kvm_main.c 55 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  9. *
  10. * Authors:
  11. * Avi Kivity <avi@qumranet.com>
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. *
  14. * This work is licensed under the terms of the GNU GPL, version 2. See
  15. * the COPYING file in the top-level directory.
  16. *
  17. */
  18. #include "iodev.h"
  19. #include <linux/kvm_host.h>
  20. #include <linux/kvm.h>
  21. #include <linux/module.h>
  22. #include <linux/errno.h>
  23. #include <linux/percpu.h>
  24. #include <linux/mm.h>
  25. #include <linux/miscdevice.h>
  26. #include <linux/vmalloc.h>
  27. #include <linux/reboot.h>
  28. #include <linux/debugfs.h>
  29. #include <linux/highmem.h>
  30. #include <linux/file.h>
  31. #include <linux/sysdev.h>
  32. #include <linux/cpu.h>
  33. #include <linux/sched.h>
  34. #include <linux/cpumask.h>
  35. #include <linux/smp.h>
  36. #include <linux/anon_inodes.h>
  37. #include <linux/profile.h>
  38. #include <linux/kvm_para.h>
  39. #include <linux/pagemap.h>
  40. #include <linux/mman.h>
  41. #include <linux/swap.h>
  42. #include <linux/bitops.h>
  43. #include <linux/spinlock.h>
  44. #include <linux/compat.h>
  45. #include <linux/srcu.h>
  46. #include <linux/hugetlb.h>
  47. #include <linux/slab.h>
  48. #include <asm/processor.h>
  49. #include <asm/io.h>
  50. #include <asm/uaccess.h>
  51. #include <asm/pgtable.h>
  52. #include <asm-generic/bitops/le.h>
  53. #include "coalesced_mmio.h"
  54. #include "async_pf.h"
  55. #define CREATE_TRACE_POINTS
  56. #include <trace/events/kvm.h>
  57. MODULE_AUTHOR("Qumranet");
  58. MODULE_LICENSE("GPL");
  59. /*
  60. * Ordering of locks:
  61. *
  62. * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
  63. */
  64. DEFINE_SPINLOCK(kvm_lock);
  65. LIST_HEAD(vm_list);
  66. static cpumask_var_t cpus_hardware_enabled;
  67. static int kvm_usage_count = 0;
  68. static atomic_t hardware_enable_failed;
  69. struct kmem_cache *kvm_vcpu_cache;
  70. EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
  71. static __read_mostly struct preempt_ops kvm_preempt_ops;
  72. struct dentry *kvm_debugfs_dir;
  73. static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
  74. unsigned long arg);
  75. static int hardware_enable_all(void);
  76. static void hardware_disable_all(void);
  77. static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
  78. static bool kvm_rebooting;
  79. static bool largepages_enabled = true;
  80. static struct page *hwpoison_page;
  81. static pfn_t hwpoison_pfn;
  82. static struct page *fault_page;
  83. static pfn_t fault_pfn;
  84. inline int kvm_is_mmio_pfn(pfn_t pfn)
  85. {
  86. if (pfn_valid(pfn)) {
  87. struct page *page = compound_head(pfn_to_page(pfn));
  88. return PageReserved(page);
  89. }
  90. return true;
  91. }
  92. /*
  93. * Switches to specified vcpu, until a matching vcpu_put()
  94. */
  95. void vcpu_load(struct kvm_vcpu *vcpu)
  96. {
  97. int cpu;
  98. mutex_lock(&vcpu->mutex);
  99. cpu = get_cpu();
  100. preempt_notifier_register(&vcpu->preempt_notifier);
  101. kvm_arch_vcpu_load(vcpu, cpu);
  102. put_cpu();
  103. }
  104. void vcpu_put(struct kvm_vcpu *vcpu)
  105. {
  106. preempt_disable();
  107. kvm_arch_vcpu_put(vcpu);
  108. preempt_notifier_unregister(&vcpu->preempt_notifier);
  109. preempt_enable();
  110. mutex_unlock(&vcpu->mutex);
  111. }
  112. static void ack_flush(void *_completed)
  113. {
  114. }
  115. static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
  116. {
  117. int i, cpu, me;
  118. cpumask_var_t cpus;
  119. bool called = true;
  120. struct kvm_vcpu *vcpu;
  121. zalloc_cpumask_var(&cpus, GFP_ATOMIC);
  122. raw_spin_lock(&kvm->requests_lock);
  123. me = smp_processor_id();
  124. kvm_for_each_vcpu(i, vcpu, kvm) {
  125. if (kvm_make_check_request(req, vcpu))
  126. continue;
  127. cpu = vcpu->cpu;
  128. if (cpus != NULL && cpu != -1 && cpu != me)
  129. cpumask_set_cpu(cpu, cpus);
  130. }
  131. if (unlikely(cpus == NULL))
  132. smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
  133. else if (!cpumask_empty(cpus))
  134. smp_call_function_many(cpus, ack_flush, NULL, 1);
  135. else
  136. called = false;
  137. raw_spin_unlock(&kvm->requests_lock);
  138. free_cpumask_var(cpus);
  139. return called;
  140. }
  141. void kvm_flush_remote_tlbs(struct kvm *kvm)
  142. {
  143. if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
  144. ++kvm->stat.remote_tlb_flush;
  145. }
  146. void kvm_reload_remote_mmus(struct kvm *kvm)
  147. {
  148. make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
  149. }
  150. int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
  151. {
  152. struct page *page;
  153. int r;
  154. mutex_init(&vcpu->mutex);
  155. vcpu->cpu = -1;
  156. vcpu->kvm = kvm;
  157. vcpu->vcpu_id = id;
  158. init_waitqueue_head(&vcpu->wq);
  159. kvm_async_pf_vcpu_init(vcpu);
  160. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  161. if (!page) {
  162. r = -ENOMEM;
  163. goto fail;
  164. }
  165. vcpu->run = page_address(page);
  166. r = kvm_arch_vcpu_init(vcpu);
  167. if (r < 0)
  168. goto fail_free_run;
  169. return 0;
  170. fail_free_run:
  171. free_page((unsigned long)vcpu->run);
  172. fail:
  173. return r;
  174. }
  175. EXPORT_SYMBOL_GPL(kvm_vcpu_init);
  176. void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
  177. {
  178. kvm_arch_vcpu_uninit(vcpu);
  179. free_page((unsigned long)vcpu->run);
  180. }
  181. EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
  182. #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
  183. static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
  184. {
  185. return container_of(mn, struct kvm, mmu_notifier);
  186. }
  187. static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
  188. struct mm_struct *mm,
  189. unsigned long address)
  190. {
  191. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  192. int need_tlb_flush, idx;
  193. /*
  194. * When ->invalidate_page runs, the linux pte has been zapped
  195. * already but the page is still allocated until
  196. * ->invalidate_page returns. So if we increase the sequence
  197. * here the kvm page fault will notice if the spte can't be
  198. * established because the page is going to be freed. If
  199. * instead the kvm page fault establishes the spte before
  200. * ->invalidate_page runs, kvm_unmap_hva will release it
  201. * before returning.
  202. *
  203. * The sequence increase only need to be seen at spin_unlock
  204. * time, and not at spin_lock time.
  205. *
  206. * Increasing the sequence after the spin_unlock would be
  207. * unsafe because the kvm page fault could then establish the
  208. * pte after kvm_unmap_hva returned, without noticing the page
  209. * is going to be freed.
  210. */
  211. idx = srcu_read_lock(&kvm->srcu);
  212. spin_lock(&kvm->mmu_lock);
  213. kvm->mmu_notifier_seq++;
  214. need_tlb_flush = kvm_unmap_hva(kvm, address);
  215. spin_unlock(&kvm->mmu_lock);
  216. srcu_read_unlock(&kvm->srcu, idx);
  217. /* we've to flush the tlb before the pages can be freed */
  218. if (need_tlb_flush)
  219. kvm_flush_remote_tlbs(kvm);
  220. }
  221. static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
  222. struct mm_struct *mm,
  223. unsigned long address,
  224. pte_t pte)
  225. {
  226. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  227. int idx;
  228. idx = srcu_read_lock(&kvm->srcu);
  229. spin_lock(&kvm->mmu_lock);
  230. kvm->mmu_notifier_seq++;
  231. kvm_set_spte_hva(kvm, address, pte);
  232. spin_unlock(&kvm->mmu_lock);
  233. srcu_read_unlock(&kvm->srcu, idx);
  234. }
  235. static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
  236. struct mm_struct *mm,
  237. unsigned long start,
  238. unsigned long end)
  239. {
  240. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  241. int need_tlb_flush = 0, idx;
  242. idx = srcu_read_lock(&kvm->srcu);
  243. spin_lock(&kvm->mmu_lock);
  244. /*
  245. * The count increase must become visible at unlock time as no
  246. * spte can be established without taking the mmu_lock and
  247. * count is also read inside the mmu_lock critical section.
  248. */
  249. kvm->mmu_notifier_count++;
  250. for (; start < end; start += PAGE_SIZE)
  251. need_tlb_flush |= kvm_unmap_hva(kvm, start);
  252. spin_unlock(&kvm->mmu_lock);
  253. srcu_read_unlock(&kvm->srcu, idx);
  254. /* we've to flush the tlb before the pages can be freed */
  255. if (need_tlb_flush)
  256. kvm_flush_remote_tlbs(kvm);
  257. }
  258. static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
  259. struct mm_struct *mm,
  260. unsigned long start,
  261. unsigned long end)
  262. {
  263. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  264. spin_lock(&kvm->mmu_lock);
  265. /*
  266. * This sequence increase will notify the kvm page fault that
  267. * the page that is going to be mapped in the spte could have
  268. * been freed.
  269. */
  270. kvm->mmu_notifier_seq++;
  271. /*
  272. * The above sequence increase must be visible before the
  273. * below count decrease but both values are read by the kvm
  274. * page fault under mmu_lock spinlock so we don't need to add
  275. * a smb_wmb() here in between the two.
