtr.selector & SELECTOR_TI_MASK) /* TI = 1 */
  2922. return false;
  2923. if (ldtr.type != 2)
  2924. return false;
  2925. if (!ldtr.present)
  2926. return false;
  2927. return true;
  2928. }
  2929. static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
  2930. {
  2931. struct kvm_segment cs, ss;
  2932. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  2933. vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
  2934. return ((cs.selector & SELECTOR_RPL_MASK) ==
  2935. (ss.selector & SELECTOR_RPL_MASK));
  2936. }
  2937. /*
  2938. * Check if guest state is valid. Returns true if valid, false if
  2939. * not.
  2940. * We assume that registers are always usable
  2941. */
  2942. static bool guest_state_valid(struct kvm_vcpu *vcpu)
  2943. {
  2944. /* real mode guest state checks */
  2945. if (!is_protmode(vcpu)) {
  2946. if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
  2947. return false;
  2948. if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
  2949. return false;
  2950. if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
  2951. return false;
  2952. if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
  2953. return false;
  2954. if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
  2955. return false;
  2956. if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
  2957. return false;
  2958. } else {
  2959. /* protected mode guest state checks */
  2960. if (!cs_ss_rpl_check(vcpu))
  2961. return false;
  2962. if (!code_segment_valid(vcpu))
  2963. return false;
  2964. if (!stack_segment_valid(vcpu))
  2965. return false;
  2966. if (!data_segment_valid(vcpu, VCPU_SREG_DS))
  2967. return false;
  2968. if (!data_segment_valid(vcpu, VCPU_SREG_ES))
  2969. return false;
  2970. if (!data_segment_valid(vcpu, VCPU_SREG_FS))
  2971. return false;
  2972. if (!data_segment_valid(vcpu, VCPU_SREG_GS))
  2973. return false;
  2974. if (!tr_valid(vcpu))
  2975. return false;
  2976. if (!ldtr_valid(vcpu))
  2977. return false;
  2978. }
  2979. /* TODO:
  2980. * - Add checks on RIP
  2981. * - Add checks on RFLAGS
  2982. */
  2983. return true;
  2984. }
  2985. static int init_rmode_tss(struct kvm *kvm)
  2986. {
  2987. gfn_t fn;
  2988. u16 data = 0;
  2989. int r, idx, ret = 0;
  2990. idx = srcu_read_lock(&kvm->srcu);
  2991. fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
  2992. r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
  2993. if (r < 0)
  2994. goto out;
  2995. data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
  2996. r = kvm_write_guest_page(kvm, fn++, &data,
  2997. TSS_IOPB_BASE_OFFSET, sizeof(u16));
  2998. if (r < 0)
  2999. goto out;
  3000. r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
  3001. if (r < 0)
  3002. goto out;
  3003. r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
  3004. if (r < 0)
  3005. goto out;
  3006. data = ~0;
  3007. r = kvm_write_guest_page(kvm, fn, &data,
  3008. RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
  3009. sizeof(u8));
  3010. if (r < 0)
  3011. goto out;
  3012. ret = 1;
  3013. out:
  3014. srcu_read_unlock(&kvm->srcu, idx);
  3015. return ret;
  3016. }
  3017. static int init_rmode_identity_map(struct kvm *kvm)
  3018. {
  3019. int i, idx, r, ret;
  3020. pfn_t identity_map_pfn;
  3021. u32 tmp;
  3022. if (!enable_ept)
  3023. return 1;
  3024. if (unlikely(!kvm->arch.ept_identity_pagetable)) {
  3025. printk(KERN_ERR "EPT: identity-mapping pagetable "
  3026. "haven't been allocated!\n");
  3027. return 0;
  3028. }
  3029. if (likely(kvm->arch.ept_identity_pagetable_done))
  3030. return 1;
  3031. ret = 0;
  3032. identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
  3033. idx = srcu_read_lock(&kvm->srcu);
  3034. r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
  3035. if (r < 0)
  3036. goto out;
  3037. /* Set up identity-mapping pagetable for EPT in real mode */
  3038. for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
  3039. tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
  3040. _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
  3041. r = kvm_write_guest_page(kvm, identity_map_pfn,
  3042. &tmp, i * sizeof(tmp), sizeof(tmp));
  3043. if (r < 0)
  3044. goto out;
  3045. }
  3046. kvm->arch.ept_identity_pagetable_done = true;
  3047. ret = 1;
  3048. out:
  3049. srcu_read_unlock(&kvm->srcu, idx);
  3050. return ret;
  3051. }
  3052. static void seg_setup(int seg)
  3053. {
  3054. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  3055. unsigned int ar;
  3056. vmcs_write16(sf->selector, 0);
  3057. vmcs_writel(sf->base, 0);
  3058. vmcs_write32(sf->limit, 0xffff);
  3059. if (enable_unrestricted_guest) {
  3060. ar = 0x93;
  3061. if (seg == VCPU_SREG_CS)
  3062. ar |= 0x08; /* code segment */
  3063. } else
  3064. ar = 0xf3;
  3065. vmcs_write32(sf->ar_bytes, ar);
  3066. }
  3067. static int alloc_apic_access_page(struct kvm *kvm)
  3068. {
  3069. struct kvm_userspace_memory_region kvm_userspace_mem;
  3070. int r = 0;
  3071. mutex_lock(&kvm->slots_lock);
  3072. if (kvm->arch.apic_access_page)
  3073. goto out;
  3074. kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
  3075. kvm_userspace_mem.flags = 0;
  3076. kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
  3077. kvm_userspace_mem.memory_size = PAGE_SIZE;
  3078. r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
  3079. if (r)
  3080. goto out;
  3081. kvm->arch.apic_access_page = gfn_to_page(kvm, 0xfee00);
  3082. out:
  3083. mutex_unlock(&kvm->slots_lock);
  3084. return r;
  3085. }
  3086. static int alloc_identity_pagetable(struct kvm *kvm)
  3087. {
  3088. struct kvm_userspace_memory_region kvm_userspace_mem;
  3089. int r = 0;
  3090. mutex_lock(&kvm->slots_lock);
  3091. if (kvm->arch.ept_identity_pagetable)
  3092. goto out;
  3093. kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
  3094. kvm_userspace_mem.flags = 0;
  3095. kvm_userspace_mem.guest_phys_addr =
  3096. kvm->arch.ept_identity_map_addr;
  3097. kvm_userspace_mem.memory_size = PAGE_SIZE;
  3098. r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
  3099. if (r)
  3100. goto out;
  3101. kvm->arch.ept_identity_pagetable = gfn_to_page(kvm,
  3102. kvm->arch.ept_identity_map_addr >> PAGE_SHIFT);
  3103. out:
  3104. mutex_unlock(&kvm->slots_lock);
  3105. return r;
  3106. }
  3107. static void allocate_vpid(struct vcpu_vmx *vmx)
  3108. {
  3109. int vpid;
  3110. vmx->vpid = 0;
  3111. if (!enable_vpid)
  3112. return;
  3113. spin_lock(&vmx_vpid_lock);
  3114. vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
  3115. if (vpid < VMX_NR_VPIDS) {
  3116. vmx->vpid = vpid;
  3117. __set_bit(vpid, vmx_vpid_bitmap);
  3118. }
  3119. spin_unlock(&vmx_vpid_lock);
  3120. }
  3121. static void free_vpid(struct vcpu_vmx *vmx)
  3122. {
  3123. if (!enable_vpid)
  3124. return;
  3125. spin_lock(&vmx_vpid_lock);
  3126. if (vmx->vpid != 0)
  3127. __clear_bit(vmx->vpid, vmx_vpid_bitmap);
  3128. spin_unlock(&vmx_vpid_lock);
  3129. }
  3130. static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap, u32 msr)
  3131. {
  3132. int f = sizeof(unsigned long);
  3133. if (!cpu_has_vmx_msr_bitmap())
  3134. return;
  3135. /*
  3136. * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
  3137. * have the write-low and read-high bitmap offsets the wrong way round.
  3138. * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
  3139. */
  3140. if (msr <= 0x1fff) {
  3141. __clear_bit(msr, msr_bitmap + 0x000 / f); /* read-low */
  3142. __clear_bit(msr, msr_bitmap + 0x800 / f); /* write-low */
  3143. } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
  3144. msr &= 0x1fff;
  3145. __clear_bit(msr, msr_bitmap + 0x400 / f); /* read-high */
  3146. __clear_bit(msr, msr_bitmap + 0xc00 / f); /* write-high */
  3147. }
  3148. }
  3149. static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
  3150. {
  3151. if (!longmode_only)
  3152. __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy, msr);
  3153. __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode, msr);
  3154. }
  3155. /*
  3156. * Set up the vmcs's constant host-state fields, i.e., host-state fields that
  3157. * will not change in the lifetime of the guest.
  3158. * Note that host-state that does change is set elsewhere. E.g., host-state
  3159. * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
  3160. */
  3161. static void vmx_set_constant_host_state(void)
  3162. {
  3163. u32 low32, high32;
  3164. unsigned long tmpl;
  3165. struct desc_ptr dt;
  3166. vmcs_writel(HOST_CR0, read_cr0() | X86_CR0_TS); /* 22.2.3 */
  3167. vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
  3168. vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
  3169. vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
  3170. vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  3171. vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  3172. vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  3173. vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
  3174. native_store_idt(&dt);
  3175. vmcs_writel(HOST_IDTR_BASE, dt.address); /* 22.2.4 */
  3176. asm("mov $.Lkvm_vmx_return, %0" : "=r"(tmpl));
  3177. vmcs_writel(HOST_RIP, tmpl); /* 22.2.5 */
  3178. rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
  3179. vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
  3180. rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
  3181. vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */
  3182. if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
  3183. rdmsr(MSR_IA32_CR_PAT, low32, high32);
  3184. vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
  3185. }
  3186. }
  3187. static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
  3188. {
  3189. vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
  3190. if (enable_ept)
  3191. vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
  3192. if (is_guest_mode(&vmx->vcpu))
  3193. vmx->vcpu.arch.cr4_guest_owned_bits &=
  3194. ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
  3195. vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
  3196. }
  3197. static u32 vmx_exec_control(struct vcpu_vmx *vmx)
  3198. {
  3199. u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
  3200. if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
  3201. exec_control &= ~CPU_BASED_TPR_SHADOW;
  3202. #ifdef CONFIG_X86_64
  3203. exec_control |= CPU_BASED_CR8_STORE_EXITING |
  3204. CPU_BASED_CR8_LOAD_EXITING;
  3205. #endif
  3206. }
  3207. if (!enable_ept)
  3208. exec_control |= CPU_BASED_CR3_STORE_EXITING |
  3209. CPU_BASED_CR3_LOAD_EXITING |
  3210. CPU_BASED_INVLPG_EXITING;
  3211. return exec_control;
  3212. }
  3213. static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
  3214. {
  3215. u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
  3216. if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
  3217. exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  3218. if (vmx->vpid == 0)
  3219. exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
  3220. if (!enable_ept) {
  3221. exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
  3222. enable_unrestricted_guest = 0;
  3223. }
  3224. if (!enable_unrestricted_guest)
  3225. exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
  3226. if (!ple_gap)
  3227. exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
  3228. return exec_control;
  3229. }
  3230. static void ept_set_mmio_spte_mask(void)
  3231. {
  3232. /*
  3233. * EPT Misconfigurations can be generated if the value of bits 2:0
  3234. * of an EPT paging-structure entry is 110b (write/execute).
  3235. * Also, magic bits (0xffull << 49) is set to quickly identify mmio
  3236. * spte.
  3237. */
  3238. kvm_mmu_set_mmio_spte_mask(0xffull << 49 | 0x6ull);
  3239. }
  3240. /*
  3241. * Sets up the vmcs for emulated real mode.
  3242. */
  3243. static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
  3244. {
  3245. #ifdef CONFIG_X86_64
  3246. unsigned long a;
  3247. #endif
  3248. int i;
  3249. /* I/O */
  3250. vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
  3251. vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
  3252. if (cpu_has_vmx_msr_bitmap())
  3253. vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
  3254. vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
  3255. /* Control */
  3256. vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
  3257. vmcs_config.pin_based_exec_ctrl);
  3258. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
  3259. if (cpu_has_secondary_exec_ctrls()) {
  3260. vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
  3261. vmx_secondary_exec_control(vmx));
  3262. }
  3263. if (ple_gap) {
  3264. vmcs_write32(PLE_GAP, ple_gap);
  3265. vmcs_write32(PLE_WINDOW, ple_window);
  3266. }
  3267. vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
  3268. vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
  3269. vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
  3270. vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */
  3271. vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */
  3272. vmx_set_constant_host_state();
  3273. #ifdef CONFIG_X86_64
  3274. rdmsrl(MSR_FS_BASE, a);
  3275. vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
  3276. rdmsrl(MSR_GS_BASE, a);
  3277. vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
  3278. #else
  3279. vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
  3280. vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
  3281. #endif
  3282. vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
  3283. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
  3284. vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
  3285. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
  3286. vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
  3287. if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
  3288. u32 msr_low, msr_high;
  3289. u64 host_pat;
  3290. rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
  3291. host_pat = msr_low | ((u64) msr_high << 32);
  3292. /* Write the default value follow host pat */
  3293. vmcs_write64(GUEST_IA32_PAT, host_pat);
  3294. /* Keep arch.pat sync with GUEST_IA32_PAT */
  3295. vmx->vcpu.arch.pat = host_pat;
  3296. }
  3297. for (i = 0; i < NR_VMX_MSR; ++i) {
  3298. u32 index = vmx_msr_index[i];
  3299. u32 data_low, data_high;
  3300. int j = vmx->nmsrs;
  3301. if (rdmsr_safe(index, &data_low, &data_high) < 0)
  3302. continue;
  3303. if (wrmsr_safe(index, data_low, data_high) < 0)
  3304. continue;
  3305. vmx->guest_msrs[j].index = i;
  3306. vmx->guest_msrs[j].data = 0;
  3307. vmx->guest_msrs[j].mask = -1ull;
  3308. ++vmx->nmsrs;
  3309. }
  3310. vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
  3311. /* 22.2.1, 20.8.1 */
  3312. vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
  3313. vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
  3314. set_cr4_guest_host_mask(vmx);
  3315. kvm_write_tsc(&vmx->vcpu, 0);
  3316. return 0;
  3317. }
  3318. static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
  3319. {
  3320. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3321. u64 msr;
  3322. int ret;
  3323. vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
  3324. vmx->rmode.vm86_active = 0;
  3325. vmx->soft_vnmi_blocked = 0;
  3326. vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
  3327. kvm_set_cr8(&vmx->vcpu, 0);
  3328. msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
  3329. if (kvm_vcpu_is_bsp(&vmx->vcpu))
  3330. msr |= MSR_IA32_APICBASE_BSP;
  3331. kvm_set_apic_base(&vmx->vcpu, msr);
  3332. ret = fx_init(&vmx->vcpu);
  3333. if (ret != 0)
  3334. goto out;
  3335. vmx_segment_cache_clear(vmx);
  3336. seg_setup(VCPU_SREG_CS);
  3337. /*
  3338. * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
  3339. * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
  3340. */
  3341. if (kvm_vcpu_is_bsp(&vmx->vcpu)) {
  3342. vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
  3343. vmcs_writel(GUEST_CS_BASE, 0x000f0000);
  3344. } else {
  3345. vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
  3346. vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
  3347. }
  3348. seg_setup(VCPU_SREG_DS);
  3349. seg_setup(VCPU_SREG_ES);
  3350. seg_setup(VCPU_SREG_FS);
  3351. seg_setup(VCPU_SREG_GS);
  3352. seg_setup(VCPU_SREG_SS);
  3353. vmcs_write16(GUEST_TR_SELECTOR, 0);
  3354. vmcs_writel(GUEST_TR_BASE, 0);
  3355. vmcs_write32(GUEST_TR_LIMIT, 0xffff);
  3356. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  3357. vmcs_write16(GUEST_LDTR_SELECTOR, 0);
  3358. vmcs_writel(GUEST_LDTR_BASE, 0);
  3359. vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
  3360. vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
  3361. vmcs_write32(GUEST_SYSENTER_CS, 0);
  3362. vmcs_writel(GUEST_SYSENTER_ESP, 0);
  3363. vmcs_writel(GUEST_SYSENTER_EIP, 0);
  3364. vmcs_writel(GUEST_RFLAGS, 0x02);
  3365. if (kvm_vcpu_is_bsp(&vmx->vcpu))
  3366. kvm_rip_write(vcpu, 0xfff0);
  3367. else
  3368. kvm_rip_write(vcpu, 0);
  3369. kvm_register_write(vcpu, VCPU_REGS_RSP, 0);
  3370. vmcs_writel(GUEST_DR7, 0x400);
  3371. vmcs_writel(GUEST_GDTR_BASE, 0);
  3372. vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
  3373. vmcs_writel(GUEST_IDTR_BASE, 0);
  3374. vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
  3375. vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
  3376. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
  3377. vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
  3378. /* Special registers */
  3379. vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
  3380. setup_msrs(vmx);
  3381. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
  3382. if (cpu_has_vmx_tpr_shadow()) {
  3383. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
  3384. if (vm_need_tpr_shadow(vmx->vcpu.kvm))
  3385. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
  3386. __pa(vmx->vcpu.arch.apic->regs));
  3387. vmcs_write32(TPR_THRESHOLD, 0);
  3388. }
  3389. if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
  3390. vmcs_write64(APIC_ACCESS_ADDR,
  3391. page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
  3392. if (vmx->vpid != 0)
  3393. vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
  3394. vmx->vcpu.arch.cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
  3395. vmx_set_cr0(&vmx->vcpu, kvm_read_cr0(vcpu)); /* enter rmode */
  3396. vmx_set_cr4(&vmx->vcpu, 0);
  3397. vmx_set_efer(&vmx->vcpu, 0);
  3398. vmx_fpu_activate(&vmx->vcpu);
  3399. update_exception_bitmap(&vmx->vcpu);
  3400. vpid_sync_context(vmx);
  3401. ret = 0;
  3402. /* HACK: Don't enable emulation on guest boot/reset */
  3403. vmx->emulation_required = 0;
  3404. out:
  3405. return ret;
  3406. }
  3407. /*
  3408. * In nested virtualization, check if L1 asked to exit on external interrupts.
