x86.c 155 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * derived from drivers/kvm/kvm_main.c
  5. *
  6. * Copyright (C) 2006 Qumranet, Inc.
  7. * Copyright (C) 2008 Qumranet, Inc.
  8. * Copyright IBM Corporation, 2008
  9. * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  10. *
  11. * Authors:
  12. * Avi Kivity <avi@qumranet.com>
  13. * Yaniv Kamay <yaniv@qumranet.com>
  14. * Amit Shah <amit.shah@qumranet.com>
  15. * Ben-Ami Yassour <benami@il.ibm.com>
  16. *
  17. * This work is licensed under the terms of the GNU GPL, version 2. See
  18. * the COPYING file in the top-level directory.
  19. *
  20. */
  21. #include <linux/kvm_host.h>
  22. #include "irq.h"
  23. #include "mmu.h"
  24. #include "i8254.h"
  25. #include "tss.h"
  26. #include "kvm_cache_regs.h"
  27. #include "x86.h"
  28. #include <linux/clocksource.h>
  29. #include <linux/interrupt.h>
  30. #include <linux/kvm.h>
  31. #include <linux/fs.h>
  32. #include <linux/vmalloc.h>
  33. #include <linux/module.h>
  34. #include <linux/mman.h>
  35. #include <linux/highmem.h>
  36. #include <linux/iommu.h>
  37. #include <linux/intel-iommu.h>
  38. #include <linux/cpufreq.h>
  39. #include <linux/user-return-notifier.h>
  40. #include <linux/srcu.h>
  41. #include <linux/slab.h>
  42. #include <linux/perf_event.h>
  43. #include <linux/uaccess.h>
  44. #include <linux/hash.h>
  45. #include <trace/events/kvm.h>
  46. #define CREATE_TRACE_POINTS
  47. #include "trace.h"
  48. #include <asm/debugreg.h>
  49. #include <asm/msr.h>
  50. #include <asm/desc.h>
  51. #include <asm/mtrr.h>
  52. #include <asm/mce.h>
  53. #include <asm/i387.h>
  54. #include <asm/xcr.h>
  55. #include <asm/pvclock.h>
  56. #include <asm/div64.h>
  57. #define MAX_IO_MSRS 256
  58. #define CR0_RESERVED_BITS \
  59. (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
  60. | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
  61. | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
  62. #define CR4_RESERVED_BITS \
  63. (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
  64. | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
  65. | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
  66. | X86_CR4_OSXSAVE \
  67. | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
  68. #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
  69. #define KVM_MAX_MCE_BANKS 32
  70. #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
  71. /* EFER defaults:
  72. * - enable syscall per default because its emulated by KVM
  73. * - enable LME and LMA per default on 64 bit KVM
  74. */
  75. #ifdef CONFIG_X86_64
  76. static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
  77. #else
  78. static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
  79. #endif
  80. #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
  81. #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
  82. static void update_cr8_intercept(struct kvm_vcpu *vcpu);
  83. static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
  84. struct kvm_cpuid_entry2 __user *entries);
  85. struct kvm_x86_ops *kvm_x86_ops;
  86. EXPORT_SYMBOL_GPL(kvm_x86_ops);
  87. int ignore_msrs = 0;
  88. module_param_named(ignore_msrs, ignore_msrs, bool, S_IRUGO | S_IWUSR);
  89. #define KVM_NR_SHARED_MSRS 16
  90. struct kvm_shared_msrs_global {
  91. int nr;
  92. u32 msrs[KVM_NR_SHARED_MSRS];
  93. };
  94. struct kvm_shared_msrs {
  95. struct user_return_notifier urn;
  96. bool registered;
  97. struct kvm_shared_msr_values {
  98. u64 host;
  99. u64 curr;
  100. } values[KVM_NR_SHARED_MSRS];
  101. };
  102. static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
  103. static DEFINE_PER_CPU(struct kvm_shared_msrs, shared_msrs);
  104. struct kvm_stats_debugfs_item debugfs_entries[] = {
  105. { "pf_fixed", VCPU_STAT(pf_fixed) },
  106. { "pf_guest", VCPU_STAT(pf_guest) },
  107. { "tlb_flush", VCPU_STAT(tlb_flush) },
  108. { "invlpg", VCPU_STAT(invlpg) },
  109. { "exits", VCPU_STAT(exits) },
  110. { "io_exits", VCPU_STAT(io_exits) },
  111. { "mmio_exits", VCPU_STAT(mmio_exits) },
  112. { "signal_exits", VCPU_STAT(signal_exits) },
  113. { "irq_window", VCPU_STAT(irq_window_exits) },
  114. { "nmi_window", VCPU_STAT(nmi_window_exits) },
  115. { "halt_exits", VCPU_STAT(halt_exits) },
  116. { "halt_wakeup", VCPU_STAT(halt_wakeup) },
  117. { "hypercalls", VCPU_STAT(hypercalls) },
  118. { "request_irq", VCPU_STAT(request_irq_exits) },
  119. { "irq_exits", VCPU_STAT(irq_exits) },
  120. { "host_state_reload", VCPU_STAT(host_state_reload) },
  121. { "efer_reload", VCPU_STAT(efer_reload) },
  122. { "fpu_reload", VCPU_STAT(fpu_reload) },
  123. { "insn_emulation", VCPU_STAT(insn_emulation) },
  124. { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
  125. { "irq_injections", VCPU_STAT(irq_injections) },
  126. { "nmi_injections", VCPU_STAT(nmi_injections) },
  127. { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
  128. { "mmu_pte_write", VM_STAT(mmu_pte_write) },
  129. { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
  130. { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
  131. { "mmu_flooded", VM_STAT(mmu_flooded) },
  132. { "mmu_recycled", VM_STAT(mmu_recycled) },
  133. { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
  134. { "mmu_unsync", VM_STAT(mmu_unsync) },
  135. { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
  136. { "largepages", VM_STAT(lpages) },
  137. { NULL }
  138. };
  139. u64 __read_mostly host_xcr0;
  140. static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
  141. {
  142. int i;
  143. for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
  144. vcpu->arch.apf.gfns[i] = ~0;
  145. }
  146. static void kvm_on_user_return(struct user_return_notifier *urn)
  147. {
  148. unsigned slot;
  149. struct kvm_shared_msrs *locals
  150. = container_of(urn, struct kvm_shared_msrs, urn);
  151. struct kvm_shared_msr_values *values;
  152. for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
  153. values = &locals->values[slot];
  154. if (values->host != values->curr) {
  155. wrmsrl(shared_msrs_global.msrs[slot], values->host);
  156. values->curr = values->host;
  157. }
  158. }
  159. locals->registered = false;
  160. user_return_notifier_unregister(urn);
  161. }
  162. static void shared_msr_update(unsigned slot, u32 msr)
  163. {
  164. struct kvm_shared_msrs *smsr;
  165. u64 value;
  166. smsr = &__get_cpu_var(shared_msrs);
  167. /* only read, and nobody should modify it at this time,
  168. * so don't need lock */
  169. if (slot >= shared_msrs_global.nr) {
  170. printk(KERN_ERR "kvm: invalid MSR slot!");
  171. return;
  172. }
  173. rdmsrl_safe(msr, &value);
  174. smsr->values[slot].host = value;
  175. smsr->values[slot].curr = value;
