fair.c 140 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555
  1. /*
  2. * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
  3. *
  4. * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
  5. *
  6. * Interactivity improvements by Mike Galbraith
  7. * (C) 2007 Mike Galbraith <efault@gmx.de>
  8. *
  9. * Various enhancements by Dmitry Adamushko.
  10. * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
  11. *
  12. * Group scheduling enhancements by Srivatsa Vaddagiri
  13. * Copyright IBM Corporation, 2007
  14. * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
  15. *
  16. * Scaled math optimizations by Thomas Gleixner
  17. * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
  18. *
  19. * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
  20. * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
  21. */
  22. #include <linux/latencytop.h>
  23. #include <linux/sched.h>
  24. #include <linux/cpumask.h>
  25. #include <linux/slab.h>
  26. #include <linux/profile.h>
  27. #include <linux/interrupt.h>
  28. #include <trace/events/sched.h>
  29. #include "sched.h"
  30. /*
  31. * Targeted preemption latency for CPU-bound tasks:
  32. * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
  33. *
  34. * NOTE: this latency value is not the same as the concept of
  35. * 'timeslice length' - timeslices in CFS are of variable length
  36. * and have no persistent notion like in traditional, time-slice
  37. * based scheduling concepts.
  38. *
  39. * (to see the precise effective timeslice length of your workload,
  40. * run vmstat and monitor the context-switches (cs) field)
  41. */
  42. unsigned int sysctl_sched_latency = 6000000ULL;
  43. unsigned int normalized_sysctl_sched_latency = 6000000ULL;
  44. /*
  45. * The initial- and re-scaling of tunables is configurable
  46. * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
  47. *
  48. * Options are:
  49. * SCHED_TUNABLESCALING_NONE - unscaled, always *1
  50. * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
  51. * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
  52. */
  53. enum sched_tunable_scaling sysctl_sched_tunable_scaling
  54. = SCHED_TUNABLESCALING_LOG;
  55. /*
  56. * Minimal preemption granularity for CPU-bound tasks:
  57. * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
  58. */
  59. unsigned int sysctl_sched_min_granularity = 750000ULL;
  60. unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
  61. /*
  62. * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
  63. */
  64. static unsigned int sched_nr_latency = 8;
  65. /*
  66. * After fork, child runs first. If set to 0 (default) then
  67. * parent will (try to) run first.
  68. */
  69. unsigned int sysctl_sched_child_runs_first __read_mostly;
  70. /*
  71. * SCHED_OTHER wake-up granularity.
  72. * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
  73. *
  74. * This option delays the preemption effects of decoupled workloads
  75. * and reduces their over-scheduling. Synchronous workloads will still
  76. * have immediate wakeup/sleep latencies.
  77. */
  78. unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
  79. unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
  80. const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
  81. /*
  82. * The exponential sliding window over which load is averaged for shares
  83. * distribution.
  84. * (default: 10msec)
  85. */
  86. unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
  87. #ifdef CONFIG_CFS_BANDWIDTH
  88. /*
  89. * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
  90. * each time a cfs_rq requests quota.
  91. *
  92. * Note: in the case that the slice exceeds the runtime remaining (either due
  93. * to consumption or the quota being specified to be smaller than the slice)
  94. * we will always only issue the remaining available time.
  95. *
  96. * default: 5 msec, units: microseconds
  97. */
  98. unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
  99. #endif
  100. /*
  101. * Increase the granularity value when there are more CPUs,
  102. * because with more CPUs the 'effective latency' as visible
  103. * to users decreases. But the relationship is not linear,
  104. * so pick a second-best guess by going with the log2 of the
  105. * number of CPUs.
  106. *
  107. * This idea comes from the SD scheduler of Con Kolivas:
  108. */
  109. static int get_update_sysctl_factor(void)
  110. {
  111. unsigned int cpus = min_t(int, num_online_cpus(), 8);
  112. unsigned int factor;
  113. switch (sysctl_sched_tunable_scaling) {
  114. case SCHED_TUNABLESCALING_NONE:
  115. factor = 1;
  116. break;
  117. case SCHED_TUNABLESCALING_LINEAR:
  118. factor = cpus;
  119. break;
  120. case SCHED_TUNABLESCALING_LOG:
  121. default:
  122. factor = 1 + ilog2(cpus);
  123. break;
  124. }
  125. return factor;
  126. }
  127. static void update_sysctl(void)
  128. {
  129. unsigned int factor = get_update_sysctl_factor();
  130. #define SET_SYSCTL(name) \
  131. (sysctl_##name = (factor) * normalized_sysctl_##name)
  132. SET_SYSCTL(sched_min_granularity);
  133. SET_SYSCTL(sched_latency);
  134. SET_SYSCTL(sched_wakeup_granularity);
  135. #undef SET_SYSCTL
  136. }
  137. void sched_init_granularity(void)
  138. {
  139. update_sysctl();
  140. }
  141. #if BITS_PER_LONG == 32
  142. # define WMULT_CONST (~0UL)
  143. #else
  144. # define WMULT_CONST (1UL << 32)
  145. #endif
  146. #define WMULT_SHIFT 32
  147. /*
  148. * Shift right and round:
  149. */
  150. #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
  151. /*
  152. * delta *= weight / lw
  153. */
  154. static unsigned long
  155. calc_delta_mine(unsigned long delta_exec, unsigned long weight,
  156. struct load_weight *lw)
  157. {
  158. u64 tmp;
  159. /*
  160. * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
  161. * entities since MIN_SHARES = 2. Treat weight as 1 if less than
  162. * 2^SCHED_LOAD_RESOLUTION.
  163. */
  164. if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
  165. tmp = (u64)delta_exec * scale_load_down(weight);
  166. else
  167. tmp = (u64)delta_exec;
  168. if (!lw->inv_weight) {
  169. unsigned long w = scale_load_down(lw->weight);
  170. if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
  171. lw->inv_weight = 1;
  172. else if (unlikely(!w))
  173. lw->inv_weight = WMULT_CONST;
  174. else
  175. lw->inv_weight = WMULT_CONST / w;
  176. }
  177. /*
  178. * Check whether we'd overflow the 64-bit multiplication:
  179. */
  180. if (unlikely(tmp > WMULT_CONST))
  181. tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
  182. WMULT_SHIFT/2);
  183. else
  184. tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
  185. return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
  186. }
  187. const struct sched_class fair_sched_class;
  188. /**************************************************************
  189. * CFS operations on generic schedulable entities:
  190. */
  191. #ifdef CONFIG_FAIR_GROUP_SCHED
  192. /* cpu runqueue to which this cfs_rq is attached */
  193. static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
  194. {
  195. return cfs_rq->rq;
  196. }
  197. /* An entity is a task if it doesn't "own" a runqueue */
  198. #define entity_is_task(se) (!se->my_q)
  199. static inline struct task_struct *task_of(struct sched_entity *se)
  200. {
  201. #ifdef CONFIG_SCHED_DEBUG
  202. WARN_ON_ONCE(!entity_is_task(se));
  203. #endif
  204. return container_of(se, struct task_struct, se);
  205. }
  206. /* Walk up scheduling entities hierarchy */
  207. #define for_each_sched_entity(se) \
  208. for (; se; se = se->parent)
  209. static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
  210. {
  211. return p->se.cfs_rq;
  212. }
  213. /* runqueue on which this entity is (to be) queued */
  214. static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
  215. {
  216. return se->cfs_rq;
  217. }
  218. /* runqueue "owned" by this group */
  219. static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
  220. {
  221. return grp->my_q;
  222. }
  223. static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
  224. {
  225. if (!cfs_rq->on_list) {
  226. /*
  227. * Ensure we either appear before our parent (if already
  228. * enqueued) or force our parent to appear after us when it is
  229. * enqueued. The fact that we always enqueue bottom-up
  230. * reduces this to two cases.
  231. */
  232. if (cfs_rq->tg->parent &&
  233. cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
  234. list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
  235. &rq_of(cfs_rq)->leaf_cfs_rq_list);
  236. } else {
  237. list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
  238. &rq_of(cfs_rq)->leaf_cfs_rq_list);
  239. }
  240. cfs_rq->on_list = 1;
  241. }
  242. }
  243. static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
  244. {
  245. if (cfs_rq->on_list) {
  246. list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
  247. cfs_rq->on_list = 0;
  248. }
  249. }
  250. /* Iterate thr' all leaf cfs_rq's on a runqueue */
  251. #define for_each_leaf_cfs_rq(rq, cfs_rq) \
  252. list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
  253. /* Do the two (enqueued) entities belong to the same group ? */
  254. static inline int
  255. is_same_group(struct sched_entity *se, struct sched_entity *pse)
  256. {
  257. if (se->cfs_rq == pse->cfs_rq)
  258. return 1;
  259. return 0;
  260. }
  261. static inline struct sched_entity *parent_entity(struct sched_entity *se)
  262. {
  263. return se->parent;
  264. }
  265. /* return depth at which a sched entity is present in the hierarchy */
  266. static inline int depth_se(struct sched_entity *se)
  267. {
  268. int depth = 0;
  269. for_each_sched_entity(se)
  270. depth++;
  271. return depth;
  272. }
  273. static void
  274. find_matching_se(struct sched_entity **se, struct sched_entity **pse)
  275. {
  276. int se_depth, pse_depth;
  277. /*
  278. * preemption test can be made between sibling entities who are in the
  279. * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
  280. * both tasks until we find their ancestors who are siblings of common
  281. * parent.
  282. */
  283. /* First walk up until both entities are at same depth */
  284. se_depth = depth_se(*se);
  285. pse_depth = depth_se(*pse);
  286. while (se_depth > pse_depth) {
  287. se_depth--;
  288. *se = parent_entity(*se);
  289. }
  290. while (pse_depth > se_depth) {
  291. pse_depth--;
  292. *pse = parent_entity(*pse);
  293. }
  294. while (!is_same_group(*se, *pse)) {
  295. *se = parent_entity(*se);
  296. *pse = parent_entity(*pse);
  297. }
  298. }
  299. #else /* !CONFIG_FAIR_GROUP_SCHED */
  300. static inline struct task_struct *task_of(struct sched_entity *se)
  301. {
  302. return container_of(se, struct task_struct, se);
  303. }
  304. static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
  305. {
  306. return container_of(cfs_rq, struct rq, cfs);
  307. }
  308. #define entity_is_task(se) 1
  309. #define for_each_sched_entity(se) \
  310. for (; se; se = NULL)
  311. static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
  312. {
  313. return &task_rq(p)->cfs;
  314. }
  315. static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
  316. {
  317. struct task_struct *p = task_of(se);
  318. struct rq *rq = task_rq(p);
  319. return &rq->cfs;
  320. }
  321. /* runqueue "owned" by this group */
  322. static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
  323. {
  324. return NULL;
  325. }
  326. static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
  327. {
  328. }
  329. static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
  330. {
  331. }
  332. #define for_each_leaf_cfs_rq(rq, cfs_rq) \
  333. for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
  334. static inline int
  335. is_same_group(struct sched_entity *se, struct sched_entity *pse)
  336. {
  337. return 1;
  338. }
  339. static inline struct sched_entity *parent_entity(struct sched_entity *se)
  340. {
  341. return NULL;
  342. }
  343. static inline void
  344. find_matching_se(struct sched_entity **se, struct sched_entity **pse)
  345. {
  346. }
  347. #endif /* CONFIG_FAIR_GROUP_SCHED */
  348. static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
  349. unsigned long delta_exec);
  350. /**************************************************************
  351. * Scheduling class tree data structure manipulation methods:
  352. */
  353. static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
  354. {
  355. s64 delta = (s64)(vruntime - min_vruntime);
  356. if (delta > 0)
  357. min_vruntime = vruntime;
  358. return min_vruntime;
  359. }
  360. static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
  361. {
  362. s64 delta = (s64)(vruntime - min_vruntime);
  363. if (delta < 0)
  364. min_vruntime = vruntime;
  365. return min_vruntime;
  366. }
  367. static inline int entity_before(struct sched_entity *a,
  368. struct sched_entity *b)
  369. {
  370. return (s64)(a->vruntime - b->vruntime) < 0;
  371. }
  372. static void update_min_vruntime(struct cfs_rq *cfs_rq)
  373. {
  374. u64 vruntime = cfs_rq->min_vruntime;
  375. if (cfs_rq->curr)
  376. vruntime = cfs_rq->curr->vruntime;
  377. if (cfs_rq->rb_leftmost) {
  378. struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
  379. struct sched_entity,
  380. run_node);
  381. if (!cfs_rq->curr)
  382. vruntime = se->vruntime;
  383. else
  384. vruntime = min_vruntime(vruntime, se->vruntime);
  385. }
  386. cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
  387. #ifndef CONFIG_64BIT
  388. smp_wmb();
  389. cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
  390. #endif
  391. }
  392. /*
  393. * Enqueue an entity into the rb-tree:
  394. */
  395. static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  396. {
  397. struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
  398. struct rb_node *parent = NULL;
  399. struct sched_entity *entry;
  400. int leftmost = 1;
  401. /*
  402. * Find the right place in the rbtree:
  403. */
  404. while (*link) {
  405. parent = *link;
  406. entry = rb_entry(parent, struct sched_entity, run_node);
  407. /*
  408. * We dont care about collisions. Nodes with
  409. * the same key stay together.
  410. */
  411. if (entity_before(se, entry)) {
  412. link = &parent->rb_left;
  413. } else {
  414. link = &parent->rb_right;
  415. leftmost = 0;
  416. }
  417. }
  418. /*
  419. * Maintain a cache of leftmost tree entries (it is frequently
  420. * used):
  421. */
  422. if (leftmost)
  423. cfs_rq->rb_leftmost = &se->run_node;
  424. rb_link_node(&se->run_node, parent, link);
  425. rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
  426. }
  427. static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  428. {
  429. if (cfs_rq->rb_leftmost == &se->run_node) {
  430. struct rb_node *next_node;
  431. next_node = rb_next(&se->run_node);
  432. cfs_rq->rb_leftmost = next_node;
  433. }
  434. rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
  435. }
  436. struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
  437. {
  438. struct rb_node *left = cfs_rq->rb_leftmost;
  439. if (!left)
  440. return NULL;
  441. return rb_entry(left, struct sched_entity, run_node);
  442. }
  443. static struct sched_entity *__pick_next_entity(struct sched_entity *se)
  444. {
  445. struct rb_node *next = rb_next(&se->run_node);
  446. if (!next)
  447. return NULL;
  448. return rb_entry(next, struct sched_entity, run_node);
  449. }
  450. #ifdef CONFIG_SCHED_DEBUG
  451. struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
  452. {
  453. struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
  454. if (!last)
  455. return NULL;
  456. return rb_entry(last, struct sched_entity, run_node);
  457. }
  458. /**************************************************************
  459. * Scheduling class statistics methods:
  460. */
  461. int sched_proc_update_handler(struct ctl_table *table, int write,
  462. void __user *buffer, size_t *lenp,
  463. loff_t *ppos)
  464. {
  465. int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
  466. int factor = get_update_sysctl_factor();
  467. if (ret || !write)
  468. return ret;
  469. sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
  470. sysctl_sched_min_granularity);
  471. #define WRT_SYSCTL(name) \
  472. (normalized_sysctl_##name = sysctl_##name / (factor))
  473. WRT_SYSCTL(sched_min_granularity);
  474. WRT_SYSCTL(sched_latency);
  475. WRT_SYSCTL(sched_wakeup_granularity);
  476. #undef WRT_SYSCTL
  477. return 0;
  478. }
  479. #endif
  480. /*
  481. * delta /= w
  482. */
  483. static inline unsigned long
  484. calc_delta_fair(unsigned long delta, struct sched_entity *se)
  485. {
  486. if (unlikely(se->load.weight != NICE_0_LOAD))
  487. delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
  488. return delta;
  489. }
  490. /*
  491. * The idea is to set a period in which each task runs once.
  492. *
  493. * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
  494. * this period because otherwise the slices get too small.
  495. *
  496. * p = (nr <= nl) ? l : l*nr/nl
  497. */
  498. static u64 __sched_period(unsigned long nr_running)
  499. {
  500. u64 period = sysctl_sched_latency;
  501. unsigned long nr_latency = sched_nr_latency;
  502. if (unlikely(nr_running > nr_latency)) {
  503. period = sysctl_sched_min_granularity;
  504. period *= nr_running;
  505. }
  506. return period;
  507. }
  508. /*
  509. * We calculate the wall-time slice from the period by taking a part
  510. * proportional to the weight.
  511. *
  512. * s = p*P[w/rw]
  513. */
  514. static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
  515. {
  516. u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
  517. for_each_sched_entity(se) {
  518. struct load_weight *load;
  519. struct load_weight lw;
  520. cfs_rq = cfs_rq_of(se);
  521. load = &cfs_rq->load;
  522. if (unlikely(!se->on_rq)) {
  523. lw = cfs_rq->load;
  524. update_load_add(&lw, se->load.weight);
  525. load = &lw;
  526. }
  527. slice = calc_delta_mine(slice, se->load.weight, load);
  528. }
  529. return slice;
  530. }
  531. /*
  532. * We calculate the vruntime slice of a to be inserted task
  533. *
  534. * vs = s/w
  535. */
  536. static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
  537. {
  538. return calc_delta_fair(sched_slice(cfs_rq, se), se);
  539. }
  540. static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update);
  541. static void update_cfs_shares(struct cfs_rq *cfs_rq);
  542. /*
  543. * Update the current task's runtime statistics. Skip current tasks that
  544. * are not in our scheduling class.
  545. */
  546. static inline void
  547. __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
  548. unsigned long delta_exec)
  549. {
  550. unsigned long delta_exec_weighted;
  551. schedstat_set(curr->statistics.exec_max,
  552. max((u64)delta_exec, curr->statistics.exec_max));
  553. curr->sum_exec_runtime += delta_exec;
  554. schedstat_add(cfs_rq, exec_clock, delta_exec);
  555. delta_exec_weighted = calc_delta_fair(delta_exec, curr);
  556. curr->vruntime += delta_exec_weighted;
  557. update_min_vruntime(cfs_rq);
  558. #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
  559. cfs_rq->load_unacc_exec_time += delta_exec;
  560. #endif
  561. }
  562. static void update_curr(struct cfs_rq *cfs_rq)
  563. {
  564. struct sched_entity *curr = cfs_rq->curr;
  565. u64 now = rq_of(cfs_rq)->clock_task;
  566. unsigned long delta_exec;
  567. if (unlikely(!curr))
  568. return;
  569. /*
  570. * Get the amount of time the current task was running
  571. * since the last time we changed load (this cannot
  572. * overflow on 32 bits):
  573. */
  574. delta_exec = (unsigned long)(now - curr->exec_start);
  575. if (!delta_exec)
  576. return;
  577. __update_curr(cfs_rq, curr, delta_exec);
  578. curr->exec_start = now;
  579. if (entity_is_task(curr)) {
  580. struct task_struct *curtask = task_of(curr);
  581. trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
  582. cpuacct_charge(curtask, delta_exec);
  583. account_group_exec_runtime(curtask, delta_exec);
  584. }
  585. account_cfs_rq_runtime(cfs_rq, delta_exec);
  586. }
  587. static inline void
  588. update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
  589. {
  590. schedstat_set(se->statistics.wait_start, rq_of(cfs_rq)->clock);
  591. }
  592. /*
  593. * Task is being enqueued - update stats:
  594. */
  595. static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  596. {
  597. /*
  598. * Are we enqueueing a waiting task? (for current tasks
  599. * a dequeue/enqueue event is a NOP)
  600. */
  601. if (se != cfs_rq->curr)
  602. update_stats_wait_start(cfs_rq, se);
  603. }
  604. static void
  605. update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
  606. {
  607. schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
  608. rq_of(cfs_rq)->clock - se->statistics.wait_start));
  609. schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
  610. schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
  611. rq_of(cfs_rq)->clock - se->statistics.wait_start);
  612. #ifdef CONFIG_SCHEDSTATS
  613. if (entity_is_task(se)) {
  614. trace_sched_stat_wait(task_of(se),
  615. rq_of(cfs_rq)->clock - se->statistics.wait_start);
  616. }
  617. #endif
  618. schedstat_set(se->statistics.wait_start, 0);
  619. }
  620. static inline void
  621. update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  622. {
  623. /*
  624. * Mark the end of the wait period if dequeueing a
  625. * waiting task:
  626. */
  627. if (se != cfs_rq->curr)
  628. update_stats_wait_end(cfs_rq, se);
  629. }
  630. /*
  631. * We are picking a new current task - update its stats:
  632. */
  633. static inline void
  634. update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
  635. {
  636. /*
  637. * We are starting a new run period:
  638. */
  639. se->exec_start = rq_of(cfs_rq)->clock_task;
  640. }
  641. /**************************************************
  642. * Scheduling class queueing methods:
  643. */
  644. #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
  645. static void
  646. add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
  647. {
  648. cfs_rq->task_weight += weight;
  649. }
  650. #else
  651. static inline void
  652. add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
  653. {
  654. }
  655. #endif
  656. static void
  657. account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  658. {
  659. update_load_add(&cfs_rq->load, se->load.weight);
  660. if (!parent_entity(se))
  661. update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
  662. if (entity_is_task(se)) {
  663. add_cfs_task_weight(cfs_rq, se->load.weight);
  664. list_add(&se->group_node, &cfs_rq->tasks);
  665. }
  666. cfs_rq->nr_running++;
  667. }
  668. static void
  669. account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
  670. {
  671. update_load_sub(&cfs_rq->load, se->load.weight);
  672. if (!parent_entity(se))
  673. update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
  674. if (entity_is_task(se)) {
  675. add_cfs_task_weight(cfs_rq, -se->load.weight);
  676. list_del_init(&se->group_node);
  677. }
  678. cfs_rq->nr_running--;
  679. }
  680. #ifdef CONFIG_FAIR_GROUP_SCHED
  681. /* we need this in update_cfs_load and load-balance functions below */
  682. static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
  683. # ifdef CONFIG_SMP
  684. static void update_cfs_rq_load_contribution(struct cfs_rq *cfs_rq,
  685. int global_update)
  686. {
  687. struct task_group *tg = cfs_rq->tg;
  688. long load_avg;
  689. load_avg = div64_u64(cfs_rq->load_avg, cfs_rq->load_period+1);
  690. load_avg -= cfs_rq->load_contribution;
  691. if (global_update || abs(load_avg) > cfs_rq->load_contribution / 8) {
  692. atomic_add(load_avg, &tg->load_weight);
  693. cfs_rq->load_contribution += load_avg;
  694. }
  695. }
  696. static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
  697. {
  698. u64 period = sysctl_sched_shares_window;
  699. u64 now, delta;
  700. unsigned long load = cfs_rq->load.weight;
  701. if (cfs_rq->tg == &root_task_group || throttled_hierarchy(cfs_rq))
  702. return;
  703. now = rq_of(cfs_rq)->clock_task;
  704. delta = now - cfs_rq->load_stamp;
  705. /* truncate load history at 4 idle periods */
  706. if (cfs_rq->load_stamp > cfs_rq->load_last &&
  707. now - cfs_rq->load_last > 4 * period) {
  708. cfs_rq->load_period = 0;
  709. cfs_rq->load_avg = 0;
  710. delta = period - 1;
  711. }
  712. cfs_rq->load_stamp = now;
  713. cfs_rq->load_unacc_exec_time = 0;
  714. cfs_rq->load_period += delta;
  715. if (load) {
  716. cfs_rq->load_last = now;
  717. cfs_rq->load_avg += delta * load;
  718. }
  719. /* consider updating load contribution on each fold or truncate */
  720. if (global_update || cfs_rq->load_period > period
  721. || !cfs_rq->load_period)
  722. update_cfs_rq_load_contribution(cfs_rq, global_update);
  723. while (cfs_rq->load_period > period) {
  724. /*
  725. * Inline assembly required to prevent the compiler
  726. * optimising this loop into a divmod call.