  3409. * For most existing hypervisors, this will always return true.
  3410. */
  3411. static bool nested_exit_on_intr(struct kvm_vcpu *vcpu)
  3412. {
  3413. return get_vmcs12(vcpu)->pin_based_vm_exec_control &
  3414. PIN_BASED_EXT_INTR_MASK;
  3415. }
  3416. static void enable_irq_window(struct kvm_vcpu *vcpu)
  3417. {
  3418. u32 cpu_based_vm_exec_control;
  3419. if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu)) {
  3420. /*
  3421. * We get here if vmx_interrupt_allowed() said we can't
  3422. * inject to L1 now because L2 must run. Ask L2 to exit
  3423. * right after entry, so we can inject to L1 more promptly.
  3424. */
  3425. kvm_make_request(KVM_REQ_IMMEDIATE_EXIT, vcpu);
  3426. return;
  3427. }
  3428. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  3429. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
  3430. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  3431. }
  3432. static void enable_nmi_window(struct kvm_vcpu *vcpu)
  3433. {
  3434. u32 cpu_based_vm_exec_control;
  3435. if (!cpu_has_virtual_nmis()) {
  3436. enable_irq_window(vcpu);
  3437. return;
  3438. }
  3439. if (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
  3440. enable_irq_window(vcpu);
  3441. return;
  3442. }
  3443. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  3444. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
  3445. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  3446. }
  3447. static void vmx_inject_irq(struct kvm_vcpu *vcpu)
  3448. {
  3449. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3450. uint32_t intr;
  3451. int irq = vcpu->arch.interrupt.nr;
  3452. trace_kvm_inj_virq(irq);
  3453. ++vcpu->stat.irq_injections;
  3454. if (vmx->rmode.vm86_active) {
  3455. int inc_eip = 0;
  3456. if (vcpu->arch.interrupt.soft)
  3457. inc_eip = vcpu->arch.event_exit_inst_len;
  3458. if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
  3459. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  3460. return;
  3461. }
  3462. intr = irq | INTR_INFO_VALID_MASK;
  3463. if (vcpu->arch.interrupt.soft) {
  3464. intr |= INTR_TYPE_SOFT_INTR;
  3465. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
  3466. vmx->vcpu.arch.event_exit_inst_len);
  3467. } else
  3468. intr |= INTR_TYPE_EXT_INTR;
  3469. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
  3470. vmx_clear_hlt(vcpu);
  3471. }
  3472. static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
  3473. {
  3474. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3475. if (is_guest_mode(vcpu))
  3476. return;
  3477. if (!cpu_has_virtual_nmis()) {
  3478. /*
  3479. * Tracking the NMI-blocked state in software is built upon
  3480. * finding the next open IRQ window. This, in turn, depends on
  3481. * well-behaving guests: They have to keep IRQs disabled at
  3482. * least as long as the NMI handler runs. Otherwise we may
  3483. * cause NMI nesting, maybe breaking the guest. But as this is
  3484. * highly unlikely, we can live with the residual risk.
  3485. */
  3486. vmx->soft_vnmi_blocked = 1;
  3487. vmx->vnmi_blocked_time = 0;
  3488. }
  3489. ++vcpu->stat.nmi_injections;
  3490. vmx->nmi_known_unmasked = false;
  3491. if (vmx->rmode.vm86_active) {
  3492. if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
  3493. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  3494. return;
  3495. }
  3496. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  3497. INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
  3498. vmx_clear_hlt(vcpu);
  3499. }
  3500. static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
  3501. {
  3502. if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
  3503. return 0;
  3504. return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
  3505. (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
  3506. | GUEST_INTR_STATE_NMI));
  3507. }
  3508. static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
  3509. {
  3510. if (!cpu_has_virtual_nmis())
  3511. return to_vmx(vcpu)->soft_vnmi_blocked;
  3512. if (to_vmx(vcpu)->nmi_known_unmasked)
  3513. return false;
  3514. return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
  3515. }
  3516. static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
  3517. {
  3518. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3519. if (!cpu_has_virtual_nmis()) {
  3520. if (vmx->soft_vnmi_blocked != masked) {
  3521. vmx->soft_vnmi_blocked = masked;
  3522. vmx->vnmi_blocked_time = 0;
  3523. }
  3524. } else {
  3525. vmx->nmi_known_unmasked = !masked;
  3526. if (masked)
  3527. vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
  3528. GUEST_INTR_STATE_NMI);
  3529. else
  3530. vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
  3531. GUEST_INTR_STATE_NMI);
  3532. }
  3533. }
  3534. static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
  3535. {
  3536. if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu)) {
  3537. struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
  3538. if (to_vmx(vcpu)->nested.nested_run_pending ||
  3539. (vmcs12->idt_vectoring_info_field &
  3540. VECTORING_INFO_VALID_MASK))
  3541. return 0;
  3542. nested_vmx_vmexit(vcpu);
  3543. vmcs12->vm_exit_reason = EXIT_REASON_EXTERNAL_INTERRUPT;
  3544. vmcs12->vm_exit_intr_info = 0;
  3545. /* fall through to normal code, but now in L1, not L2 */
  3546. }
  3547. return (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
  3548. !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
  3549. (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
  3550. }
  3551. static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
  3552. {
  3553. int ret;
  3554. struct kvm_userspace_memory_region tss_mem = {
  3555. .slot = TSS_PRIVATE_MEMSLOT,
  3556. .guest_phys_addr = addr,
  3557. .memory_size = PAGE_SIZE * 3,
  3558. .flags = 0,
  3559. };
  3560. ret = kvm_set_memory_region(kvm, &tss_mem, 0);
  3561. if (ret)
  3562. return ret;
  3563. kvm->arch.tss_addr = addr;
  3564. if (!init_rmode_tss(kvm))
  3565. return -ENOMEM;
  3566. return 0;
  3567. }
  3568. static int handle_rmode_exception(struct kvm_vcpu *vcpu,
  3569. int vec, u32 err_code)
  3570. {
  3571. /*
  3572. * Instruction with address size override prefix opcode 0x67
  3573. * Cause the #SS fault with 0 error code in VM86 mode.
  3574. */
  3575. if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
  3576. if (emulate_instruction(vcpu, 0) == EMULATE_DONE)
  3577. return 1;
  3578. /*
  3579. * Forward all other exceptions that are valid in real mode.
  3580. * FIXME: Breaks guest debugging in real mode, needs to be fixed with
  3581. * the required debugging infrastructure rework.
  3582. */
  3583. switch (vec) {
  3584. case DB_VECTOR:
  3585. if (vcpu->guest_debug &
  3586. (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
  3587. return 0;
  3588. kvm_queue_exception(vcpu, vec);
  3589. return 1;
  3590. case BP_VECTOR:
  3591. /*
  3592. * Update instruction length as we may reinject the exception
  3593. * from user space while in guest debugging mode.
  3594. */
  3595. to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
  3596. vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  3597. if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
  3598. return 0;
  3599. /* fall through */
  3600. case DE_VECTOR:
  3601. case OF_VECTOR:
  3602. case BR_VECTOR:
  3603. case UD_VECTOR:
  3604. case DF_VECTOR:
  3605. case SS_VECTOR:
  3606. case GP_VECTOR:
  3607. case MF_VECTOR:
  3608. kvm_queue_exception(vcpu, vec);
  3609. return 1;
  3610. }
  3611. return 0;
  3612. }
  3613. /*
  3614. * Trigger machine check on the host. We assume all the MSRs are already set up
  3615. * by the CPU and that we still run on the same CPU as the MCE occurred on.
  3616. * We pass a fake environment to the machine check handler because we want
  3617. * the guest to be always treated like user space, no matter what context
  3618. * it used internally.
  3619. */
  3620. static void kvm_machine_check(void)
  3621. {
  3622. #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
  3623. struct pt_regs regs = {
  3624. .cs = 3, /* Fake ring 3 no matter what the guest ran on */
  3625. .flags = X86_EFLAGS_IF,
  3626. };
  3627. do_machine_check(&regs, 0);
  3628. #endif
  3629. }
  3630. static int handle_machine_check(struct kvm_vcpu *vcpu)
  3631. {
  3632. /* already handled by vcpu_run */
  3633. return 1;
  3634. }
  3635. static int handle_exception(struct kvm_vcpu *vcpu)
  3636. {
  3637. struct vcpu_vmx *vmx = to_vmx(vcpu);
  3638. struct kvm_run *kvm_run = vcpu->run;
  3639. u32 intr_info, ex_no, error_code;
  3640. unsigned long cr2, rip, dr6;
  3641. u32 vect_info;
  3642. enum emulation_result er;
  3643. vect_info = vmx->idt_vectoring_info;
  3644. intr_info = vmx->exit_intr_info;
  3645. if (is_machine_check(intr_info))
  3646. return handle_machine_check(vcpu);
  3647. if ((vect_info & VECTORING_INFO_VALID_MASK) &&
  3648. !is_page_fault(intr_info)) {
  3649. vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  3650. vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
  3651. vcpu->run->internal.ndata = 2;
  3652. vcpu->run->internal.data[0] = vect_info;
  3653. vcpu->run->internal.data[1] = intr_info;
  3654. return 0;
  3655. }
  3656. if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
  3657. return 1; /* already handled by vmx_vcpu_run() */
  3658. if (is_no_device(intr_info)) {
  3659. vmx_fpu_activate(vcpu);
  3660. return 1;
  3661. }
  3662. if (is_invalid_opcode(intr_info)) {
  3663. er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD);
  3664. if (er != EMULATE_DONE)
  3665. kvm_queue_exception(vcpu, UD_VECTOR);
  3666. return 1;
  3667. }
  3668. error_code = 0;
  3669. if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
  3670. error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
  3671. if (is_page_fault(intr_info)) {
  3672. /* EPT won't cause page fault directly */
  3673. BUG_ON(enable_ept);
  3674. cr2 = vmcs_readl(EXIT_QUALIFICATION);
  3675. trace_kvm_page_fault(cr2, error_code);
  3676. if (kvm_event_needs_reinjection(vcpu))
  3677. kvm_mmu_unprotect_page_virt(vcpu, cr2);
  3678. return kvm_mmu_page_fault(vcpu, cr2, error_code, NULL, 0);
  3679. }
  3680. if (vmx->rmode.vm86_active &&
  3681. handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
  3682. error_code)) {
  3683. if (vcpu->arch.halt_request) {
  3684. vcpu->arch.halt_request = 0;
  3685. return kvm_emulate_halt(vcpu);
  3686. }
  3687. return 1;
  3688. }
  3689. ex_no = intr_info & INTR_INFO_VECTOR_MASK;
  3690. switch (ex_no) {
  3691. case DB_VECTOR:
  3692. dr6 = vmcs_readl(EXIT_QUALIFICATION);
  3693. if (!(vcpu->guest_debug &
  3694. (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
  3695. vcpu->arch.dr6 = dr6 | DR6_FIXED_1;
  3696. kvm_queue_exception(vcpu, DB_VECTOR);
  3697. return 1;
  3698. }
  3699. kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
  3700. kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
  3701. /* fall through */
  3702. case BP_VECTOR:
  3703. /*
  3704. * Update instruction length as we may reinject #BP from
  3705. * user space while in guest debugging mode. Reading it for
  3706. * #DB as well causes no harm, it is not used in that case.
  3707. */
  3708. vmx->vcpu.arch.event_exit_inst_len =
  3709. vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  3710. kvm_run->exit_reason = KVM_EXIT_DEBUG;
  3711. rip = kvm_rip_read(vcpu);
  3712. kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
  3713. kvm_run->debug.arch.exception = ex_no;
  3714. break;
  3715. default:
  3716. kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
  3717. kvm_run->ex.exception = ex_no;
  3718. kvm_run->ex.error_code = error_code;
  3719. break;
  3720. }
  3721. return 0;
  3722. }
  3723. static int handle_external_interrupt(struct kvm_vcpu *vcpu)
  3724. {
  3725. ++vcpu->stat.irq_exits;
  3726. return 1;
  3727. }
  3728. static int handle_triple_fault(struct kvm_vcpu *vcpu)
  3729. {
  3730. vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
  3731. return 0;
  3732. }
  3733. static int handle_io(struct kvm_vcpu *vcpu)
  3734. {
  3735. unsigned long exit_qualification;
  3736. int size, in, string;
  3737. unsigned port;
  3738. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  3739. string = (exit_qualification & 16) != 0;
  3740. in = (exit_qualification & 8) != 0;
  3741. ++vcpu->stat.io_exits;
  3742. if (string || in)
  3743. return emulate_instruction(vcpu, 0) == EMULATE_DONE;
  3744. port = exit_qualification >> 16;
  3745. size = (exit_qualification & 7) + 1;
  3746. skip_emulated_instruction(vcpu);
  3747. return kvm_fast_pio_out(vcpu, size, port);
  3748. }
  3749. static void
  3750. vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
  3751. {
  3752. /*
  3753. * Patch in the VMCALL instruction:
  3754. */
  3755. hypercall[0] = 0x0f;
  3756. hypercall[1] = 0x01;
  3757. hypercall[2] = 0xc1;
  3758. }
  3759. /* called to set cr0 as approriate for a mov-to-cr0 exit. */
  3760. static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
  3761. {
  3762. if (to_vmx(vcpu)->nested.vmxon &&
  3763. ((val & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON))
  3764. return 1;
  3765. if (is_guest_mode(vcpu)) {
  3766. /*
  3767. * We get here when L2 changed cr0 in a way that did not change
  3768. * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
  3769. * but did change L0 shadowed bits. This can currently happen
  3770. * with the TS bit: L0 may want to leave TS on (for lazy fpu
  3771. * loading) while pretending to allow the guest to change it.
  3772. */
  3773. if (kvm_set_cr0(vcpu, (val & vcpu->arch.cr0_guest_owned_bits) |
  3774. (vcpu->arch.cr0 & ~vcpu->arch.cr0_guest_owned_bits)))
  3775. return 1;
  3776. vmcs_writel(CR0_READ_SHADOW, val);
  3777. return 0;
  3778. } else
  3779. return kvm_set_cr0(vcpu, val);
  3780. }
  3781. static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
  3782. {
  3783. if (is_guest_mode(vcpu)) {
  3784. if (kvm_set_cr4(vcpu, (val & vcpu->arch.cr4_guest_owned_bits) |
  3785. (vcpu->arch.cr4 & ~vcpu->arch.cr4_guest_owned_bits)))
  3786. return 1;
  3787. vmcs_writel(CR4_READ_SHADOW, val);
  3788. return 0;
  3789. } else
  3790. return kvm_set_cr4(vcpu, val);
  3791. }
  3792. /* called to set cr0 as approriate for clts instruction exit. */
  3793. static void handle_clts(struct kvm_vcpu *vcpu)
  3794. {
  3795. if (is_guest_mode(vcpu)) {
  3796. /*
  3797. * We get here when L2 did CLTS, and L1 didn't shadow CR0.TS
  3798. * but we did (!fpu_active). We need to keep GUEST_CR0.TS on,
  3799. * just pretend it's off (also in arch.cr0 for fpu_activate).