  276. */
  277. kvm->mmu_notifier_count--;
  278. spin_unlock(&kvm->mmu_lock);
  279. BUG_ON(kvm->mmu_notifier_count < 0);
  280. }
  281. static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
  282. struct mm_struct *mm,
  283. unsigned long address)
  284. {
  285. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  286. int young, idx;
  287. idx = srcu_read_lock(&kvm->srcu);
  288. spin_lock(&kvm->mmu_lock);
  289. young = kvm_age_hva(kvm, address);
  290. spin_unlock(&kvm->mmu_lock);
  291. srcu_read_unlock(&kvm->srcu, idx);
  292. if (young)
  293. kvm_flush_remote_tlbs(kvm);
  294. return young;
  295. }
  296. static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
  297. struct mm_struct *mm)
  298. {
  299. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  300. int idx;
  301. idx = srcu_read_lock(&kvm->srcu);
  302. kvm_arch_flush_shadow(kvm);
  303. srcu_read_unlock(&kvm->srcu, idx);
  304. }
  305. static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
  306. .invalidate_page = kvm_mmu_notifier_invalidate_page,
  307. .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
  308. .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
  309. .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
  310. .change_pte = kvm_mmu_notifier_change_pte,
  311. .release = kvm_mmu_notifier_release,
  312. };
  313. static int kvm_init_mmu_notifier(struct kvm *kvm)
  314. {
  315. kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
  316. return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
  317. }
  318. #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
  319. static int kvm_init_mmu_notifier(struct kvm *kvm)
  320. {
  321. return 0;
  322. }
  323. #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
  324. static struct kvm *kvm_create_vm(void)
  325. {
  326. int r = 0, i;
  327. struct kvm *kvm = kvm_arch_create_vm();
  328. if (IS_ERR(kvm))
  329. goto out;
  330. r = hardware_enable_all();
  331. if (r)
  332. goto out_err_nodisable;
  333. #ifdef CONFIG_HAVE_KVM_IRQCHIP
  334. INIT_HLIST_HEAD(&kvm->mask_notifier_list);
  335. INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
  336. #endif
  337. r = -ENOMEM;
  338. kvm->memslots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
  339. if (!kvm->memslots)
  340. goto out_err;
  341. if (init_srcu_struct(&kvm->srcu))
  342. goto out_err;
  343. for (i = 0; i < KVM_NR_BUSES; i++) {
  344. kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
  345. GFP_KERNEL);
  346. if (!kvm->buses[i]) {
  347. cleanup_srcu_struct(&kvm->srcu);
  348. goto out_err;
  349. }
  350. }
  351. r = kvm_init_mmu_notifier(kvm);
  352. if (r) {
  353. cleanup_srcu_struct(&kvm->srcu);
  354. goto out_err;
  355. }
  356. kvm->mm = current->mm;
  357. atomic_inc(&kvm->mm->mm_count);
  358. spin_lock_init(&kvm->mmu_lock);
  359. raw_spin_lock_init(&kvm->requests_lock);
  360. kvm_eventfd_init(kvm);
  361. mutex_init(&kvm->lock);
  362. mutex_init(&kvm->irq_lock);
  363. mutex_init(&kvm->slots_lock);
  364. atomic_set(&kvm->users_count, 1);
  365. spin_lock(&kvm_lock);
  366. list_add(&kvm->vm_list, &vm_list);
  367. spin_unlock(&kvm_lock);
  368. out:
  369. return kvm;
  370. out_err:
  371. hardware_disable_all();
  372. out_err_nodisable:
  373. for (i = 0; i < KVM_NR_BUSES; i++)
  374. kfree(kvm->buses[i]);
  375. kfree(kvm->memslots);
  376. kfree(kvm);
  377. return ERR_PTR(r);
  378. }
  379. static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
  380. {
  381. if (!memslot->dirty_bitmap)
  382. return;
  383. vfree(memslot->dirty_bitmap_head);
  384. memslot->dirty_bitmap = NULL;
  385. memslot->dirty_bitmap_head = NULL;
  386. }
  387. /*
  388. * Free any memory in @free but not in @dont.
  389. */
  390. static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
  391. struct kvm_memory_slot *dont)
  392. {
  393. int i;
  394. if (!dont || free->rmap != dont->rmap)
  395. vfree(free->rmap);
  396. if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
  397. kvm_destroy_dirty_bitmap(free);
  398. for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
  399. if (!dont || free->lpage_info[i] != dont->lpage_info[i]) {
  400. vfree(free->lpage_info[i]);
  401. free->lpage_info[i] = NULL;
  402. }
  403. }
  404. free->npages = 0;
  405. free->rmap = NULL;
  406. }
  407. void kvm_free_physmem(struct kvm *kvm)
  408. {
  409. int i;
  410. struct kvm_memslots *slots = kvm->memslots;
  411. for (i = 0; i < slots->nmemslots; ++i)
  412. kvm_free_physmem_slot(&slots->memslots[i], NULL);
  413. kfree(kvm->memslots);
  414. }
  415. static void kvm_destroy_vm(struct kvm *kvm)
  416. {
  417. int i;
  418. struct mm_struct *mm = kvm->mm;
  419. kvm_arch_sync_events(kvm);
  420. spin_lock(&kvm_lock);
  421. list_del(&kvm->vm_list);
  422. spin_unlock(&kvm_lock);
  423. kvm_free_irq_routing(kvm);
  424. for (i = 0; i < KVM_NR_BUSES; i++)
  425. kvm_io_bus_destroy(kvm->buses[i]);
  426. kvm_coalesced_mmio_free(kvm);
  427. #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
  428. mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
  429. #else
  430. kvm_arch_flush_shadow(kvm);
  431. #endif
  432. kvm_arch_destroy_vm(kvm);
  433. hardware_disable_all();
  434. mmdrop(mm);
  435. }
  436. void kvm_get_kvm(struct kvm *kvm)
  437. {
  438. atomic_inc(&kvm->users_count);
  439. }
  440. EXPORT_SYMBOL_GPL(kvm_get_kvm);
  441. void kvm_put_kvm(struct kvm *kvm)
  442. {
  443. if (atomic_dec_and_test(&kvm->users_count))
  444. kvm_destroy_vm(kvm);
  445. }
  446. EXPORT_SYMBOL_GPL(kvm_put_kvm);
  447. static int kvm_vm_release(struct inode *inode, struct file *filp)
  448. {
  449. struct kvm *kvm = filp->private_data;
  450. kvm_irqfd_release(kvm);
  451. kvm_put_kvm(kvm);
  452. return 0;
  453. }
  454. /*
  455. * Allocation size is twice as large as the actual dirty bitmap size.
  456. * This makes it possible to do double buffering: see x86's
  457. * kvm_vm_ioctl_get_dirty_log().
  458. */
  459. static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
  460. {
  461. unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
  462. memslot->dirty_bitmap = vmalloc(dirty_bytes);
  463. if (!memslot->dirty_bitmap)
  464. return -ENOMEM;
  465. memset(memslot->dirty_bitmap, 0, dirty_bytes);
  466. memslot->dirty_bitmap_head = memslot->dirty_bitmap;
  467. return 0;
  468. }
  469. /*
  470. * Allocate some memory and give it an address in the guest physical address
  471. * space.
  472. *
  473. * Discontiguous memory is allowed, mostly for framebuffers.
  474. *
  475. * Must be called holding mmap_sem for write.