  727. * See __iter_div_u64_rem() for another example of this.
  728. */
  729. asm("" : "+rm" (cfs_rq->load_period));
  730. cfs_rq->load_period /= 2;
  731. cfs_rq->load_avg /= 2;
  732. }
  733. if (!cfs_rq->curr && !cfs_rq->nr_running && !cfs_rq->load_avg)
  734. list_del_leaf_cfs_rq(cfs_rq);
  735. }
  736. static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
  737. {
  738. long tg_weight;
  739. /*
  740. * Use this CPU's actual weight instead of the last load_contribution
  741. * to gain a more accurate current total weight. See
  742. * update_cfs_rq_load_contribution().
  743. */
  744. tg_weight = atomic_read(&tg->load_weight);
  745. tg_weight -= cfs_rq->load_contribution;
  746. tg_weight += cfs_rq->load.weight;
  747. return tg_weight;
  748. }
  749. static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
  750. {
  751. long tg_weight, load, shares;
  752. tg_weight = calc_tg_weight(tg, cfs_rq);
  753. load = cfs_rq->load.weight;
  754. shares = (tg->shares * load);
  755. if (tg_weight)
  756. shares /= tg_weight;
  757. if (shares < MIN_SHARES)
  758. shares = MIN_SHARES;
  759. if (shares > tg->shares)
  760. shares = tg->shares;
  761. return shares;
  762. }
  763. static void update_entity_shares_tick(struct cfs_rq *cfs_rq)
  764. {
  765. if (cfs_rq->load_unacc_exec_time > sysctl_sched_shares_window) {
  766. update_cfs_load(cfs_rq, 0);
  767. update_cfs_shares(cfs_rq);
  768. }
  769. }
  770. # else /* CONFIG_SMP */
  771. static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
  772. {
  773. }
  774. static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
  775. {
  776. return tg->shares;
  777. }
  778. static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
  779. {
  780. }
  781. # endif /* CONFIG_SMP */
  782. static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
  783. unsigned long weight)
  784. {
  785. if (se->on_rq) {
  786. /* commit outstanding execution time */
  787. if (cfs_rq->curr == se)
  788. update_curr(cfs_rq);
  789. account_entity_dequeue(cfs_rq, se);
  790. }
  791. update_load_set(&se->load, weight);
  792. if (se->on_rq)
  793. account_entity_enqueue(cfs_rq, se);
  794. }
  795. static void update_cfs_shares(struct cfs_rq *cfs_rq)
  796. {
  797. struct task_group *tg;
  798. struct sched_entity *se;
  799. long shares;
  800. tg = cfs_rq->tg;
  801. se = tg->se[cpu_of(rq_of(cfs_rq))];
  802. if (!se || throttled_hierarchy(cfs_rq))
  803. return;
  804. #ifndef CONFIG_SMP
  805. if (likely(se->load.weight == tg->shares))
  806. return;
  807. #endif
  808. shares = calc_cfs_shares(cfs_rq, tg);
  809. reweight_entity(cfs_rq_of(se), se, shares);
  810. }
  811. #else /* CONFIG_FAIR_GROUP_SCHED */
  812. static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
  813. {
  814. }
  815. static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
  816. {
  817. }
  818. static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
  819. {
  820. }
  821. #endif /* CONFIG_FAIR_GROUP_SCHED */
  822. static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
  823. {
  824. #ifdef CONFIG_SCHEDSTATS
  825. struct task_struct *tsk = NULL;
  826. if (entity_is_task(se))
  827. tsk = task_of(se);
  828. if (se->statistics.sleep_start) {
  829. u64 delta = rq_of(cfs_rq)->clock - se->statistics.sleep_start;
  830. if ((s64)delta < 0)
  831. delta = 0;
  832. if (unlikely(delta > se->statistics.sleep_max))
  833. se->statistics.sleep_max = delta;
  834. se->statistics.sleep_start = 0;
  835. se->statistics.sum_sleep_runtime += delta;
  836. if (tsk) {
  837. account_scheduler_latency(tsk, delta >> 10, 1);
  838. trace_sched_stat_sleep(tsk, delta);
  839. }
  840. }
  841. if (se->statistics.block_start) {
  842. u64 delta = rq_of(cfs_rq)->clock - se->statistics.block_start;
  843. if ((s64)delta < 0)
  844. delta = 0;
  845. if (unlikely(delta > se->statistics.block_max))
  846. se->statistics.block_max = delta;
  847. se->statistics.block_start = 0;
  848. se->statistics.sum_sleep_runtime += delta;
  849. if (tsk) {
  850. if (tsk->in_iowait) {
  851. se->statistics.iowait_sum += delta;
  852. se->statistics.iowait_count++;
  853. trace_sched_stat_iowait(tsk, delta);
  854. }
  855. trace_sched_stat_blocked(tsk, delta);
  856. /*
  857. * Blocking time is in units of nanosecs, so shift by
  858. * 20 to get a milliseconds-range estimation of the
  859. * amount of time that the task spent sleeping:
  860. */
  861. if (unlikely(prof_on == SLEEP_PROFILING)) {
  862. profile_hits(SLEEP_PROFILING,
  863. (void *)get_wchan(tsk),
  864. delta >> 20);
  865. }
  866. account_scheduler_latency(tsk, delta >> 10, 0);
  867. }
  868. }
  869. #endif
  870. }
  871. static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
  872. {
  873. #ifdef CONFIG_SCHED_DEBUG
  874. s64 d = se->vruntime - cfs_rq->min_vruntime;
  875. if (d < 0)
  876. d = -d;
  877. if (d > 3*sysctl_sched_latency)
  878. schedstat_inc(cfs_rq, nr_spread_over);
  879. #endif
  880. }
  881. static void
  882. place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
  883. {
  884. u64 vruntime = cfs_rq->min_vruntime;
  885. /*
  886. * The 'current' period is already promised to the current tasks,
  887. * however the extra weight of the new task will slow them down a
  888. * little, place the new task so that it fits in the slot that
  889. * stays open at the end.
  890. */
  891. if (initial && sched_feat(START_DEBIT))
  892. vruntime += sched_vslice(cfs_rq, se);
  893. /* sleeps up to a single latency don't count. */
  894. if (!initial) {
  895. unsigned long thresh = sysctl_sched_latency;
  896. /*
  897. * Halve their sleep time's effect, to allow
  898. * for a gentler effect of sleepers:
  899. */
  900. if (sched_feat(GENTLE_FAIR_SLEEPERS))
  901. thresh >>= 1;
  902. vruntime -= thresh;
  903. }
  904. /* ensure we never gain time by being placed backwards. */
  905. vruntime = max_vruntime(se->vruntime, vruntime);
  906. se->vruntime = vruntime;
  907. }
  908. static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
  909. static void
  910. enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
  911. {
  912. /*
  913. * Update the normalized vruntime before updating min_vruntime
  914. * through callig update_curr().
  915. */
  916. if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
  917. se->vruntime += cfs_rq->min_vruntime;
  918. /*
  919. * Update run-time statistics of the 'current'.
  920. */
  921. update_curr(cfs_rq);
  922. update_cfs_load(cfs_rq, 0);
  923. account_entity_enqueue(cfs_rq, se);
  924. update_cfs_shares(cfs_rq);
  925. if (flags & ENQUEUE_WAKEUP) {
  926. place_entity(cfs_rq, se, 0);
  927. enqueue_sleeper(cfs_rq, se);
  928. }
  929. update_stats_enqueue(cfs_rq, se);
  930. check_spread(cfs_rq, se);
  931. if (se != cfs_rq->curr)
  932. __enqueue_entity(cfs_rq, se);
  933. se->on_rq = 1;
  934. if (cfs_rq->nr_running == 1) {
  935. list_add_leaf_cfs_rq(cfs_rq);
  936. check_enqueue_throttle(cfs_rq);
  937. }
  938. }
  939. static void __clear_buddies_last(struct sched_entity *se)
  940. {
  941. for_each_sched_entity(se) {
  942. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  943. if (cfs_rq->last == se)
  944. cfs_rq->last = NULL;
  945. else
  946. break;
  947. }
  948. }
  949. static void __clear_buddies_next(struct sched_entity *se)
  950. {
  951. for_each_sched_entity(se) {
  952. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  953. if (cfs_rq->next == se)
  954. cfs_rq->next = NULL;
  955. else
  956. break;
  957. }
  958. }
  959. static void __clear_buddies_skip(struct sched_entity *se)
  960. {
  961. for_each_sched_entity(se) {
  962. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  963. if (cfs_rq->skip == se)
  964. cfs_rq->skip = NULL;
  965. else
  966. break;
  967. }
  968. }
  969. static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
  970. {
  971. if (cfs_rq->last == se)
  972. __clear_buddies_last(se);
  973. if (cfs_rq->next == se)
  974. __clear_buddies_next(se);
  975. if (cfs_rq->skip == se)
  976. __clear_buddies_skip(se);
  977. }
  978. static void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
  979. static void
  980. dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
  981. {
  982. /*
  983. * Update run-time statistics of the 'current'.
  984. */
  985. update_curr(cfs_rq);
  986. update_stats_dequeue(cfs_rq, se);
  987. if (flags & DEQUEUE_SLEEP) {
  988. #ifdef CONFIG_SCHEDSTATS
  989. if (entity_is_task(se)) {
  990. struct task_struct *tsk = task_of(se);
  991. if (tsk->state & TASK_INTERRUPTIBLE)
  992. se->statistics.sleep_start = rq_of(cfs_rq)->clock;
  993. if (tsk->state & TASK_UNINTERRUPTIBLE)
  994. se->statistics.block_start = rq_of(cfs_rq)->clock;
  995. }
  996. #endif
  997. }
  998. clear_buddies(cfs_rq, se);
  999. if (se != cfs_rq->curr)
  1000. __dequeue_entity(cfs_rq, se);
  1001. se->on_rq = 0;
  1002. update_cfs_load(cfs_rq, 0);
  1003. account_entity_dequeue(cfs_rq, se);
  1004. /*
  1005. * Normalize the entity after updating the min_vruntime because the
  1006. * update can refer to the ->curr item and we need to reflect this
  1007. * movement in our normalized position.
  1008. */
  1009. if (!(flags & DEQUEUE_SLEEP))
  1010. se->vruntime -= cfs_rq->min_vruntime;
  1011. /* return excess runtime on last dequeue */
  1012. return_cfs_rq_runtime(cfs_rq);
  1013. update_min_vruntime(cfs_rq);
  1014. update_cfs_shares(cfs_rq);
  1015. }
  1016. /*
  1017. * Preempt the current task with a newly woken task if needed:
  1018. */
  1019. static void
  1020. check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
  1021. {
  1022. unsigned long ideal_runtime, delta_exec;
  1023. struct sched_entity *se;
  1024. s64 delta;
  1025. ideal_runtime = sched_slice(cfs_rq, curr);
  1026. delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
  1027. if (delta_exec > ideal_runtime) {
  1028. resched_task(rq_of(cfs_rq)->curr);
  1029. /*
  1030. * The current task ran long enough, ensure it doesn't get
  1031. * re-elected due to buddy favours.
  1032. */
  1033. clear_buddies(cfs_rq, curr);
  1034. return;
  1035. }
  1036. /*
  1037. * Ensure that a task that missed wakeup preemption by a
  1038. * narrow margin doesn't have to wait for a full slice.
  1039. * This also mitigates buddy induced latencies under load.
  1040. */
  1041. if (delta_exec < sysctl_sched_min_granularity)
  1042. return;
  1043. se = __pick_first_entity(cfs_rq);
  1044. delta = curr->vruntime - se->vruntime;
  1045. if (delta < 0)
  1046. return;
  1047. if (delta > ideal_runtime)
  1048. resched_task(rq_of(cfs_rq)->curr);
  1049. }
  1050. static void
  1051. set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
  1052. {
  1053. /* 'current' is not kept within the tree. */
  1054. if (se->on_rq) {
  1055. /*
  1056. * Any task has to be enqueued before it get to execute on
  1057. * a CPU. So account for the time it spent waiting on the
  1058. * runqueue.
  1059. */
  1060. update_stats_wait_end(cfs_rq, se);
  1061. __dequeue_entity(cfs_rq, se);
  1062. }
  1063. update_stats_curr_start(cfs_rq, se);
  1064. cfs_rq->curr = se;
  1065. #ifdef CONFIG_SCHEDSTATS
  1066. /*
  1067. * Track our maximum slice length, if the CPU's load is at
  1068. * least twice that of our own weight (i.e. dont track it
  1069. * when there are only lesser-weight tasks around):
  1070. */
  1071. if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
  1072. se->statistics.slice_max = max(se->statistics.slice_max,
  1073. se->sum_exec_runtime - se->prev_sum_exec_runtime);
  1074. }
  1075. #endif
  1076. se->prev_sum_exec_runtime = se->sum_exec_runtime;
  1077. }
  1078. static int
  1079. wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
  1080. /*
  1081. * Pick the next process, keeping these things in mind, in this order:
  1082. * 1) keep things fair between processes/task groups
  1083. * 2) pick the "next" process, since someone really wants that to run
  1084. * 3) pick the "last" process, for cache locality
  1085. * 4) do not run the "skip" process, if something else is available
  1086. */
  1087. static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
  1088. {
  1089. struct sched_entity *se = __pick_first_entity(cfs_rq);
  1090. struct sched_entity *left = se;
  1091. /*
  1092. * Avoid running the skip buddy, if running something else can
  1093. * be done without getting too unfair.
  1094. */
  1095. if (cfs_rq->skip == se) {
  1096. struct sched_entity *second = __pick_next_entity(se);
  1097. if (second && wakeup_preempt_entity(second, left) < 1)
  1098. se = second;
  1099. }
  1100. /*
  1101. * Prefer last buddy, try to return the CPU to a preempted task.
  1102. */
  1103. if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
  1104. se = cfs_rq->last;
  1105. /*
  1106. * Someone really wants this to run. If it's not unfair, run it.
  1107. */
  1108. if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
  1109. se = cfs_rq->next;
  1110. clear_buddies(cfs_rq, se);
  1111. return se;
  1112. }
  1113. static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
  1114. static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
  1115. {
  1116. /*
  1117. * If still on the runqueue then deactivate_task()
  1118. * was not called and update_curr() has to be done:
  1119. */
  1120. if (prev->on_rq)
  1121. update_curr(cfs_rq);
  1122. /* throttle cfs_rqs exceeding runtime */
  1123. check_cfs_rq_runtime(cfs_rq);
  1124. check_spread(cfs_rq, prev);
  1125. if (prev->on_rq) {
  1126. update_stats_wait_start(cfs_rq, prev);
  1127. /* Put 'current' back into the tree. */
  1128. __enqueue_entity(cfs_rq, prev);
  1129. }
  1130. cfs_rq->curr = NULL;
  1131. }
  1132. static void
  1133. entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
  1134. {
  1135. /*
  1136. * Update run-time statistics of the 'current'.
  1137. */
  1138. update_curr(cfs_rq);
  1139. /*
  1140. * Update share accounting for long-running entities.
  1141. */
  1142. update_entity_shares_tick(cfs_rq);
  1143. #ifdef CONFIG_SCHED_HRTICK
  1144. /*
  1145. * queued ticks are scheduled to match the slice, so don't bother
  1146. * validating it and just reschedule.
  1147. */
  1148. if (queued) {
  1149. resched_task(rq_of(cfs_rq)->curr);
  1150. return;
  1151. }
  1152. /*
  1153. * don't let the period tick interfere with the hrtick preemption
  1154. */
  1155. if (!sched_feat(DOUBLE_TICK) &&
  1156. hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
  1157. return;
  1158. #endif
  1159. if (cfs_rq->nr_running > 1)
  1160. check_preempt_tick(cfs_rq, curr);
  1161. }
  1162. /**************************************************
  1163. * CFS bandwidth control machinery
  1164. */
  1165. #ifdef CONFIG_CFS_BANDWIDTH
  1166. #ifdef HAVE_JUMP_LABEL
  1167. static struct jump_label_key __cfs_bandwidth_used;
  1168. static inline bool cfs_bandwidth_used(void)
  1169. {
  1170. return static_branch(&__cfs_bandwidth_used);
  1171. }
  1172. void account_cfs_bandwidth_used(int enabled, int was_enabled)
  1173. {
  1174. /* only need to count groups transitioning between enabled/!enabled */
  1175. if (enabled && !was_enabled)
  1176. jump_label_inc(&__cfs_bandwidth_used);
  1177. else if (!enabled && was_enabled)
  1178. jump_label_dec(&__cfs_bandwidth_used);
  1179. }
  1180. #else /* HAVE_JUMP_LABEL */
  1181. static bool cfs_bandwidth_used(void)
  1182. {
  1183. return true;
  1184. }
  1185. void account_cfs_bandwidth_used(int enabled, int was_enabled) {}
  1186. #endif /* HAVE_JUMP_LABEL */
  1187. /*
  1188. * default period for cfs group bandwidth.
  1189. * default: 0.1s, units: nanoseconds
  1190. */
  1191. static inline u64 default_cfs_period(void)
  1192. {
  1193. return 100000000ULL;
  1194. }
  1195. static inline u64 sched_cfs_bandwidth_slice(void)
  1196. {
  1197. return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
  1198. }
  1199. /*
  1200. * Replenish runtime according to assigned quota and update expiration time.
  1201. * We use sched_clock_cpu directly instead of rq->clock to avoid adding
  1202. * additional synchronization around rq->lock.
  1203. *
  1204. * requires cfs_b->lock
  1205. */
  1206. void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
  1207. {
  1208. u64 now;
  1209. if (cfs_b->quota == RUNTIME_INF)
  1210. return;
  1211. now = sched_clock_cpu(smp_processor_id());
  1212. cfs_b->runtime = cfs_b->quota;
  1213. cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
  1214. }
  1215. static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
  1216. {
  1217. return &tg->cfs_bandwidth;
  1218. }
  1219. /* returns 0 on failure to allocate runtime */
  1220. static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
  1221. {
  1222. struct task_group *tg = cfs_rq->tg;
  1223. struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
  1224. u64 amount = 0, min_amount, expires;
  1225. /* note: this is a positive sum as runtime_remaining <= 0 */
  1226. min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
  1227. raw_spin_lock(&cfs_b->lock);
  1228. if (cfs_b->quota == RUNTIME_INF)
  1229. amount = min_amount;
  1230. else {
  1231. /*
  1232. * If the bandwidth pool has become inactive, then at least one
  1233. * period must have elapsed since the last consumption.
  1234. * Refresh the global state and ensure bandwidth timer becomes
  1235. * active.
  1236. */
  1237. if (!cfs_b->timer_active) {
  1238. __refill_cfs_bandwidth_runtime(cfs_b);
  1239. __start_cfs_bandwidth(cfs_b);
  1240. }
  1241. if (cfs_b->runtime > 0) {
  1242. amount = min(cfs_b->runtime, min_amount);
  1243. cfs_b->runtime -= amount;
  1244. cfs_b->idle = 0;
  1245. }
  1246. }
  1247. expires = cfs_b->runtime_expires;
  1248. raw_spin_unlock(&cfs_b->lock);
  1249. cfs_rq->runtime_remaining += amount;
  1250. /*
  1251. * we may have advanced our local expiration to account for allowed
  1252. * spread between our sched_clock and the one on which runtime was
  1253. * issued.
  1254. */
  1255. if ((s64)(expires - cfs_rq->runtime_expires) > 0)
  1256. cfs_rq->runtime_expires = expires;
  1257. return cfs_rq->runtime_remaining > 0;
  1258. }
  1259. /*
  1260. * Note: This depends on the synchronization provided by sched_clock and the
  1261. * fact that rq->clock snapshots this value.
  1262. */
  1263. static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
  1264. {
  1265. struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
  1266. struct rq *rq = rq_of(cfs_rq);
  1267. /* if the deadline is ahead of our clock, nothing to do */
  1268. if (likely((s64)(rq->clock - cfs_rq->runtime_expires) < 0))
  1269. return;
  1270. if (cfs_rq->runtime_remaining < 0)
  1271. return;
  1272. /*
  1273. * If the local deadline has passed we have to consider the
  1274. * possibility that our sched_clock is 'fast' and the global deadline
  1275. * has not truly expired.
  1276. *
  1277. * Fortunately we can check determine whether this the case by checking
  1278. * whether the global deadline has advanced.