  3800. */
  3801. vmcs_writel(CR0_READ_SHADOW,
  3802. vmcs_readl(CR0_READ_SHADOW) & ~X86_CR0_TS);
  3803. vcpu->arch.cr0 &= ~X86_CR0_TS;
  3804. } else
  3805. vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
  3806. }
  3807. static int handle_cr(struct kvm_vcpu *vcpu)
  3808. {
  3809. unsigned long exit_qualification, val;
  3810. int cr;
  3811. int reg;
  3812. int err;
  3813. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  3814. cr = exit_qualification & 15;
  3815. reg = (exit_qualification >> 8) & 15;
  3816. switch ((exit_qualification >> 4) & 3) {
  3817. case 0: /* mov to cr */
  3818. val = kvm_register_read(vcpu, reg);
  3819. trace_kvm_cr_write(cr, val);
  3820. switch (cr) {
  3821. case 0:
  3822. err = handle_set_cr0(vcpu, val);
  3823. kvm_complete_insn_gp(vcpu, err);
  3824. return 1;
  3825. case 3:
  3826. err = kvm_set_cr3(vcpu, val);
  3827. kvm_complete_insn_gp(vcpu, err);
  3828. return 1;
  3829. case 4:
  3830. err = handle_set_cr4(vcpu, val);
  3831. kvm_complete_insn_gp(vcpu, err);
  3832. return 1;
  3833. case 8: {
  3834. u8 cr8_prev = kvm_get_cr8(vcpu);
  3835. u8 cr8 = kvm_register_read(vcpu, reg);
  3836. err = kvm_set_cr8(vcpu, cr8);
  3837. kvm_complete_insn_gp(vcpu, err);
  3838. if (irqchip_in_kernel(vcpu->kvm))
  3839. return 1;
  3840. if (cr8_prev <= cr8)
  3841. return 1;
  3842. vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
  3843. return 0;
  3844. }
  3845. };
  3846. break;
  3847. case 2: /* clts */
  3848. handle_clts(vcpu);
  3849. trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
  3850. skip_emulated_instruction(vcpu);
  3851. vmx_fpu_activate(vcpu);
  3852. return 1;
  3853. case 1: /*mov from cr*/
  3854. switch (cr) {
  3855. case 3:
  3856. val = kvm_read_cr3(vcpu);
  3857. kvm_register_write(vcpu, reg, val);
  3858. trace_kvm_cr_read(cr, val);
  3859. skip_emulated_instruction(vcpu);
  3860. return 1;
  3861. case 8:
  3862. val = kvm_get_cr8(vcpu);
  3863. kvm_register_write(vcpu, reg, val);
  3864. trace_kvm_cr_read(cr, val);
  3865. skip_emulated_instruction(vcpu);
  3866. return 1;
  3867. }
  3868. break;
  3869. case 3: /* lmsw */
  3870. val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
  3871. trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
  3872. kvm_lmsw(vcpu, val);
  3873. skip_emulated_instruction(vcpu);
  3874. return 1;
  3875. default:
  3876. break;
  3877. }
  3878. vcpu->run->exit_reason = 0;
  3879. pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
  3880. (int)(exit_qualification >> 4) & 3, cr);
  3881. return 0;
  3882. }
  3883. static int handle_dr(struct kvm_vcpu *vcpu)
  3884. {
  3885. unsigned long exit_qualification;
  3886. int dr, reg;
  3887. /* Do not handle if the CPL > 0, will trigger GP on re-entry */
  3888. if (!kvm_require_cpl(vcpu, 0))
  3889. return 1;
  3890. dr = vmcs_readl(GUEST_DR7);
  3891. if (dr & DR7_GD) {
  3892. /*
  3893. * As the vm-exit takes precedence over the debug trap, we
  3894. * need to emulate the latter, either for the host or the
  3895. * guest debugging itself.
  3896. */
  3897. if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
  3898. vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
  3899. vcpu->run->debug.arch.dr7 = dr;
  3900. vcpu->run->debug.arch.pc =
  3901. vmcs_readl(GUEST_CS_BASE) +
  3902. vmcs_readl(GUEST_RIP);
  3903. vcpu->run->debug.arch.exception = DB_VECTOR;
  3904. vcpu->run->exit_reason = KVM_EXIT_DEBUG;
  3905. return 0;
  3906. } else {
  3907. vcpu->arch.dr7 &= ~DR7_GD;
  3908. vcpu->arch.dr6 |= DR6_BD;
  3909. vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
  3910. kvm_queue_exception(vcpu, DB_VECTOR);
  3911. return 1;
  3912. }
  3913. }
  3914. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  3915. dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
  3916. reg = DEBUG_REG_ACCESS_REG(exit_qualification);
  3917. if (exit_qualification & TYPE_MOV_FROM_DR) {
  3918. unsigned long val;
  3919. if (!kvm_get_dr(vcpu, dr, &val))
  3920. kvm_register_write(vcpu, reg, val);
  3921. } else
  3922. kvm_set_dr(vcpu, dr, vcpu->arch.regs[reg]);
  3923. skip_emulated_instruction(vcpu);
  3924. return 1;
  3925. }
  3926. static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
  3927. {
  3928. vmcs_writel(GUEST_DR7, val);
  3929. }
  3930. static int handle_cpuid(struct kvm_vcpu *vcpu)
  3931. {
  3932. kvm_emulate_cpuid(vcpu);
  3933. return 1;
  3934. }
  3935. static int handle_rdmsr(struct kvm_vcpu *vcpu)
  3936. {
  3937. u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
  3938. u64 data;
  3939. if (vmx_get_msr(vcpu, ecx, &data)) {
  3940. trace_kvm_msr_read_ex(ecx);
  3941. kvm_inject_gp(vcpu, 0);
  3942. return 1;
  3943. }
  3944. trace_kvm_msr_read(ecx, data);
  3945. /* FIXME: handling of bits 32:63 of rax, rdx */
  3946. vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
  3947. vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
  3948. skip_emulated_instruction(vcpu);
  3949. return 1;
  3950. }
  3951. static int handle_wrmsr(struct kvm_vcpu *vcpu)
  3952. {
  3953. u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
  3954. u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
  3955. | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
  3956. if (vmx_set_msr(vcpu, ecx, data) != 0) {
  3957. trace_kvm_msr_write_ex(ecx, data);
  3958. kvm_inject_gp(vcpu, 0);
  3959. return 1;
  3960. }
  3961. trace_kvm_msr_write(ecx, data);
  3962. skip_emulated_instruction(vcpu);
  3963. return 1;
  3964. }
  3965. static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
  3966. {
  3967. kvm_make_request(KVM_REQ_EVENT, vcpu);
  3968. return 1;
  3969. }
  3970. static int handle_interrupt_window(struct kvm_vcpu *vcpu)
  3971. {
  3972. u32 cpu_based_vm_exec_control;
  3973. /* clear pending irq */
  3974. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  3975. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
  3976. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  3977. kvm_make_request(KVM_REQ_EVENT, vcpu);
  3978. ++vcpu->stat.irq_window_exits;
  3979. /*
  3980. * If the user space waits to inject interrupts, exit as soon as
  3981. * possible
  3982. */
  3983. if (!irqchip_in_kernel(vcpu->kvm) &&
  3984. vcpu->run->request_interrupt_window &&
  3985. !kvm_cpu_has_interrupt(vcpu)) {
  3986. vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
  3987. return 0;
  3988. }
  3989. return 1;
  3990. }
  3991. static int handle_halt(struct kvm_vcpu *vcpu)
  3992. {
  3993. skip_emulated_instruction(vcpu);
  3994. return kvm_emulate_halt(vcpu);
  3995. }
  3996. static int handle_vmcall(struct kvm_vcpu *vcpu)
  3997. {
  3998. skip_emulated_instruction(vcpu);
  3999. kvm_emulate_hypercall(vcpu);
  4000. return 1;
  4001. }
  4002. static int handle_invd(struct kvm_vcpu *vcpu)
  4003. {
  4004. return emulate_instruction(vcpu, 0) == EMULATE_DONE;
  4005. }
  4006. static int handle_invlpg(struct kvm_vcpu *vcpu)
  4007. {
  4008. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  4009. kvm_mmu_invlpg(vcpu, exit_qualification);
  4010. skip_emulated_instruction(vcpu);
  4011. return 1;
  4012. }
  4013. static int handle_wbinvd(struct kvm_vcpu *vcpu)
  4014. {
  4015. skip_emulated_instruction(vcpu);
  4016. kvm_emulate_wbinvd(vcpu);
  4017. return 1;
  4018. }
  4019. static int handle_xsetbv(struct kvm_vcpu *vcpu)
  4020. {
  4021. u64 new_bv = kvm_read_edx_eax(vcpu);
  4022. u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
  4023. if (kvm_set_xcr(vcpu, index, new_bv) == 0)
  4024. skip_emulated_instruction(vcpu);
  4025. return 1;
  4026. }
  4027. static int handle_apic_access(struct kvm_vcpu *vcpu)
  4028. {
  4029. if (likely(fasteoi)) {
  4030. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  4031. int access_type, offset;
  4032. access_type = exit_qualification & APIC_ACCESS_TYPE;
  4033. offset = exit_qualification & APIC_ACCESS_OFFSET;
  4034. /*
  4035. * Sane guest uses MOV to write EOI, with written value
  4036. * not cared. So make a short-circuit here by avoiding
  4037. * heavy instruction emulation.
  4038. */
  4039. if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
  4040. (offset == APIC_EOI)) {
  4041. kvm_lapic_set_eoi(vcpu);
  4042. skip_emulated_instruction(vcpu);
  4043. return 1;
  4044. }
  4045. }
  4046. return emulate_instruction(vcpu, 0) == EMULATE_DONE;
  4047. }
  4048. static int handle_task_switch(struct kvm_vcpu *vcpu)
  4049. {
  4050. struct vcpu_vmx *vmx = to_vmx(vcpu);
  4051. unsigned long exit_qualification;
  4052. bool has_error_code = false;
  4053. u32 error_code = 0;
  4054. u16 tss_selector;
  4055. int reason, type, idt_v;
  4056. idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
  4057. type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
  4058. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  4059. reason = (u32)exit_qualification >> 30;
  4060. if (reason == TASK_SWITCH_GATE && idt_v) {
  4061. switch (type) {
  4062. case INTR_TYPE_NMI_INTR:
  4063. vcpu->arch.nmi_injected = false;
  4064. vmx_set_nmi_mask(vcpu, true);
  4065. break;
  4066. case INTR_TYPE_EXT_INTR:
  4067. case INTR_TYPE_SOFT_INTR:
  4068. kvm_clear_interrupt_queue(vcpu);
  4069. break;
  4070. case INTR_TYPE_HARD_EXCEPTION:
  4071. if (vmx->idt_vectoring_info &
  4072. VECTORING_INFO_DELIVER_CODE_MASK) {
  4073. has_error_code = true;
  4074. error_code =
  4075. vmcs_read32(IDT_VECTORING_ERROR_CODE);
  4076. }
  4077. /* fall through */
  4078. case INTR_TYPE_SOFT_EXCEPTION:
  4079. kvm_clear_exception_queue(vcpu);
  4080. break;
  4081. default:
  4082. break;
  4083. }
  4084. }
  4085. tss_selector = exit_qualification;
  4086. if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
  4087. type != INTR_TYPE_EXT_INTR &&
  4088. type != INTR_TYPE_NMI_INTR))
  4089. skip_emulated_instruction(vcpu);
  4090. if (kvm_task_switch(vcpu, tss_selector, reason,
  4091. has_error_code, error_code) == EMULATE_FAIL) {
  4092. vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  4093. vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
  4094. vcpu->run->internal.ndata = 0;
  4095. return 0;
  4096. }
  4097. /* clear all local breakpoint enable flags */
  4098. vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~55);
  4099. /*
  4100. * TODO: What about debug traps on tss switch?
  4101. * Are we supposed to inject them and update dr6?
  4102. */
  4103. return 1;
  4104. }
  4105. static int handle_ept_violation(struct kvm_vcpu *vcpu)
  4106. {
  4107. unsigned long exit_qualification;
  4108. gpa_t gpa;
  4109. int gla_validity;
  4110. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  4111. if (exit_qualification & (1 << 6)) {
  4112. printk(KERN_ERR "EPT: GPA exceeds GAW!\n");
  4113. return -EINVAL;
  4114. }
  4115. gla_validity = (exit_qualification >> 7) & 0x3;
  4116. if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
  4117. printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
  4118. printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
  4119. (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
  4120. vmcs_readl(GUEST_LINEAR_ADDRESS));
  4121. printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
  4122. (long unsigned int)exit_qualification);
  4123. vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
  4124. vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
  4125. return 0;
  4126. }
  4127. gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
  4128. trace_kvm_page_fault(gpa, exit_qualification);
  4129. return kvm_mmu_page_fault(vcpu, gpa, exit_qualification & 0x3, NULL, 0);
  4130. }
  4131. static u64 ept_rsvd_mask(u64 spte, int level)
  4132. {
  4133. int i;
  4134. u64 mask = 0;
  4135. for (i = 51; i > boot_cpu_data.x86_phys_bits; i--)
  4136. mask |= (1ULL << i);
  4137. if (level > 2)
  4138. /* bits 7:3 reserved */
  4139. mask |= 0xf8;
  4140. else if (level == 2) {
  4141. if (spte & (1ULL << 7))
  4142. /* 2MB ref, bits 20:12 reserved */
  4143. mask |= 0x1ff000;
  4144. else
  4145. /* bits 6:3 reserved */
  4146. mask |= 0x78;
  4147. }
  4148. return mask;
  4149. }
  4150. static void ept_misconfig_inspect_spte(struct kvm_vcpu *vcpu, u64 spte,
  4151. int level)
  4152. {
  4153. printk(KERN_ERR "%s: spte 0x%llx level %d\n", __func__, spte, level);
  4154. /* 010b (write-only) */
  4155. WARN_ON((spte & 0x7) == 0x2);
  4156. /* 110b (write/execute) */
  4157. WARN_ON((spte & 0x7) == 0x6);
  4158. /* 100b (execute-only) and value not supported by logical processor */
  4159. if (!cpu_has_vmx_ept_execute_only())
  4160. WARN_ON((spte & 0x7) == 0x4);
  4161. /* not 000b */
  4162. if ((spte & 0x7)) {
  4163. u64 rsvd_bits = spte & ept_rsvd_mask(spte, level);
  4164. if (rsvd_bits != 0) {
  4165. printk(KERN_ERR "%s: rsvd_bits = 0x%llx\n",
  4166. __func__, rsvd_bits);
  4167. WARN_ON(1);
  4168. }
  4169. if (level == 1 || (level == 2 && (spte & (1ULL << 7)))) {
  4170. u64 ept_mem_type = (spte & 0x38) >> 3;
  4171. if (ept_mem_type == 2 || ept_mem_type == 3 ||
  4172. ept_mem_type == 7) {
  4173. printk(KERN_ERR "%s: ept_mem_type=0x%llx\n",
  4174. __func__, ept_mem_type);
  4175. WARN_ON(1);
  4176. }
  4177. }
  4178. }
  4179. }
  4180. static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
  4181. {
  4182. u64 sptes[4];
  4183. int nr_sptes, i, ret;
  4184. gpa_t gpa;
  4185. gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
  4186. ret = handle_mmio_page_fault_common(vcpu, gpa, true);
  4187. if (likely(ret == 1))
  4188. return x86_emulate_instruction(vcpu, gpa, 0, NULL, 0) ==
  4189. EMULATE_DONE;
  4190. if (unlikely(!ret))
  4191. return 1;
  4192. /* It is the real ept misconfig */
  4193. printk(KERN_ERR "EPT: Misconfiguration.\n");
  4194. printk(KERN_ERR "EPT: GPA: 0x%llx\n", gpa);
  4195. nr_sptes = kvm_mmu_get_spte_hierarchy(vcpu, gpa, sptes);
  4196. for (i = PT64_ROOT_LEVEL; i > PT64_ROOT_LEVEL - nr_sptes; --i)
  4197. ept_misconfig_inspect_spte(vcpu, sptes[i-1], i);
  4198. vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
  4199. vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
  4200. return 0;
  4201. }
  4202. static int handle_nmi_window(struct kvm_vcpu *vcpu)
  4203. {
  4204. u32 cpu_based_vm_exec_control;
  4205. /* clear pending NMI */
  4206. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  4207. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
  4208. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  4209. ++vcpu->stat.nmi_window_exits;
  4210. kvm_make_request(KVM_REQ_EVENT, vcpu);
  4211. return 1;
  4212. }
  4213. static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
  4214. {
  4215. struct vcpu_vmx *vmx = to_vmx(vcpu);
  4216. enum emulation_result err = EMULATE_DONE;
  4217. int ret = 1;
  4218. u32 cpu_exec_ctrl;
  4219. bool intr_window_requested;
  4220. cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  4221. intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
  4222. while (!guest_state_valid(vcpu)) {
  4223. if (intr_window_requested
  4224. && (kvm_get_rflags(&vmx->vcpu) & X86_EFLAGS_IF))
  4225. return handle_interrupt_window(&vmx->vcpu);
  4226. err = emulate_instruction(vcpu, 0);
  4227. if (err == EMULATE_DO_MMIO) {
  4228. ret = 0;
  4229. goto out;
  4230. }
  4231. if (err != EMULATE_DONE)
  4232. return 0;
  4233. if (signal_pending(current))
  4234. goto out;
  4235. if (need_resched())
  4236. schedule();
  4237. }
  4238. vmx->emulation_required = 0;
  4239. out:
  4240. return ret;
  4241. }
  4242. /*
  4243. * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
  4244. * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
  4245. */
  4246. static int handle_pause(struct kvm_vcpu *vcpu)
  4247. {
  4248. skip_emulated_instruction(vcpu);
  4249. kvm_vcpu_on_spin(vcpu);
  4250. return 1;
  4251. }
  4252. static int handle_invalid_op(struct kvm_vcpu *vcpu)
  4253. {
  4254. kvm_queue_exception(vcpu, UD_VECTOR);
  4255. return 1;
  4256. }
  4257. /*
  4258. * To run an L2 guest, we need a vmcs02 based on the L1-specified vmcs12.
  4259. * We could reuse a single VMCS for all the L2 guests, but we also want the
  4260. * option to allocate a separate vmcs02 for each separate loaded vmcs12 - this
  4261. * allows keeping them loaded on the processor, and in the future will allow
  4262. * optimizations where prepare_vmcs02 doesn't need to set all the fields on
  4263. * every entry if they never change.
  4264. * So we keep, in vmx->nested.vmcs02_pool, a cache of size VMCS02_POOL_SIZE
  4265. * (>=0) with a vmcs02 for each recently loaded vmcs12s, most recent first.
  4266. *
  4267. * The following functions allocate and free a vmcs02 in this pool.