  176. }
  177. void kvm_define_shared_msr(unsigned slot, u32 msr)
  178. {
  179. if (slot >= shared_msrs_global.nr)
  180. shared_msrs_global.nr = slot + 1;
  181. shared_msrs_global.msrs[slot] = msr;
  182. /* we need ensured the shared_msr_global have been updated */
  183. smp_wmb();
  184. }
  185. EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
  186. static void kvm_shared_msr_cpu_online(void)
  187. {
  188. unsigned i;
  189. for (i = 0; i < shared_msrs_global.nr; ++i)
  190. shared_msr_update(i, shared_msrs_global.msrs[i]);
  191. }
  192. void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
  193. {
  194. struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
  195. if (((value ^ smsr->values[slot].curr) & mask) == 0)
  196. return;
  197. smsr->values[slot].curr = value;
  198. wrmsrl(shared_msrs_global.msrs[slot], value);
  199. if (!smsr->registered) {
  200. smsr->urn.on_user_return = kvm_on_user_return;
  201. user_return_notifier_register(&smsr->urn);
  202. smsr->registered = true;
  203. }
  204. }
  205. EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
  206. static void drop_user_return_notifiers(void *ignore)
  207. {
  208. struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
  209. if (smsr->registered)
  210. kvm_on_user_return(&smsr->urn);
  211. }
  212. u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
  213. {
  214. if (irqchip_in_kernel(vcpu->kvm))
  215. return vcpu->arch.apic_base;
  216. else
  217. return vcpu->arch.apic_base;
  218. }
  219. EXPORT_SYMBOL_GPL(kvm_get_apic_base);
  220. void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
  221. {
  222. /* TODO: reserve bits check */
  223. if (irqchip_in_kernel(vcpu->kvm))
  224. kvm_lapic_set_base(vcpu, data);
  225. else
  226. vcpu->arch.apic_base = data;
  227. }
  228. EXPORT_SYMBOL_GPL(kvm_set_apic_base);
  229. #define EXCPT_BENIGN 0
  230. #define EXCPT_CONTRIBUTORY 1
  231. #define EXCPT_PF 2
  232. static int exception_class(int vector)
  233. {
  234. switch (vector) {
  235. case PF_VECTOR:
  236. return EXCPT_PF;
  237. case DE_VECTOR:
  238. case TS_VECTOR:
  239. case NP_VECTOR:
  240. case SS_VECTOR:
  241. case GP_VECTOR:
  242. return EXCPT_CONTRIBUTORY;
  243. default:
  244. break;
  245. }
  246. return EXCPT_BENIGN;
  247. }
  248. static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
  249. unsigned nr, bool has_error, u32 error_code,
  250. bool reinject)
  251. {
  252. u32 prev_nr;
  253. int class1, class2;
  254. kvm_make_request(KVM_REQ_EVENT, vcpu);
  255. if (!vcpu->arch.exception.pending) {
  256. queue:
  257. vcpu->arch.exception.pending = true;
  258. vcpu->arch.exception.has_error_code = has_error;
  259. vcpu->arch.exception.nr = nr;
  260. vcpu->arch.exception.error_code = error_code;
  261. vcpu->arch.exception.reinject = reinject;
  262. return;
  263. }
  264. /* to check exception */
  265. prev_nr = vcpu->arch.exception.nr;
  266. if (prev_nr == DF_VECTOR) {
  267. /* triple fault -> shutdown */
  268. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  269. return;
  270. }
  271. class1 = exception_class(prev_nr);
  272. class2 = exception_class(nr);
  273. if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
  274. || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
  275. /* generate double fault per SDM Table 5-5 */
  276. vcpu->arch.exception.pending = true;
  277. vcpu->arch.exception.has_error_code = true;
  278. vcpu->arch.exception.nr = DF_VECTOR;
  279. vcpu->arch.exception.error_code = 0;
  280. } else
  281. /* replace previous exception with a new one in a hope
  282. that instruction re-execution will regenerate lost
  283. exception */
  284. goto queue;
  285. }
  286. void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
  287. {
  288. kvm_multiple_exception(vcpu, nr, false, 0, false);
  289. }
  290. EXPORT_SYMBOL_GPL(kvm_queue_exception);
  291. void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
  292. {
  293. kvm_multiple_exception(vcpu, nr, false, 0, true);
  294. }
  295. EXPORT_SYMBOL_GPL(kvm_requeue_exception);
  296. void kvm_inject_page_fault(struct kvm_vcpu *vcpu)
  297. {
  298. unsigned error_code = vcpu->arch.fault.error_code;
  299. ++vcpu->stat.pf_guest;
  300. vcpu->arch.cr2 = vcpu->arch.fault.address;
  301. kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
  302. }
  303. void kvm_propagate_fault(struct kvm_vcpu *vcpu)
  304. {
  305. if (mmu_is_nested(vcpu) && !vcpu->arch.fault.nested)
  306. vcpu->arch.nested_mmu.inject_page_fault(vcpu);
  307. else
  308. vcpu->arch.mmu.inject_page_fault(vcpu);
  309. vcpu->arch.fault.nested = false;
  310. }
  311. void kvm_inject_nmi(struct kvm_vcpu *vcpu)
  312. {
  313. kvm_make_request(KVM_REQ_EVENT, vcpu);
  314. vcpu->arch.nmi_pending = 1;
  315. }
  316. EXPORT_SYMBOL_GPL(kvm_inject_nmi);
  317. void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
  318. {
  319. kvm_multiple_exception(vcpu, nr, true, error_code, false);
  320. }
  321. EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
  322. void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
  323. {
  324. kvm_multiple_exception(vcpu, nr, true, error_code, true);
  325. }
  326. EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
  327. /*
  328. * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
  329. * a #GP and return false.
  330. */
  331. bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
  332. {
  333. if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
  334. return true;
  335. kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
  336. return false;
  337. }
  338. EXPORT_SYMBOL_GPL(kvm_require_cpl);
  339. /*
  340. * This function will be used to read from the physical memory of the currently
  341. * running guest. The difference to kvm_read_guest_page is that this function
  342. * can read from guest physical or from the guest's guest physical memory.
  343. */
  344. int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
  345. gfn_t ngfn, void *data, int offset, int len,
  346. u32 access)
  347. {
  348. gfn_t real_gfn;
  349. gpa_t ngpa;
  350. ngpa = gfn_to_gpa(ngfn);
  351. real_gfn = mmu->translate_gpa(vcpu, ngpa, access);
  352. if (real_gfn == UNMAPPED_GVA)
  353. return -EFAULT;
  354. real_gfn = gpa_to_gfn(real_gfn);
  355. return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len);
  356. }
  357. EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
  358. int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
  359. void *data, int offset, int len, u32 access)
  360. {
  361. return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
  362. data, offset, len, access);
  363. }
  364. /*
  365. * Load the pae pdptrs. Return true is they are all valid.