  1279. */
  1280. if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
  1281. /* extend local deadline, drift is bounded above by 2 ticks */
  1282. cfs_rq->runtime_expires += TICK_NSEC;
  1283. } else {
  1284. /* global deadline is ahead, expiration has passed */
  1285. cfs_rq->runtime_remaining = 0;
  1286. }
  1287. }
  1288. static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
  1289. unsigned long delta_exec)
  1290. {
  1291. /* dock delta_exec before expiring quota (as it could span periods) */
  1292. cfs_rq->runtime_remaining -= delta_exec;
  1293. expire_cfs_rq_runtime(cfs_rq);
  1294. if (likely(cfs_rq->runtime_remaining > 0))
  1295. return;
  1296. /*
  1297. * if we're unable to extend our runtime we resched so that the active
  1298. * hierarchy can be throttled
  1299. */
  1300. if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
  1301. resched_task(rq_of(cfs_rq)->curr);
  1302. }
  1303. static __always_inline void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
  1304. unsigned long delta_exec)
  1305. {
  1306. if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
  1307. return;
  1308. __account_cfs_rq_runtime(cfs_rq, delta_exec);
  1309. }
  1310. static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
  1311. {
  1312. return cfs_bandwidth_used() && cfs_rq->throttled;
  1313. }
  1314. /* check whether cfs_rq, or any parent, is throttled */
  1315. static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
  1316. {
  1317. return cfs_bandwidth_used() && cfs_rq->throttle_count;
  1318. }
  1319. /*
  1320. * Ensure that neither of the group entities corresponding to src_cpu or
  1321. * dest_cpu are members of a throttled hierarchy when performing group
  1322. * load-balance operations.
  1323. */
  1324. static inline int throttled_lb_pair(struct task_group *tg,
  1325. int src_cpu, int dest_cpu)
  1326. {
  1327. struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
  1328. src_cfs_rq = tg->cfs_rq[src_cpu];
  1329. dest_cfs_rq = tg->cfs_rq[dest_cpu];
  1330. return throttled_hierarchy(src_cfs_rq) ||
  1331. throttled_hierarchy(dest_cfs_rq);
  1332. }
  1333. /* updated child weight may affect parent so we have to do this bottom up */
  1334. static int tg_unthrottle_up(struct task_group *tg, void *data)
  1335. {
  1336. struct rq *rq = data;
  1337. struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
  1338. cfs_rq->throttle_count--;
  1339. #ifdef CONFIG_SMP
  1340. if (!cfs_rq->throttle_count) {
  1341. u64 delta = rq->clock_task - cfs_rq->load_stamp;
  1342. /* leaving throttled state, advance shares averaging windows */
  1343. cfs_rq->load_stamp += delta;
  1344. cfs_rq->load_last += delta;
  1345. /* update entity weight now that we are on_rq again */
  1346. update_cfs_shares(cfs_rq);
  1347. }
  1348. #endif
  1349. return 0;
  1350. }
  1351. static int tg_throttle_down(struct task_group *tg, void *data)
  1352. {
  1353. struct rq *rq = data;
  1354. struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
  1355. /* group is entering throttled state, record last load */
  1356. if (!cfs_rq->throttle_count)
  1357. update_cfs_load(cfs_rq, 0);
  1358. cfs_rq->throttle_count++;
  1359. return 0;
  1360. }
  1361. static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
  1362. {
  1363. struct rq *rq = rq_of(cfs_rq);
  1364. struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
  1365. struct sched_entity *se;
  1366. long task_delta, dequeue = 1;
  1367. se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
  1368. /* account load preceding throttle */
  1369. rcu_read_lock();
  1370. walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
  1371. rcu_read_unlock();
  1372. task_delta = cfs_rq->h_nr_running;
  1373. for_each_sched_entity(se) {
  1374. struct cfs_rq *qcfs_rq = cfs_rq_of(se);
  1375. /* throttled entity or throttle-on-deactivate */
  1376. if (!se->on_rq)
  1377. break;
  1378. if (dequeue)
  1379. dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
  1380. qcfs_rq->h_nr_running -= task_delta;
  1381. if (qcfs_rq->load.weight)
  1382. dequeue = 0;
  1383. }
  1384. if (!se)
  1385. rq->nr_running -= task_delta;
  1386. cfs_rq->throttled = 1;
  1387. cfs_rq->throttled_timestamp = rq->clock;
  1388. raw_spin_lock(&cfs_b->lock);
  1389. list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
  1390. raw_spin_unlock(&cfs_b->lock);
  1391. }
  1392. void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
  1393. {
  1394. struct rq *rq = rq_of(cfs_rq);
  1395. struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
  1396. struct sched_entity *se;
  1397. int enqueue = 1;
  1398. long task_delta;
  1399. se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
  1400. cfs_rq->throttled = 0;
  1401. raw_spin_lock(&cfs_b->lock);
  1402. cfs_b->throttled_time += rq->clock - cfs_rq->throttled_timestamp;
  1403. list_del_rcu(&cfs_rq->throttled_list);
  1404. raw_spin_unlock(&cfs_b->lock);
  1405. cfs_rq->throttled_timestamp = 0;
  1406. update_rq_clock(rq);
  1407. /* update hierarchical throttle state */
  1408. walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
  1409. if (!cfs_rq->load.weight)
  1410. return;
  1411. task_delta = cfs_rq->h_nr_running;
  1412. for_each_sched_entity(se) {
  1413. if (se->on_rq)
  1414. enqueue = 0;
  1415. cfs_rq = cfs_rq_of(se);
  1416. if (enqueue)
  1417. enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
  1418. cfs_rq->h_nr_running += task_delta;
  1419. if (cfs_rq_throttled(cfs_rq))
  1420. break;
  1421. }
  1422. if (!se)
  1423. rq->nr_running += task_delta;
  1424. /* determine whether we need to wake up potentially idle cpu */
  1425. if (rq->curr == rq->idle && rq->cfs.nr_running)
  1426. resched_task(rq->curr);
  1427. }
  1428. static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
  1429. u64 remaining, u64 expires)
  1430. {
  1431. struct cfs_rq *cfs_rq;
  1432. u64 runtime = remaining;
  1433. rcu_read_lock();
  1434. list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
  1435. throttled_list) {
  1436. struct rq *rq = rq_of(cfs_rq);
  1437. raw_spin_lock(&rq->lock);
  1438. if (!cfs_rq_throttled(cfs_rq))
  1439. goto next;
  1440. runtime = -cfs_rq->runtime_remaining + 1;
  1441. if (runtime > remaining)
  1442. runtime = remaining;
  1443. remaining -= runtime;
  1444. cfs_rq->runtime_remaining += runtime;
  1445. cfs_rq->runtime_expires = expires;
  1446. /* we check whether we're throttled above */
  1447. if (cfs_rq->runtime_remaining > 0)
  1448. unthrottle_cfs_rq(cfs_rq);
  1449. next:
  1450. raw_spin_unlock(&rq->lock);
  1451. if (!remaining)
  1452. break;
  1453. }
  1454. rcu_read_unlock();
  1455. return remaining;
  1456. }
  1457. /*
  1458. * Responsible for refilling a task_group's bandwidth and unthrottling its
  1459. * cfs_rqs as appropriate. If there has been no activity within the last
  1460. * period the timer is deactivated until scheduling resumes; cfs_b->idle is
  1461. * used to track this state.
  1462. */
  1463. static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
  1464. {
  1465. u64 runtime, runtime_expires;
  1466. int idle = 1, throttled;
  1467. raw_spin_lock(&cfs_b->lock);
  1468. /* no need to continue the timer with no bandwidth constraint */
  1469. if (cfs_b->quota == RUNTIME_INF)
  1470. goto out_unlock;
  1471. throttled = !list_empty(&cfs_b->throttled_cfs_rq);
  1472. /* idle depends on !throttled (for the case of a large deficit) */
  1473. idle = cfs_b->idle && !throttled;
  1474. cfs_b->nr_periods += overrun;
  1475. /* if we're going inactive then everything else can be deferred */
  1476. if (idle)
  1477. goto out_unlock;
  1478. __refill_cfs_bandwidth_runtime(cfs_b);
  1479. if (!throttled) {
  1480. /* mark as potentially idle for the upcoming period */
  1481. cfs_b->idle = 1;
  1482. goto out_unlock;
  1483. }
  1484. /* account preceding periods in which throttling occurred */
  1485. cfs_b->nr_throttled += overrun;
  1486. /*
  1487. * There are throttled entities so we must first use the new bandwidth
  1488. * to unthrottle them before making it generally available. This
  1489. * ensures that all existing debts will be paid before a new cfs_rq is
  1490. * allowed to run.
  1491. */
  1492. runtime = cfs_b->runtime;
  1493. runtime_expires = cfs_b->runtime_expires;
  1494. cfs_b->runtime = 0;
  1495. /*
  1496. * This check is repeated as we are holding onto the new bandwidth
  1497. * while we unthrottle. This can potentially race with an unthrottled
  1498. * group trying to acquire new bandwidth from the global pool.
  1499. */
  1500. while (throttled && runtime > 0) {
  1501. raw_spin_unlock(&cfs_b->lock);
  1502. /* we can't nest cfs_b->lock while distributing bandwidth */
  1503. runtime = distribute_cfs_runtime(cfs_b, runtime,
  1504. runtime_expires);
  1505. raw_spin_lock(&cfs_b->lock);
  1506. throttled = !list_empty(&cfs_b->throttled_cfs_rq);
  1507. }
  1508. /* return (any) remaining runtime */
  1509. cfs_b->runtime = runtime;
  1510. /*
  1511. * While we are ensured activity in the period following an
  1512. * unthrottle, this also covers the case in which the new bandwidth is
  1513. * insufficient to cover the existing bandwidth deficit. (Forcing the
  1514. * timer to remain active while there are any throttled entities.)
  1515. */
  1516. cfs_b->idle = 0;
  1517. out_unlock:
  1518. if (idle)
  1519. cfs_b->timer_active = 0;
  1520. raw_spin_unlock(&cfs_b->lock);
  1521. return idle;
  1522. }
  1523. /* a cfs_rq won't donate quota below this amount */
  1524. static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
  1525. /* minimum remaining period time to redistribute slack quota */
  1526. static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
  1527. /* how long we wait to gather additional slack before distributing */
  1528. static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
  1529. /* are we near the end of the current quota period? */
  1530. static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
  1531. {
  1532. struct hrtimer *refresh_timer = &cfs_b->period_timer;
  1533. u64 remaining;
  1534. /* if the call-back is running a quota refresh is already occurring */
  1535. if (hrtimer_callback_running(refresh_timer))
  1536. return 1;
  1537. /* is a quota refresh about to occur? */
  1538. remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
  1539. if (remaining < min_expire)
  1540. return 1;
  1541. return 0;
  1542. }
  1543. static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
  1544. {
  1545. u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
  1546. /* if there's a quota refresh soon don't bother with slack */
  1547. if (runtime_refresh_within(cfs_b, min_left))
  1548. return;
  1549. start_bandwidth_timer(&cfs_b->slack_timer,
  1550. ns_to_ktime(cfs_bandwidth_slack_period));
  1551. }
  1552. /* we know any runtime found here is valid as update_curr() precedes return */
  1553. static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
  1554. {
  1555. struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
  1556. s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
  1557. if (slack_runtime <= 0)
  1558. return;
  1559. raw_spin_lock(&cfs_b->lock);
  1560. if (cfs_b->quota != RUNTIME_INF &&
  1561. cfs_rq->runtime_expires == cfs_b->runtime_expires) {
  1562. cfs_b->runtime += slack_runtime;
  1563. /* we are under rq->lock, defer unthrottling using a timer */
  1564. if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
  1565. !list_empty(&cfs_b->throttled_cfs_rq))
  1566. start_cfs_slack_bandwidth(cfs_b);
  1567. }
  1568. raw_spin_unlock(&cfs_b->lock);
  1569. /* even if it's not valid for return we don't want to try again */
  1570. cfs_rq->runtime_remaining -= slack_runtime;
  1571. }
  1572. static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
  1573. {
  1574. if (!cfs_bandwidth_used())
  1575. return;
  1576. if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
  1577. return;
  1578. __return_cfs_rq_runtime(cfs_rq);
  1579. }
  1580. /*
  1581. * This is done with a timer (instead of inline with bandwidth return) since
  1582. * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
  1583. */
  1584. static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
  1585. {
  1586. u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
  1587. u64 expires;
  1588. /* confirm we're still not at a refresh boundary */
  1589. if (runtime_refresh_within(cfs_b, min_bandwidth_expiration))
  1590. return;
  1591. raw_spin_lock(&cfs_b->lock);
  1592. if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
  1593. runtime = cfs_b->runtime;
  1594. cfs_b->runtime = 0;
  1595. }
  1596. expires = cfs_b->runtime_expires;
  1597. raw_spin_unlock(&cfs_b->lock);
  1598. if (!runtime)
  1599. return;
  1600. runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
  1601. raw_spin_lock(&cfs_b->lock);
  1602. if (expires == cfs_b->runtime_expires)
  1603. cfs_b->runtime = runtime;
  1604. raw_spin_unlock(&cfs_b->lock);
  1605. }
  1606. /*
  1607. * When a group wakes up we want to make sure that its quota is not already
  1608. * expired/exceeded, otherwise it may be allowed to steal additional ticks of
  1609. * runtime as update_curr() throttling can not not trigger until it's on-rq.
  1610. */
  1611. static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
  1612. {
  1613. if (!cfs_bandwidth_used())
  1614. return;
  1615. /* an active group must be handled by the update_curr()->put() path */
  1616. if (!cfs_rq->runtime_enabled || cfs_rq->curr)
  1617. return;
  1618. /* ensure the group is not already throttled */
  1619. if (cfs_rq_throttled(cfs_rq))
  1620. return;
  1621. /* update runtime allocation */
  1622. account_cfs_rq_runtime(cfs_rq, 0);
  1623. if (cfs_rq->runtime_remaining <= 0)
  1624. throttle_cfs_rq(cfs_rq);
  1625. }
  1626. /* conditionally throttle active cfs_rq's from put_prev_entity() */
  1627. static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
  1628. {
  1629. if (!cfs_bandwidth_used())
  1630. return;
  1631. if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
  1632. return;
  1633. /*
  1634. * it's possible for a throttled entity to be forced into a running
  1635. * state (e.g. set_curr_task), in this case we're finished.
  1636. */
  1637. if (cfs_rq_throttled(cfs_rq))
  1638. return;
  1639. throttle_cfs_rq(cfs_rq);
  1640. }
  1641. static inline u64 default_cfs_period(void);
  1642. static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun);
  1643. static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b);
  1644. static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
  1645. {
  1646. struct cfs_bandwidth *cfs_b =
  1647. container_of(timer, struct cfs_bandwidth, slack_timer);
  1648. do_sched_cfs_slack_timer(cfs_b);
  1649. return HRTIMER_NORESTART;
  1650. }
  1651. static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
  1652. {
  1653. struct cfs_bandwidth *cfs_b =
  1654. container_of(timer, struct cfs_bandwidth, period_timer);
  1655. ktime_t now;
  1656. int overrun;
  1657. int idle = 0;
  1658. for (;;) {
  1659. now = hrtimer_cb_get_time(timer);
  1660. overrun = hrtimer_forward(timer, now, cfs_b->period);
  1661. if (!overrun)
  1662. break;
  1663. idle = do_sched_cfs_period_timer(cfs_b, overrun);
  1664. }
  1665. return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
  1666. }
  1667. void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
  1668. {
  1669. raw_spin_lock_init(&cfs_b->lock);
  1670. cfs_b->runtime = 0;
  1671. cfs_b->quota = RUNTIME_INF;
  1672. cfs_b->period = ns_to_ktime(default_cfs_period());
  1673. INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
  1674. hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  1675. cfs_b->period_timer.function = sched_cfs_period_timer;
  1676. hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
  1677. cfs_b->slack_timer.function = sched_cfs_slack_timer;
  1678. }
  1679. static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
  1680. {
  1681. cfs_rq->runtime_enabled = 0;
  1682. INIT_LIST_HEAD(&cfs_rq->throttled_list);
  1683. }
  1684. /* requires cfs_b->lock, may release to reprogram timer */
  1685. void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
  1686. {
  1687. /*
  1688. * The timer may be active because we're trying to set a new bandwidth
  1689. * period or because we're racing with the tear-down path
  1690. * (timer_active==0 becomes visible before the hrtimer call-back
  1691. * terminates). In either case we ensure that it's re-programmed
  1692. */
  1693. while (unlikely(hrtimer_active(&cfs_b->period_timer))) {
  1694. raw_spin_unlock(&cfs_b->lock);
  1695. /* ensure cfs_b->lock is available while we wait */
  1696. hrtimer_cancel(&cfs_b->period_timer);
  1697. raw_spin_lock(&cfs_b->lock);
  1698. /* if someone else restarted the timer then we're done */
  1699. if (cfs_b->timer_active)
  1700. return;
  1701. }
  1702. cfs_b->timer_active = 1;
  1703. start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
  1704. }
  1705. static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
  1706. {
  1707. hrtimer_cancel(&cfs_b->period_timer);
  1708. hrtimer_cancel(&cfs_b->slack_timer);
  1709. }
  1710. void unthrottle_offline_cfs_rqs(struct rq *rq)
  1711. {
  1712. struct cfs_rq *cfs_rq;
  1713. for_each_leaf_cfs_rq(rq, cfs_rq) {
  1714. struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
  1715. if (!cfs_rq->runtime_enabled)
  1716. continue;
  1717. /*
  1718. * clock_task is not advancing so we just need to make sure
  1719. * there's some valid quota amount
  1720. */
  1721. cfs_rq->runtime_remaining = cfs_b->quota;
  1722. if (cfs_rq_throttled(cfs_rq))
  1723. unthrottle_cfs_rq(cfs_rq);
  1724. }
  1725. }
  1726. #else /* CONFIG_CFS_BANDWIDTH */
  1727. static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
  1728. unsigned long delta_exec) {}
  1729. static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
  1730. static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
  1731. static void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
  1732. static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
  1733. {
  1734. return 0;
  1735. }
  1736. static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
  1737. {
  1738. return 0;
  1739. }
  1740. static inline int throttled_lb_pair(struct task_group *tg,
  1741. int src_cpu, int dest_cpu)
  1742. {
  1743. return 0;
  1744. }
  1745. void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
  1746. #ifdef CONFIG_FAIR_GROUP_SCHED
  1747. static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
  1748. #endif
  1749. static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
  1750. {
  1751. return NULL;
  1752. }
  1753. static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
  1754. void unthrottle_offline_cfs_rqs(struct rq *rq) {}
  1755. #endif /* CONFIG_CFS_BANDWIDTH */
  1756. /**************************************************
  1757. * CFS operations on tasks:
  1758. */
  1759. #ifdef CONFIG_SCHED_HRTICK
  1760. static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
  1761. {
  1762. struct sched_entity *se = &p->se;
  1763. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  1764. WARN_ON(task_rq(p) != rq);
  1765. if (cfs_rq->nr_running > 1) {
  1766. u64 slice = sched_slice(cfs_rq, se);
  1767. u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
  1768. s64 delta = slice - ran;
  1769. if (delta < 0) {
  1770. if (rq->curr == p)
  1771. resched_task(p);
  1772. return;
  1773. }
  1774. /*
  1775. * Don't schedule slices shorter than 10000ns, that just
  1776. * doesn't make sense. Rely on vruntime for fairness.
  1777. */
  1778. if (rq->curr != p)
  1779. delta = max_t(s64, 10000LL, delta);
  1780. hrtick_start(rq, delta);
  1781. }
  1782. }
  1783. /*
  1784. * called from enqueue/dequeue and updates the hrtick when the
  1785. * current task is from our class and nr_running is low enough
  1786. * to matter.
  1787. */
  1788. static void hrtick_update(struct rq *rq)
  1789. {
  1790. struct task_struct *curr = rq->curr;
  1791. if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
  1792. return;
  1793. if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
  1794. hrtick_start_fair(rq, curr);
  1795. }
  1796. #else /* !CONFIG_SCHED_HRTICK */
  1797. static inline void
  1798. hrtick_start_fair(struct rq *rq, struct task_struct *p)
  1799. {
  1800. }
  1801. static inline void hrtick_update(struct rq *rq)
  1802. {
  1803. }
  1804. #endif
  1805. /*
  1806. * The enqueue_task method is called before nr_running is
  1807. * increased. Here we update the fair scheduling stats and
  1808. * then put the task into the rbtree:
  1809. */
  1810. static void
  1811. enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
  1812. {
  1813. struct cfs_rq *cfs_rq;
  1814. struct sched_entity *se = &p->se;
  1815. for_each_sched_entity(se) {
  1816. if (se->on_rq)
  1817. break;
  1818. cfs_rq = cfs_rq_of(se);
  1819. enqueue_entity(cfs_rq, se, flags);
  1820. /*
  1821. * end evaluation on encountering a throttled cfs_rq
  1822. *
  1823. * note: in the case of encountering a throttled cfs_rq we will
  1824. * post the final h_nr_running increment below.
  1825. */
  1826. if (cfs_rq_throttled(cfs_rq))
  1827. break;
  1828. cfs_rq->h_nr_running++;
  1829. flags = ENQUEUE_WAKEUP;
  1830. }
  1831. for_each_sched_entity(se) {
  1832. cfs_rq = cfs_rq_of(se);
  1833. cfs_rq->h_nr_running++;
  1834. if (cfs_rq_throttled(cfs_rq))
  1835. break;
  1836. update_cfs_load(cfs_rq, 0);
  1837. update_cfs_shares(cfs_rq);
  1838. }
  1839. if (!se)
  1840. inc_nr_running(rq);
  1841. hrtick_update(rq);
  1842. }
  1843. static void set_next_buddy(struct sched_entity *se);
  1844. /*
  1845. * The dequeue_task method is called before nr_running is
  1846. * decreased. We remove the task from the rbtree and
  1847. * update the fair scheduling stats:
  1848. */
  1849. static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
  1850. {
  1851. struct cfs_rq *cfs_rq;
  1852. struct sched_entity *se = &p->se;
  1853. int task_sleep = flags & DEQUEUE_SLEEP;
  1854. for_each_sched_entity(se) {
  1855. cfs_rq = cfs_rq_of(se);
  1856. dequeue_entity(cfs_rq, se, flags);
  1857. /*
  1858. * end evaluation on encountering a throttled cfs_rq
  1859. *
  1860. * note: in the case of encountering a throttled cfs_rq we will
  1861. * post the final h_nr_running decrement below.
