slub_def.h 7.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262
  1. #ifndef _LINUX_SLUB_DEF_H
  2. #define _LINUX_SLUB_DEF_H
  3. /*
  4. * SLUB : A Slab allocator without object queues.
  5. *
  6. * (C) 2007 SGI, Christoph Lameter
  7. */
  8. #include <linux/types.h>
  9. #include <linux/gfp.h>
  10. #include <linux/workqueue.h>
  11. #include <linux/kobject.h>
  12. enum stat_item {
  13. ALLOC_FASTPATH, /* Allocation from cpu slab */
  14. ALLOC_SLOWPATH, /* Allocation by getting a new cpu slab */
  15. FREE_FASTPATH, /* Free to cpu slub */
  16. FREE_SLOWPATH, /* Freeing not to cpu slab */
  17. FREE_FROZEN, /* Freeing to frozen slab */
  18. FREE_ADD_PARTIAL, /* Freeing moves slab to partial list */
  19. FREE_REMOVE_PARTIAL, /* Freeing removes last object */
  20. ALLOC_FROM_PARTIAL, /* Cpu slab acquired from partial list */
  21. ALLOC_SLAB, /* Cpu slab acquired from page allocator */
  22. ALLOC_REFILL, /* Refill cpu slab from slab freelist */
  23. FREE_SLAB, /* Slab freed to the page allocator */
  24. CPUSLAB_FLUSH, /* Abandoning of the cpu slab */
  25. DEACTIVATE_FULL, /* Cpu slab was full when deactivated */
  26. DEACTIVATE_EMPTY, /* Cpu slab was empty when deactivated */
  27. DEACTIVATE_TO_HEAD, /* Cpu slab was moved to the head of partials */
  28. DEACTIVATE_TO_TAIL, /* Cpu slab was moved to the tail of partials */
  29. DEACTIVATE_REMOTE_FREES,/* Slab contained remotely freed objects */
  30. ORDER_FALLBACK, /* Number of times fallback was necessary */
  31. NR_SLUB_STAT_ITEMS };
  32. struct kmem_cache_cpu {
  33. void **freelist; /* Pointer to first free per cpu object */
  34. struct page *page; /* The slab from which we are allocating */
  35. int node; /* The node of the page (or -1 for debug) */
  36. unsigned int offset; /* Freepointer offset (in word units) */
  37. unsigned int objsize; /* Size of an object (from kmem_cache) */
  38. #ifdef CONFIG_SLUB_STATS
  39. unsigned stat[NR_SLUB_STAT_ITEMS];
  40. #endif
  41. };
  42. struct kmem_cache_node {
  43. spinlock_t list_lock; /* Protect partial list and nr_partial */
  44. unsigned long nr_partial;
  45. unsigned long min_partial;
  46. struct list_head partial;
  47. #ifdef CONFIG_SLUB_DEBUG
  48. atomic_long_t nr_slabs;
  49. atomic_long_t total_objects;
  50. struct list_head full;
  51. #endif
  52. };
  53. /*
  54. * Word size structure that can be atomically updated or read and that
  55. * contains both the order and the number of objects that a slab of the
  56. * given order would contain.
  57. */
  58. struct kmem_cache_order_objects {
  59. unsigned long x;
  60. };
  61. /*
  62. * Slab cache management.
  63. */
  64. struct kmem_cache {
  65. /* Used for retriving partial slabs etc */
  66. unsigned long flags;
  67. int size; /* The size of an object including meta data */
  68. int objsize; /* The size of an object without meta data */
  69. int offset; /* Free pointer offset. */
  70. struct kmem_cache_order_objects oo;
  71. /*
  72. * Avoid an extra cache line for UP, SMP and for the node local to
  73. * struct kmem_cache.
  74. */
  75. struct kmem_cache_node local_node;
  76. /* Allocation and freeing of slabs */
  77. struct kmem_cache_order_objects max;
  78. struct kmem_cache_order_objects min;
  79. gfp_t allocflags; /* gfp flags to use on each alloc */
  80. int refcount; /* Refcount for slab cache destroy */
  81. void (*ctor)(void *);
  82. int inuse; /* Offset to metadata */
  83. int align; /* Alignment */
  84. const char *name; /* Name (only for display!) */
  85. struct list_head list; /* List of slab caches */
  86. #ifdef CONFIG_SLUB_DEBUG
  87. struct kobject kobj; /* For sysfs */
  88. #endif
  89. #ifdef CONFIG_NUMA
  90. /*
  91. * Defragmentation by allocating from a remote node.
  92. */
  93. int remote_node_defrag_ratio;
  94. struct kmem_cache_node *node[MAX_NUMNODES];
  95. #endif
  96. #ifdef CONFIG_SMP
  97. struct kmem_cache_cpu *cpu_slab[NR_CPUS];
  98. #else
  99. struct kmem_cache_cpu cpu_slab;
  100. #endif
  101. };
  102. /*
  103. * Kmalloc subsystem.