  366. */
  367. int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
  368. {
  369. gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
  370. unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
  371. int i;
  372. int ret;
  373. u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
  374. ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
  375. offset * sizeof(u64), sizeof(pdpte),
  376. PFERR_USER_MASK|PFERR_WRITE_MASK);
  377. if (ret < 0) {
  378. ret = 0;
  379. goto out;
  380. }
  381. for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
  382. if (is_present_gpte(pdpte[i]) &&
  383. (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
  384. ret = 0;
  385. goto out;
  386. }
  387. }
  388. ret = 1;
  389. memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
  390. __set_bit(VCPU_EXREG_PDPTR,
  391. (unsigned long *)&vcpu->arch.regs_avail);
  392. __set_bit(VCPU_EXREG_PDPTR,
  393. (unsigned long *)&vcpu->arch.regs_dirty);
  394. out:
  395. return ret;
  396. }
  397. EXPORT_SYMBOL_GPL(load_pdptrs);
  398. static bool pdptrs_changed(struct kvm_vcpu *vcpu)
  399. {
  400. u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
  401. bool changed = true;
  402. int offset;
  403. gfn_t gfn;
  404. int r;
  405. if (is_long_mode(vcpu) || !is_pae(vcpu))
  406. return false;
  407. if (!test_bit(VCPU_EXREG_PDPTR,
  408. (unsigned long *)&vcpu->arch.regs_avail))
  409. return true;
  410. gfn = (vcpu->arch.cr3 & ~31u) >> PAGE_SHIFT;
  411. offset = (vcpu->arch.cr3 & ~31u) & (PAGE_SIZE - 1);
  412. r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
  413. PFERR_USER_MASK | PFERR_WRITE_MASK);
  414. if (r < 0)
  415. goto out;
  416. changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
  417. out:
  418. return changed;
  419. }
  420. int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  421. {
  422. unsigned long old_cr0 = kvm_read_cr0(vcpu);
  423. unsigned long update_bits = X86_CR0_PG | X86_CR0_WP |
  424. X86_CR0_CD | X86_CR0_NW;
  425. cr0 |= X86_CR0_ET;
  426. #ifdef CONFIG_X86_64
  427. if (cr0 & 0xffffffff00000000UL)
  428. return 1;
  429. #endif
  430. cr0 &= ~CR0_RESERVED_BITS;
  431. if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
  432. return 1;
  433. if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
  434. return 1;
  435. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
  436. #ifdef CONFIG_X86_64
  437. if ((vcpu->arch.efer & EFER_LME)) {
  438. int cs_db, cs_l;
  439. if (!is_pae(vcpu))
  440. return 1;
  441. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  442. if (cs_l)
  443. return 1;
  444. } else
  445. #endif
  446. if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
  447. vcpu->arch.cr3))
  448. return 1;
  449. }
  450. kvm_x86_ops->set_cr0(vcpu, cr0);
  451. if ((cr0 ^ old_cr0) & update_bits)
  452. kvm_mmu_reset_context(vcpu);
  453. return 0;
  454. }
  455. EXPORT_SYMBOL_GPL(kvm_set_cr0);
  456. void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
  457. {
  458. (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
  459. }
  460. EXPORT_SYMBOL_GPL(kvm_lmsw);
  461. int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
  462. {
  463. u64 xcr0;
  464. /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
  465. if (index != XCR_XFEATURE_ENABLED_MASK)
  466. return 1;
  467. xcr0 = xcr;
  468. if (kvm_x86_ops->get_cpl(vcpu) != 0)
  469. return 1;
  470. if (!(xcr0 & XSTATE_FP))
  471. return 1;
  472. if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
  473. return 1;
  474. if (xcr0 & ~host_xcr0)
  475. return 1;
  476. vcpu->arch.xcr0 = xcr0;
  477. vcpu->guest_xcr0_loaded = 0;
  478. return 0;
  479. }
  480. int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
  481. {
  482. if (__kvm_set_xcr(vcpu, index, xcr)) {
  483. kvm_inject_gp(vcpu, 0);
  484. return 1;
  485. }
  486. return 0;
  487. }
  488. EXPORT_SYMBOL_GPL(kvm_set_xcr);
  489. static bool guest_cpuid_has_xsave(struct kvm_vcpu *vcpu)
  490. {
  491. struct kvm_cpuid_entry2 *best;
  492. best = kvm_find_cpuid_entry(vcpu, 1, 0);
  493. return best && (best->ecx & bit(X86_FEATURE_XSAVE));
  494. }
  495. static void update_cpuid(struct kvm_vcpu *vcpu)
  496. {
  497. struct kvm_cpuid_entry2 *best;
  498. best = kvm_find_cpuid_entry(vcpu, 1, 0);
  499. if (!best)
  500. return;
  501. /* Update OSXSAVE bit */
  502. if (cpu_has_xsave && best->function == 0x1) {
  503. best->ecx &= ~(bit(X86_FEATURE_OSXSAVE));
  504. if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE))
  505. best->ecx |= bit(X86_FEATURE_OSXSAVE);
  506. }
  507. }
  508. int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  509. {
  510. unsigned long old_cr4 = kvm_read_cr4(vcpu);
  511. unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE;
  512. if (cr4 & CR4_RESERVED_BITS)
  513. return 1;
  514. if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
  515. return 1;
  516. if (is_long_mode(vcpu)) {
  517. if (!(cr4 & X86_CR4_PAE))
  518. return 1;
  519. } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
  520. && ((cr4 ^ old_cr4) & pdptr_bits)
  521. && !load_pdptrs(vcpu, vcpu->arch.walk_mmu, vcpu->arch.cr3))
  522. return 1;
  523. if (cr4 & X86_CR4_VMXE)
  524. return 1;
  525. kvm_x86_ops->set_cr4(vcpu, cr4);
  526. if ((cr4 ^ old_cr4) & pdptr_bits)
  527. kvm_mmu_reset_context(vcpu);
  528. if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
  529. update_cpuid(vcpu);
  530. return 0;
  531. }
  532. EXPORT_SYMBOL_GPL(kvm_set_cr4);
  533. int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  534. {
  535. if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
  536. kvm_mmu_sync_roots(vcpu);
  537. kvm_mmu_flush_tlb(vcpu);
  538. return 0;
  539. }
  540. if (is_long_mode(vcpu)) {
  541. if (cr3 & CR3_L_MODE_RESERVED_BITS)
  542. return 1;
  543. } else {
  544. if (is_pae(vcpu)) {
  545. if (cr3 & CR3_PAE_RESERVED_BITS)
  546. return 1;
  547. if (is_paging(vcpu) &&
  548. !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
  549. return 1;
  550. }
  551. /*
  552. * We don't check reserved bits in nonpae mode, because
  553. * this isn't enforced, and VMware depends on this.
  554. */
  555. }
  556. /*
  557. * Does the new cr3 value map to physical memory? (Note, we
  558. * catch an invalid cr3 even in real-mode, because it would
  559. * cause trouble later on when we turn on paging anyway.)
  560. *
  561. * A real CPU would silently accept an invalid cr3 and would
  562. * attempt to use it - with largely undefined (and often hard
  563. * to debug) behavior on the guest side.
