sched.c 160 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414
  1. /*
  2. * kernel/sched.c
  3. *
  4. * Kernel scheduler and related syscalls
  5. *
  6. * Copyright (C) 1991-2002 Linus Torvalds
  7. *
  8. * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
  9. * make semaphores SMP safe
  10. * 1998-11-19 Implemented schedule_timeout() and related stuff
  11. * by Andrea Arcangeli
  12. * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
  13. * hybrid priority-list and round-robin design with
  14. * an array-switch method of distributing timeslices
  15. * and per-CPU runqueues. Cleanups and useful suggestions
  16. * by Davide Libenzi, preemptible kernel bits by Robert Love.
  17. * 2003-09-03 Interactivity tuning by Con Kolivas.
  18. * 2004-04-02 Scheduler domains code by Nick Piggin
  19. */
  20. #include <linux/mm.h>
  21. #include <linux/module.h>
  22. #include <linux/nmi.h>
  23. #include <linux/init.h>
  24. #include <asm/uaccess.h>
  25. #include <linux/highmem.h>
  26. #include <linux/smp_lock.h>
  27. #include <asm/mmu_context.h>
  28. #include <linux/interrupt.h>
  29. #include <linux/capability.h>
  30. #include <linux/completion.h>
  31. #include <linux/kernel_stat.h>
  32. #include <linux/security.h>
  33. #include <linux/notifier.h>
  34. #include <linux/profile.h>
  35. #include <linux/suspend.h>
  36. #include <linux/vmalloc.h>
  37. #include <linux/blkdev.h>
  38. #include <linux/delay.h>
  39. #include <linux/smp.h>
  40. #include <linux/threads.h>
  41. #include <linux/timer.h>
  42. #include <linux/rcupdate.h>
  43. #include <linux/cpu.h>
  44. #include <linux/cpuset.h>
  45. #include <linux/percpu.h>
  46. #include <linux/kthread.h>
  47. #include <linux/seq_file.h>
  48. #include <linux/syscalls.h>
  49. #include <linux/times.h>
  50. #include <linux/acct.h>
  51. #include <linux/kprobes.h>
  52. #include <asm/tlb.h>
  53. #include <asm/unistd.h>
  54. /*
  55. * Convert user-nice values [ -20 ... 0 ... 19 ]
  56. * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
  57. * and back.
  58. */
  59. #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
  60. #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
  61. #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
  62. /*
  63. * 'User priority' is the nice value converted to something we
  64. * can work with better when scaling various scheduler parameters,
  65. * it's a [ 0 ... 39 ] range.
  66. */
  67. #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
  68. #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
  69. #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
  70. /*
  71. * Some helpers for converting nanosecond timing to jiffy resolution
  72. */
  73. #define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
  74. #define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
  75. /*
  76. * These are the 'tuning knobs' of the scheduler:
  77. *
  78. * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
  79. * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
  80. * Timeslices get refilled after they expire.
  81. */
  82. #define MIN_TIMESLICE max(5 * HZ / 1000, 1)
  83. #define DEF_TIMESLICE (100 * HZ / 1000)
  84. #define ON_RUNQUEUE_WEIGHT 30
  85. #define CHILD_PENALTY 95
  86. #define PARENT_PENALTY 100
  87. #define EXIT_WEIGHT 3
  88. #define PRIO_BONUS_RATIO 25
  89. #define MAX_BONUS (MAX_USER_PRIO * PRIO_BONUS_RATIO / 100)
  90. #define INTERACTIVE_DELTA 2
  91. #define MAX_SLEEP_AVG (DEF_TIMESLICE * MAX_BONUS)
  92. #define STARVATION_LIMIT (MAX_SLEEP_AVG)
  93. #define NS_MAX_SLEEP_AVG (JIFFIES_TO_NS(MAX_SLEEP_AVG))
  94. /*
  95. * If a task is 'interactive' then we reinsert it in the active
  96. * array after it has expired its current timeslice. (it will not
  97. * continue to run immediately, it will still roundrobin with
  98. * other interactive tasks.)
  99. *
  100. * This part scales the interactivity limit depending on niceness.
  101. *
  102. * We scale it linearly, offset by the INTERACTIVE_DELTA delta.
  103. * Here are a few examples of different nice levels:
  104. *
  105. * TASK_INTERACTIVE(-20): [1,1,1,1,1,1,1,1,1,0,0]
  106. * TASK_INTERACTIVE(-10): [1,1,1,1,1,1,1,0,0,0,0]
  107. * TASK_INTERACTIVE( 0): [1,1,1,1,0,0,0,0,0,0,0]
  108. * TASK_INTERACTIVE( 10): [1,1,0,0,0,0,0,0,0,0,0]
  109. * TASK_INTERACTIVE( 19): [0,0,0,0,0,0,0,0,0,0,0]
  110. *
  111. * (the X axis represents the possible -5 ... 0 ... +5 dynamic
  112. * priority range a task can explore, a value of '1' means the
  113. * task is rated interactive.)
  114. *
  115. * Ie. nice +19 tasks can never get 'interactive' enough to be
  116. * reinserted into the active array. And only heavily CPU-hog nice -20
  117. * tasks will be expired. Default nice 0 tasks are somewhere between,
  118. * it takes some effort for them to get interactive, but it's not
  119. * too hard.
  120. */
  121. #define CURRENT_BONUS(p) \
  122. (NS_TO_JIFFIES((p)->sleep_avg) * MAX_BONUS / \
  123. MAX_SLEEP_AVG)
  124. #define GRANULARITY (10 * HZ / 1000 ? : 1)
  125. #ifdef CONFIG_SMP
  126. #define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
  127. (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)) * \
  128. num_online_cpus())
  129. #else
  130. #define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
  131. (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)))
  132. #endif
  133. #define SCALE(v1,v1_max,v2_max) \
  134. (v1) * (v2_max) / (v1_max)
  135. #define DELTA(p) \
  136. (SCALE(TASK_NICE(p) + 20, 40, MAX_BONUS) - 20 * MAX_BONUS / 40 + \
  137. INTERACTIVE_DELTA)
  138. #define TASK_INTERACTIVE(p) \
  139. ((p)->prio <= (p)->static_prio - DELTA(p))
  140. #define INTERACTIVE_SLEEP(p) \
  141. (JIFFIES_TO_NS(MAX_SLEEP_AVG * \
  142. (MAX_BONUS / 2 + DELTA((p)) + 1) / MAX_BONUS - 1))
  143. #define TASK_PREEMPTS_CURR(p, rq) \
  144. ((p)->prio < (rq)->curr->prio)
  145. /*
  146. * task_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
  147. * to time slice values: [800ms ... 100ms ... 5ms]
  148. *
  149. * The higher a thread's priority, the bigger timeslices
  150. * it gets during one round of execution. But even the lowest
  151. * priority thread gets MIN_TIMESLICE worth of execution time.
  152. */
  153. #define SCALE_PRIO(x, prio) \
  154. max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)
  155. static unsigned int static_prio_timeslice(int static_prio)
  156. {
  157. if (static_prio < NICE_TO_PRIO(0))
  158. return SCALE_PRIO(DEF_TIMESLICE * 4, static_prio);
  159. else
  160. return SCALE_PRIO(DEF_TIMESLICE, static_prio);
  161. }
  162. static inline unsigned int task_timeslice(task_t *p)
  163. {
  164. return static_prio_timeslice(p->static_prio);
  165. }
  166. #define task_hot(p, now, sd) ((long long) ((now) - (p)->last_ran) \
  167. < (long long) (sd)->cache_hot_time)
  168. /*
  169. * These are the runqueue data structures:
  170. */
  171. typedef struct runqueue runqueue_t;
  172. struct prio_array {
  173. unsigned int nr_active;
  174. DECLARE_BITMAP(bitmap, MAX_PRIO+1); /* include 1 bit for delimiter */
  175. struct list_head queue[MAX_PRIO];
  176. };
  177. /*
  178. * This is the main, per-CPU runqueue data structure.
  179. *
  180. * Locking rule: those places that want to lock multiple runqueues
  181. * (such as the load balancing or the thread migration code), lock
  182. * acquire operations must be ordered by ascending &runqueue.
  183. */
  184. struct runqueue {
  185. spinlock_t lock;
  186. /*
  187. * nr_running and cpu_load should be in the same cacheline because
  188. * remote CPUs use both these fields when doing load calculation.
  189. */
  190. unsigned long nr_running;
  191. unsigned long raw_weighted_load;
  192. #ifdef CONFIG_SMP
  193. unsigned long cpu_load[3];
  194. #endif
  195. unsigned long long nr_switches;
  196. /*
  197. * This is part of a global counter where only the total sum
  198. * over all CPUs matters. A task can increase this counter on
  199. * one CPU and if it got migrated afterwards it may decrease
  200. * it on another CPU. Always updated under the runqueue lock:
  201. */
  202. unsigned long nr_uninterruptible;
  203. unsigned long expired_timestamp;
  204. unsigned long long timestamp_last_tick;
  205. task_t *curr, *idle;
  206. struct mm_struct *prev_mm;
  207. prio_array_t *active, *expired, arrays[2];
  208. int best_expired_prio;
  209. atomic_t nr_iowait;
  210. #ifdef CONFIG_SMP
  211. struct sched_domain *sd;
  212. /* For active balancing */
  213. int active_balance;
  214. int push_cpu;
  215. task_t *migration_thread;
  216. struct list_head migration_queue;
  217. #endif
  218. #ifdef CONFIG_SCHEDSTATS
  219. /* latency stats */
  220. struct sched_info rq_sched_info;
  221. /* sys_sched_yield() stats */
  222. unsigned long yld_exp_empty;
  223. unsigned long yld_act_empty;
  224. unsigned long yld_both_empty;
  225. unsigned long yld_cnt;
  226. /* schedule() stats */
  227. unsigned long sched_switch;
  228. unsigned long sched_cnt;
  229. unsigned long sched_goidle;
  230. /* try_to_wake_up() stats */
  231. unsigned long ttwu_cnt;
  232. unsigned long ttwu_local;
  233. #endif
  234. };
  235. static DEFINE_PER_CPU(struct runqueue, runqueues);
  236. /*
  237. * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
  238. * See detach_destroy_domains: synchronize_sched for details.
  239. *
  240. * The domain tree of any CPU may only be accessed from within
  241. * preempt-disabled sections.
  242. */
  243. #define for_each_domain(cpu, domain) \
  244. for (domain = rcu_dereference(cpu_rq(cpu)->sd); domain; domain = domain->parent)
  245. #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
  246. #define this_rq() (&__get_cpu_var(runqueues))
  247. #define task_rq(p) cpu_rq(task_cpu(p))
  248. #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
  249. #ifndef prepare_arch_switch
  250. # define prepare_arch_switch(next) do { } while (0)
  251. #endif
  252. #ifndef finish_arch_switch
  253. # define finish_arch_switch(prev) do { } while (0)
  254. #endif
  255. #ifndef __ARCH_WANT_UNLOCKED_CTXSW
  256. static inline int task_running(runqueue_t *rq, task_t *p)
  257. {
  258. return rq->curr == p;
  259. }
  260. static inline void prepare_lock_switch(runqueue_t *rq, task_t *next)
  261. {
  262. }
  263. static inline void finish_lock_switch(runqueue_t *rq, task_t *prev)
  264. {
  265. #ifdef CONFIG_DEBUG_SPINLOCK
  266. /* this is a valid case when another task releases the spinlock */
  267. rq->lock.owner = current;
  268. #endif
  269. spin_unlock_irq(&rq->lock);
  270. }
  271. #else /* __ARCH_WANT_UNLOCKED_CTXSW */
  272. static inline int task_running(runqueue_t *rq, task_t *p)
  273. {
  274. #ifdef CONFIG_SMP
  275. return p->oncpu;
  276. #else
  277. return rq->curr == p;
  278. #endif
  279. }
  280. static inline void prepare_lock_switch(runqueue_t *rq, task_t *next)
  281. {
  282. #ifdef CONFIG_SMP
  283. /*
  284. * We can optimise this out completely for !SMP, because the
  285. * SMP rebalancing from interrupt is the only thing that cares
  286. * here.
  287. */
  288. next->oncpu = 1;
  289. #endif
  290. #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  291. spin_unlock_irq(&rq->lock);
  292. #else
  293. spin_unlock(&rq->lock);
  294. #endif
  295. }
  296. static inline void finish_lock_switch(runqueue_t *rq, task_t *prev)
  297. {
  298. #ifdef CONFIG_SMP
  299. /*
  300. * After ->oncpu is cleared, the task can be moved to a different CPU.
  301. * We must ensure this doesn't happen until the switch is completely
  302. * finished.
  303. */
  304. smp_wmb();
  305. prev->oncpu = 0;
  306. #endif
  307. #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
  308. local_irq_enable();
  309. #endif
  310. }
  311. #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
  312. /*
  313. * task_rq_lock - lock the runqueue a given task resides on and disable
  314. * interrupts. Note the ordering: we can safely lookup the task_rq without
  315. * explicitly disabling preemption.
  316. */
  317. static inline runqueue_t *task_rq_lock(task_t *p, unsigned long *flags)
  318. __acquires(rq->lock)
  319. {
  320. struct runqueue *rq;
  321. repeat_lock_task:
  322. local_irq_save(*flags);
  323. rq = task_rq(p);
  324. spin_lock(&rq->lock);
  325. if (unlikely(rq != task_rq(p))) {
  326. spin_unlock_irqrestore(&rq->lock, *flags);
  327. goto repeat_lock_task;
  328. }
  329. return rq;
  330. }
  331. static inline void task_rq_unlock(runqueue_t *rq, unsigned long *flags)
  332. __releases(rq->lock)
  333. {
  334. spin_unlock_irqrestore(&rq->lock, *flags);
  335. }
  336. #ifdef CONFIG_SCHEDSTATS
  337. /*
  338. * bump this up when changing the output format or the meaning of an existing
  339. * format, so that tools can adapt (or abort)
  340. */
  341. #define SCHEDSTAT_VERSION 12
  342. static int show_schedstat(struct seq_file *seq, void *v)
  343. {
  344. int cpu;
  345. seq_printf(seq, "version %d\n", SCHEDSTAT_VERSION);
  346. seq_printf(seq, "timestamp %lu\n", jiffies);
  347. for_each_online_cpu(cpu) {
  348. runqueue_t *rq = cpu_rq(cpu);
  349. #ifdef CONFIG_SMP
  350. struct sched_domain *sd;
  351. int dcnt = 0;
  352. #endif
  353. /* runqueue-specific stats */
  354. seq_printf(seq,
  355. "cpu%d %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu",
  356. cpu, rq->yld_both_empty,
  357. rq->yld_act_empty, rq->yld_exp_empty, rq->yld_cnt,
  358. rq->sched_switch, rq->sched_cnt, rq->sched_goidle,
  359. rq->ttwu_cnt, rq->ttwu_local,
  360. rq->rq_sched_info.cpu_time,
  361. rq->rq_sched_info.run_delay, rq->rq_sched_info.pcnt);
  362. seq_printf(seq, "\n");
  363. #ifdef CONFIG_SMP
  364. /* domain-specific stats */
  365. preempt_disable();
  366. for_each_domain(cpu, sd) {
  367. enum idle_type itype;
  368. char mask_str[NR_CPUS];
  369. cpumask_scnprintf(mask_str, NR_CPUS, sd->span);
  370. seq_printf(seq, "domain%d %s", dcnt++, mask_str);
  371. for (itype = SCHED_IDLE; itype < MAX_IDLE_TYPES;
  372. itype++) {
  373. seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu",
  374. sd->lb_cnt[itype],
  375. sd->lb_balanced[itype],
  376. sd->lb_failed[itype],
  377. sd->lb_imbalance[itype],
  378. sd->lb_gained[itype],
  379. sd->lb_hot_gained[itype],
  380. sd->lb_nobusyq[itype],
  381. sd->lb_nobusyg[itype]);
  382. }
  383. seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu\n",
  384. sd->alb_cnt, sd->alb_failed, sd->alb_pushed,
  385. sd->sbe_cnt, sd->sbe_balanced, sd->sbe_pushed,
  386. sd->sbf_cnt, sd->sbf_balanced, sd->sbf_pushed,
  387. sd->ttwu_wake_remote, sd->ttwu_move_affine, sd->ttwu_move_balance);
  388. }
  389. preempt_enable();
  390. #endif
  391. }
  392. return 0;
  393. }
  394. static int schedstat_open(struct inode *inode, struct file *file)
  395. {
  396. unsigned int size = PAGE_SIZE * (1 + num_online_cpus() / 32);
  397. char *buf = kmalloc(size, GFP_KERNEL);
  398. struct seq_file *m;
  399. int res;
  400. if (!buf)
  401. return -ENOMEM;
  402. res = single_open(file, show_schedstat, NULL);
  403. if (!res) {
  404. m = file->private_data;
  405. m->buf = buf;
  406. m->size = size;
  407. } else
  408. kfree(buf);
  409. return res;
  410. }
  411. struct file_operations proc_schedstat_operations = {
  412. .open = schedstat_open,
  413. .read = seq_read,
  414. .llseek = seq_lseek,
  415. .release = single_release,
  416. };
  417. # define schedstat_inc(rq, field) do { (rq)->field++; } while (0)
  418. # define schedstat_add(rq, field, amt) do { (rq)->field += (amt); } while (0)
  419. #else /* !CONFIG_SCHEDSTATS */
  420. # define schedstat_inc(rq, field) do { } while (0)
  421. # define schedstat_add(rq, field, amt) do { } while (0)
  422. #endif
  423. /*
  424. * rq_lock - lock a given runqueue and disable interrupts.
  425. */
  426. static inline runqueue_t *this_rq_lock(void)
  427. __acquires(rq->lock)
  428. {
  429. runqueue_t *rq;
  430. local_irq_disable();
  431. rq = this_rq();
  432. spin_lock(&rq->lock);
  433. return rq;
  434. }
  435. #ifdef CONFIG_SCHEDSTATS
  436. /*
  437. * Called when a process is dequeued from the active array and given
  438. * the cpu. We should note that with the exception of interactive
  439. * tasks, the expired queue will become the active queue after the active
  440. * queue is empty, without explicitly dequeuing and requeuing tasks in the
  441. * expired queue. (Interactive tasks may be requeued directly to the
  442. * active queue, thus delaying tasks in the expired queue from running;
  443. * see scheduler_tick()).
  444. *
  445. * This function is only called from sched_info_arrive(), rather than
  446. * dequeue_task(). Even though a task may be queued and dequeued multiple
  447. * times as it is shuffled about, we're really interested in knowing how
  448. * long it was from the *first* time it was queued to the time that it
  449. * finally hit a cpu.
  450. */
  451. static inline void sched_info_dequeued(task_t *t)
  452. {
  453. t->sched_info.last_queued = 0;
  454. }
  455. /*
  456. * Called when a task finally hits the cpu. We can now calculate how
  457. * long it was waiting to run. We also note when it began so that we
  458. * can keep stats on how long its timeslice is.
  459. */
  460. static void sched_info_arrive(task_t *t)
  461. {
  462. unsigned long now = jiffies, diff = 0;
  463. struct runqueue *rq = task_rq(t);
  464. if (t->sched_info.last_queued)
  465. diff = now - t->sched_info.last_queued;
  466. sched_info_dequeued(t);
  467. t->sched_info.run_delay += diff;
  468. t->sched_info.last_arrival = now;
  469. t->sched_info.pcnt++;
  470. if (!rq)
  471. return;
  472. rq->rq_sched_info.run_delay += diff;
  473. rq->rq_sched_info.pcnt++;
  474. }
  475. /*
  476. * Called when a process is queued into either the active or expired
  477. * array. The time is noted and later used to determine how long we
  478. * had to wait for us to reach the cpu. Since the expired queue will
  479. * become the active queue after active queue is empty, without dequeuing
  480. * and requeuing any tasks, we are interested in queuing to either. It
  481. * is unusual but not impossible for tasks to be dequeued and immediately
  482. * requeued in the same or another array: this can happen in sched_yield(),
  483. * set_user_nice(), and even load_balance() as it moves tasks from runqueue
  484. * to runqueue.
  485. *
  486. * This function is only called from enqueue_task(), but also only updates
  487. * the timestamp if it is already not set. It's assumed that
  488. * sched_info_dequeued() will clear that stamp when appropriate.
  489. */
  490. static inline void sched_info_queued(task_t *t)
  491. {
  492. if (!t->sched_info.last_queued)
  493. t->sched_info.last_queued = jiffies;
  494. }
  495. /*
  496. * Called when a process ceases being the active-running process, either
  497. * voluntarily or involuntarily. Now we can calculate how long we ran.
  498. */
  499. static inline void sched_info_depart(task_t *t)
  500. {
  501. struct runqueue *rq = task_rq(t);
  502. unsigned long diff = jiffies - t->sched_info.last_arrival;
  503. t->sched_info.cpu_time += diff;
  504. if (rq)
  505. rq->rq_sched_info.cpu_time += diff;
  506. }
  507. /*
  508. * Called when tasks are switched involuntarily due, typically, to expiring
  509. * their time slice. (This may also be called when switching to or from
  510. * the idle task.) We are only called when prev != next.
  511. */
  512. static inline void sched_info_switch(task_t *prev, task_t *next)
  513. {
  514. struct runqueue *rq = task_rq(prev);
  515. /*
  516. * prev now departs the cpu. It's not interesting to record
  517. * stats about how efficient we were at scheduling the idle
  518. * process, however.
  519. */
  520. if (prev != rq->idle)
  521. sched_info_depart(prev);
  522. if (next != rq->idle)
  523. sched_info_arrive(next);
  524. }
  525. #else
  526. #define sched_info_queued(t) do { } while (0)
  527. #define sched_info_switch(t, next) do { } while (0)
  528. #endif /* CONFIG_SCHEDSTATS */
  529. /*
  530. * Adding/removing a task to/from a priority array:
  531. */
  532. static void dequeue_task(struct task_struct *p, prio_array_t *array)
  533. {
  534. array->nr_active--;
  535. list_del(&p->run_list);
  536. if (list_empty(array->queue + p->prio))
  537. __clear_bit(p->prio, array->bitmap);
  538. }
  539. static void enqueue_task(struct task_struct *p, prio_array_t *array)
  540. {
  541. sched_info_queued(p);
  542. list_add_tail(&p->run_list, array->queue + p->prio);
  543. __set_bit(p->prio, array->bitmap);
  544. array->nr_active++;
  545. p->array = array;
  546. }
  547. /*
  548. * Put task to the end of the run list without the overhead of dequeue
  549. * followed by enqueue.
  550. */
  551. static void requeue_task(struct task_struct *p, prio_array_t *array)
  552. {
  553. list_move_tail(&p->run_list, array->queue + p->prio);
  554. }
  555. static inline void enqueue_task_head(struct task_struct *p, prio_array_t *array)
  556. {
  557. list_add(&p->run_list, array->queue + p->prio);
  558. __set_bit(p->prio, array->bitmap);
  559. array->nr_active++;
  560. p->array = array;
  561. }
  562. /*
  563. * effective_prio - return the priority that is based on the static
  564. * priority but is modified by bonuses/penalties.
  565. *
  566. * We scale the actual sleep average [0 .... MAX_SLEEP_AVG]
  567. * into the -5 ... 0 ... +5 bonus/penalty range.
  568. *
  569. * We use 25% of the full 0...39 priority range so that:
  570. *
  571. * 1) nice +19 interactive tasks do not preempt nice 0 CPU hogs.
  572. * 2) nice -20 CPU hogs do not get preempted by nice 0 tasks.
  573. *
  574. * Both properties are important to certain workloads.
  575. */
  576. static int effective_prio(task_t *p)
  577. {
  578. int bonus, prio;
  579. if (rt_task(p))
  580. return p->prio;
  581. bonus = CURRENT_BONUS(p) - MAX_BONUS / 2;
  582. prio = p->static_prio - bonus;
  583. if (prio < MAX_RT_PRIO)
  584. prio = MAX_RT_PRIO;
  585. if (prio > MAX_PRIO-1)
  586. prio = MAX_PRIO-1;
  587. return prio;
  588. }
  589. /*
  590. * To aid in avoiding the subversion of "niceness" due to uneven distribution
  591. * of tasks with abnormal "nice" values across CPUs the contribution that
  592. * each task makes to its run queue's load is weighted according to its
  593. * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
  594. * scaled version of the new time slice allocation that they receive on time
  595. * slice expiry etc.
  596. */
  597. /*
  598. * Assume: static_prio_timeslice(NICE_TO_PRIO(0)) == DEF_TIMESLICE
  599. * If static_prio_timeslice() is ever changed to break this assumption then
  600. * this code will need modification
  601. */
  602. #define TIME_SLICE_NICE_ZERO DEF_TIMESLICE
  603. #define LOAD_WEIGHT(lp) \
  604. (((lp) * SCHED_LOAD_SCALE) / TIME_SLICE_NICE_ZERO)
  605. #define PRIO_TO_LOAD_WEIGHT(prio) \
  606. LOAD_WEIGHT(static_prio_timeslice(prio))
  607. #define RTPRIO_TO_LOAD_WEIGHT(rp) \
  608. (PRIO_TO_LOAD_WEIGHT(MAX_RT_PRIO) + LOAD_WEIGHT(rp))
  609. static void set_load_weight(task_t *p)
  610. {
  611. if (rt_task(p)) {
  612. #ifdef CONFIG_SMP
  613. if (p == task_rq(p)->migration_thread)
  614. /*
  615. * The migration thread does the actual balancing.
  616. * Giving its load any weight will skew balancing
  617. * adversely.
  618. */
  619. p->load_weight = 0;
  620. else
  621. #endif
  622. p->load_weight = RTPRIO_TO_LOAD_WEIGHT(p->rt_priority);
  623. } else
  624. p->load_weight = PRIO_TO_LOAD_WEIGHT(p->static_prio);
  625. }
  626. static inline void inc_raw_weighted_load(runqueue_t *rq, const task_t *p)
  627. {
  628. rq->raw_weighted_load += p->load_weight;
  629. }
  630. static inline void dec_raw_weighted_load(runqueue_t *rq, const task_t *p)
  631. {
  632. rq->raw_weighted_load -= p->load_weight;
  633. }
  634. static inline void inc_nr_running(task_t *p, runqueue_t *rq)
  635. {
  636. rq->nr_running++;
  637. inc_raw_weighted_load(rq, p);
  638. }
  639. static inline void dec_nr_running(task_t *p, runqueue_t *rq)
  640. {
  641. rq->nr_running--;
  642. dec_raw_weighted_load(rq, p);
  643. }
  644. /*
  645. * __activate_task - move a task to the runqueue.
  646. */
  647. static void __activate_task(task_t *p, runqueue_t *rq)
  648. {
  649. prio_array_t *target = rq->active;
  650. if (batch_task(p))
  651. target = rq->expired;
  652. enqueue_task(p, target);
  653. inc_nr_running(p, rq);
  654. }
  655. /*
  656. * __activate_idle_task - move idle task to the _front_ of runqueue.
  657. */
  658. static inline void __activate_idle_task(task_t *p, runqueue_t *rq)
  659. {
  660. enqueue_task_head(p, rq->active);
  661. inc_nr_running(p, rq);
  662. }
  663. static int recalc_task_prio(task_t *p, unsigned long long now)
  664. {
  665. /* Caller must always ensure 'now >= p->timestamp' */
  666. unsigned long sleep_time = now - p->timestamp;
  667. if (batch_task(p))
  668. sleep_time = 0;
  669. if (likely(sleep_time > 0)) {
  670. /*
  671. * This ceiling is set to the lowest priority that would allow
  672. * a task to be reinserted into the active array on timeslice
  673. * completion.
  674. */
  675. unsigned long ceiling = INTERACTIVE_SLEEP(p);
  676. if (p->mm && sleep_time > ceiling && p->sleep_avg < ceiling) {
  677. /*
  678. * Prevents user tasks from achieving best priority
  679. * with one single large enough sleep.