  1862. */
  1863. if (cfs_rq_throttled(cfs_rq))
  1864. break;
  1865. cfs_rq->h_nr_running--;
  1866. /* Don't dequeue parent if it has other entities besides us */
  1867. if (cfs_rq->load.weight) {
  1868. /*
  1869. * Bias pick_next to pick a task from this cfs_rq, as
  1870. * p is sleeping when it is within its sched_slice.
  1871. */
  1872. if (task_sleep && parent_entity(se))
  1873. set_next_buddy(parent_entity(se));
  1874. /* avoid re-evaluating load for this entity */
  1875. se = parent_entity(se);
  1876. break;
  1877. }
  1878. flags |= DEQUEUE_SLEEP;
  1879. }
  1880. for_each_sched_entity(se) {
  1881. cfs_rq = cfs_rq_of(se);
  1882. cfs_rq->h_nr_running--;
  1883. if (cfs_rq_throttled(cfs_rq))
  1884. break;
  1885. update_cfs_load(cfs_rq, 0);
  1886. update_cfs_shares(cfs_rq);
  1887. }
  1888. if (!se)
  1889. dec_nr_running(rq);
  1890. hrtick_update(rq);
  1891. }
  1892. #ifdef CONFIG_SMP
  1893. /* Used instead of source_load when we know the type == 0 */
  1894. static unsigned long weighted_cpuload(const int cpu)
  1895. {
  1896. return cpu_rq(cpu)->load.weight;
  1897. }
  1898. /*
  1899. * Return a low guess at the load of a migration-source cpu weighted
  1900. * according to the scheduling class and "nice" value.
  1901. *
  1902. * We want to under-estimate the load of migration sources, to
  1903. * balance conservatively.
  1904. */
  1905. static unsigned long source_load(int cpu, int type)
  1906. {
  1907. struct rq *rq = cpu_rq(cpu);
  1908. unsigned long total = weighted_cpuload(cpu);
  1909. if (type == 0 || !sched_feat(LB_BIAS))
  1910. return total;
  1911. return min(rq->cpu_load[type-1], total);
  1912. }
  1913. /*
  1914. * Return a high guess at the load of a migration-target cpu weighted
  1915. * according to the scheduling class and "nice" value.
  1916. */
  1917. static unsigned long target_load(int cpu, int type)
  1918. {
  1919. struct rq *rq = cpu_rq(cpu);
  1920. unsigned long total = weighted_cpuload(cpu);
  1921. if (type == 0 || !sched_feat(LB_BIAS))
  1922. return total;
  1923. return max(rq->cpu_load[type-1], total);
  1924. }
  1925. static unsigned long power_of(int cpu)
  1926. {
  1927. return cpu_rq(cpu)->cpu_power;
  1928. }
  1929. static unsigned long cpu_avg_load_per_task(int cpu)
  1930. {
  1931. struct rq *rq = cpu_rq(cpu);
  1932. unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
  1933. if (nr_running)
  1934. return rq->load.weight / nr_running;
  1935. return 0;
  1936. }
  1937. static void task_waking_fair(struct task_struct *p)
  1938. {
  1939. struct sched_entity *se = &p->se;
  1940. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  1941. u64 min_vruntime;
  1942. #ifndef CONFIG_64BIT
  1943. u64 min_vruntime_copy;
  1944. do {
  1945. min_vruntime_copy = cfs_rq->min_vruntime_copy;
  1946. smp_rmb();
  1947. min_vruntime = cfs_rq->min_vruntime;
  1948. } while (min_vruntime != min_vruntime_copy);
  1949. #else
  1950. min_vruntime = cfs_rq->min_vruntime;
  1951. #endif
  1952. se->vruntime -= min_vruntime;
  1953. }
  1954. #ifdef CONFIG_FAIR_GROUP_SCHED
  1955. /*
  1956. * effective_load() calculates the load change as seen from the root_task_group
  1957. *
  1958. * Adding load to a group doesn't make a group heavier, but can cause movement
  1959. * of group shares between cpus. Assuming the shares were perfectly aligned one
  1960. * can calculate the shift in shares.
  1961. *
  1962. * Calculate the effective load difference if @wl is added (subtracted) to @tg
  1963. * on this @cpu and results in a total addition (subtraction) of @wg to the
  1964. * total group weight.
  1965. *
  1966. * Given a runqueue weight distribution (rw_i) we can compute a shares
  1967. * distribution (s_i) using:
  1968. *
  1969. * s_i = rw_i / \Sum rw_j (1)
  1970. *
  1971. * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
  1972. * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
  1973. * shares distribution (s_i):
  1974. *
  1975. * rw_i = { 2, 4, 1, 0 }
  1976. * s_i = { 2/7, 4/7, 1/7, 0 }
  1977. *
  1978. * As per wake_affine() we're interested in the load of two CPUs (the CPU the
  1979. * task used to run on and the CPU the waker is running on), we need to
  1980. * compute the effect of waking a task on either CPU and, in case of a sync
  1981. * wakeup, compute the effect of the current task going to sleep.
  1982. *
  1983. * So for a change of @wl to the local @cpu with an overall group weight change
  1984. * of @wl we can compute the new shares distribution (s'_i) using:
  1985. *
  1986. * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
  1987. *
  1988. * Suppose we're interested in CPUs 0 and 1, and want to compute the load
  1989. * differences in waking a task to CPU 0. The additional task changes the
  1990. * weight and shares distributions like:
  1991. *
  1992. * rw'_i = { 3, 4, 1, 0 }
  1993. * s'_i = { 3/8, 4/8, 1/8, 0 }
  1994. *
  1995. * We can then compute the difference in effective weight by using:
  1996. *
  1997. * dw_i = S * (s'_i - s_i) (3)
  1998. *
  1999. * Where 'S' is the group weight as seen by its parent.
  2000. *
  2001. * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
  2002. * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
  2003. * 4/7) times the weight of the group.
  2004. */
  2005. static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
  2006. {
  2007. struct sched_entity *se = tg->se[cpu];
  2008. if (!tg->parent) /* the trivial, non-cgroup case */
  2009. return wl;
  2010. for_each_sched_entity(se) {
  2011. long w, W;
  2012. tg = se->my_q->tg;
  2013. /*
  2014. * W = @wg + \Sum rw_j
  2015. */
  2016. W = wg + calc_tg_weight(tg, se->my_q);
  2017. /*
  2018. * w = rw_i + @wl
  2019. */
  2020. w = se->my_q->load.weight + wl;
  2021. /*
  2022. * wl = S * s'_i; see (2)
  2023. */
  2024. if (W > 0 && w < W)
  2025. wl = (w * tg->shares) / W;
  2026. else
  2027. wl = tg->shares;
  2028. /*
  2029. * Per the above, wl is the new se->load.weight value; since
  2030. * those are clipped to [MIN_SHARES, ...) do so now. See
  2031. * calc_cfs_shares().
  2032. */
  2033. if (wl < MIN_SHARES)
  2034. wl = MIN_SHARES;
  2035. /*
  2036. * wl = dw_i = S * (s'_i - s_i); see (3)
  2037. */
  2038. wl -= se->load.weight;
  2039. /*
  2040. * Recursively apply this logic to all parent groups to compute
  2041. * the final effective load change on the root group. Since
  2042. * only the @tg group gets extra weight, all parent groups can
  2043. * only redistribute existing shares. @wl is the shift in shares
  2044. * resulting from this level per the above.
  2045. */
  2046. wg = 0;
  2047. }
  2048. return wl;
  2049. }
  2050. #else
  2051. static inline unsigned long effective_load(struct task_group *tg, int cpu,
  2052. unsigned long wl, unsigned long wg)
  2053. {
  2054. return wl;
  2055. }
  2056. #endif
  2057. static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
  2058. {
  2059. s64 this_load, load;
  2060. int idx, this_cpu, prev_cpu;
  2061. unsigned long tl_per_task;
  2062. struct task_group *tg;
  2063. unsigned long weight;
  2064. int balanced;
  2065. idx = sd->wake_idx;
  2066. this_cpu = smp_processor_id();
  2067. prev_cpu = task_cpu(p);
  2068. load = source_load(prev_cpu, idx);
  2069. this_load = target_load(this_cpu, idx);
  2070. /*
  2071. * If sync wakeup then subtract the (maximum possible)
  2072. * effect of the currently running task from the load
  2073. * of the current CPU:
  2074. */
  2075. if (sync) {
  2076. tg = task_group(current);
  2077. weight = current->se.load.weight;
  2078. this_load += effective_load(tg, this_cpu, -weight, -weight);
  2079. load += effective_load(tg, prev_cpu, 0, -weight);
  2080. }
  2081. tg = task_group(p);
  2082. weight = p->se.load.weight;
  2083. /*
  2084. * In low-load situations, where prev_cpu is idle and this_cpu is idle
  2085. * due to the sync cause above having dropped this_load to 0, we'll
  2086. * always have an imbalance, but there's really nothing you can do
  2087. * about that, so that's good too.
  2088. *
  2089. * Otherwise check if either cpus are near enough in load to allow this
  2090. * task to be woken on this_cpu.
  2091. */
  2092. if (this_load > 0) {
  2093. s64 this_eff_load, prev_eff_load;
  2094. this_eff_load = 100;
  2095. this_eff_load *= power_of(prev_cpu);
  2096. this_eff_load *= this_load +
  2097. effective_load(tg, this_cpu, weight, weight);
  2098. prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
  2099. prev_eff_load *= power_of(this_cpu);
  2100. prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
  2101. balanced = this_eff_load <= prev_eff_load;
  2102. } else
  2103. balanced = true;
  2104. /*
  2105. * If the currently running task will sleep within
  2106. * a reasonable amount of time then attract this newly
  2107. * woken task:
  2108. */
  2109. if (sync && balanced)
  2110. return 1;
  2111. schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
  2112. tl_per_task = cpu_avg_load_per_task(this_cpu);
  2113. if (balanced ||
  2114. (this_load <= load &&
  2115. this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
  2116. /*
  2117. * This domain has SD_WAKE_AFFINE and
  2118. * p is cache cold in this domain, and
  2119. * there is no bad imbalance.
  2120. */
  2121. schedstat_inc(sd, ttwu_move_affine);
  2122. schedstat_inc(p, se.statistics.nr_wakeups_affine);
  2123. return 1;
  2124. }
  2125. return 0;
  2126. }
  2127. /*
  2128. * find_idlest_group finds and returns the least busy CPU group within the
  2129. * domain.
  2130. */
  2131. static struct sched_group *
  2132. find_idlest_group(struct sched_domain *sd, struct task_struct *p,
  2133. int this_cpu, int load_idx)
  2134. {
  2135. struct sched_group *idlest = NULL, *group = sd->groups;
  2136. unsigned long min_load = ULONG_MAX, this_load = 0;
  2137. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  2138. do {
  2139. unsigned long load, avg_load;
  2140. int local_group;
  2141. int i;
  2142. /* Skip over this group if it has no CPUs allowed */
  2143. if (!cpumask_intersects(sched_group_cpus(group),
  2144. tsk_cpus_allowed(p)))
  2145. continue;
  2146. local_group = cpumask_test_cpu(this_cpu,
  2147. sched_group_cpus(group));
  2148. /* Tally up the load of all CPUs in the group */
  2149. avg_load = 0;
  2150. for_each_cpu(i, sched_group_cpus(group)) {
  2151. /* Bias balancing toward cpus of our domain */
  2152. if (local_group)
  2153. load = source_load(i, load_idx);
  2154. else
  2155. load = target_load(i, load_idx);
  2156. avg_load += load;
  2157. }
  2158. /* Adjust by relative CPU power of the group */
  2159. avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
  2160. if (local_group) {
  2161. this_load = avg_load;
  2162. } else if (avg_load < min_load) {
  2163. min_load = avg_load;
  2164. idlest = group;
  2165. }
  2166. } while (group = group->next, group != sd->groups);
  2167. if (!idlest || 100*this_load < imbalance*min_load)
  2168. return NULL;
  2169. return idlest;
  2170. }
  2171. /*
  2172. * find_idlest_cpu - find the idlest cpu among the cpus in group.
  2173. */
  2174. static int
  2175. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
  2176. {
  2177. unsigned long load, min_load = ULONG_MAX;
  2178. int idlest = -1;
  2179. int i;
  2180. /* Traverse only the allowed CPUs */
  2181. for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
  2182. load = weighted_cpuload(i);
  2183. if (load < min_load || (load == min_load && i == this_cpu)) {
  2184. min_load = load;
  2185. idlest = i;
  2186. }
  2187. }
  2188. return idlest;
  2189. }
  2190. /*
  2191. * Try and locate an idle CPU in the sched_domain.
  2192. */
  2193. static int select_idle_sibling(struct task_struct *p, int target)
  2194. {
  2195. int cpu = smp_processor_id();
  2196. int prev_cpu = task_cpu(p);
  2197. struct sched_domain *sd;
  2198. struct sched_group *sg;
  2199. int i;
  2200. /*
  2201. * If the task is going to be woken-up on this cpu and if it is
  2202. * already idle, then it is the right target.
  2203. */
  2204. if (target == cpu && idle_cpu(cpu))
  2205. return cpu;
  2206. /*
  2207. * If the task is going to be woken-up on the cpu where it previously
  2208. * ran and if it is currently idle, then it the right target.
  2209. */
  2210. if (target == prev_cpu && idle_cpu(prev_cpu))
  2211. return prev_cpu;
  2212. /*
  2213. * Otherwise, iterate the domains and find an elegible idle cpu.
  2214. */
  2215. rcu_read_lock();
  2216. sd = rcu_dereference(per_cpu(sd_llc, target));
  2217. for_each_lower_domain(sd) {
  2218. sg = sd->groups;
  2219. do {
  2220. if (!cpumask_intersects(sched_group_cpus(sg),
  2221. tsk_cpus_allowed(p)))
  2222. goto next;
  2223. for_each_cpu(i, sched_group_cpus(sg)) {
  2224. if (!idle_cpu(i))
  2225. goto next;
  2226. }
  2227. target = cpumask_first_and(sched_group_cpus(sg),
  2228. tsk_cpus_allowed(p));
  2229. goto done;
  2230. next:
  2231. sg = sg->next;
  2232. } while (sg != sd->groups);
  2233. }
  2234. done:
  2235. rcu_read_unlock();
  2236. return target;
  2237. }
  2238. /*
  2239. * sched_balance_self: balance the current task (running on cpu) in domains
  2240. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  2241. * SD_BALANCE_EXEC.
  2242. *
  2243. * Balance, ie. select the least loaded group.
  2244. *
  2245. * Returns the target CPU number, or the same CPU if no balancing is needed.
  2246. *
  2247. * preempt must be disabled.
  2248. */
  2249. static int
  2250. select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags)
  2251. {
  2252. struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
  2253. int cpu = smp_processor_id();
  2254. int prev_cpu = task_cpu(p);
  2255. int new_cpu = cpu;
  2256. int want_affine = 0;
  2257. int want_sd = 1;
  2258. int sync = wake_flags & WF_SYNC;
  2259. if (p->rt.nr_cpus_allowed == 1)
  2260. return prev_cpu;
  2261. if (sd_flag & SD_BALANCE_WAKE) {
  2262. if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
  2263. want_affine = 1;
  2264. new_cpu = prev_cpu;
  2265. }
  2266. rcu_read_lock();
  2267. for_each_domain(cpu, tmp) {
  2268. if (!(tmp->flags & SD_LOAD_BALANCE))
  2269. continue;
  2270. /*
  2271. * If power savings logic is enabled for a domain, see if we
  2272. * are not overloaded, if so, don't balance wider.
  2273. */
  2274. if (tmp->flags & (SD_POWERSAVINGS_BALANCE|SD_PREFER_LOCAL)) {
  2275. unsigned long power = 0;
  2276. unsigned long nr_running = 0;
  2277. unsigned long capacity;
  2278. int i;
  2279. for_each_cpu(i, sched_domain_span(tmp)) {
  2280. power += power_of(i);
  2281. nr_running += cpu_rq(i)->cfs.nr_running;
  2282. }
  2283. capacity = DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE);
  2284. if (tmp->flags & SD_POWERSAVINGS_BALANCE)
  2285. nr_running /= 2;
  2286. if (nr_running < capacity)
  2287. want_sd = 0;
  2288. }
  2289. /*
  2290. * If both cpu and prev_cpu are part of this domain,
  2291. * cpu is a valid SD_WAKE_AFFINE target.
  2292. */
  2293. if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
  2294. cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
  2295. affine_sd = tmp;
  2296. want_affine = 0;
  2297. }
  2298. if (!want_sd && !want_affine)
  2299. break;
  2300. if (!(tmp->flags & sd_flag))
  2301. continue;
  2302. if (want_sd)
  2303. sd = tmp;
  2304. }
  2305. if (affine_sd) {
  2306. if (cpu == prev_cpu || wake_affine(affine_sd, p, sync))
  2307. prev_cpu = cpu;
  2308. new_cpu = select_idle_sibling(p, prev_cpu);
  2309. goto unlock;
  2310. }
  2311. while (sd) {
  2312. int load_idx = sd->forkexec_idx;
  2313. struct sched_group *group;
  2314. int weight;
  2315. if (!(sd->flags & sd_flag)) {
  2316. sd = sd->child;
  2317. continue;
  2318. }
  2319. if (sd_flag & SD_BALANCE_WAKE)
  2320. load_idx = sd->wake_idx;
  2321. group = find_idlest_group(sd, p, cpu, load_idx);
  2322. if (!group) {
  2323. sd = sd->child;
  2324. continue;
  2325. }
  2326. new_cpu = find_idlest_cpu(group, p, cpu);
  2327. if (new_cpu == -1 || new_cpu == cpu) {
  2328. /* Now try balancing at a lower domain level of cpu */
  2329. sd = sd->child;
  2330. continue;
  2331. }
  2332. /* Now try balancing at a lower domain level of new_cpu */
  2333. cpu = new_cpu;
  2334. weight = sd->span_weight;
  2335. sd = NULL;
  2336. for_each_domain(cpu, tmp) {
  2337. if (weight <= tmp->span_weight)
  2338. break;
  2339. if (tmp->flags & sd_flag)
  2340. sd = tmp;
  2341. }
  2342. /* while loop will break here if sd == NULL */
  2343. }
  2344. unlock:
  2345. rcu_read_unlock();
  2346. return new_cpu;
  2347. }
  2348. #endif /* CONFIG_SMP */
  2349. static unsigned long
  2350. wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
  2351. {
  2352. unsigned long gran = sysctl_sched_wakeup_granularity;
  2353. /*
  2354. * Since its curr running now, convert the gran from real-time
  2355. * to virtual-time in his units.
  2356. *
  2357. * By using 'se' instead of 'curr' we penalize light tasks, so
  2358. * they get preempted easier. That is, if 'se' < 'curr' then
  2359. * the resulting gran will be larger, therefore penalizing the
  2360. * lighter, if otoh 'se' > 'curr' then the resulting gran will
  2361. * be smaller, again penalizing the lighter task.
  2362. *
  2363. * This is especially important for buddies when the leftmost
  2364. * task is higher priority than the buddy.
  2365. */
  2366. return calc_delta_fair(gran, se);
  2367. }
  2368. /*
  2369. * Should 'se' preempt 'curr'.
  2370. *
  2371. * |s1
  2372. * |s2
  2373. * |s3
  2374. * g
  2375. * |<--->|c
  2376. *
  2377. * w(c, s1) = -1
  2378. * w(c, s2) = 0
  2379. * w(c, s3) = 1
  2380. *
  2381. */
  2382. static int
  2383. wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
  2384. {
  2385. s64 gran, vdiff = curr->vruntime - se->vruntime;
  2386. if (vdiff <= 0)
  2387. return -1;
  2388. gran = wakeup_gran(curr, se);
  2389. if (vdiff > gran)
  2390. return 1;
  2391. return 0;
  2392. }
  2393. static void set_last_buddy(struct sched_entity *se)
  2394. {
  2395. if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
  2396. return;
  2397. for_each_sched_entity(se)
  2398. cfs_rq_of(se)->last = se;
  2399. }
  2400. static void set_next_buddy(struct sched_entity *se)
  2401. {
  2402. if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
  2403. return;
  2404. for_each_sched_entity(se)
  2405. cfs_rq_of(se)->next = se;
  2406. }
  2407. static void set_skip_buddy(struct sched_entity *se)
  2408. {
  2409. for_each_sched_entity(se)
  2410. cfs_rq_of(se)->skip = se;
  2411. }
  2412. /*
  2413. * Preempt the current task with a newly woken task if needed:
  2414. */
  2415. static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
  2416. {
  2417. struct task_struct *curr = rq->curr;
  2418. struct sched_entity *se = &curr->se, *pse = &p->se;
  2419. struct cfs_rq *cfs_rq = task_cfs_rq(curr);
  2420. int scale = cfs_rq->nr_running >= sched_nr_latency;
  2421. int next_buddy_marked = 0;
  2422. if (unlikely(se == pse))
  2423. return;
  2424. /*
  2425. * This is possible from callers such as pull_task(), in which we
  2426. * unconditionally check_prempt_curr() after an enqueue (which may have
  2427. * lead to a throttle). This both saves work and prevents false
  2428. * next-buddy nomination below.
  2429. */
  2430. if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
  2431. return;
  2432. if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
  2433. set_next_buddy(pse);
  2434. next_buddy_marked = 1;
  2435. }
  2436. /*
  2437. * We can come here with TIF_NEED_RESCHED already set from new task
  2438. * wake up path.
  2439. *
  2440. * Note: this also catches the edge-case of curr being in a throttled
  2441. * group (e.g. via set_curr_task), since update_curr() (in the
  2442. * enqueue of curr) will have resulted in resched being set. This
  2443. * prevents us from potentially nominating it as a false LAST_BUDDY
  2444. * below.