  4268. */
  4269. /* Get a VMCS from the pool to use as vmcs02 for the current vmcs12. */
  4270. static struct loaded_vmcs *nested_get_current_vmcs02(struct vcpu_vmx *vmx)
  4271. {
  4272. struct vmcs02_list *item;
  4273. list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
  4274. if (item->vmptr == vmx->nested.current_vmptr) {
  4275. list_move(&item->list, &vmx->nested.vmcs02_pool);
  4276. return &item->vmcs02;
  4277. }
  4278. if (vmx->nested.vmcs02_num >= max(VMCS02_POOL_SIZE, 1)) {
  4279. /* Recycle the least recently used VMCS. */
  4280. item = list_entry(vmx->nested.vmcs02_pool.prev,
  4281. struct vmcs02_list, list);
  4282. item->vmptr = vmx->nested.current_vmptr;
  4283. list_move(&item->list, &vmx->nested.vmcs02_pool);
  4284. return &item->vmcs02;
  4285. }
  4286. /* Create a new VMCS */
  4287. item = (struct vmcs02_list *)
  4288. kmalloc(sizeof(struct vmcs02_list), GFP_KERNEL);
  4289. if (!item)
  4290. return NULL;
  4291. item->vmcs02.vmcs = alloc_vmcs();
  4292. if (!item->vmcs02.vmcs) {
  4293. kfree(item);
  4294. return NULL;
  4295. }
  4296. loaded_vmcs_init(&item->vmcs02);
  4297. item->vmptr = vmx->nested.current_vmptr;
  4298. list_add(&(item->list), &(vmx->nested.vmcs02_pool));
  4299. vmx->nested.vmcs02_num++;
  4300. return &item->vmcs02;
  4301. }
  4302. /* Free and remove from pool a vmcs02 saved for a vmcs12 (if there is one) */
  4303. static void nested_free_vmcs02(struct vcpu_vmx *vmx, gpa_t vmptr)
  4304. {
  4305. struct vmcs02_list *item;
  4306. list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
  4307. if (item->vmptr == vmptr) {
  4308. free_loaded_vmcs(&item->vmcs02);
  4309. list_del(&item->list);
  4310. kfree(item);
  4311. vmx->nested.vmcs02_num--;
  4312. return;
  4313. }
  4314. }
  4315. /*
  4316. * Free all VMCSs saved for this vcpu, except the one pointed by
  4317. * vmx->loaded_vmcs. These include the VMCSs in vmcs02_pool (except the one
  4318. * currently used, if running L2), and vmcs01 when running L2.
  4319. */
  4320. static void nested_free_all_saved_vmcss(struct vcpu_vmx *vmx)
  4321. {
  4322. struct vmcs02_list *item, *n;
  4323. list_for_each_entry_safe(item, n, &vmx->nested.vmcs02_pool, list) {
  4324. if (vmx->loaded_vmcs != &item->vmcs02)
  4325. free_loaded_vmcs(&item->vmcs02);
  4326. list_del(&item->list);
  4327. kfree(item);
  4328. }
  4329. vmx->nested.vmcs02_num = 0;
  4330. if (vmx->loaded_vmcs != &vmx->vmcs01)
  4331. free_loaded_vmcs(&vmx->vmcs01);
  4332. }
  4333. /*
  4334. * Emulate the VMXON instruction.
  4335. * Currently, we just remember that VMX is active, and do not save or even
  4336. * inspect the argument to VMXON (the so-called "VMXON pointer") because we
  4337. * do not currently need to store anything in that guest-allocated memory
  4338. * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
  4339. * argument is different from the VMXON pointer (which the spec says they do).
  4340. */
  4341. static int handle_vmon(struct kvm_vcpu *vcpu)
  4342. {
  4343. struct kvm_segment cs;
  4344. struct vcpu_vmx *vmx = to_vmx(vcpu);
  4345. /* The Intel VMX Instruction Reference lists a bunch of bits that
  4346. * are prerequisite to running VMXON, most notably cr4.VMXE must be
  4347. * set to 1 (see vmx_set_cr4() for when we allow the guest to set this).
  4348. * Otherwise, we should fail with #UD. We test these now:
  4349. */
  4350. if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE) ||
  4351. !kvm_read_cr0_bits(vcpu, X86_CR0_PE) ||
  4352. (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
  4353. kvm_queue_exception(vcpu, UD_VECTOR);
  4354. return 1;
  4355. }
  4356. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  4357. if (is_long_mode(vcpu) && !cs.l) {
  4358. kvm_queue_exception(vcpu, UD_VECTOR);
  4359. return 1;
  4360. }
  4361. if (vmx_get_cpl(vcpu)) {
  4362. kvm_inject_gp(vcpu, 0);
  4363. return 1;
  4364. }
  4365. INIT_LIST_HEAD(&(vmx->nested.vmcs02_pool));
  4366. vmx->nested.vmcs02_num = 0;
  4367. vmx->nested.vmxon = true;
  4368. skip_emulated_instruction(vcpu);
  4369. return 1;
  4370. }
  4371. /*
  4372. * Intel's VMX Instruction Reference specifies a common set of prerequisites
  4373. * for running VMX instructions (except VMXON, whose prerequisites are
  4374. * slightly different). It also specifies what exception to inject otherwise.
  4375. */
  4376. static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
  4377. {
  4378. struct kvm_segment cs;
  4379. struct vcpu_vmx *vmx = to_vmx(vcpu);
  4380. if (!vmx->nested.vmxon) {
  4381. kvm_queue_exception(vcpu, UD_VECTOR);
  4382. return 0;
  4383. }
  4384. vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
  4385. if ((vmx_get_rflags(vcpu) & X86_EFLAGS_VM) ||
  4386. (is_long_mode(vcpu) && !cs.l)) {
  4387. kvm_queue_exception(vcpu, UD_VECTOR);
  4388. return 0;
  4389. }
  4390. if (vmx_get_cpl(vcpu)) {
  4391. kvm_inject_gp(vcpu, 0);
  4392. return 0;
  4393. }
  4394. return 1;
  4395. }
  4396. /*
  4397. * Free whatever needs to be freed from vmx->nested when L1 goes down, or
  4398. * just stops using VMX.
  4399. */
  4400. static void free_nested(struct vcpu_vmx *vmx)
  4401. {
  4402. if (!vmx->nested.vmxon)
  4403. return;
  4404. vmx->nested.vmxon = false;
  4405. if (vmx->nested.current_vmptr != -1ull) {
  4406. kunmap(vmx->nested.current_vmcs12_page);
  4407. nested_release_page(vmx->nested.current_vmcs12_page);
  4408. vmx->nested.current_vmptr = -1ull;
  4409. vmx->nested.current_vmcs12 = NULL;
  4410. }
  4411. /* Unpin physical memory we referred to in current vmcs02 */
  4412. if (vmx->nested.apic_access_page) {
  4413. nested_release_page(vmx->nested.apic_access_page);
  4414. vmx->nested.apic_access_page = 0;
  4415. }
  4416. nested_free_all_saved_vmcss(vmx);
  4417. }
  4418. /* Emulate the VMXOFF instruction */
  4419. static int handle_vmoff(struct kvm_vcpu *vcpu)
  4420. {
  4421. if (!nested_vmx_check_permission(vcpu))
  4422. return 1;
  4423. free_nested(to_vmx(vcpu));
  4424. skip_emulated_instruction(vcpu);
  4425. return 1;
  4426. }
  4427. /*
  4428. * Decode the memory-address operand of a vmx instruction, as recorded on an
  4429. * exit caused by such an instruction (run by a guest hypervisor).
  4430. * On success, returns 0. When the operand is invalid, returns 1 and throws
  4431. * #UD or #GP.
  4432. */
  4433. static int get_vmx_mem_address(struct kvm_vcpu *vcpu,
  4434. unsigned long exit_qualification,
  4435. u32 vmx_instruction_info, gva_t *ret)
  4436. {
  4437. /*
  4438. * According to Vol. 3B, "Information for VM Exits Due to Instruction
  4439. * Execution", on an exit, vmx_instruction_info holds most of the
  4440. * addressing components of the operand. Only the displacement part
  4441. * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
  4442. * For how an actual address is calculated from all these components,
  4443. * refer to Vol. 1, "Operand Addressing".
  4444. */
  4445. int scaling = vmx_instruction_info & 3;
  4446. int addr_size = (vmx_instruction_info >> 7) & 7;
  4447. bool is_reg = vmx_instruction_info & (1u << 10);
  4448. int seg_reg = (vmx_instruction_info >> 15) & 7;
  4449. int index_reg = (vmx_instruction_info >> 18) & 0xf;
  4450. bool index_is_valid = !(vmx_instruction_info & (1u << 22));
  4451. int base_reg = (vmx_instruction_info >> 23) & 0xf;
  4452. bool base_is_valid = !(vmx_instruction_info & (1u << 27));
  4453. if (is_reg) {
  4454. kvm_queue_exception(vcpu, UD_VECTOR);
  4455. return 1;
  4456. }
  4457. /* Addr = segment_base + offset */
  4458. /* offset = base + [index * scale] + displacement */
  4459. *ret = vmx_get_segment_base(vcpu, seg_reg);
  4460. if (base_is_valid)
  4461. *ret += kvm_register_read(vcpu, base_reg);
  4462. if (index_is_valid)
  4463. *ret += kvm_register_read(vcpu, index_reg)<<scaling;
  4464. *ret += exit_qualification; /* holds the displacement */
  4465. if (addr_size == 1) /* 32 bit */
  4466. *ret &= 0xffffffff;
  4467. /*
  4468. * TODO: throw #GP (and return 1) in various cases that the VM*
  4469. * instructions require it - e.g., offset beyond segment limit,
  4470. * unusable or unreadable/unwritable segment, non-canonical 64-bit
  4471. * address, and so on. Currently these are not checked.
  4472. */
  4473. return 0;
  4474. }
  4475. /*
  4476. * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
  4477. * set the success or error code of an emulated VMX instruction, as specified
  4478. * by Vol 2B, VMX Instruction Reference, "Conventions".
  4479. */
  4480. static void nested_vmx_succeed(struct kvm_vcpu *vcpu)
  4481. {
  4482. vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
  4483. & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
  4484. X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
  4485. }
  4486. static void nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
  4487. {
  4488. vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
  4489. & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
  4490. X86_EFLAGS_SF | X86_EFLAGS_OF))
  4491. | X86_EFLAGS_CF);
  4492. }
  4493. static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
  4494. u32 vm_instruction_error)
  4495. {
  4496. if (to_vmx(vcpu)->nested.current_vmptr == -1ull) {
  4497. /*
  4498. * failValid writes the error number to the current VMCS, which
  4499. * can't be done there isn't a current VMCS.
  4500. */
  4501. nested_vmx_failInvalid(vcpu);
  4502. return;
  4503. }
  4504. vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
  4505. & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
  4506. X86_EFLAGS_SF | X86_EFLAGS_OF))
  4507. | X86_EFLAGS_ZF);
  4508. get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
  4509. }
  4510. /* Emulate the VMCLEAR instruction */
  4511. static int handle_vmclear(struct kvm_vcpu *vcpu)
  4512. {
  4513. struct vcpu_vmx *vmx = to_vmx(vcpu);
  4514. gva_t gva;
  4515. gpa_t vmptr;
  4516. struct vmcs12 *vmcs12;
  4517. struct page *page;
  4518. struct x86_exception e;
  4519. if (!nested_vmx_check_permission(vcpu))
  4520. return 1;
  4521. if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
  4522. vmcs_read32(VMX_INSTRUCTION_INFO), &gva))
  4523. return 1;
  4524. if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
  4525. sizeof(vmptr), &e)) {
  4526. kvm_inject_page_fault(vcpu, &e);
  4527. return 1;
  4528. }
  4529. if (!IS_ALIGNED(vmptr, PAGE_SIZE)) {
  4530. nested_vmx_failValid(vcpu, VMXERR_VMCLEAR_INVALID_ADDRESS);
  4531. skip_emulated_instruction(vcpu);
  4532. return 1;
  4533. }
  4534. if (vmptr == vmx->nested.current_vmptr) {
  4535. kunmap(vmx->nested.current_vmcs12_page);
  4536. nested_release_page(vmx->nested.current_vmcs12_page);
  4537. vmx->nested.current_vmptr = -1ull;
  4538. vmx->nested.current_vmcs12 = NULL;
  4539. }
  4540. page = nested_get_page(vcpu, vmptr);
  4541. if (page == NULL) {
  4542. /*
  4543. * For accurate processor emulation, VMCLEAR beyond available
  4544. * physical memory should do nothing at all. However, it is
  4545. * possible that a nested vmx bug, not a guest hypervisor bug,
  4546. * resulted in this case, so let's shut down before doing any
  4547. * more damage:
  4548. */
  4549. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  4550. return 1;
  4551. }
  4552. vmcs12 = kmap(page);
  4553. vmcs12->launch_state = 0;
  4554. kunmap(page);
  4555. nested_release_page(page);
  4556. nested_free_vmcs02(vmx, vmptr);
  4557. skip_emulated_instruction(vcpu);
  4558. nested_vmx_succeed(vcpu);
  4559. return 1;
  4560. }
  4561. static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
  4562. /* Emulate the VMLAUNCH instruction */
  4563. static int handle_vmlaunch(struct kvm_vcpu *vcpu)
  4564. {
  4565. return nested_vmx_run(vcpu, true);
  4566. }
  4567. /* Emulate the VMRESUME instruction */
  4568. static int handle_vmresume(struct kvm_vcpu *vcpu)
  4569. {
  4570. return nested_vmx_run(vcpu, false);
  4571. }
  4572. enum vmcs_field_type {
  4573. VMCS_FIELD_TYPE_U16 = 0,
  4574. VMCS_FIELD_TYPE_U64 = 1,
  4575. VMCS_FIELD_TYPE_U32 = 2,
  4576. VMCS_FIELD_TYPE_NATURAL_WIDTH = 3
  4577. };
  4578. static inline int vmcs_field_type(unsigned long field)
  4579. {
  4580. if (0x1 & field) /* the *_HIGH fields are all 32 bit */
  4581. return VMCS_FIELD_TYPE_U32;
  4582. return (field >> 13) & 0x3 ;
  4583. }
  4584. static inline int vmcs_field_readonly(unsigned long field)
  4585. {
  4586. return (((field >> 10) & 0x3) == 1);
  4587. }
  4588. /*
  4589. * Read a vmcs12 field. Since these can have varying lengths and we return
  4590. * one type, we chose the biggest type (u64) and zero-extend the return value
  4591. * to that size. Note that the caller, handle_vmread, might need to use only
  4592. * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
  4593. * 64-bit fields are to be returned).
  4594. */
  4595. static inline bool vmcs12_read_any(struct kvm_vcpu *vcpu,
  4596. unsigned long field, u64 *ret)
  4597. {
  4598. short offset = vmcs_field_to_offset(field);
  4599. char *p;
  4600. if (offset < 0)
  4601. return 0;
  4602. p = ((char *)(get_vmcs12(vcpu))) + offset;
  4603. switch (vmcs_field_type(field)) {
  4604. case VMCS_FIELD_TYPE_NATURAL_WIDTH:
  4605. *ret = *((natural_width *)p);
  4606. return 1;
  4607. case VMCS_FIELD_TYPE_U16:
  4608. *ret = *((u16 *)p);
  4609. return 1;
  4610. case VMCS_FIELD_TYPE_U32:
  4611. *ret = *((u32 *)p);
  4612. return 1;
  4613. case VMCS_FIELD_TYPE_U64:
  4614. *ret = *((u64 *)p);
  4615. return 1;
  4616. default:
  4617. return 0; /* can never happen. */
  4618. }
  4619. }
  4620. /*
  4621. * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
  4622. * used before) all generate the same failure when it is missing.
  4623. */
  4624. static int nested_vmx_check_vmcs12(struct kvm_vcpu *vcpu)
  4625. {
  4626. struct vcpu_vmx *vmx = to_vmx(vcpu);
  4627. if (vmx->nested.current_vmptr == -1ull) {
  4628. nested_vmx_failInvalid(vcpu);
  4629. skip_emulated_instruction(vcpu);
  4630. return 0;
  4631. }
  4632. return 1;
  4633. }
  4634. static int handle_vmread(struct kvm_vcpu *vcpu)
  4635. {
  4636. unsigned long field;
  4637. u64 field_value;
  4638. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  4639. u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
  4640. gva_t gva = 0;
  4641. if (!nested_vmx_check_permission(vcpu) ||
  4642. !nested_vmx_check_vmcs12(vcpu))
  4643. return 1;
  4644. /* Decode instruction info and find the field to read */
  4645. field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
  4646. /* Read the field, zero-extended to a u64 field_value */
  4647. if (!vmcs12_read_any(vcpu, field, &field_value)) {
  4648. nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
  4649. skip_emulated_instruction(vcpu);
  4650. return 1;
  4651. }
  4652. /*
  4653. * Now copy part of this value to register or memory, as requested.
  4654. * Note that the number of bits actually copied is 32 or 64 depending
  4655. * on the guest's mode (32 or 64 bit), not on the given field's length.
  4656. */
  4657. if (vmx_instruction_info & (1u << 10)) {
  4658. kvm_register_write(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
  4659. field_value);
  4660. } else {
  4661. if (get_vmx_mem_address(vcpu, exit_qualification,
  4662. vmx_instruction_info, &gva))
  4663. return 1;
  4664. /* _system ok, as nested_vmx_check_permission verified cpl=0 */
  4665. kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, gva,
  4666. &field_value, (is_long_mode(vcpu) ? 8 : 4), NULL);
  4667. }
  4668. nested_vmx_succeed(vcpu);
  4669. skip_emulated_instruction(vcpu);
  4670. return 1;
  4671. }
  4672. static int handle_vmwrite(struct kvm_vcpu *vcpu)
  4673. {
  4674. unsigned long field;
  4675. gva_t gva;
  4676. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  4677. u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
  4678. char *p;
  4679. short offset;
  4680. /* The value to write might be 32 or 64 bits, depending on L1's long
  4681. * mode, and eventually we need to write that into a field of several
  4682. * possible lengths. The code below first zero-extends the value to 64
  4683. * bit (field_value), and then copies only the approriate number of
  4684. * bits into the vmcs12 field.