  680. */
  681. p->sleep_avg = ceiling;
  682. /*
  683. * Using INTERACTIVE_SLEEP() as a ceiling places a
  684. * nice(0) task 1ms sleep away from promotion, and
  685. * gives it 700ms to round-robin with no chance of
  686. * being demoted. This is more than generous, so
  687. * mark this sleep as non-interactive to prevent the
  688. * on-runqueue bonus logic from intervening should
  689. * this task not receive cpu immediately.
  690. */
  691. p->sleep_type = SLEEP_NONINTERACTIVE;
  692. } else {
  693. /*
  694. * Tasks waking from uninterruptible sleep are
  695. * limited in their sleep_avg rise as they
  696. * are likely to be waiting on I/O
  697. */
  698. if (p->sleep_type == SLEEP_NONINTERACTIVE && p->mm) {
  699. if (p->sleep_avg >= ceiling)
  700. sleep_time = 0;
  701. else if (p->sleep_avg + sleep_time >=
  702. ceiling) {
  703. p->sleep_avg = ceiling;
  704. sleep_time = 0;
  705. }
  706. }
  707. /*
  708. * This code gives a bonus to interactive tasks.
  709. *
  710. * The boost works by updating the 'average sleep time'
  711. * value here, based on ->timestamp. The more time a
  712. * task spends sleeping, the higher the average gets -
  713. * and the higher the priority boost gets as well.
  714. */
  715. p->sleep_avg += sleep_time;
  716. }
  717. if (p->sleep_avg > NS_MAX_SLEEP_AVG)
  718. p->sleep_avg = NS_MAX_SLEEP_AVG;
  719. }
  720. return effective_prio(p);
  721. }
  722. /*
  723. * activate_task - move a task to the runqueue and do priority recalculation
  724. *
  725. * Update all the scheduling statistics stuff. (sleep average
  726. * calculation, priority modifiers, etc.)
  727. */
  728. static void activate_task(task_t *p, runqueue_t *rq, int local)
  729. {
  730. unsigned long long now;
  731. now = sched_clock();
  732. #ifdef CONFIG_SMP
  733. if (!local) {
  734. /* Compensate for drifting sched_clock */
  735. runqueue_t *this_rq = this_rq();
  736. now = (now - this_rq->timestamp_last_tick)
  737. + rq->timestamp_last_tick;
  738. }
  739. #endif
  740. if (!rt_task(p))
  741. p->prio = recalc_task_prio(p, now);
  742. /*
  743. * This checks to make sure it's not an uninterruptible task
  744. * that is now waking up.
  745. */
  746. if (p->sleep_type == SLEEP_NORMAL) {
  747. /*
  748. * Tasks which were woken up by interrupts (ie. hw events)
  749. * are most likely of interactive nature. So we give them
  750. * the credit of extending their sleep time to the period
  751. * of time they spend on the runqueue, waiting for execution
  752. * on a CPU, first time around:
  753. */
  754. if (in_interrupt())
  755. p->sleep_type = SLEEP_INTERRUPTED;
  756. else {
  757. /*
  758. * Normal first-time wakeups get a credit too for
  759. * on-runqueue time, but it will be weighted down:
  760. */
  761. p->sleep_type = SLEEP_INTERACTIVE;
  762. }
  763. }
  764. p->timestamp = now;
  765. __activate_task(p, rq);
  766. }
  767. /*
  768. * deactivate_task - remove a task from the runqueue.
  769. */
  770. static void deactivate_task(struct task_struct *p, runqueue_t *rq)
  771. {
  772. dec_nr_running(p, rq);
  773. dequeue_task(p, p->array);
  774. p->array = NULL;
  775. }
  776. /*
  777. * resched_task - mark a task 'to be rescheduled now'.
  778. *
  779. * On UP this means the setting of the need_resched flag, on SMP it
  780. * might also involve a cross-CPU call to trigger the scheduler on
  781. * the target CPU.
  782. */
  783. #ifdef CONFIG_SMP
  784. #ifndef tsk_is_polling
  785. #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
  786. #endif
  787. static void resched_task(task_t *p)
  788. {
  789. int cpu;
  790. assert_spin_locked(&task_rq(p)->lock);
  791. if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
  792. return;
  793. set_tsk_thread_flag(p, TIF_NEED_RESCHED);
  794. cpu = task_cpu(p);
  795. if (cpu == smp_processor_id())
  796. return;
  797. /* NEED_RESCHED must be visible before we test polling */
  798. smp_mb();
  799. if (!tsk_is_polling(p))
  800. smp_send_reschedule(cpu);
  801. }
  802. #else
  803. static inline void resched_task(task_t *p)
  804. {
  805. assert_spin_locked(&task_rq(p)->lock);
  806. set_tsk_need_resched(p);
  807. }
  808. #endif
  809. /**
  810. * task_curr - is this task currently executing on a CPU?
  811. * @p: the task in question.
  812. */
  813. inline int task_curr(const task_t *p)
  814. {
  815. return cpu_curr(task_cpu(p)) == p;
  816. }
  817. /* Used instead of source_load when we know the type == 0 */
  818. unsigned long weighted_cpuload(const int cpu)
  819. {
  820. return cpu_rq(cpu)->raw_weighted_load;
  821. }
  822. #ifdef CONFIG_SMP
  823. typedef struct {
  824. struct list_head list;
  825. task_t *task;
  826. int dest_cpu;
  827. struct completion done;
  828. } migration_req_t;
  829. /*
  830. * The task's runqueue lock must be held.
  831. * Returns true if you have to wait for migration thread.
  832. */
  833. static int migrate_task(task_t *p, int dest_cpu, migration_req_t *req)
  834. {
  835. runqueue_t *rq = task_rq(p);
  836. /*
  837. * If the task is not on a runqueue (and not running), then
  838. * it is sufficient to simply update the task's cpu field.
  839. */
  840. if (!p->array && !task_running(rq, p)) {
  841. set_task_cpu(p, dest_cpu);
  842. return 0;
  843. }
  844. init_completion(&req->done);
  845. req->task = p;
  846. req->dest_cpu = dest_cpu;
  847. list_add(&req->list, &rq->migration_queue);
  848. return 1;
  849. }
  850. /*
  851. * wait_task_inactive - wait for a thread to unschedule.
  852. *
  853. * The caller must ensure that the task *will* unschedule sometime soon,
  854. * else this function might spin for a *long* time. This function can't
  855. * be called with interrupts off, or it may introduce deadlock with
  856. * smp_call_function() if an IPI is sent by the same process we are
  857. * waiting to become inactive.
  858. */
  859. void wait_task_inactive(task_t *p)
  860. {
  861. unsigned long flags;
  862. runqueue_t *rq;
  863. int preempted;
  864. repeat:
  865. rq = task_rq_lock(p, &flags);
  866. /* Must be off runqueue entirely, not preempted. */
  867. if (unlikely(p->array || task_running(rq, p))) {
  868. /* If it's preempted, we yield. It could be a while. */
  869. preempted = !task_running(rq, p);
  870. task_rq_unlock(rq, &flags);
  871. cpu_relax();
  872. if (preempted)
  873. yield();
  874. goto repeat;
  875. }
  876. task_rq_unlock(rq, &flags);
  877. }
  878. /***
  879. * kick_process - kick a running thread to enter/exit the kernel
  880. * @p: the to-be-kicked thread
  881. *
  882. * Cause a process which is running on another CPU to enter
  883. * kernel-mode, without any delay. (to get signals handled.)
  884. *
  885. * NOTE: this function doesnt have to take the runqueue lock,
  886. * because all it wants to ensure is that the remote task enters
  887. * the kernel. If the IPI races and the task has been migrated
  888. * to another CPU then no harm is done and the purpose has been
  889. * achieved as well.
  890. */
  891. void kick_process(task_t *p)
  892. {
  893. int cpu;
  894. preempt_disable();
  895. cpu = task_cpu(p);
  896. if ((cpu != smp_processor_id()) && task_curr(p))
  897. smp_send_reschedule(cpu);
  898. preempt_enable();
  899. }
  900. /*
  901. * Return a low guess at the load of a migration-source cpu weighted
  902. * according to the scheduling class and "nice" value.
  903. *
  904. * We want to under-estimate the load of migration sources, to
  905. * balance conservatively.
  906. */
  907. static inline unsigned long source_load(int cpu, int type)
  908. {
  909. runqueue_t *rq = cpu_rq(cpu);
  910. if (type == 0)
  911. return rq->raw_weighted_load;
  912. return min(rq->cpu_load[type-1], rq->raw_weighted_load);
  913. }
  914. /*
  915. * Return a high guess at the load of a migration-target cpu weighted
  916. * according to the scheduling class and "nice" value.
  917. */
  918. static inline unsigned long target_load(int cpu, int type)
  919. {
  920. runqueue_t *rq = cpu_rq(cpu);
  921. if (type == 0)
  922. return rq->raw_weighted_load;
  923. return max(rq->cpu_load[type-1], rq->raw_weighted_load);
  924. }
  925. /*
  926. * Return the average load per task on the cpu's run queue
  927. */
  928. static inline unsigned long cpu_avg_load_per_task(int cpu)
  929. {
  930. runqueue_t *rq = cpu_rq(cpu);
  931. unsigned long n = rq->nr_running;
  932. return n ? rq->raw_weighted_load / n : SCHED_LOAD_SCALE;
  933. }
  934. /*
  935. * find_idlest_group finds and returns the least busy CPU group within the
  936. * domain.
  937. */
  938. static struct sched_group *
  939. find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
  940. {
  941. struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
  942. unsigned long min_load = ULONG_MAX, this_load = 0;
  943. int load_idx = sd->forkexec_idx;
  944. int imbalance = 100 + (sd->imbalance_pct-100)/2;
  945. do {
  946. unsigned long load, avg_load;
  947. int local_group;
  948. int i;
  949. /* Skip over this group if it has no CPUs allowed */
  950. if (!cpus_intersects(group->cpumask, p->cpus_allowed))
  951. goto nextgroup;
  952. local_group = cpu_isset(this_cpu, group->cpumask);
  953. /* Tally up the load of all CPUs in the group */
  954. avg_load = 0;
  955. for_each_cpu_mask(i, group->cpumask) {
  956. /* Bias balancing toward cpus of our domain */
  957. if (local_group)
  958. load = source_load(i, load_idx);
  959. else
  960. load = target_load(i, load_idx);
  961. avg_load += load;
  962. }
  963. /* Adjust by relative CPU power of the group */
  964. avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
  965. if (local_group) {
  966. this_load = avg_load;
  967. this = group;
  968. } else if (avg_load < min_load) {
  969. min_load = avg_load;
  970. idlest = group;
  971. }
  972. nextgroup:
  973. group = group->next;
  974. } while (group != sd->groups);
  975. if (!idlest || 100*this_load < imbalance*min_load)
  976. return NULL;
  977. return idlest;
  978. }
  979. /*
  980. * find_idlest_queue - find the idlest runqueue among the cpus in group.
  981. */
  982. static int
  983. find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
  984. {
  985. cpumask_t tmp;
  986. unsigned long load, min_load = ULONG_MAX;
  987. int idlest = -1;
  988. int i;
  989. /* Traverse only the allowed CPUs */
  990. cpus_and(tmp, group->cpumask, p->cpus_allowed);
  991. for_each_cpu_mask(i, tmp) {
  992. load = weighted_cpuload(i);
  993. if (load < min_load || (load == min_load && i == this_cpu)) {
  994. min_load = load;
  995. idlest = i;
  996. }
  997. }
  998. return idlest;
  999. }
  1000. /*
  1001. * sched_balance_self: balance the current task (running on cpu) in domains
  1002. * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
  1003. * SD_BALANCE_EXEC.
  1004. *
  1005. * Balance, ie. select the least loaded group.
  1006. *
  1007. * Returns the target CPU number, or the same CPU if no balancing is needed.
  1008. *
  1009. * preempt must be disabled.
  1010. */
  1011. static int sched_balance_self(int cpu, int flag)
  1012. {
  1013. struct task_struct *t = current;
  1014. struct sched_domain *tmp, *sd = NULL;
  1015. for_each_domain(cpu, tmp) {
  1016. if (tmp->flags & flag)
  1017. sd = tmp;
  1018. }
  1019. while (sd) {
  1020. cpumask_t span;
  1021. struct sched_group *group;
  1022. int new_cpu;
  1023. int weight;
  1024. span = sd->span;
  1025. group = find_idlest_group(sd, t, cpu);
  1026. if (!group)
  1027. goto nextlevel;
  1028. new_cpu = find_idlest_cpu(group, t, cpu);
  1029. if (new_cpu == -1 || new_cpu == cpu)
  1030. goto nextlevel;
  1031. /* Now try balancing at a lower domain level */
  1032. cpu = new_cpu;
  1033. nextlevel:
  1034. sd = NULL;
  1035. weight = cpus_weight(span);
  1036. for_each_domain(cpu, tmp) {
  1037. if (weight <= cpus_weight(tmp->span))
  1038. break;
  1039. if (tmp->flags & flag)
  1040. sd = tmp;
  1041. }
  1042. /* while loop will break here if sd == NULL */
  1043. }
  1044. return cpu;
  1045. }
  1046. #endif /* CONFIG_SMP */
  1047. /*
  1048. * wake_idle() will wake a task on an idle cpu if task->cpu is
  1049. * not idle and an idle cpu is available. The span of cpus to
  1050. * search starts with cpus closest then further out as needed,
  1051. * so we always favor a closer, idle cpu.
  1052. *
  1053. * Returns the CPU we should wake onto.
  1054. */
  1055. #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
  1056. static int wake_idle(int cpu, task_t *p)
  1057. {
  1058. cpumask_t tmp;
  1059. struct sched_domain *sd;
  1060. int i;
  1061. if (idle_cpu(cpu))
  1062. return cpu;
  1063. for_each_domain(cpu, sd) {
  1064. if (sd->flags & SD_WAKE_IDLE) {
  1065. cpus_and(tmp, sd->span, p->cpus_allowed);
  1066. for_each_cpu_mask(i, tmp) {
  1067. if (idle_cpu(i))
  1068. return i;
  1069. }
  1070. }
  1071. else
  1072. break;
  1073. }
  1074. return cpu;
  1075. }
  1076. #else
  1077. static inline int wake_idle(int cpu, task_t *p)
  1078. {
  1079. return cpu;
  1080. }
  1081. #endif
  1082. /***
  1083. * try_to_wake_up - wake up a thread
  1084. * @p: the to-be-woken-up thread
  1085. * @state: the mask of task states that can be woken
  1086. * @sync: do a synchronous wakeup?
  1087. *
  1088. * Put it on the run-queue if it's not already there. The "current"
  1089. * thread is always on the run-queue (except when the actual
  1090. * re-schedule is in progress), and as such you're allowed to do
  1091. * the simpler "current->state = TASK_RUNNING" to mark yourself
  1092. * runnable without the overhead of this.
  1093. *
  1094. * returns failure only if the task is already active.
  1095. */
  1096. static int try_to_wake_up(task_t *p, unsigned int state, int sync)
  1097. {
  1098. int cpu, this_cpu, success = 0;
  1099. unsigned long flags;
  1100. long old_state;
  1101. runqueue_t *rq;
  1102. #ifdef CONFIG_SMP
  1103. unsigned long load, this_load;
  1104. struct sched_domain *sd, *this_sd = NULL;
  1105. int new_cpu;
  1106. #endif
  1107. rq = task_rq_lock(p, &flags);
  1108. old_state = p->state;
  1109. if (!(old_state & state))
  1110. goto out;
  1111. if (p->array)
  1112. goto out_running;
  1113. cpu = task_cpu(p);
  1114. this_cpu = smp_processor_id();
  1115. #ifdef CONFIG_SMP
  1116. if (unlikely(task_running(rq, p)))
  1117. goto out_activate;
  1118. new_cpu = cpu;
  1119. schedstat_inc(rq, ttwu_cnt);
  1120. if (cpu == this_cpu) {
  1121. schedstat_inc(rq, ttwu_local);
  1122. goto out_set_cpu;
  1123. }
  1124. for_each_domain(this_cpu, sd) {
  1125. if (cpu_isset(cpu, sd->span)) {
  1126. schedstat_inc(sd, ttwu_wake_remote);
  1127. this_sd = sd;
  1128. break;
  1129. }
  1130. }
  1131. if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
  1132. goto out_set_cpu;
  1133. /*
  1134. * Check for affine wakeup and passive balancing possibilities.
  1135. */
  1136. if (this_sd) {
  1137. int idx = this_sd->wake_idx;
  1138. unsigned int imbalance;
  1139. imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
  1140. load = source_load(cpu, idx);
  1141. this_load = target_load(this_cpu, idx);
  1142. new_cpu = this_cpu; /* Wake to this CPU if we can */
  1143. if (this_sd->flags & SD_WAKE_AFFINE) {
  1144. unsigned long tl = this_load;
  1145. unsigned long tl_per_task = cpu_avg_load_per_task(this_cpu);
  1146. /*
  1147. * If sync wakeup then subtract the (maximum possible)
  1148. * effect of the currently running task from the load
  1149. * of the current CPU:
  1150. */
  1151. if (sync)
  1152. tl -= current->load_weight;
  1153. if ((tl <= load &&
  1154. tl + target_load(cpu, idx) <= tl_per_task) ||
  1155. 100*(tl + p->load_weight) <= imbalance*load) {
  1156. /*
  1157. * This domain has SD_WAKE_AFFINE and
  1158. * p is cache cold in this domain, and
  1159. * there is no bad imbalance.
  1160. */
  1161. schedstat_inc(this_sd, ttwu_move_affine);
  1162. goto out_set_cpu;
  1163. }
  1164. }
  1165. /*
  1166. * Start passive balancing when half the imbalance_pct
  1167. * limit is reached.
  1168. */
  1169. if (this_sd->flags & SD_WAKE_BALANCE) {
  1170. if (imbalance*this_load <= 100*load) {
  1171. schedstat_inc(this_sd, ttwu_move_balance);
  1172. goto out_set_cpu;
  1173. }
  1174. }
  1175. }
  1176. new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
  1177. out_set_cpu:
  1178. new_cpu = wake_idle(new_cpu, p);
  1179. if (new_cpu != cpu) {
  1180. set_task_cpu(p, new_cpu);
  1181. task_rq_unlock(rq, &flags);
  1182. /* might preempt at this point */
  1183. rq = task_rq_lock(p, &flags);
  1184. old_state = p->state;
  1185. if (!(old_state & state))
  1186. goto out;
  1187. if (p->array)
  1188. goto out_running;
  1189. this_cpu = smp_processor_id();
  1190. cpu = task_cpu(p);
  1191. }
  1192. out_activate:
  1193. #endif /* CONFIG_SMP */
  1194. if (old_state == TASK_UNINTERRUPTIBLE) {
  1195. rq->nr_uninterruptible--;
  1196. /*
  1197. * Tasks on involuntary sleep don't earn
  1198. * sleep_avg beyond just interactive state.
  1199. */
  1200. p->sleep_type = SLEEP_NONINTERACTIVE;
  1201. } else
  1202. /*
  1203. * Tasks that have marked their sleep as noninteractive get
  1204. * woken up with their sleep average not weighted in an
  1205. * interactive way.
  1206. */
  1207. if (old_state & TASK_NONINTERACTIVE)
  1208. p->sleep_type = SLEEP_NONINTERACTIVE;
  1209. activate_task(p, rq, cpu == this_cpu);
  1210. /*
  1211. * Sync wakeups (i.e. those types of wakeups where the waker
  1212. * has indicated that it will leave the CPU in short order)
  1213. * don't trigger a preemption, if the woken up task will run on
  1214. * this cpu. (in this case the 'I will reschedule' promise of
  1215. * the waker guarantees that the freshly woken up task is going
  1216. * to be considered on this CPU.)
  1217. */
  1218. if (!sync || cpu != this_cpu) {
  1219. if (TASK_PREEMPTS_CURR(p, rq))
  1220. resched_task(rq->curr);
  1221. }
  1222. success = 1;
  1223. out_running:
  1224. p->state = TASK_RUNNING;
  1225. out:
  1226. task_rq_unlock(rq, &flags);
  1227. return success;
  1228. }
  1229. int fastcall wake_up_process(task_t *p)
  1230. {
  1231. return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
  1232. TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
  1233. }
  1234. EXPORT_SYMBOL(wake_up_process);
  1235. int fastcall wake_up_state(task_t *p, unsigned int state)
  1236. {
  1237. return try_to_wake_up(p, state, 0);
  1238. }
  1239. /*
  1240. * Perform scheduler related setup for a newly forked process p.
  1241. * p is forked by current.
  1242. */
  1243. void fastcall sched_fork(task_t *p, int clone_flags)
  1244. {
  1245. int cpu = get_cpu();
  1246. #ifdef CONFIG_SMP
  1247. cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
  1248. #endif
  1249. set_task_cpu(p, cpu);
  1250. /*
  1251. * We mark the process as running here, but have not actually
  1252. * inserted it onto the runqueue yet. This guarantees that
  1253. * nobody will actually run it, and a signal or other external
  1254. * event cannot wake it up and insert it on the runqueue either.
  1255. */
  1256. p->state = TASK_RUNNING;
  1257. INIT_LIST_HEAD(&p->run_list);
  1258. p->array = NULL;
  1259. #ifdef CONFIG_SCHEDSTATS
  1260. memset(&p->sched_info, 0, sizeof(p->sched_info));
  1261. #endif
  1262. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  1263. p->oncpu = 0;
  1264. #endif
  1265. #ifdef CONFIG_PREEMPT
  1266. /* Want to start with kernel preemption disabled. */
  1267. task_thread_info(p)->preempt_count = 1;
  1268. #endif
  1269. /*
  1270. * Share the timeslice between parent and child, thus the
  1271. * total amount of pending timeslices in the system doesn't change,
  1272. * resulting in more scheduling fairness.
  1273. */
  1274. local_irq_disable();
  1275. p->time_slice = (current->time_slice + 1) >> 1;
  1276. /*
  1277. * The remainder of the first timeslice might be recovered by
  1278. * the parent if the child exits early enough.
  1279. */
  1280. p->first_time_slice = 1;
  1281. current->time_slice >>= 1;
  1282. p->timestamp = sched_clock();
  1283. if (unlikely(!current->time_slice)) {
  1284. /*
  1285. * This case is rare, it happens when the parent has only
  1286. * a single jiffy left from its timeslice. Taking the
  1287. * runqueue lock is not a problem.
  1288. */
  1289. current->time_slice = 1;
  1290. scheduler_tick();
  1291. }
  1292. local_irq_enable();
  1293. put_cpu();
  1294. }
  1295. /*
  1296. * wake_up_new_task - wake up a newly created task for the first time.
  1297. *
  1298. * This function will do some initial scheduler statistics housekeeping
  1299. * that must be done for every newly created context, then puts the task
  1300. * on the runqueue and wakes it.
  1301. */
  1302. void fastcall wake_up_new_task(task_t *p, unsigned long clone_flags)
  1303. {
  1304. unsigned long flags;
  1305. int this_cpu, cpu;
  1306. runqueue_t *rq, *this_rq;
  1307. rq = task_rq_lock(p, &flags);
  1308. BUG_ON(p->state != TASK_RUNNING);
  1309. this_cpu = smp_processor_id();
  1310. cpu = task_cpu(p);
  1311. /*
  1312. * We decrease the sleep average of forking parents
  1313. * and children as well, to keep max-interactive tasks
  1314. * from forking tasks that are max-interactive. The parent
  1315. * (current) is done further down, under its lock.
  1316. */
  1317. p->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(p) *
  1318. CHILD_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
  1319. p->prio = effective_prio(p);
  1320. if (likely(cpu == this_cpu)) {
  1321. if (!(clone_flags & CLONE_VM)) {
  1322. /*
  1323. * The VM isn't cloned, so we're in a good position to
  1324. * do child-runs-first in anticipation of an exec. This
  1325. * usually avoids a lot of COW overhead.
  1326. */
  1327. if (unlikely(!current->array))
  1328. __activate_task(p, rq);
  1329. else {
  1330. p->prio = current->prio;
  1331. list_add_tail(&p->run_list, &current->run_list);
  1332. p->array = current->array;
  1333. p->array->nr_active++;
  1334. inc_nr_running(p, rq);
  1335. }
  1336. set_need_resched();
  1337. } else
  1338. /* Run child last */
  1339. __activate_task(p, rq);
  1340. /*
  1341. * We skip the following code due to cpu == this_cpu
  1342. *
  1343. * task_rq_unlock(rq, &flags);
  1344. * this_rq = task_rq_lock(current, &flags);
  1345. */
  1346. this_rq = rq;
  1347. } else {
  1348. this_rq = cpu_rq(this_cpu);
  1349. /*
  1350. * Not the local CPU - must adjust timestamp. This should
  1351. * get optimised away in the !CONFIG_SMP case.
  1352. */
  1353. p->timestamp = (p->timestamp - this_rq->timestamp_last_tick)
  1354. + rq->timestamp_last_tick;
  1355. __activate_task(p, rq);
  1356. if (TASK_PREEMPTS_CURR(p, rq))
  1357. resched_task(rq->curr);
  1358. /*
  1359. * Parent and child are on different CPUs, now get the
  1360. * parent runqueue to update the parent's ->sleep_avg:
  1361. */
  1362. task_rq_unlock(rq, &flags);
  1363. this_rq = task_rq_lock(current, &flags);
  1364. }
  1365. current->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(current) *
  1366. PARENT_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
  1367. task_rq_unlock(this_rq, &flags);
  1368. }
  1369. /*
  1370. * Potentially available exiting-child timeslices are
  1371. * retrieved here - this way the parent does not get
  1372. * penalized for creating too many threads.
  1373. *
  1374. * (this cannot be used to 'generate' timeslices
  1375. * artificially, because any timeslice recovered here
  1376. * was given away by the parent in the first place.)
  1377. */
  1378. void fastcall sched_exit(task_t *p)
  1379. {
  1380. unsigned long flags;
  1381. runqueue_t *rq;
  1382. /*
  1383. * If the child was a (relative-) CPU hog then decrease
  1384. * the sleep_avg of the parent as well.
  1385. */
  1386. rq = task_rq_lock(p->parent, &flags);
  1387. if (p->first_time_slice && task_cpu(p) == task_cpu(p->parent)) {
  1388. p->parent->time_slice += p->time_slice;
  1389. if (unlikely(p->parent->time_slice > task_timeslice(p)))
  1390. p->parent->time_slice = task_timeslice(p);
  1391. }
  1392. if (p->sleep_avg < p->parent->sleep_avg)
  1393. p->parent->sleep_avg = p->parent->sleep_avg /
  1394. (EXIT_WEIGHT + 1) * EXIT_WEIGHT + p->sleep_avg /
  1395. (EXIT_WEIGHT + 1);
  1396. task_rq_unlock(rq, &flags);
  1397. }
  1398. /**
  1399. * prepare_task_switch - prepare to switch tasks
  1400. * @rq: the runqueue preparing to switch
  1401. * @next: the task we are going to switch to.
  1402. *
  1403. * This is called with the rq lock held and interrupts off. It must
  1404. * be paired with a subsequent finish_task_switch after the context
  1405. * switch.
  1406. *
  1407. * prepare_task_switch sets up locking and calls architecture specific
  1408. * hooks.
  1409. */
  1410. static inline void prepare_task_switch(runqueue_t *rq, task_t *next)
  1411. {
  1412. prepare_lock_switch(rq, next);
  1413. prepare_arch_switch(next);
  1414. }
  1415. /**
  1416. * finish_task_switch - clean up after a task-switch
  1417. * @rq: runqueue associated with task-switch
  1418. * @prev: the thread we just switched away from.
  1419. *
  1420. * finish_task_switch must be called after the context switch, paired
  1421. * with a prepare_task_switch call before the context switch.
  1422. * finish_task_switch will reconcile locking set up by prepare_task_switch,
  1423. * and do any other architecture-specific cleanup actions.
  1424. *
  1425. * Note that we may have delayed dropping an mm in context_switch(). If
  1426. * so, we finish that here outside of the runqueue lock. (Doing it
  1427. * with the lock held can cause deadlocks; see schedule() for
  1428. * details.)