  2445. */
  2446. if (test_tsk_need_resched(curr))
  2447. return;
  2448. /* Idle tasks are by definition preempted by non-idle tasks. */
  2449. if (unlikely(curr->policy == SCHED_IDLE) &&
  2450. likely(p->policy != SCHED_IDLE))
  2451. goto preempt;
  2452. /*
  2453. * Batch and idle tasks do not preempt non-idle tasks (their preemption
  2454. * is driven by the tick):
  2455. */
  2456. if (unlikely(p->policy != SCHED_NORMAL))
  2457. return;
  2458. find_matching_se(&se, &pse);
  2459. update_curr(cfs_rq_of(se));
  2460. BUG_ON(!pse);
  2461. if (wakeup_preempt_entity(se, pse) == 1) {
  2462. /*
  2463. * Bias pick_next to pick the sched entity that is
  2464. * triggering this preemption.
  2465. */
  2466. if (!next_buddy_marked)
  2467. set_next_buddy(pse);
  2468. goto preempt;
  2469. }
  2470. return;
  2471. preempt:
  2472. resched_task(curr);
  2473. /*
  2474. * Only set the backward buddy when the current task is still
  2475. * on the rq. This can happen when a wakeup gets interleaved
  2476. * with schedule on the ->pre_schedule() or idle_balance()
  2477. * point, either of which can * drop the rq lock.
  2478. *
  2479. * Also, during early boot the idle thread is in the fair class,
  2480. * for obvious reasons its a bad idea to schedule back to it.
  2481. */
  2482. if (unlikely(!se->on_rq || curr == rq->idle))
  2483. return;
  2484. if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
  2485. set_last_buddy(se);
  2486. }
  2487. static struct task_struct *pick_next_task_fair(struct rq *rq)
  2488. {
  2489. struct task_struct *p;
  2490. struct cfs_rq *cfs_rq = &rq->cfs;
  2491. struct sched_entity *se;
  2492. if (!cfs_rq->nr_running)
  2493. return NULL;
  2494. do {
  2495. se = pick_next_entity(cfs_rq);
  2496. set_next_entity(cfs_rq, se);
  2497. cfs_rq = group_cfs_rq(se);
  2498. } while (cfs_rq);
  2499. p = task_of(se);
  2500. if (hrtick_enabled(rq))
  2501. hrtick_start_fair(rq, p);
  2502. return p;
  2503. }
  2504. /*
  2505. * Account for a descheduled task:
  2506. */
  2507. static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
  2508. {
  2509. struct sched_entity *se = &prev->se;
  2510. struct cfs_rq *cfs_rq;
  2511. for_each_sched_entity(se) {
  2512. cfs_rq = cfs_rq_of(se);
  2513. put_prev_entity(cfs_rq, se);
  2514. }
  2515. }
  2516. /*
  2517. * sched_yield() is very simple
  2518. *
  2519. * The magic of dealing with the ->skip buddy is in pick_next_entity.
  2520. */
  2521. static void yield_task_fair(struct rq *rq)
  2522. {
  2523. struct task_struct *curr = rq->curr;
  2524. struct cfs_rq *cfs_rq = task_cfs_rq(curr);
  2525. struct sched_entity *se = &curr->se;
  2526. /*
  2527. * Are we the only task in the tree?
  2528. */
  2529. if (unlikely(rq->nr_running == 1))
  2530. return;
  2531. clear_buddies(cfs_rq, se);
  2532. if (curr->policy != SCHED_BATCH) {
  2533. update_rq_clock(rq);
  2534. /*
  2535. * Update run-time statistics of the 'current'.
  2536. */
  2537. update_curr(cfs_rq);
  2538. /*
  2539. * Tell update_rq_clock() that we've just updated,
  2540. * so we don't do microscopic update in schedule()
  2541. * and double the fastpath cost.
  2542. */
  2543. rq->skip_clock_update = 1;
  2544. }
  2545. set_skip_buddy(se);
  2546. }
  2547. static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
  2548. {
  2549. struct sched_entity *se = &p->se;
  2550. /* throttled hierarchies are not runnable */
  2551. if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
  2552. return false;
  2553. /* Tell the scheduler that we'd really like pse to run next. */
  2554. set_next_buddy(se);
  2555. yield_task_fair(rq);
  2556. return true;
  2557. }
  2558. #ifdef CONFIG_SMP
  2559. /**************************************************
  2560. * Fair scheduling class load-balancing methods:
  2561. */
  2562. /*
  2563. * pull_task - move a task from a remote runqueue to the local runqueue.
  2564. * Both runqueues must be locked.
  2565. */
  2566. static void pull_task(struct rq *src_rq, struct task_struct *p,
  2567. struct rq *this_rq, int this_cpu)
  2568. {
  2569. deactivate_task(src_rq, p, 0);
  2570. set_task_cpu(p, this_cpu);
  2571. activate_task(this_rq, p, 0);
  2572. check_preempt_curr(this_rq, p, 0);
  2573. }
  2574. /*
  2575. * Is this task likely cache-hot:
  2576. */
  2577. static int
  2578. task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
  2579. {
  2580. s64 delta;
  2581. if (p->sched_class != &fair_sched_class)
  2582. return 0;
  2583. if (unlikely(p->policy == SCHED_IDLE))
  2584. return 0;
  2585. /*
  2586. * Buddy candidates are cache hot:
  2587. */
  2588. if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
  2589. (&p->se == cfs_rq_of(&p->se)->next ||
  2590. &p->se == cfs_rq_of(&p->se)->last))
  2591. return 1;
  2592. if (sysctl_sched_migration_cost == -1)
  2593. return 1;
  2594. if (sysctl_sched_migration_cost == 0)
  2595. return 0;
  2596. delta = now - p->se.exec_start;
  2597. return delta < (s64)sysctl_sched_migration_cost;
  2598. }
  2599. /*
  2600. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  2601. */
  2602. static
  2603. int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
  2604. struct sched_domain *sd, enum cpu_idle_type idle,
  2605. int *all_pinned)
  2606. {
  2607. int tsk_cache_hot = 0;
  2608. /*
  2609. * We do not migrate tasks that are:
  2610. * 1) running (obviously), or
  2611. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  2612. * 3) are cache-hot on their current CPU.
  2613. */
  2614. if (!cpumask_test_cpu(this_cpu, tsk_cpus_allowed(p))) {
  2615. schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
  2616. return 0;
  2617. }
  2618. *all_pinned = 0;
  2619. if (task_running(rq, p)) {
  2620. schedstat_inc(p, se.statistics.nr_failed_migrations_running);
  2621. return 0;
  2622. }
  2623. /*
  2624. * Aggressive migration if:
  2625. * 1) task is cache cold, or
  2626. * 2) too many balance attempts have failed.
  2627. */
  2628. tsk_cache_hot = task_hot(p, rq->clock_task, sd);
  2629. if (!tsk_cache_hot ||
  2630. sd->nr_balance_failed > sd->cache_nice_tries) {
  2631. #ifdef CONFIG_SCHEDSTATS
  2632. if (tsk_cache_hot) {
  2633. schedstat_inc(sd, lb_hot_gained[idle]);
  2634. schedstat_inc(p, se.statistics.nr_forced_migrations);
  2635. }
  2636. #endif
  2637. return 1;
  2638. }
  2639. if (tsk_cache_hot) {
  2640. schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
  2641. return 0;
  2642. }
  2643. return 1;
  2644. }
  2645. /*
  2646. * move_one_task tries to move exactly one task from busiest to this_rq, as
  2647. * part of active balancing operations within "domain".
  2648. * Returns 1 if successful and 0 otherwise.
  2649. *
  2650. * Called with both runqueues locked.
  2651. */
  2652. static int
  2653. move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2654. struct sched_domain *sd, enum cpu_idle_type idle)
  2655. {
  2656. struct task_struct *p, *n;
  2657. struct cfs_rq *cfs_rq;
  2658. int pinned = 0;
  2659. for_each_leaf_cfs_rq(busiest, cfs_rq) {
  2660. list_for_each_entry_safe(p, n, &cfs_rq->tasks, se.group_node) {
  2661. if (throttled_lb_pair(task_group(p),
  2662. busiest->cpu, this_cpu))
  2663. break;
  2664. if (!can_migrate_task(p, busiest, this_cpu,
  2665. sd, idle, &pinned))
  2666. continue;
  2667. pull_task(busiest, p, this_rq, this_cpu);
  2668. /*
  2669. * Right now, this is only the second place pull_task()
  2670. * is called, so we can safely collect pull_task()
  2671. * stats here rather than inside pull_task().
  2672. */
  2673. schedstat_inc(sd, lb_gained[idle]);
  2674. return 1;
  2675. }
  2676. }
  2677. return 0;
  2678. }
  2679. static unsigned long
  2680. balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2681. unsigned long max_load_move, struct sched_domain *sd,
  2682. enum cpu_idle_type idle, int *all_pinned,
  2683. struct cfs_rq *busiest_cfs_rq)
  2684. {
  2685. int loops = 0, pulled = 0;
  2686. long rem_load_move = max_load_move;
  2687. struct task_struct *p, *n;
  2688. if (max_load_move == 0)
  2689. goto out;
  2690. list_for_each_entry_safe(p, n, &busiest_cfs_rq->tasks, se.group_node) {
  2691. if (loops++ > sysctl_sched_nr_migrate)
  2692. break;
  2693. if ((p->se.load.weight >> 1) > rem_load_move ||
  2694. !can_migrate_task(p, busiest, this_cpu, sd, idle,
  2695. all_pinned))
  2696. continue;
  2697. pull_task(busiest, p, this_rq, this_cpu);
  2698. pulled++;
  2699. rem_load_move -= p->se.load.weight;
  2700. #ifdef CONFIG_PREEMPT
  2701. /*
  2702. * NEWIDLE balancing is a source of latency, so preemptible
  2703. * kernels will stop after the first task is pulled to minimize
  2704. * the critical section.
  2705. */
  2706. if (idle == CPU_NEWLY_IDLE)
  2707. break;
  2708. #endif
  2709. /*
  2710. * We only want to steal up to the prescribed amount of
  2711. * weighted load.
  2712. */
  2713. if (rem_load_move <= 0)
  2714. break;
  2715. }
  2716. out:
  2717. /*
  2718. * Right now, this is one of only two places pull_task() is called,
  2719. * so we can safely collect pull_task() stats here rather than
  2720. * inside pull_task().
  2721. */
  2722. schedstat_add(sd, lb_gained[idle], pulled);
  2723. return max_load_move - rem_load_move;
  2724. }
  2725. #ifdef CONFIG_FAIR_GROUP_SCHED
  2726. /*
  2727. * update tg->load_weight by folding this cpu's load_avg
  2728. */
  2729. static int update_shares_cpu(struct task_group *tg, int cpu)
  2730. {
  2731. struct cfs_rq *cfs_rq;
  2732. unsigned long flags;
  2733. struct rq *rq;
  2734. if (!tg->se[cpu])
  2735. return 0;
  2736. rq = cpu_rq(cpu);
  2737. cfs_rq = tg->cfs_rq[cpu];
  2738. raw_spin_lock_irqsave(&rq->lock, flags);
  2739. update_rq_clock(rq);
  2740. update_cfs_load(cfs_rq, 1);
  2741. /*
  2742. * We need to update shares after updating tg->load_weight in
  2743. * order to adjust the weight of groups with long running tasks.
  2744. */
  2745. update_cfs_shares(cfs_rq);
  2746. raw_spin_unlock_irqrestore(&rq->lock, flags);
  2747. return 0;
  2748. }
  2749. static void update_shares(int cpu)
  2750. {
  2751. struct cfs_rq *cfs_rq;
  2752. struct rq *rq = cpu_rq(cpu);
  2753. rcu_read_lock();
  2754. /*
  2755. * Iterates the task_group tree in a bottom up fashion, see
  2756. * list_add_leaf_cfs_rq() for details.
  2757. */
  2758. for_each_leaf_cfs_rq(rq, cfs_rq) {
  2759. /* throttled entities do not contribute to load */
  2760. if (throttled_hierarchy(cfs_rq))
  2761. continue;
  2762. update_shares_cpu(cfs_rq->tg, cpu);
  2763. }
  2764. rcu_read_unlock();
  2765. }
  2766. /*
  2767. * Compute the cpu's hierarchical load factor for each task group.
  2768. * This needs to be done in a top-down fashion because the load of a child
  2769. * group is a fraction of its parents load.
  2770. */
  2771. static int tg_load_down(struct task_group *tg, void *data)
  2772. {
  2773. unsigned long load;
  2774. long cpu = (long)data;
  2775. if (!tg->parent) {
  2776. load = cpu_rq(cpu)->load.weight;
  2777. } else {
  2778. load = tg->parent->cfs_rq[cpu]->h_load;
  2779. load *= tg->se[cpu]->load.weight;
  2780. load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
  2781. }
  2782. tg->cfs_rq[cpu]->h_load = load;
  2783. return 0;
  2784. }
  2785. static void update_h_load(long cpu)
  2786. {
  2787. walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
  2788. }
  2789. static unsigned long
  2790. load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2791. unsigned long max_load_move,
  2792. struct sched_domain *sd, enum cpu_idle_type idle,
  2793. int *all_pinned)
  2794. {
  2795. long rem_load_move = max_load_move;
  2796. struct cfs_rq *busiest_cfs_rq;
  2797. rcu_read_lock();
  2798. update_h_load(cpu_of(busiest));
  2799. for_each_leaf_cfs_rq(busiest, busiest_cfs_rq) {
  2800. unsigned long busiest_h_load = busiest_cfs_rq->h_load;
  2801. unsigned long busiest_weight = busiest_cfs_rq->load.weight;
  2802. u64 rem_load, moved_load;
  2803. /*
  2804. * empty group or part of a throttled hierarchy
  2805. */
  2806. if (!busiest_cfs_rq->task_weight ||
  2807. throttled_lb_pair(busiest_cfs_rq->tg, cpu_of(busiest), this_cpu))
  2808. continue;
  2809. rem_load = (u64)rem_load_move * busiest_weight;
  2810. rem_load = div_u64(rem_load, busiest_h_load + 1);
  2811. moved_load = balance_tasks(this_rq, this_cpu, busiest,
  2812. rem_load, sd, idle, all_pinned,
  2813. busiest_cfs_rq);
  2814. if (!moved_load)
  2815. continue;
  2816. moved_load *= busiest_h_load;
  2817. moved_load = div_u64(moved_load, busiest_weight + 1);
  2818. rem_load_move -= moved_load;
  2819. if (rem_load_move < 0)
  2820. break;
  2821. }
  2822. rcu_read_unlock();
  2823. return max_load_move - rem_load_move;
  2824. }
  2825. #else
  2826. static inline void update_shares(int cpu)
  2827. {
  2828. }
  2829. static unsigned long
  2830. load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2831. unsigned long max_load_move,
  2832. struct sched_domain *sd, enum cpu_idle_type idle,
  2833. int *all_pinned)
  2834. {
  2835. return balance_tasks(this_rq, this_cpu, busiest,
  2836. max_load_move, sd, idle, all_pinned,
  2837. &busiest->cfs);
  2838. }
  2839. #endif
  2840. /*
  2841. * move_tasks tries to move up to max_load_move weighted load from busiest to
  2842. * this_rq, as part of a balancing operation within domain "sd".
  2843. * Returns 1 if successful and 0 otherwise.
  2844. *
  2845. * Called with both runqueues locked.
  2846. */
  2847. static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
  2848. unsigned long max_load_move,
  2849. struct sched_domain *sd, enum cpu_idle_type idle,
  2850. int *all_pinned)
  2851. {
  2852. unsigned long total_load_moved = 0, load_moved;
  2853. do {
  2854. load_moved = load_balance_fair(this_rq, this_cpu, busiest,
  2855. max_load_move - total_load_moved,
  2856. sd, idle, all_pinned);
  2857. total_load_moved += load_moved;
  2858. #ifdef CONFIG_PREEMPT
  2859. /*
  2860. * NEWIDLE balancing is a source of latency, so preemptible
  2861. * kernels will stop after the first task is pulled to minimize
  2862. * the critical section.
  2863. */
  2864. if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
  2865. break;
  2866. if (raw_spin_is_contended(&this_rq->lock) ||
  2867. raw_spin_is_contended(&busiest->lock))
  2868. break;
  2869. #endif
  2870. } while (load_moved && max_load_move > total_load_moved);
  2871. return total_load_moved > 0;
  2872. }
  2873. /********** Helpers for find_busiest_group ************************/
  2874. /*
  2875. * sd_lb_stats - Structure to store the statistics of a sched_domain
  2876. * during load balancing.
  2877. */
  2878. struct sd_lb_stats {
  2879. struct sched_group *busiest; /* Busiest group in this sd */
  2880. struct sched_group *this; /* Local group in this sd */
  2881. unsigned long total_load; /* Total load of all groups in sd */
  2882. unsigned long total_pwr; /* Total power of all groups in sd */
  2883. unsigned long avg_load; /* Average load across all groups in sd */
  2884. /** Statistics of this group */
  2885. unsigned long this_load;
  2886. unsigned long this_load_per_task;
  2887. unsigned long this_nr_running;
  2888. unsigned long this_has_capacity;
  2889. unsigned int this_idle_cpus;
  2890. /* Statistics of the busiest group */
  2891. unsigned int busiest_idle_cpus;
  2892. unsigned long max_load;
  2893. unsigned long busiest_load_per_task;
  2894. unsigned long busiest_nr_running;
  2895. unsigned long busiest_group_capacity;
  2896. unsigned long busiest_has_capacity;
  2897. unsigned int busiest_group_weight;
  2898. int group_imb; /* Is there imbalance in this sd */
  2899. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2900. int power_savings_balance; /* Is powersave balance needed for this sd */
  2901. struct sched_group *group_min; /* Least loaded group in sd */
  2902. struct sched_group *group_leader; /* Group which relieves group_min */
  2903. unsigned long min_load_per_task; /* load_per_task in group_min */
  2904. unsigned long leader_nr_running; /* Nr running of group_leader */
  2905. unsigned long min_nr_running; /* Nr running of group_min */
  2906. #endif
  2907. };
  2908. /*
  2909. * sg_lb_stats - stats of a sched_group required for load_balancing
  2910. */
  2911. struct sg_lb_stats {
  2912. unsigned long avg_load; /*Avg load across the CPUs of the group */
  2913. unsigned long group_load; /* Total load over the CPUs of the group */
  2914. unsigned long sum_nr_running; /* Nr tasks running in the group */
  2915. unsigned long sum_weighted_load; /* Weighted load of group's tasks */
  2916. unsigned long group_capacity;
  2917. unsigned long idle_cpus;
  2918. unsigned long group_weight;
  2919. int group_imb; /* Is there an imbalance in the group ? */
  2920. int group_has_capacity; /* Is there extra capacity in the group? */
  2921. };
  2922. /**
  2923. * get_sd_load_idx - Obtain the load index for a given sched domain.
  2924. * @sd: The sched_domain whose load_idx is to be obtained.
  2925. * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
  2926. */
  2927. static inline int get_sd_load_idx(struct sched_domain *sd,
  2928. enum cpu_idle_type idle)
  2929. {
  2930. int load_idx;
  2931. switch (idle) {
  2932. case CPU_NOT_IDLE:
  2933. load_idx = sd->busy_idx;
  2934. break;
  2935. case CPU_NEWLY_IDLE:
  2936. load_idx = sd->newidle_idx;
  2937. break;
  2938. default:
  2939. load_idx = sd->idle_idx;
  2940. break;
  2941. }
  2942. return load_idx;
  2943. }
  2944. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  2945. /**
  2946. * init_sd_power_savings_stats - Initialize power savings statistics for
  2947. * the given sched_domain, during load balancing.
  2948. *
  2949. * @sd: Sched domain whose power-savings statistics are to be initialized.
  2950. * @sds: Variable containing the statistics for sd.
  2951. * @idle: Idle status of the CPU at which we're performing load-balancing.
  2952. */
  2953. static inline void init_sd_power_savings_stats(struct sched_domain *sd,
  2954. struct sd_lb_stats *sds, enum cpu_idle_type idle)
  2955. {
  2956. /*
  2957. * Busy processors will not participate in power savings
  2958. * balance.
  2959. */
  2960. if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
  2961. sds->power_savings_balance = 0;
  2962. else {
  2963. sds->power_savings_balance = 1;
  2964. sds->min_nr_running = ULONG_MAX;
  2965. sds->leader_nr_running = 0;
  2966. }
  2967. }
  2968. /**
  2969. * update_sd_power_savings_stats - Update the power saving stats for a
  2970. * sched_domain while performing load balancing.
  2971. *
  2972. * @group: sched_group belonging to the sched_domain under consideration.
  2973. * @sds: Variable containing the statistics of the sched_domain
  2974. * @local_group: Does group contain the CPU for which we're performing
  2975. * load balancing ?
  2976. * @sgs: Variable containing the statistics of the group.
  2977. */
  2978. static inline void update_sd_power_savings_stats(struct sched_group *group,
  2979. struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
  2980. {
  2981. if (!sds->power_savings_balance)
  2982. return;
  2983. /*
  2984. * If the local group is idle or completely loaded
  2985. * no need to do power savings balance at this domain
  2986. */
  2987. if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
  2988. !sds->this_nr_running))
  2989. sds->power_savings_balance = 0;
  2990. /*
  2991. * If a group is already running at full capacity or idle,
  2992. * don't include that group in power savings calculations
  2993. */
  2994. if (!sds->power_savings_balance ||
  2995. sgs->sum_nr_running >= sgs->group_capacity ||
  2996. !sgs->sum_nr_running)
  2997. return;
  2998. /*
  2999. * Calculate the group which has the least non-idle load.
  3000. * This is the group from where we need to pick up the load
  3001. * for saving power
  3002. */
  3003. if ((sgs->sum_nr_running < sds->min_nr_running) ||
  3004. (sgs->sum_nr_running == sds->min_nr_running &&
  3005. group_first_cpu(group) > group_first_cpu(sds->group_min))) {
  3006. sds->group_min = group;
  3007. sds->min_nr_running = sgs->sum_nr_running;
  3008. sds->min_load_per_task = sgs->sum_weighted_load /
  3009. sgs->sum_nr_running;
  3010. }
  3011. /*
  3012. * Calculate the group which is almost near its
  3013. * capacity but still has some space to pick up some load
  3014. * from other group and save more power
  3015. */
  3016. if (sgs->sum_nr_running + 1 > sgs->group_capacity)
  3017. return;
  3018. if (sgs->sum_nr_running > sds->leader_nr_running ||
  3019. (sgs->sum_nr_running == sds->leader_nr_running &&
  3020. group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
  3021. sds->group_leader = group;
  3022. sds->leader_nr_running = sgs->sum_nr_running;
  3023. }
  3024. }
  3025. /**
  3026. * check_power_save_busiest_group - see if there is potential for some power-savings balance
  3027. * @sds: Variable containing the statistics of the sched_domain
  3028. * under consideration.