  476. */
  477. int __kvm_set_memory_region(struct kvm *kvm,
  478. struct kvm_userspace_memory_region *mem,
  479. int user_alloc)
  480. {
  481. int r, flush_shadow = 0;
  482. gfn_t base_gfn;
  483. unsigned long npages;
  484. unsigned long i;
  485. struct kvm_memory_slot *memslot;
  486. struct kvm_memory_slot old, new;
  487. struct kvm_memslots *slots, *old_memslots;
  488. r = -EINVAL;
  489. /* General sanity checks */
  490. if (mem->memory_size & (PAGE_SIZE - 1))
  491. goto out;
  492. if (mem->guest_phys_addr & (PAGE_SIZE - 1))
  493. goto out;
  494. if (user_alloc && (mem->userspace_addr & (PAGE_SIZE - 1)))
  495. goto out;
  496. if (mem->slot >= KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS)
  497. goto out;
  498. if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
  499. goto out;
  500. memslot = &kvm->memslots->memslots[mem->slot];
  501. base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
  502. npages = mem->memory_size >> PAGE_SHIFT;
  503. r = -EINVAL;
  504. if (npages > KVM_MEM_MAX_NR_PAGES)
  505. goto out;
  506. if (!npages)
  507. mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
  508. new = old = *memslot;
  509. new.id = mem->slot;
  510. new.base_gfn = base_gfn;
  511. new.npages = npages;
  512. new.flags = mem->flags;
  513. /* Disallow changing a memory slot's size. */
  514. r = -EINVAL;
  515. if (npages && old.npages && npages != old.npages)
  516. goto out_free;
  517. /* Check for overlaps */
  518. r = -EEXIST;
  519. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  520. struct kvm_memory_slot *s = &kvm->memslots->memslots[i];
  521. if (s == memslot || !s->npages)
  522. continue;
  523. if (!((base_gfn + npages <= s->base_gfn) ||
  524. (base_gfn >= s->base_gfn + s->npages)))
  525. goto out_free;
  526. }
  527. /* Free page dirty bitmap if unneeded */
  528. if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
  529. new.dirty_bitmap = NULL;
  530. r = -ENOMEM;
  531. /* Allocate if a slot is being created */
  532. #ifndef CONFIG_S390
  533. if (npages && !new.rmap) {
  534. new.rmap = vmalloc(npages * sizeof(*new.rmap));
  535. if (!new.rmap)
  536. goto out_free;
  537. memset(new.rmap, 0, npages * sizeof(*new.rmap));
  538. new.user_alloc = user_alloc;
  539. new.userspace_addr = mem->userspace_addr;
  540. }
  541. if (!npages)
  542. goto skip_lpage;
  543. for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
  544. unsigned long ugfn;
  545. unsigned long j;
  546. int lpages;
  547. int level = i + 2;
  548. /* Avoid unused variable warning if no large pages */
  549. (void)level;
  550. if (new.lpage_info[i])
  551. continue;
  552. lpages = 1 + ((base_gfn + npages - 1)
  553. >> KVM_HPAGE_GFN_SHIFT(level));
  554. lpages -= base_gfn >> KVM_HPAGE_GFN_SHIFT(level);
  555. new.lpage_info[i] = vmalloc(lpages * sizeof(*new.lpage_info[i]));
  556. if (!new.lpage_info[i])
  557. goto out_free;
  558. memset(new.lpage_info[i], 0,
  559. lpages * sizeof(*new.lpage_info[i]));
  560. if (base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
  561. new.lpage_info[i][0].write_count = 1;
  562. if ((base_gfn+npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
  563. new.lpage_info[i][lpages - 1].write_count = 1;
  564. ugfn = new.userspace_addr >> PAGE_SHIFT;
  565. /*
  566. * If the gfn and userspace address are not aligned wrt each
  567. * other, or if explicitly asked to, disable large page
  568. * support for this slot
  569. */
  570. if ((base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
  571. !largepages_enabled)
  572. for (j = 0; j < lpages; ++j)
  573. new.lpage_info[i][j].write_count = 1;
  574. }
  575. skip_lpage:
  576. /* Allocate page dirty bitmap if needed */
  577. if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
  578. if (kvm_create_dirty_bitmap(&new) < 0)
  579. goto out_free;
  580. /* destroy any largepage mappings for dirty tracking */
  581. if (old.npages)
  582. flush_shadow = 1;
  583. }
  584. #else /* not defined CONFIG_S390 */
  585. new.user_alloc = user_alloc;
  586. if (user_alloc)
  587. new.userspace_addr = mem->userspace_addr;
  588. #endif /* not defined CONFIG_S390 */
  589. if (!npages) {
  590. r = -ENOMEM;
  591. slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
  592. if (!slots)
  593. goto out_free;
  594. memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
  595. if (mem->slot >= slots->nmemslots)
  596. slots->nmemslots = mem->slot + 1;
  597. slots->generation++;
  598. slots->memslots[mem->slot].flags |= KVM_MEMSLOT_INVALID;
  599. old_memslots = kvm->memslots;
  600. rcu_assign_pointer(kvm->memslots, slots);
  601. synchronize_srcu_expedited(&kvm->srcu);
  602. /* From this point no new shadow pages pointing to a deleted
  603. * memslot will be created.
  604. *
  605. * validation of sp->gfn happens in:
  606. * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
  607. * - kvm_is_visible_gfn (mmu_check_roots)
  608. */
  609. kvm_arch_flush_shadow(kvm);
  610. kfree(old_memslots);
  611. }
  612. r = kvm_arch_prepare_memory_region(kvm, &new, old, mem, user_alloc);
  613. if (r)
  614. goto out_free;
  615. /* map the pages in iommu page table */
  616. if (npages) {
  617. r = kvm_iommu_map_pages(kvm, &new);
  618. if (r)
  619. goto out_free;
  620. }
  621. r = -ENOMEM;
  622. slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
  623. if (!slots)
  624. goto out_free;
  625. memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
  626. if (mem->slot >= slots->nmemslots)
  627. slots->nmemslots = mem->slot + 1;
  628. slots->generation++;
  629. /* actual memory is freed via old in kvm_free_physmem_slot below */
  630. if (!npages) {
  631. new.rmap = NULL;
  632. new.dirty_bitmap = NULL;
  633. for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i)
  634. new.lpage_info[i] = NULL;
  635. }
  636. slots->memslots[mem->slot] = new;
  637. old_memslots = kvm->memslots;
  638. rcu_assign_pointer(kvm->memslots, slots);
  639. synchronize_srcu_expedited(&kvm->srcu);
  640. kvm_arch_commit_memory_region(kvm, mem, old, user_alloc);
  641. kvm_free_physmem_slot(&old, &new);
  642. kfree(old_memslots);
  643. if (flush_shadow)
  644. kvm_arch_flush_shadow(kvm);
  645. return 0;
  646. out_free:
  647. kvm_free_physmem_slot(&new, &old);
  648. out:
  649. return r;
  650. }
  651. EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
  652. int kvm_set_memory_region(struct kvm *kvm,
  653. struct kvm_userspace_memory_region *mem,
  654. int user_alloc)
  655. {
  656. int r;
  657. mutex_lock(&kvm->slots_lock);
  658. r = __kvm_set_memory_region(kvm, mem, user_alloc);
  659. mutex_unlock(&kvm->slots_lock);
  660. return r;
  661. }
  662. EXPORT_SYMBOL_GPL(kvm_set_memory_region);
  663. int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
  664. struct
  665. kvm_userspace_memory_region *mem,
  666. int user_alloc)
  667. {
  668. if (mem->slot >= KVM_MEMORY_SLOTS)
  669. return -EINVAL;
  670. return kvm_set_memory_region(kvm, mem, user_alloc);
  671. }
  672. int kvm_get_dirty_log(struct kvm *kvm,
  673. struct kvm_dirty_log *log, int *is_dirty)
  674. {
  675. struct kvm_memory_slot *memslot;
  676. int r, i;
  677. unsigned long n;
  678. unsigned long any = 0;
  679. r = -EINVAL;
  680. if (log->slot >= KVM_MEMORY_SLOTS)
  681. goto out;
  682. memslot = &kvm->memslots->memslots[log->slot];
  683. r = -ENOENT;
  684. if (!memslot->dirty_bitmap)
  685. goto out;
  686. n = kvm_dirty_bitmap_bytes(memslot);
  687. for (i = 0; !any && i < n/sizeof(long); ++i)
  688. any = memslot->dirty_bitmap[i];
  689. r = -EFAULT;
  690. if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
  691. goto out;
  692. if (any)
  693. *is_dirty = 1;
  694. r = 0;
  695. out:
  696. return r;
  697. }
  698. void kvm_disable_largepages(void)
  699. {
  700. largepages_enabled = false;
  701. }
  702. EXPORT_SYMBOL_GPL(kvm_disable_largepages);
  703. int is_error_page(struct page *page)
  704. {
  705. return page == bad_page || page == hwpoison_page || page == fault_page;
  706. }
  707. EXPORT_SYMBOL_GPL(is_error_page);
  708. int is_error_pfn(pfn_t pfn)
  709. {
  710. return pfn == bad_pfn || pfn == hwpoison_pfn || pfn == fault_pfn;
  711. }
  712. EXPORT_SYMBOL_GPL(is_error_pfn);
  713. int is_hwpoison_pfn(pfn_t pfn)
  714. {
  715. return pfn == hwpoison_pfn;
  716. }
  717. EXPORT_SYMBOL_GPL(is_hwpoison_pfn);
  718. int is_fault_pfn(pfn_t pfn)
  719. {
  720. return pfn == fault_pfn;
  721. }
  722. EXPORT_SYMBOL_GPL(is_fault_pfn);
  723. static inline unsigned long bad_hva(void)
  724. {
  725. return PAGE_OFFSET;
  726. }
  727. int kvm_is_error_hva(unsigned long addr)
  728. {
  729. return addr == bad_hva();
  730. }
  731. EXPORT_SYMBOL_GPL(kvm_is_error_hva);
  732. static struct kvm_memory_slot *__gfn_to_memslot(struct kvm_memslots *slots,
  733. gfn_t gfn)
  734. {
  735. int i;
  736. for (i = 0; i < slots->nmemslots; ++i) {
  737. struct kvm_memory_slot *memslot = &slots->memslots[i];
  738. if (gfn >= memslot->base_gfn
  739. && gfn < memslot->base_gfn + memslot->npages)
  740. return memslot;
  741. }
  742. return NULL;
  743. }