  4685. */
  4686. u64 field_value = 0;
  4687. struct x86_exception e;
  4688. if (!nested_vmx_check_permission(vcpu) ||
  4689. !nested_vmx_check_vmcs12(vcpu))
  4690. return 1;
  4691. if (vmx_instruction_info & (1u << 10))
  4692. field_value = kvm_register_read(vcpu,
  4693. (((vmx_instruction_info) >> 3) & 0xf));
  4694. else {
  4695. if (get_vmx_mem_address(vcpu, exit_qualification,
  4696. vmx_instruction_info, &gva))
  4697. return 1;
  4698. if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva,
  4699. &field_value, (is_long_mode(vcpu) ? 8 : 4), &e)) {
  4700. kvm_inject_page_fault(vcpu, &e);
  4701. return 1;
  4702. }
  4703. }
  4704. field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
  4705. if (vmcs_field_readonly(field)) {
  4706. nested_vmx_failValid(vcpu,
  4707. VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
  4708. skip_emulated_instruction(vcpu);
  4709. return 1;
  4710. }
  4711. offset = vmcs_field_to_offset(field);
  4712. if (offset < 0) {
  4713. nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
  4714. skip_emulated_instruction(vcpu);
  4715. return 1;
  4716. }
  4717. p = ((char *) get_vmcs12(vcpu)) + offset;
  4718. switch (vmcs_field_type(field)) {
  4719. case VMCS_FIELD_TYPE_U16:
  4720. *(u16 *)p = field_value;
  4721. break;
  4722. case VMCS_FIELD_TYPE_U32:
  4723. *(u32 *)p = field_value;
  4724. break;
  4725. case VMCS_FIELD_TYPE_U64:
  4726. *(u64 *)p = field_value;
  4727. break;
  4728. case VMCS_FIELD_TYPE_NATURAL_WIDTH:
  4729. *(natural_width *)p = field_value;
  4730. break;
  4731. default:
  4732. nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
  4733. skip_emulated_instruction(vcpu);
  4734. return 1;
  4735. }
  4736. nested_vmx_succeed(vcpu);
  4737. skip_emulated_instruction(vcpu);
  4738. return 1;
  4739. }
  4740. /* Emulate the VMPTRLD instruction */
  4741. static int handle_vmptrld(struct kvm_vcpu *vcpu)
  4742. {
  4743. struct vcpu_vmx *vmx = to_vmx(vcpu);
  4744. gva_t gva;
  4745. gpa_t vmptr;
  4746. struct x86_exception e;
  4747. if (!nested_vmx_check_permission(vcpu))
  4748. return 1;
  4749. if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
  4750. vmcs_read32(VMX_INSTRUCTION_INFO), &gva))
  4751. return 1;
  4752. if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
  4753. sizeof(vmptr), &e)) {
  4754. kvm_inject_page_fault(vcpu, &e);
  4755. return 1;
  4756. }
  4757. if (!IS_ALIGNED(vmptr, PAGE_SIZE)) {
  4758. nested_vmx_failValid(vcpu, VMXERR_VMPTRLD_INVALID_ADDRESS);
  4759. skip_emulated_instruction(vcpu);
  4760. return 1;
  4761. }
  4762. if (vmx->nested.current_vmptr != vmptr) {
  4763. struct vmcs12 *new_vmcs12;
  4764. struct page *page;
  4765. page = nested_get_page(vcpu, vmptr);
  4766. if (page == NULL) {
  4767. nested_vmx_failInvalid(vcpu);
  4768. skip_emulated_instruction(vcpu);
  4769. return 1;
  4770. }
  4771. new_vmcs12 = kmap(page);
  4772. if (new_vmcs12->revision_id != VMCS12_REVISION) {
  4773. kunmap(page);
  4774. nested_release_page_clean(page);
  4775. nested_vmx_failValid(vcpu,
  4776. VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
  4777. skip_emulated_instruction(vcpu);
  4778. return 1;
  4779. }
  4780. if (vmx->nested.current_vmptr != -1ull) {
  4781. kunmap(vmx->nested.current_vmcs12_page);
  4782. nested_release_page(vmx->nested.current_vmcs12_page);
  4783. }
  4784. vmx->nested.current_vmptr = vmptr;
  4785. vmx->nested.current_vmcs12 = new_vmcs12;
  4786. vmx->nested.current_vmcs12_page = page;
  4787. }
  4788. nested_vmx_succeed(vcpu);
  4789. skip_emulated_instruction(vcpu);
  4790. return 1;
  4791. }
  4792. /* Emulate the VMPTRST instruction */
  4793. static int handle_vmptrst(struct kvm_vcpu *vcpu)
  4794. {
  4795. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  4796. u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
  4797. gva_t vmcs_gva;
  4798. struct x86_exception e;
  4799. if (!nested_vmx_check_permission(vcpu))
  4800. return 1;
  4801. if (get_vmx_mem_address(vcpu, exit_qualification,
  4802. vmx_instruction_info, &vmcs_gva))
  4803. return 1;
  4804. /* ok to use *_system, as nested_vmx_check_permission verified cpl=0 */
  4805. if (kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, vmcs_gva,
  4806. (void *)&to_vmx(vcpu)->nested.current_vmptr,
  4807. sizeof(u64), &e)) {
  4808. kvm_inject_page_fault(vcpu, &e);
  4809. return 1;
  4810. }
  4811. nested_vmx_succeed(vcpu);
  4812. skip_emulated_instruction(vcpu);
  4813. return 1;
  4814. }
  4815. /*
  4816. * The exit handlers return 1 if the exit was handled fully and guest execution
  4817. * may resume. Otherwise they set the kvm_run parameter to indicate what needs
  4818. * to be done to userspace and return 0.
  4819. */
  4820. static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
  4821. [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
  4822. [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
  4823. [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
  4824. [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
  4825. [EXIT_REASON_IO_INSTRUCTION] = handle_io,
  4826. [EXIT_REASON_CR_ACCESS] = handle_cr,
  4827. [EXIT_REASON_DR_ACCESS] = handle_dr,
  4828. [EXIT_REASON_CPUID] = handle_cpuid,
  4829. [EXIT_REASON_MSR_READ] = handle_rdmsr,
  4830. [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
  4831. [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
  4832. [EXIT_REASON_HLT] = handle_halt,
  4833. [EXIT_REASON_INVD] = handle_invd,
  4834. [EXIT_REASON_INVLPG] = handle_invlpg,
  4835. [EXIT_REASON_VMCALL] = handle_vmcall,
  4836. [EXIT_REASON_VMCLEAR] = handle_vmclear,
  4837. [EXIT_REASON_VMLAUNCH] = handle_vmlaunch,
  4838. [EXIT_REASON_VMPTRLD] = handle_vmptrld,
  4839. [EXIT_REASON_VMPTRST] = handle_vmptrst,
  4840. [EXIT_REASON_VMREAD] = handle_vmread,
  4841. [EXIT_REASON_VMRESUME] = handle_vmresume,
  4842. [EXIT_REASON_VMWRITE] = handle_vmwrite,
  4843. [EXIT_REASON_VMOFF] = handle_vmoff,
  4844. [EXIT_REASON_VMON] = handle_vmon,
  4845. [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
  4846. [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
  4847. [EXIT_REASON_WBINVD] = handle_wbinvd,
  4848. [EXIT_REASON_XSETBV] = handle_xsetbv,
  4849. [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
  4850. [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
  4851. [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
  4852. [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
  4853. [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
  4854. [EXIT_REASON_MWAIT_INSTRUCTION] = handle_invalid_op,
  4855. [EXIT_REASON_MONITOR_INSTRUCTION] = handle_invalid_op,
  4856. };
  4857. static const int kvm_vmx_max_exit_handlers =
  4858. ARRAY_SIZE(kvm_vmx_exit_handlers);
  4859. /*
  4860. * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
  4861. * rather than handle it ourselves in L0. I.e., check whether L1 expressed
  4862. * disinterest in the current event (read or write a specific MSR) by using an
  4863. * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
  4864. */
  4865. static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
  4866. struct vmcs12 *vmcs12, u32 exit_reason)
  4867. {
  4868. u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
  4869. gpa_t bitmap;
  4870. if (!nested_cpu_has(get_vmcs12(vcpu), CPU_BASED_USE_MSR_BITMAPS))
  4871. return 1;
  4872. /*
  4873. * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
  4874. * for the four combinations of read/write and low/high MSR numbers.
  4875. * First we need to figure out which of the four to use:
  4876. */
  4877. bitmap = vmcs12->msr_bitmap;
  4878. if (exit_reason == EXIT_REASON_MSR_WRITE)
  4879. bitmap += 2048;
  4880. if (msr_index >= 0xc0000000) {
  4881. msr_index -= 0xc0000000;
  4882. bitmap += 1024;
  4883. }
  4884. /* Then read the msr_index'th bit from this bitmap: */
  4885. if (msr_index < 1024*8) {
  4886. unsigned char b;
  4887. kvm_read_guest(vcpu->kvm, bitmap + msr_index/8, &b, 1);
  4888. return 1 & (b >> (msr_index & 7));
  4889. } else
  4890. return 1; /* let L1 handle the wrong parameter */
  4891. }
  4892. /*
  4893. * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
  4894. * rather than handle it ourselves in L0. I.e., check if L1 wanted to
  4895. * intercept (via guest_host_mask etc.) the current event.
  4896. */
  4897. static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
  4898. struct vmcs12 *vmcs12)
  4899. {
  4900. unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  4901. int cr = exit_qualification & 15;
  4902. int reg = (exit_qualification >> 8) & 15;
  4903. unsigned long val = kvm_register_read(vcpu, reg);
  4904. switch ((exit_qualification >> 4) & 3) {
  4905. case 0: /* mov to cr */
  4906. switch (cr) {
  4907. case 0:
  4908. if (vmcs12->cr0_guest_host_mask &
  4909. (val ^ vmcs12->cr0_read_shadow))
  4910. return 1;
  4911. break;
  4912. case 3:
  4913. if ((vmcs12->cr3_target_count >= 1 &&
  4914. vmcs12->cr3_target_value0 == val) ||
  4915. (vmcs12->cr3_target_count >= 2 &&
  4916. vmcs12->cr3_target_value1 == val) ||
  4917. (vmcs12->cr3_target_count >= 3 &&
  4918. vmcs12->cr3_target_value2 == val) ||
  4919. (vmcs12->cr3_target_count >= 4 &&
  4920. vmcs12->cr3_target_value3 == val))
  4921. return 0;
  4922. if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
  4923. return 1;
  4924. break;
  4925. case 4:
  4926. if (vmcs12->cr4_guest_host_mask &
  4927. (vmcs12->cr4_read_shadow ^ val))
  4928. return 1;
  4929. break;
  4930. case 8:
  4931. if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
  4932. return 1;
  4933. break;
  4934. }
  4935. break;
  4936. case 2: /* clts */
  4937. if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
  4938. (vmcs12->cr0_read_shadow & X86_CR0_TS))
  4939. return 1;
  4940. break;
  4941. case 1: /* mov from cr */
  4942. switch (cr) {
  4943. case 3:
  4944. if (vmcs12->cpu_based_vm_exec_control &
  4945. CPU_BASED_CR3_STORE_EXITING)
  4946. return 1;
  4947. break;
  4948. case 8:
  4949. if (vmcs12->cpu_based_vm_exec_control &
  4950. CPU_BASED_CR8_STORE_EXITING)
  4951. return 1;
  4952. break;
  4953. }
  4954. break;
  4955. case 3: /* lmsw */
  4956. /*
  4957. * lmsw can change bits 1..3 of cr0, and only set bit 0 of
  4958. * cr0. Other attempted changes are ignored, with no exit.
  4959. */
  4960. if (vmcs12->cr0_guest_host_mask & 0xe &
  4961. (val ^ vmcs12->cr0_read_shadow))
  4962. return 1;
  4963. if ((vmcs12->cr0_guest_host_mask & 0x1) &&
  4964. !(vmcs12->cr0_read_shadow & 0x1) &&
  4965. (val & 0x1))
  4966. return 1;
  4967. break;
  4968. }
  4969. return 0;
  4970. }
  4971. /*
  4972. * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
  4973. * should handle it ourselves in L0 (and then continue L2). Only call this
  4974. * when in is_guest_mode (L2).
  4975. */
  4976. static bool nested_vmx_exit_handled(struct kvm_vcpu *vcpu)
  4977. {
  4978. u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
  4979. u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  4980. struct vcpu_vmx *vmx = to_vmx(vcpu);
  4981. struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
  4982. if (vmx->nested.nested_run_pending)
  4983. return 0;
  4984. if (unlikely(vmx->fail)) {
  4985. pr_info_ratelimited("%s failed vm entry %x\n", __func__,
  4986. vmcs_read32(VM_INSTRUCTION_ERROR));
  4987. return 1;
  4988. }
  4989. switch (exit_reason) {
  4990. case EXIT_REASON_EXCEPTION_NMI:
  4991. if (!is_exception(intr_info))
  4992. return 0;
  4993. else if (is_page_fault(intr_info))
  4994. return enable_ept;
  4995. return vmcs12->exception_bitmap &
  4996. (1u << (intr_info & INTR_INFO_VECTOR_MASK));
  4997. case EXIT_REASON_EXTERNAL_INTERRUPT:
  4998. return 0;
  4999. case EXIT_REASON_TRIPLE_FAULT:
  5000. return 1;
  5001. case EXIT_REASON_PENDING_INTERRUPT:
  5002. case EXIT_REASON_NMI_WINDOW:
  5003. /*
  5004. * prepare_vmcs02() set the CPU_BASED_VIRTUAL_INTR_PENDING bit
  5005. * (aka Interrupt Window Exiting) only when L1 turned it on,
  5006. * so if we got a PENDING_INTERRUPT exit, this must be for L1.
  5007. * Same for NMI Window Exiting.
  5008. */
  5009. return 1;
  5010. case EXIT_REASON_TASK_SWITCH:
  5011. return 1;
  5012. case EXIT_REASON_CPUID:
  5013. return 1;
  5014. case EXIT_REASON_HLT:
  5015. return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
  5016. case EXIT_REASON_INVD:
  5017. return 1;
  5018. case EXIT_REASON_INVLPG:
  5019. return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
  5020. case EXIT_REASON_RDPMC:
  5021. return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
  5022. case EXIT_REASON_RDTSC:
  5023. return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
  5024. case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
  5025. case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
  5026. case EXIT_REASON_VMPTRST: case EXIT_REASON_VMREAD:
  5027. case EXIT_REASON_VMRESUME: case EXIT_REASON_VMWRITE:
  5028. case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
  5029. /*
  5030. * VMX instructions trap unconditionally. This allows L1 to
  5031. * emulate them for its L2 guest, i.e., allows 3-level nesting!
  5032. */
  5033. return 1;
  5034. case EXIT_REASON_CR_ACCESS:
  5035. return nested_vmx_exit_handled_cr(vcpu, vmcs12);
  5036. case EXIT_REASON_DR_ACCESS:
  5037. return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
  5038. case EXIT_REASON_IO_INSTRUCTION:
  5039. /* TODO: support IO bitmaps */
  5040. return 1;
  5041. case EXIT_REASON_MSR_READ:
  5042. case EXIT_REASON_MSR_WRITE:
  5043. return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
  5044. case EXIT_REASON_INVALID_STATE:
  5045. return 1;
  5046. case EXIT_REASON_MWAIT_INSTRUCTION:
  5047. return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
  5048. case EXIT_REASON_MONITOR_INSTRUCTION:
  5049. return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
  5050. case EXIT_REASON_PAUSE_INSTRUCTION:
  5051. return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
  5052. nested_cpu_has2(vmcs12,
  5053. SECONDARY_EXEC_PAUSE_LOOP_EXITING);
  5054. case EXIT_REASON_MCE_DURING_VMENTRY:
  5055. return 0;
  5056. case EXIT_REASON_TPR_BELOW_THRESHOLD:
  5057. return 1;
  5058. case EXIT_REASON_APIC_ACCESS:
  5059. return nested_cpu_has2(vmcs12,
  5060. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
  5061. case EXIT_REASON_EPT_VIOLATION:
  5062. case EXIT_REASON_EPT_MISCONFIG:
  5063. return 0;
  5064. case EXIT_REASON_WBINVD:
  5065. return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
  5066. case EXIT_REASON_XSETBV:
  5067. return 1;
  5068. default:
  5069. return 1;
  5070. }
  5071. }
  5072. static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
  5073. {
  5074. *info1 = vmcs_readl(EXIT_QUALIFICATION);
  5075. *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
  5076. }
  5077. /*
  5078. * The guest has exited. See if we can fix it or if we need userspace
  5079. * assistance.
  5080. */
  5081. static int vmx_handle_exit(struct kvm_vcpu *vcpu)
  5082. {
  5083. struct vcpu_vmx *vmx = to_vmx(vcpu);
  5084. u32 exit_reason = vmx->exit_reason;
  5085. u32 vectoring_info = vmx->idt_vectoring_info;
  5086. /* If guest state is invalid, start emulating */
  5087. if (vmx->emulation_required && emulate_invalid_guest_state)
  5088. return handle_invalid_guest_state(vcpu);
  5089. /*
  5090. * the KVM_REQ_EVENT optimization bit is only on for one entry, and if
  5091. * we did not inject a still-pending event to L1 now because of
  5092. * nested_run_pending, we need to re-enable this bit.