  3029. * @this_cpu: Cpu at which we're currently performing load-balancing.
  3030. * @imbalance: Variable to store the imbalance.
  3031. *
  3032. * Description:
  3033. * Check if we have potential to perform some power-savings balance.
  3034. * If yes, set the busiest group to be the least loaded group in the
  3035. * sched_domain, so that it's CPUs can be put to idle.
  3036. *
  3037. * Returns 1 if there is potential to perform power-savings balance.
  3038. * Else returns 0.
  3039. */
  3040. static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
  3041. int this_cpu, unsigned long *imbalance)
  3042. {
  3043. if (!sds->power_savings_balance)
  3044. return 0;
  3045. if (sds->this != sds->group_leader ||
  3046. sds->group_leader == sds->group_min)
  3047. return 0;
  3048. *imbalance = sds->min_load_per_task;
  3049. sds->busiest = sds->group_min;
  3050. return 1;
  3051. }
  3052. #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  3053. static inline void init_sd_power_savings_stats(struct sched_domain *sd,
  3054. struct sd_lb_stats *sds, enum cpu_idle_type idle)
  3055. {
  3056. return;
  3057. }
  3058. static inline void update_sd_power_savings_stats(struct sched_group *group,
  3059. struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
  3060. {
  3061. return;
  3062. }
  3063. static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
  3064. int this_cpu, unsigned long *imbalance)
  3065. {
  3066. return 0;
  3067. }
  3068. #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
  3069. unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
  3070. {
  3071. return SCHED_POWER_SCALE;
  3072. }
  3073. unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
  3074. {
  3075. return default_scale_freq_power(sd, cpu);
  3076. }
  3077. unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
  3078. {
  3079. unsigned long weight = sd->span_weight;
  3080. unsigned long smt_gain = sd->smt_gain;
  3081. smt_gain /= weight;
  3082. return smt_gain;
  3083. }
  3084. unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
  3085. {
  3086. return default_scale_smt_power(sd, cpu);
  3087. }
  3088. unsigned long scale_rt_power(int cpu)
  3089. {
  3090. struct rq *rq = cpu_rq(cpu);
  3091. u64 total, available;
  3092. total = sched_avg_period() + (rq->clock - rq->age_stamp);
  3093. if (unlikely(total < rq->rt_avg)) {
  3094. /* Ensures that power won't end up being negative */
  3095. available = 0;
  3096. } else {
  3097. available = total - rq->rt_avg;
  3098. }
  3099. if (unlikely((s64)total < SCHED_POWER_SCALE))
  3100. total = SCHED_POWER_SCALE;
  3101. total >>= SCHED_POWER_SHIFT;
  3102. return div_u64(available, total);
  3103. }
  3104. static void update_cpu_power(struct sched_domain *sd, int cpu)
  3105. {
  3106. unsigned long weight = sd->span_weight;
  3107. unsigned long power = SCHED_POWER_SCALE;
  3108. struct sched_group *sdg = sd->groups;
  3109. if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
  3110. if (sched_feat(ARCH_POWER))
  3111. power *= arch_scale_smt_power(sd, cpu);
  3112. else
  3113. power *= default_scale_smt_power(sd, cpu);
  3114. power >>= SCHED_POWER_SHIFT;
  3115. }
  3116. sdg->sgp->power_orig = power;
  3117. if (sched_feat(ARCH_POWER))
  3118. power *= arch_scale_freq_power(sd, cpu);
  3119. else
  3120. power *= default_scale_freq_power(sd, cpu);
  3121. power >>= SCHED_POWER_SHIFT;
  3122. power *= scale_rt_power(cpu);
  3123. power >>= SCHED_POWER_SHIFT;
  3124. if (!power)
  3125. power = 1;
  3126. cpu_rq(cpu)->cpu_power = power;
  3127. sdg->sgp->power = power;
  3128. }
  3129. void update_group_power(struct sched_domain *sd, int cpu)
  3130. {
  3131. struct sched_domain *child = sd->child;
  3132. struct sched_group *group, *sdg = sd->groups;
  3133. unsigned long power;
  3134. if (!child) {
  3135. update_cpu_power(sd, cpu);
  3136. return;
  3137. }
  3138. power = 0;
  3139. group = child->groups;
  3140. do {
  3141. power += group->sgp->power;
  3142. group = group->next;
  3143. } while (group != child->groups);
  3144. sdg->sgp->power = power;
  3145. }
  3146. /*
  3147. * Try and fix up capacity for tiny siblings, this is needed when
  3148. * things like SD_ASYM_PACKING need f_b_g to select another sibling
  3149. * which on its own isn't powerful enough.
  3150. *
  3151. * See update_sd_pick_busiest() and check_asym_packing().
  3152. */
  3153. static inline int
  3154. fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
  3155. {
  3156. /*
  3157. * Only siblings can have significantly less than SCHED_POWER_SCALE
  3158. */
  3159. if (!(sd->flags & SD_SHARE_CPUPOWER))
  3160. return 0;
  3161. /*
  3162. * If ~90% of the cpu_power is still there, we're good.
  3163. */
  3164. if (group->sgp->power * 32 > group->sgp->power_orig * 29)
  3165. return 1;
  3166. return 0;
  3167. }
  3168. /**
  3169. * update_sg_lb_stats - Update sched_group's statistics for load balancing.
  3170. * @sd: The sched_domain whose statistics are to be updated.
  3171. * @group: sched_group whose statistics are to be updated.
  3172. * @this_cpu: Cpu for which load balance is currently performed.
  3173. * @idle: Idle status of this_cpu
  3174. * @load_idx: Load index of sched_domain of this_cpu for load calc.
  3175. * @local_group: Does group contain this_cpu.
  3176. * @cpus: Set of cpus considered for load balancing.
  3177. * @balance: Should we balance.
  3178. * @sgs: variable to hold the statistics for this group.
  3179. */
  3180. static inline void update_sg_lb_stats(struct sched_domain *sd,
  3181. struct sched_group *group, int this_cpu,
  3182. enum cpu_idle_type idle, int load_idx,
  3183. int local_group, const struct cpumask *cpus,
  3184. int *balance, struct sg_lb_stats *sgs)
  3185. {
  3186. unsigned long load, max_cpu_load, min_cpu_load, max_nr_running;
  3187. int i;
  3188. unsigned int balance_cpu = -1, first_idle_cpu = 0;
  3189. unsigned long avg_load_per_task = 0;
  3190. if (local_group)
  3191. balance_cpu = group_first_cpu(group);
  3192. /* Tally up the load of all CPUs in the group */
  3193. max_cpu_load = 0;
  3194. min_cpu_load = ~0UL;
  3195. max_nr_running = 0;
  3196. for_each_cpu_and(i, sched_group_cpus(group), cpus) {
  3197. struct rq *rq = cpu_rq(i);
  3198. /* Bias balancing toward cpus of our domain */
  3199. if (local_group) {
  3200. if (idle_cpu(i) && !first_idle_cpu) {
  3201. first_idle_cpu = 1;
  3202. balance_cpu = i;
  3203. }
  3204. load = target_load(i, load_idx);
  3205. } else {
  3206. load = source_load(i, load_idx);
  3207. if (load > max_cpu_load) {
  3208. max_cpu_load = load;
  3209. max_nr_running = rq->nr_running;
  3210. }
  3211. if (min_cpu_load > load)
  3212. min_cpu_load = load;
  3213. }
  3214. sgs->group_load += load;
  3215. sgs->sum_nr_running += rq->nr_running;
  3216. sgs->sum_weighted_load += weighted_cpuload(i);
  3217. if (idle_cpu(i))
  3218. sgs->idle_cpus++;
  3219. }
  3220. /*
  3221. * First idle cpu or the first cpu(busiest) in this sched group
  3222. * is eligible for doing load balancing at this and above
  3223. * domains. In the newly idle case, we will allow all the cpu's
  3224. * to do the newly idle load balance.
  3225. */
  3226. if (idle != CPU_NEWLY_IDLE && local_group) {
  3227. if (balance_cpu != this_cpu) {
  3228. *balance = 0;
  3229. return;
  3230. }
  3231. update_group_power(sd, this_cpu);
  3232. }
  3233. /* Adjust by relative CPU power of the group */
  3234. sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / group->sgp->power;
  3235. /*
  3236. * Consider the group unbalanced when the imbalance is larger
  3237. * than the average weight of a task.
  3238. *
  3239. * APZ: with cgroup the avg task weight can vary wildly and
  3240. * might not be a suitable number - should we keep a
  3241. * normalized nr_running number somewhere that negates
  3242. * the hierarchy?
  3243. */
  3244. if (sgs->sum_nr_running)
  3245. avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
  3246. if ((max_cpu_load - min_cpu_load) >= avg_load_per_task && max_nr_running > 1)
  3247. sgs->group_imb = 1;
  3248. sgs->group_capacity = DIV_ROUND_CLOSEST(group->sgp->power,
  3249. SCHED_POWER_SCALE);
  3250. if (!sgs->group_capacity)
  3251. sgs->group_capacity = fix_small_capacity(sd, group);
  3252. sgs->group_weight = group->group_weight;
  3253. if (sgs->group_capacity > sgs->sum_nr_running)
  3254. sgs->group_has_capacity = 1;
  3255. }
  3256. /**
  3257. * update_sd_pick_busiest - return 1 on busiest group
  3258. * @sd: sched_domain whose statistics are to be checked
  3259. * @sds: sched_domain statistics
  3260. * @sg: sched_group candidate to be checked for being the busiest
  3261. * @sgs: sched_group statistics
  3262. * @this_cpu: the current cpu
  3263. *
  3264. * Determine if @sg is a busier group than the previously selected
  3265. * busiest group.
  3266. */
  3267. static bool update_sd_pick_busiest(struct sched_domain *sd,
  3268. struct sd_lb_stats *sds,
  3269. struct sched_group *sg,
  3270. struct sg_lb_stats *sgs,
  3271. int this_cpu)
  3272. {
  3273. if (sgs->avg_load <= sds->max_load)
  3274. return false;
  3275. if (sgs->sum_nr_running > sgs->group_capacity)
  3276. return true;
  3277. if (sgs->group_imb)
  3278. return true;
  3279. /*
  3280. * ASYM_PACKING needs to move all the work to the lowest
  3281. * numbered CPUs in the group, therefore mark all groups
  3282. * higher than ourself as busy.
  3283. */
  3284. if ((sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
  3285. this_cpu < group_first_cpu(sg)) {
  3286. if (!sds->busiest)
  3287. return true;
  3288. if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
  3289. return true;
  3290. }
  3291. return false;
  3292. }
  3293. /**
  3294. * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
  3295. * @sd: sched_domain whose statistics are to be updated.
  3296. * @this_cpu: Cpu for which load balance is currently performed.
  3297. * @idle: Idle status of this_cpu
  3298. * @cpus: Set of cpus considered for load balancing.
  3299. * @balance: Should we balance.
  3300. * @sds: variable to hold the statistics for this sched_domain.
  3301. */
  3302. static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
  3303. enum cpu_idle_type idle, const struct cpumask *cpus,
  3304. int *balance, struct sd_lb_stats *sds)
  3305. {
  3306. struct sched_domain *child = sd->child;
  3307. struct sched_group *sg = sd->groups;
  3308. struct sg_lb_stats sgs;
  3309. int load_idx, prefer_sibling = 0;
  3310. if (child && child->flags & SD_PREFER_SIBLING)
  3311. prefer_sibling = 1;
  3312. init_sd_power_savings_stats(sd, sds, idle);
  3313. load_idx = get_sd_load_idx(sd, idle);
  3314. do {
  3315. int local_group;
  3316. local_group = cpumask_test_cpu(this_cpu, sched_group_cpus(sg));
  3317. memset(&sgs, 0, sizeof(sgs));
  3318. update_sg_lb_stats(sd, sg, this_cpu, idle, load_idx,
  3319. local_group, cpus, balance, &sgs);
  3320. if (local_group && !(*balance))
  3321. return;
  3322. sds->total_load += sgs.group_load;
  3323. sds->total_pwr += sg->sgp->power;
  3324. /*
  3325. * In case the child domain prefers tasks go to siblings
  3326. * first, lower the sg capacity to one so that we'll try
  3327. * and move all the excess tasks away. We lower the capacity
  3328. * of a group only if the local group has the capacity to fit
  3329. * these excess tasks, i.e. nr_running < group_capacity. The
  3330. * extra check prevents the case where you always pull from the
  3331. * heaviest group when it is already under-utilized (possible
  3332. * with a large weight task outweighs the tasks on the system).
  3333. */
  3334. if (prefer_sibling && !local_group && sds->this_has_capacity)
  3335. sgs.group_capacity = min(sgs.group_capacity, 1UL);
  3336. if (local_group) {
  3337. sds->this_load = sgs.avg_load;
  3338. sds->this = sg;
  3339. sds->this_nr_running = sgs.sum_nr_running;
  3340. sds->this_load_per_task = sgs.sum_weighted_load;
  3341. sds->this_has_capacity = sgs.group_has_capacity;
  3342. sds->this_idle_cpus = sgs.idle_cpus;
  3343. } else if (update_sd_pick_busiest(sd, sds, sg, &sgs, this_cpu)) {
  3344. sds->max_load = sgs.avg_load;
  3345. sds->busiest = sg;
  3346. sds->busiest_nr_running = sgs.sum_nr_running;
  3347. sds->busiest_idle_cpus = sgs.idle_cpus;
  3348. sds->busiest_group_capacity = sgs.group_capacity;
  3349. sds->busiest_load_per_task = sgs.sum_weighted_load;
  3350. sds->busiest_has_capacity = sgs.group_has_capacity;
  3351. sds->busiest_group_weight = sgs.group_weight;
  3352. sds->group_imb = sgs.group_imb;
  3353. }
  3354. update_sd_power_savings_stats(sg, sds, local_group, &sgs);
  3355. sg = sg->next;
  3356. } while (sg != sd->groups);
  3357. }
  3358. /**
  3359. * check_asym_packing - Check to see if the group is packed into the
  3360. * sched doman.
  3361. *
  3362. * This is primarily intended to used at the sibling level. Some
  3363. * cores like POWER7 prefer to use lower numbered SMT threads. In the
  3364. * case of POWER7, it can move to lower SMT modes only when higher
  3365. * threads are idle. When in lower SMT modes, the threads will
  3366. * perform better since they share less core resources. Hence when we
  3367. * have idle threads, we want them to be the higher ones.
  3368. *
  3369. * This packing function is run on idle threads. It checks to see if
  3370. * the busiest CPU in this domain (core in the P7 case) has a higher
  3371. * CPU number than the packing function is being run on. Here we are
  3372. * assuming lower CPU number will be equivalent to lower a SMT thread
  3373. * number.
  3374. *
  3375. * Returns 1 when packing is required and a task should be moved to
  3376. * this CPU. The amount of the imbalance is returned in *imbalance.
  3377. *
  3378. * @sd: The sched_domain whose packing is to be checked.
  3379. * @sds: Statistics of the sched_domain which is to be packed
  3380. * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
  3381. * @imbalance: returns amount of imbalanced due to packing.
  3382. */
  3383. static int check_asym_packing(struct sched_domain *sd,
  3384. struct sd_lb_stats *sds,
  3385. int this_cpu, unsigned long *imbalance)
  3386. {
  3387. int busiest_cpu;
  3388. if (!(sd->flags & SD_ASYM_PACKING))
  3389. return 0;
  3390. if (!sds->busiest)
  3391. return 0;
  3392. busiest_cpu = group_first_cpu(sds->busiest);
  3393. if (this_cpu > busiest_cpu)
  3394. return 0;
  3395. *imbalance = DIV_ROUND_CLOSEST(sds->max_load * sds->busiest->sgp->power,
  3396. SCHED_POWER_SCALE);
  3397. return 1;
  3398. }
  3399. /**
  3400. * fix_small_imbalance - Calculate the minor imbalance that exists
  3401. * amongst the groups of a sched_domain, during
  3402. * load balancing.
  3403. * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
  3404. * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
  3405. * @imbalance: Variable to store the imbalance.
  3406. */
  3407. static inline void fix_small_imbalance(struct sd_lb_stats *sds,
  3408. int this_cpu, unsigned long *imbalance)
  3409. {
  3410. unsigned long tmp, pwr_now = 0, pwr_move = 0;
  3411. unsigned int imbn = 2;
  3412. unsigned long scaled_busy_load_per_task;
  3413. if (sds->this_nr_running) {
  3414. sds->this_load_per_task /= sds->this_nr_running;
  3415. if (sds->busiest_load_per_task >
  3416. sds->this_load_per_task)
  3417. imbn = 1;
  3418. } else
  3419. sds->this_load_per_task =
  3420. cpu_avg_load_per_task(this_cpu);
  3421. scaled_busy_load_per_task = sds->busiest_load_per_task
  3422. * SCHED_POWER_SCALE;
  3423. scaled_busy_load_per_task /= sds->busiest->sgp->power;
  3424. if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
  3425. (scaled_busy_load_per_task * imbn)) {
  3426. *imbalance = sds->busiest_load_per_task;
  3427. return;
  3428. }
  3429. /*
  3430. * OK, we don't have enough imbalance to justify moving tasks,
  3431. * however we may be able to increase total CPU power used by
  3432. * moving them.
  3433. */
  3434. pwr_now += sds->busiest->sgp->power *
  3435. min(sds->busiest_load_per_task, sds->max_load);
  3436. pwr_now += sds->this->sgp->power *
  3437. min(sds->this_load_per_task, sds->this_load);
  3438. pwr_now /= SCHED_POWER_SCALE;
  3439. /* Amount of load we'd subtract */
  3440. tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
  3441. sds->busiest->sgp->power;
  3442. if (sds->max_load > tmp)
  3443. pwr_move += sds->busiest->sgp->power *
  3444. min(sds->busiest_load_per_task, sds->max_load - tmp);
  3445. /* Amount of load we'd add */
  3446. if (sds->max_load * sds->busiest->sgp->power <
  3447. sds->busiest_load_per_task * SCHED_POWER_SCALE)
  3448. tmp = (sds->max_load * sds->busiest->sgp->power) /
  3449. sds->this->sgp->power;
  3450. else
  3451. tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
  3452. sds->this->sgp->power;
  3453. pwr_move += sds->this->sgp->power *
  3454. min(sds->this_load_per_task, sds->this_load + tmp);
  3455. pwr_move /= SCHED_POWER_SCALE;
  3456. /* Move if we gain throughput */
  3457. if (pwr_move > pwr_now)
  3458. *imbalance = sds->busiest_load_per_task;
  3459. }
  3460. /**
  3461. * calculate_imbalance - Calculate the amount of imbalance present within the
  3462. * groups of a given sched_domain during load balance.
  3463. * @sds: statistics of the sched_domain whose imbalance is to be calculated.
  3464. * @this_cpu: Cpu for which currently load balance is being performed.
  3465. * @imbalance: The variable to store the imbalance.
  3466. */
  3467. static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
  3468. unsigned long *imbalance)
  3469. {
  3470. unsigned long max_pull, load_above_capacity = ~0UL;
  3471. sds->busiest_load_per_task /= sds->busiest_nr_running;
  3472. if (sds->group_imb) {
  3473. sds->busiest_load_per_task =
  3474. min(sds->busiest_load_per_task, sds->avg_load);
  3475. }
  3476. /*
  3477. * In the presence of smp nice balancing, certain scenarios can have
  3478. * max load less than avg load(as we skip the groups at or below
  3479. * its cpu_power, while calculating max_load..)
  3480. */
  3481. if (sds->max_load < sds->avg_load) {
  3482. *imbalance = 0;
  3483. return fix_small_imbalance(sds, this_cpu, imbalance);
  3484. }
  3485. if (!sds->group_imb) {
  3486. /*
  3487. * Don't want to pull so many tasks that a group would go idle.
  3488. */
  3489. load_above_capacity = (sds->busiest_nr_running -
  3490. sds->busiest_group_capacity);
  3491. load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
  3492. load_above_capacity /= sds->busiest->sgp->power;
  3493. }
  3494. /*
  3495. * We're trying to get all the cpus to the average_load, so we don't
  3496. * want to push ourselves above the average load, nor do we wish to
  3497. * reduce the max loaded cpu below the average load. At the same time,
  3498. * we also don't want to reduce the group load below the group capacity
  3499. * (so that we can implement power-savings policies etc). Thus we look
  3500. * for the minimum possible imbalance.
  3501. * Be careful of negative numbers as they'll appear as very large values
  3502. * with unsigned longs.
  3503. */
  3504. max_pull = min(sds->max_load - sds->avg_load, load_above_capacity);
  3505. /* How much load to actually move to equalise the imbalance */
  3506. *imbalance = min(max_pull * sds->busiest->sgp->power,
  3507. (sds->avg_load - sds->this_load) * sds->this->sgp->power)
  3508. / SCHED_POWER_SCALE;
  3509. /*
  3510. * if *imbalance is less than the average load per runnable task
  3511. * there is no guarantee that any tasks will be moved so we'll have
  3512. * a think about bumping its value to force at least one task to be
  3513. * moved
  3514. */
  3515. if (*imbalance < sds->busiest_load_per_task)
  3516. return fix_small_imbalance(sds, this_cpu, imbalance);
  3517. }
  3518. /******* find_busiest_group() helpers end here *********************/
  3519. /**
  3520. * find_busiest_group - Returns the busiest group within the sched_domain
  3521. * if there is an imbalance. If there isn't an imbalance, and
  3522. * the user has opted for power-savings, it returns a group whose
  3523. * CPUs can be put to idle by rebalancing those tasks elsewhere, if
  3524. * such a group exists.
  3525. *
  3526. * Also calculates the amount of weighted load which should be moved
  3527. * to restore balance.
  3528. *
  3529. * @sd: The sched_domain whose busiest group is to be returned.