  744. struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  745. {
  746. return __gfn_to_memslot(kvm_memslots(kvm), gfn);
  747. }
  748. EXPORT_SYMBOL_GPL(gfn_to_memslot);
  749. int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
  750. {
  751. int i;
  752. struct kvm_memslots *slots = kvm_memslots(kvm);
  753. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  754. struct kvm_memory_slot *memslot = &slots->memslots[i];
  755. if (memslot->flags & KVM_MEMSLOT_INVALID)
  756. continue;
  757. if (gfn >= memslot->base_gfn
  758. && gfn < memslot->base_gfn + memslot->npages)
  759. return 1;
  760. }
  761. return 0;
  762. }
  763. EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
  764. unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
  765. {
  766. struct vm_area_struct *vma;
  767. unsigned long addr, size;
  768. size = PAGE_SIZE;
  769. addr = gfn_to_hva(kvm, gfn);
  770. if (kvm_is_error_hva(addr))
  771. return PAGE_SIZE;
  772. down_read(&current->mm->mmap_sem);
  773. vma = find_vma(current->mm, addr);
  774. if (!vma)
  775. goto out;
  776. size = vma_kernel_pagesize(vma);
  777. out:
  778. up_read(&current->mm->mmap_sem);
  779. return size;
  780. }
  781. int memslot_id(struct kvm *kvm, gfn_t gfn)
  782. {
  783. int i;
  784. struct kvm_memslots *slots = kvm_memslots(kvm);
  785. struct kvm_memory_slot *memslot = NULL;
  786. for (i = 0; i < slots->nmemslots; ++i) {
  787. memslot = &slots->memslots[i];
  788. if (gfn >= memslot->base_gfn
  789. && gfn < memslot->base_gfn + memslot->npages)
  790. break;
  791. }
  792. return memslot - slots->memslots;
  793. }
  794. static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
  795. gfn_t *nr_pages)
  796. {
  797. if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
  798. return bad_hva();
  799. if (nr_pages)
  800. *nr_pages = slot->npages - (gfn - slot->base_gfn);
  801. return gfn_to_hva_memslot(slot, gfn);
  802. }
  803. unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
  804. {
  805. return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
  806. }
  807. EXPORT_SYMBOL_GPL(gfn_to_hva);
  808. static pfn_t get_fault_pfn(void)
  809. {
  810. get_page(fault_page);
  811. return fault_pfn;
  812. }
  813. static pfn_t hva_to_pfn(struct kvm *kvm, unsigned long addr, bool atomic,
  814. bool *async, bool write_fault, bool *writable)
  815. {
  816. struct page *page[1];
  817. int npages = 0;
  818. pfn_t pfn;
  819. /* we can do it either atomically or asynchronously, not both */
  820. BUG_ON(atomic && async);
  821. BUG_ON(!write_fault && !writable);
  822. if (writable)
  823. *writable = true;
  824. if (atomic || async)
  825. npages = __get_user_pages_fast(addr, 1, 1, page);
  826. if (unlikely(npages != 1) && !atomic) {
  827. might_sleep();
  828. if (writable)
  829. *writable = write_fault;
  830. npages = get_user_pages_fast(addr, 1, write_fault, page);
  831. /* map read fault as writable if possible */
  832. if (unlikely(!write_fault) && npages == 1) {
  833. struct page *wpage[1];
  834. npages = __get_user_pages_fast(addr, 1, 1, wpage);
  835. if (npages == 1) {
  836. *writable = true;
  837. put_page(page[0]);
  838. page[0] = wpage[0];
  839. }
  840. npages = 1;
  841. }
  842. }
  843. if (unlikely(npages != 1)) {
  844. struct vm_area_struct *vma;
  845. if (atomic)
  846. return get_fault_pfn();
  847. down_read(&current->mm->mmap_sem);
  848. if (is_hwpoison_address(addr)) {
  849. up_read(&current->mm->mmap_sem);
  850. get_page(hwpoison_page);
  851. return page_to_pfn(hwpoison_page);
  852. }
  853. vma = find_vma_intersection(current->mm, addr, addr+1);
  854. if (vma == NULL)
  855. pfn = get_fault_pfn();
  856. else if ((vma->vm_flags & VM_PFNMAP)) {
  857. pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) +
  858. vma->vm_pgoff;
  859. BUG_ON(!kvm_is_mmio_pfn(pfn));
  860. } else {
  861. if (async && (vma->vm_flags & VM_WRITE))
  862. *async = true;
  863. pfn = get_fault_pfn();
  864. }
  865. up_read(&current->mm->mmap_sem);
  866. } else
  867. pfn = page_to_pfn(page[0]);
  868. return pfn;
  869. }
  870. pfn_t hva_to_pfn_atomic(struct kvm *kvm, unsigned long addr)
  871. {
  872. return hva_to_pfn(kvm, addr, true, NULL, true, NULL);
  873. }
  874. EXPORT_SYMBOL_GPL(hva_to_pfn_atomic);
  875. static pfn_t __gfn_to_pfn(struct kvm *kvm, gfn_t gfn, bool atomic, bool *async,
  876. bool write_fault, bool *writable)
  877. {
  878. unsigned long addr;
  879. if (async)
  880. *async = false;
  881. addr = gfn_to_hva(kvm, gfn);
  882. if (kvm_is_error_hva(addr)) {
  883. get_page(bad_page);
  884. return page_to_pfn(bad_page);
  885. }
  886. return hva_to_pfn(kvm, addr, atomic, async, write_fault, writable);
  887. }
  888. pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
  889. {
  890. return __gfn_to_pfn(kvm, gfn, true, NULL, true, NULL);
  891. }
  892. EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
  893. pfn_t gfn_to_pfn_async(struct kvm *kvm, gfn_t gfn, bool *async,
  894. bool write_fault, bool *writable)
  895. {
  896. return __gfn_to_pfn(kvm, gfn, false, async, write_fault, writable);
  897. }
  898. EXPORT_SYMBOL_GPL(gfn_to_pfn_async);
  899. pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
  900. {
  901. return __gfn_to_pfn(kvm, gfn, false, NULL, true, NULL);
  902. }
  903. EXPORT_SYMBOL_GPL(gfn_to_pfn);
  904. pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
  905. bool *writable)
  906. {
  907. return __gfn_to_pfn(kvm, gfn, false, NULL, write_fault, writable);
  908. }
  909. EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
  910. pfn_t gfn_to_pfn_memslot(struct kvm *kvm,
  911. struct kvm_memory_slot *slot, gfn_t gfn)
  912. {
  913. unsigned long addr = gfn_to_hva_memslot(slot, gfn);
  914. return hva_to_pfn(kvm, addr, false, NULL, true, NULL);
  915. }
  916. int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages,
  917. int nr_pages)
  918. {
  919. unsigned long addr;
  920. gfn_t entry;
  921. addr = gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, &entry);
  922. if (kvm_is_error_hva(addr))
  923. return -1;
  924. if (entry < nr_pages)
  925. return 0;
  926. return __get_user_pages_fast(addr, nr_pages, 1, pages);
  927. }
  928. EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
  929. struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
  930. {
  931. pfn_t pfn;
  932. pfn = gfn_to_pfn(kvm, gfn);
  933. if (!kvm_is_mmio_pfn(pfn))
  934. return pfn_to_page(pfn);
  935. WARN_ON(kvm_is_mmio_pfn(pfn));
  936. get_page(bad_page);
  937. return bad_page;
  938. }
  939. EXPORT_SYMBOL_GPL(gfn_to_page);
  940. void kvm_release_page_clean(struct page *page)
  941. {
  942. kvm_release_pfn_clean(page_to_pfn(page));
  943. }
  944. EXPORT_SYMBOL_GPL(kvm_release_page_clean);
  945. void kvm_release_pfn_clean(pfn_t pfn)
  946. {
  947. if (!kvm_is_mmio_pfn(pfn))
  948. put_page(pfn_to_page(pfn));
  949. }
  950. EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
  951. void kvm_release_page_dirty(struct page *page)
  952. {
  953. kvm_release_pfn_dirty(page_to_pfn(page));
  954. }
  955. EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
  956. void kvm_release_pfn_dirty(pfn_t pfn)
  957. {
  958. kvm_set_pfn_dirty(pfn);
  959. kvm_release_pfn_clean(pfn);
  960. }
  961. EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
  962. void kvm_set_page_dirty(struct page *page)
  963. {
  964. kvm_set_pfn_dirty(page_to_pfn(page));
  965. }
  966. EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
  967. void kvm_set_pfn_dirty(pfn_t pfn)
  968. {
  969. if (!kvm_is_mmio_pfn(pfn)) {
  970. struct page *page = pfn_to_page(pfn);
  971. if (!PageReserved(page))
  972. SetPageDirty(page);
  973. }
  974. }
  975. EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
  976. void kvm_set_pfn_accessed(pfn_t pfn)
  977. {
  978. if (!kvm_is_mmio_pfn(pfn))
  979. mark_page_accessed(pfn_to_page(pfn));
  980. }
  981. EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
  982. void kvm_get_pfn(pfn_t pfn)
  983. {
  984. if (!kvm_is_mmio_pfn(pfn))
  985. get_page(pfn_to_page(pfn));
  986. }
  987. EXPORT_SYMBOL_GPL(kvm_get_pfn);
  988. static int next_segment(unsigned long len, int offset)
  989. {
  990. if (len > PAGE_SIZE - offset)
  991. return PAGE_SIZE - offset;
  992. else
  993. return len;
  994. }
  995. int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
  996. int len)
  997. {
  998. int r;
  999. unsigned long addr;
  1000. addr = gfn_to_hva(kvm, gfn);
  1001. if (kvm_is_error_hva(addr))
  1002. return -EFAULT;
  1003. r = copy_from_user(data, (void __user *)addr + offset, len);
  1004. if (r)
  1005. return -EFAULT;
  1006. return 0;
  1007. }
  1008. EXPORT_SYMBOL_GPL(kvm_read_guest_page);
  1009. int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
  1010. {
  1011. gfn_t gfn = gpa >> PAGE_SHIFT;
  1012. int seg;
  1013. int offset = offset_in_page(gpa);
  1014. int ret;
  1015. while ((seg = next_segment(len, offset)) != 0) {
  1016. ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
  1017. if (ret < 0)
  1018. return ret;
  1019. offset = 0;
  1020. len -= seg;
  1021. data += seg;
  1022. ++gfn;
  1023. }
  1024. return 0;