  564. */
  565. if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
  566. return 1;
  567. vcpu->arch.cr3 = cr3;
  568. vcpu->arch.mmu.new_cr3(vcpu);
  569. return 0;
  570. }
  571. EXPORT_SYMBOL_GPL(kvm_set_cr3);
  572. int __kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
  573. {
  574. if (cr8 & CR8_RESERVED_BITS)
  575. return 1;
  576. if (irqchip_in_kernel(vcpu->kvm))
  577. kvm_lapic_set_tpr(vcpu, cr8);
  578. else
  579. vcpu->arch.cr8 = cr8;
  580. return 0;
  581. }
  582. void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
  583. {
  584. if (__kvm_set_cr8(vcpu, cr8))
  585. kvm_inject_gp(vcpu, 0);
  586. }
  587. EXPORT_SYMBOL_GPL(kvm_set_cr8);
  588. unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
  589. {
  590. if (irqchip_in_kernel(vcpu->kvm))
  591. return kvm_lapic_get_cr8(vcpu);
  592. else
  593. return vcpu->arch.cr8;
  594. }
  595. EXPORT_SYMBOL_GPL(kvm_get_cr8);
  596. static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
  597. {
  598. switch (dr) {
  599. case 0 ... 3:
  600. vcpu->arch.db[dr] = val;
  601. if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
  602. vcpu->arch.eff_db[dr] = val;
  603. break;
  604. case 4:
  605. if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
  606. return 1; /* #UD */
  607. /* fall through */
  608. case 6:
  609. if (val & 0xffffffff00000000ULL)
  610. return -1; /* #GP */
  611. vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
  612. break;
  613. case 5:
  614. if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
  615. return 1; /* #UD */
  616. /* fall through */
  617. default: /* 7 */
  618. if (val & 0xffffffff00000000ULL)
  619. return -1; /* #GP */
  620. vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
  621. if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
  622. kvm_x86_ops->set_dr7(vcpu, vcpu->arch.dr7);
  623. vcpu->arch.switch_db_regs = (val & DR7_BP_EN_MASK);
  624. }
  625. break;
  626. }
  627. return 0;
  628. }
  629. int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
  630. {
  631. int res;
  632. res = __kvm_set_dr(vcpu, dr, val);
  633. if (res > 0)
  634. kvm_queue_exception(vcpu, UD_VECTOR);
  635. else if (res < 0)
  636. kvm_inject_gp(vcpu, 0);
  637. return res;
  638. }
  639. EXPORT_SYMBOL_GPL(kvm_set_dr);
  640. static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
  641. {
  642. switch (dr) {
  643. case 0 ... 3:
  644. *val = vcpu->arch.db[dr];
  645. break;
  646. case 4:
  647. if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
  648. return 1;
  649. /* fall through */
  650. case 6:
  651. *val = vcpu->arch.dr6;
  652. break;
  653. case 5:
  654. if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
  655. return 1;
  656. /* fall through */
  657. default: /* 7 */
  658. *val = vcpu->arch.dr7;
  659. break;
  660. }
  661. return 0;
  662. }
  663. int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
  664. {
  665. if (_kvm_get_dr(vcpu, dr, val)) {
  666. kvm_queue_exception(vcpu, UD_VECTOR);
  667. return 1;
  668. }
  669. return 0;
  670. }
  671. EXPORT_SYMBOL_GPL(kvm_get_dr);
  672. /*
  673. * List of msr numbers which we expose to userspace through KVM_GET_MSRS
  674. * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
  675. *
  676. * This list is modified at module load time to reflect the
  677. * capabilities of the host cpu. This capabilities test skips MSRs that are
  678. * kvm-specific. Those are put in the beginning of the list.
  679. */
  680. #define KVM_SAVE_MSRS_BEGIN 8
  681. static u32 msrs_to_save[] = {
  682. MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
  683. MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
  684. HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
  685. HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN,
  686. MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
  687. MSR_STAR,
  688. #ifdef CONFIG_X86_64
  689. MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
  690. #endif
  691. MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
  692. };
  693. static unsigned num_msrs_to_save;
  694. static u32 emulated_msrs[] = {
  695. MSR_IA32_MISC_ENABLE,
  696. MSR_IA32_MCG_STATUS,
  697. MSR_IA32_MCG_CTL,
  698. };
  699. static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
  700. {
  701. u64 old_efer = vcpu->arch.efer;
  702. if (efer & efer_reserved_bits)
  703. return 1;
  704. if (is_paging(vcpu)
  705. && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
  706. return 1;
  707. if (efer & EFER_FFXSR) {
  708. struct kvm_cpuid_entry2 *feat;
  709. feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
  710. if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
  711. return 1;
  712. }
  713. if (efer & EFER_SVME) {
  714. struct kvm_cpuid_entry2 *feat;
  715. feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
  716. if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
  717. return 1;
  718. }
  719. efer &= ~EFER_LMA;
  720. efer |= vcpu->arch.efer & EFER_LMA;
  721. kvm_x86_ops->set_efer(vcpu, efer);
  722. vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
  723. /* Update reserved bits */
  724. if ((efer ^ old_efer) & EFER_NX)
  725. kvm_mmu_reset_context(vcpu);
  726. return 0;
  727. }
  728. void kvm_enable_efer_bits(u64 mask)
  729. {
  730. efer_reserved_bits &= ~mask;
  731. }
  732. EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
  733. /*
  734. * Writes msr value into into the appropriate "register".
  735. * Returns 0 on success, non-0 otherwise.
  736. * Assumes vcpu_load() was already called.
  737. */
  738. int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  739. {
  740. return kvm_x86_ops->set_msr(vcpu, msr_index, data);
  741. }
  742. /*
  743. * Adapt set_msr() to msr_io()'s calling convention
  744. */
  745. static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
  746. {
  747. return kvm_set_msr(vcpu, index, *data);
  748. }
  749. static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
  750. {
  751. int version;
  752. int r;
  753. struct pvclock_wall_clock wc;
  754. struct timespec boot;
  755. if (!wall_clock)
  756. return;
  757. r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
  758. if (r)
  759. return;
  760. if (version & 1)
  761. ++version; /* first time write, random junk */
  762. ++version;
  763. kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
  764. /*
  765. * The guest calculates current wall clock time by adding
  766. * system time (updated by kvm_guest_time_update below) to the
  767. * wall clock specified here. guest system time equals host
  768. * system time for us, thus we must fill in host boot time here.