  1429. */
  1430. static inline void finish_task_switch(runqueue_t *rq, task_t *prev)
  1431. __releases(rq->lock)
  1432. {
  1433. struct mm_struct *mm = rq->prev_mm;
  1434. unsigned long prev_task_flags;
  1435. rq->prev_mm = NULL;
  1436. /*
  1437. * A task struct has one reference for the use as "current".
  1438. * If a task dies, then it sets EXIT_ZOMBIE in tsk->exit_state and
  1439. * calls schedule one last time. The schedule call will never return,
  1440. * and the scheduled task must drop that reference.
  1441. * The test for EXIT_ZOMBIE must occur while the runqueue locks are
  1442. * still held, otherwise prev could be scheduled on another cpu, die
  1443. * there before we look at prev->state, and then the reference would
  1444. * be dropped twice.
  1445. * Manfred Spraul <manfred@colorfullife.com>
  1446. */
  1447. prev_task_flags = prev->flags;
  1448. finish_arch_switch(prev);
  1449. finish_lock_switch(rq, prev);
  1450. if (mm)
  1451. mmdrop(mm);
  1452. if (unlikely(prev_task_flags & PF_DEAD)) {
  1453. /*
  1454. * Remove function-return probe instances associated with this
  1455. * task and put them back on the free list.
  1456. */
  1457. kprobe_flush_task(prev);
  1458. put_task_struct(prev);
  1459. }
  1460. }
  1461. /**
  1462. * schedule_tail - first thing a freshly forked thread must call.
  1463. * @prev: the thread we just switched away from.
  1464. */
  1465. asmlinkage void schedule_tail(task_t *prev)
  1466. __releases(rq->lock)
  1467. {
  1468. runqueue_t *rq = this_rq();
  1469. finish_task_switch(rq, prev);
  1470. #ifdef __ARCH_WANT_UNLOCKED_CTXSW
  1471. /* In this case, finish_task_switch does not reenable preemption */
  1472. preempt_enable();
  1473. #endif
  1474. if (current->set_child_tid)
  1475. put_user(current->pid, current->set_child_tid);
  1476. }
  1477. /*
  1478. * context_switch - switch to the new MM and the new
  1479. * thread's register state.
  1480. */
  1481. static inline
  1482. task_t * context_switch(runqueue_t *rq, task_t *prev, task_t *next)
  1483. {
  1484. struct mm_struct *mm = next->mm;
  1485. struct mm_struct *oldmm = prev->active_mm;
  1486. if (unlikely(!mm)) {
  1487. next->active_mm = oldmm;
  1488. atomic_inc(&oldmm->mm_count);
  1489. enter_lazy_tlb(oldmm, next);
  1490. } else
  1491. switch_mm(oldmm, mm, next);
  1492. if (unlikely(!prev->mm)) {
  1493. prev->active_mm = NULL;
  1494. WARN_ON(rq->prev_mm);
  1495. rq->prev_mm = oldmm;
  1496. }
  1497. /* Here we just switch the register state and the stack. */
  1498. switch_to(prev, next, prev);
  1499. return prev;
  1500. }
  1501. /*
  1502. * nr_running, nr_uninterruptible and nr_context_switches:
  1503. *
  1504. * externally visible scheduler statistics: current number of runnable
  1505. * threads, current number of uninterruptible-sleeping threads, total
  1506. * number of context switches performed since bootup.
  1507. */
  1508. unsigned long nr_running(void)
  1509. {
  1510. unsigned long i, sum = 0;
  1511. for_each_online_cpu(i)
  1512. sum += cpu_rq(i)->nr_running;
  1513. return sum;
  1514. }
  1515. unsigned long nr_uninterruptible(void)
  1516. {
  1517. unsigned long i, sum = 0;
  1518. for_each_possible_cpu(i)
  1519. sum += cpu_rq(i)->nr_uninterruptible;
  1520. /*
  1521. * Since we read the counters lockless, it might be slightly
  1522. * inaccurate. Do not allow it to go below zero though:
  1523. */
  1524. if (unlikely((long)sum < 0))
  1525. sum = 0;
  1526. return sum;
  1527. }
  1528. unsigned long long nr_context_switches(void)
  1529. {
  1530. int i;
  1531. unsigned long long sum = 0;
  1532. for_each_possible_cpu(i)
  1533. sum += cpu_rq(i)->nr_switches;
  1534. return sum;
  1535. }
  1536. unsigned long nr_iowait(void)
  1537. {
  1538. unsigned long i, sum = 0;
  1539. for_each_possible_cpu(i)
  1540. sum += atomic_read(&cpu_rq(i)->nr_iowait);
  1541. return sum;
  1542. }
  1543. unsigned long nr_active(void)
  1544. {
  1545. unsigned long i, running = 0, uninterruptible = 0;
  1546. for_each_online_cpu(i) {
  1547. running += cpu_rq(i)->nr_running;
  1548. uninterruptible += cpu_rq(i)->nr_uninterruptible;
  1549. }
  1550. if (unlikely((long)uninterruptible < 0))
  1551. uninterruptible = 0;
  1552. return running + uninterruptible;
  1553. }
  1554. #ifdef CONFIG_SMP
  1555. /*
  1556. * double_rq_lock - safely lock two runqueues
  1557. *
  1558. * Note this does not disable interrupts like task_rq_lock,
  1559. * you need to do so manually before calling.
  1560. */
  1561. static void double_rq_lock(runqueue_t *rq1, runqueue_t *rq2)
  1562. __acquires(rq1->lock)
  1563. __acquires(rq2->lock)
  1564. {
  1565. if (rq1 == rq2) {
  1566. spin_lock(&rq1->lock);
  1567. __acquire(rq2->lock); /* Fake it out ;) */
  1568. } else {
  1569. if (rq1 < rq2) {
  1570. spin_lock(&rq1->lock);
  1571. spin_lock(&rq2->lock);
  1572. } else {
  1573. spin_lock(&rq2->lock);
  1574. spin_lock(&rq1->lock);
  1575. }
  1576. }
  1577. }
  1578. /*
  1579. * double_rq_unlock - safely unlock two runqueues
  1580. *
  1581. * Note this does not restore interrupts like task_rq_unlock,
  1582. * you need to do so manually after calling.
  1583. */
  1584. static void double_rq_unlock(runqueue_t *rq1, runqueue_t *rq2)
  1585. __releases(rq1->lock)
  1586. __releases(rq2->lock)
  1587. {
  1588. spin_unlock(&rq1->lock);
  1589. if (rq1 != rq2)
  1590. spin_unlock(&rq2->lock);
  1591. else
  1592. __release(rq2->lock);
  1593. }
  1594. /*
  1595. * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
  1596. */
  1597. static void double_lock_balance(runqueue_t *this_rq, runqueue_t *busiest)
  1598. __releases(this_rq->lock)
  1599. __acquires(busiest->lock)
  1600. __acquires(this_rq->lock)
  1601. {
  1602. if (unlikely(!spin_trylock(&busiest->lock))) {
  1603. if (busiest < this_rq) {
  1604. spin_unlock(&this_rq->lock);
  1605. spin_lock(&busiest->lock);
  1606. spin_lock(&this_rq->lock);
  1607. } else
  1608. spin_lock(&busiest->lock);
  1609. }
  1610. }
  1611. /*
  1612. * If dest_cpu is allowed for this process, migrate the task to it.
  1613. * This is accomplished by forcing the cpu_allowed mask to only
  1614. * allow dest_cpu, which will force the cpu onto dest_cpu. Then
  1615. * the cpu_allowed mask is restored.
  1616. */
  1617. static void sched_migrate_task(task_t *p, int dest_cpu)
  1618. {
  1619. migration_req_t req;
  1620. runqueue_t *rq;
  1621. unsigned long flags;
  1622. rq = task_rq_lock(p, &flags);
  1623. if (!cpu_isset(dest_cpu, p->cpus_allowed)
  1624. || unlikely(cpu_is_offline(dest_cpu)))
  1625. goto out;
  1626. /* force the process onto the specified CPU */
  1627. if (migrate_task(p, dest_cpu, &req)) {
  1628. /* Need to wait for migration thread (might exit: take ref). */
  1629. struct task_struct *mt = rq->migration_thread;
  1630. get_task_struct(mt);
  1631. task_rq_unlock(rq, &flags);
  1632. wake_up_process(mt);
  1633. put_task_struct(mt);
  1634. wait_for_completion(&req.done);
  1635. return;
  1636. }
  1637. out:
  1638. task_rq_unlock(rq, &flags);
  1639. }
  1640. /*
  1641. * sched_exec - execve() is a valuable balancing opportunity, because at
  1642. * this point the task has the smallest effective memory and cache footprint.
  1643. */
  1644. void sched_exec(void)
  1645. {
  1646. int new_cpu, this_cpu = get_cpu();
  1647. new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
  1648. put_cpu();
  1649. if (new_cpu != this_cpu)
  1650. sched_migrate_task(current, new_cpu);
  1651. }
  1652. /*
  1653. * pull_task - move a task from a remote runqueue to the local runqueue.
  1654. * Both runqueues must be locked.
  1655. */
  1656. static
  1657. void pull_task(runqueue_t *src_rq, prio_array_t *src_array, task_t *p,
  1658. runqueue_t *this_rq, prio_array_t *this_array, int this_cpu)
  1659. {
  1660. dequeue_task(p, src_array);
  1661. dec_nr_running(p, src_rq);
  1662. set_task_cpu(p, this_cpu);
  1663. inc_nr_running(p, this_rq);
  1664. enqueue_task(p, this_array);
  1665. p->timestamp = (p->timestamp - src_rq->timestamp_last_tick)
  1666. + this_rq->timestamp_last_tick;
  1667. /*
  1668. * Note that idle threads have a prio of MAX_PRIO, for this test
  1669. * to be always true for them.
  1670. */
  1671. if (TASK_PREEMPTS_CURR(p, this_rq))
  1672. resched_task(this_rq->curr);
  1673. }
  1674. /*
  1675. * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
  1676. */
  1677. static
  1678. int can_migrate_task(task_t *p, runqueue_t *rq, int this_cpu,
  1679. struct sched_domain *sd, enum idle_type idle,
  1680. int *all_pinned)
  1681. {
  1682. /*
  1683. * We do not migrate tasks that are:
  1684. * 1) running (obviously), or
  1685. * 2) cannot be migrated to this CPU due to cpus_allowed, or
  1686. * 3) are cache-hot on their current CPU.
  1687. */
  1688. if (!cpu_isset(this_cpu, p->cpus_allowed))
  1689. return 0;
  1690. *all_pinned = 0;
  1691. if (task_running(rq, p))
  1692. return 0;
  1693. /*
  1694. * Aggressive migration if:
  1695. * 1) task is cache cold, or
  1696. * 2) too many balance attempts have failed.
  1697. */
  1698. if (sd->nr_balance_failed > sd->cache_nice_tries)
  1699. return 1;
  1700. if (task_hot(p, rq->timestamp_last_tick, sd))
  1701. return 0;
  1702. return 1;
  1703. }
  1704. #define rq_best_prio(rq) min((rq)->curr->prio, (rq)->best_expired_prio)
  1705. /*
  1706. * move_tasks tries to move up to max_nr_move tasks and max_load_move weighted
  1707. * load from busiest to this_rq, as part of a balancing operation within
  1708. * "domain". Returns the number of tasks moved.
  1709. *
  1710. * Called with both runqueues locked.
  1711. */
  1712. static int move_tasks(runqueue_t *this_rq, int this_cpu, runqueue_t *busiest,
  1713. unsigned long max_nr_move, unsigned long max_load_move,
  1714. struct sched_domain *sd, enum idle_type idle,
  1715. int *all_pinned)
  1716. {
  1717. prio_array_t *array, *dst_array;
  1718. struct list_head *head, *curr;
  1719. int idx, pulled = 0, pinned = 0, this_best_prio, busiest_best_prio;
  1720. int busiest_best_prio_seen;
  1721. int skip_for_load; /* skip the task based on weighted load issues */
  1722. long rem_load_move;
  1723. task_t *tmp;
  1724. if (max_nr_move == 0 || max_load_move == 0)
  1725. goto out;
  1726. rem_load_move = max_load_move;
  1727. pinned = 1;
  1728. this_best_prio = rq_best_prio(this_rq);
  1729. busiest_best_prio = rq_best_prio(busiest);
  1730. /*
  1731. * Enable handling of the case where there is more than one task
  1732. * with the best priority. If the current running task is one
  1733. * of those with prio==busiest_best_prio we know it won't be moved
  1734. * and therefore it's safe to override the skip (based on load) of
  1735. * any task we find with that prio.
  1736. */
  1737. busiest_best_prio_seen = busiest_best_prio == busiest->curr->prio;
  1738. /*
  1739. * We first consider expired tasks. Those will likely not be
  1740. * executed in the near future, and they are most likely to
  1741. * be cache-cold, thus switching CPUs has the least effect
  1742. * on them.
  1743. */
  1744. if (busiest->expired->nr_active) {
  1745. array = busiest->expired;
  1746. dst_array = this_rq->expired;
  1747. } else {
  1748. array = busiest->active;
  1749. dst_array = this_rq->active;
  1750. }
  1751. new_array:
  1752. /* Start searching at priority 0: */
  1753. idx = 0;
  1754. skip_bitmap:
  1755. if (!idx)
  1756. idx = sched_find_first_bit(array->bitmap);
  1757. else
  1758. idx = find_next_bit(array->bitmap, MAX_PRIO, idx);
  1759. if (idx >= MAX_PRIO) {
  1760. if (array == busiest->expired && busiest->active->nr_active) {
  1761. array = busiest->active;
  1762. dst_array = this_rq->active;
  1763. goto new_array;
  1764. }
  1765. goto out;
  1766. }
  1767. head = array->queue + idx;
  1768. curr = head->prev;
  1769. skip_queue:
  1770. tmp = list_entry(curr, task_t, run_list);
  1771. curr = curr->prev;
  1772. /*
  1773. * To help distribute high priority tasks accross CPUs we don't
  1774. * skip a task if it will be the highest priority task (i.e. smallest
  1775. * prio value) on its new queue regardless of its load weight
  1776. */
  1777. skip_for_load = tmp->load_weight > rem_load_move;
  1778. if (skip_for_load && idx < this_best_prio)
  1779. skip_for_load = !busiest_best_prio_seen && idx == busiest_best_prio;
  1780. if (skip_for_load ||
  1781. !can_migrate_task(tmp, busiest, this_cpu, sd, idle, &pinned)) {
  1782. busiest_best_prio_seen |= idx == busiest_best_prio;
  1783. if (curr != head)
  1784. goto skip_queue;
  1785. idx++;
  1786. goto skip_bitmap;
  1787. }
  1788. #ifdef CONFIG_SCHEDSTATS
  1789. if (task_hot(tmp, busiest->timestamp_last_tick, sd))
  1790. schedstat_inc(sd, lb_hot_gained[idle]);
  1791. #endif
  1792. pull_task(busiest, array, tmp, this_rq, dst_array, this_cpu);
  1793. pulled++;
  1794. rem_load_move -= tmp->load_weight;
  1795. /*
  1796. * We only want to steal up to the prescribed number of tasks
  1797. * and the prescribed amount of weighted load.
  1798. */
  1799. if (pulled < max_nr_move && rem_load_move > 0) {
  1800. if (idx < this_best_prio)
  1801. this_best_prio = idx;
  1802. if (curr != head)
  1803. goto skip_queue;
  1804. idx++;
  1805. goto skip_bitmap;
  1806. }
  1807. out:
  1808. /*
  1809. * Right now, this is the only place pull_task() is called,
  1810. * so we can safely collect pull_task() stats here rather than
  1811. * inside pull_task().
  1812. */
  1813. schedstat_add(sd, lb_gained[idle], pulled);
  1814. if (all_pinned)
  1815. *all_pinned = pinned;
  1816. return pulled;
  1817. }
  1818. /*
  1819. * find_busiest_group finds and returns the busiest CPU group within the
  1820. * domain. It calculates and returns the amount of weighted load which should be
  1821. * moved to restore balance via the imbalance parameter.
  1822. */
  1823. static struct sched_group *
  1824. find_busiest_group(struct sched_domain *sd, int this_cpu,
  1825. unsigned long *imbalance, enum idle_type idle, int *sd_idle)
  1826. {
  1827. struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
  1828. unsigned long max_load, avg_load, total_load, this_load, total_pwr;
  1829. unsigned long max_pull;
  1830. unsigned long busiest_load_per_task, busiest_nr_running;
  1831. unsigned long this_load_per_task, this_nr_running;
  1832. int load_idx;
  1833. max_load = this_load = total_load = total_pwr = 0;
  1834. busiest_load_per_task = busiest_nr_running = 0;
  1835. this_load_per_task = this_nr_running = 0;
  1836. if (idle == NOT_IDLE)
  1837. load_idx = sd->busy_idx;
  1838. else if (idle == NEWLY_IDLE)
  1839. load_idx = sd->newidle_idx;
  1840. else
  1841. load_idx = sd->idle_idx;
  1842. do {
  1843. unsigned long load;
  1844. int local_group;
  1845. int i;
  1846. unsigned long sum_nr_running, sum_weighted_load;
  1847. local_group = cpu_isset(this_cpu, group->cpumask);
  1848. /* Tally up the load of all CPUs in the group */
  1849. sum_weighted_load = sum_nr_running = avg_load = 0;
  1850. for_each_cpu_mask(i, group->cpumask) {
  1851. runqueue_t *rq = cpu_rq(i);
  1852. if (*sd_idle && !idle_cpu(i))
  1853. *sd_idle = 0;
  1854. /* Bias balancing toward cpus of our domain */
  1855. if (local_group)
  1856. load = target_load(i, load_idx);
  1857. else
  1858. load = source_load(i, load_idx);
  1859. avg_load += load;
  1860. sum_nr_running += rq->nr_running;
  1861. sum_weighted_load += rq->raw_weighted_load;
  1862. }
  1863. total_load += avg_load;
  1864. total_pwr += group->cpu_power;
  1865. /* Adjust by relative CPU power of the group */
  1866. avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
  1867. if (local_group) {
  1868. this_load = avg_load;
  1869. this = group;
  1870. this_nr_running = sum_nr_running;
  1871. this_load_per_task = sum_weighted_load;
  1872. } else if (avg_load > max_load &&
  1873. sum_nr_running > group->cpu_power / SCHED_LOAD_SCALE) {
  1874. max_load = avg_load;
  1875. busiest = group;
  1876. busiest_nr_running = sum_nr_running;
  1877. busiest_load_per_task = sum_weighted_load;
  1878. }
  1879. group = group->next;
  1880. } while (group != sd->groups);
  1881. if (!busiest || this_load >= max_load || busiest_nr_running == 0)
  1882. goto out_balanced;
  1883. avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
  1884. if (this_load >= avg_load ||
  1885. 100*max_load <= sd->imbalance_pct*this_load)
  1886. goto out_balanced;
  1887. busiest_load_per_task /= busiest_nr_running;
  1888. /*
  1889. * We're trying to get all the cpus to the average_load, so we don't
  1890. * want to push ourselves above the average load, nor do we wish to
  1891. * reduce the max loaded cpu below the average load, as either of these
  1892. * actions would just result in more rebalancing later, and ping-pong
  1893. * tasks around. Thus we look for the minimum possible imbalance.
  1894. * Negative imbalances (*we* are more loaded than anyone else) will
  1895. * be counted as no imbalance for these purposes -- we can't fix that
  1896. * by pulling tasks to us. Be careful of negative numbers as they'll
  1897. * appear as very large values with unsigned longs.
  1898. */
  1899. if (max_load <= busiest_load_per_task)
  1900. goto out_balanced;
  1901. /*
  1902. * In the presence of smp nice balancing, certain scenarios can have
  1903. * max load less than avg load(as we skip the groups at or below
  1904. * its cpu_power, while calculating max_load..)
  1905. */
  1906. if (max_load < avg_load) {
  1907. *imbalance = 0;
  1908. goto small_imbalance;
  1909. }
  1910. /* Don't want to pull so many tasks that a group would go idle */
  1911. max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
  1912. /* How much load to actually move to equalise the imbalance */
  1913. *imbalance = min(max_pull * busiest->cpu_power,
  1914. (avg_load - this_load) * this->cpu_power)
  1915. / SCHED_LOAD_SCALE;
  1916. /*
  1917. * if *imbalance is less than the average load per runnable task
  1918. * there is no gaurantee that any tasks will be moved so we'll have
  1919. * a think about bumping its value to force at least one task to be
  1920. * moved
  1921. */
  1922. if (*imbalance < busiest_load_per_task) {
  1923. unsigned long pwr_now, pwr_move;
  1924. unsigned long tmp;
  1925. unsigned int imbn;
  1926. small_imbalance:
  1927. pwr_move = pwr_now = 0;
  1928. imbn = 2;
  1929. if (this_nr_running) {
  1930. this_load_per_task /= this_nr_running;
  1931. if (busiest_load_per_task > this_load_per_task)
  1932. imbn = 1;
  1933. } else
  1934. this_load_per_task = SCHED_LOAD_SCALE;
  1935. if (max_load - this_load >= busiest_load_per_task * imbn) {
  1936. *imbalance = busiest_load_per_task;
  1937. return busiest;
  1938. }
  1939. /*
  1940. * OK, we don't have enough imbalance to justify moving tasks,
  1941. * however we may be able to increase total CPU power used by
  1942. * moving them.
  1943. */
  1944. pwr_now += busiest->cpu_power *
  1945. min(busiest_load_per_task, max_load);
  1946. pwr_now += this->cpu_power *
  1947. min(this_load_per_task, this_load);
  1948. pwr_now /= SCHED_LOAD_SCALE;
  1949. /* Amount of load we'd subtract */
  1950. tmp = busiest_load_per_task*SCHED_LOAD_SCALE/busiest->cpu_power;
  1951. if (max_load > tmp)
  1952. pwr_move += busiest->cpu_power *
  1953. min(busiest_load_per_task, max_load - tmp);
  1954. /* Amount of load we'd add */
  1955. if (max_load*busiest->cpu_power <
  1956. busiest_load_per_task*SCHED_LOAD_SCALE)
  1957. tmp = max_load*busiest->cpu_power/this->cpu_power;
  1958. else
  1959. tmp = busiest_load_per_task*SCHED_LOAD_SCALE/this->cpu_power;
  1960. pwr_move += this->cpu_power*min(this_load_per_task, this_load + tmp);
  1961. pwr_move /= SCHED_LOAD_SCALE;
  1962. /* Move if we gain throughput */
  1963. if (pwr_move <= pwr_now)
  1964. goto out_balanced;
  1965. *imbalance = busiest_load_per_task;
  1966. }
  1967. return busiest;
  1968. out_balanced:
  1969. *imbalance = 0;
  1970. return NULL;
  1971. }
  1972. /*
  1973. * find_busiest_queue - find the busiest runqueue among the cpus in group.
  1974. */
  1975. static runqueue_t *find_busiest_queue(struct sched_group *group,
  1976. enum idle_type idle, unsigned long imbalance)
  1977. {
  1978. unsigned long max_load = 0;
  1979. runqueue_t *busiest = NULL, *rqi;
  1980. int i;
  1981. for_each_cpu_mask(i, group->cpumask) {
  1982. rqi = cpu_rq(i);
  1983. if (rqi->nr_running == 1 && rqi->raw_weighted_load > imbalance)
  1984. continue;
  1985. if (rqi->raw_weighted_load > max_load) {
  1986. max_load = rqi->raw_weighted_load;
  1987. busiest = rqi;
  1988. }
  1989. }
  1990. return busiest;
  1991. }
  1992. /*
  1993. * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
  1994. * so long as it is large enough.
  1995. */
  1996. #define MAX_PINNED_INTERVAL 512
  1997. #define minus_1_or_zero(n) ((n) > 0 ? (n) - 1 : 0)
  1998. /*
  1999. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2000. * tasks if there is an imbalance.
  2001. *
  2002. * Called with this_rq unlocked.
  2003. */
  2004. static int load_balance(int this_cpu, runqueue_t *this_rq,
  2005. struct sched_domain *sd, enum idle_type idle)
  2006. {
  2007. struct sched_group *group;
  2008. runqueue_t *busiest;
  2009. unsigned long imbalance;
  2010. int nr_moved, all_pinned = 0;
  2011. int active_balance = 0;
  2012. int sd_idle = 0;
  2013. if (idle != NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER)
  2014. sd_idle = 1;
  2015. schedstat_inc(sd, lb_cnt[idle]);
  2016. group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle);
  2017. if (!group) {
  2018. schedstat_inc(sd, lb_nobusyg[idle]);
  2019. goto out_balanced;
  2020. }
  2021. busiest = find_busiest_queue(group, idle, imbalance);
  2022. if (!busiest) {
  2023. schedstat_inc(sd, lb_nobusyq[idle]);
  2024. goto out_balanced;
  2025. }
  2026. BUG_ON(busiest == this_rq);
  2027. schedstat_add(sd, lb_imbalance[idle], imbalance);
  2028. nr_moved = 0;
  2029. if (busiest->nr_running > 1) {
  2030. /*
  2031. * Attempt to move tasks. If find_busiest_group has found
  2032. * an imbalance but busiest->nr_running <= 1, the group is
  2033. * still unbalanced. nr_moved simply stays zero, so it is
  2034. * correctly treated as an imbalance.
  2035. */
  2036. double_rq_lock(this_rq, busiest);
  2037. nr_moved = move_tasks(this_rq, this_cpu, busiest,
  2038. minus_1_or_zero(busiest->nr_running),
  2039. imbalance, sd, idle, &all_pinned);
  2040. double_rq_unlock(this_rq, busiest);
  2041. /* All tasks on this runqueue were pinned by CPU affinity */
  2042. if (unlikely(all_pinned))
  2043. goto out_balanced;
  2044. }
  2045. if (!nr_moved) {
  2046. schedstat_inc(sd, lb_failed[idle]);
  2047. sd->nr_balance_failed++;
  2048. if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
  2049. spin_lock(&busiest->lock);
  2050. /* don't kick the migration_thread, if the curr
  2051. * task on busiest cpu can't be moved to this_cpu
  2052. */
  2053. if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
  2054. spin_unlock(&busiest->lock);
  2055. all_pinned = 1;
  2056. goto out_one_pinned;
  2057. }
  2058. if (!busiest->active_balance) {
  2059. busiest->active_balance = 1;
  2060. busiest->push_cpu = this_cpu;
  2061. active_balance = 1;
  2062. }
  2063. spin_unlock(&busiest->lock);
  2064. if (active_balance)
  2065. wake_up_process(busiest->migration_thread);
  2066. /*
  2067. * We've kicked active balancing, reset the failure
  2068. * counter.
  2069. */
  2070. sd->nr_balance_failed = sd->cache_nice_tries+1;
  2071. }
  2072. } else
  2073. sd->nr_balance_failed = 0;
  2074. if (likely(!active_balance)) {
  2075. /* We were unbalanced, so reset the balancing interval */
  2076. sd->balance_interval = sd->min_interval;
  2077. } else {
  2078. /*
  2079. * If we've begun active balancing, start to back off. This
  2080. * case may not be covered by the all_pinned logic if there
  2081. * is only 1 task on the busy runqueue (because we don't call
  2082. * move_tasks).
  2083. */
  2084. if (sd->balance_interval < sd->max_interval)
  2085. sd->balance_interval *= 2;
  2086. }
  2087. if (!nr_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER)
  2088. return -1;
  2089. return nr_moved;
  2090. out_balanced:
  2091. schedstat_inc(sd, lb_balanced[idle]);
  2092. sd->nr_balance_failed = 0;
  2093. out_one_pinned:
  2094. /* tune up the balancing interval */
  2095. if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
  2096. (sd->balance_interval < sd->max_interval))
  2097. sd->balance_interval *= 2;
  2098. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER)
  2099. return -1;
  2100. return 0;
  2101. }
  2102. /*
  2103. * Check this_cpu to ensure it is balanced within domain. Attempt to move
  2104. * tasks if there is an imbalance.
  2105. *
  2106. * Called from schedule when this_rq is about to become idle (NEWLY_IDLE).