  3530. * @this_cpu: The cpu for which load balancing is currently being performed.
  3531. * @imbalance: Variable which stores amount of weighted load which should
  3532. * be moved to restore balance/put a group to idle.
  3533. * @idle: The idle status of this_cpu.
  3534. * @cpus: The set of CPUs under consideration for load-balancing.
  3535. * @balance: Pointer to a variable indicating if this_cpu
  3536. * is the appropriate cpu to perform load balancing at this_level.
  3537. *
  3538. * Returns: - the busiest group if imbalance exists.
  3539. * - If no imbalance and user has opted for power-savings balance,
  3540. * return the least loaded group whose CPUs can be
  3541. * put to idle by rebalancing its tasks onto our group.
  3542. */
  3543. static struct sched_group *
  3544. find_busiest_group(struct sched_domain *sd, int this_cpu,
  3545. unsigned long *imbalance, enum cpu_idle_type idle,
  3546. const struct cpumask *cpus, int *balance)
  3547. {
  3548. struct sd_lb_stats sds;
  3549. memset(&sds, 0, sizeof(sds));
  3550. /*
  3551. * Compute the various statistics relavent for load balancing at
  3552. * this level.
  3553. */
  3554. update_sd_lb_stats(sd, this_cpu, idle, cpus, balance, &sds);
  3555. /*
  3556. * this_cpu is not the appropriate cpu to perform load balancing at
  3557. * this level.
  3558. */
  3559. if (!(*balance))
  3560. goto ret;
  3561. if ((idle == CPU_IDLE || idle == CPU_NEWLY_IDLE) &&
  3562. check_asym_packing(sd, &sds, this_cpu, imbalance))
  3563. return sds.busiest;
  3564. /* There is no busy sibling group to pull tasks from */
  3565. if (!sds.busiest || sds.busiest_nr_running == 0)
  3566. goto out_balanced;
  3567. sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
  3568. /*
  3569. * If the busiest group is imbalanced the below checks don't
  3570. * work because they assumes all things are equal, which typically
  3571. * isn't true due to cpus_allowed constraints and the like.
  3572. */
  3573. if (sds.group_imb)
  3574. goto force_balance;
  3575. /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
  3576. if (idle == CPU_NEWLY_IDLE && sds.this_has_capacity &&
  3577. !sds.busiest_has_capacity)
  3578. goto force_balance;
  3579. /*
  3580. * If the local group is more busy than the selected busiest group
  3581. * don't try and pull any tasks.
  3582. */
  3583. if (sds.this_load >= sds.max_load)
  3584. goto out_balanced;
  3585. /*
  3586. * Don't pull any tasks if this group is already above the domain
  3587. * average load.
  3588. */
  3589. if (sds.this_load >= sds.avg_load)
  3590. goto out_balanced;
  3591. if (idle == CPU_IDLE) {
  3592. /*
  3593. * This cpu is idle. If the busiest group load doesn't
  3594. * have more tasks than the number of available cpu's and
  3595. * there is no imbalance between this and busiest group
  3596. * wrt to idle cpu's, it is balanced.
  3597. */
  3598. if ((sds.this_idle_cpus <= sds.busiest_idle_cpus + 1) &&
  3599. sds.busiest_nr_running <= sds.busiest_group_weight)
  3600. goto out_balanced;
  3601. } else {
  3602. /*
  3603. * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
  3604. * imbalance_pct to be conservative.
  3605. */
  3606. if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
  3607. goto out_balanced;
  3608. }
  3609. force_balance:
  3610. /* Looks like there is an imbalance. Compute it */
  3611. calculate_imbalance(&sds, this_cpu, imbalance);
  3612. return sds.busiest;
  3613. out_balanced:
  3614. /*
  3615. * There is no obvious imbalance. But check if we can do some balancing
  3616. * to save power.
  3617. */
  3618. if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
  3619. return sds.busiest;
  3620. ret:
  3621. *imbalance = 0;
  3622. return NULL;
  3623. }
  3624. /*
  3625. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  3626. */
  3627. static struct rq *
  3628. find_busiest_queue(struct sched_domain *sd, struct sched_group *group,
  3629. enum cpu_idle_type idle, unsigned long imbalance,
  3630. const struct cpumask *cpus)
  3631. {
  3632. struct rq *busiest = NULL, *rq;
  3633. unsigned long max_load = 0;
  3634. int i;
  3635. for_each_cpu(i, sched_group_cpus(group)) {
  3636. unsigned long power = power_of(i);
  3637. unsigned long capacity = DIV_ROUND_CLOSEST(power,
  3638. SCHED_POWER_SCALE);
  3639. unsigned long wl;
  3640. if (!capacity)
  3641. capacity = fix_small_capacity(sd, group);
  3642. if (!cpumask_test_cpu(i, cpus))
  3643. continue;
  3644. rq = cpu_rq(i);
  3645. wl = weighted_cpuload(i);
  3646. /*
  3647. * When comparing with imbalance, use weighted_cpuload()
  3648. * which is not scaled with the cpu power.
  3649. */
  3650. if (capacity && rq->nr_running == 1 && wl > imbalance)
  3651. continue;
  3652. /*
  3653. * For the load comparisons with the other cpu's, consider
  3654. * the weighted_cpuload() scaled with the cpu power, so that
  3655. * the load can be moved away from the cpu that is potentially
  3656. * running at a lower capacity.
  3657. */
  3658. wl = (wl * SCHED_POWER_SCALE) / power;
  3659. if (wl > max_load) {
  3660. max_load = wl;
  3661. busiest = rq;
  3662. }
  3663. }
  3664. return busiest;
  3665. }
  3666. /*
  3667. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  3668. * so long as it is large enough.
  3669. */
  3670. #define MAX_PINNED_INTERVAL 512
  3671. /* Working cpumask for load_balance and load_balance_newidle. */
  3672. DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
  3673. static int need_active_balance(struct sched_domain *sd, int idle,
  3674. int busiest_cpu, int this_cpu)
  3675. {
  3676. if (idle == CPU_NEWLY_IDLE) {
  3677. /*
  3678. * ASYM_PACKING needs to force migrate tasks from busy but
  3679. * higher numbered CPUs in order to pack all tasks in the
  3680. * lowest numbered CPUs.
  3681. */
  3682. if ((sd->flags & SD_ASYM_PACKING) && busiest_cpu > this_cpu)
  3683. return 1;
  3684. /*
  3685. * The only task running in a non-idle cpu can be moved to this
  3686. * cpu in an attempt to completely freeup the other CPU
  3687. * package.
  3688. *
  3689. * The package power saving logic comes from
  3690. * find_busiest_group(). If there are no imbalance, then
  3691. * f_b_g() will return NULL. However when sched_mc={1,2} then
  3692. * f_b_g() will select a group from which a running task may be
  3693. * pulled to this cpu in order to make the other package idle.
  3694. * If there is no opportunity to make a package idle and if
  3695. * there are no imbalance, then f_b_g() will return NULL and no
  3696. * action will be taken in load_balance_newidle().
  3697. *
  3698. * Under normal task pull operation due to imbalance, there
  3699. * will be more than one task in the source run queue and
  3700. * move_tasks() will succeed. ld_moved will be true and this
  3701. * active balance code will not be triggered.
  3702. */
  3703. if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
  3704. return 0;
  3705. }
  3706. return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
  3707. }
  3708. static int active_load_balance_cpu_stop(void *data);
  3709. /*
  3710. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  3711. * tasks if there is an imbalance.
  3712. */
  3713. static int load_balance(int this_cpu, struct rq *this_rq,
  3714. struct sched_domain *sd, enum cpu_idle_type idle,
  3715. int *balance)
  3716. {
  3717. int ld_moved, all_pinned = 0, active_balance = 0;
  3718. struct sched_group *group;
  3719. unsigned long imbalance;
  3720. struct rq *busiest;
  3721. unsigned long flags;
  3722. struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
  3723. cpumask_copy(cpus, cpu_active_mask);
  3724. schedstat_inc(sd, lb_count[idle]);
  3725. redo:
  3726. group = find_busiest_group(sd, this_cpu, &imbalance, idle,
  3727. cpus, balance);
  3728. if (*balance == 0)
  3729. goto out_balanced;
  3730. if (!group) {
  3731. schedstat_inc(sd, lb_nobusyg[idle]);
  3732. goto out_balanced;
  3733. }
  3734. busiest = find_busiest_queue(sd, group, idle, imbalance, cpus);
  3735. if (!busiest) {
  3736. schedstat_inc(sd, lb_nobusyq[idle]);
  3737. goto out_balanced;
  3738. }
  3739. BUG_ON(busiest == this_rq);
  3740. schedstat_add(sd, lb_imbalance[idle], imbalance);
  3741. ld_moved = 0;
  3742. if (busiest->nr_running > 1) {
  3743. /*
  3744. * Attempt to move tasks. If find_busiest_group has found
  3745. * an imbalance but busiest->nr_running <= 1, the group is
  3746. * still unbalanced. ld_moved simply stays zero, so it is
  3747. * correctly treated as an imbalance.
  3748. */
  3749. all_pinned = 1;
  3750. local_irq_save(flags);
  3751. double_rq_lock(this_rq, busiest);
  3752. ld_moved = move_tasks(this_rq, this_cpu, busiest,
  3753. imbalance, sd, idle, &all_pinned);
  3754. double_rq_unlock(this_rq, busiest);
  3755. local_irq_restore(flags);
  3756. /*
  3757. * some other cpu did the load balance for us.
  3758. */
  3759. if (ld_moved && this_cpu != smp_processor_id())
  3760. resched_cpu(this_cpu);
  3761. /* All tasks on this runqueue were pinned by CPU affinity */
  3762. if (unlikely(all_pinned)) {
  3763. cpumask_clear_cpu(cpu_of(busiest), cpus);
  3764. if (!cpumask_empty(cpus))
  3765. goto redo;
  3766. goto out_balanced;
  3767. }
  3768. }
  3769. if (!ld_moved) {
  3770. schedstat_inc(sd, lb_failed[idle]);
  3771. /*
  3772. * Increment the failure counter only on periodic balance.
  3773. * We do not want newidle balance, which can be very
  3774. * frequent, pollute the failure counter causing
  3775. * excessive cache_hot migrations and active balances.
  3776. */
  3777. if (idle != CPU_NEWLY_IDLE)
  3778. sd->nr_balance_failed++;
  3779. if (need_active_balance(sd, idle, cpu_of(busiest), this_cpu)) {
  3780. raw_spin_lock_irqsave(&busiest->lock, flags);
  3781. /* don't kick the active_load_balance_cpu_stop,
  3782. * if the curr task on busiest cpu can't be
  3783. * moved to this_cpu
  3784. */
  3785. if (!cpumask_test_cpu(this_cpu,
  3786. tsk_cpus_allowed(busiest->curr))) {
  3787. raw_spin_unlock_irqrestore(&busiest->lock,
  3788. flags);
  3789. all_pinned = 1;
  3790. goto out_one_pinned;
  3791. }
  3792. /*
  3793. * ->active_balance synchronizes accesses to
  3794. * ->active_balance_work. Once set, it's cleared
  3795. * only after active load balance is finished.
  3796. */
  3797. if (!busiest->active_balance) {
  3798. busiest->active_balance = 1;
  3799. busiest->push_cpu = this_cpu;
  3800. active_balance = 1;
  3801. }
  3802. raw_spin_unlock_irqrestore(&busiest->lock, flags);
  3803. if (active_balance)
  3804. stop_one_cpu_nowait(cpu_of(busiest),
  3805. active_load_balance_cpu_stop, busiest,
  3806. &busiest->active_balance_work);
  3807. /*
  3808. * We've kicked active balancing, reset the failure
  3809. * counter.
  3810. */
  3811. sd->nr_balance_failed = sd->cache_nice_tries+1;
  3812. }
  3813. } else
  3814. sd->nr_balance_failed = 0;
  3815. if (likely(!active_balance)) {
  3816. /* We were unbalanced, so reset the balancing interval */
  3817. sd->balance_interval = sd->min_interval;
  3818. } else {
  3819. /*
  3820. * If we've begun active balancing, start to back off. This
  3821. * case may not be covered by the all_pinned logic if there
  3822. * is only 1 task on the busy runqueue (because we don't call
  3823. * move_tasks).
  3824. */
  3825. if (sd->balance_interval < sd->max_interval)
  3826. sd->balance_interval *= 2;
  3827. }
  3828. goto out;
  3829. out_balanced:
  3830. schedstat_inc(sd, lb_balanced[idle]);
  3831. sd->nr_balance_failed = 0;
  3832. out_one_pinned:
  3833. /* tune up the balancing interval */
  3834. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  3835. (sd->balance_interval < sd->max_interval))
  3836. sd->balance_interval *= 2;
  3837. ld_moved = 0;
  3838. out:
  3839. return ld_moved;
  3840. }
  3841. /*
  3842. * idle_balance is called by schedule() if this_cpu is about to become
  3843. * idle. Attempts to pull tasks from other CPUs.
  3844. */
  3845. void idle_balance(int this_cpu, struct rq *this_rq)
  3846. {
  3847. struct sched_domain *sd;
  3848. int pulled_task = 0;
  3849. unsigned long next_balance = jiffies + HZ;
  3850. this_rq->idle_stamp = this_rq->clock;
  3851. if (this_rq->avg_idle < sysctl_sched_migration_cost)
  3852. return;
  3853. /*
  3854. * Drop the rq->lock, but keep IRQ/preempt disabled.
  3855. */
  3856. raw_spin_unlock(&this_rq->lock);
  3857. update_shares(this_cpu);
  3858. rcu_read_lock();
  3859. for_each_domain(this_cpu, sd) {
  3860. unsigned long interval;
  3861. int balance = 1;
  3862. if (!(sd->flags & SD_LOAD_BALANCE))
  3863. continue;
  3864. if (sd->flags & SD_BALANCE_NEWIDLE) {
  3865. /* If we've pulled tasks over stop searching: */
  3866. pulled_task = load_balance(this_cpu, this_rq,
  3867. sd, CPU_NEWLY_IDLE, &balance);
  3868. }
  3869. interval = msecs_to_jiffies(sd->balance_interval);
  3870. if (time_after(next_balance, sd->last_balance + interval))
  3871. next_balance = sd->last_balance + interval;
  3872. if (pulled_task) {
  3873. this_rq->idle_stamp = 0;
  3874. break;
  3875. }
  3876. }
  3877. rcu_read_unlock();
  3878. raw_spin_lock(&this_rq->lock);
  3879. if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
  3880. /*
  3881. * We are going idle. next_balance may be set based on
  3882. * a busy processor. So reset next_balance.
  3883. */
  3884. this_rq->next_balance = next_balance;
  3885. }
  3886. }
  3887. /*
  3888. * active_load_balance_cpu_stop is run by cpu stopper. It pushes
  3889. * running tasks off the busiest CPU onto idle CPUs. It requires at
  3890. * least 1 task to be running on each physical CPU where possible, and
  3891. * avoids physical / logical imbalances.
  3892. */
  3893. static int active_load_balance_cpu_stop(void *data)
  3894. {
  3895. struct rq *busiest_rq = data;
  3896. int busiest_cpu = cpu_of(busiest_rq);
  3897. int target_cpu = busiest_rq->push_cpu;
  3898. struct rq *target_rq = cpu_rq(target_cpu);
  3899. struct sched_domain *sd;
  3900. raw_spin_lock_irq(&busiest_rq->lock);
  3901. /* make sure the requested cpu hasn't gone down in the meantime */
  3902. if (unlikely(busiest_cpu != smp_processor_id() ||
  3903. !busiest_rq->active_balance))
  3904. goto out_unlock;
  3905. /* Is there any task to move? */
  3906. if (busiest_rq->nr_running <= 1)
  3907. goto out_unlock;
  3908. /*
  3909. * This condition is "impossible", if it occurs
  3910. * we need to fix it. Originally reported by
  3911. * Bjorn Helgaas on a 128-cpu setup.
  3912. */
  3913. BUG_ON(busiest_rq == target_rq);
  3914. /* move a task from busiest_rq to target_rq */
  3915. double_lock_balance(busiest_rq, target_rq);
  3916. /* Search for an sd spanning us and the target CPU. */
  3917. rcu_read_lock();
  3918. for_each_domain(target_cpu, sd) {
  3919. if ((sd->flags & SD_LOAD_BALANCE) &&
  3920. cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
  3921. break;
  3922. }
  3923. if (likely(sd)) {
  3924. schedstat_inc(sd, alb_count);
  3925. if (move_one_task(target_rq, target_cpu, busiest_rq,
  3926. sd, CPU_IDLE))
  3927. schedstat_inc(sd, alb_pushed);
  3928. else
  3929. schedstat_inc(sd, alb_failed);
  3930. }
  3931. rcu_read_unlock();
  3932. double_unlock_balance(busiest_rq, target_rq);
  3933. out_unlock:
  3934. busiest_rq->active_balance = 0;
  3935. raw_spin_unlock_irq(&busiest_rq->lock);
  3936. return 0;
  3937. }
  3938. #ifdef CONFIG_NO_HZ
  3939. /*
  3940. * idle load balancing details
  3941. * - When one of the busy CPUs notice that there may be an idle rebalancing
  3942. * needed, they will kick the idle load balancer, which then does idle
  3943. * load balancing for all the idle CPUs.
  3944. */
  3945. static struct {
  3946. cpumask_var_t idle_cpus_mask;
  3947. atomic_t nr_cpus;
  3948. unsigned long next_balance; /* in jiffy units */
  3949. } nohz ____cacheline_aligned;
  3950. #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
  3951. /**
  3952. * lowest_flag_domain - Return lowest sched_domain containing flag.
  3953. * @cpu: The cpu whose lowest level of sched domain is to
  3954. * be returned.
  3955. * @flag: The flag to check for the lowest sched_domain
  3956. * for the given cpu.
  3957. *
  3958. * Returns the lowest sched_domain of a cpu which contains the given flag.
  3959. */
  3960. static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
  3961. {
  3962. struct sched_domain *sd;
  3963. for_each_domain(cpu, sd)
  3964. if (sd->flags & flag)
  3965. break;
  3966. return sd;
  3967. }
  3968. /**
  3969. * for_each_flag_domain - Iterates over sched_domains containing the flag.
  3970. * @cpu: The cpu whose domains we're iterating over.
  3971. * @sd: variable holding the value of the power_savings_sd
  3972. * for cpu.
  3973. * @flag: The flag to filter the sched_domains to be iterated.
  3974. *
  3975. * Iterates over all the scheduler domains for a given cpu that has the 'flag'
  3976. * set, starting from the lowest sched_domain to the highest.
  3977. */
  3978. #define for_each_flag_domain(cpu, sd, flag) \
  3979. for (sd = lowest_flag_domain(cpu, flag); \
  3980. (sd && (sd->flags & flag)); sd = sd->parent)
  3981. /**
  3982. * find_new_ilb - Finds the optimum idle load balancer for nomination.
  3983. * @cpu: The cpu which is nominating a new idle_load_balancer.
  3984. *
  3985. * Returns: Returns the id of the idle load balancer if it exists,
  3986. * Else, returns >= nr_cpu_ids.
  3987. *
  3988. * This algorithm picks the idle load balancer such that it belongs to a
  3989. * semi-idle powersavings sched_domain. The idea is to try and avoid
  3990. * completely idle packages/cores just for the purpose of idle load balancing
  3991. * when there are other idle cpu's which are better suited for that job.
  3992. */
  3993. static int find_new_ilb(int cpu)
  3994. {
  3995. int ilb = cpumask_first(nohz.idle_cpus_mask);
  3996. struct sched_group *ilbg;
  3997. struct sched_domain *sd;
  3998. /*
  3999. * Have idle load balancer selection from semi-idle packages only
  4000. * when power-aware load balancing is enabled
  4001. */
  4002. if (!(sched_smt_power_savings || sched_mc_power_savings))
  4003. goto out_done;
  4004. /*
  4005. * Optimize for the case when we have no idle CPUs or only one
  4006. * idle CPU. Don't walk the sched_domain hierarchy in such cases
  4007. */
  4008. if (cpumask_weight(nohz.idle_cpus_mask) < 2)
  4009. goto out_done;
  4010. rcu_read_lock();
  4011. for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
  4012. ilbg = sd->groups;
  4013. do {
  4014. if (ilbg->group_weight !=
  4015. atomic_read(&ilbg->sgp->nr_busy_cpus)) {
  4016. ilb = cpumask_first_and(nohz.idle_cpus_mask,
  4017. sched_group_cpus(ilbg));
  4018. goto unlock;
  4019. }
  4020. ilbg = ilbg->next;
  4021. } while (ilbg != sd->groups);
  4022. }
  4023. unlock:
  4024. rcu_read_unlock();
  4025. out_done:
  4026. if (ilb < nr_cpu_ids && idle_cpu(ilb))
  4027. return ilb;
  4028. return nr_cpu_ids;
  4029. }
  4030. #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
  4031. static inline int find_new_ilb(int call_cpu)
  4032. {
  4033. return nr_cpu_ids;
  4034. }
  4035. #endif
  4036. /*
  4037. * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
  4038. * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
  4039. * CPU (if there is one).
  4040. */
  4041. static void nohz_balancer_kick(int cpu)
  4042. {
  4043. int ilb_cpu;
  4044. nohz.next_balance++;
  4045. ilb_cpu = find_new_ilb(cpu);
  4046. if (ilb_cpu >= nr_cpu_ids)
  4047. return;
  4048. if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
  4049. return;
  4050. /*
  4051. * Use smp_send_reschedule() instead of resched_cpu().
  4052. * This way we generate a sched IPI on the target cpu which
  4053. * is idle. And the softirq performing nohz idle load balance
  4054. * will be run before returning from the IPI.