  5093. */
  5094. if (vmx->nested.nested_run_pending)
  5095. kvm_make_request(KVM_REQ_EVENT, vcpu);
  5096. if (!is_guest_mode(vcpu) && (exit_reason == EXIT_REASON_VMLAUNCH ||
  5097. exit_reason == EXIT_REASON_VMRESUME))
  5098. vmx->nested.nested_run_pending = 1;
  5099. else
  5100. vmx->nested.nested_run_pending = 0;
  5101. if (is_guest_mode(vcpu) && nested_vmx_exit_handled(vcpu)) {
  5102. nested_vmx_vmexit(vcpu);
  5103. return 1;
  5104. }
  5105. if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
  5106. vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
  5107. vcpu->run->fail_entry.hardware_entry_failure_reason
  5108. = exit_reason;
  5109. return 0;
  5110. }
  5111. if (unlikely(vmx->fail)) {
  5112. vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
  5113. vcpu->run->fail_entry.hardware_entry_failure_reason
  5114. = vmcs_read32(VM_INSTRUCTION_ERROR);
  5115. return 0;
  5116. }
  5117. if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
  5118. (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
  5119. exit_reason != EXIT_REASON_EPT_VIOLATION &&
  5120. exit_reason != EXIT_REASON_TASK_SWITCH))
  5121. printk(KERN_WARNING "%s: unexpected, valid vectoring info "
  5122. "(0x%x) and exit reason is 0x%x\n",
  5123. __func__, vectoring_info, exit_reason);
  5124. if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked &&
  5125. !(is_guest_mode(vcpu) && nested_cpu_has_virtual_nmis(
  5126. get_vmcs12(vcpu), vcpu)))) {
  5127. if (vmx_interrupt_allowed(vcpu)) {
  5128. vmx->soft_vnmi_blocked = 0;
  5129. } else if (vmx->vnmi_blocked_time > 1000000000LL &&
  5130. vcpu->arch.nmi_pending) {
  5131. /*
  5132. * This CPU don't support us in finding the end of an
  5133. * NMI-blocked window if the guest runs with IRQs
  5134. * disabled. So we pull the trigger after 1 s of
  5135. * futile waiting, but inform the user about this.
  5136. */
  5137. printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
  5138. "state on VCPU %d after 1 s timeout\n",
  5139. __func__, vcpu->vcpu_id);
  5140. vmx->soft_vnmi_blocked = 0;
  5141. }
  5142. }
  5143. if (exit_reason < kvm_vmx_max_exit_handlers
  5144. && kvm_vmx_exit_handlers[exit_reason])
  5145. return kvm_vmx_exit_handlers[exit_reason](vcpu);
  5146. else {
  5147. vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
  5148. vcpu->run->hw.hardware_exit_reason = exit_reason;
  5149. }
  5150. return 0;
  5151. }
  5152. static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
  5153. {
  5154. if (irr == -1 || tpr < irr) {
  5155. vmcs_write32(TPR_THRESHOLD, 0);
  5156. return;
  5157. }
  5158. vmcs_write32(TPR_THRESHOLD, irr);
  5159. }
  5160. static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
  5161. {
  5162. u32 exit_intr_info;
  5163. if (!(vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
  5164. || vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI))
  5165. return;
  5166. vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  5167. exit_intr_info = vmx->exit_intr_info;
  5168. /* Handle machine checks before interrupts are enabled */
  5169. if (is_machine_check(exit_intr_info))
  5170. kvm_machine_check();
  5171. /* We need to handle NMIs before interrupts are enabled */
  5172. if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
  5173. (exit_intr_info & INTR_INFO_VALID_MASK)) {
  5174. kvm_before_handle_nmi(&vmx->vcpu);
  5175. asm("int $2");
  5176. kvm_after_handle_nmi(&vmx->vcpu);
  5177. }
  5178. }
  5179. static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
  5180. {
  5181. u32 exit_intr_info;
  5182. bool unblock_nmi;
  5183. u8 vector;
  5184. bool idtv_info_valid;
  5185. idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
  5186. if (cpu_has_virtual_nmis()) {
  5187. if (vmx->nmi_known_unmasked)
  5188. return;
  5189. /*
  5190. * Can't use vmx->exit_intr_info since we're not sure what
  5191. * the exit reason is.
  5192. */
  5193. exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  5194. unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
  5195. vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
  5196. /*
  5197. * SDM 3: 27.7.1.2 (September 2008)
  5198. * Re-set bit "block by NMI" before VM entry if vmexit caused by
  5199. * a guest IRET fault.
  5200. * SDM 3: 23.2.2 (September 2008)
  5201. * Bit 12 is undefined in any of the following cases:
  5202. * If the VM exit sets the valid bit in the IDT-vectoring
  5203. * information field.
  5204. * If the VM exit is due to a double fault.
  5205. */
  5206. if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
  5207. vector != DF_VECTOR && !idtv_info_valid)
  5208. vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
  5209. GUEST_INTR_STATE_NMI);
  5210. else
  5211. vmx->nmi_known_unmasked =
  5212. !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
  5213. & GUEST_INTR_STATE_NMI);
  5214. } else if (unlikely(vmx->soft_vnmi_blocked))
  5215. vmx->vnmi_blocked_time +=
  5216. ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
  5217. }
  5218. static void __vmx_complete_interrupts(struct vcpu_vmx *vmx,
  5219. u32 idt_vectoring_info,
  5220. int instr_len_field,
  5221. int error_code_field)
  5222. {
  5223. u8 vector;
  5224. int type;
  5225. bool idtv_info_valid;
  5226. idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
  5227. vmx->vcpu.arch.nmi_injected = false;
  5228. kvm_clear_exception_queue(&vmx->vcpu);
  5229. kvm_clear_interrupt_queue(&vmx->vcpu);
  5230. if (!idtv_info_valid)
  5231. return;
  5232. kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
  5233. vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
  5234. type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
  5235. switch (type) {
  5236. case INTR_TYPE_NMI_INTR:
  5237. vmx->vcpu.arch.nmi_injected = true;
  5238. /*
  5239. * SDM 3: 27.7.1.2 (September 2008)
  5240. * Clear bit "block by NMI" before VM entry if a NMI
  5241. * delivery faulted.
  5242. */
  5243. vmx_set_nmi_mask(&vmx->vcpu, false);
  5244. break;
  5245. case INTR_TYPE_SOFT_EXCEPTION:
  5246. vmx->vcpu.arch.event_exit_inst_len =
  5247. vmcs_read32(instr_len_field);
  5248. /* fall through */
  5249. case INTR_TYPE_HARD_EXCEPTION:
  5250. if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
  5251. u32 err = vmcs_read32(error_code_field);
  5252. kvm_queue_exception_e(&vmx->vcpu, vector, err);
  5253. } else
  5254. kvm_queue_exception(&vmx->vcpu, vector);
  5255. break;
  5256. case INTR_TYPE_SOFT_INTR:
  5257. vmx->vcpu.arch.event_exit_inst_len =
  5258. vmcs_read32(instr_len_field);
  5259. /* fall through */
  5260. case INTR_TYPE_EXT_INTR:
  5261. kvm_queue_interrupt(&vmx->vcpu, vector,
  5262. type == INTR_TYPE_SOFT_INTR);
  5263. break;
  5264. default:
  5265. break;
  5266. }
  5267. }
  5268. static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
  5269. {
  5270. if (is_guest_mode(&vmx->vcpu))
  5271. return;
  5272. __vmx_complete_interrupts(vmx, vmx->idt_vectoring_info,
  5273. VM_EXIT_INSTRUCTION_LEN,
  5274. IDT_VECTORING_ERROR_CODE);
  5275. }
  5276. static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
  5277. {
  5278. if (is_guest_mode(vcpu))
  5279. return;
  5280. __vmx_complete_interrupts(to_vmx(vcpu),
  5281. vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
  5282. VM_ENTRY_INSTRUCTION_LEN,
  5283. VM_ENTRY_EXCEPTION_ERROR_CODE);
  5284. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
  5285. }
  5286. static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
  5287. {
  5288. int i, nr_msrs;
  5289. struct perf_guest_switch_msr *msrs;
  5290. msrs = perf_guest_get_msrs(&nr_msrs);
  5291. if (!msrs)
  5292. return;
  5293. for (i = 0; i < nr_msrs; i++)
  5294. if (msrs[i].host == msrs[i].guest)
  5295. clear_atomic_switch_msr(vmx, msrs[i].msr);
  5296. else
  5297. add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
  5298. msrs[i].host);
  5299. }
  5300. #ifdef CONFIG_X86_64
  5301. #define R "r"
  5302. #define Q "q"
  5303. #else
  5304. #define R "e"
  5305. #define Q "l"
  5306. #endif
  5307. static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
  5308. {
  5309. struct vcpu_vmx *vmx = to_vmx(vcpu);
  5310. if (is_guest_mode(vcpu) && !vmx->nested.nested_run_pending) {
  5311. struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
  5312. if (vmcs12->idt_vectoring_info_field &
  5313. VECTORING_INFO_VALID_MASK) {
  5314. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  5315. vmcs12->idt_vectoring_info_field);
  5316. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
  5317. vmcs12->vm_exit_instruction_len);
  5318. if (vmcs12->idt_vectoring_info_field &
  5319. VECTORING_INFO_DELIVER_CODE_MASK)
  5320. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
  5321. vmcs12->idt_vectoring_error_code);
  5322. }
  5323. }
  5324. /* Record the guest's net vcpu time for enforced NMI injections. */
  5325. if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
  5326. vmx->entry_time = ktime_get();
  5327. /* Don't enter VMX if guest state is invalid, let the exit handler
  5328. start emulation until we arrive back to a valid state */
  5329. if (vmx->emulation_required && emulate_invalid_guest_state)
  5330. return;
  5331. if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
  5332. vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
  5333. if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
  5334. vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
  5335. /* When single-stepping over STI and MOV SS, we must clear the
  5336. * corresponding interruptibility bits in the guest state. Otherwise
  5337. * vmentry fails as it then expects bit 14 (BS) in pending debug
  5338. * exceptions being set, but that's not correct for the guest debugging
  5339. * case. */
  5340. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  5341. vmx_set_interrupt_shadow(vcpu, 0);
  5342. atomic_switch_perf_msrs(vmx);
  5343. vmx->__launched = vmx->loaded_vmcs->launched;
  5344. asm(
  5345. /* Store host registers */
  5346. "push %%"R"dx; push %%"R"bp;"
  5347. "push %%"R"cx \n\t" /* placeholder for guest rcx */
  5348. "push %%"R"cx \n\t"
  5349. "cmp %%"R"sp, %c[host_rsp](%0) \n\t"
  5350. "je 1f \n\t"
  5351. "mov %%"R"sp, %c[host_rsp](%0) \n\t"
  5352. __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
  5353. "1: \n\t"
  5354. /* Reload cr2 if changed */
  5355. "mov %c[cr2](%0), %%"R"ax \n\t"
  5356. "mov %%cr2, %%"R"dx \n\t"
  5357. "cmp %%"R"ax, %%"R"dx \n\t"
  5358. "je 2f \n\t"
  5359. "mov %%"R"ax, %%cr2 \n\t"
  5360. "2: \n\t"
  5361. /* Check if vmlaunch of vmresume is needed */
  5362. "cmpl $0, %c[launched](%0) \n\t"
  5363. /* Load guest registers. Don't clobber flags. */
  5364. "mov %c[rax](%0), %%"R"ax \n\t"
  5365. "mov %c[rbx](%0), %%"R"bx \n\t"
  5366. "mov %c[rdx](%0), %%"R"dx \n\t"
  5367. "mov %c[rsi](%0), %%"R"si \n\t"
  5368. "mov %c[rdi](%0), %%"R"di \n\t"
  5369. "mov %c[rbp](%0), %%"R"bp \n\t"
  5370. #ifdef CONFIG_X86_64
  5371. "mov %c[r8](%0), %%r8 \n\t"
  5372. "mov %c[r9](%0), %%r9 \n\t"
  5373. "mov %c[r10](%0), %%r10 \n\t"
  5374. "mov %c[r11](%0), %%r11 \n\t"
  5375. "mov %c[r12](%0), %%r12 \n\t"
  5376. "mov %c[r13](%0), %%r13 \n\t"
  5377. "mov %c[r14](%0), %%r14 \n\t"
  5378. "mov %c[r15](%0), %%r15 \n\t"
  5379. #endif
  5380. "mov %c[rcx](%0), %%"R"cx \n\t" /* kills %0 (ecx) */
  5381. /* Enter guest mode */
  5382. "jne .Llaunched \n\t"
  5383. __ex(ASM_VMX_VMLAUNCH) "\n\t"
  5384. "jmp .Lkvm_vmx_return \n\t"
  5385. ".Llaunched: " __ex(ASM_VMX_VMRESUME) "\n\t"
  5386. ".Lkvm_vmx_return: "
  5387. /* Save guest registers, load host registers, keep flags */
  5388. "mov %0, %c[wordsize](%%"R"sp) \n\t"
  5389. "pop %0 \n\t"
  5390. "mov %%"R"ax, %c[rax](%0) \n\t"
  5391. "mov %%"R"bx, %c[rbx](%0) \n\t"
  5392. "pop"Q" %c[rcx](%0) \n\t"
  5393. "mov %%"R"dx, %c[rdx](%0) \n\t"
  5394. "mov %%"R"si, %c[rsi](%0) \n\t"
  5395. "mov %%"R"di, %c[rdi](%0) \n\t"
  5396. "mov %%"R"bp, %c[rbp](%0) \n\t"
  5397. #ifdef CONFIG_X86_64
  5398. "mov %%r8, %c[r8](%0) \n\t"
  5399. "mov %%r9, %c[r9](%0) \n\t"
  5400. "mov %%r10, %c[r10](%0) \n\t"
  5401. "mov %%r11, %c[r11](%0) \n\t"
  5402. "mov %%r12, %c[r12](%0) \n\t"
  5403. "mov %%r13, %c[r13](%0) \n\t"
  5404. "mov %%r14, %c[r14](%0) \n\t"
  5405. "mov %%r15, %c[r15](%0) \n\t"
  5406. #endif
  5407. "mov %%cr2, %%"R"ax \n\t"
  5408. "mov %%"R"ax, %c[cr2](%0) \n\t"
  5409. "pop %%"R"bp; pop %%"R"dx \n\t"
  5410. "setbe %c[fail](%0) \n\t"
  5411. : : "c"(vmx), "d"((unsigned long)HOST_RSP),
  5412. [launched]"i"(offsetof(struct vcpu_vmx, __launched)),
  5413. [fail]"i"(offsetof(struct vcpu_vmx, fail)),
  5414. [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
  5415. [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
  5416. [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
  5417. [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
  5418. [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
  5419. [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
  5420. [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
  5421. [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
  5422. #ifdef CONFIG_X86_64
  5423. [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
  5424. [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
  5425. [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
  5426. [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
  5427. [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
  5428. [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
  5429. [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
  5430. [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
  5431. #endif
  5432. [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
  5433. [wordsize]"i"(sizeof(ulong))
  5434. : "cc", "memory"
  5435. , R"ax", R"bx", R"di", R"si"
  5436. #ifdef CONFIG_X86_64
  5437. , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
  5438. #endif
  5439. );
  5440. vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
  5441. | (1 << VCPU_EXREG_RFLAGS)
  5442. | (1 << VCPU_EXREG_CPL)
  5443. | (1 << VCPU_EXREG_PDPTR)
  5444. | (1 << VCPU_EXREG_SEGMENTS)
  5445. | (1 << VCPU_EXREG_CR3));
  5446. vcpu->arch.regs_dirty = 0;
  5447. vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  5448. if (is_guest_mode(vcpu)) {
  5449. struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
  5450. vmcs12->idt_vectoring_info_field = vmx->idt_vectoring_info;
  5451. if (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) {
  5452. vmcs12->idt_vectoring_error_code =
  5453. vmcs_read32(IDT_VECTORING_ERROR_CODE);
  5454. vmcs12->vm_exit_instruction_len =
  5455. vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  5456. }
  5457. }
  5458. asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
  5459. vmx->loaded_vmcs->launched = 1;
  5460. vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
  5461. trace_kvm_exit(vmx->exit_reason, vcpu, KVM_ISA_VMX);
  5462. vmx_complete_atomic_exit(vmx);
  5463. vmx_recover_nmi_blocking(vmx);
  5464. vmx_complete_interrupts(vmx);
  5465. }
  5466. #undef R
  5467. #undef Q
  5468. static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
  5469. {
  5470. struct vcpu_vmx *vmx = to_vmx(vcpu);
  5471. free_vpid(vmx);
  5472. free_nested(vmx);
  5473. free_loaded_vmcs(vmx->loaded_vmcs);
  5474. kfree(vmx->guest_msrs);
  5475. kvm_vcpu_uninit(vcpu);
  5476. kmem_cache_free(kvm_vcpu_cache, vmx);
  5477. }
  5478. static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
  5479. {
  5480. int err;
  5481. struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
  5482. int cpu;
  5483. if (!vmx)
  5484. return ERR_PTR(-ENOMEM);
  5485. allocate_vpid(vmx);
  5486. err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
  5487. if (err)
  5488. goto free_vcpu;
  5489. vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  5490. err = -ENOMEM;
  5491. if (!vmx->guest_msrs) {
  5492. goto uninit_vcpu;
  5493. }
  5494. vmx->loaded_vmcs = &vmx->vmcs01;
  5495. vmx->loaded_vmcs->vmcs = alloc_vmcs();
  5496. if (!vmx->loaded_vmcs->vmcs)
  5497. goto free_msrs;
  5498. if (!vmm_exclusive)
  5499. kvm_cpu_vmxon(__pa(per_cpu(vmxarea, raw_smp_processor_id())));
  5500. loaded_vmcs_init(vmx->loaded_vmcs);
  5501. if (!vmm_exclusive)
  5502. kvm_cpu_vmxoff();
  5503. cpu = get_cpu();
  5504. vmx_vcpu_load(&vmx->vcpu, cpu);
  5505. vmx->vcpu.cpu = cpu;
  5506. err = vmx_vcpu_setup(vmx);
  5507. vmx_vcpu_put(&vmx->vcpu);
  5508. put_cpu();
  5509. if (err)
  5510. goto free_vmcs;
  5511. if (vm_need_virtualize_apic_accesses(kvm))
  5512. err = alloc_apic_access_page(kvm);
  5513. if (err)
  5514. goto free_vmcs;
  5515. if (enable_ept) {
  5516. if (!kvm->arch.ept_identity_map_addr)
  5517. kvm->arch.ept_identity_map_addr =
  5518. VMX_EPT_IDENTITY_PAGETABLE_ADDR;
  5519. err = -ENOMEM;
  5520. if (alloc_identity_pagetable(kvm) != 0)
  5521. goto free_vmcs;
  5522. if (!init_rmode_identity_map(kvm))
  5523. goto free_vmcs;
  5524. }
  5525. vmx->nested.current_vmptr = -1ull;
  5526. vmx->nested.current_vmcs12 = NULL;
  5527. return &vmx->vcpu;
  5528. free_vmcs:
  5529. free_vmcs(vmx->loaded_vmcs->vmcs);
  5530. free_msrs:
  5531. kfree(vmx->guest_msrs);
  5532. uninit_vcpu:
  5533. kvm_vcpu_uninit(&vmx->vcpu);
  5534. free_vcpu:
  5535. free_vpid(vmx);
  5536. kmem_cache_free(kvm_vcpu_cache, vmx);
  5537. return ERR_PTR(err);
  5538. }
  5539. static void __init vmx_check_processor_compat(void *rtn)
  5540. {
  5541. struct vmcs_config vmcs_conf;
  5542. *(int *)rtn = 0;
  5543. if (setup_vmcs_config(&vmcs_conf) < 0)
  5544. *(int *)rtn = -EIO;
  5545. if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
  5546. printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
  5547. smp_processor_id());
  5548. *(int *)rtn = -EIO;
  5549. }
  5550. }
  5551. static int get_ept_level(void)
  5552. {
  5553. return VMX_EPT_DEFAULT_GAW + 1;
  5554. }
  5555. static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
  5556. {
  5557. u64 ret;
  5558. /* For VT-d and EPT combination
  5559. * 1. MMIO: always map as UC
  5560. * 2. EPT with VT-d:
  5561. * a. VT-d without snooping control feature: can't guarantee the
  5562. * result, try to trust guest.