  1025. }
  1026. EXPORT_SYMBOL_GPL(kvm_read_guest);
  1027. int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
  1028. unsigned long len)
  1029. {
  1030. int r;
  1031. unsigned long addr;
  1032. gfn_t gfn = gpa >> PAGE_SHIFT;
  1033. int offset = offset_in_page(gpa);
  1034. addr = gfn_to_hva(kvm, gfn);
  1035. if (kvm_is_error_hva(addr))
  1036. return -EFAULT;
  1037. pagefault_disable();
  1038. r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
  1039. pagefault_enable();
  1040. if (r)
  1041. return -EFAULT;
  1042. return 0;
  1043. }
  1044. EXPORT_SYMBOL(kvm_read_guest_atomic);
  1045. int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
  1046. int offset, int len)
  1047. {
  1048. int r;
  1049. unsigned long addr;
  1050. addr = gfn_to_hva(kvm, gfn);
  1051. if (kvm_is_error_hva(addr))
  1052. return -EFAULT;
  1053. r = copy_to_user((void __user *)addr + offset, data, len);
  1054. if (r)
  1055. return -EFAULT;
  1056. mark_page_dirty(kvm, gfn);
  1057. return 0;
  1058. }
  1059. EXPORT_SYMBOL_GPL(kvm_write_guest_page);
  1060. int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
  1061. unsigned long len)
  1062. {
  1063. gfn_t gfn = gpa >> PAGE_SHIFT;
  1064. int seg;
  1065. int offset = offset_in_page(gpa);
  1066. int ret;
  1067. while ((seg = next_segment(len, offset)) != 0) {
  1068. ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
  1069. if (ret < 0)
  1070. return ret;
  1071. offset = 0;
  1072. len -= seg;
  1073. data += seg;
  1074. ++gfn;
  1075. }
  1076. return 0;
  1077. }
  1078. int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
  1079. gpa_t gpa)
  1080. {
  1081. struct kvm_memslots *slots = kvm_memslots(kvm);
  1082. int offset = offset_in_page(gpa);
  1083. gfn_t gfn = gpa >> PAGE_SHIFT;
  1084. ghc->gpa = gpa;
  1085. ghc->generation = slots->generation;
  1086. ghc->memslot = __gfn_to_memslot(slots, gfn);
  1087. ghc->hva = gfn_to_hva_many(ghc->memslot, gfn, NULL);
  1088. if (!kvm_is_error_hva(ghc->hva))
  1089. ghc->hva += offset;
  1090. else
  1091. return -EFAULT;
  1092. return 0;
  1093. }
  1094. EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
  1095. int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
  1096. void *data, unsigned long len)
  1097. {
  1098. struct kvm_memslots *slots = kvm_memslots(kvm);
  1099. int r;
  1100. if (slots->generation != ghc->generation)
  1101. kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa);
  1102. if (kvm_is_error_hva(ghc->hva))
  1103. return -EFAULT;
  1104. r = copy_to_user((void __user *)ghc->hva, data, len);
  1105. if (r)
  1106. return -EFAULT;
  1107. mark_page_dirty_in_slot(kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT);
  1108. return 0;
  1109. }
  1110. EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
  1111. int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
  1112. {
  1113. return kvm_write_guest_page(kvm, gfn, empty_zero_page, offset, len);
  1114. }
  1115. EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
  1116. int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
  1117. {
  1118. gfn_t gfn = gpa >> PAGE_SHIFT;
  1119. int seg;
  1120. int offset = offset_in_page(gpa);
  1121. int ret;
  1122. while ((seg = next_segment(len, offset)) != 0) {
  1123. ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
  1124. if (ret < 0)
  1125. return ret;
  1126. offset = 0;
  1127. len -= seg;
  1128. ++gfn;
  1129. }
  1130. return 0;
  1131. }
  1132. EXPORT_SYMBOL_GPL(kvm_clear_guest);
  1133. void mark_page_dirty_in_slot(struct kvm *kvm, struct kvm_memory_slot *memslot,
  1134. gfn_t gfn)
  1135. {
  1136. if (memslot && memslot->dirty_bitmap) {
  1137. unsigned long rel_gfn = gfn - memslot->base_gfn;
  1138. generic___set_le_bit(rel_gfn, memslot->dirty_bitmap);
  1139. }
  1140. }
  1141. void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
  1142. {
  1143. struct kvm_memory_slot *memslot;
  1144. memslot = gfn_to_memslot(kvm, gfn);
  1145. mark_page_dirty_in_slot(kvm, memslot, gfn);
  1146. }
  1147. /*
  1148. * The vCPU has executed a HLT instruction with in-kernel mode enabled.
  1149. */
  1150. void kvm_vcpu_block(struct kvm_vcpu *vcpu)
  1151. {
  1152. DEFINE_WAIT(wait);
  1153. for (;;) {
  1154. prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
  1155. if (kvm_arch_vcpu_runnable(vcpu)) {
  1156. kvm_make_request(KVM_REQ_UNHALT, vcpu);
  1157. break;
  1158. }
  1159. if (kvm_cpu_has_pending_timer(vcpu))
  1160. break;
  1161. if (signal_pending(current))
  1162. break;
  1163. schedule();
  1164. }
  1165. finish_wait(&vcpu->wq, &wait);
  1166. }
  1167. void kvm_resched(struct kvm_vcpu *vcpu)
  1168. {
  1169. if (!need_resched())
  1170. return;
  1171. cond_resched();
  1172. }
  1173. EXPORT_SYMBOL_GPL(kvm_resched);
  1174. void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu)
  1175. {
  1176. ktime_t expires;
  1177. DEFINE_WAIT(wait);
  1178. prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
  1179. /* Sleep for 100 us, and hope lock-holder got scheduled */
  1180. expires = ktime_add_ns(ktime_get(), 100000UL);
  1181. schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
  1182. finish_wait(&vcpu->wq, &wait);
  1183. }
  1184. EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
  1185. static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1186. {
  1187. struct kvm_vcpu *vcpu = vma->vm_file->private_data;
  1188. struct page *page;
  1189. if (vmf->pgoff == 0)
  1190. page = virt_to_page(vcpu->run);
  1191. #ifdef CONFIG_X86
  1192. else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
  1193. page = virt_to_page(vcpu->arch.pio_data);
  1194. #endif
  1195. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1196. else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
  1197. page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
  1198. #endif
  1199. else
  1200. return VM_FAULT_SIGBUS;
  1201. get_page(page);
  1202. vmf->page = page;
  1203. return 0;
  1204. }
  1205. static const struct vm_operations_struct kvm_vcpu_vm_ops = {
  1206. .fault = kvm_vcpu_fault,
  1207. };
  1208. static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
  1209. {
  1210. vma->vm_ops = &kvm_vcpu_vm_ops;
  1211. return 0;
  1212. }
  1213. static int kvm_vcpu_release(struct inode *inode, struct file *filp)
  1214. {
  1215. struct kvm_vcpu *vcpu = filp->private_data;
  1216. kvm_put_kvm(vcpu->kvm);
  1217. return 0;
  1218. }
  1219. static struct file_operations kvm_vcpu_fops = {
  1220. .release = kvm_vcpu_release,
  1221. .unlocked_ioctl = kvm_vcpu_ioctl,
  1222. .compat_ioctl = kvm_vcpu_ioctl,
  1223. .mmap = kvm_vcpu_mmap,
  1224. .llseek = noop_llseek,
  1225. };
  1226. /*
  1227. * Allocates an inode for the vcpu.
  1228. */
  1229. static int create_vcpu_fd(struct kvm_vcpu *vcpu)
  1230. {
  1231. return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR);
  1232. }
  1233. /*
  1234. * Creates some virtual cpus. Good luck creating more than one.
  1235. */
  1236. static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
  1237. {
  1238. int r;
  1239. struct kvm_vcpu *vcpu, *v;
  1240. vcpu = kvm_arch_vcpu_create(kvm, id);
  1241. if (IS_ERR(vcpu))
  1242. return PTR_ERR(vcpu);
  1243. preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
  1244. r = kvm_arch_vcpu_setup(vcpu);
  1245. if (r)
  1246. return r;
  1247. mutex_lock(&kvm->lock);
  1248. if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
  1249. r = -EINVAL;
  1250. goto vcpu_destroy;
  1251. }
  1252. kvm_for_each_vcpu(r, v, kvm)
  1253. if (v->vcpu_id == id) {
  1254. r = -EEXIST;
  1255. goto vcpu_destroy;
  1256. }
  1257. BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
  1258. /* Now it's all set up, let userspace reach it */
  1259. kvm_get_kvm(kvm);
  1260. r = create_vcpu_fd(vcpu);
  1261. if (r < 0) {
  1262. kvm_put_kvm(kvm);
  1263. goto vcpu_destroy;
  1264. }
  1265. kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
  1266. smp_wmb();
  1267. atomic_inc(&kvm->online_vcpus);
  1268. #ifdef CONFIG_KVM_APIC_ARCHITECTURE
  1269. if (kvm->bsp_vcpu_id == id)
  1270. kvm->bsp_vcpu = vcpu;
  1271. #endif
  1272. mutex_unlock(&kvm->lock);
  1273. return r;
  1274. vcpu_destroy:
  1275. mutex_unlock(&kvm->lock);
  1276. kvm_arch_vcpu_destroy(vcpu);
  1277. return r;
  1278. }
  1279. static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
  1280. {
  1281. if (sigset) {
  1282. sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
  1283. vcpu->sigset_active = 1;
  1284. vcpu->sigset = *sigset;
  1285. } else
  1286. vcpu->sigset_active = 0;
  1287. return 0;
  1288. }
  1289. static long kvm_vcpu_ioctl(struct file *filp,
  1290. unsigned int ioctl, unsigned long arg)
  1291. {
  1292. struct kvm_vcpu *vcpu = filp->private_data;
  1293. void __user *argp = (void __user *)arg;
  1294. int r;
  1295. struct kvm_fpu *fpu = NULL;
  1296. struct kvm_sregs *kvm_sregs = NULL;
  1297. if (vcpu->kvm->mm != current->mm)
  1298. return -EIO;
  1299. #if defined(CONFIG_S390) || defined(CONFIG_PPC)
  1300. /*
  1301. * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
  1302. * so vcpu_load() would break it.