  2107. * this_rq is locked.
  2108. */
  2109. static int load_balance_newidle(int this_cpu, runqueue_t *this_rq,
  2110. struct sched_domain *sd)
  2111. {
  2112. struct sched_group *group;
  2113. runqueue_t *busiest = NULL;
  2114. unsigned long imbalance;
  2115. int nr_moved = 0;
  2116. int sd_idle = 0;
  2117. if (sd->flags & SD_SHARE_CPUPOWER)
  2118. sd_idle = 1;
  2119. schedstat_inc(sd, lb_cnt[NEWLY_IDLE]);
  2120. group = find_busiest_group(sd, this_cpu, &imbalance, NEWLY_IDLE, &sd_idle);
  2121. if (!group) {
  2122. schedstat_inc(sd, lb_nobusyg[NEWLY_IDLE]);
  2123. goto out_balanced;
  2124. }
  2125. busiest = find_busiest_queue(group, NEWLY_IDLE, imbalance);
  2126. if (!busiest) {
  2127. schedstat_inc(sd, lb_nobusyq[NEWLY_IDLE]);
  2128. goto out_balanced;
  2129. }
  2130. BUG_ON(busiest == this_rq);
  2131. schedstat_add(sd, lb_imbalance[NEWLY_IDLE], imbalance);
  2132. nr_moved = 0;
  2133. if (busiest->nr_running > 1) {
  2134. /* Attempt to move tasks */
  2135. double_lock_balance(this_rq, busiest);
  2136. nr_moved = move_tasks(this_rq, this_cpu, busiest,
  2137. minus_1_or_zero(busiest->nr_running),
  2138. imbalance, sd, NEWLY_IDLE, NULL);
  2139. spin_unlock(&busiest->lock);
  2140. }
  2141. if (!nr_moved) {
  2142. schedstat_inc(sd, lb_failed[NEWLY_IDLE]);
  2143. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER)
  2144. return -1;
  2145. } else
  2146. sd->nr_balance_failed = 0;
  2147. return nr_moved;
  2148. out_balanced:
  2149. schedstat_inc(sd, lb_balanced[NEWLY_IDLE]);
  2150. if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER)
  2151. return -1;
  2152. sd->nr_balance_failed = 0;
  2153. return 0;
  2154. }
  2155. /*
  2156. * idle_balance is called by schedule() if this_cpu is about to become
  2157. * idle. Attempts to pull tasks from other CPUs.
  2158. */
  2159. static void idle_balance(int this_cpu, runqueue_t *this_rq)
  2160. {
  2161. struct sched_domain *sd;
  2162. for_each_domain(this_cpu, sd) {
  2163. if (sd->flags & SD_BALANCE_NEWIDLE) {
  2164. if (load_balance_newidle(this_cpu, this_rq, sd)) {
  2165. /* We've pulled tasks over so stop searching */
  2166. break;
  2167. }
  2168. }
  2169. }
  2170. }
  2171. /*
  2172. * active_load_balance is run by migration threads. It pushes running tasks
  2173. * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
  2174. * running on each physical CPU where possible, and avoids physical /
  2175. * logical imbalances.
  2176. *
  2177. * Called with busiest_rq locked.
  2178. */
  2179. static void active_load_balance(runqueue_t *busiest_rq, int busiest_cpu)
  2180. {
  2181. struct sched_domain *sd;
  2182. runqueue_t *target_rq;
  2183. int target_cpu = busiest_rq->push_cpu;
  2184. if (busiest_rq->nr_running <= 1)
  2185. /* no task to move */
  2186. return;
  2187. target_rq = cpu_rq(target_cpu);
  2188. /*
  2189. * This condition is "impossible", if it occurs
  2190. * we need to fix it. Originally reported by
  2191. * Bjorn Helgaas on a 128-cpu setup.
  2192. */
  2193. BUG_ON(busiest_rq == target_rq);
  2194. /* move a task from busiest_rq to target_rq */
  2195. double_lock_balance(busiest_rq, target_rq);
  2196. /* Search for an sd spanning us and the target CPU. */
  2197. for_each_domain(target_cpu, sd) {
  2198. if ((sd->flags & SD_LOAD_BALANCE) &&
  2199. cpu_isset(busiest_cpu, sd->span))
  2200. break;
  2201. }
  2202. if (unlikely(sd == NULL))
  2203. goto out;
  2204. schedstat_inc(sd, alb_cnt);
  2205. if (move_tasks(target_rq, target_cpu, busiest_rq, 1,
  2206. RTPRIO_TO_LOAD_WEIGHT(100), sd, SCHED_IDLE, NULL))
  2207. schedstat_inc(sd, alb_pushed);
  2208. else
  2209. schedstat_inc(sd, alb_failed);
  2210. out:
  2211. spin_unlock(&target_rq->lock);
  2212. }
  2213. /*
  2214. * rebalance_tick will get called every timer tick, on every CPU.
  2215. *
  2216. * It checks each scheduling domain to see if it is due to be balanced,
  2217. * and initiates a balancing operation if so.
  2218. *
  2219. * Balancing parameters are set up in arch_init_sched_domains.
  2220. */
  2221. /* Don't have all balancing operations going off at once */
  2222. #define CPU_OFFSET(cpu) (HZ * cpu / NR_CPUS)
  2223. static void rebalance_tick(int this_cpu, runqueue_t *this_rq,
  2224. enum idle_type idle)
  2225. {
  2226. unsigned long old_load, this_load;
  2227. unsigned long j = jiffies + CPU_OFFSET(this_cpu);
  2228. struct sched_domain *sd;
  2229. int i;
  2230. this_load = this_rq->raw_weighted_load;
  2231. /* Update our load */
  2232. for (i = 0; i < 3; i++) {
  2233. unsigned long new_load = this_load;
  2234. int scale = 1 << i;
  2235. old_load = this_rq->cpu_load[i];
  2236. /*
  2237. * Round up the averaging division if load is increasing. This
  2238. * prevents us from getting stuck on 9 if the load is 10, for
  2239. * example.
  2240. */
  2241. if (new_load > old_load)
  2242. new_load += scale-1;
  2243. this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) / scale;
  2244. }
  2245. for_each_domain(this_cpu, sd) {
  2246. unsigned long interval;
  2247. if (!(sd->flags & SD_LOAD_BALANCE))
  2248. continue;
  2249. interval = sd->balance_interval;
  2250. if (idle != SCHED_IDLE)
  2251. interval *= sd->busy_factor;
  2252. /* scale ms to jiffies */
  2253. interval = msecs_to_jiffies(interval);
  2254. if (unlikely(!interval))
  2255. interval = 1;
  2256. if (j - sd->last_balance >= interval) {
  2257. if (load_balance(this_cpu, this_rq, sd, idle)) {
  2258. /*
  2259. * We've pulled tasks over so either we're no
  2260. * longer idle, or one of our SMT siblings is
  2261. * not idle.
  2262. */
  2263. idle = NOT_IDLE;
  2264. }
  2265. sd->last_balance += interval;
  2266. }
  2267. }
  2268. }
  2269. #else
  2270. /*
  2271. * on UP we do not need to balance between CPUs:
  2272. */
  2273. static inline void rebalance_tick(int cpu, runqueue_t *rq, enum idle_type idle)
  2274. {
  2275. }
  2276. static inline void idle_balance(int cpu, runqueue_t *rq)
  2277. {
  2278. }
  2279. #endif
  2280. static inline int wake_priority_sleeper(runqueue_t *rq)
  2281. {
  2282. int ret = 0;
  2283. #ifdef CONFIG_SCHED_SMT
  2284. spin_lock(&rq->lock);
  2285. /*
  2286. * If an SMT sibling task has been put to sleep for priority
  2287. * reasons reschedule the idle task to see if it can now run.
  2288. */
  2289. if (rq->nr_running) {
  2290. resched_task(rq->idle);
  2291. ret = 1;
  2292. }
  2293. spin_unlock(&rq->lock);
  2294. #endif
  2295. return ret;
  2296. }
  2297. DEFINE_PER_CPU(struct kernel_stat, kstat);
  2298. EXPORT_PER_CPU_SYMBOL(kstat);
  2299. /*
  2300. * This is called on clock ticks and on context switches.
  2301. * Bank in p->sched_time the ns elapsed since the last tick or switch.
  2302. */
  2303. static inline void update_cpu_clock(task_t *p, runqueue_t *rq,
  2304. unsigned long long now)
  2305. {
  2306. unsigned long long last = max(p->timestamp, rq->timestamp_last_tick);
  2307. p->sched_time += now - last;
  2308. }
  2309. /*
  2310. * Return current->sched_time plus any more ns on the sched_clock
  2311. * that have not yet been banked.
  2312. */
  2313. unsigned long long current_sched_time(const task_t *tsk)
  2314. {
  2315. unsigned long long ns;
  2316. unsigned long flags;
  2317. local_irq_save(flags);
  2318. ns = max(tsk->timestamp, task_rq(tsk)->timestamp_last_tick);
  2319. ns = tsk->sched_time + (sched_clock() - ns);
  2320. local_irq_restore(flags);
  2321. return ns;
  2322. }
  2323. /*
  2324. * We place interactive tasks back into the active array, if possible.
  2325. *
  2326. * To guarantee that this does not starve expired tasks we ignore the
  2327. * interactivity of a task if the first expired task had to wait more
  2328. * than a 'reasonable' amount of time. This deadline timeout is
  2329. * load-dependent, as the frequency of array switched decreases with
  2330. * increasing number of running tasks. We also ignore the interactivity
  2331. * if a better static_prio task has expired:
  2332. */
  2333. #define EXPIRED_STARVING(rq) \
  2334. ((STARVATION_LIMIT && ((rq)->expired_timestamp && \
  2335. (jiffies - (rq)->expired_timestamp >= \
  2336. STARVATION_LIMIT * ((rq)->nr_running) + 1))) || \
  2337. ((rq)->curr->static_prio > (rq)->best_expired_prio))
  2338. /*
  2339. * Account user cpu time to a process.
  2340. * @p: the process that the cpu time gets accounted to
  2341. * @hardirq_offset: the offset to subtract from hardirq_count()
  2342. * @cputime: the cpu time spent in user space since the last update
  2343. */
  2344. void account_user_time(struct task_struct *p, cputime_t cputime)
  2345. {
  2346. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2347. cputime64_t tmp;
  2348. p->utime = cputime_add(p->utime, cputime);
  2349. /* Add user time to cpustat. */
  2350. tmp = cputime_to_cputime64(cputime);
  2351. if (TASK_NICE(p) > 0)
  2352. cpustat->nice = cputime64_add(cpustat->nice, tmp);
  2353. else
  2354. cpustat->user = cputime64_add(cpustat->user, tmp);
  2355. }
  2356. /*
  2357. * Account system cpu time to a process.
  2358. * @p: the process that the cpu time gets accounted to
  2359. * @hardirq_offset: the offset to subtract from hardirq_count()
  2360. * @cputime: the cpu time spent in kernel space since the last update
  2361. */
  2362. void account_system_time(struct task_struct *p, int hardirq_offset,
  2363. cputime_t cputime)
  2364. {
  2365. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2366. runqueue_t *rq = this_rq();
  2367. cputime64_t tmp;
  2368. p->stime = cputime_add(p->stime, cputime);
  2369. /* Add system time to cpustat. */
  2370. tmp = cputime_to_cputime64(cputime);
  2371. if (hardirq_count() - hardirq_offset)
  2372. cpustat->irq = cputime64_add(cpustat->irq, tmp);
  2373. else if (softirq_count())
  2374. cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
  2375. else if (p != rq->idle)
  2376. cpustat->system = cputime64_add(cpustat->system, tmp);
  2377. else if (atomic_read(&rq->nr_iowait) > 0)
  2378. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  2379. else
  2380. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  2381. /* Account for system time used */
  2382. acct_update_integrals(p);
  2383. }
  2384. /*
  2385. * Account for involuntary wait time.
  2386. * @p: the process from which the cpu time has been stolen
  2387. * @steal: the cpu time spent in involuntary wait
  2388. */
  2389. void account_steal_time(struct task_struct *p, cputime_t steal)
  2390. {
  2391. struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
  2392. cputime64_t tmp = cputime_to_cputime64(steal);
  2393. runqueue_t *rq = this_rq();
  2394. if (p == rq->idle) {
  2395. p->stime = cputime_add(p->stime, steal);
  2396. if (atomic_read(&rq->nr_iowait) > 0)
  2397. cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
  2398. else
  2399. cpustat->idle = cputime64_add(cpustat->idle, tmp);
  2400. } else
  2401. cpustat->steal = cputime64_add(cpustat->steal, tmp);
  2402. }
  2403. /*
  2404. * This function gets called by the timer code, with HZ frequency.
  2405. * We call it with interrupts disabled.
  2406. *
  2407. * It also gets called by the fork code, when changing the parent's
  2408. * timeslices.
  2409. */
  2410. void scheduler_tick(void)
  2411. {
  2412. int cpu = smp_processor_id();
  2413. runqueue_t *rq = this_rq();
  2414. task_t *p = current;
  2415. unsigned long long now = sched_clock();
  2416. update_cpu_clock(p, rq, now);
  2417. rq->timestamp_last_tick = now;
  2418. if (p == rq->idle) {
  2419. if (wake_priority_sleeper(rq))
  2420. goto out;
  2421. rebalance_tick(cpu, rq, SCHED_IDLE);
  2422. return;
  2423. }
  2424. /* Task might have expired already, but not scheduled off yet */
  2425. if (p->array != rq->active) {
  2426. set_tsk_need_resched(p);
  2427. goto out;
  2428. }
  2429. spin_lock(&rq->lock);
  2430. /*
  2431. * The task was running during this tick - update the
  2432. * time slice counter. Note: we do not update a thread's
  2433. * priority until it either goes to sleep or uses up its
  2434. * timeslice. This makes it possible for interactive tasks
  2435. * to use up their timeslices at their highest priority levels.
  2436. */
  2437. if (rt_task(p)) {
  2438. /*
  2439. * RR tasks need a special form of timeslice management.
  2440. * FIFO tasks have no timeslices.
  2441. */
  2442. if ((p->policy == SCHED_RR) && !--p->time_slice) {
  2443. p->time_slice = task_timeslice(p);
  2444. p->first_time_slice = 0;
  2445. set_tsk_need_resched(p);
  2446. /* put it at the end of the queue: */
  2447. requeue_task(p, rq->active);
  2448. }
  2449. goto out_unlock;
  2450. }
  2451. if (!--p->time_slice) {
  2452. dequeue_task(p, rq->active);
  2453. set_tsk_need_resched(p);
  2454. p->prio = effective_prio(p);
  2455. p->time_slice = task_timeslice(p);
  2456. p->first_time_slice = 0;
  2457. if (!rq->expired_timestamp)
  2458. rq->expired_timestamp = jiffies;
  2459. if (!TASK_INTERACTIVE(p) || EXPIRED_STARVING(rq)) {
  2460. enqueue_task(p, rq->expired);
  2461. if (p->static_prio < rq->best_expired_prio)
  2462. rq->best_expired_prio = p->static_prio;
  2463. } else
  2464. enqueue_task(p, rq->active);
  2465. } else {
  2466. /*
  2467. * Prevent a too long timeslice allowing a task to monopolize
  2468. * the CPU. We do this by splitting up the timeslice into
  2469. * smaller pieces.
  2470. *
  2471. * Note: this does not mean the task's timeslices expire or
  2472. * get lost in any way, they just might be preempted by
  2473. * another task of equal priority. (one with higher
  2474. * priority would have preempted this task already.) We
  2475. * requeue this task to the end of the list on this priority
  2476. * level, which is in essence a round-robin of tasks with
  2477. * equal priority.
  2478. *
  2479. * This only applies to tasks in the interactive
  2480. * delta range with at least TIMESLICE_GRANULARITY to requeue.
  2481. */
  2482. if (TASK_INTERACTIVE(p) && !((task_timeslice(p) -
  2483. p->time_slice) % TIMESLICE_GRANULARITY(p)) &&
  2484. (p->time_slice >= TIMESLICE_GRANULARITY(p)) &&
  2485. (p->array == rq->active)) {
  2486. requeue_task(p, rq->active);
  2487. set_tsk_need_resched(p);
  2488. }
  2489. }
  2490. out_unlock:
  2491. spin_unlock(&rq->lock);
  2492. out:
  2493. rebalance_tick(cpu, rq, NOT_IDLE);
  2494. }
  2495. #ifdef CONFIG_SCHED_SMT
  2496. static inline void wakeup_busy_runqueue(runqueue_t *rq)
  2497. {
  2498. /* If an SMT runqueue is sleeping due to priority reasons wake it up */
  2499. if (rq->curr == rq->idle && rq->nr_running)
  2500. resched_task(rq->idle);
  2501. }
  2502. /*
  2503. * Called with interrupt disabled and this_rq's runqueue locked.
  2504. */
  2505. static void wake_sleeping_dependent(int this_cpu)
  2506. {
  2507. struct sched_domain *tmp, *sd = NULL;
  2508. int i;
  2509. for_each_domain(this_cpu, tmp) {
  2510. if (tmp->flags & SD_SHARE_CPUPOWER) {
  2511. sd = tmp;
  2512. break;
  2513. }
  2514. }
  2515. if (!sd)
  2516. return;
  2517. for_each_cpu_mask(i, sd->span) {
  2518. runqueue_t *smt_rq = cpu_rq(i);
  2519. if (i == this_cpu)
  2520. continue;
  2521. if (unlikely(!spin_trylock(&smt_rq->lock)))
  2522. continue;
  2523. wakeup_busy_runqueue(smt_rq);
  2524. spin_unlock(&smt_rq->lock);
  2525. }
  2526. }
  2527. /*
  2528. * number of 'lost' timeslices this task wont be able to fully
  2529. * utilize, if another task runs on a sibling. This models the
  2530. * slowdown effect of other tasks running on siblings:
  2531. */
  2532. static inline unsigned long smt_slice(task_t *p, struct sched_domain *sd)
  2533. {
  2534. return p->time_slice * (100 - sd->per_cpu_gain) / 100;
  2535. }
  2536. /*
  2537. * To minimise lock contention and not have to drop this_rq's runlock we only
  2538. * trylock the sibling runqueues and bypass those runqueues if we fail to
  2539. * acquire their lock. As we only trylock the normal locking order does not
  2540. * need to be obeyed.
  2541. */
  2542. static int dependent_sleeper(int this_cpu, runqueue_t *this_rq, task_t *p)
  2543. {
  2544. struct sched_domain *tmp, *sd = NULL;
  2545. int ret = 0, i;
  2546. /* kernel/rt threads do not participate in dependent sleeping */
  2547. if (!p->mm || rt_task(p))
  2548. return 0;
  2549. for_each_domain(this_cpu, tmp) {
  2550. if (tmp->flags & SD_SHARE_CPUPOWER) {
  2551. sd = tmp;
  2552. break;
  2553. }
  2554. }
  2555. if (!sd)
  2556. return 0;
  2557. for_each_cpu_mask(i, sd->span) {
  2558. runqueue_t *smt_rq;
  2559. task_t *smt_curr;
  2560. if (i == this_cpu)
  2561. continue;
  2562. smt_rq = cpu_rq(i);
  2563. if (unlikely(!spin_trylock(&smt_rq->lock)))
  2564. continue;
  2565. smt_curr = smt_rq->curr;
  2566. if (!smt_curr->mm)
  2567. goto unlock;
  2568. /*
  2569. * If a user task with lower static priority than the
  2570. * running task on the SMT sibling is trying to schedule,
  2571. * delay it till there is proportionately less timeslice
  2572. * left of the sibling task to prevent a lower priority
  2573. * task from using an unfair proportion of the
  2574. * physical cpu's resources. -ck
  2575. */
  2576. if (rt_task(smt_curr)) {
  2577. /*
  2578. * With real time tasks we run non-rt tasks only
  2579. * per_cpu_gain% of the time.
  2580. */
  2581. if ((jiffies % DEF_TIMESLICE) >
  2582. (sd->per_cpu_gain * DEF_TIMESLICE / 100))
  2583. ret = 1;
  2584. } else {
  2585. if (smt_curr->static_prio < p->static_prio &&
  2586. !TASK_PREEMPTS_CURR(p, smt_rq) &&
  2587. smt_slice(smt_curr, sd) > task_timeslice(p))
  2588. ret = 1;
  2589. }
  2590. unlock:
  2591. spin_unlock(&smt_rq->lock);
  2592. }
  2593. return ret;
  2594. }
  2595. #else
  2596. static inline void wake_sleeping_dependent(int this_cpu)
  2597. {
  2598. }
  2599. static inline int dependent_sleeper(int this_cpu, runqueue_t *this_rq,
  2600. task_t *p)
  2601. {
  2602. return 0;
  2603. }
  2604. #endif
  2605. #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
  2606. void fastcall add_preempt_count(int val)
  2607. {
  2608. /*
  2609. * Underflow?
  2610. */
  2611. BUG_ON((preempt_count() < 0));
  2612. preempt_count() += val;
  2613. /*
  2614. * Spinlock count overflowing soon?
  2615. */
  2616. BUG_ON((preempt_count() & PREEMPT_MASK) >= PREEMPT_MASK-10);
  2617. }
  2618. EXPORT_SYMBOL(add_preempt_count);
  2619. void fastcall sub_preempt_count(int val)
  2620. {
  2621. /*
  2622. * Underflow?
  2623. */
  2624. BUG_ON(val > preempt_count());
  2625. /*
  2626. * Is the spinlock portion underflowing?
  2627. */
  2628. BUG_ON((val < PREEMPT_MASK) && !(preempt_count() & PREEMPT_MASK));
  2629. preempt_count() -= val;
  2630. }
  2631. EXPORT_SYMBOL(sub_preempt_count);
  2632. #endif
  2633. static inline int interactive_sleep(enum sleep_type sleep_type)
  2634. {
  2635. return (sleep_type == SLEEP_INTERACTIVE ||
  2636. sleep_type == SLEEP_INTERRUPTED);
  2637. }
  2638. /*
  2639. * schedule() is the main scheduler function.
  2640. */
  2641. asmlinkage void __sched schedule(void)
  2642. {
  2643. long *switch_count;
  2644. task_t *prev, *next;
  2645. runqueue_t *rq;
  2646. prio_array_t *array;
  2647. struct list_head *queue;
  2648. unsigned long long now;
  2649. unsigned long run_time;
  2650. int cpu, idx, new_prio;
  2651. /*
  2652. * Test if we are atomic. Since do_exit() needs to call into
  2653. * schedule() atomically, we ignore that path for now.
  2654. * Otherwise, whine if we are scheduling when we should not be.
  2655. */
  2656. if (unlikely(in_atomic() && !current->exit_state)) {
  2657. printk(KERN_ERR "BUG: scheduling while atomic: "
  2658. "%s/0x%08x/%d\n",
  2659. current->comm, preempt_count(), current->pid);
  2660. dump_stack();
  2661. }
  2662. profile_hit(SCHED_PROFILING, __builtin_return_address(0));
  2663. need_resched:
  2664. preempt_disable();
  2665. prev = current;
  2666. release_kernel_lock(prev);
  2667. need_resched_nonpreemptible:
  2668. rq = this_rq();
  2669. /*
  2670. * The idle thread is not allowed to schedule!
  2671. * Remove this check after it has been exercised a bit.
  2672. */
  2673. if (unlikely(prev == rq->idle) && prev->state != TASK_RUNNING) {
  2674. printk(KERN_ERR "bad: scheduling from the idle thread!\n");
  2675. dump_stack();
  2676. }
  2677. schedstat_inc(rq, sched_cnt);
  2678. now = sched_clock();
  2679. if (likely((long long)(now - prev->timestamp) < NS_MAX_SLEEP_AVG)) {
  2680. run_time = now - prev->timestamp;
  2681. if (unlikely((long long)(now - prev->timestamp) < 0))
  2682. run_time = 0;
  2683. } else
  2684. run_time = NS_MAX_SLEEP_AVG;
  2685. /*
  2686. * Tasks charged proportionately less run_time at high sleep_avg to
  2687. * delay them losing their interactive status
  2688. */
  2689. run_time /= (CURRENT_BONUS(prev) ? : 1);
  2690. spin_lock_irq(&rq->lock);
  2691. if (unlikely(prev->flags & PF_DEAD))
  2692. prev->state = EXIT_DEAD;
  2693. switch_count = &prev->nivcsw;
  2694. if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
  2695. switch_count = &prev->nvcsw;
  2696. if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
  2697. unlikely(signal_pending(prev))))
  2698. prev->state = TASK_RUNNING;
  2699. else {
  2700. if (prev->state == TASK_UNINTERRUPTIBLE)
  2701. rq->nr_uninterruptible++;
  2702. deactivate_task(prev, rq);
  2703. }
  2704. }
  2705. cpu = smp_processor_id();
  2706. if (unlikely(!rq->nr_running)) {
  2707. idle_balance(cpu, rq);
  2708. if (!rq->nr_running) {
  2709. next = rq->idle;
  2710. rq->expired_timestamp = 0;
  2711. wake_sleeping_dependent(cpu);
  2712. goto switch_tasks;
  2713. }
  2714. }
  2715. array = rq->active;
  2716. if (unlikely(!array->nr_active)) {
  2717. /*
  2718. * Switch the active and expired arrays.
  2719. */
  2720. schedstat_inc(rq, sched_switch);
  2721. rq->active = rq->expired;
  2722. rq->expired = array;
  2723. array = rq->active;
  2724. rq->expired_timestamp = 0;
  2725. rq->best_expired_prio = MAX_PRIO;
  2726. }
  2727. idx = sched_find_first_bit(array->bitmap);
  2728. queue = array->queue + idx;
  2729. next = list_entry(queue->next, task_t, run_list);
  2730. if (!rt_task(next) && interactive_sleep(next->sleep_type)) {
  2731. unsigned long long delta = now - next->timestamp;
  2732. if (unlikely((long long)(now - next->timestamp) < 0))
  2733. delta = 0;
  2734. if (next->sleep_type == SLEEP_INTERACTIVE)
  2735. delta = delta * (ON_RUNQUEUE_WEIGHT * 128 / 100) / 128;
  2736. array = next->array;
  2737. new_prio = recalc_task_prio(next, next->timestamp + delta);
  2738. if (unlikely(next->prio != new_prio)) {
  2739. dequeue_task(next, array);
  2740. next->prio = new_prio;
  2741. enqueue_task(next, array);
  2742. }
  2743. }
  2744. next->sleep_type = SLEEP_NORMAL;
  2745. if (dependent_sleeper(cpu, rq, next))
  2746. next = rq->idle;
  2747. switch_tasks:
  2748. if (next == rq->idle)
  2749. schedstat_inc(rq, sched_goidle);
  2750. prefetch(next);
  2751. prefetch_stack(next);
  2752. clear_tsk_need_resched(prev);
  2753. rcu_qsctr_inc(task_cpu(prev));
  2754. update_cpu_clock(prev, rq, now);
  2755. prev->sleep_avg -= run_time;
  2756. if ((long)prev->sleep_avg <= 0)
  2757. prev->sleep_avg = 0;
  2758. prev->timestamp = prev->last_ran = now;
  2759. sched_info_switch(prev, next);
  2760. if (likely(prev != next)) {
  2761. next->timestamp = now;
  2762. rq->nr_switches++;
  2763. rq->curr = next;
  2764. ++*switch_count;
  2765. prepare_task_switch(rq, next);
  2766. prev = context_switch(rq, prev, next);
  2767. barrier();
  2768. /*
  2769. * this_rq must be evaluated again because prev may have moved
  2770. * CPUs since it called schedule(), thus the 'rq' on its stack
  2771. * frame will be invalid.
  2772. */
  2773. finish_task_switch(this_rq(), prev);
  2774. } else
  2775. spin_unlock_irq(&rq->lock);
  2776. prev = current;
  2777. if (unlikely(reacquire_kernel_lock(prev) < 0))
  2778. goto need_resched_nonpreemptible;
  2779. preempt_enable_no_resched();
  2780. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  2781. goto need_resched;
  2782. }
  2783. EXPORT_SYMBOL(schedule);
  2784. #ifdef CONFIG_PREEMPT
  2785. /*
  2786. * this is is the entry point to schedule() from in-kernel preemption
  2787. * off of preempt_enable. Kernel preemptions off return from interrupt
  2788. * occur there and call schedule directly.