  5563. * b. VT-d with snooping control feature: snooping control feature of
  5564. * VT-d engine can guarantee the cache correctness. Just set it
  5565. * to WB to keep consistent with host. So the same as item 3.
  5566. * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
  5567. * consistent with host MTRR
  5568. */
  5569. if (is_mmio)
  5570. ret = MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
  5571. else if (vcpu->kvm->arch.iommu_domain &&
  5572. !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY))
  5573. ret = kvm_get_guest_memory_type(vcpu, gfn) <<
  5574. VMX_EPT_MT_EPTE_SHIFT;
  5575. else
  5576. ret = (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT)
  5577. | VMX_EPT_IPAT_BIT;
  5578. return ret;
  5579. }
  5580. static int vmx_get_lpage_level(void)
  5581. {
  5582. if (enable_ept && !cpu_has_vmx_ept_1g_page())
  5583. return PT_DIRECTORY_LEVEL;
  5584. else
  5585. /* For shadow and EPT supported 1GB page */
  5586. return PT_PDPE_LEVEL;
  5587. }
  5588. static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
  5589. {
  5590. struct kvm_cpuid_entry2 *best;
  5591. struct vcpu_vmx *vmx = to_vmx(vcpu);
  5592. u32 exec_control;
  5593. vmx->rdtscp_enabled = false;
  5594. if (vmx_rdtscp_supported()) {
  5595. exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
  5596. if (exec_control & SECONDARY_EXEC_RDTSCP) {
  5597. best = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
  5598. if (best && (best->edx & bit(X86_FEATURE_RDTSCP)))
  5599. vmx->rdtscp_enabled = true;
  5600. else {
  5601. exec_control &= ~SECONDARY_EXEC_RDTSCP;
  5602. vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
  5603. exec_control);
  5604. }
  5605. }
  5606. }
  5607. }
  5608. static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
  5609. {
  5610. if (func == 1 && nested)
  5611. entry->ecx |= bit(X86_FEATURE_VMX);
  5612. }
  5613. /*
  5614. * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
  5615. * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
  5616. * with L0's requirements for its guest (a.k.a. vmsc01), so we can run the L2
  5617. * guest in a way that will both be appropriate to L1's requests, and our
  5618. * needs. In addition to modifying the active vmcs (which is vmcs02), this
  5619. * function also has additional necessary side-effects, like setting various
  5620. * vcpu->arch fields.
  5621. */
  5622. static void prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
  5623. {
  5624. struct vcpu_vmx *vmx = to_vmx(vcpu);
  5625. u32 exec_control;
  5626. vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
  5627. vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
  5628. vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
  5629. vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
  5630. vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
  5631. vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
  5632. vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
  5633. vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
  5634. vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
  5635. vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
  5636. vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
  5637. vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
  5638. vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
  5639. vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
  5640. vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
  5641. vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
  5642. vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
  5643. vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
  5644. vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
  5645. vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
  5646. vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
  5647. vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
  5648. vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
  5649. vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
  5650. vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
  5651. vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
  5652. vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
  5653. vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
  5654. vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
  5655. vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
  5656. vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
  5657. vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
  5658. vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
  5659. vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
  5660. vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
  5661. vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
  5662. vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
  5663. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  5664. vmcs12->vm_entry_intr_info_field);
  5665. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
  5666. vmcs12->vm_entry_exception_error_code);
  5667. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
  5668. vmcs12->vm_entry_instruction_len);
  5669. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
  5670. vmcs12->guest_interruptibility_info);
  5671. vmcs_write32(GUEST_ACTIVITY_STATE, vmcs12->guest_activity_state);
  5672. vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
  5673. vmcs_writel(GUEST_DR7, vmcs12->guest_dr7);
  5674. vmcs_writel(GUEST_RFLAGS, vmcs12->guest_rflags);
  5675. vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
  5676. vmcs12->guest_pending_dbg_exceptions);
  5677. vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
  5678. vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
  5679. vmcs_write64(VMCS_LINK_POINTER, -1ull);
  5680. vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
  5681. (vmcs_config.pin_based_exec_ctrl |
  5682. vmcs12->pin_based_vm_exec_control));
  5683. /*
  5684. * Whether page-faults are trapped is determined by a combination of
  5685. * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
  5686. * If enable_ept, L0 doesn't care about page faults and we should
  5687. * set all of these to L1's desires. However, if !enable_ept, L0 does
  5688. * care about (at least some) page faults, and because it is not easy
  5689. * (if at all possible?) to merge L0 and L1's desires, we simply ask
  5690. * to exit on each and every L2 page fault. This is done by setting
  5691. * MASK=MATCH=0 and (see below) EB.PF=1.
  5692. * Note that below we don't need special code to set EB.PF beyond the
  5693. * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
  5694. * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
  5695. * !enable_ept, EB.PF is 1, so the "or" will always be 1.
  5696. *
  5697. * A problem with this approach (when !enable_ept) is that L1 may be
  5698. * injected with more page faults than it asked for. This could have
  5699. * caused problems, but in practice existing hypervisors don't care.
  5700. * To fix this, we will need to emulate the PFEC checking (on the L1
  5701. * page tables), using walk_addr(), when injecting PFs to L1.
  5702. */
  5703. vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
  5704. enable_ept ? vmcs12->page_fault_error_code_mask : 0);
  5705. vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
  5706. enable_ept ? vmcs12->page_fault_error_code_match : 0);
  5707. if (cpu_has_secondary_exec_ctrls()) {
  5708. u32 exec_control = vmx_secondary_exec_control(vmx);
  5709. if (!vmx->rdtscp_enabled)
  5710. exec_control &= ~SECONDARY_EXEC_RDTSCP;
  5711. /* Take the following fields only from vmcs12 */
  5712. exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  5713. if (nested_cpu_has(vmcs12,
  5714. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
  5715. exec_control |= vmcs12->secondary_vm_exec_control;
  5716. if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) {
  5717. /*
  5718. * Translate L1 physical address to host physical
  5719. * address for vmcs02. Keep the page pinned, so this
  5720. * physical address remains valid. We keep a reference
  5721. * to it so we can release it later.
  5722. */
  5723. if (vmx->nested.apic_access_page) /* shouldn't happen */
  5724. nested_release_page(vmx->nested.apic_access_page);
  5725. vmx->nested.apic_access_page =
  5726. nested_get_page(vcpu, vmcs12->apic_access_addr);
  5727. /*
  5728. * If translation failed, no matter: This feature asks
  5729. * to exit when accessing the given address, and if it
  5730. * can never be accessed, this feature won't do
  5731. * anything anyway.
  5732. */
  5733. if (!vmx->nested.apic_access_page)
  5734. exec_control &=
  5735. ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  5736. else
  5737. vmcs_write64(APIC_ACCESS_ADDR,
  5738. page_to_phys(vmx->nested.apic_access_page));
  5739. }
  5740. vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
  5741. }
  5742. /*
  5743. * Set host-state according to L0's settings (vmcs12 is irrelevant here)
  5744. * Some constant fields are set here by vmx_set_constant_host_state().
  5745. * Other fields are different per CPU, and will be set later when
  5746. * vmx_vcpu_load() is called, and when vmx_save_host_state() is called.
  5747. */
  5748. vmx_set_constant_host_state();
  5749. /*
  5750. * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
  5751. * entry, but only if the current (host) sp changed from the value
  5752. * we wrote last (vmx->host_rsp). This cache is no longer relevant
  5753. * if we switch vmcs, and rather than hold a separate cache per vmcs,
  5754. * here we just force the write to happen on entry.
  5755. */
  5756. vmx->host_rsp = 0;
  5757. exec_control = vmx_exec_control(vmx); /* L0's desires */
  5758. exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
  5759. exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
  5760. exec_control &= ~CPU_BASED_TPR_SHADOW;
  5761. exec_control |= vmcs12->cpu_based_vm_exec_control;
  5762. /*
  5763. * Merging of IO and MSR bitmaps not currently supported.
  5764. * Rather, exit every time.
  5765. */
  5766. exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
  5767. exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
  5768. exec_control |= CPU_BASED_UNCOND_IO_EXITING;
  5769. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
  5770. /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
  5771. * bitwise-or of what L1 wants to trap for L2, and what we want to
  5772. * trap. Note that CR0.TS also needs updating - we do this later.
  5773. */
  5774. update_exception_bitmap(vcpu);
  5775. vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
  5776. vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
  5777. /* Note: IA32_MODE, LOAD_IA32_EFER are modified by vmx_set_efer below */
  5778. vmcs_write32(VM_EXIT_CONTROLS,
  5779. vmcs12->vm_exit_controls | vmcs_config.vmexit_ctrl);
  5780. vmcs_write32(VM_ENTRY_CONTROLS, vmcs12->vm_entry_controls |
  5781. (vmcs_config.vmentry_ctrl & ~VM_ENTRY_IA32E_MODE));
  5782. if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)
  5783. vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
  5784. else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
  5785. vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
  5786. set_cr4_guest_host_mask(vmx);
  5787. if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
  5788. vmcs_write64(TSC_OFFSET,
  5789. vmx->nested.vmcs01_tsc_offset + vmcs12->tsc_offset);
  5790. else
  5791. vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
  5792. if (enable_vpid) {
  5793. /*
  5794. * Trivially support vpid by letting L2s share their parent
  5795. * L1's vpid. TODO: move to a more elaborate solution, giving
  5796. * each L2 its own vpid and exposing the vpid feature to L1.
  5797. */
  5798. vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
  5799. vmx_flush_tlb(vcpu);
  5800. }
  5801. if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)
  5802. vcpu->arch.efer = vmcs12->guest_ia32_efer;
  5803. if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
  5804. vcpu->arch.efer |= (EFER_LMA | EFER_LME);
  5805. else
  5806. vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
  5807. /* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
  5808. vmx_set_efer(vcpu, vcpu->arch.efer);
  5809. /*
  5810. * This sets GUEST_CR0 to vmcs12->guest_cr0, with possibly a modified
  5811. * TS bit (for lazy fpu) and bits which we consider mandatory enabled.
  5812. * The CR0_READ_SHADOW is what L2 should have expected to read given
  5813. * the specifications by L1; It's not enough to take
  5814. * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
  5815. * have more bits than L1 expected.
  5816. */
  5817. vmx_set_cr0(vcpu, vmcs12->guest_cr0);
  5818. vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
  5819. vmx_set_cr4(vcpu, vmcs12->guest_cr4);
  5820. vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
  5821. /* shadow page tables on either EPT or shadow page tables */
  5822. kvm_set_cr3(vcpu, vmcs12->guest_cr3);
  5823. kvm_mmu_reset_context(vcpu);
  5824. kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
  5825. kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
  5826. }
  5827. /*
  5828. * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
  5829. * for running an L2 nested guest.
  5830. */
  5831. static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
  5832. {
  5833. struct vmcs12 *vmcs12;
  5834. struct vcpu_vmx *vmx = to_vmx(vcpu);
  5835. int cpu;
  5836. struct loaded_vmcs *vmcs02;
  5837. if (!nested_vmx_check_permission(vcpu) ||
  5838. !nested_vmx_check_vmcs12(vcpu))
  5839. return 1;
  5840. skip_emulated_instruction(vcpu);
  5841. vmcs12 = get_vmcs12(vcpu);
  5842. /*
  5843. * The nested entry process starts with enforcing various prerequisites
  5844. * on vmcs12 as required by the Intel SDM, and act appropriately when
  5845. * they fail: As the SDM explains, some conditions should cause the
  5846. * instruction to fail, while others will cause the instruction to seem
  5847. * to succeed, but return an EXIT_REASON_INVALID_STATE.
  5848. * To speed up the normal (success) code path, we should avoid checking
  5849. * for misconfigurations which will anyway be caught by the processor
  5850. * when using the merged vmcs02.
  5851. */
  5852. if (vmcs12->launch_state == launch) {
  5853. nested_vmx_failValid(vcpu,
  5854. launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
  5855. : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
  5856. return 1;
  5857. }
  5858. if ((vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_MSR_BITMAPS) &&
  5859. !IS_ALIGNED(vmcs12->msr_bitmap, PAGE_SIZE)) {
  5860. /*TODO: Also verify bits beyond physical address width are 0*/
  5861. nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
  5862. return 1;
  5863. }
  5864. if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
  5865. !IS_ALIGNED(vmcs12->apic_access_addr, PAGE_SIZE)) {
  5866. /*TODO: Also verify bits beyond physical address width are 0*/
  5867. nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
  5868. return 1;
  5869. }
  5870. if (vmcs12->vm_entry_msr_load_count > 0 ||
  5871. vmcs12->vm_exit_msr_load_count > 0 ||
  5872. vmcs12->vm_exit_msr_store_count > 0) {
  5873. pr_warn_ratelimited("%s: VMCS MSR_{LOAD,STORE} unsupported\n",
  5874. __func__);
  5875. nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
  5876. return 1;
  5877. }
  5878. if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
  5879. nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high) ||
  5880. !vmx_control_verify(vmcs12->secondary_vm_exec_control,
  5881. nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high) ||
  5882. !vmx_control_verify(vmcs12->pin_based_vm_exec_control,
  5883. nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high) ||
  5884. !vmx_control_verify(vmcs12->vm_exit_controls,
  5885. nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high) ||
  5886. !vmx_control_verify(vmcs12->vm_entry_controls,
  5887. nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high))
  5888. {
  5889. nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
  5890. return 1;
  5891. }
  5892. if (((vmcs12->host_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
  5893. ((vmcs12->host_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
  5894. nested_vmx_failValid(vcpu,
  5895. VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
  5896. return 1;
  5897. }
  5898. if (((vmcs12->guest_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
  5899. ((vmcs12->guest_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
  5900. nested_vmx_entry_failure(vcpu, vmcs12,
  5901. EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
  5902. return 1;
  5903. }
  5904. if (vmcs12->vmcs_link_pointer != -1ull) {
  5905. nested_vmx_entry_failure(vcpu, vmcs12,
  5906. EXIT_REASON_INVALID_STATE, ENTRY_FAIL_VMCS_LINK_PTR);
  5907. return 1;
  5908. }
  5909. /*
  5910. * We're finally done with prerequisite checking, and can start with
  5911. * the nested entry.
  5912. */
  5913. vmcs02 = nested_get_current_vmcs02(vmx);
  5914. if (!vmcs02)
  5915. return -ENOMEM;
  5916. enter_guest_mode(vcpu);
  5917. vmx->nested.vmcs01_tsc_offset = vmcs_read64(TSC_OFFSET);
  5918. cpu = get_cpu();
  5919. vmx->loaded_vmcs = vmcs02;
  5920. vmx_vcpu_put(vcpu);
  5921. vmx_vcpu_load(vcpu, cpu);
  5922. vcpu->cpu = cpu;
  5923. put_cpu();
  5924. vmcs12->launch_state = 1;
  5925. prepare_vmcs02(vcpu, vmcs12);
  5926. /*
  5927. * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
  5928. * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
  5929. * returned as far as L1 is concerned. It will only return (and set
  5930. * the success flag) when L2 exits (see nested_vmx_vmexit()).