  104. */
  105. #if defined(ARCH_KMALLOC_MINALIGN) && ARCH_KMALLOC_MINALIGN > 8
  106. #define KMALLOC_MIN_SIZE ARCH_KMALLOC_MINALIGN
  107. #else
  108. #define KMALLOC_MIN_SIZE 8
  109. #endif
  110. #define KMALLOC_SHIFT_LOW ilog2(KMALLOC_MIN_SIZE)
  111. /*
  112. * Maximum kmalloc object size handled by SLUB. Larger object allocations
  113. * are passed through to the page allocator. The page allocator "fastpath"
  114. * is relatively slow so we need this value sufficiently high so that
  115. * performance critical objects are allocated through the SLUB fastpath.
  116. *
  117. * This should be dropped to PAGE_SIZE / 2 once the page allocator
  118. * "fastpath" becomes competitive with the slab allocator fastpaths.
  119. */
  120. #define SLUB_MAX_SIZE (2 * PAGE_SIZE)
  121. #define SLUB_PAGE_SHIFT (PAGE_SHIFT + 2)
  122. /*
  123. * We keep the general caches in an array of slab caches that are used for
  124. * 2^x bytes of allocations.
  125. */
  126. extern struct kmem_cache kmalloc_caches[SLUB_PAGE_SHIFT];
  127. /*
  128. * Sorry that the following has to be that ugly but some versions of GCC
  129. * have trouble with constant propagation and loops.
  130. */
  131. static __always_inline int kmalloc_index(size_t size)
  132. {
  133. if (!size)
  134. return 0;
  135. if (size <= KMALLOC_MIN_SIZE)
  136. return KMALLOC_SHIFT_LOW;
  137. #if KMALLOC_MIN_SIZE <= 64
  138. if (size > 64 && size <= 96)
  139. return 1;
  140. if (size > 128 && size <= 192)
  141. return 2;
  142. #endif
  143. if (size <= 8) return 3;
  144. if (size <= 16) return 4;
  145. if (size <= 32) return 5;
  146. if (size <= 64) return 6;
  147. if (size <= 128) return 7;
  148. if (size <= 256) return 8;
  149. if (size <= 512) return 9;
  150. if (size <= 1024) return 10;
  151. if (size <= 2 * 1024) return 11;
  152. if (size <= 4 * 1024) return 12;
  153. /*
  154. * The following is only needed to support architectures with a larger page
  155. * size than 4k.
  156. */
  157. if (size <= 8 * 1024) return 13;
  158. if (size <= 16 * 1024) return 14;
  159. if (size <= 32 * 1024) return 15;
  160. if (size <= 64 * 1024) return 16;
  161. if (size <= 128 * 1024) return 17;
  162. if (size <= 256 * 1024) return 18;
  163. if (size <= 512 * 1024) return 19;
  164. if (size <= 1024 * 1024) return 20;
  165. if (size <= 2 * 1024 * 1024) return 21;
  166. return -1;
  167. /*
  168. * What we really wanted to do and cannot do because of compiler issues is:
  169. * int i;
  170. * for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++)
  171. * if (size <= (1 << i))
  172. * return i;
  173. */
  174. }
  175. /*
  176. * Find the slab cache for a given combination of allocation flags and size.
  177. *
  178. * This ought to end up with a global pointer to the right cache
  179. * in kmalloc_caches.
  180. */
  181. static __always_inline struct kmem_cache *kmalloc_slab(size_t size)
  182. {
  183. int index = kmalloc_index(size);
  184. if (index == 0)
  185. return NULL;
  186. return &kmalloc_caches[index];
  187. }
  188. #ifdef CONFIG_ZONE_DMA
  189. #define SLUB_DMA __GFP_DMA
  190. #else
  191. /* Disable DMA functionality */
  192. #define SLUB_DMA (__force gfp_t)0
  193. #endif
  194. void *kmem_cache_alloc(struct kmem_cache *, gfp_t);
  195. void *__kmalloc(size_t size, gfp_t flags);
  196. static __always_inline void *kmalloc_large(size_t size, gfp_t flags)
  197. {
  198. return (void *)__get_free_pages(flags | __GFP_COMP, get_order(size));
  199. }
  200. static __always_inline void *kmalloc(size_t size, gfp_t flags)
  201. {
  202. if (__builtin_constant_p(size)) {
  203. if (size > SLUB_MAX_SIZE)
  204. return kmalloc_large(size, flags);
  205. if (!(flags & SLUB_DMA)) {
  206. struct kmem_cache *s = kmalloc_slab(size);
  207. if (!s)
  208. return ZERO_SIZE_PTR;
  209. return kmem_cache_alloc(s, flags);
  210. }
  211. }
  212. return __kmalloc(size, flags);
  213. }
  214. #ifdef CONFIG_NUMA
  215. void *__kmalloc_node(size_t size, gfp_t flags, int node);
  216. void *kmem_cache_alloc_node(struct kmem_cache *, gfp_t flags, int node);
  217. static __always_inline void *kmalloc_node(size_t size, gfp_t flags, int node)
  218. {
  219. if (__builtin_constant_p(size) &&
  220. size <= SLUB_MAX_SIZE && !(flags & SLUB_DMA)) {
  221. struct kmem_cache *s = kmalloc_slab(size);
  222. if (!s)
  223. return ZERO_SIZE_PTR;
  224. return kmem_cache_alloc_node(s, flags, node);
  225. }
  226. return __kmalloc_node(size, flags, node);
  227. }
  228. #endif
  229. #endif /* _LINUX_SLUB_DEF_H */