  2789. */
  2790. asmlinkage void __sched preempt_schedule(void)
  2791. {
  2792. struct thread_info *ti = current_thread_info();
  2793. #ifdef CONFIG_PREEMPT_BKL
  2794. struct task_struct *task = current;
  2795. int saved_lock_depth;
  2796. #endif
  2797. /*
  2798. * If there is a non-zero preempt_count or interrupts are disabled,
  2799. * we do not want to preempt the current task. Just return..
  2800. */
  2801. if (unlikely(ti->preempt_count || irqs_disabled()))
  2802. return;
  2803. need_resched:
  2804. add_preempt_count(PREEMPT_ACTIVE);
  2805. /*
  2806. * We keep the big kernel semaphore locked, but we
  2807. * clear ->lock_depth so that schedule() doesnt
  2808. * auto-release the semaphore:
  2809. */
  2810. #ifdef CONFIG_PREEMPT_BKL
  2811. saved_lock_depth = task->lock_depth;
  2812. task->lock_depth = -1;
  2813. #endif
  2814. schedule();
  2815. #ifdef CONFIG_PREEMPT_BKL
  2816. task->lock_depth = saved_lock_depth;
  2817. #endif
  2818. sub_preempt_count(PREEMPT_ACTIVE);
  2819. /* we could miss a preemption opportunity between schedule and now */
  2820. barrier();
  2821. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  2822. goto need_resched;
  2823. }
  2824. EXPORT_SYMBOL(preempt_schedule);
  2825. /*
  2826. * this is is the entry point to schedule() from kernel preemption
  2827. * off of irq context.
  2828. * Note, that this is called and return with irqs disabled. This will
  2829. * protect us against recursive calling from irq.
  2830. */
  2831. asmlinkage void __sched preempt_schedule_irq(void)
  2832. {
  2833. struct thread_info *ti = current_thread_info();
  2834. #ifdef CONFIG_PREEMPT_BKL
  2835. struct task_struct *task = current;
  2836. int saved_lock_depth;
  2837. #endif
  2838. /* Catch callers which need to be fixed*/
  2839. BUG_ON(ti->preempt_count || !irqs_disabled());
  2840. need_resched:
  2841. add_preempt_count(PREEMPT_ACTIVE);
  2842. /*
  2843. * We keep the big kernel semaphore locked, but we
  2844. * clear ->lock_depth so that schedule() doesnt
  2845. * auto-release the semaphore:
  2846. */
  2847. #ifdef CONFIG_PREEMPT_BKL
  2848. saved_lock_depth = task->lock_depth;
  2849. task->lock_depth = -1;
  2850. #endif
  2851. local_irq_enable();
  2852. schedule();
  2853. local_irq_disable();
  2854. #ifdef CONFIG_PREEMPT_BKL
  2855. task->lock_depth = saved_lock_depth;
  2856. #endif
  2857. sub_preempt_count(PREEMPT_ACTIVE);
  2858. /* we could miss a preemption opportunity between schedule and now */
  2859. barrier();
  2860. if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
  2861. goto need_resched;
  2862. }
  2863. #endif /* CONFIG_PREEMPT */
  2864. int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
  2865. void *key)
  2866. {
  2867. task_t *p = curr->private;
  2868. return try_to_wake_up(p, mode, sync);
  2869. }
  2870. EXPORT_SYMBOL(default_wake_function);
  2871. /*
  2872. * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
  2873. * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
  2874. * number) then we wake all the non-exclusive tasks and one exclusive task.
  2875. *
  2876. * There are circumstances in which we can try to wake a task which has already
  2877. * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
  2878. * zero in this (rare) case, and we handle it by continuing to scan the queue.
  2879. */
  2880. static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
  2881. int nr_exclusive, int sync, void *key)
  2882. {
  2883. struct list_head *tmp, *next;
  2884. list_for_each_safe(tmp, next, &q->task_list) {
  2885. wait_queue_t *curr;
  2886. unsigned flags;
  2887. curr = list_entry(tmp, wait_queue_t, task_list);
  2888. flags = curr->flags;
  2889. if (curr->func(curr, mode, sync, key) &&
  2890. (flags & WQ_FLAG_EXCLUSIVE) &&
  2891. !--nr_exclusive)
  2892. break;
  2893. }
  2894. }
  2895. /**
  2896. * __wake_up - wake up threads blocked on a waitqueue.
  2897. * @q: the waitqueue
  2898. * @mode: which threads
  2899. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  2900. * @key: is directly passed to the wakeup function
  2901. */
  2902. void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
  2903. int nr_exclusive, void *key)
  2904. {
  2905. unsigned long flags;
  2906. spin_lock_irqsave(&q->lock, flags);
  2907. __wake_up_common(q, mode, nr_exclusive, 0, key);
  2908. spin_unlock_irqrestore(&q->lock, flags);
  2909. }
  2910. EXPORT_SYMBOL(__wake_up);
  2911. /*
  2912. * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
  2913. */
  2914. void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
  2915. {
  2916. __wake_up_common(q, mode, 1, 0, NULL);
  2917. }
  2918. /**
  2919. * __wake_up_sync - wake up threads blocked on a waitqueue.
  2920. * @q: the waitqueue
  2921. * @mode: which threads
  2922. * @nr_exclusive: how many wake-one or wake-many threads to wake up
  2923. *
  2924. * The sync wakeup differs that the waker knows that it will schedule
  2925. * away soon, so while the target thread will be woken up, it will not
  2926. * be migrated to another CPU - ie. the two threads are 'synchronized'
  2927. * with each other. This can prevent needless bouncing between CPUs.
  2928. *
  2929. * On UP it can prevent extra preemption.
  2930. */
  2931. void fastcall
  2932. __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
  2933. {
  2934. unsigned long flags;
  2935. int sync = 1;
  2936. if (unlikely(!q))
  2937. return;
  2938. if (unlikely(!nr_exclusive))
  2939. sync = 0;
  2940. spin_lock_irqsave(&q->lock, flags);
  2941. __wake_up_common(q, mode, nr_exclusive, sync, NULL);
  2942. spin_unlock_irqrestore(&q->lock, flags);
  2943. }
  2944. EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
  2945. void fastcall complete(struct completion *x)
  2946. {
  2947. unsigned long flags;
  2948. spin_lock_irqsave(&x->wait.lock, flags);
  2949. x->done++;
  2950. __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
  2951. 1, 0, NULL);
  2952. spin_unlock_irqrestore(&x->wait.lock, flags);
  2953. }
  2954. EXPORT_SYMBOL(complete);
  2955. void fastcall complete_all(struct completion *x)
  2956. {
  2957. unsigned long flags;
  2958. spin_lock_irqsave(&x->wait.lock, flags);
  2959. x->done += UINT_MAX/2;
  2960. __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
  2961. 0, 0, NULL);
  2962. spin_unlock_irqrestore(&x->wait.lock, flags);
  2963. }
  2964. EXPORT_SYMBOL(complete_all);
  2965. void fastcall __sched wait_for_completion(struct completion *x)
  2966. {
  2967. might_sleep();
  2968. spin_lock_irq(&x->wait.lock);
  2969. if (!x->done) {
  2970. DECLARE_WAITQUEUE(wait, current);
  2971. wait.flags |= WQ_FLAG_EXCLUSIVE;
  2972. __add_wait_queue_tail(&x->wait, &wait);
  2973. do {
  2974. __set_current_state(TASK_UNINTERRUPTIBLE);
  2975. spin_unlock_irq(&x->wait.lock);
  2976. schedule();
  2977. spin_lock_irq(&x->wait.lock);
  2978. } while (!x->done);
  2979. __remove_wait_queue(&x->wait, &wait);
  2980. }
  2981. x->done--;
  2982. spin_unlock_irq(&x->wait.lock);
  2983. }
  2984. EXPORT_SYMBOL(wait_for_completion);
  2985. unsigned long fastcall __sched
  2986. wait_for_completion_timeout(struct completion *x, unsigned long timeout)
  2987. {
  2988. might_sleep();
  2989. spin_lock_irq(&x->wait.lock);
  2990. if (!x->done) {
  2991. DECLARE_WAITQUEUE(wait, current);
  2992. wait.flags |= WQ_FLAG_EXCLUSIVE;
  2993. __add_wait_queue_tail(&x->wait, &wait);
  2994. do {
  2995. __set_current_state(TASK_UNINTERRUPTIBLE);
  2996. spin_unlock_irq(&x->wait.lock);
  2997. timeout = schedule_timeout(timeout);
  2998. spin_lock_irq(&x->wait.lock);
  2999. if (!timeout) {
  3000. __remove_wait_queue(&x->wait, &wait);
  3001. goto out;
  3002. }
  3003. } while (!x->done);
  3004. __remove_wait_queue(&x->wait, &wait);
  3005. }
  3006. x->done--;
  3007. out:
  3008. spin_unlock_irq(&x->wait.lock);
  3009. return timeout;
  3010. }
  3011. EXPORT_SYMBOL(wait_for_completion_timeout);
  3012. int fastcall __sched wait_for_completion_interruptible(struct completion *x)
  3013. {
  3014. int ret = 0;
  3015. might_sleep();
  3016. spin_lock_irq(&x->wait.lock);
  3017. if (!x->done) {
  3018. DECLARE_WAITQUEUE(wait, current);
  3019. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3020. __add_wait_queue_tail(&x->wait, &wait);
  3021. do {
  3022. if (signal_pending(current)) {
  3023. ret = -ERESTARTSYS;
  3024. __remove_wait_queue(&x->wait, &wait);
  3025. goto out;
  3026. }
  3027. __set_current_state(TASK_INTERRUPTIBLE);
  3028. spin_unlock_irq(&x->wait.lock);
  3029. schedule();
  3030. spin_lock_irq(&x->wait.lock);
  3031. } while (!x->done);
  3032. __remove_wait_queue(&x->wait, &wait);
  3033. }
  3034. x->done--;
  3035. out:
  3036. spin_unlock_irq(&x->wait.lock);
  3037. return ret;
  3038. }
  3039. EXPORT_SYMBOL(wait_for_completion_interruptible);
  3040. unsigned long fastcall __sched
  3041. wait_for_completion_interruptible_timeout(struct completion *x,
  3042. unsigned long timeout)
  3043. {
  3044. might_sleep();
  3045. spin_lock_irq(&x->wait.lock);
  3046. if (!x->done) {
  3047. DECLARE_WAITQUEUE(wait, current);
  3048. wait.flags |= WQ_FLAG_EXCLUSIVE;
  3049. __add_wait_queue_tail(&x->wait, &wait);
  3050. do {
  3051. if (signal_pending(current)) {
  3052. timeout = -ERESTARTSYS;
  3053. __remove_wait_queue(&x->wait, &wait);
  3054. goto out;
  3055. }
  3056. __set_current_state(TASK_INTERRUPTIBLE);
  3057. spin_unlock_irq(&x->wait.lock);
  3058. timeout = schedule_timeout(timeout);
  3059. spin_lock_irq(&x->wait.lock);
  3060. if (!timeout) {
  3061. __remove_wait_queue(&x->wait, &wait);
  3062. goto out;
  3063. }
  3064. } while (!x->done);
  3065. __remove_wait_queue(&x->wait, &wait);
  3066. }
  3067. x->done--;
  3068. out:
  3069. spin_unlock_irq(&x->wait.lock);
  3070. return timeout;
  3071. }
  3072. EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
  3073. #define SLEEP_ON_VAR \
  3074. unsigned long flags; \
  3075. wait_queue_t wait; \
  3076. init_waitqueue_entry(&wait, current);
  3077. #define SLEEP_ON_HEAD \
  3078. spin_lock_irqsave(&q->lock,flags); \
  3079. __add_wait_queue(q, &wait); \
  3080. spin_unlock(&q->lock);
  3081. #define SLEEP_ON_TAIL \
  3082. spin_lock_irq(&q->lock); \
  3083. __remove_wait_queue(q, &wait); \
  3084. spin_unlock_irqrestore(&q->lock, flags);
  3085. void fastcall __sched interruptible_sleep_on(wait_queue_head_t *q)
  3086. {
  3087. SLEEP_ON_VAR
  3088. current->state = TASK_INTERRUPTIBLE;
  3089. SLEEP_ON_HEAD
  3090. schedule();
  3091. SLEEP_ON_TAIL
  3092. }
  3093. EXPORT_SYMBOL(interruptible_sleep_on);
  3094. long fastcall __sched
  3095. interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3096. {
  3097. SLEEP_ON_VAR
  3098. current->state = TASK_INTERRUPTIBLE;
  3099. SLEEP_ON_HEAD
  3100. timeout = schedule_timeout(timeout);
  3101. SLEEP_ON_TAIL
  3102. return timeout;
  3103. }
  3104. EXPORT_SYMBOL(interruptible_sleep_on_timeout);
  3105. void fastcall __sched sleep_on(wait_queue_head_t *q)
  3106. {
  3107. SLEEP_ON_VAR
  3108. current->state = TASK_UNINTERRUPTIBLE;
  3109. SLEEP_ON_HEAD
  3110. schedule();
  3111. SLEEP_ON_TAIL
  3112. }
  3113. EXPORT_SYMBOL(sleep_on);
  3114. long fastcall __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
  3115. {
  3116. SLEEP_ON_VAR
  3117. current->state = TASK_UNINTERRUPTIBLE;
  3118. SLEEP_ON_HEAD
  3119. timeout = schedule_timeout(timeout);
  3120. SLEEP_ON_TAIL
  3121. return timeout;
  3122. }
  3123. EXPORT_SYMBOL(sleep_on_timeout);
  3124. void set_user_nice(task_t *p, long nice)
  3125. {
  3126. unsigned long flags;
  3127. prio_array_t *array;
  3128. runqueue_t *rq;
  3129. int old_prio, new_prio, delta;
  3130. if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
  3131. return;
  3132. /*
  3133. * We have to be careful, if called from sys_setpriority(),
  3134. * the task might be in the middle of scheduling on another CPU.
  3135. */
  3136. rq = task_rq_lock(p, &flags);
  3137. /*
  3138. * The RT priorities are set via sched_setscheduler(), but we still
  3139. * allow the 'normal' nice value to be set - but as expected
  3140. * it wont have any effect on scheduling until the task is
  3141. * not SCHED_NORMAL/SCHED_BATCH:
  3142. */
  3143. if (rt_task(p)) {
  3144. p->static_prio = NICE_TO_PRIO(nice);
  3145. goto out_unlock;
  3146. }
  3147. array = p->array;
  3148. if (array) {
  3149. dequeue_task(p, array);
  3150. dec_raw_weighted_load(rq, p);
  3151. }
  3152. old_prio = p->prio;
  3153. new_prio = NICE_TO_PRIO(nice);
  3154. delta = new_prio - old_prio;
  3155. p->static_prio = NICE_TO_PRIO(nice);
  3156. set_load_weight(p);
  3157. p->prio += delta;
  3158. if (array) {
  3159. enqueue_task(p, array);
  3160. inc_raw_weighted_load(rq, p);
  3161. /*
  3162. * If the task increased its priority or is running and
  3163. * lowered its priority, then reschedule its CPU:
  3164. */
  3165. if (delta < 0 || (delta > 0 && task_running(rq, p)))
  3166. resched_task(rq->curr);
  3167. }
  3168. out_unlock:
  3169. task_rq_unlock(rq, &flags);
  3170. }
  3171. EXPORT_SYMBOL(set_user_nice);
  3172. /*
  3173. * can_nice - check if a task can reduce its nice value
  3174. * @p: task
  3175. * @nice: nice value
  3176. */
  3177. int can_nice(const task_t *p, const int nice)
  3178. {
  3179. /* convert nice value [19,-20] to rlimit style value [1,40] */
  3180. int nice_rlim = 20 - nice;
  3181. return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
  3182. capable(CAP_SYS_NICE));
  3183. }
  3184. #ifdef __ARCH_WANT_SYS_NICE
  3185. /*
  3186. * sys_nice - change the priority of the current process.
  3187. * @increment: priority increment
  3188. *
  3189. * sys_setpriority is a more generic, but much slower function that
  3190. * does similar things.
  3191. */
  3192. asmlinkage long sys_nice(int increment)
  3193. {
  3194. int retval;
  3195. long nice;
  3196. /*
  3197. * Setpriority might change our priority at the same moment.
  3198. * We don't have to worry. Conceptually one call occurs first
  3199. * and we have a single winner.
  3200. */
  3201. if (increment < -40)
  3202. increment = -40;
  3203. if (increment > 40)
  3204. increment = 40;
  3205. nice = PRIO_TO_NICE(current->static_prio) + increment;
  3206. if (nice < -20)
  3207. nice = -20;
  3208. if (nice > 19)
  3209. nice = 19;
  3210. if (increment < 0 && !can_nice(current, nice))
  3211. return -EPERM;
  3212. retval = security_task_setnice(current, nice);
  3213. if (retval)
  3214. return retval;
  3215. set_user_nice(current, nice);
  3216. return 0;
  3217. }
  3218. #endif
  3219. /**
  3220. * task_prio - return the priority value of a given task.
  3221. * @p: the task in question.
  3222. *
  3223. * This is the priority value as seen by users in /proc.
  3224. * RT tasks are offset by -200. Normal tasks are centered
  3225. * around 0, value goes from -16 to +15.
  3226. */
  3227. int task_prio(const task_t *p)
  3228. {
  3229. return p->prio - MAX_RT_PRIO;
  3230. }
  3231. /**
  3232. * task_nice - return the nice value of a given task.
  3233. * @p: the task in question.
  3234. */
  3235. int task_nice(const task_t *p)
  3236. {
  3237. return TASK_NICE(p);
  3238. }
  3239. EXPORT_SYMBOL_GPL(task_nice);
  3240. /**
  3241. * idle_cpu - is a given cpu idle currently?
  3242. * @cpu: the processor in question.
  3243. */
  3244. int idle_cpu(int cpu)
  3245. {
  3246. return cpu_curr(cpu) == cpu_rq(cpu)->idle;
  3247. }
  3248. /**
  3249. * idle_task - return the idle task for a given cpu.
  3250. * @cpu: the processor in question.
  3251. */
  3252. task_t *idle_task(int cpu)
  3253. {
  3254. return cpu_rq(cpu)->idle;
  3255. }
  3256. /**
  3257. * find_process_by_pid - find a process with a matching PID value.
  3258. * @pid: the pid in question.
  3259. */
  3260. static inline task_t *find_process_by_pid(pid_t pid)
  3261. {
  3262. return pid ? find_task_by_pid(pid) : current;
  3263. }
  3264. /* Actually do priority change: must hold rq lock. */
  3265. static void __setscheduler(struct task_struct *p, int policy, int prio)
  3266. {
  3267. BUG_ON(p->array);
  3268. p->policy = policy;
  3269. p->rt_priority = prio;
  3270. if (policy != SCHED_NORMAL && policy != SCHED_BATCH) {
  3271. p->prio = MAX_RT_PRIO-1 - p->rt_priority;
  3272. } else {
  3273. p->prio = p->static_prio;
  3274. /*
  3275. * SCHED_BATCH tasks are treated as perpetual CPU hogs:
  3276. */
  3277. if (policy == SCHED_BATCH)
  3278. p->sleep_avg = 0;
  3279. }
  3280. set_load_weight(p);
  3281. }
  3282. /**
  3283. * sched_setscheduler - change the scheduling policy and/or RT priority of
  3284. * a thread.
  3285. * @p: the task in question.
  3286. * @policy: new policy.
  3287. * @param: structure containing the new RT priority.
  3288. */
  3289. int sched_setscheduler(struct task_struct *p, int policy,
  3290. struct sched_param *param)
  3291. {
  3292. int retval;
  3293. int oldprio, oldpolicy = -1;
  3294. prio_array_t *array;
  3295. unsigned long flags;
  3296. runqueue_t *rq;
  3297. recheck:
  3298. /* double check policy once rq lock held */
  3299. if (policy < 0)
  3300. policy = oldpolicy = p->policy;
  3301. else if (policy != SCHED_FIFO && policy != SCHED_RR &&
  3302. policy != SCHED_NORMAL && policy != SCHED_BATCH)
  3303. return -EINVAL;
  3304. /*
  3305. * Valid priorities for SCHED_FIFO and SCHED_RR are
  3306. * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL and
  3307. * SCHED_BATCH is 0.
  3308. */
  3309. if (param->sched_priority < 0 ||
  3310. (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
  3311. (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
  3312. return -EINVAL;
  3313. if ((policy == SCHED_NORMAL || policy == SCHED_BATCH)
  3314. != (param->sched_priority == 0))
  3315. return -EINVAL;
  3316. /*
  3317. * Allow unprivileged RT tasks to decrease priority:
  3318. */
  3319. if (!capable(CAP_SYS_NICE)) {
  3320. /*
  3321. * can't change policy, except between SCHED_NORMAL
  3322. * and SCHED_BATCH:
  3323. */
  3324. if (((policy != SCHED_NORMAL && p->policy != SCHED_BATCH) &&
  3325. (policy != SCHED_BATCH && p->policy != SCHED_NORMAL)) &&
  3326. !p->signal->rlim[RLIMIT_RTPRIO].rlim_cur)
  3327. return -EPERM;
  3328. /* can't increase priority */
  3329. if ((policy != SCHED_NORMAL && policy != SCHED_BATCH) &&
  3330. param->sched_priority > p->rt_priority &&
  3331. param->sched_priority >
  3332. p->signal->rlim[RLIMIT_RTPRIO].rlim_cur)
  3333. return -EPERM;
  3334. /* can't change other user's priorities */
  3335. if ((current->euid != p->euid) &&
  3336. (current->euid != p->uid))
  3337. return -EPERM;
  3338. }
  3339. retval = security_task_setscheduler(p, policy, param);
  3340. if (retval)
  3341. return retval;
  3342. /*
  3343. * To be able to change p->policy safely, the apropriate
  3344. * runqueue lock must be held.
  3345. */
  3346. rq = task_rq_lock(p, &flags);
  3347. /* recheck policy now with rq lock held */
  3348. if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
  3349. policy = oldpolicy = -1;
  3350. task_rq_unlock(rq, &flags);
  3351. goto recheck;
  3352. }
  3353. array = p->array;
  3354. if (array)
  3355. deactivate_task(p, rq);
  3356. oldprio = p->prio;
  3357. __setscheduler(p, policy, param->sched_priority);
  3358. if (array) {
  3359. __activate_task(p, rq);
  3360. /*
  3361. * Reschedule if we are currently running on this runqueue and
  3362. * our priority decreased, or if we are not currently running on
  3363. * this runqueue and our priority is higher than the current's
  3364. */
  3365. if (task_running(rq, p)) {
  3366. if (p->prio > oldprio)
  3367. resched_task(rq->curr);
  3368. } else if (TASK_PREEMPTS_CURR(p, rq))
  3369. resched_task(rq->curr);
  3370. }
  3371. task_rq_unlock(rq, &flags);
  3372. return 0;
  3373. }
  3374. EXPORT_SYMBOL_GPL(sched_setscheduler);
  3375. static int
  3376. do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
  3377. {
  3378. int retval;
  3379. struct sched_param lparam;
  3380. struct task_struct *p;
  3381. if (!param || pid < 0)
  3382. return -EINVAL;
  3383. if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
  3384. return -EFAULT;
  3385. read_lock_irq(&tasklist_lock);
  3386. p = find_process_by_pid(pid);
  3387. if (!p) {
  3388. read_unlock_irq(&tasklist_lock);
  3389. return -ESRCH;
  3390. }
  3391. retval = sched_setscheduler(p, policy, &lparam);
  3392. read_unlock_irq(&tasklist_lock);
  3393. return retval;
  3394. }
  3395. /**
  3396. * sys_sched_setscheduler - set/change the scheduler policy and RT priority
  3397. * @pid: the pid in question.
  3398. * @policy: new policy.
  3399. * @param: structure containing the new RT priority.
  3400. */
  3401. asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
  3402. struct sched_param __user *param)
  3403. {
  3404. /* negative values for policy are not valid */
  3405. if (policy < 0)
  3406. return -EINVAL;
  3407. return do_sched_setscheduler(pid, policy, param);
  3408. }
  3409. /**
  3410. * sys_sched_setparam - set/change the RT priority of a thread
  3411. * @pid: the pid in question.
  3412. * @param: structure containing the new RT priority.
  3413. */
  3414. asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
  3415. {
  3416. return do_sched_setscheduler(pid, -1, param);
  3417. }
  3418. /**
  3419. * sys_sched_getscheduler - get the policy (scheduling class) of a thread
  3420. * @pid: the pid in question.
  3421. */
  3422. asmlinkage long sys_sched_getscheduler(pid_t pid)
  3423. {
  3424. int retval = -EINVAL;
  3425. task_t *p;
  3426. if (pid < 0)
  3427. goto out_nounlock;
  3428. retval = -ESRCH;
  3429. read_lock(&tasklist_lock);
  3430. p = find_process_by_pid(pid);
  3431. if (p) {
  3432. retval = security_task_getscheduler(p);
  3433. if (!retval)
  3434. retval = p->policy;
  3435. }
  3436. read_unlock(&tasklist_lock);
  3437. out_nounlock:
  3438. return retval;
  3439. }
  3440. /**
  3441. * sys_sched_getscheduler - get the RT priority of a thread
  3442. * @pid: the pid in question.
  3443. * @param: structure containing the RT priority.
  3444. */
  3445. asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
  3446. {
  3447. struct sched_param lp;
  3448. int retval = -EINVAL;
  3449. task_t *p;
  3450. if (!param || pid < 0)
  3451. goto out_nounlock;
  3452. read_lock(&tasklist_lock);
  3453. p = find_process_by_pid(pid);
  3454. retval = -ESRCH;
  3455. if (!p)
  3456. goto out_unlock;
  3457. retval = security_task_getscheduler(p);
  3458. if (retval)
  3459. goto out_unlock;
  3460. lp.sched_priority = p->rt_priority;
  3461. read_unlock(&tasklist_lock);
  3462. /*
  3463. * This one might sleep, we cannot do it with a spinlock held ...
  3464. */
  3465. retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
  3466. out_nounlock:
  3467. return retval;
  3468. out_unlock:
  3469. read_unlock(&tasklist_lock);
  3470. return retval;
  3471. }
  3472. long sched_setaffinity(pid_t pid, cpumask_t new_mask)
  3473. {
  3474. task_t *p;
  3475. int retval;
  3476. cpumask_t cpus_allowed;
  3477. lock_cpu_hotplug();
  3478. read_lock(&tasklist_lock);
  3479. p = find_process_by_pid(pid);
  3480. if (!p) {
  3481. read_unlock(&tasklist_lock);
  3482. unlock_cpu_hotplug();
  3483. return -ESRCH;
  3484. }
  3485. /*
  3486. * It is not safe to call set_cpus_allowed with the
  3487. * tasklist_lock held. We will bump the task_struct's
  3488. * usage count and then drop tasklist_lock.