  4055. */
  4056. smp_send_reschedule(ilb_cpu);
  4057. return;
  4058. }
  4059. static inline void set_cpu_sd_state_busy(void)
  4060. {
  4061. struct sched_domain *sd;
  4062. int cpu = smp_processor_id();
  4063. if (!test_bit(NOHZ_IDLE, nohz_flags(cpu)))
  4064. return;
  4065. clear_bit(NOHZ_IDLE, nohz_flags(cpu));
  4066. rcu_read_lock();
  4067. for_each_domain(cpu, sd)
  4068. atomic_inc(&sd->groups->sgp->nr_busy_cpus);
  4069. rcu_read_unlock();
  4070. }
  4071. void set_cpu_sd_state_idle(void)
  4072. {
  4073. struct sched_domain *sd;
  4074. int cpu = smp_processor_id();
  4075. if (test_bit(NOHZ_IDLE, nohz_flags(cpu)))
  4076. return;
  4077. set_bit(NOHZ_IDLE, nohz_flags(cpu));
  4078. rcu_read_lock();
  4079. for_each_domain(cpu, sd)
  4080. atomic_dec(&sd->groups->sgp->nr_busy_cpus);
  4081. rcu_read_unlock();
  4082. }
  4083. /*
  4084. * This routine will record that this cpu is going idle with tick stopped.
  4085. * This info will be used in performing idle load balancing in the future.
  4086. */
  4087. void select_nohz_load_balancer(int stop_tick)
  4088. {
  4089. int cpu = smp_processor_id();
  4090. if (stop_tick) {
  4091. if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
  4092. return;
  4093. cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
  4094. atomic_inc(&nohz.nr_cpus);
  4095. set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
  4096. }
  4097. return;
  4098. }
  4099. #endif
  4100. static DEFINE_SPINLOCK(balancing);
  4101. static unsigned long __read_mostly max_load_balance_interval = HZ/10;
  4102. /*
  4103. * Scale the max load_balance interval with the number of CPUs in the system.
  4104. * This trades load-balance latency on larger machines for less cross talk.
  4105. */
  4106. void update_max_interval(void)
  4107. {
  4108. max_load_balance_interval = HZ*num_online_cpus()/10;
  4109. }
  4110. /*
  4111. * It checks each scheduling domain to see if it is due to be balanced,
  4112. * and initiates a balancing operation if so.
  4113. *
  4114. * Balancing parameters are set up in arch_init_sched_domains.
  4115. */
  4116. static void rebalance_domains(int cpu, enum cpu_idle_type idle)
  4117. {
  4118. int balance = 1;
  4119. struct rq *rq = cpu_rq(cpu);
  4120. unsigned long interval;
  4121. struct sched_domain *sd;
  4122. /* Earliest time when we have to do rebalance again */
  4123. unsigned long next_balance = jiffies + 60*HZ;
  4124. int update_next_balance = 0;
  4125. int need_serialize;
  4126. update_shares(cpu);
  4127. rcu_read_lock();
  4128. for_each_domain(cpu, sd) {
  4129. if (!(sd->flags & SD_LOAD_BALANCE))
  4130. continue;
  4131. interval = sd->balance_interval;
  4132. if (idle != CPU_IDLE)
  4133. interval *= sd->busy_factor;
  4134. /* scale ms to jiffies */
  4135. interval = msecs_to_jiffies(interval);
  4136. interval = clamp(interval, 1UL, max_load_balance_interval);
  4137. need_serialize = sd->flags & SD_SERIALIZE;
  4138. if (need_serialize) {
  4139. if (!spin_trylock(&balancing))
  4140. goto out;
  4141. }
  4142. if (time_after_eq(jiffies, sd->last_balance + interval)) {
  4143. if (load_balance(cpu, rq, sd, idle, &balance)) {
  4144. /*
  4145. * We've pulled tasks over so either we're no
  4146. * longer idle.
  4147. */
  4148. idle = CPU_NOT_IDLE;
  4149. }
  4150. sd->last_balance = jiffies;
  4151. }
  4152. if (need_serialize)
  4153. spin_unlock(&balancing);
  4154. out:
  4155. if (time_after(next_balance, sd->last_balance + interval)) {
  4156. next_balance = sd->last_balance + interval;
  4157. update_next_balance = 1;
  4158. }
  4159. /*
  4160. * Stop the load balance at this level. There is another
  4161. * CPU in our sched group which is doing load balancing more
  4162. * actively.
  4163. */
  4164. if (!balance)
  4165. break;
  4166. }
  4167. rcu_read_unlock();
  4168. /*
  4169. * next_balance will be updated only when there is a need.
  4170. * When the cpu is attached to null domain for ex, it will not be
  4171. * updated.
  4172. */
  4173. if (likely(update_next_balance))
  4174. rq->next_balance = next_balance;
  4175. }
  4176. #ifdef CONFIG_NO_HZ
  4177. /*
  4178. * In CONFIG_NO_HZ case, the idle balance kickee will do the
  4179. * rebalancing for all the cpus for whom scheduler ticks are stopped.
  4180. */
  4181. static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
  4182. {
  4183. struct rq *this_rq = cpu_rq(this_cpu);
  4184. struct rq *rq;
  4185. int balance_cpu;
  4186. if (idle != CPU_IDLE ||
  4187. !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
  4188. goto end;
  4189. for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
  4190. if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
  4191. continue;
  4192. /*
  4193. * If this cpu gets work to do, stop the load balancing
  4194. * work being done for other cpus. Next load
  4195. * balancing owner will pick it up.
  4196. */
  4197. if (need_resched())
  4198. break;
  4199. raw_spin_lock_irq(&this_rq->lock);
  4200. update_rq_clock(this_rq);
  4201. update_cpu_load(this_rq);
  4202. raw_spin_unlock_irq(&this_rq->lock);
  4203. rebalance_domains(balance_cpu, CPU_IDLE);
  4204. rq = cpu_rq(balance_cpu);
  4205. if (time_after(this_rq->next_balance, rq->next_balance))
  4206. this_rq->next_balance = rq->next_balance;
  4207. }
  4208. nohz.next_balance = this_rq->next_balance;
  4209. end:
  4210. clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
  4211. }
  4212. /*
  4213. * Current heuristic for kicking the idle load balancer in the presence
  4214. * of an idle cpu is the system.
  4215. * - This rq has more than one task.
  4216. * - At any scheduler domain level, this cpu's scheduler group has multiple
  4217. * busy cpu's exceeding the group's power.
  4218. * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
  4219. * domain span are idle.
  4220. */
  4221. static inline int nohz_kick_needed(struct rq *rq, int cpu)
  4222. {
  4223. unsigned long now = jiffies;
  4224. struct sched_domain *sd;
  4225. if (unlikely(idle_cpu(cpu)))
  4226. return 0;
  4227. /*
  4228. * We may be recently in ticked or tickless idle mode. At the first
  4229. * busy tick after returning from idle, we will update the busy stats.
  4230. */
  4231. set_cpu_sd_state_busy();
  4232. if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
  4233. clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
  4234. cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
  4235. atomic_dec(&nohz.nr_cpus);
  4236. }
  4237. /*
  4238. * None are in tickless mode and hence no need for NOHZ idle load
  4239. * balancing.
  4240. */
  4241. if (likely(!atomic_read(&nohz.nr_cpus)))
  4242. return 0;
  4243. if (time_before(now, nohz.next_balance))
  4244. return 0;
  4245. if (rq->nr_running >= 2)
  4246. goto need_kick;
  4247. rcu_read_lock();
  4248. for_each_domain(cpu, sd) {
  4249. struct sched_group *sg = sd->groups;
  4250. struct sched_group_power *sgp = sg->sgp;
  4251. int nr_busy = atomic_read(&sgp->nr_busy_cpus);
  4252. if (sd->flags & SD_SHARE_PKG_RESOURCES && nr_busy > 1)
  4253. goto need_kick_unlock;
  4254. if (sd->flags & SD_ASYM_PACKING && nr_busy != sg->group_weight
  4255. && (cpumask_first_and(nohz.idle_cpus_mask,
  4256. sched_domain_span(sd)) < cpu))
  4257. goto need_kick_unlock;
  4258. if (!(sd->flags & (SD_SHARE_PKG_RESOURCES | SD_ASYM_PACKING)))
  4259. break;
  4260. }
  4261. rcu_read_unlock();
  4262. return 0;
  4263. need_kick_unlock:
  4264. rcu_read_unlock();
  4265. need_kick:
  4266. return 1;
  4267. }
  4268. #else
  4269. static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
  4270. #endif
  4271. /*
  4272. * run_rebalance_domains is triggered when needed from the scheduler tick.
  4273. * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
  4274. */
  4275. static void run_rebalance_domains(struct softirq_action *h)
  4276. {
  4277. int this_cpu = smp_processor_id();
  4278. struct rq *this_rq = cpu_rq(this_cpu);
  4279. enum cpu_idle_type idle = this_rq->idle_balance ?
  4280. CPU_IDLE : CPU_NOT_IDLE;
  4281. rebalance_domains(this_cpu, idle);
  4282. /*
  4283. * If this cpu has a pending nohz_balance_kick, then do the
  4284. * balancing on behalf of the other idle cpus whose ticks are
  4285. * stopped.
  4286. */
  4287. nohz_idle_balance(this_cpu, idle);
  4288. }
  4289. static inline int on_null_domain(int cpu)
  4290. {
  4291. return !rcu_dereference_sched(cpu_rq(cpu)->sd);
  4292. }
  4293. /*
  4294. * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
  4295. */
  4296. void trigger_load_balance(struct rq *rq, int cpu)
  4297. {
  4298. /* Don't need to rebalance while attached to NULL domain */
  4299. if (time_after_eq(jiffies, rq->next_balance) &&
  4300. likely(!on_null_domain(cpu)))
  4301. raise_softirq(SCHED_SOFTIRQ);
  4302. #ifdef CONFIG_NO_HZ
  4303. if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
  4304. nohz_balancer_kick(cpu);
  4305. #endif
  4306. }
  4307. static void rq_online_fair(struct rq *rq)
  4308. {
  4309. update_sysctl();
  4310. }
  4311. static void rq_offline_fair(struct rq *rq)
  4312. {
  4313. update_sysctl();
  4314. }
  4315. #endif /* CONFIG_SMP */
  4316. /*
  4317. * scheduler tick hitting a task of our scheduling class:
  4318. */
  4319. static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
  4320. {
  4321. struct cfs_rq *cfs_rq;
  4322. struct sched_entity *se = &curr->se;
  4323. for_each_sched_entity(se) {
  4324. cfs_rq = cfs_rq_of(se);
  4325. entity_tick(cfs_rq, se, queued);
  4326. }
  4327. }
  4328. /*
  4329. * called on fork with the child task as argument from the parent's context
  4330. * - child not yet on the tasklist
  4331. * - preemption disabled
  4332. */
  4333. static void task_fork_fair(struct task_struct *p)
  4334. {
  4335. struct cfs_rq *cfs_rq = task_cfs_rq(current);
  4336. struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
  4337. int this_cpu = smp_processor_id();
  4338. struct rq *rq = this_rq();
  4339. unsigned long flags;
  4340. raw_spin_lock_irqsave(&rq->lock, flags);
  4341. update_rq_clock(rq);
  4342. if (unlikely(task_cpu(p) != this_cpu)) {
  4343. rcu_read_lock();
  4344. __set_task_cpu(p, this_cpu);
  4345. rcu_read_unlock();
  4346. }
  4347. update_curr(cfs_rq);
  4348. if (curr)
  4349. se->vruntime = curr->vruntime;
  4350. place_entity(cfs_rq, se, 1);
  4351. if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
  4352. /*
  4353. * Upon rescheduling, sched_class::put_prev_task() will place
  4354. * 'current' within the tree based on its new key value.
  4355. */
  4356. swap(curr->vruntime, se->vruntime);
  4357. resched_task(rq->curr);
  4358. }
  4359. se->vruntime -= cfs_rq->min_vruntime;
  4360. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4361. }
  4362. /*
  4363. * Priority of the task has changed. Check to see if we preempt
  4364. * the current task.
  4365. */
  4366. static void
  4367. prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
  4368. {
  4369. if (!p->se.on_rq)
  4370. return;
  4371. /*
  4372. * Reschedule if we are currently running on this runqueue and
  4373. * our priority decreased, or if we are not currently running on
  4374. * this runqueue and our priority is higher than the current's
  4375. */
  4376. if (rq->curr == p) {
  4377. if (p->prio > oldprio)
  4378. resched_task(rq->curr);
  4379. } else
  4380. check_preempt_curr(rq, p, 0);
  4381. }
  4382. static void switched_from_fair(struct rq *rq, struct task_struct *p)
  4383. {
  4384. struct sched_entity *se = &p->se;
  4385. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  4386. /*
  4387. * Ensure the task's vruntime is normalized, so that when its
  4388. * switched back to the fair class the enqueue_entity(.flags=0) will
  4389. * do the right thing.
  4390. *
  4391. * If it was on_rq, then the dequeue_entity(.flags=0) will already
  4392. * have normalized the vruntime, if it was !on_rq, then only when
  4393. * the task is sleeping will it still have non-normalized vruntime.
  4394. */
  4395. if (!se->on_rq && p->state != TASK_RUNNING) {
  4396. /*
  4397. * Fix up our vruntime so that the current sleep doesn't
  4398. * cause 'unlimited' sleep bonus.
  4399. */
  4400. place_entity(cfs_rq, se, 0);
  4401. se->vruntime -= cfs_rq->min_vruntime;
  4402. }
  4403. }
  4404. /*
  4405. * We switched to the sched_fair class.
  4406. */
  4407. static void switched_to_fair(struct rq *rq, struct task_struct *p)
  4408. {
  4409. if (!p->se.on_rq)
  4410. return;
  4411. /*
  4412. * We were most likely switched from sched_rt, so
  4413. * kick off the schedule if running, otherwise just see
  4414. * if we can still preempt the current task.
  4415. */
  4416. if (rq->curr == p)
  4417. resched_task(rq->curr);
  4418. else
  4419. check_preempt_curr(rq, p, 0);
  4420. }
  4421. /* Account for a task changing its policy or group.
  4422. *
  4423. * This routine is mostly called to set cfs_rq->curr field when a task
  4424. * migrates between groups/classes.
  4425. */
  4426. static void set_curr_task_fair(struct rq *rq)
  4427. {
  4428. struct sched_entity *se = &rq->curr->se;
  4429. for_each_sched_entity(se) {
  4430. struct cfs_rq *cfs_rq = cfs_rq_of(se);
  4431. set_next_entity(cfs_rq, se);
  4432. /* ensure bandwidth has been allocated on our new cfs_rq */
  4433. account_cfs_rq_runtime(cfs_rq, 0);
  4434. }
  4435. }
  4436. void init_cfs_rq(struct cfs_rq *cfs_rq)
  4437. {
  4438. cfs_rq->tasks_timeline = RB_ROOT;
  4439. INIT_LIST_HEAD(&cfs_rq->tasks);
  4440. cfs_rq->min_vruntime = (u64)(-(1LL << 20));
  4441. #ifndef CONFIG_64BIT
  4442. cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
  4443. #endif
  4444. }
  4445. #ifdef CONFIG_FAIR_GROUP_SCHED
  4446. static void task_move_group_fair(struct task_struct *p, int on_rq)
  4447. {
  4448. /*
  4449. * If the task was not on the rq at the time of this cgroup movement
  4450. * it must have been asleep, sleeping tasks keep their ->vruntime
  4451. * absolute on their old rq until wakeup (needed for the fair sleeper
  4452. * bonus in place_entity()).
  4453. *
  4454. * If it was on the rq, we've just 'preempted' it, which does convert
  4455. * ->vruntime to a relative base.
  4456. *
  4457. * Make sure both cases convert their relative position when migrating
  4458. * to another cgroup's rq. This does somewhat interfere with the
  4459. * fair sleeper stuff for the first placement, but who cares.
  4460. */
  4461. if (!on_rq)
  4462. p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
  4463. set_task_rq(p, task_cpu(p));
  4464. if (!on_rq)
  4465. p->se.vruntime += cfs_rq_of(&p->se)->min_vruntime;
  4466. }
  4467. void free_fair_sched_group(struct task_group *tg)
  4468. {
  4469. int i;
  4470. destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
  4471. for_each_possible_cpu(i) {
  4472. if (tg->cfs_rq)
  4473. kfree(tg->cfs_rq[i]);
  4474. if (tg->se)
  4475. kfree(tg->se[i]);
  4476. }
  4477. kfree(tg->cfs_rq);
  4478. kfree(tg->se);
  4479. }
  4480. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  4481. {
  4482. struct cfs_rq *cfs_rq;
  4483. struct sched_entity *se;
  4484. int i;
  4485. tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
  4486. if (!tg->cfs_rq)
  4487. goto err;
  4488. tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
  4489. if (!tg->se)
  4490. goto err;
  4491. tg->shares = NICE_0_LOAD;
  4492. init_cfs_bandwidth(tg_cfs_bandwidth(tg));
  4493. for_each_possible_cpu(i) {
  4494. cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
  4495. GFP_KERNEL, cpu_to_node(i));
  4496. if (!cfs_rq)
  4497. goto err;
  4498. se = kzalloc_node(sizeof(struct sched_entity),
  4499. GFP_KERNEL, cpu_to_node(i));
  4500. if (!se)
  4501. goto err_free_rq;
  4502. init_cfs_rq(cfs_rq);
  4503. init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
  4504. }
  4505. return 1;
  4506. err_free_rq:
  4507. kfree(cfs_rq);
  4508. err:
  4509. return 0;
  4510. }
  4511. void unregister_fair_sched_group(struct task_group *tg, int cpu)
  4512. {
  4513. struct rq *rq = cpu_rq(cpu);
  4514. unsigned long flags;
  4515. /*
  4516. * Only empty task groups can be destroyed; so we can speculatively
  4517. * check on_list without danger of it being re-added.
  4518. */
  4519. if (!tg->cfs_rq[cpu]->on_list)
  4520. return;
  4521. raw_spin_lock_irqsave(&rq->lock, flags);
  4522. list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
  4523. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4524. }
  4525. void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
  4526. struct sched_entity *se, int cpu,
  4527. struct sched_entity *parent)
  4528. {
  4529. struct rq *rq = cpu_rq(cpu);
  4530. cfs_rq->tg = tg;
  4531. cfs_rq->rq = rq;
  4532. #ifdef CONFIG_SMP
  4533. /* allow initial update_cfs_load() to truncate */
  4534. cfs_rq->load_stamp = 1;
  4535. #endif
  4536. init_cfs_rq_runtime(cfs_rq);
  4537. tg->cfs_rq[cpu] = cfs_rq;
  4538. tg->se[cpu] = se;
  4539. /* se could be NULL for root_task_group */
  4540. if (!se)
  4541. return;
  4542. if (!parent)
  4543. se->cfs_rq = &rq->cfs;
  4544. else
  4545. se->cfs_rq = parent->my_q;
  4546. se->my_q = cfs_rq;
  4547. update_load_set(&se->load, 0);
  4548. se->parent = parent;
  4549. }
  4550. static DEFINE_MUTEX(shares_mutex);
  4551. int sched_group_set_shares(struct task_group *tg, unsigned long shares)
  4552. {
  4553. int i;
  4554. unsigned long flags;
  4555. /*
  4556. * We can't change the weight of the root cgroup.
  4557. */
  4558. if (!tg->se[0])
  4559. return -EINVAL;
  4560. shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
  4561. mutex_lock(&shares_mutex);
  4562. if (tg->shares == shares)
  4563. goto done;
  4564. tg->shares = shares;
  4565. for_each_possible_cpu(i) {
  4566. struct rq *rq = cpu_rq(i);
  4567. struct sched_entity *se;
  4568. se = tg->se[i];
  4569. /* Propagate contribution to hierarchy */
  4570. raw_spin_lock_irqsave(&rq->lock, flags);
  4571. for_each_sched_entity(se)
  4572. update_cfs_shares(group_cfs_rq(se));
  4573. raw_spin_unlock_irqrestore(&rq->lock, flags);
  4574. }
  4575. done:
  4576. mutex_unlock(&shares_mutex);
  4577. return 0;
  4578. }
  4579. #else /* CONFIG_FAIR_GROUP_SCHED */
  4580. void free_fair_sched_group(struct task_group *tg) { }
  4581. int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
  4582. {
  4583. return 1;
  4584. }
  4585. void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
  4586. #endif /* CONFIG_FAIR_GROUP_SCHED */
  4587. static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
  4588. {
  4589. struct sched_entity *se = &task->se;
  4590. unsigned int rr_interval = 0;
  4591. /*
  4592. * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
  4593. * idle runqueue:
  4594. */
  4595. if (rq->cfs.load.weight)
  4596. rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
  4597. return rr_interval;
  4598. }
  4599. /*
  4600. * All the scheduling class methods:
  4601. */
  4602. const struct sched_class fair_sched_class = {
  4603. .next = &idle_sched_class,
  4604. .enqueue_task = enqueue_task_fair,
  4605. .dequeue_task = dequeue_task_fair,
  4606. .yield_task = yield_task_fair,
  4607. .yield_to_task = yield_to_task_fair,
  4608. .check_preempt_curr = check_preempt_wakeup,
  4609. .pick_next_task = pick_next_task_fair,
  4610. .put_prev_task = put_prev_task_fair,
  4611. #ifdef CONFIG_SMP
  4612. .select_task_rq = select_task_rq_fair,
  4613. .rq_online = rq_online_fair,
  4614. .rq_offline = rq_offline_fair,
  4615. .task_waking = task_waking_fair,
  4616. #endif
  4617. .set_curr_task = set_curr_task_fair,
  4618. .task_tick = task_tick_fair,
  4619. .task_fork = task_fork_fair,
  4620. .prio_changed = prio_changed_fair,
  4621. .switched_from = switched_from_fair,
  4622. .switched_to = switched_to_fair,
  4623. .get_rr_interval = get_rr_interval_fair,
  4624. #ifdef CONFIG_FAIR_GROUP_SCHED
  4625. .task_move_group = task_move_group_fair,
  4626. #endif
  4627. };
  4628. #ifdef CONFIG_SCHED_DEBUG
  4629. void print_cfs_stats(struct seq_file *m, int cpu)
  4630. {
  4631. struct cfs_rq *cfs_rq;
  4632. rcu_read_lock();
  4633. for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
  4634. print_cfs_rq(m, cpu, cfs_rq);
  4635. rcu_read_unlock();
  4636. }
  4637. #endif
  4638. __init void init_sched_fair_class(void)
  4639. {
  4640. #ifdef CONFIG_SMP
  4641. open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
  4642. #ifdef CONFIG_NO_HZ
  4643. zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
  4644. #endif
  4645. #endif /* SMP */
  4646. }