  1303. */
  1304. if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_INTERRUPT)
  1305. return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
  1306. #endif
  1307. vcpu_load(vcpu);
  1308. switch (ioctl) {
  1309. case KVM_RUN:
  1310. r = -EINVAL;
  1311. if (arg)
  1312. goto out;
  1313. r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
  1314. trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
  1315. break;
  1316. case KVM_GET_REGS: {
  1317. struct kvm_regs *kvm_regs;
  1318. r = -ENOMEM;
  1319. kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
  1320. if (!kvm_regs)
  1321. goto out;
  1322. r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
  1323. if (r)
  1324. goto out_free1;
  1325. r = -EFAULT;
  1326. if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
  1327. goto out_free1;
  1328. r = 0;
  1329. out_free1:
  1330. kfree(kvm_regs);
  1331. break;
  1332. }
  1333. case KVM_SET_REGS: {
  1334. struct kvm_regs *kvm_regs;
  1335. r = -ENOMEM;
  1336. kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
  1337. if (!kvm_regs)
  1338. goto out;
  1339. r = -EFAULT;
  1340. if (copy_from_user(kvm_regs, argp, sizeof(struct kvm_regs)))
  1341. goto out_free2;
  1342. r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
  1343. if (r)
  1344. goto out_free2;
  1345. r = 0;
  1346. out_free2:
  1347. kfree(kvm_regs);
  1348. break;
  1349. }
  1350. case KVM_GET_SREGS: {
  1351. kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
  1352. r = -ENOMEM;
  1353. if (!kvm_sregs)
  1354. goto out;
  1355. r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
  1356. if (r)
  1357. goto out;
  1358. r = -EFAULT;
  1359. if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
  1360. goto out;
  1361. r = 0;
  1362. break;
  1363. }
  1364. case KVM_SET_SREGS: {
  1365. kvm_sregs = kmalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
  1366. r = -ENOMEM;
  1367. if (!kvm_sregs)
  1368. goto out;
  1369. r = -EFAULT;
  1370. if (copy_from_user(kvm_sregs, argp, sizeof(struct kvm_sregs)))
  1371. goto out;
  1372. r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
  1373. if (r)
  1374. goto out;
  1375. r = 0;
  1376. break;
  1377. }
  1378. case KVM_GET_MP_STATE: {
  1379. struct kvm_mp_state mp_state;
  1380. r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
  1381. if (r)
  1382. goto out;
  1383. r = -EFAULT;
  1384. if (copy_to_user(argp, &mp_state, sizeof mp_state))
  1385. goto out;
  1386. r = 0;
  1387. break;
  1388. }
  1389. case KVM_SET_MP_STATE: {
  1390. struct kvm_mp_state mp_state;
  1391. r = -EFAULT;
  1392. if (copy_from_user(&mp_state, argp, sizeof mp_state))
  1393. goto out;
  1394. r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
  1395. if (r)
  1396. goto out;
  1397. r = 0;
  1398. break;
  1399. }
  1400. case KVM_TRANSLATE: {
  1401. struct kvm_translation tr;
  1402. r = -EFAULT;
  1403. if (copy_from_user(&tr, argp, sizeof tr))
  1404. goto out;
  1405. r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
  1406. if (r)
  1407. goto out;
  1408. r = -EFAULT;
  1409. if (copy_to_user(argp, &tr, sizeof tr))
  1410. goto out;
  1411. r = 0;
  1412. break;
  1413. }
  1414. case KVM_SET_GUEST_DEBUG: {
  1415. struct kvm_guest_debug dbg;
  1416. r = -EFAULT;
  1417. if (copy_from_user(&dbg, argp, sizeof dbg))
  1418. goto out;
  1419. r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
  1420. if (r)
  1421. goto out;
  1422. r = 0;
  1423. break;
  1424. }
  1425. case KVM_SET_SIGNAL_MASK: {
  1426. struct kvm_signal_mask __user *sigmask_arg = argp;
  1427. struct kvm_signal_mask kvm_sigmask;
  1428. sigset_t sigset, *p;
  1429. p = NULL;
  1430. if (argp) {
  1431. r = -EFAULT;
  1432. if (copy_from_user(&kvm_sigmask, argp,
  1433. sizeof kvm_sigmask))
  1434. goto out;
  1435. r = -EINVAL;
  1436. if (kvm_sigmask.len != sizeof sigset)
  1437. goto out;
  1438. r = -EFAULT;
  1439. if (copy_from_user(&sigset, sigmask_arg->sigset,
  1440. sizeof sigset))
  1441. goto out;
  1442. p = &sigset;
  1443. }
  1444. r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
  1445. break;
  1446. }
  1447. case KVM_GET_FPU: {
  1448. fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
  1449. r = -ENOMEM;
  1450. if (!fpu)
  1451. goto out;
  1452. r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
  1453. if (r)
  1454. goto out;
  1455. r = -EFAULT;
  1456. if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
  1457. goto out;
  1458. r = 0;
  1459. break;
  1460. }
  1461. case KVM_SET_FPU: {
  1462. fpu = kmalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
  1463. r = -ENOMEM;
  1464. if (!fpu)
  1465. goto out;
  1466. r = -EFAULT;
  1467. if (copy_from_user(fpu, argp, sizeof(struct kvm_fpu)))
  1468. goto out;
  1469. r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
  1470. if (r)
  1471. goto out;
  1472. r = 0;
  1473. break;
  1474. }
  1475. default:
  1476. r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
  1477. }
  1478. out:
  1479. vcpu_put(vcpu);
  1480. kfree(fpu);
  1481. kfree(kvm_sregs);
  1482. return r;
  1483. }
  1484. static long kvm_vm_ioctl(struct file *filp,
  1485. unsigned int ioctl, unsigned long arg)
  1486. {
  1487. struct kvm *kvm = filp->private_data;
  1488. void __user *argp = (void __user *)arg;
  1489. int r;
  1490. if (kvm->mm != current->mm)
  1491. return -EIO;
  1492. switch (ioctl) {
  1493. case KVM_CREATE_VCPU:
  1494. r = kvm_vm_ioctl_create_vcpu(kvm, arg);
  1495. if (r < 0)
  1496. goto out;
  1497. break;
  1498. case KVM_SET_USER_MEMORY_REGION: {
  1499. struct kvm_userspace_memory_region kvm_userspace_mem;
  1500. r = -EFAULT;
  1501. if (copy_from_user(&kvm_userspace_mem, argp,
  1502. sizeof kvm_userspace_mem))
  1503. goto out;
  1504. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
  1505. if (r)
  1506. goto out;
  1507. break;
  1508. }
  1509. case KVM_GET_DIRTY_LOG: {
  1510. struct kvm_dirty_log log;
  1511. r = -EFAULT;
  1512. if (copy_from_user(&log, argp, sizeof log))
  1513. goto out;
  1514. r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
  1515. if (r)
  1516. goto out;
  1517. break;
  1518. }
  1519. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1520. case KVM_REGISTER_COALESCED_MMIO: {
  1521. struct kvm_coalesced_mmio_zone zone;
  1522. r = -EFAULT;
  1523. if (copy_from_user(&zone, argp, sizeof zone))
  1524. goto out;
  1525. r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
  1526. if (r)
  1527. goto out;
  1528. r = 0;
  1529. break;
  1530. }
  1531. case KVM_UNREGISTER_COALESCED_MMIO: {
  1532. struct kvm_coalesced_mmio_zone zone;
  1533. r = -EFAULT;
  1534. if (copy_from_user(&zone, argp, sizeof zone))
  1535. goto out;
  1536. r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
  1537. if (r)
  1538. goto out;
  1539. r = 0;
  1540. break;
  1541. }
  1542. #endif
  1543. case KVM_IRQFD: {
  1544. struct kvm_irqfd data;
  1545. r = -EFAULT;
  1546. if (copy_from_user(&data, argp, sizeof data))
  1547. goto out;
  1548. r = kvm_irqfd(kvm, data.fd, data.gsi, data.flags);
  1549. break;
  1550. }
  1551. case KVM_IOEVENTFD: {
  1552. struct kvm_ioeventfd data;
  1553. r = -EFAULT;
  1554. if (copy_from_user(&data, argp, sizeof data))
  1555. goto out;
  1556. r = kvm_ioeventfd(kvm, &data);
  1557. break;
  1558. }
  1559. #ifdef CONFIG_KVM_APIC_ARCHITECTURE
  1560. case KVM_SET_BOOT_CPU_ID:
  1561. r = 0;
  1562. mutex_lock(&kvm->lock);
  1563. if (atomic_read(&kvm->online_vcpus) != 0)
  1564. r = -EBUSY;
  1565. else
  1566. kvm->bsp_vcpu_id = arg;
  1567. mutex_unlock(&kvm->lock);
  1568. break;
  1569. #endif
  1570. default:
  1571. r = kvm_arch_vm_ioctl(filp, ioctl, arg);
  1572. if (r == -ENOTTY)
  1573. r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
  1574. }