  3489. */
  3490. get_task_struct(p);
  3491. read_unlock(&tasklist_lock);
  3492. retval = -EPERM;
  3493. if ((current->euid != p->euid) && (current->euid != p->uid) &&
  3494. !capable(CAP_SYS_NICE))
  3495. goto out_unlock;
  3496. retval = security_task_setscheduler(p, 0, NULL);
  3497. if (retval)
  3498. goto out_unlock;
  3499. cpus_allowed = cpuset_cpus_allowed(p);
  3500. cpus_and(new_mask, new_mask, cpus_allowed);
  3501. retval = set_cpus_allowed(p, new_mask);
  3502. out_unlock:
  3503. put_task_struct(p);
  3504. unlock_cpu_hotplug();
  3505. return retval;
  3506. }
  3507. static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
  3508. cpumask_t *new_mask)
  3509. {
  3510. if (len < sizeof(cpumask_t)) {
  3511. memset(new_mask, 0, sizeof(cpumask_t));
  3512. } else if (len > sizeof(cpumask_t)) {
  3513. len = sizeof(cpumask_t);
  3514. }
  3515. return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
  3516. }
  3517. /**
  3518. * sys_sched_setaffinity - set the cpu affinity of a process
  3519. * @pid: pid of the process
  3520. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3521. * @user_mask_ptr: user-space pointer to the new cpu mask
  3522. */
  3523. asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
  3524. unsigned long __user *user_mask_ptr)
  3525. {
  3526. cpumask_t new_mask;
  3527. int retval;
  3528. retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
  3529. if (retval)
  3530. return retval;
  3531. return sched_setaffinity(pid, new_mask);
  3532. }
  3533. /*
  3534. * Represents all cpu's present in the system
  3535. * In systems capable of hotplug, this map could dynamically grow
  3536. * as new cpu's are detected in the system via any platform specific
  3537. * method, such as ACPI for e.g.
  3538. */
  3539. cpumask_t cpu_present_map __read_mostly;
  3540. EXPORT_SYMBOL(cpu_present_map);
  3541. #ifndef CONFIG_SMP
  3542. cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
  3543. cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
  3544. #endif
  3545. long sched_getaffinity(pid_t pid, cpumask_t *mask)
  3546. {
  3547. int retval;
  3548. task_t *p;
  3549. lock_cpu_hotplug();
  3550. read_lock(&tasklist_lock);
  3551. retval = -ESRCH;
  3552. p = find_process_by_pid(pid);
  3553. if (!p)
  3554. goto out_unlock;
  3555. retval = security_task_getscheduler(p);
  3556. if (retval)
  3557. goto out_unlock;
  3558. cpus_and(*mask, p->cpus_allowed, cpu_online_map);
  3559. out_unlock:
  3560. read_unlock(&tasklist_lock);
  3561. unlock_cpu_hotplug();
  3562. if (retval)
  3563. return retval;
  3564. return 0;
  3565. }
  3566. /**
  3567. * sys_sched_getaffinity - get the cpu affinity of a process
  3568. * @pid: pid of the process
  3569. * @len: length in bytes of the bitmask pointed to by user_mask_ptr
  3570. * @user_mask_ptr: user-space pointer to hold the current cpu mask
  3571. */
  3572. asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
  3573. unsigned long __user *user_mask_ptr)
  3574. {
  3575. int ret;
  3576. cpumask_t mask;
  3577. if (len < sizeof(cpumask_t))
  3578. return -EINVAL;
  3579. ret = sched_getaffinity(pid, &mask);
  3580. if (ret < 0)
  3581. return ret;
  3582. if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
  3583. return -EFAULT;
  3584. return sizeof(cpumask_t);
  3585. }
  3586. /**
  3587. * sys_sched_yield - yield the current processor to other threads.
  3588. *
  3589. * this function yields the current CPU by moving the calling thread
  3590. * to the expired array. If there are no other threads running on this
  3591. * CPU then this function will return.
  3592. */
  3593. asmlinkage long sys_sched_yield(void)
  3594. {
  3595. runqueue_t *rq = this_rq_lock();
  3596. prio_array_t *array = current->array;
  3597. prio_array_t *target = rq->expired;
  3598. schedstat_inc(rq, yld_cnt);
  3599. /*
  3600. * We implement yielding by moving the task into the expired
  3601. * queue.
  3602. *
  3603. * (special rule: RT tasks will just roundrobin in the active
  3604. * array.)
  3605. */
  3606. if (rt_task(current))
  3607. target = rq->active;
  3608. if (array->nr_active == 1) {
  3609. schedstat_inc(rq, yld_act_empty);
  3610. if (!rq->expired->nr_active)
  3611. schedstat_inc(rq, yld_both_empty);
  3612. } else if (!rq->expired->nr_active)
  3613. schedstat_inc(rq, yld_exp_empty);
  3614. if (array != target) {
  3615. dequeue_task(current, array);
  3616. enqueue_task(current, target);
  3617. } else
  3618. /*
  3619. * requeue_task is cheaper so perform that if possible.
  3620. */
  3621. requeue_task(current, array);
  3622. /*
  3623. * Since we are going to call schedule() anyway, there's
  3624. * no need to preempt or enable interrupts:
  3625. */
  3626. __release(rq->lock);
  3627. _raw_spin_unlock(&rq->lock);
  3628. preempt_enable_no_resched();
  3629. schedule();
  3630. return 0;
  3631. }
  3632. static inline void __cond_resched(void)
  3633. {
  3634. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  3635. __might_sleep(__FILE__, __LINE__);
  3636. #endif
  3637. /*
  3638. * The BKS might be reacquired before we have dropped
  3639. * PREEMPT_ACTIVE, which could trigger a second
  3640. * cond_resched() call.
  3641. */
  3642. if (unlikely(preempt_count()))
  3643. return;
  3644. if (unlikely(system_state != SYSTEM_RUNNING))
  3645. return;
  3646. do {
  3647. add_preempt_count(PREEMPT_ACTIVE);
  3648. schedule();
  3649. sub_preempt_count(PREEMPT_ACTIVE);
  3650. } while (need_resched());
  3651. }
  3652. int __sched cond_resched(void)
  3653. {
  3654. if (need_resched()) {
  3655. __cond_resched();
  3656. return 1;
  3657. }
  3658. return 0;
  3659. }
  3660. EXPORT_SYMBOL(cond_resched);
  3661. /*
  3662. * cond_resched_lock() - if a reschedule is pending, drop the given lock,
  3663. * call schedule, and on return reacquire the lock.
  3664. *
  3665. * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
  3666. * operations here to prevent schedule() from being called twice (once via
  3667. * spin_unlock(), once by hand).
  3668. */
  3669. int cond_resched_lock(spinlock_t *lock)
  3670. {
  3671. int ret = 0;
  3672. if (need_lockbreak(lock)) {
  3673. spin_unlock(lock);
  3674. cpu_relax();
  3675. ret = 1;
  3676. spin_lock(lock);
  3677. }
  3678. if (need_resched()) {
  3679. _raw_spin_unlock(lock);
  3680. preempt_enable_no_resched();
  3681. __cond_resched();
  3682. ret = 1;
  3683. spin_lock(lock);
  3684. }
  3685. return ret;
  3686. }
  3687. EXPORT_SYMBOL(cond_resched_lock);
  3688. int __sched cond_resched_softirq(void)
  3689. {
  3690. BUG_ON(!in_softirq());
  3691. if (need_resched()) {
  3692. __local_bh_enable();
  3693. __cond_resched();
  3694. local_bh_disable();
  3695. return 1;
  3696. }
  3697. return 0;
  3698. }
  3699. EXPORT_SYMBOL(cond_resched_softirq);
  3700. /**
  3701. * yield - yield the current processor to other threads.
  3702. *
  3703. * this is a shortcut for kernel-space yielding - it marks the
  3704. * thread runnable and calls sys_sched_yield().
  3705. */
  3706. void __sched yield(void)
  3707. {
  3708. set_current_state(TASK_RUNNING);
  3709. sys_sched_yield();
  3710. }
  3711. EXPORT_SYMBOL(yield);
  3712. /*
  3713. * This task is about to go to sleep on IO. Increment rq->nr_iowait so
  3714. * that process accounting knows that this is a task in IO wait state.
  3715. *
  3716. * But don't do that if it is a deliberate, throttling IO wait (this task
  3717. * has set its backing_dev_info: the queue against which it should throttle)
  3718. */
  3719. void __sched io_schedule(void)
  3720. {
  3721. struct runqueue *rq = &__raw_get_cpu_var(runqueues);
  3722. atomic_inc(&rq->nr_iowait);
  3723. schedule();
  3724. atomic_dec(&rq->nr_iowait);
  3725. }
  3726. EXPORT_SYMBOL(io_schedule);
  3727. long __sched io_schedule_timeout(long timeout)
  3728. {
  3729. struct runqueue *rq = &__raw_get_cpu_var(runqueues);
  3730. long ret;
  3731. atomic_inc(&rq->nr_iowait);
  3732. ret = schedule_timeout(timeout);
  3733. atomic_dec(&rq->nr_iowait);
  3734. return ret;
  3735. }
  3736. /**
  3737. * sys_sched_get_priority_max - return maximum RT priority.
  3738. * @policy: scheduling class.
  3739. *
  3740. * this syscall returns the maximum rt_priority that can be used
  3741. * by a given scheduling class.
  3742. */
  3743. asmlinkage long sys_sched_get_priority_max(int policy)
  3744. {
  3745. int ret = -EINVAL;
  3746. switch (policy) {
  3747. case SCHED_FIFO:
  3748. case SCHED_RR:
  3749. ret = MAX_USER_RT_PRIO-1;
  3750. break;
  3751. case SCHED_NORMAL:
  3752. case SCHED_BATCH:
  3753. ret = 0;
  3754. break;
  3755. }
  3756. return ret;
  3757. }
  3758. /**
  3759. * sys_sched_get_priority_min - return minimum RT priority.
  3760. * @policy: scheduling class.
  3761. *
  3762. * this syscall returns the minimum rt_priority that can be used
  3763. * by a given scheduling class.
  3764. */
  3765. asmlinkage long sys_sched_get_priority_min(int policy)
  3766. {
  3767. int ret = -EINVAL;
  3768. switch (policy) {
  3769. case SCHED_FIFO:
  3770. case SCHED_RR:
  3771. ret = 1;
  3772. break;
  3773. case SCHED_NORMAL:
  3774. case SCHED_BATCH:
  3775. ret = 0;
  3776. }
  3777. return ret;
  3778. }
  3779. /**
  3780. * sys_sched_rr_get_interval - return the default timeslice of a process.
  3781. * @pid: pid of the process.
  3782. * @interval: userspace pointer to the timeslice value.
  3783. *
  3784. * this syscall writes the default timeslice value of a given process
  3785. * into the user-space timespec buffer. A value of '0' means infinity.
  3786. */
  3787. asmlinkage
  3788. long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
  3789. {
  3790. int retval = -EINVAL;
  3791. struct timespec t;
  3792. task_t *p;
  3793. if (pid < 0)
  3794. goto out_nounlock;
  3795. retval = -ESRCH;
  3796. read_lock(&tasklist_lock);
  3797. p = find_process_by_pid(pid);
  3798. if (!p)
  3799. goto out_unlock;
  3800. retval = security_task_getscheduler(p);
  3801. if (retval)
  3802. goto out_unlock;
  3803. jiffies_to_timespec(p->policy == SCHED_FIFO ?
  3804. 0 : task_timeslice(p), &t);
  3805. read_unlock(&tasklist_lock);
  3806. retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
  3807. out_nounlock:
  3808. return retval;
  3809. out_unlock:
  3810. read_unlock(&tasklist_lock);
  3811. return retval;
  3812. }
  3813. static inline struct task_struct *eldest_child(struct task_struct *p)
  3814. {
  3815. if (list_empty(&p->children)) return NULL;
  3816. return list_entry(p->children.next,struct task_struct,sibling);
  3817. }
  3818. static inline struct task_struct *older_sibling(struct task_struct *p)
  3819. {
  3820. if (p->sibling.prev==&p->parent->children) return NULL;
  3821. return list_entry(p->sibling.prev,struct task_struct,sibling);
  3822. }
  3823. static inline struct task_struct *younger_sibling(struct task_struct *p)
  3824. {
  3825. if (p->sibling.next==&p->parent->children) return NULL;
  3826. return list_entry(p->sibling.next,struct task_struct,sibling);
  3827. }
  3828. static void show_task(task_t *p)
  3829. {
  3830. task_t *relative;
  3831. unsigned state;
  3832. unsigned long free = 0;
  3833. static const char *stat_nam[] = { "R", "S", "D", "T", "t", "Z", "X" };
  3834. printk("%-13.13s ", p->comm);
  3835. state = p->state ? __ffs(p->state) + 1 : 0;
  3836. if (state < ARRAY_SIZE(stat_nam))
  3837. printk(stat_nam[state]);
  3838. else
  3839. printk("?");
  3840. #if (BITS_PER_LONG == 32)
  3841. if (state == TASK_RUNNING)
  3842. printk(" running ");
  3843. else
  3844. printk(" %08lX ", thread_saved_pc(p));
  3845. #else
  3846. if (state == TASK_RUNNING)
  3847. printk(" running task ");
  3848. else
  3849. printk(" %016lx ", thread_saved_pc(p));
  3850. #endif
  3851. #ifdef CONFIG_DEBUG_STACK_USAGE
  3852. {
  3853. unsigned long *n = end_of_stack(p);
  3854. while (!*n)
  3855. n++;
  3856. free = (unsigned long)n - (unsigned long)end_of_stack(p);
  3857. }
  3858. #endif
  3859. printk("%5lu %5d %6d ", free, p->pid, p->parent->pid);
  3860. if ((relative = eldest_child(p)))
  3861. printk("%5d ", relative->pid);
  3862. else
  3863. printk(" ");
  3864. if ((relative = younger_sibling(p)))
  3865. printk("%7d", relative->pid);
  3866. else
  3867. printk(" ");
  3868. if ((relative = older_sibling(p)))
  3869. printk(" %5d", relative->pid);
  3870. else
  3871. printk(" ");
  3872. if (!p->mm)
  3873. printk(" (L-TLB)\n");
  3874. else
  3875. printk(" (NOTLB)\n");
  3876. if (state != TASK_RUNNING)
  3877. show_stack(p, NULL);
  3878. }
  3879. void show_state(void)
  3880. {
  3881. task_t *g, *p;
  3882. #if (BITS_PER_LONG == 32)
  3883. printk("\n"
  3884. " sibling\n");
  3885. printk(" task PC pid father child younger older\n");
  3886. #else
  3887. printk("\n"
  3888. " sibling\n");
  3889. printk(" task PC pid father child younger older\n");
  3890. #endif
  3891. read_lock(&tasklist_lock);
  3892. do_each_thread(g, p) {
  3893. /*
  3894. * reset the NMI-timeout, listing all files on a slow
  3895. * console might take alot of time:
  3896. */
  3897. touch_nmi_watchdog();
  3898. show_task(p);
  3899. } while_each_thread(g, p);
  3900. read_unlock(&tasklist_lock);
  3901. mutex_debug_show_all_locks();
  3902. }
  3903. /**
  3904. * init_idle - set up an idle thread for a given CPU
  3905. * @idle: task in question
  3906. * @cpu: cpu the idle task belongs to
  3907. *
  3908. * NOTE: this function does not set the idle thread's NEED_RESCHED
  3909. * flag, to make booting more robust.
  3910. */
  3911. void __devinit init_idle(task_t *idle, int cpu)
  3912. {
  3913. runqueue_t *rq = cpu_rq(cpu);
  3914. unsigned long flags;
  3915. idle->timestamp = sched_clock();
  3916. idle->sleep_avg = 0;
  3917. idle->array = NULL;
  3918. idle->prio = MAX_PRIO;
  3919. idle->state = TASK_RUNNING;
  3920. idle->cpus_allowed = cpumask_of_cpu(cpu);
  3921. set_task_cpu(idle, cpu);
  3922. spin_lock_irqsave(&rq->lock, flags);
  3923. rq->curr = rq->idle = idle;
  3924. #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
  3925. idle->oncpu = 1;
  3926. #endif
  3927. spin_unlock_irqrestore(&rq->lock, flags);
  3928. /* Set the preempt count _outside_ the spinlocks! */
  3929. #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
  3930. task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
  3931. #else
  3932. task_thread_info(idle)->preempt_count = 0;
  3933. #endif
  3934. }
  3935. /*
  3936. * In a system that switches off the HZ timer nohz_cpu_mask
  3937. * indicates which cpus entered this state. This is used
  3938. * in the rcu update to wait only for active cpus. For system
  3939. * which do not switch off the HZ timer nohz_cpu_mask should
  3940. * always be CPU_MASK_NONE.
  3941. */
  3942. cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
  3943. #ifdef CONFIG_SMP
  3944. /*
  3945. * This is how migration works:
  3946. *
  3947. * 1) we queue a migration_req_t structure in the source CPU's
  3948. * runqueue and wake up that CPU's migration thread.
  3949. * 2) we down() the locked semaphore => thread blocks.
  3950. * 3) migration thread wakes up (implicitly it forces the migrated
  3951. * thread off the CPU)
  3952. * 4) it gets the migration request and checks whether the migrated
  3953. * task is still in the wrong runqueue.
  3954. * 5) if it's in the wrong runqueue then the migration thread removes
  3955. * it and puts it into the right queue.
  3956. * 6) migration thread up()s the semaphore.
  3957. * 7) we wake up and the migration is done.
  3958. */
  3959. /*
  3960. * Change a given task's CPU affinity. Migrate the thread to a
  3961. * proper CPU and schedule it away if the CPU it's executing on
  3962. * is removed from the allowed bitmask.
  3963. *
  3964. * NOTE: the caller must have a valid reference to the task, the
  3965. * task must not exit() & deallocate itself prematurely. The
  3966. * call is not atomic; no spinlocks may be held.
  3967. */
  3968. int set_cpus_allowed(task_t *p, cpumask_t new_mask)
  3969. {
  3970. unsigned long flags;
  3971. int ret = 0;
  3972. migration_req_t req;
  3973. runqueue_t *rq;
  3974. rq = task_rq_lock(p, &flags);
  3975. if (!cpus_intersects(new_mask, cpu_online_map)) {
  3976. ret = -EINVAL;
  3977. goto out;
  3978. }
  3979. p->cpus_allowed = new_mask;
  3980. /* Can the task run on the task's current CPU? If so, we're done */
  3981. if (cpu_isset(task_cpu(p), new_mask))
  3982. goto out;
  3983. if (migrate_task(p, any_online_cpu(new_mask), &req)) {
  3984. /* Need help from migration thread: drop lock and wait. */
  3985. task_rq_unlock(rq, &flags);
  3986. wake_up_process(rq->migration_thread);
  3987. wait_for_completion(&req.done);
  3988. tlb_migrate_finish(p->mm);
  3989. return 0;
  3990. }
  3991. out:
  3992. task_rq_unlock(rq, &flags);
  3993. return ret;
  3994. }
  3995. EXPORT_SYMBOL_GPL(set_cpus_allowed);
  3996. /*
  3997. * Move (not current) task off this cpu, onto dest cpu. We're doing
  3998. * this because either it can't run here any more (set_cpus_allowed()
  3999. * away from this CPU, or CPU going down), or because we're
  4000. * attempting to rebalance this task on exec (sched_exec).
  4001. *
  4002. * So we race with normal scheduler movements, but that's OK, as long
  4003. * as the task is no longer on this CPU.
  4004. *
  4005. * Returns non-zero if task was successfully migrated.
  4006. */
  4007. static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
  4008. {
  4009. runqueue_t *rq_dest, *rq_src;
  4010. int ret = 0;
  4011. if (unlikely(cpu_is_offline(dest_cpu)))
  4012. return ret;
  4013. rq_src = cpu_rq(src_cpu);
  4014. rq_dest = cpu_rq(dest_cpu);
  4015. double_rq_lock(rq_src, rq_dest);
  4016. /* Already moved. */
  4017. if (task_cpu(p) != src_cpu)
  4018. goto out;
  4019. /* Affinity changed (again). */
  4020. if (!cpu_isset(dest_cpu, p->cpus_allowed))
  4021. goto out;
  4022. set_task_cpu(p, dest_cpu);
  4023. if (p->array) {
  4024. /*
  4025. * Sync timestamp with rq_dest's before activating.
  4026. * The same thing could be achieved by doing this step
  4027. * afterwards, and pretending it was a local activate.
  4028. * This way is cleaner and logically correct.
  4029. */
  4030. p->timestamp = p->timestamp - rq_src->timestamp_last_tick
  4031. + rq_dest->timestamp_last_tick;
  4032. deactivate_task(p, rq_src);
  4033. activate_task(p, rq_dest, 0);
  4034. if (TASK_PREEMPTS_CURR(p, rq_dest))
  4035. resched_task(rq_dest->curr);
  4036. }
  4037. ret = 1;
  4038. out:
  4039. double_rq_unlock(rq_src, rq_dest);
  4040. return ret;
  4041. }
  4042. /*
  4043. * migration_thread - this is a highprio system thread that performs
  4044. * thread migration by bumping thread off CPU then 'pushing' onto
  4045. * another runqueue.
  4046. */
  4047. static int migration_thread(void *data)
  4048. {
  4049. runqueue_t *rq;
  4050. int cpu = (long)data;
  4051. rq = cpu_rq(cpu);
  4052. BUG_ON(rq->migration_thread != current);
  4053. set_current_state(TASK_INTERRUPTIBLE);
  4054. while (!kthread_should_stop()) {
  4055. struct list_head *head;
  4056. migration_req_t *req;
  4057. try_to_freeze();
  4058. spin_lock_irq(&rq->lock);
  4059. if (cpu_is_offline(cpu)) {
  4060. spin_unlock_irq(&rq->lock);
  4061. goto wait_to_die;
  4062. }
  4063. if (rq->active_balance) {
  4064. active_load_balance(rq, cpu);
  4065. rq->active_balance = 0;
  4066. }
  4067. head = &rq->migration_queue;
  4068. if (list_empty(head)) {
  4069. spin_unlock_irq(&rq->lock);
  4070. schedule();
  4071. set_current_state(TASK_INTERRUPTIBLE);
  4072. continue;
  4073. }
  4074. req = list_entry(head->next, migration_req_t, list);
  4075. list_del_init(head->next);
  4076. spin_unlock(&rq->lock);
  4077. __migrate_task(req->task, cpu, req->dest_cpu);
  4078. local_irq_enable();
  4079. complete(&req->done);
  4080. }
  4081. __set_current_state(TASK_RUNNING);
  4082. return 0;
  4083. wait_to_die:
  4084. /* Wait for kthread_stop */
  4085. set_current_state(TASK_INTERRUPTIBLE);
  4086. while (!kthread_should_stop()) {
  4087. schedule();
  4088. set_current_state(TASK_INTERRUPTIBLE);
  4089. }
  4090. __set_current_state(TASK_RUNNING);
  4091. return 0;
  4092. }
  4093. #ifdef CONFIG_HOTPLUG_CPU
  4094. /* Figure out where task on dead CPU should go, use force if neccessary. */
  4095. static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *tsk)
  4096. {
  4097. runqueue_t *rq;
  4098. unsigned long flags;
  4099. int dest_cpu;
  4100. cpumask_t mask;
  4101. restart:
  4102. /* On same node? */
  4103. mask = node_to_cpumask(cpu_to_node(dead_cpu));
  4104. cpus_and(mask, mask, tsk->cpus_allowed);
  4105. dest_cpu = any_online_cpu(mask);
  4106. /* On any allowed CPU? */
  4107. if (dest_cpu == NR_CPUS)
  4108. dest_cpu = any_online_cpu(tsk->cpus_allowed);
  4109. /* No more Mr. Nice Guy. */
  4110. if (dest_cpu == NR_CPUS) {
  4111. rq = task_rq_lock(tsk, &flags);
  4112. cpus_setall(tsk->cpus_allowed);
  4113. dest_cpu = any_online_cpu(tsk->cpus_allowed);
  4114. task_rq_unlock(rq, &flags);
  4115. /*
  4116. * Don't tell them about moving exiting tasks or
  4117. * kernel threads (both mm NULL), since they never
  4118. * leave kernel.
  4119. */
  4120. if (tsk->mm && printk_ratelimit())
  4121. printk(KERN_INFO "process %d (%s) no "
  4122. "longer affine to cpu%d\n",
  4123. tsk->pid, tsk->comm, dead_cpu);
  4124. }
  4125. if (!__migrate_task(tsk, dead_cpu, dest_cpu))
  4126. goto restart;
  4127. }
  4128. /*
  4129. * While a dead CPU has no uninterruptible tasks queued at this point,
  4130. * it might still have a nonzero ->nr_uninterruptible counter, because
  4131. * for performance reasons the counter is not stricly tracking tasks to
  4132. * their home CPUs. So we just add the counter to another CPU's counter,
  4133. * to keep the global sum constant after CPU-down:
  4134. */
  4135. static void migrate_nr_uninterruptible(runqueue_t *rq_src)
  4136. {
  4137. runqueue_t *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
  4138. unsigned long flags;
  4139. local_irq_save(flags);
  4140. double_rq_lock(rq_src, rq_dest);
  4141. rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
  4142. rq_src->nr_uninterruptible = 0;
  4143. double_rq_unlock(rq_src, rq_dest);
  4144. local_irq_restore(flags);
  4145. }
  4146. /* Run through task list and migrate tasks from the dead cpu. */
  4147. static void migrate_live_tasks(int src_cpu)
  4148. {
  4149. struct task_struct *tsk, *t;
  4150. write_lock_irq(&tasklist_lock);
  4151. do_each_thread(t, tsk) {
  4152. if (tsk == current)
  4153. continue;
  4154. if (task_cpu(tsk) == src_cpu)
  4155. move_task_off_dead_cpu(src_cpu, tsk);
  4156. } while_each_thread(t, tsk);
  4157. write_unlock_irq(&tasklist_lock);
  4158. }
  4159. /* Schedules idle task to be the next runnable task on current CPU.
  4160. * It does so by boosting its priority to highest possible and adding it to
  4161. * the _front_ of runqueue. Used by CPU offline code.
  4162. */
  4163. void sched_idle_next(void)
  4164. {
  4165. int cpu = smp_processor_id();
  4166. runqueue_t *rq = this_rq();
  4167. struct task_struct *p = rq->idle;
  4168. unsigned long flags;
  4169. /* cpu has to be offline */
  4170. BUG_ON(cpu_online(cpu));
  4171. /* Strictly not necessary since rest of the CPUs are stopped by now
  4172. * and interrupts disabled on current cpu.
  4173. */
  4174. spin_lock_irqsave(&rq->lock, flags);
  4175. __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
  4176. /* Add idle task to _front_ of it's priority queue */
  4177. __activate_idle_task(p, rq);
  4178. spin_unlock_irqrestore(&rq->lock, flags);
  4179. }
  4180. /* Ensures that the idle task is using init_mm right before its cpu goes
  4181. * offline.
  4182. */
  4183. void idle_task_exit(void)
  4184. {
  4185. struct mm_struct *mm = current->active_mm;
  4186. BUG_ON(cpu_online(smp_processor_id()));
  4187. if (mm != &init_mm)
  4188. switch_mm(mm, &init_mm, current);
  4189. mmdrop(mm);
  4190. }
  4191. static void migrate_dead(unsigned int dead_cpu, task_t *tsk)
  4192. {
  4193. struct runqueue *rq = cpu_rq(dead_cpu);
  4194. /* Must be exiting, otherwise would be on tasklist. */
  4195. BUG_ON(tsk->exit_state != EXIT_ZOMBIE && tsk->exit_state != EXIT_DEAD);
  4196. /* Cannot have done final schedule yet: would have vanished. */
  4197. BUG_ON(tsk->flags & PF_DEAD);
  4198. get_task_struct(tsk);
  4199. /*
  4200. * Drop lock around migration; if someone else moves it,
  4201. * that's OK. No task can be added to this CPU, so iteration is
  4202. * fine.
  4203. */
  4204. spin_unlock_irq(&rq->lock);
  4205. move_task_off_dead_cpu(dead_cpu, tsk);
  4206. spin_lock_irq(&rq->lock);
  4207. put_task_struct(tsk);
  4208. }
  4209. /* release_task() removes task from tasklist, so we won't find dead tasks. */
  4210. static void migrate_dead_tasks(unsigned int dead_cpu)
  4211. {
  4212. unsigned arr, i;
  4213. struct runqueue *rq = cpu_rq(dead_cpu);
  4214. for (arr = 0; arr < 2; arr++) {
  4215. for (i = 0; i < MAX_PRIO; i++) {
  4216. struct list_head *list = &rq->arrays[arr].queue[i];
  4217. while (!list_empty(list))
  4218. migrate_dead(dead_cpu,
  4219. list_entry(list->next, task_t,
  4220. run_list));
  4221. }
  4222. }
  4223. }
  4224. #endif /* CONFIG_HOTPLUG_CPU */
  4225. /*
  4226. * migration_call - callback that gets triggered when a CPU is added.