  769. */
  770. getboottime(&boot);
  771. wc.sec = boot.tv_sec;
  772. wc.nsec = boot.tv_nsec;
  773. wc.version = version;
  774. kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
  775. version++;
  776. kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
  777. }
  778. static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
  779. {
  780. uint32_t quotient, remainder;
  781. /* Don't try to replace with do_div(), this one calculates
  782. * "(dividend << 32) / divisor" */
  783. __asm__ ( "divl %4"
  784. : "=a" (quotient), "=d" (remainder)
  785. : "0" (0), "1" (dividend), "r" (divisor) );
  786. return quotient;
  787. }
  788. static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
  789. s8 *pshift, u32 *pmultiplier)
  790. {
  791. uint64_t scaled64;
  792. int32_t shift = 0;
  793. uint64_t tps64;
  794. uint32_t tps32;
  795. tps64 = base_khz * 1000LL;
  796. scaled64 = scaled_khz * 1000LL;
  797. while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
  798. tps64 >>= 1;
  799. shift--;
  800. }
  801. tps32 = (uint32_t)tps64;
  802. while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
  803. if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
  804. scaled64 >>= 1;
  805. else
  806. tps32 <<= 1;
  807. shift++;
  808. }
  809. *pshift = shift;
  810. *pmultiplier = div_frac(scaled64, tps32);
  811. pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
  812. __func__, base_khz, scaled_khz, shift, *pmultiplier);
  813. }
  814. static inline u64 get_kernel_ns(void)
  815. {
  816. struct timespec ts;
  817. WARN_ON(preemptible());
  818. ktime_get_ts(&ts);
  819. monotonic_to_bootbased(&ts);
  820. return timespec_to_ns(&ts);
  821. }
  822. static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
  823. unsigned long max_tsc_khz;
  824. static inline int kvm_tsc_changes_freq(void)
  825. {
  826. int cpu = get_cpu();
  827. int ret = !boot_cpu_has(X86_FEATURE_CONSTANT_TSC) &&
  828. cpufreq_quick_get(cpu) != 0;
  829. put_cpu();
  830. return ret;
  831. }
  832. static inline u64 nsec_to_cycles(u64 nsec)
  833. {
  834. u64 ret;
  835. WARN_ON(preemptible());
  836. if (kvm_tsc_changes_freq())
  837. printk_once(KERN_WARNING
  838. "kvm: unreliable cycle conversion on adjustable rate TSC\n");
  839. ret = nsec * __get_cpu_var(cpu_tsc_khz);
  840. do_div(ret, USEC_PER_SEC);
  841. return ret;
  842. }
  843. static void kvm_arch_set_tsc_khz(struct kvm *kvm, u32 this_tsc_khz)
  844. {
  845. /* Compute a scale to convert nanoseconds in TSC cycles */
  846. kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
  847. &kvm->arch.virtual_tsc_shift,
  848. &kvm->arch.virtual_tsc_mult);
  849. kvm->arch.virtual_tsc_khz = this_tsc_khz;
  850. }
  851. static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
  852. {
  853. u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.last_tsc_nsec,
  854. vcpu->kvm->arch.virtual_tsc_mult,
  855. vcpu->kvm->arch.virtual_tsc_shift);
  856. tsc += vcpu->arch.last_tsc_write;
  857. return tsc;
  858. }
  859. void kvm_write_tsc(struct kvm_vcpu *vcpu, u64 data)
  860. {
  861. struct kvm *kvm = vcpu->kvm;
  862. u64 offset, ns, elapsed;
  863. unsigned long flags;
  864. s64 sdiff;
  865. spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
  866. offset = data - native_read_tsc();
  867. ns = get_kernel_ns();
  868. elapsed = ns - kvm->arch.last_tsc_nsec;
  869. sdiff = data - kvm->arch.last_tsc_write;
  870. if (sdiff < 0)
  871. sdiff = -sdiff;
  872. /*
  873. * Special case: close write to TSC within 5 seconds of
  874. * another CPU is interpreted as an attempt to synchronize
  875. * The 5 seconds is to accomodate host load / swapping as
  876. * well as any reset of TSC during the boot process.
  877. *
  878. * In that case, for a reliable TSC, we can match TSC offsets,
  879. * or make a best guest using elapsed value.
  880. */
  881. if (sdiff < nsec_to_cycles(5ULL * NSEC_PER_SEC) &&
  882. elapsed < 5ULL * NSEC_PER_SEC) {
  883. if (!check_tsc_unstable()) {
  884. offset = kvm->arch.last_tsc_offset;
  885. pr_debug("kvm: matched tsc offset for %llu\n", data);
  886. } else {
  887. u64 delta = nsec_to_cycles(elapsed);
  888. offset += delta;
  889. pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
  890. }
  891. ns = kvm->arch.last_tsc_nsec;
  892. }
  893. kvm->arch.last_tsc_nsec = ns;
  894. kvm->arch.last_tsc_write = data;
  895. kvm->arch.last_tsc_offset = offset;
  896. kvm_x86_ops->write_tsc_offset(vcpu, offset);
  897. spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
  898. /* Reset of TSC must disable overshoot protection below */
  899. vcpu->arch.hv_clock.tsc_timestamp = 0;
  900. vcpu->arch.last_tsc_write = data;
  901. vcpu->arch.last_tsc_nsec = ns;
  902. }
  903. EXPORT_SYMBOL_GPL(kvm_write_tsc);
  904. static int kvm_guest_time_update(struct kvm_vcpu *v)
  905. {
  906. unsigned long flags;
  907. struct kvm_vcpu_arch *vcpu = &v->arch;
  908. void *shared_kaddr;
  909. unsigned long this_tsc_khz;
  910. s64 kernel_ns, max_kernel_ns;
  911. u64 tsc_timestamp;
  912. /* Keep irq disabled to prevent changes to the clock */
  913. local_irq_save(flags);
  914. kvm_get_msr(v, MSR_IA32_TSC, &tsc_timestamp);
  915. kernel_ns = get_kernel_ns();
  916. this_tsc_khz = __get_cpu_var(cpu_tsc_khz);
  917. if (unlikely(this_tsc_khz == 0)) {
  918. local_irq_restore(flags);
  919. kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
  920. return 1;
  921. }
  922. /*
  923. * We may have to catch up the TSC to match elapsed wall clock
  924. * time for two reasons, even if kvmclock is used.
  925. * 1) CPU could have been running below the maximum TSC rate
  926. * 2) Broken TSC compensation resets the base at each VCPU
  927. * entry to avoid unknown leaps of TSC even when running
  928. * again on the same CPU. This may cause apparent elapsed
  929. * time to disappear, and the guest to stand still or run
  930. * very slowly.
  931. */
  932. if (vcpu->tsc_catchup) {
  933. u64 tsc = compute_guest_tsc(v, kernel_ns);
  934. if (tsc > tsc_timestamp) {
  935. kvm_x86_ops->adjust_tsc_offset(v, tsc - tsc_timestamp);
  936. tsc_timestamp = tsc;
  937. }
  938. }
  939. local_irq_restore(flags);
  940. if (!vcpu->time_page)
  941. return 0;
  942. /*
  943. * Time as measured by the TSC may go backwards when resetting the base
  944. * tsc_timestamp. The reason for this is that the TSC resolution is
  945. * higher than the resolution of the other clock scales. Thus, many
  946. * possible measurments of the TSC correspond to one measurement of any
  947. * other clock, and so a spread of values is possible. This is not a
  948. * problem for the computation of the nanosecond clock; with TSC rates
  949. * around 1GHZ, there can only be a few cycles which correspond to one
  950. * nanosecond value, and any path through this code will inevitably
  951. * take longer than that. However, with the kernel_ns value itself,
  952. * the precision may be much lower, down to HZ granularity. If the
  953. * first sampling of TSC against kernel_ns ends in the low part of the
  954. * range, and the second in the high end of the range, we can get:
  955. *
  956. * (TSC - offset_low) * S + kns_old > (TSC - offset_high) * S + kns_new
  957. *
  958. * As the sampling errors potentially range in the thousands of cycles,
  959. * it is possible such a time value has already been observed by the
  960. * guest. To protect against this, we must compute the system time as
  961. * observed by the guest and ensure the new system time is greater.