  1575. out:
  1576. return r;
  1577. }
  1578. #ifdef CONFIG_COMPAT
  1579. struct compat_kvm_dirty_log {
  1580. __u32 slot;
  1581. __u32 padding1;
  1582. union {
  1583. compat_uptr_t dirty_bitmap; /* one bit per page */
  1584. __u64 padding2;
  1585. };
  1586. };
  1587. static long kvm_vm_compat_ioctl(struct file *filp,
  1588. unsigned int ioctl, unsigned long arg)
  1589. {
  1590. struct kvm *kvm = filp->private_data;
  1591. int r;
  1592. if (kvm->mm != current->mm)
  1593. return -EIO;
  1594. switch (ioctl) {
  1595. case KVM_GET_DIRTY_LOG: {
  1596. struct compat_kvm_dirty_log compat_log;
  1597. struct kvm_dirty_log log;
  1598. r = -EFAULT;
  1599. if (copy_from_user(&compat_log, (void __user *)arg,
  1600. sizeof(compat_log)))
  1601. goto out;
  1602. log.slot = compat_log.slot;
  1603. log.padding1 = compat_log.padding1;
  1604. log.padding2 = compat_log.padding2;
  1605. log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
  1606. r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
  1607. if (r)
  1608. goto out;
  1609. break;
  1610. }
  1611. default:
  1612. r = kvm_vm_ioctl(filp, ioctl, arg);
  1613. }
  1614. out:
  1615. return r;
  1616. }
  1617. #endif
  1618. static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1619. {
  1620. struct page *page[1];
  1621. unsigned long addr;
  1622. int npages;
  1623. gfn_t gfn = vmf->pgoff;
  1624. struct kvm *kvm = vma->vm_file->private_data;
  1625. addr = gfn_to_hva(kvm, gfn);
  1626. if (kvm_is_error_hva(addr))
  1627. return VM_FAULT_SIGBUS;
  1628. npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
  1629. NULL);
  1630. if (unlikely(npages != 1))
  1631. return VM_FAULT_SIGBUS;
  1632. vmf->page = page[0];
  1633. return 0;
  1634. }
  1635. static const struct vm_operations_struct kvm_vm_vm_ops = {
  1636. .fault = kvm_vm_fault,
  1637. };
  1638. static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
  1639. {
  1640. vma->vm_ops = &kvm_vm_vm_ops;
  1641. return 0;
  1642. }
  1643. static struct file_operations kvm_vm_fops = {
  1644. .release = kvm_vm_release,
  1645. .unlocked_ioctl = kvm_vm_ioctl,
  1646. #ifdef CONFIG_COMPAT
  1647. .compat_ioctl = kvm_vm_compat_ioctl,
  1648. #endif
  1649. .mmap = kvm_vm_mmap,
  1650. .llseek = noop_llseek,
  1651. };
  1652. static int kvm_dev_ioctl_create_vm(void)
  1653. {
  1654. int fd, r;
  1655. struct kvm *kvm;
  1656. kvm = kvm_create_vm();
  1657. if (IS_ERR(kvm))
  1658. return PTR_ERR(kvm);
  1659. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1660. r = kvm_coalesced_mmio_init(kvm);
  1661. if (r < 0) {
  1662. kvm_put_kvm(kvm);
  1663. return r;
  1664. }
  1665. #endif
  1666. fd = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
  1667. if (fd < 0)
  1668. kvm_put_kvm(kvm);
  1669. return fd;
  1670. }
  1671. static long kvm_dev_ioctl_check_extension_generic(long arg)
  1672. {
  1673. switch (arg) {
  1674. case KVM_CAP_USER_MEMORY:
  1675. case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
  1676. case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
  1677. #ifdef CONFIG_KVM_APIC_ARCHITECTURE
  1678. case KVM_CAP_SET_BOOT_CPU_ID:
  1679. #endif
  1680. case KVM_CAP_INTERNAL_ERROR_DATA:
  1681. return 1;
  1682. #ifdef CONFIG_HAVE_KVM_IRQCHIP
  1683. case KVM_CAP_IRQ_ROUTING:
  1684. return KVM_MAX_IRQ_ROUTES;
  1685. #endif
  1686. default:
  1687. break;
  1688. }
  1689. return kvm_dev_ioctl_check_extension(arg);
  1690. }
  1691. static long kvm_dev_ioctl(struct file *filp,
  1692. unsigned int ioctl, unsigned long arg)
  1693. {
  1694. long r = -EINVAL;
  1695. switch (ioctl) {
  1696. case KVM_GET_API_VERSION:
  1697. r = -EINVAL;
  1698. if (arg)
  1699. goto out;
  1700. r = KVM_API_VERSION;
  1701. break;
  1702. case KVM_CREATE_VM:
  1703. r = -EINVAL;
  1704. if (arg)
  1705. goto out;
  1706. r = kvm_dev_ioctl_create_vm();
  1707. break;
  1708. case KVM_CHECK_EXTENSION:
  1709. r = kvm_dev_ioctl_check_extension_generic(arg);
  1710. break;
  1711. case KVM_GET_VCPU_MMAP_SIZE:
  1712. r = -EINVAL;
  1713. if (arg)
  1714. goto out;
  1715. r = PAGE_SIZE; /* struct kvm_run */
  1716. #ifdef CONFIG_X86
  1717. r += PAGE_SIZE; /* pio data page */
  1718. #endif
  1719. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1720. r += PAGE_SIZE; /* coalesced mmio ring page */
  1721. #endif
  1722. break;
  1723. case KVM_TRACE_ENABLE:
  1724. case KVM_TRACE_PAUSE:
  1725. case KVM_TRACE_DISABLE:
  1726. r = -EOPNOTSUPP;
  1727. break;
  1728. default:
  1729. return kvm_arch_dev_ioctl(filp, ioctl, arg);
  1730. }
  1731. out:
  1732. return r;
  1733. }
  1734. static struct file_operations kvm_chardev_ops = {
  1735. .unlocked_ioctl = kvm_dev_ioctl,
  1736. .compat_ioctl = kvm_dev_ioctl,
  1737. .llseek = noop_llseek,
  1738. };
  1739. static struct miscdevice kvm_dev = {
  1740. KVM_MINOR,
  1741. "kvm",
  1742. &kvm_chardev_ops,
  1743. };
  1744. static void hardware_enable(void *junk)
  1745. {
  1746. int cpu = raw_smp_processor_id();
  1747. int r;
  1748. if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
  1749. return;
  1750. cpumask_set_cpu(cpu, cpus_hardware_enabled);
  1751. r = kvm_arch_hardware_enable(NULL);
  1752. if (r) {
  1753. cpumask_clear_cpu(cpu, cpus_hardware_enabled);
  1754. atomic_inc(&hardware_enable_failed);
  1755. printk(KERN_INFO "kvm: enabling virtualization on "
  1756. "CPU%d failed\n", cpu);
  1757. }
  1758. }
  1759. static void hardware_disable(void *junk)
  1760. {
  1761. int cpu = raw_smp_processor_id();
  1762. if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
  1763. return;
  1764. cpumask_clear_cpu(cpu, cpus_hardware_enabled);
  1765. kvm_arch_hardware_disable(NULL);
  1766. }
  1767. static void hardware_disable_all_nolock(void)
  1768. {
  1769. BUG_ON(!kvm_usage_count);
  1770. kvm_usage_count--;
  1771. if (!kvm_usage_count)
  1772. on_each_cpu(hardware_disable, NULL, 1);
  1773. }
  1774. static void hardware_disable_all(void)
  1775. {
  1776. spin_lock(&kvm_lock);
  1777. hardware_disable_all_nolock();
  1778. spin_unlock(&kvm_lock);
  1779. }
  1780. static int hardware_enable_all(void)
  1781. {
  1782. int r = 0;
  1783. spin_lock(&kvm_lock);
  1784. kvm_usage_count++;
  1785. if (kvm_usage_count == 1) {
  1786. atomic_set(&hardware_enable_failed, 0);
  1787. on_each_cpu(hardware_enable, NULL, 1);
  1788. if (atomic_read(&hardware_enable_failed)) {
  1789. hardware_disable_all_nolock();
  1790. r = -EBUSY;
  1791. }
  1792. }
  1793. spin_unlock(&kvm_lock);
  1794. return r;
  1795. }
  1796. static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
  1797. void *v)
  1798. {
  1799. int cpu = (long)v;
  1800. if (!kvm_usage_count)
  1801. return NOTIFY_OK;
  1802. val &= ~CPU_TASKS_FROZEN;
  1803. switch (val) {
  1804. case CPU_DYING:
  1805. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  1806. cpu);
  1807. hardware_disable(NULL);
  1808. break;
  1809. case CPU_STARTING:
  1810. printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
  1811. cpu);
  1812. spin_lock(&kvm_lock);
  1813. hardware_enable(NULL);
  1814. spin_unlock(&kvm_lock);
  1815. break;
  1816. }
  1817. return NOTIFY_OK;
  1818. }
  1819. asmlinkage void kvm_handle_fault_on_reboot(void)
  1820. {
  1821. if (kvm_rebooting) {
  1822. /* spin while reset goes on */
  1823. local_irq_enable();
  1824. while (true)
  1825. cpu_relax();
  1826. }
  1827. /* Fault while not rebooting. We want the trace. */
  1828. BUG();
  1829. }
  1830. EXPORT_SYMBOL_GPL(kvm_handle_fault_on_reboot);
  1831. static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
  1832. void *v)
  1833. {
  1834. /*
  1835. * Some (well, at least mine) BIOSes hang on reboot if
  1836. * in vmx root mode.
  1837. *
  1838. * And Intel TXT required VMX off for all cpu when system shutdown.