  4227. * Here we can start up the necessary migration thread for the new CPU.
  4228. */
  4229. static int __cpuinit migration_call(struct notifier_block *nfb,
  4230. unsigned long action,
  4231. void *hcpu)
  4232. {
  4233. int cpu = (long)hcpu;
  4234. struct task_struct *p;
  4235. struct runqueue *rq;
  4236. unsigned long flags;
  4237. switch (action) {
  4238. case CPU_UP_PREPARE:
  4239. p = kthread_create(migration_thread, hcpu, "migration/%d",cpu);
  4240. if (IS_ERR(p))
  4241. return NOTIFY_BAD;
  4242. p->flags |= PF_NOFREEZE;
  4243. kthread_bind(p, cpu);
  4244. /* Must be high prio: stop_machine expects to yield to it. */
  4245. rq = task_rq_lock(p, &flags);
  4246. __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
  4247. task_rq_unlock(rq, &flags);
  4248. cpu_rq(cpu)->migration_thread = p;
  4249. break;
  4250. case CPU_ONLINE:
  4251. /* Strictly unneccessary, as first user will wake it. */
  4252. wake_up_process(cpu_rq(cpu)->migration_thread);
  4253. break;
  4254. #ifdef CONFIG_HOTPLUG_CPU
  4255. case CPU_UP_CANCELED:
  4256. if (!cpu_rq(cpu)->migration_thread)
  4257. break;
  4258. /* Unbind it from offline cpu so it can run. Fall thru. */
  4259. kthread_bind(cpu_rq(cpu)->migration_thread,
  4260. any_online_cpu(cpu_online_map));
  4261. kthread_stop(cpu_rq(cpu)->migration_thread);
  4262. cpu_rq(cpu)->migration_thread = NULL;
  4263. break;
  4264. case CPU_DEAD:
  4265. migrate_live_tasks(cpu);
  4266. rq = cpu_rq(cpu);
  4267. kthread_stop(rq->migration_thread);
  4268. rq->migration_thread = NULL;
  4269. /* Idle task back to normal (off runqueue, low prio) */
  4270. rq = task_rq_lock(rq->idle, &flags);
  4271. deactivate_task(rq->idle, rq);
  4272. rq->idle->static_prio = MAX_PRIO;
  4273. __setscheduler(rq->idle, SCHED_NORMAL, 0);
  4274. migrate_dead_tasks(cpu);
  4275. task_rq_unlock(rq, &flags);
  4276. migrate_nr_uninterruptible(rq);
  4277. BUG_ON(rq->nr_running != 0);
  4278. /* No need to migrate the tasks: it was best-effort if
  4279. * they didn't do lock_cpu_hotplug(). Just wake up
  4280. * the requestors. */
  4281. spin_lock_irq(&rq->lock);
  4282. while (!list_empty(&rq->migration_queue)) {
  4283. migration_req_t *req;
  4284. req = list_entry(rq->migration_queue.next,
  4285. migration_req_t, list);
  4286. list_del_init(&req->list);
  4287. complete(&req->done);
  4288. }
  4289. spin_unlock_irq(&rq->lock);
  4290. break;
  4291. #endif
  4292. }
  4293. return NOTIFY_OK;
  4294. }
  4295. /* Register at highest priority so that task migration (migrate_all_tasks)
  4296. * happens before everything else.
  4297. */
  4298. static struct notifier_block __cpuinitdata migration_notifier = {
  4299. .notifier_call = migration_call,
  4300. .priority = 10
  4301. };
  4302. int __init migration_init(void)
  4303. {
  4304. void *cpu = (void *)(long)smp_processor_id();
  4305. /* Start one for boot CPU. */
  4306. migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
  4307. migration_call(&migration_notifier, CPU_ONLINE, cpu);
  4308. register_cpu_notifier(&migration_notifier);
  4309. return 0;
  4310. }
  4311. #endif
  4312. #ifdef CONFIG_SMP
  4313. #undef SCHED_DOMAIN_DEBUG
  4314. #ifdef SCHED_DOMAIN_DEBUG
  4315. static void sched_domain_debug(struct sched_domain *sd, int cpu)
  4316. {
  4317. int level = 0;
  4318. if (!sd) {
  4319. printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
  4320. return;
  4321. }
  4322. printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
  4323. do {
  4324. int i;
  4325. char str[NR_CPUS];
  4326. struct sched_group *group = sd->groups;
  4327. cpumask_t groupmask;
  4328. cpumask_scnprintf(str, NR_CPUS, sd->span);
  4329. cpus_clear(groupmask);
  4330. printk(KERN_DEBUG);
  4331. for (i = 0; i < level + 1; i++)
  4332. printk(" ");
  4333. printk("domain %d: ", level);
  4334. if (!(sd->flags & SD_LOAD_BALANCE)) {
  4335. printk("does not load-balance\n");
  4336. if (sd->parent)
  4337. printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain has parent");
  4338. break;
  4339. }
  4340. printk("span %s\n", str);
  4341. if (!cpu_isset(cpu, sd->span))
  4342. printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu);
  4343. if (!cpu_isset(cpu, group->cpumask))
  4344. printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu);
  4345. printk(KERN_DEBUG);
  4346. for (i = 0; i < level + 2; i++)
  4347. printk(" ");
  4348. printk("groups:");
  4349. do {
  4350. if (!group) {
  4351. printk("\n");
  4352. printk(KERN_ERR "ERROR: group is NULL\n");
  4353. break;
  4354. }
  4355. if (!group->cpu_power) {
  4356. printk("\n");
  4357. printk(KERN_ERR "ERROR: domain->cpu_power not set\n");
  4358. }
  4359. if (!cpus_weight(group->cpumask)) {
  4360. printk("\n");
  4361. printk(KERN_ERR "ERROR: empty group\n");
  4362. }
  4363. if (cpus_intersects(groupmask, group->cpumask)) {
  4364. printk("\n");
  4365. printk(KERN_ERR "ERROR: repeated CPUs\n");
  4366. }
  4367. cpus_or(groupmask, groupmask, group->cpumask);
  4368. cpumask_scnprintf(str, NR_CPUS, group->cpumask);
  4369. printk(" %s", str);
  4370. group = group->next;
  4371. } while (group != sd->groups);
  4372. printk("\n");
  4373. if (!cpus_equal(sd->span, groupmask))
  4374. printk(KERN_ERR "ERROR: groups don't span domain->span\n");
  4375. level++;
  4376. sd = sd->parent;
  4377. if (sd) {
  4378. if (!cpus_subset(groupmask, sd->span))
  4379. printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n");
  4380. }
  4381. } while (sd);
  4382. }
  4383. #else
  4384. #define sched_domain_debug(sd, cpu) {}
  4385. #endif
  4386. static int sd_degenerate(struct sched_domain *sd)
  4387. {
  4388. if (cpus_weight(sd->span) == 1)
  4389. return 1;
  4390. /* Following flags need at least 2 groups */
  4391. if (sd->flags & (SD_LOAD_BALANCE |
  4392. SD_BALANCE_NEWIDLE |
  4393. SD_BALANCE_FORK |
  4394. SD_BALANCE_EXEC)) {
  4395. if (sd->groups != sd->groups->next)
  4396. return 0;
  4397. }
  4398. /* Following flags don't use groups */
  4399. if (sd->flags & (SD_WAKE_IDLE |
  4400. SD_WAKE_AFFINE |
  4401. SD_WAKE_BALANCE))
  4402. return 0;
  4403. return 1;
  4404. }
  4405. static int sd_parent_degenerate(struct sched_domain *sd,
  4406. struct sched_domain *parent)
  4407. {
  4408. unsigned long cflags = sd->flags, pflags = parent->flags;
  4409. if (sd_degenerate(parent))
  4410. return 1;
  4411. if (!cpus_equal(sd->span, parent->span))
  4412. return 0;
  4413. /* Does parent contain flags not in child? */
  4414. /* WAKE_BALANCE is a subset of WAKE_AFFINE */
  4415. if (cflags & SD_WAKE_AFFINE)
  4416. pflags &= ~SD_WAKE_BALANCE;
  4417. /* Flags needing groups don't count if only 1 group in parent */
  4418. if (parent->groups == parent->groups->next) {
  4419. pflags &= ~(SD_LOAD_BALANCE |
  4420. SD_BALANCE_NEWIDLE |
  4421. SD_BALANCE_FORK |
  4422. SD_BALANCE_EXEC);
  4423. }
  4424. if (~cflags & pflags)
  4425. return 0;
  4426. return 1;
  4427. }
  4428. /*
  4429. * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
  4430. * hold the hotplug lock.
  4431. */
  4432. static void cpu_attach_domain(struct sched_domain *sd, int cpu)
  4433. {
  4434. runqueue_t *rq = cpu_rq(cpu);
  4435. struct sched_domain *tmp;
  4436. /* Remove the sched domains which do not contribute to scheduling. */
  4437. for (tmp = sd; tmp; tmp = tmp->parent) {
  4438. struct sched_domain *parent = tmp->parent;
  4439. if (!parent)
  4440. break;
  4441. if (sd_parent_degenerate(tmp, parent))
  4442. tmp->parent = parent->parent;
  4443. }
  4444. if (sd && sd_degenerate(sd))
  4445. sd = sd->parent;
  4446. sched_domain_debug(sd, cpu);
  4447. rcu_assign_pointer(rq->sd, sd);
  4448. }
  4449. /* cpus with isolated domains */
  4450. static cpumask_t __devinitdata cpu_isolated_map = CPU_MASK_NONE;
  4451. /* Setup the mask of cpus configured for isolated domains */
  4452. static int __init isolated_cpu_setup(char *str)
  4453. {
  4454. int ints[NR_CPUS], i;
  4455. str = get_options(str, ARRAY_SIZE(ints), ints);
  4456. cpus_clear(cpu_isolated_map);
  4457. for (i = 1; i <= ints[0]; i++)
  4458. if (ints[i] < NR_CPUS)
  4459. cpu_set(ints[i], cpu_isolated_map);
  4460. return 1;
  4461. }
  4462. __setup ("isolcpus=", isolated_cpu_setup);
  4463. /*
  4464. * init_sched_build_groups takes an array of groups, the cpumask we wish
  4465. * to span, and a pointer to a function which identifies what group a CPU
  4466. * belongs to. The return value of group_fn must be a valid index into the
  4467. * groups[] array, and must be >= 0 and < NR_CPUS (due to the fact that we
  4468. * keep track of groups covered with a cpumask_t).
  4469. *
  4470. * init_sched_build_groups will build a circular linked list of the groups
  4471. * covered by the given span, and will set each group's ->cpumask correctly,
  4472. * and ->cpu_power to 0.
  4473. */
  4474. static void init_sched_build_groups(struct sched_group groups[], cpumask_t span,
  4475. int (*group_fn)(int cpu))
  4476. {
  4477. struct sched_group *first = NULL, *last = NULL;
  4478. cpumask_t covered = CPU_MASK_NONE;
  4479. int i;
  4480. for_each_cpu_mask(i, span) {
  4481. int group = group_fn(i);
  4482. struct sched_group *sg = &groups[group];
  4483. int j;
  4484. if (cpu_isset(i, covered))
  4485. continue;
  4486. sg->cpumask = CPU_MASK_NONE;
  4487. sg->cpu_power = 0;
  4488. for_each_cpu_mask(j, span) {
  4489. if (group_fn(j) != group)
  4490. continue;
  4491. cpu_set(j, covered);
  4492. cpu_set(j, sg->cpumask);
  4493. }
  4494. if (!first)
  4495. first = sg;
  4496. if (last)
  4497. last->next = sg;
  4498. last = sg;
  4499. }
  4500. last->next = first;
  4501. }
  4502. #define SD_NODES_PER_DOMAIN 16
  4503. /*
  4504. * Self-tuning task migration cost measurement between source and target CPUs.
  4505. *
  4506. * This is done by measuring the cost of manipulating buffers of varying
  4507. * sizes. For a given buffer-size here are the steps that are taken:
  4508. *
  4509. * 1) the source CPU reads+dirties a shared buffer
  4510. * 2) the target CPU reads+dirties the same shared buffer
  4511. *
  4512. * We measure how long they take, in the following 4 scenarios:
  4513. *
  4514. * - source: CPU1, target: CPU2 | cost1
  4515. * - source: CPU2, target: CPU1 | cost2
  4516. * - source: CPU1, target: CPU1 | cost3
  4517. * - source: CPU2, target: CPU2 | cost4
  4518. *
  4519. * We then calculate the cost3+cost4-cost1-cost2 difference - this is
  4520. * the cost of migration.
  4521. *
  4522. * We then start off from a small buffer-size and iterate up to larger
  4523. * buffer sizes, in 5% steps - measuring each buffer-size separately, and
  4524. * doing a maximum search for the cost. (The maximum cost for a migration
  4525. * normally occurs when the working set size is around the effective cache
  4526. * size.)
  4527. */
  4528. #define SEARCH_SCOPE 2
  4529. #define MIN_CACHE_SIZE (64*1024U)
  4530. #define DEFAULT_CACHE_SIZE (5*1024*1024U)
  4531. #define ITERATIONS 1
  4532. #define SIZE_THRESH 130
  4533. #define COST_THRESH 130
  4534. /*
  4535. * The migration cost is a function of 'domain distance'. Domain
  4536. * distance is the number of steps a CPU has to iterate down its
  4537. * domain tree to share a domain with the other CPU. The farther
  4538. * two CPUs are from each other, the larger the distance gets.
  4539. *
  4540. * Note that we use the distance only to cache measurement results,
  4541. * the distance value is not used numerically otherwise. When two
  4542. * CPUs have the same distance it is assumed that the migration
  4543. * cost is the same. (this is a simplification but quite practical)
  4544. */
  4545. #define MAX_DOMAIN_DISTANCE 32
  4546. static unsigned long long migration_cost[MAX_DOMAIN_DISTANCE] =
  4547. { [ 0 ... MAX_DOMAIN_DISTANCE-1 ] =
  4548. /*
  4549. * Architectures may override the migration cost and thus avoid
  4550. * boot-time calibration. Unit is nanoseconds. Mostly useful for
  4551. * virtualized hardware:
  4552. */
  4553. #ifdef CONFIG_DEFAULT_MIGRATION_COST
  4554. CONFIG_DEFAULT_MIGRATION_COST
  4555. #else
  4556. -1LL
  4557. #endif
  4558. };
  4559. /*
  4560. * Allow override of migration cost - in units of microseconds.
  4561. * E.g. migration_cost=1000,2000,3000 will set up a level-1 cost
  4562. * of 1 msec, level-2 cost of 2 msecs and level3 cost of 3 msecs:
  4563. */
  4564. static int __init migration_cost_setup(char *str)
  4565. {
  4566. int ints[MAX_DOMAIN_DISTANCE+1], i;
  4567. str = get_options(str, ARRAY_SIZE(ints), ints);
  4568. printk("#ints: %d\n", ints[0]);
  4569. for (i = 1; i <= ints[0]; i++) {
  4570. migration_cost[i-1] = (unsigned long long)ints[i]*1000;
  4571. printk("migration_cost[%d]: %Ld\n", i-1, migration_cost[i-1]);
  4572. }
  4573. return 1;
  4574. }
  4575. __setup ("migration_cost=", migration_cost_setup);
  4576. /*
  4577. * Global multiplier (divisor) for migration-cutoff values,
  4578. * in percentiles. E.g. use a value of 150 to get 1.5 times
  4579. * longer cache-hot cutoff times.
  4580. *
  4581. * (We scale it from 100 to 128 to long long handling easier.)
  4582. */
  4583. #define MIGRATION_FACTOR_SCALE 128
  4584. static unsigned int migration_factor = MIGRATION_FACTOR_SCALE;
  4585. static int __init setup_migration_factor(char *str)
  4586. {
  4587. get_option(&str, &migration_factor);
  4588. migration_factor = migration_factor * MIGRATION_FACTOR_SCALE / 100;
  4589. return 1;
  4590. }
  4591. __setup("migration_factor=", setup_migration_factor);
  4592. /*
  4593. * Estimated distance of two CPUs, measured via the number of domains
  4594. * we have to pass for the two CPUs to be in the same span:
  4595. */
  4596. static unsigned long domain_distance(int cpu1, int cpu2)
  4597. {
  4598. unsigned long distance = 0;
  4599. struct sched_domain *sd;
  4600. for_each_domain(cpu1, sd) {
  4601. WARN_ON(!cpu_isset(cpu1, sd->span));
  4602. if (cpu_isset(cpu2, sd->span))
  4603. return distance;
  4604. distance++;
  4605. }
  4606. if (distance >= MAX_DOMAIN_DISTANCE) {
  4607. WARN_ON(1);
  4608. distance = MAX_DOMAIN_DISTANCE-1;
  4609. }
  4610. return distance;
  4611. }
  4612. static unsigned int migration_debug;
  4613. static int __init setup_migration_debug(char *str)
  4614. {
  4615. get_option(&str, &migration_debug);
  4616. return 1;
  4617. }
  4618. __setup("migration_debug=", setup_migration_debug);
  4619. /*
  4620. * Maximum cache-size that the scheduler should try to measure.
  4621. * Architectures with larger caches should tune this up during
  4622. * bootup. Gets used in the domain-setup code (i.e. during SMP
  4623. * bootup).
  4624. */
  4625. unsigned int max_cache_size;
  4626. static int __init setup_max_cache_size(char *str)
  4627. {
  4628. get_option(&str, &max_cache_size);
  4629. return 1;
  4630. }
  4631. __setup("max_cache_size=", setup_max_cache_size);
  4632. /*
  4633. * Dirty a big buffer in a hard-to-predict (for the L2 cache) way. This
  4634. * is the operation that is timed, so we try to generate unpredictable
  4635. * cachemisses that still end up filling the L2 cache:
  4636. */
  4637. static void touch_cache(void *__cache, unsigned long __size)
  4638. {
  4639. unsigned long size = __size/sizeof(long), chunk1 = size/3,
  4640. chunk2 = 2*size/3;
  4641. unsigned long *cache = __cache;
  4642. int i;
  4643. for (i = 0; i < size/6; i += 8) {
  4644. switch (i % 6) {
  4645. case 0: cache[i]++;
  4646. case 1: cache[size-1-i]++;
  4647. case 2: cache[chunk1-i]++;
  4648. case 3: cache[chunk1+i]++;
  4649. case 4: cache[chunk2-i]++;
  4650. case 5: cache[chunk2+i]++;
  4651. }
  4652. }
  4653. }
  4654. /*
  4655. * Measure the cache-cost of one task migration. Returns in units of nsec.
  4656. */
  4657. static unsigned long long measure_one(void *cache, unsigned long size,
  4658. int source, int target)
  4659. {
  4660. cpumask_t mask, saved_mask;
  4661. unsigned long long t0, t1, t2, t3, cost;
  4662. saved_mask = current->cpus_allowed;
  4663. /*
  4664. * Flush source caches to RAM and invalidate them:
  4665. */
  4666. sched_cacheflush();
  4667. /*
  4668. * Migrate to the source CPU:
  4669. */
  4670. mask = cpumask_of_cpu(source);
  4671. set_cpus_allowed(current, mask);
  4672. WARN_ON(smp_processor_id() != source);
  4673. /*
  4674. * Dirty the working set:
  4675. */
  4676. t0 = sched_clock();
  4677. touch_cache(cache, size);
  4678. t1 = sched_clock();
  4679. /*
  4680. * Migrate to the target CPU, dirty the L2 cache and access
  4681. * the shared buffer. (which represents the working set
  4682. * of a migrated task.)
  4683. */
  4684. mask = cpumask_of_cpu(target);
  4685. set_cpus_allowed(current, mask);
  4686. WARN_ON(smp_processor_id() != target);
  4687. t2 = sched_clock();
  4688. touch_cache(cache, size);
  4689. t3 = sched_clock();
  4690. cost = t1-t0 + t3-t2;
  4691. if (migration_debug >= 2)
  4692. printk("[%d->%d]: %8Ld %8Ld %8Ld => %10Ld.\n",
  4693. source, target, t1-t0, t1-t0, t3-t2, cost);
  4694. /*
  4695. * Flush target caches to RAM and invalidate them:
  4696. */
  4697. sched_cacheflush();
  4698. set_cpus_allowed(current, saved_mask);
  4699. return cost;
  4700. }
  4701. /*
  4702. * Measure a series of task migrations and return the average
  4703. * result. Since this code runs early during bootup the system
  4704. * is 'undisturbed' and the average latency makes sense.
  4705. *
  4706. * The algorithm in essence auto-detects the relevant cache-size,
  4707. * so it will properly detect different cachesizes for different
  4708. * cache-hierarchies, depending on how the CPUs are connected.
  4709. *
  4710. * Architectures can prime the upper limit of the search range via
  4711. * max_cache_size, otherwise the search range defaults to 20MB...64K.
  4712. */
  4713. static unsigned long long
  4714. measure_cost(int cpu1, int cpu2, void *cache, unsigned int size)
  4715. {
  4716. unsigned long long cost1, cost2;
  4717. int i;
  4718. /*
  4719. * Measure the migration cost of 'size' bytes, over an
  4720. * average of 10 runs:
  4721. *
  4722. * (We perturb the cache size by a small (0..4k)
  4723. * value to compensate size/alignment related artifacts.
  4724. * We also subtract the cost of the operation done on
  4725. * the same CPU.)
  4726. */
  4727. cost1 = 0;
  4728. /*
  4729. * dry run, to make sure we start off cache-cold on cpu1,
  4730. * and to get any vmalloc pagefaults in advance:
  4731. */
  4732. measure_one(cache, size, cpu1, cpu2);
  4733. for (i = 0; i < ITERATIONS; i++)
  4734. cost1 += measure_one(cache, size - i*1024, cpu1, cpu2);
  4735. measure_one(cache, size, cpu2, cpu1);
  4736. for (i = 0; i < ITERATIONS; i++)
  4737. cost1 += measure_one(cache, size - i*1024, cpu2, cpu1);
  4738. /*
  4739. * (We measure the non-migrating [cached] cost on both
  4740. * cpu1 and cpu2, to handle CPUs with different speeds)
  4741. */
  4742. cost2 = 0;
  4743. measure_one(cache, size, cpu1, cpu1);
  4744. for (i = 0; i < ITERATIONS; i++)
  4745. cost2 += measure_one(cache, size - i*1024, cpu1, cpu1);
  4746. measure_one(cache, size, cpu2, cpu2);
  4747. for (i = 0; i < ITERATIONS; i++)
  4748. cost2 += measure_one(cache, size - i*1024, cpu2, cpu2);
  4749. /*
  4750. * Get the per-iteration migration cost:
  4751. */
  4752. do_div(cost1, 2*ITERATIONS);
  4753. do_div(cost2, 2*ITERATIONS);
  4754. return cost1 - cost2;
  4755. }
  4756. static unsigned long long measure_migration_cost(int cpu1, int cpu2)
  4757. {
  4758. unsigned long long max_cost = 0, fluct = 0, avg_fluct = 0;
  4759. unsigned int max_size, size, size_found = 0;
  4760. long long cost = 0, prev_cost;
  4761. void *cache;
  4762. /*
  4763. * Search from max_cache_size*5 down to 64K - the real relevant
  4764. * cachesize has to lie somewhere inbetween.
  4765. */
  4766. if (max_cache_size) {
  4767. max_size = max(max_cache_size * SEARCH_SCOPE, MIN_CACHE_SIZE);
  4768. size = max(max_cache_size / SEARCH_SCOPE, MIN_CACHE_SIZE);
  4769. } else {
  4770. /*
  4771. * Since we have no estimation about the relevant
  4772. * search range
  4773. */
  4774. max_size = DEFAULT_CACHE_SIZE * SEARCH_SCOPE;
  4775. size = MIN_CACHE_SIZE;
  4776. }
  4777. if (!cpu_online(cpu1) || !cpu_online(cpu2)) {
  4778. printk("cpu %d and %d not both online!\n", cpu1, cpu2);
  4779. return 0;
  4780. }
  4781. /*
  4782. * Allocate the working set:
  4783. */
  4784. cache = vmalloc(max_size);
  4785. if (!cache) {
  4786. printk("could not vmalloc %d bytes for cache!\n", 2*max_size);
  4787. return 1000000; // return 1 msec on very small boxen
  4788. }
  4789. while (size <= max_size) {
  4790. prev_cost = cost;
  4791. cost = measure_cost(cpu1, cpu2, cache, size);
  4792. /*
  4793. * Update the max:
  4794. */
  4795. if (cost > 0) {
  4796. if (max_cost < cost) {
  4797. max_cost = cost;
  4798. size_found = size;
  4799. }
  4800. }
  4801. /*
  4802. * Calculate average fluctuation, we use this to prevent
  4803. * noise from triggering an early break out of the loop:
  4804. */
  4805. fluct = abs(cost - prev_cost);
  4806. avg_fluct = (avg_fluct + fluct)/2;
  4807. if (migration_debug)
  4808. printk("-> [%d][%d][%7d] %3ld.%ld [%3ld.%ld] (%ld): (%8Ld %8Ld)\n",
  4809. cpu1, cpu2, size,
  4810. (long)cost / 1000000,
  4811. ((long)cost / 100000) % 10,
  4812. (long)max_cost / 1000000,
  4813. ((long)max_cost / 100000) % 10,
  4814. domain_distance(cpu1, cpu2),
  4815. cost, avg_fluct);
  4816. /*
  4817. * If we iterated at least 20% past the previous maximum,
  4818. * and the cost has dropped by more than 20% already,
  4819. * (taking fluctuations into account) then we assume to
  4820. * have found the maximum and break out of the loop early:
  4821. */
  4822. if (size_found && (size*100 > size_found*SIZE_THRESH))
  4823. if (cost+avg_fluct <= 0 ||
  4824. max_cost*100 > (cost+avg_fluct)*COST_THRESH) {
  4825. if (migration_debug)
  4826. printk("-> found max.\n");
  4827. break;
  4828. }
  4829. /*
  4830. * Increase the cachesize in 10% steps:
  4831. */
  4832. size = size * 10 / 9;
  4833. }
  4834. if (migration_debug)
  4835. printk("[%d][%d] working set size found: %d, cost: %Ld\n",
  4836. cpu1, cpu2, size_found, max_cost);
  4837. vfree(cache);
  4838. /*
  4839. * A task is considered 'cache cold' if at least 2 times
  4840. * the worst-case cost of migration has passed.
  4841. *
  4842. * (this limit is only listened to if the load-balancing
  4843. * situation is 'nice' - if there is a large imbalance we
  4844. * ignore it for the sake of CPU utilization and
  4845. * processing fairness.)
  4846. */
  4847. return 2 * max_cost * migration_factor / MIGRATION_FACTOR_SCALE;
  4848. }
  4849. static void calibrate_migration_costs(const cpumask_t *cpu_map)
  4850. {
  4851. int cpu1 = -1, cpu2 = -1, cpu, orig_cpu = raw_smp_processor_id();
  4852. unsigned long j0, j1, distance, max_distance = 0;
  4853. struct sched_domain *sd;
  4854. j0 = jiffies;
  4855. /*
  4856. * First pass - calculate the cacheflush times:
  4857. */
  4858. for_each_cpu_mask(cpu1, *cpu_map) {
  4859. for_each_cpu_mask(cpu2, *cpu_map) {
  4860. if (cpu1 == cpu2)
  4861. continue;
  4862. distance = domain_distance(cpu1, cpu2);
  4863. max_distance = max(max_distance, distance);
  4864. /*
  4865. * No result cached yet?