  962. */
  963. max_kernel_ns = 0;
  964. if (vcpu->hv_clock.tsc_timestamp && vcpu->last_guest_tsc) {
  965. max_kernel_ns = vcpu->last_guest_tsc -
  966. vcpu->hv_clock.tsc_timestamp;
  967. max_kernel_ns = pvclock_scale_delta(max_kernel_ns,
  968. vcpu->hv_clock.tsc_to_system_mul,
  969. vcpu->hv_clock.tsc_shift);
  970. max_kernel_ns += vcpu->last_kernel_ns;
  971. }
  972. if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
  973. kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz,
  974. &vcpu->hv_clock.tsc_shift,
  975. &vcpu->hv_clock.tsc_to_system_mul);
  976. vcpu->hw_tsc_khz = this_tsc_khz;
  977. }
  978. if (max_kernel_ns > kernel_ns)
  979. kernel_ns = max_kernel_ns;
  980. /* With all the info we got, fill in the values */
  981. vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
  982. vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
  983. vcpu->last_kernel_ns = kernel_ns;
  984. vcpu->last_guest_tsc = tsc_timestamp;
  985. vcpu->hv_clock.flags = 0;
  986. /*
  987. * The interface expects us to write an even number signaling that the
  988. * update is finished. Since the guest won't see the intermediate
  989. * state, we just increase by 2 at the end.
  990. */
  991. vcpu->hv_clock.version += 2;
  992. shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
  993. memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
  994. sizeof(vcpu->hv_clock));
  995. kunmap_atomic(shared_kaddr, KM_USER0);
  996. mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
  997. return 0;
  998. }
  999. static bool msr_mtrr_valid(unsigned msr)
  1000. {
  1001. switch (msr) {
  1002. case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
  1003. case MSR_MTRRfix64K_00000:
  1004. case MSR_MTRRfix16K_80000:
  1005. case MSR_MTRRfix16K_A0000:
  1006. case MSR_MTRRfix4K_C0000:
  1007. case MSR_MTRRfix4K_C8000:
  1008. case MSR_MTRRfix4K_D0000:
  1009. case MSR_MTRRfix4K_D8000:
  1010. case MSR_MTRRfix4K_E0000:
  1011. case MSR_MTRRfix4K_E8000:
  1012. case MSR_MTRRfix4K_F0000:
  1013. case MSR_MTRRfix4K_F8000:
  1014. case MSR_MTRRdefType:
  1015. case MSR_IA32_CR_PAT:
  1016. return true;
  1017. case 0x2f8:
  1018. return true;
  1019. }
  1020. return false;
  1021. }
  1022. static bool valid_pat_type(unsigned t)
  1023. {
  1024. return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
  1025. }
  1026. static bool valid_mtrr_type(unsigned t)
  1027. {
  1028. return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
  1029. }
  1030. static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  1031. {
  1032. int i;
  1033. if (!msr_mtrr_valid(msr))
  1034. return false;
  1035. if (msr == MSR_IA32_CR_PAT) {
  1036. for (i = 0; i < 8; i++)
  1037. if (!valid_pat_type((data >> (i * 8)) & 0xff))
  1038. return false;
  1039. return true;
  1040. } else if (msr == MSR_MTRRdefType) {
  1041. if (data & ~0xcff)
  1042. return false;
  1043. return valid_mtrr_type(data & 0xff);
  1044. } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
  1045. for (i = 0; i < 8 ; i++)
  1046. if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
  1047. return false;
  1048. return true;
  1049. }
  1050. /* variable MTRRs */
  1051. return valid_mtrr_type(data & 0xff);
  1052. }
  1053. static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  1054. {
  1055. u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
  1056. if (!mtrr_valid(vcpu, msr, data))
  1057. return 1;
  1058. if (msr == MSR_MTRRdefType) {
  1059. vcpu->arch.mtrr_state.def_type = data;
  1060. vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
  1061. } else if (msr == MSR_MTRRfix64K_00000)
  1062. p[0] = data;
  1063. else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
  1064. p[1 + msr - MSR_MTRRfix16K_80000] = data;
  1065. else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
  1066. p[3 + msr - MSR_MTRRfix4K_C0000] = data;
  1067. else if (msr == MSR_IA32_CR_PAT)
  1068. vcpu->arch.pat = data;
  1069. else { /* Variable MTRRs */
  1070. int idx, is_mtrr_mask;
  1071. u64 *pt;
  1072. idx = (msr - 0x200) / 2;
  1073. is_mtrr_mask = msr - 0x200 - 2 * idx;
  1074. if (!is_mtrr_mask)
  1075. pt =
  1076. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
  1077. else
  1078. pt =
  1079. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
  1080. *pt = data;
  1081. }
  1082. kvm_mmu_reset_context(vcpu);
  1083. return 0;
  1084. }
  1085. static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  1086. {
  1087. u64 mcg_cap = vcpu->arch.mcg_cap;
  1088. unsigned bank_num = mcg_cap & 0xff;
  1089. switch (msr) {
  1090. case MSR_IA32_MCG_STATUS:
  1091. vcpu->arch.mcg_status = data;
  1092. break;
  1093. case MSR_IA32_MCG_CTL:
  1094. if (!(mcg_cap & MCG_CTL_P))
  1095. return 1;
  1096. if (data != 0 && data != ~(u64)0)
  1097. return -1;
  1098. vcpu->arch.mcg_ctl = data;
  1099. break;
  1100. default:
  1101. if (msr >= MSR_IA32_MC0_CTL &&
  1102. msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
  1103. u32 offset = msr - MSR_IA32_MC0_CTL;
  1104. /* only 0 or all 1s can be written to IA32_MCi_CTL
  1105. * some Linux kernels though clear bit 10 in bank 4 to
  1106. * workaround a BIOS/GART TBL issue on AMD K8s, ignore
  1107. * this to avoid an uncatched #GP in the guest
  1108. */
  1109. if ((offset & 0x3) == 0 &&
  1110. data != 0 && (data | (1 << 10)) != ~(u64)0)
  1111. return -1;
  1112. vcpu->arch.mce_banks[offset] = data;
  1113. break;
  1114. }
  1115. return 1;
  1116. }
  1117. return 0;
  1118. }
  1119. static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
  1120. {
  1121. struct kvm *kvm = vcpu->kvm;
  1122. int lm = is_long_mode(vcpu);
  1123. u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
  1124. : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
  1125. u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
  1126. : kvm->arch.xen_hvm_config.blob_size_32;
  1127. u32 page_num = data & ~PAGE_MASK;
  1128. u64 page_addr = data & PAGE_MASK;
  1129. u8 *page;
  1130. int r;
  1131. r = -E2BIG;
  1132. if (page_num >= blob_size)
  1133. goto out;
  1134. r = -ENOMEM;
  1135. page = kzalloc(PAGE_SIZE, GFP_KERNEL);
  1136. if (!page)
  1137. goto out;
  1138. r = -EFAULT;
  1139. if (copy_from_user(page, blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE))
  1140. goto out_free;
  1141. if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
  1142. goto out_free;
  1143. r = 0;
  1144. out_free:
  1145. kfree(page);
  1146. out:
  1147. return r;
  1148. }