  1839. */
  1840. printk(KERN_INFO "kvm: exiting hardware virtualization\n");
  1841. kvm_rebooting = true;
  1842. on_each_cpu(hardware_disable, NULL, 1);
  1843. return NOTIFY_OK;
  1844. }
  1845. static struct notifier_block kvm_reboot_notifier = {
  1846. .notifier_call = kvm_reboot,
  1847. .priority = 0,
  1848. };
  1849. static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
  1850. {
  1851. int i;
  1852. for (i = 0; i < bus->dev_count; i++) {
  1853. struct kvm_io_device *pos = bus->devs[i];
  1854. kvm_iodevice_destructor(pos);
  1855. }
  1856. kfree(bus);
  1857. }
  1858. /* kvm_io_bus_write - called under kvm->slots_lock */
  1859. int kvm_io_bus_write(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
  1860. int len, const void *val)
  1861. {
  1862. int i;
  1863. struct kvm_io_bus *bus;
  1864. bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
  1865. for (i = 0; i < bus->dev_count; i++)
  1866. if (!kvm_iodevice_write(bus->devs[i], addr, len, val))
  1867. return 0;
  1868. return -EOPNOTSUPP;
  1869. }
  1870. /* kvm_io_bus_read - called under kvm->slots_lock */
  1871. int kvm_io_bus_read(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
  1872. int len, void *val)
  1873. {
  1874. int i;
  1875. struct kvm_io_bus *bus;
  1876. bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
  1877. for (i = 0; i < bus->dev_count; i++)
  1878. if (!kvm_iodevice_read(bus->devs[i], addr, len, val))
  1879. return 0;
  1880. return -EOPNOTSUPP;
  1881. }
  1882. /* Caller must hold slots_lock. */
  1883. int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx,
  1884. struct kvm_io_device *dev)
  1885. {
  1886. struct kvm_io_bus *new_bus, *bus;
  1887. bus = kvm->buses[bus_idx];
  1888. if (bus->dev_count > NR_IOBUS_DEVS-1)
  1889. return -ENOSPC;
  1890. new_bus = kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL);
  1891. if (!new_bus)
  1892. return -ENOMEM;
  1893. memcpy(new_bus, bus, sizeof(struct kvm_io_bus));
  1894. new_bus->devs[new_bus->dev_count++] = dev;
  1895. rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
  1896. synchronize_srcu_expedited(&kvm->srcu);
  1897. kfree(bus);
  1898. return 0;
  1899. }
  1900. /* Caller must hold slots_lock. */
  1901. int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
  1902. struct kvm_io_device *dev)
  1903. {
  1904. int i, r;
  1905. struct kvm_io_bus *new_bus, *bus;
  1906. new_bus = kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL);
  1907. if (!new_bus)
  1908. return -ENOMEM;
  1909. bus = kvm->buses[bus_idx];
  1910. memcpy(new_bus, bus, sizeof(struct kvm_io_bus));
  1911. r = -ENOENT;
  1912. for (i = 0; i < new_bus->dev_count; i++)
  1913. if (new_bus->devs[i] == dev) {
  1914. r = 0;
  1915. new_bus->devs[i] = new_bus->devs[--new_bus->dev_count];
  1916. break;
  1917. }
  1918. if (r) {
  1919. kfree(new_bus);
  1920. return r;
  1921. }
  1922. rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
  1923. synchronize_srcu_expedited(&kvm->srcu);
  1924. kfree(bus);
  1925. return r;
  1926. }
  1927. static struct notifier_block kvm_cpu_notifier = {
  1928. .notifier_call = kvm_cpu_hotplug,
  1929. };
  1930. static int vm_stat_get(void *_offset, u64 *val)
  1931. {
  1932. unsigned offset = (long)_offset;
  1933. struct kvm *kvm;
  1934. *val = 0;
  1935. spin_lock(&kvm_lock);
  1936. list_for_each_entry(kvm, &vm_list, vm_list)
  1937. *val += *(u32 *)((void *)kvm + offset);
  1938. spin_unlock(&kvm_lock);
  1939. return 0;
  1940. }
  1941. DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
  1942. static int vcpu_stat_get(void *_offset, u64 *val)
  1943. {
  1944. unsigned offset = (long)_offset;
  1945. struct kvm *kvm;
  1946. struct kvm_vcpu *vcpu;
  1947. int i;
  1948. *val = 0;
  1949. spin_lock(&kvm_lock);
  1950. list_for_each_entry(kvm, &vm_list, vm_list)
  1951. kvm_for_each_vcpu(i, vcpu, kvm)
  1952. *val += *(u32 *)((void *)vcpu + offset);
  1953. spin_unlock(&kvm_lock);
  1954. return 0;
  1955. }
  1956. DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
  1957. static const struct file_operations *stat_fops[] = {
  1958. [KVM_STAT_VCPU] = &vcpu_stat_fops,
  1959. [KVM_STAT_VM] = &vm_stat_fops,
  1960. };
  1961. static void kvm_init_debug(void)
  1962. {
  1963. struct kvm_stats_debugfs_item *p;
  1964. kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
  1965. for (p = debugfs_entries; p->name; ++p)
  1966. p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
  1967. (void *)(long)p->offset,
  1968. stat_fops[p->kind]);
  1969. }
  1970. static void kvm_exit_debug(void)
  1971. {
  1972. struct kvm_stats_debugfs_item *p;
  1973. for (p = debugfs_entries; p->name; ++p)
  1974. debugfs_remove(p->dentry);
  1975. debugfs_remove(kvm_debugfs_dir);
  1976. }
  1977. static int kvm_suspend(struct sys_device *dev, pm_message_t state)
  1978. {
  1979. if (kvm_usage_count)
  1980. hardware_disable(NULL);
  1981. return 0;
  1982. }
  1983. static int kvm_resume(struct sys_device *dev)
  1984. {
  1985. if (kvm_usage_count) {
  1986. WARN_ON(spin_is_locked(&kvm_lock));
  1987. hardware_enable(NULL);
  1988. }
  1989. return 0;
  1990. }
  1991. static struct sysdev_class kvm_sysdev_class = {
  1992. .name = "kvm",
  1993. .suspend = kvm_suspend,
  1994. .resume = kvm_resume,
  1995. };
  1996. static struct sys_device kvm_sysdev = {
  1997. .id = 0,
  1998. .cls = &kvm_sysdev_class,
  1999. };
  2000. struct page *bad_page;
  2001. pfn_t bad_pfn;
  2002. static inline
  2003. struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
  2004. {
  2005. return container_of(pn, struct kvm_vcpu, preempt_notifier);
  2006. }
  2007. static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
  2008. {
  2009. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  2010. kvm_arch_vcpu_load(vcpu, cpu);
  2011. }
  2012. static void kvm_sched_out(struct preempt_notifier *pn,
  2013. struct task_struct *next)
  2014. {
  2015. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  2016. kvm_arch_vcpu_put(vcpu);
  2017. }
  2018. int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
  2019. struct module *module)
  2020. {
  2021. int r;
  2022. int cpu;
  2023. r = kvm_arch_init(opaque);
  2024. if (r)
  2025. goto out_fail;
  2026. bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  2027. if (bad_page == NULL) {
  2028. r = -ENOMEM;
  2029. goto out;
  2030. }
  2031. bad_pfn = page_to_pfn(bad_page);
  2032. hwpoison_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  2033. if (hwpoison_page == NULL) {
  2034. r = -ENOMEM;
  2035. goto out_free_0;
  2036. }
  2037. hwpoison_pfn = page_to_pfn(hwpoison_page);
  2038. fault_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  2039. if (fault_page == NULL) {
  2040. r = -ENOMEM;
  2041. goto out_free_0;
  2042. }
  2043. fault_pfn = page_to_pfn(fault_page);
  2044. if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
  2045. r = -ENOMEM;
  2046. goto out_free_0;
  2047. }
  2048. r = kvm_arch_hardware_setup();
  2049. if (r < 0)
  2050. goto out_free_0a;
  2051. for_each_online_cpu(cpu) {
  2052. smp_call_function_single(cpu,
  2053. kvm_arch_check_processor_compat,
  2054. &r, 1);
  2055. if (r < 0)
  2056. goto out_free_1;
  2057. }
  2058. r = register_cpu_notifier(&kvm_cpu_notifier);
  2059. if (r)
  2060. goto out_free_2;
  2061. register_reboot_notifier(&kvm_reboot_notifier);
  2062. r = sysdev_class_register(&kvm_sysdev_class);
  2063. if (r)
  2064. goto out_free_3;
  2065. r = sysdev_register(&kvm_sysdev);
  2066. if (r)
  2067. goto out_free_4;
  2068. /* A kmem cache lets us meet the alignment requirements of fx_save. */
  2069. if (!vcpu_align)
  2070. vcpu_align = __alignof__(struct kvm_vcpu);
  2071. kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
  2072. 0, NULL);
  2073. if (!kvm_vcpu_cache) {
  2074. r = -ENOMEM;
  2075. goto out_free_5;
  2076. }
  2077. r = kvm_async_pf_init();
  2078. if (r)
  2079. goto out_free;
  2080. kvm_chardev_ops.owner = module;
  2081. kvm_vm_fops.owner = module;
  2082. kvm_vcpu_fops.owner = module;
  2083. r = misc_register(&kvm_dev);
  2084. if (r) {
  2085. printk(KERN_ERR "kvm: misc device register failed\n");
  2086. goto out_unreg;
  2087. }
  2088. kvm_preempt_ops.sched_in = kvm_sched_in;
  2089. kvm_preempt_ops.sched_out = kvm_sched_out;
  2090. kvm_init_debug();
  2091. return 0;
  2092. out_unreg:
  2093. kvm_async_pf_deinit();
  2094. out_free:
  2095. kmem_cache_destroy(kvm_vcpu_cache);
  2096. out_free_5:
  2097. sysdev_unregister(&kvm_sysdev);
  2098. out_free_4:
  2099. sysdev_class_unregister(&kvm_sysdev_class);
  2100. out_free_3:
  2101. unregister_reboot_notifier(&kvm_reboot_notifier);
  2102. unregister_cpu_notifier(&kvm_cpu_notifier);
  2103. out_free_2:
  2104. out_free_1:
  2105. kvm_arch_hardware_unsetup();
  2106. out_free_0a:
  2107. free_cpumask_var(cpus_hardware_enabled);
  2108. out_free_0:
  2109. if (fault_page)
  2110. __free_page(fault_page);
  2111. if (hwpoison_page)
  2112. __free_page(hwpoison_page);
  2113. __free_page(bad_page);
  2114. out:
  2115. kvm_arch_exit();
  2116. out_fail:
  2117. return r;
  2118. }
  2119. EXPORT_SYMBOL_GPL(kvm_init);
  2120. void kvm_exit(void)
  2121. {
  2122. kvm_exit_debug();
  2123. misc_deregister(&kvm_dev);
  2124. kmem_cache_destroy(kvm_vcpu_cache);
  2125. kvm_async_pf_deinit();
  2126. sysdev_unregister(&kvm_sysdev);
  2127. sysdev_class_unregister(&kvm_sysdev_class);
  2128. unregister_reboot_notifier(&kvm_reboot_notifier);
  2129. unregister_cpu_notifier(&kvm_cpu_notifier);
  2130. on_each_cpu(hardware_disable, NULL, 1);
  2131. kvm_arch_hardware_unsetup();
  2132. kvm_arch_exit();
  2133. free_cpumask_var(cpus_hardware_enabled);
  2134. __free_page(hwpoison_page);
  2135. __free_page(bad_page);
  2136. }
  2137. EXPORT_SYMBOL_GPL(kvm_exit);