  4866. */
  4867. if (migration_cost[distance] == -1LL)
  4868. migration_cost[distance] =
  4869. measure_migration_cost(cpu1, cpu2);
  4870. }
  4871. }
  4872. /*
  4873. * Second pass - update the sched domain hierarchy with
  4874. * the new cache-hot-time estimations:
  4875. */
  4876. for_each_cpu_mask(cpu, *cpu_map) {
  4877. distance = 0;
  4878. for_each_domain(cpu, sd) {
  4879. sd->cache_hot_time = migration_cost[distance];
  4880. distance++;
  4881. }
  4882. }
  4883. /*
  4884. * Print the matrix:
  4885. */
  4886. if (migration_debug)
  4887. printk("migration: max_cache_size: %d, cpu: %d MHz:\n",
  4888. max_cache_size,
  4889. #ifdef CONFIG_X86
  4890. cpu_khz/1000
  4891. #else
  4892. -1
  4893. #endif
  4894. );
  4895. if (system_state == SYSTEM_BOOTING) {
  4896. printk("migration_cost=");
  4897. for (distance = 0; distance <= max_distance; distance++) {
  4898. if (distance)
  4899. printk(",");
  4900. printk("%ld", (long)migration_cost[distance] / 1000);
  4901. }
  4902. printk("\n");
  4903. }
  4904. j1 = jiffies;
  4905. if (migration_debug)
  4906. printk("migration: %ld seconds\n", (j1-j0)/HZ);
  4907. /*
  4908. * Move back to the original CPU. NUMA-Q gets confused
  4909. * if we migrate to another quad during bootup.
  4910. */
  4911. if (raw_smp_processor_id() != orig_cpu) {
  4912. cpumask_t mask = cpumask_of_cpu(orig_cpu),
  4913. saved_mask = current->cpus_allowed;
  4914. set_cpus_allowed(current, mask);
  4915. set_cpus_allowed(current, saved_mask);
  4916. }
  4917. }
  4918. #ifdef CONFIG_NUMA
  4919. /**
  4920. * find_next_best_node - find the next node to include in a sched_domain
  4921. * @node: node whose sched_domain we're building
  4922. * @used_nodes: nodes already in the sched_domain
  4923. *
  4924. * Find the next node to include in a given scheduling domain. Simply
  4925. * finds the closest node not already in the @used_nodes map.
  4926. *
  4927. * Should use nodemask_t.
  4928. */
  4929. static int find_next_best_node(int node, unsigned long *used_nodes)
  4930. {
  4931. int i, n, val, min_val, best_node = 0;
  4932. min_val = INT_MAX;
  4933. for (i = 0; i < MAX_NUMNODES; i++) {
  4934. /* Start at @node */
  4935. n = (node + i) % MAX_NUMNODES;
  4936. if (!nr_cpus_node(n))
  4937. continue;
  4938. /* Skip already used nodes */
  4939. if (test_bit(n, used_nodes))
  4940. continue;
  4941. /* Simple min distance search */
  4942. val = node_distance(node, n);
  4943. if (val < min_val) {
  4944. min_val = val;
  4945. best_node = n;
  4946. }
  4947. }
  4948. set_bit(best_node, used_nodes);
  4949. return best_node;
  4950. }
  4951. /**
  4952. * sched_domain_node_span - get a cpumask for a node's sched_domain
  4953. * @node: node whose cpumask we're constructing
  4954. * @size: number of nodes to include in this span
  4955. *
  4956. * Given a node, construct a good cpumask for its sched_domain to span. It
  4957. * should be one that prevents unnecessary balancing, but also spreads tasks
  4958. * out optimally.
  4959. */
  4960. static cpumask_t sched_domain_node_span(int node)
  4961. {
  4962. int i;
  4963. cpumask_t span, nodemask;
  4964. DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
  4965. cpus_clear(span);
  4966. bitmap_zero(used_nodes, MAX_NUMNODES);
  4967. nodemask = node_to_cpumask(node);
  4968. cpus_or(span, span, nodemask);
  4969. set_bit(node, used_nodes);
  4970. for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
  4971. int next_node = find_next_best_node(node, used_nodes);
  4972. nodemask = node_to_cpumask(next_node);
  4973. cpus_or(span, span, nodemask);
  4974. }
  4975. return span;
  4976. }
  4977. #endif
  4978. /*
  4979. * At the moment, CONFIG_SCHED_SMT is never defined, but leave it in so we
  4980. * can switch it on easily if needed.
  4981. */
  4982. #ifdef CONFIG_SCHED_SMT
  4983. static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
  4984. static struct sched_group sched_group_cpus[NR_CPUS];
  4985. static int cpu_to_cpu_group(int cpu)
  4986. {
  4987. return cpu;
  4988. }
  4989. #endif
  4990. #ifdef CONFIG_SCHED_MC
  4991. static DEFINE_PER_CPU(struct sched_domain, core_domains);
  4992. static struct sched_group sched_group_core[NR_CPUS];
  4993. #endif
  4994. #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
  4995. static int cpu_to_core_group(int cpu)
  4996. {
  4997. return first_cpu(cpu_sibling_map[cpu]);
  4998. }
  4999. #elif defined(CONFIG_SCHED_MC)
  5000. static int cpu_to_core_group(int cpu)
  5001. {
  5002. return cpu;
  5003. }
  5004. #endif
  5005. static DEFINE_PER_CPU(struct sched_domain, phys_domains);
  5006. static struct sched_group sched_group_phys[NR_CPUS];
  5007. static int cpu_to_phys_group(int cpu)
  5008. {
  5009. #if defined(CONFIG_SCHED_MC)
  5010. cpumask_t mask = cpu_coregroup_map(cpu);
  5011. return first_cpu(mask);
  5012. #elif defined(CONFIG_SCHED_SMT)
  5013. return first_cpu(cpu_sibling_map[cpu]);
  5014. #else
  5015. return cpu;
  5016. #endif
  5017. }
  5018. #ifdef CONFIG_NUMA
  5019. /*
  5020. * The init_sched_build_groups can't handle what we want to do with node
  5021. * groups, so roll our own. Now each node has its own list of groups which
  5022. * gets dynamically allocated.
  5023. */
  5024. static DEFINE_PER_CPU(struct sched_domain, node_domains);
  5025. static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
  5026. static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
  5027. static struct sched_group *sched_group_allnodes_bycpu[NR_CPUS];
  5028. static int cpu_to_allnodes_group(int cpu)
  5029. {
  5030. return cpu_to_node(cpu);
  5031. }
  5032. static void init_numa_sched_groups_power(struct sched_group *group_head)
  5033. {
  5034. struct sched_group *sg = group_head;
  5035. int j;
  5036. if (!sg)
  5037. return;
  5038. next_sg:
  5039. for_each_cpu_mask(j, sg->cpumask) {
  5040. struct sched_domain *sd;
  5041. sd = &per_cpu(phys_domains, j);
  5042. if (j != first_cpu(sd->groups->cpumask)) {
  5043. /*
  5044. * Only add "power" once for each
  5045. * physical package.
  5046. */
  5047. continue;
  5048. }
  5049. sg->cpu_power += sd->groups->cpu_power;
  5050. }
  5051. sg = sg->next;
  5052. if (sg != group_head)
  5053. goto next_sg;
  5054. }
  5055. #endif
  5056. /* Free memory allocated for various sched_group structures */
  5057. static void free_sched_groups(const cpumask_t *cpu_map)
  5058. {
  5059. #ifdef CONFIG_NUMA
  5060. int i;
  5061. int cpu;
  5062. for_each_cpu_mask(cpu, *cpu_map) {
  5063. struct sched_group *sched_group_allnodes
  5064. = sched_group_allnodes_bycpu[cpu];
  5065. struct sched_group **sched_group_nodes
  5066. = sched_group_nodes_bycpu[cpu];
  5067. if (sched_group_allnodes) {
  5068. kfree(sched_group_allnodes);
  5069. sched_group_allnodes_bycpu[cpu] = NULL;
  5070. }
  5071. if (!sched_group_nodes)
  5072. continue;
  5073. for (i = 0; i < MAX_NUMNODES; i++) {
  5074. cpumask_t nodemask = node_to_cpumask(i);
  5075. struct sched_group *oldsg, *sg = sched_group_nodes[i];
  5076. cpus_and(nodemask, nodemask, *cpu_map);
  5077. if (cpus_empty(nodemask))
  5078. continue;
  5079. if (sg == NULL)
  5080. continue;
  5081. sg = sg->next;
  5082. next_sg:
  5083. oldsg = sg;
  5084. sg = sg->next;
  5085. kfree(oldsg);
  5086. if (oldsg != sched_group_nodes[i])
  5087. goto next_sg;
  5088. }
  5089. kfree(sched_group_nodes);
  5090. sched_group_nodes_bycpu[cpu] = NULL;
  5091. }
  5092. #endif
  5093. }
  5094. /*
  5095. * Build sched domains for a given set of cpus and attach the sched domains
  5096. * to the individual cpus
  5097. */
  5098. static int build_sched_domains(const cpumask_t *cpu_map)
  5099. {
  5100. int i;
  5101. #ifdef CONFIG_NUMA
  5102. struct sched_group **sched_group_nodes = NULL;
  5103. struct sched_group *sched_group_allnodes = NULL;
  5104. /*
  5105. * Allocate the per-node list of sched groups
  5106. */
  5107. sched_group_nodes = kzalloc(sizeof(struct sched_group*)*MAX_NUMNODES,
  5108. GFP_ATOMIC);
  5109. if (!sched_group_nodes) {
  5110. printk(KERN_WARNING "Can not alloc sched group node list\n");
  5111. return -ENOMEM;
  5112. }
  5113. sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
  5114. #endif
  5115. /*
  5116. * Set up domains for cpus specified by the cpu_map.
  5117. */
  5118. for_each_cpu_mask(i, *cpu_map) {
  5119. int group;
  5120. struct sched_domain *sd = NULL, *p;
  5121. cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
  5122. cpus_and(nodemask, nodemask, *cpu_map);
  5123. #ifdef CONFIG_NUMA
  5124. if (cpus_weight(*cpu_map)
  5125. > SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
  5126. if (!sched_group_allnodes) {
  5127. sched_group_allnodes
  5128. = kmalloc(sizeof(struct sched_group)
  5129. * MAX_NUMNODES,
  5130. GFP_KERNEL);
  5131. if (!sched_group_allnodes) {
  5132. printk(KERN_WARNING
  5133. "Can not alloc allnodes sched group\n");
  5134. goto error;
  5135. }
  5136. sched_group_allnodes_bycpu[i]
  5137. = sched_group_allnodes;
  5138. }
  5139. sd = &per_cpu(allnodes_domains, i);
  5140. *sd = SD_ALLNODES_INIT;
  5141. sd->span = *cpu_map;
  5142. group = cpu_to_allnodes_group(i);
  5143. sd->groups = &sched_group_allnodes[group];
  5144. p = sd;
  5145. } else
  5146. p = NULL;
  5147. sd = &per_cpu(node_domains, i);
  5148. *sd = SD_NODE_INIT;
  5149. sd->span = sched_domain_node_span(cpu_to_node(i));
  5150. sd->parent = p;
  5151. cpus_and(sd->span, sd->span, *cpu_map);
  5152. #endif
  5153. p = sd;
  5154. sd = &per_cpu(phys_domains, i);
  5155. group = cpu_to_phys_group(i);
  5156. *sd = SD_CPU_INIT;
  5157. sd->span = nodemask;
  5158. sd->parent = p;
  5159. sd->groups = &sched_group_phys[group];
  5160. #ifdef CONFIG_SCHED_MC
  5161. p = sd;
  5162. sd = &per_cpu(core_domains, i);
  5163. group = cpu_to_core_group(i);
  5164. *sd = SD_MC_INIT;
  5165. sd->span = cpu_coregroup_map(i);
  5166. cpus_and(sd->span, sd->span, *cpu_map);
  5167. sd->parent = p;
  5168. sd->groups = &sched_group_core[group];
  5169. #endif
  5170. #ifdef CONFIG_SCHED_SMT
  5171. p = sd;
  5172. sd = &per_cpu(cpu_domains, i);
  5173. group = cpu_to_cpu_group(i);
  5174. *sd = SD_SIBLING_INIT;
  5175. sd->span = cpu_sibling_map[i];
  5176. cpus_and(sd->span, sd->span, *cpu_map);
  5177. sd->parent = p;
  5178. sd->groups = &sched_group_cpus[group];
  5179. #endif
  5180. }
  5181. #ifdef CONFIG_SCHED_SMT
  5182. /* Set up CPU (sibling) groups */
  5183. for_each_cpu_mask(i, *cpu_map) {
  5184. cpumask_t this_sibling_map = cpu_sibling_map[i];
  5185. cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
  5186. if (i != first_cpu(this_sibling_map))
  5187. continue;
  5188. init_sched_build_groups(sched_group_cpus, this_sibling_map,
  5189. &cpu_to_cpu_group);
  5190. }
  5191. #endif
  5192. #ifdef CONFIG_SCHED_MC
  5193. /* Set up multi-core groups */
  5194. for_each_cpu_mask(i, *cpu_map) {
  5195. cpumask_t this_core_map = cpu_coregroup_map(i);
  5196. cpus_and(this_core_map, this_core_map, *cpu_map);
  5197. if (i != first_cpu(this_core_map))
  5198. continue;
  5199. init_sched_build_groups(sched_group_core, this_core_map,
  5200. &cpu_to_core_group);
  5201. }
  5202. #endif
  5203. /* Set up physical groups */
  5204. for (i = 0; i < MAX_NUMNODES; i++) {
  5205. cpumask_t nodemask = node_to_cpumask(i);
  5206. cpus_and(nodemask, nodemask, *cpu_map);
  5207. if (cpus_empty(nodemask))
  5208. continue;
  5209. init_sched_build_groups(sched_group_phys, nodemask,
  5210. &cpu_to_phys_group);
  5211. }
  5212. #ifdef CONFIG_NUMA
  5213. /* Set up node groups */
  5214. if (sched_group_allnodes)
  5215. init_sched_build_groups(sched_group_allnodes, *cpu_map,
  5216. &cpu_to_allnodes_group);
  5217. for (i = 0; i < MAX_NUMNODES; i++) {
  5218. /* Set up node groups */
  5219. struct sched_group *sg, *prev;
  5220. cpumask_t nodemask = node_to_cpumask(i);
  5221. cpumask_t domainspan;
  5222. cpumask_t covered = CPU_MASK_NONE;
  5223. int j;
  5224. cpus_and(nodemask, nodemask, *cpu_map);
  5225. if (cpus_empty(nodemask)) {
  5226. sched_group_nodes[i] = NULL;
  5227. continue;
  5228. }
  5229. domainspan = sched_domain_node_span(i);
  5230. cpus_and(domainspan, domainspan, *cpu_map);
  5231. sg = kmalloc(sizeof(struct sched_group), GFP_KERNEL);
  5232. if (!sg) {
  5233. printk(KERN_WARNING "Can not alloc domain group for "
  5234. "node %d\n", i);
  5235. goto error;
  5236. }
  5237. sched_group_nodes[i] = sg;
  5238. for_each_cpu_mask(j, nodemask) {
  5239. struct sched_domain *sd;
  5240. sd = &per_cpu(node_domains, j);
  5241. sd->groups = sg;
  5242. }
  5243. sg->cpu_power = 0;
  5244. sg->cpumask = nodemask;
  5245. sg->next = sg;
  5246. cpus_or(covered, covered, nodemask);
  5247. prev = sg;
  5248. for (j = 0; j < MAX_NUMNODES; j++) {
  5249. cpumask_t tmp, notcovered;
  5250. int n = (i + j) % MAX_NUMNODES;
  5251. cpus_complement(notcovered, covered);
  5252. cpus_and(tmp, notcovered, *cpu_map);
  5253. cpus_and(tmp, tmp, domainspan);
  5254. if (cpus_empty(tmp))
  5255. break;
  5256. nodemask = node_to_cpumask(n);
  5257. cpus_and(tmp, tmp, nodemask);
  5258. if (cpus_empty(tmp))
  5259. continue;
  5260. sg = kmalloc(sizeof(struct sched_group), GFP_KERNEL);
  5261. if (!sg) {
  5262. printk(KERN_WARNING
  5263. "Can not alloc domain group for node %d\n", j);
  5264. goto error;
  5265. }
  5266. sg->cpu_power = 0;
  5267. sg->cpumask = tmp;
  5268. sg->next = prev->next;
  5269. cpus_or(covered, covered, tmp);
  5270. prev->next = sg;
  5271. prev = sg;
  5272. }
  5273. }
  5274. #endif
  5275. /* Calculate CPU power for physical packages and nodes */
  5276. for_each_cpu_mask(i, *cpu_map) {
  5277. int power;
  5278. struct sched_domain *sd;
  5279. #ifdef CONFIG_SCHED_SMT
  5280. sd = &per_cpu(cpu_domains, i);
  5281. power = SCHED_LOAD_SCALE;
  5282. sd->groups->cpu_power = power;
  5283. #endif
  5284. #ifdef CONFIG_SCHED_MC
  5285. sd = &per_cpu(core_domains, i);
  5286. power = SCHED_LOAD_SCALE + (cpus_weight(sd->groups->cpumask)-1)
  5287. * SCHED_LOAD_SCALE / 10;
  5288. sd->groups->cpu_power = power;
  5289. sd = &per_cpu(phys_domains, i);
  5290. /*
  5291. * This has to be < 2 * SCHED_LOAD_SCALE
  5292. * Lets keep it SCHED_LOAD_SCALE, so that
  5293. * while calculating NUMA group's cpu_power
  5294. * we can simply do
  5295. * numa_group->cpu_power += phys_group->cpu_power;
  5296. *
  5297. * See "only add power once for each physical pkg"
  5298. * comment below
  5299. */
  5300. sd->groups->cpu_power = SCHED_LOAD_SCALE;
  5301. #else
  5302. sd = &per_cpu(phys_domains, i);
  5303. power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
  5304. (cpus_weight(sd->groups->cpumask)-1) / 10;
  5305. sd->groups->cpu_power = power;
  5306. #endif
  5307. }
  5308. #ifdef CONFIG_NUMA
  5309. for (i = 0; i < MAX_NUMNODES; i++)
  5310. init_numa_sched_groups_power(sched_group_nodes[i]);
  5311. init_numa_sched_groups_power(sched_group_allnodes);
  5312. #endif
  5313. /* Attach the domains */
  5314. for_each_cpu_mask(i, *cpu_map) {
  5315. struct sched_domain *sd;
  5316. #ifdef CONFIG_SCHED_SMT
  5317. sd = &per_cpu(cpu_domains, i);
  5318. #elif defined(CONFIG_SCHED_MC)
  5319. sd = &per_cpu(core_domains, i);
  5320. #else
  5321. sd = &per_cpu(phys_domains, i);
  5322. #endif
  5323. cpu_attach_domain(sd, i);
  5324. }
  5325. /*
  5326. * Tune cache-hot values:
  5327. */
  5328. calibrate_migration_costs(cpu_map);
  5329. return 0;
  5330. #ifdef CONFIG_NUMA
  5331. error:
  5332. free_sched_groups(cpu_map);
  5333. return -ENOMEM;
  5334. #endif
  5335. }
  5336. /*
  5337. * Set up scheduler domains and groups. Callers must hold the hotplug lock.
  5338. */
  5339. static int arch_init_sched_domains(const cpumask_t *cpu_map)
  5340. {
  5341. cpumask_t cpu_default_map;
  5342. int err;
  5343. /*
  5344. * Setup mask for cpus without special case scheduling requirements.
  5345. * For now this just excludes isolated cpus, but could be used to
  5346. * exclude other special cases in the future.
  5347. */
  5348. cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
  5349. err = build_sched_domains(&cpu_default_map);
  5350. return err;
  5351. }
  5352. static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
  5353. {
  5354. free_sched_groups(cpu_map);
  5355. }
  5356. /*
  5357. * Detach sched domains from a group of cpus specified in cpu_map
  5358. * These cpus will now be attached to the NULL domain
  5359. */
  5360. static void detach_destroy_domains(const cpumask_t *cpu_map)
  5361. {
  5362. int i;
  5363. for_each_cpu_mask(i, *cpu_map)
  5364. cpu_attach_domain(NULL, i);
  5365. synchronize_sched();
  5366. arch_destroy_sched_domains(cpu_map);
  5367. }
  5368. /*
  5369. * Partition sched domains as specified by the cpumasks below.
  5370. * This attaches all cpus from the cpumasks to the NULL domain,
  5371. * waits for a RCU quiescent period, recalculates sched
  5372. * domain information and then attaches them back to the
  5373. * correct sched domains
  5374. * Call with hotplug lock held
  5375. */
  5376. int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
  5377. {
  5378. cpumask_t change_map;
  5379. int err = 0;
  5380. cpus_and(*partition1, *partition1, cpu_online_map);
  5381. cpus_and(*partition2, *partition2, cpu_online_map);
  5382. cpus_or(change_map, *partition1, *partition2);
  5383. /* Detach sched domains from all of the affected cpus */
  5384. detach_destroy_domains(&change_map);
  5385. if (!cpus_empty(*partition1))
  5386. err = build_sched_domains(partition1);
  5387. if (!err && !cpus_empty(*partition2))
  5388. err = build_sched_domains(partition2);
  5389. return err;
  5390. }
  5391. #ifdef CONFIG_HOTPLUG_CPU
  5392. /*
  5393. * Force a reinitialization of the sched domains hierarchy. The domains
  5394. * and groups cannot be updated in place without racing with the balancing
  5395. * code, so we temporarily attach all running cpus to the NULL domain
  5396. * which will prevent rebalancing while the sched domains are recalculated.
  5397. */
  5398. static int update_sched_domains(struct notifier_block *nfb,
  5399. unsigned long action, void *hcpu)
  5400. {
  5401. switch (action) {
  5402. case CPU_UP_PREPARE:
  5403. case CPU_DOWN_PREPARE:
  5404. detach_destroy_domains(&cpu_online_map);
  5405. return NOTIFY_OK;
  5406. case CPU_UP_CANCELED:
  5407. case CPU_DOWN_FAILED:
  5408. case CPU_ONLINE:
  5409. case CPU_DEAD:
  5410. /*
  5411. * Fall through and re-initialise the domains.
  5412. */
  5413. break;
  5414. default:
  5415. return NOTIFY_DONE;
  5416. }
  5417. /* The hotplug lock is already held by cpu_up/cpu_down */
  5418. arch_init_sched_domains(&cpu_online_map);
  5419. return NOTIFY_OK;
  5420. }
  5421. #endif
  5422. void __init sched_init_smp(void)
  5423. {
  5424. lock_cpu_hotplug();
  5425. arch_init_sched_domains(&cpu_online_map);
  5426. unlock_cpu_hotplug();
  5427. /* XXX: Theoretical race here - CPU may be hotplugged now */
  5428. hotcpu_notifier(update_sched_domains, 0);
  5429. }
  5430. #else
  5431. void __init sched_init_smp(void)
  5432. {
  5433. }
  5434. #endif /* CONFIG_SMP */
  5435. int in_sched_functions(unsigned long addr)
  5436. {
  5437. /* Linker adds these: start and end of __sched functions */
  5438. extern char __sched_text_start[], __sched_text_end[];
  5439. return in_lock_functions(addr) ||
  5440. (addr >= (unsigned long)__sched_text_start
  5441. && addr < (unsigned long)__sched_text_end);
  5442. }
  5443. void __init sched_init(void)
  5444. {
  5445. runqueue_t *rq;
  5446. int i, j, k;
  5447. for_each_possible_cpu(i) {
  5448. prio_array_t *array;
  5449. rq = cpu_rq(i);
  5450. spin_lock_init(&rq->lock);
  5451. rq->nr_running = 0;
  5452. rq->active = rq->arrays;
  5453. rq->expired = rq->arrays + 1;
  5454. rq->best_expired_prio = MAX_PRIO;
  5455. #ifdef CONFIG_SMP
  5456. rq->sd = NULL;
  5457. for (j = 1; j < 3; j++)
  5458. rq->cpu_load[j] = 0;
  5459. rq->active_balance = 0;
  5460. rq->push_cpu = 0;
  5461. rq->migration_thread = NULL;
  5462. INIT_LIST_HEAD(&rq->migration_queue);
  5463. #endif
  5464. atomic_set(&rq->nr_iowait, 0);
  5465. for (j = 0; j < 2; j++) {
  5466. array = rq->arrays + j;
  5467. for (k = 0; k < MAX_PRIO; k++) {
  5468. INIT_LIST_HEAD(array->queue + k);
  5469. __clear_bit(k, array->bitmap);
  5470. }
  5471. // delimiter for bitsearch
  5472. __set_bit(MAX_PRIO, array->bitmap);
  5473. }
  5474. }
  5475. set_load_weight(&init_task);
  5476. /*
  5477. * The boot idle thread does lazy MMU switching as well:
  5478. */
  5479. atomic_inc(&init_mm.mm_count);
  5480. enter_lazy_tlb(&init_mm, current);
  5481. /*
  5482. * Make us the idle thread. Technically, schedule() should not be
  5483. * called from this thread, however somewhere below it might be,
  5484. * but because we are the idle thread, we just pick up running again
  5485. * when this runqueue becomes "idle".
  5486. */
  5487. init_idle(current, smp_processor_id());
  5488. }
  5489. #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
  5490. void __might_sleep(char *file, int line)
  5491. {
  5492. #if defined(in_atomic)
  5493. static unsigned long prev_jiffy; /* ratelimiting */
  5494. if ((in_atomic() || irqs_disabled()) &&
  5495. system_state == SYSTEM_RUNNING && !oops_in_progress) {
  5496. if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
  5497. return;
  5498. prev_jiffy = jiffies;
  5499. printk(KERN_ERR "BUG: sleeping function called from invalid"
  5500. " context at %s:%d\n", file, line);
  5501. printk("in_atomic():%d, irqs_disabled():%d\n",
  5502. in_atomic(), irqs_disabled());
  5503. dump_stack();
  5504. }
  5505. #endif
  5506. }
  5507. EXPORT_SYMBOL(__might_sleep);
  5508. #endif
  5509. #ifdef CONFIG_MAGIC_SYSRQ
  5510. void normalize_rt_tasks(void)
  5511. {
  5512. struct task_struct *p;
  5513. prio_array_t *array;
  5514. unsigned long flags;
  5515. runqueue_t *rq;
  5516. read_lock_irq(&tasklist_lock);
  5517. for_each_process(p) {
  5518. if (!rt_task(p))
  5519. continue;
  5520. rq = task_rq_lock(p, &flags);
  5521. array = p->array;
  5522. if (array)
  5523. deactivate_task(p, task_rq(p));
  5524. __setscheduler(p, SCHED_NORMAL, 0);
  5525. if (array) {
  5526. __activate_task(p, task_rq(p));
  5527. resched_task(rq->curr);
  5528. }
  5529. task_rq_unlock(rq, &flags);
  5530. }
  5531. read_unlock_irq(&tasklist_lock);
  5532. }
  5533. #endif /* CONFIG_MAGIC_SYSRQ */
  5534. #ifdef CONFIG_IA64
  5535. /*
  5536. * These functions are only useful for the IA64 MCA handling.
  5537. *
  5538. * They can only be called when the whole system has been
  5539. * stopped - every CPU needs to be quiescent, and no scheduling
  5540. * activity can take place. Using them for anything else would
  5541. * be a serious bug, and as a result, they aren't even visible
  5542. * under any other configuration.
  5543. */
  5544. /**
  5545. * curr_task - return the current task for a given cpu.
  5546. * @cpu: the processor in question.
  5547. *
  5548. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  5549. */
  5550. task_t *curr_task(int cpu)
  5551. {
  5552. return cpu_curr(cpu);
  5553. }
  5554. /**
  5555. * set_curr_task - set the current task for a given cpu.
  5556. * @cpu: the processor in question.
  5557. * @p: the task pointer to set.
  5558. *
  5559. * Description: This function must only be used when non-maskable interrupts
  5560. * are serviced on a separate stack. It allows the architecture to switch the
  5561. * notion of the current task on a cpu in a non-blocking manner. This function
  5562. * must be called with all CPU's synchronized, and interrupts disabled, the
  5563. * and caller must save the original value of the current task (see
  5564. * curr_task() above) and restore that value before reenabling interrupts and
  5565. * re-starting the system.
  5566. *
  5567. * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
  5568. */
  5569. void set_curr_task(int cpu, task_t *p)
  5570. {
  5571. cpu_curr(cpu) = p;
  5572. }
  5573. #endif