  1149. static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
  1150. {
  1151. return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
  1152. }
  1153. static bool kvm_hv_msr_partition_wide(u32 msr)
  1154. {
  1155. bool r = false;
  1156. switch (msr) {
  1157. case HV_X64_MSR_GUEST_OS_ID:
  1158. case HV_X64_MSR_HYPERCALL:
  1159. r = true;
  1160. break;
  1161. }
  1162. return r;
  1163. }
  1164. static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  1165. {
  1166. struct kvm *kvm = vcpu->kvm;
  1167. switch (msr) {
  1168. case HV_X64_MSR_GUEST_OS_ID:
  1169. kvm->arch.hv_guest_os_id = data;
  1170. /* setting guest os id to zero disables hypercall page */
  1171. if (!kvm->arch.hv_guest_os_id)
  1172. kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
  1173. break;
  1174. case HV_X64_MSR_HYPERCALL: {
  1175. u64 gfn;
  1176. unsigned long addr;
  1177. u8 instructions[4];
  1178. /* if guest os id is not set hypercall should remain disabled */
  1179. if (!kvm->arch.hv_guest_os_id)
  1180. break;
  1181. if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
  1182. kvm->arch.hv_hypercall = data;
  1183. break;
  1184. }
  1185. gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
  1186. addr = gfn_to_hva(kvm, gfn);
  1187. if (kvm_is_error_hva(addr))
  1188. return 1;
  1189. kvm_x86_ops->patch_hypercall(vcpu, instructions);
  1190. ((unsigned char *)instructions)[3] = 0xc3; /* ret */
  1191. if (copy_to_user((void __user *)addr, instructions, 4))
  1192. return 1;
  1193. kvm->arch.hv_hypercall = data;
  1194. break;
  1195. }
  1196. default:
  1197. pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
  1198. "data 0x%llx\n", msr, data);
  1199. return 1;
  1200. }
  1201. return 0;
  1202. }
  1203. static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  1204. {
  1205. switch (msr) {
  1206. case HV_X64_MSR_APIC_ASSIST_PAGE: {
  1207. unsigned long addr;
  1208. if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
  1209. vcpu->arch.hv_vapic = data;
  1210. break;
  1211. }
  1212. addr = gfn_to_hva(vcpu->kvm, data >>
  1213. HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT);
  1214. if (kvm_is_error_hva(addr))
  1215. return 1;
  1216. if (clear_user((void __user *)addr, PAGE_SIZE))
  1217. return 1;
  1218. vcpu->arch.hv_vapic = data;
  1219. break;
  1220. }
  1221. case HV_X64_MSR_EOI:
  1222. return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
  1223. case HV_X64_MSR_ICR:
  1224. return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
  1225. case HV_X64_MSR_TPR:
  1226. return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
  1227. default:
  1228. pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
  1229. "data 0x%llx\n", msr, data);
  1230. return 1;
  1231. }
  1232. return 0;
  1233. }
  1234. static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
  1235. {
  1236. gpa_t gpa = data & ~0x3f;
  1237. /* Bits 2:5 are resrved, Should be zero */
  1238. if (data & 0x3c)
  1239. return 1;
  1240. vcpu->arch.apf.msr_val = data;
  1241. if (!(data & KVM_ASYNC_PF_ENABLED)) {
  1242. kvm_clear_async_pf_completion_queue(vcpu);
  1243. kvm_async_pf_hash_reset(vcpu);
  1244. return 0;
  1245. }
  1246. if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa))
  1247. return 1;
  1248. vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
  1249. kvm_async_pf_wakeup_all(vcpu);
  1250. return 0;
  1251. }
  1252. int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  1253. {
  1254. switch (msr) {
  1255. case MSR_EFER:
  1256. return set_efer(vcpu, data);
  1257. case MSR_K7_HWCR:
  1258. data &= ~(u64)0x40; /* ignore flush filter disable */
  1259. data &= ~(u64)0x100; /* ignore ignne emulation enable */
  1260. if (data != 0) {
  1261. pr_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
  1262. data);
  1263. return 1;
  1264. }
  1265. break;
  1266. case MSR_FAM10H_MMIO_CONF_BASE:
  1267. if (data != 0) {
  1268. pr_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
  1269. "0x%llx\n", data);
  1270. return 1;
  1271. }
  1272. break;
  1273. case MSR_AMD64_NB_CFG:
  1274. break;
  1275. case MSR_IA32_DEBUGCTLMSR:
  1276. if (!data) {
  1277. /* We support the non-activated case already */
  1278. break;
  1279. } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
  1280. /* Values other than LBR and BTF are vendor-specific,
  1281. thus reserved and should throw a #GP */
  1282. return 1;
  1283. }
  1284. pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
  1285. __func__, data);
  1286. break;
  1287. case MSR_IA32_UCODE_REV:
  1288. case MSR_IA32_UCODE_WRITE:
  1289. case MSR_VM_HSAVE_PA:
  1290. case MSR_AMD64_PATCH_LOADER:
  1291. break;
  1292. case 0x200 ... 0x2ff:
  1293. return set_msr_mtrr(vcpu, msr, data);
  1294. case MSR_IA32_APICBASE:
  1295. kvm_set_apic_base(vcpu, data);
  1296. break;
  1297. case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
  1298. return kvm_x2apic_msr_write(vcpu, msr, data);
  1299. case MSR_IA32_MISC_ENABLE:
  1300. vcpu->arch.ia32_misc_enable_msr = data;
  1301. break;
  1302. case MSR_KVM_WALL_CLOCK_NEW:
  1303. case MSR_KVM_WALL_CLOCK:
  1304. vcpu->kvm->arch.wall_clock = data;
  1305. kvm_write_wall_clock(vcpu->kvm, data);
  1306. break;
  1307. case MSR_KVM_SYSTEM_TIME_NEW:
  1308. case MSR_KVM_SYSTEM_TIME: {
  1309. if (vcpu->arch.time_page) {
  1310. kvm_release_page_dirty(vcpu->arch.time_page);
  1311. vcpu->arch.time_page = NULL;
  1312. }
  1313. vcpu->arch.time = data;
  1314. kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
  1315. /* we verify if the enable bit is set... */
  1316. if (!(data & 1))
  1317. break;
  1318. /* ...but clean it before doing the actual write */
  1319. vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
  1320. vcpu->arch.time_page =
  1321. gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
  1322. if (is_error_page(vcpu->arch.time_page)) {
  1323. kvm_release_page_clean(vcpu->arch.time_page);
  1324. vcpu->arch.time_page = NULL;
  1325. }
  1326. break;
  1327. }
  1328. case MSR_KVM_ASYNC_PF_EN:
  1329. if (kvm_pv_enable_async_pf(vcpu, data))
  1330. return 1;
  1331. break;
  1332. case MSR_IA32_MCG_CTL:
  1333. case MSR_IA32_MCG_STATUS:
  1334. case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
  1335. return set_msr_mce(vcpu, msr, data);
  1336. /* Performance counters are not protected by a CPUID bit,
  1337. * so we should check all of them in the generic path for the sake of
  1338. * cross vendor migration.