  5931. */
  5932. return 1;
  5933. }
  5934. /*
  5935. * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
  5936. * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
  5937. * This function returns the new value we should put in vmcs12.guest_cr0.
  5938. * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
  5939. * 1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
  5940. * available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
  5941. * didn't trap the bit, because if L1 did, so would L0).
  5942. * 2. Bits that L1 asked to trap (and therefore L0 also did) could not have
  5943. * been modified by L2, and L1 knows it. So just leave the old value of
  5944. * the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
  5945. * isn't relevant, because if L0 traps this bit it can set it to anything.
  5946. * 3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
  5947. * changed these bits, and therefore they need to be updated, but L0
  5948. * didn't necessarily allow them to be changed in GUEST_CR0 - and rather
  5949. * put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
  5950. */
  5951. static inline unsigned long
  5952. vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
  5953. {
  5954. return
  5955. /*1*/ (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
  5956. /*2*/ (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
  5957. /*3*/ (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
  5958. vcpu->arch.cr0_guest_owned_bits));
  5959. }
  5960. static inline unsigned long
  5961. vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
  5962. {
  5963. return
  5964. /*1*/ (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
  5965. /*2*/ (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
  5966. /*3*/ (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
  5967. vcpu->arch.cr4_guest_owned_bits));
  5968. }
  5969. /*
  5970. * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
  5971. * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
  5972. * and this function updates it to reflect the changes to the guest state while
  5973. * L2 was running (and perhaps made some exits which were handled directly by L0
  5974. * without going back to L1), and to reflect the exit reason.
  5975. * Note that we do not have to copy here all VMCS fields, just those that
  5976. * could have changed by the L2 guest or the exit - i.e., the guest-state and
  5977. * exit-information fields only. Other fields are modified by L1 with VMWRITE,
  5978. * which already writes to vmcs12 directly.
  5979. */
  5980. void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
  5981. {
  5982. /* update guest state fields: */
  5983. vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
  5984. vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
  5985. kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
  5986. vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
  5987. vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
  5988. vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
  5989. vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
  5990. vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
  5991. vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
  5992. vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
  5993. vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
  5994. vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
  5995. vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
  5996. vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
  5997. vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
  5998. vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
  5999. vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
  6000. vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
  6001. vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
  6002. vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
  6003. vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
  6004. vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
  6005. vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
  6006. vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
  6007. vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
  6008. vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
  6009. vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
  6010. vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
  6011. vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
  6012. vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
  6013. vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
  6014. vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
  6015. vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
  6016. vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
  6017. vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
  6018. vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
  6019. vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
  6020. vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
  6021. vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
  6022. vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
  6023. vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
  6024. vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
  6025. vmcs12->guest_activity_state = vmcs_read32(GUEST_ACTIVITY_STATE);
  6026. vmcs12->guest_interruptibility_info =
  6027. vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  6028. vmcs12->guest_pending_dbg_exceptions =
  6029. vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
  6030. /* TODO: These cannot have changed unless we have MSR bitmaps and
  6031. * the relevant bit asks not to trap the change */
  6032. vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
  6033. if (vmcs12->vm_entry_controls & VM_EXIT_SAVE_IA32_PAT)
  6034. vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
  6035. vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
  6036. vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
  6037. vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
  6038. /* update exit information fields: */
  6039. vmcs12->vm_exit_reason = vmcs_read32(VM_EXIT_REASON);
  6040. vmcs12->exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  6041. vmcs12->vm_exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  6042. vmcs12->vm_exit_intr_error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
  6043. vmcs12->idt_vectoring_info_field =
  6044. vmcs_read32(IDT_VECTORING_INFO_FIELD);
  6045. vmcs12->idt_vectoring_error_code =
  6046. vmcs_read32(IDT_VECTORING_ERROR_CODE);
  6047. vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  6048. vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
  6049. /* clear vm-entry fields which are to be cleared on exit */
  6050. if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY))
  6051. vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
  6052. }
  6053. /*
  6054. * A part of what we need to when the nested L2 guest exits and we want to
  6055. * run its L1 parent, is to reset L1's guest state to the host state specified
  6056. * in vmcs12.
  6057. * This function is to be called not only on normal nested exit, but also on
  6058. * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
  6059. * Failures During or After Loading Guest State").
  6060. * This function should be called when the active VMCS is L1's (vmcs01).
  6061. */
  6062. void load_vmcs12_host_state(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
  6063. {
  6064. if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
  6065. vcpu->arch.efer = vmcs12->host_ia32_efer;
  6066. if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
  6067. vcpu->arch.efer |= (EFER_LMA | EFER_LME);
  6068. else
  6069. vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
  6070. vmx_set_efer(vcpu, vcpu->arch.efer);
  6071. kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
  6072. kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
  6073. /*
  6074. * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
  6075. * actually changed, because it depends on the current state of
  6076. * fpu_active (which may have changed).
  6077. * Note that vmx_set_cr0 refers to efer set above.
  6078. */
  6079. kvm_set_cr0(vcpu, vmcs12->host_cr0);
  6080. /*
  6081. * If we did fpu_activate()/fpu_deactivate() during L2's run, we need
  6082. * to apply the same changes to L1's vmcs. We just set cr0 correctly,
  6083. * but we also need to update cr0_guest_host_mask and exception_bitmap.
  6084. */
  6085. update_exception_bitmap(vcpu);
  6086. vcpu->arch.cr0_guest_owned_bits = (vcpu->fpu_active ? X86_CR0_TS : 0);
  6087. vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
  6088. /*
  6089. * Note that CR4_GUEST_HOST_MASK is already set in the original vmcs01
  6090. * (KVM doesn't change it)- no reason to call set_cr4_guest_host_mask();
  6091. */
  6092. vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
  6093. kvm_set_cr4(vcpu, vmcs12->host_cr4);
  6094. /* shadow page tables on either EPT or shadow page tables */
  6095. kvm_set_cr3(vcpu, vmcs12->host_cr3);
  6096. kvm_mmu_reset_context(vcpu);
  6097. if (enable_vpid) {
  6098. /*
  6099. * Trivially support vpid by letting L2s share their parent
  6100. * L1's vpid. TODO: move to a more elaborate solution, giving
  6101. * each L2 its own vpid and exposing the vpid feature to L1.
  6102. */
  6103. vmx_flush_tlb(vcpu);
  6104. }
  6105. vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
  6106. vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
  6107. vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
  6108. vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
  6109. vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
  6110. vmcs_writel(GUEST_TR_BASE, vmcs12->host_tr_base);
  6111. vmcs_writel(GUEST_GS_BASE, vmcs12->host_gs_base);
  6112. vmcs_writel(GUEST_FS_BASE, vmcs12->host_fs_base);
  6113. vmcs_write16(GUEST_ES_SELECTOR, vmcs12->host_es_selector);
  6114. vmcs_write16(GUEST_CS_SELECTOR, vmcs12->host_cs_selector);
  6115. vmcs_write16(GUEST_SS_SELECTOR, vmcs12->host_ss_selector);
  6116. vmcs_write16(GUEST_DS_SELECTOR, vmcs12->host_ds_selector);
  6117. vmcs_write16(GUEST_FS_SELECTOR, vmcs12->host_fs_selector);
  6118. vmcs_write16(GUEST_GS_SELECTOR, vmcs12->host_gs_selector);
  6119. vmcs_write16(GUEST_TR_SELECTOR, vmcs12->host_tr_selector);
  6120. if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT)
  6121. vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
  6122. if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
  6123. vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
  6124. vmcs12->host_ia32_perf_global_ctrl);
  6125. }
  6126. /*
  6127. * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
  6128. * and modify vmcs12 to make it see what it would expect to see there if
  6129. * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
  6130. */
  6131. static void nested_vmx_vmexit(struct kvm_vcpu *vcpu)
  6132. {
  6133. struct vcpu_vmx *vmx = to_vmx(vcpu);
  6134. int cpu;
  6135. struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
  6136. leave_guest_mode(vcpu);
  6137. prepare_vmcs12(vcpu, vmcs12);
  6138. cpu = get_cpu();
  6139. vmx->loaded_vmcs = &vmx->vmcs01;
  6140. vmx_vcpu_put(vcpu);
  6141. vmx_vcpu_load(vcpu, cpu);
  6142. vcpu->cpu = cpu;
  6143. put_cpu();
  6144. /* if no vmcs02 cache requested, remove the one we used */
  6145. if (VMCS02_POOL_SIZE == 0)
  6146. nested_free_vmcs02(vmx, vmx->nested.current_vmptr);
  6147. load_vmcs12_host_state(vcpu, vmcs12);
  6148. /* Update TSC_OFFSET if TSC was changed while L2 ran */
  6149. vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
  6150. /* This is needed for same reason as it was needed in prepare_vmcs02 */
  6151. vmx->host_rsp = 0;
  6152. /* Unpin physical memory we referred to in vmcs02 */
  6153. if (vmx->nested.apic_access_page) {
  6154. nested_release_page(vmx->nested.apic_access_page);
  6155. vmx->nested.apic_access_page = 0;
  6156. }
  6157. /*
  6158. * Exiting from L2 to L1, we're now back to L1 which thinks it just
  6159. * finished a VMLAUNCH or VMRESUME instruction, so we need to set the
  6160. * success or failure flag accordingly.
  6161. */
  6162. if (unlikely(vmx->fail)) {
  6163. vmx->fail = 0;
  6164. nested_vmx_failValid(vcpu, vmcs_read32(VM_INSTRUCTION_ERROR));
  6165. } else
  6166. nested_vmx_succeed(vcpu);
  6167. }
  6168. /*
  6169. * L1's failure to enter L2 is a subset of a normal exit, as explained in
  6170. * 23.7 "VM-entry failures during or after loading guest state" (this also
  6171. * lists the acceptable exit-reason and exit-qualification parameters).
  6172. * It should only be called before L2 actually succeeded to run, and when
  6173. * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss).
  6174. */
  6175. static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
  6176. struct vmcs12 *vmcs12,
  6177. u32 reason, unsigned long qualification)
  6178. {
  6179. load_vmcs12_host_state(vcpu, vmcs12);
  6180. vmcs12->vm_exit_reason = reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
  6181. vmcs12->exit_qualification = qualification;
  6182. nested_vmx_succeed(vcpu);
  6183. }
  6184. static int vmx_check_intercept(struct kvm_vcpu *vcpu,
  6185. struct x86_instruction_info *info,
  6186. enum x86_intercept_stage stage)
  6187. {
  6188. return X86EMUL_CONTINUE;
  6189. }
  6190. static struct kvm_x86_ops vmx_x86_ops = {
  6191. .cpu_has_kvm_support = cpu_has_kvm_support,
  6192. .disabled_by_bios = vmx_disabled_by_bios,
  6193. .hardware_setup = hardware_setup,
  6194. .hardware_unsetup = hardware_unsetup,
  6195. .check_processor_compatibility = vmx_check_processor_compat,
  6196. .hardware_enable = hardware_enable,
  6197. .hardware_disable = hardware_disable,
  6198. .cpu_has_accelerated_tpr = report_flexpriority,
  6199. .vcpu_create = vmx_create_vcpu,
  6200. .vcpu_free = vmx_free_vcpu,
  6201. .vcpu_reset = vmx_vcpu_reset,
  6202. .prepare_guest_switch = vmx_save_host_state,
  6203. .vcpu_load = vmx_vcpu_load,
  6204. .vcpu_put = vmx_vcpu_put,
  6205. .set_guest_debug = set_guest_debug,
  6206. .get_msr = vmx_get_msr,
  6207. .set_msr = vmx_set_msr,
  6208. .get_segment_base = vmx_get_segment_base,
  6209. .get_segment = vmx_get_segment,
  6210. .set_segment = vmx_set_segment,
  6211. .get_cpl = vmx_get_cpl,
  6212. .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
  6213. .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
  6214. .decache_cr3 = vmx_decache_cr3,
  6215. .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
  6216. .set_cr0 = vmx_set_cr0,
  6217. .set_cr3 = vmx_set_cr3,
  6218. .set_cr4 = vmx_set_cr4,
  6219. .set_efer = vmx_set_efer,
  6220. .get_idt = vmx_get_idt,
  6221. .set_idt = vmx_set_idt,
  6222. .get_gdt = vmx_get_gdt,
  6223. .set_gdt = vmx_set_gdt,
  6224. .set_dr7 = vmx_set_dr7,
  6225. .cache_reg = vmx_cache_reg,
  6226. .get_rflags = vmx_get_rflags,
  6227. .set_rflags = vmx_set_rflags,
  6228. .fpu_activate = vmx_fpu_activate,
  6229. .fpu_deactivate = vmx_fpu_deactivate,
  6230. .tlb_flush = vmx_flush_tlb,
  6231. .run = vmx_vcpu_run,
  6232. .handle_exit = vmx_handle_exit,
  6233. .skip_emulated_instruction = skip_emulated_instruction,
  6234. .set_interrupt_shadow = vmx_set_interrupt_shadow,
  6235. .get_interrupt_shadow = vmx_get_interrupt_shadow,
  6236. .patch_hypercall = vmx_patch_hypercall,
  6237. .set_irq = vmx_inject_irq,
  6238. .set_nmi = vmx_inject_nmi,
  6239. .queue_exception = vmx_queue_exception,
  6240. .cancel_injection = vmx_cancel_injection,
  6241. .interrupt_allowed = vmx_interrupt_allowed,
  6242. .nmi_allowed = vmx_nmi_allowed,
  6243. .get_nmi_mask = vmx_get_nmi_mask,
  6244. .set_nmi_mask = vmx_set_nmi_mask,
  6245. .enable_nmi_window = enable_nmi_window,
  6246. .enable_irq_window = enable_irq_window,
  6247. .update_cr8_intercept = update_cr8_intercept,
  6248. .set_tss_addr = vmx_set_tss_addr,
  6249. .get_tdp_level = get_ept_level,
  6250. .get_mt_mask = vmx_get_mt_mask,
  6251. .get_exit_info = vmx_get_exit_info,
  6252. .get_lpage_level = vmx_get_lpage_level,
  6253. .cpuid_update = vmx_cpuid_update,
  6254. .rdtscp_supported = vmx_rdtscp_supported,
  6255. .set_supported_cpuid = vmx_set_supported_cpuid,
  6256. .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
  6257. .set_tsc_khz = vmx_set_tsc_khz,
  6258. .write_tsc_offset = vmx_write_tsc_offset,
  6259. .adjust_tsc_offset = vmx_adjust_tsc_offset,
  6260. .compute_tsc_offset = vmx_compute_tsc_offset,
  6261. .read_l1_tsc = vmx_read_l1_tsc,
  6262. .set_tdp_cr3 = vmx_set_cr3,
  6263. .check_intercept = vmx_check_intercept,
  6264. };
  6265. static int __init vmx_init(void)
  6266. {
  6267. int r, i;
  6268. rdmsrl_safe(MSR_EFER, &host_efer);
  6269. for (i = 0; i < NR_VMX_MSR; ++i)
  6270. kvm_define_shared_msr(i, vmx_msr_index[i]);
  6271. vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
  6272. if (!vmx_io_bitmap_a)
  6273. return -ENOMEM;
  6274. vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
  6275. if (!vmx_io_bitmap_b) {
  6276. r = -ENOMEM;
  6277. goto out;
  6278. }
  6279. vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
  6280. if (!vmx_msr_bitmap_legacy) {
  6281. r = -ENOMEM;
  6282. goto out1;
  6283. }
  6284. vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
  6285. if (!vmx_msr_bitmap_longmode) {
  6286. r = -ENOMEM;
  6287. goto out2;
  6288. }
  6289. /*
  6290. * Allow direct access to the PC debug port (it is often used for I/O
  6291. * delays, but the vmexits simply slow things down).
  6292. */
  6293. memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
  6294. clear_bit(0x80, vmx_io_bitmap_a);
  6295. memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
  6296. memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
  6297. memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
  6298. set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
  6299. r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
  6300. __alignof__(struct vcpu_vmx), THIS_MODULE);
  6301. if (r)
  6302. goto out3;
  6303. vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
  6304. vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
  6305. vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
  6306. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
  6307. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
  6308. vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
  6309. if (enable_ept) {
  6310. kvm_mmu_set_mask_ptes(0ull, 0ull, 0ull, 0ull,
  6311. VMX_EPT_EXECUTABLE_MASK);
  6312. ept_set_mmio_spte_mask();
  6313. kvm_enable_tdp();
  6314. } else
  6315. kvm_disable_tdp();
  6316. return 0;
  6317. out3:
  6318. free_page((unsigned long)vmx_msr_bitmap_longmode);
  6319. out2:
  6320. free_page((unsigned long)vmx_msr_bitmap_legacy);
  6321. out1:
  6322. free_page((unsigned long)vmx_io_bitmap_b);
  6323. out:
  6324. free_page((unsigned long)vmx_io_bitmap_a);
  6325. return r;
  6326. }
  6327. static void __exit vmx_exit(void)
  6328. {
  6329. free_page((unsigned long)vmx_msr_bitmap_legacy);
  6330. free_page((unsigned long)vmx_msr_bitmap_longmode);
  6331. free_page((unsigned long)vmx_io_bitmap_b);
  6332. free_page((unsigned long)vmx_io_bitmap_a);
  6333. kvm_exit();
  6334. }
  6335. module_init(vmx_init)
  6336. module_exit(vmx_exit)