  1339. * Writing a zero into the event select MSRs disables them,
  1340. * which we perfectly emulate ;-). Any other value should be at least
  1341. * reported, some guests depend on them.
  1342. */
  1343. case MSR_P6_EVNTSEL0:
  1344. case MSR_P6_EVNTSEL1:
  1345. case MSR_K7_EVNTSEL0:
  1346. case MSR_K7_EVNTSEL1:
  1347. case MSR_K7_EVNTSEL2:
  1348. case MSR_K7_EVNTSEL3:
  1349. if (data != 0)
  1350. pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
  1351. "0x%x data 0x%llx\n", msr, data);
  1352. break;
  1353. /* at least RHEL 4 unconditionally writes to the perfctr registers,
  1354. * so we ignore writes to make it happy.
  1355. */
  1356. case MSR_P6_PERFCTR0:
  1357. case MSR_P6_PERFCTR1:
  1358. case MSR_K7_PERFCTR0:
  1359. case MSR_K7_PERFCTR1:
  1360. case MSR_K7_PERFCTR2:
  1361. case MSR_K7_PERFCTR3:
  1362. pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
  1363. "0x%x data 0x%llx\n", msr, data);
  1364. break;
  1365. case MSR_K7_CLK_CTL:
  1366. /*
  1367. * Ignore all writes to this no longer documented MSR.
  1368. * Writes are only relevant for old K7 processors,
  1369. * all pre-dating SVM, but a recommended workaround from
  1370. * AMD for these chips. It is possible to speicify the
  1371. * affected processor models on the command line, hence
  1372. * the need to ignore the workaround.
  1373. */
  1374. break;
  1375. case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
  1376. if (kvm_hv_msr_partition_wide(msr)) {
  1377. int r;
  1378. mutex_lock(&vcpu->kvm->lock);
  1379. r = set_msr_hyperv_pw(vcpu, msr, data);
  1380. mutex_unlock(&vcpu->kvm->lock);
  1381. return r;
  1382. } else
  1383. return set_msr_hyperv(vcpu, msr, data);
  1384. break;
  1385. default:
  1386. if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
  1387. return xen_hvm_config(vcpu, data);
  1388. if (!ignore_msrs) {
  1389. pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
  1390. msr, data);
  1391. return 1;
  1392. } else {
  1393. pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
  1394. msr, data);
  1395. break;
  1396. }
  1397. }
  1398. return 0;
  1399. }
  1400. EXPORT_SYMBOL_GPL(kvm_set_msr_common);
  1401. /*
  1402. * Reads an msr value (of 'msr_index') into 'pdata'.
  1403. * Returns 0 on success, non-0 otherwise.
  1404. * Assumes vcpu_load() was already called.
  1405. */
  1406. int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  1407. {
  1408. return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
  1409. }
  1410. static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1411. {
  1412. u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
  1413. if (!msr_mtrr_valid(msr))
  1414. return 1;
  1415. if (msr == MSR_MTRRdefType)
  1416. *pdata = vcpu->arch.mtrr_state.def_type +
  1417. (vcpu->arch.mtrr_state.enabled << 10);
  1418. else if (msr == MSR_MTRRfix64K_00000)
  1419. *pdata = p[0];
  1420. else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
  1421. *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
  1422. else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
  1423. *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
  1424. else if (msr == MSR_IA32_CR_PAT)
  1425. *pdata = vcpu->arch.pat;
  1426. else { /* Variable MTRRs */
  1427. int idx, is_mtrr_mask;
  1428. u64 *pt;
  1429. idx = (msr - 0x200) / 2;
  1430. is_mtrr_mask = msr - 0x200 - 2 * idx;
  1431. if (!is_mtrr_mask)
  1432. pt =
  1433. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
  1434. else
  1435. pt =
  1436. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
  1437. *pdata = *pt;
  1438. }
  1439. return 0;
  1440. }
  1441. static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1442. {
  1443. u64 data;
  1444. u64 mcg_cap = vcpu->arch.mcg_cap;
  1445. unsigned bank_num = mcg_cap & 0xff;
  1446. switch (msr) {
  1447. case MSR_IA32_P5_MC_ADDR:
  1448. case MSR_IA32_P5_MC_TYPE:
  1449. data = 0;
  1450. break;
  1451. case MSR_IA32_MCG_CAP:
  1452. data = vcpu->arch.mcg_cap;
  1453. break;
  1454. case MSR_IA32_MCG_CTL:
  1455. if (!(mcg_cap & MCG_CTL_P))
  1456. return 1;
  1457. data = vcpu->arch.mcg_ctl;
  1458. break;
  1459. case MSR_IA32_MCG_STATUS:
  1460. data = vcpu->arch.mcg_status;
  1461. break;
  1462. default:
  1463. if (msr >= MSR_IA32_MC0_CTL &&
  1464. msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
  1465. u32 offset = msr - MSR_IA32_MC0_CTL;
  1466. data = vcpu->arch.mce_banks[offset];
  1467. break;
  1468. }
  1469. return 1;
  1470. }
  1471. *pdata = data;
  1472. return 0;
  1473. }
  1474. static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1475. {
  1476. u64 data = 0;
  1477. struct kvm *kvm = vcpu->kvm;
  1478. switch (msr) {
  1479. case HV_X64_MSR_GUEST_OS_ID:
  1480. data = kvm->arch.hv_guest_os_id;
  1481. break;
  1482. case HV_X64_MSR_HYPERCALL:
  1483. data = kvm->arch.hv_hypercall;
  1484. break;
  1485. default:
  1486. pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
  1487. return 1;
  1488. }
  1489. *pdata = data;
  1490. return 0;
  1491. }
  1492. static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1493. {
  1494. u64 data = 0;
  1495. switch (msr) {
  1496. case HV_X64_MSR_VP_INDEX: {
  1497. int r;
  1498. struct kvm_vcpu *v;
  1499. kvm_for_each_vcpu(r, v, vcpu->kvm)
  1500. if (v == vcpu)
  1501. data = r;
  1502. break;
  1503. }
  1504. case HV_X64_MSR_EOI:
  1505. return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
  1506. case HV_X64_MSR_ICR:
  1507. return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
  1508. case HV_X64_MSR_TPR:
  1509. return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
  1510. default:
  1511. pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
  1512. return 1;
  1513. }
  1514. *pdata = data;
  1515. return 0;
  1516. }
  1517. int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1518. {
  1519. u64 data;
  1520. switch (msr) {
  1521. case MSR_IA32_PLATFORM_ID:
  1522. case MSR_IA32_UCODE_REV:
  1523. case MSR_IA32_EBL_CR_POWERON:
  1524. case MSR_IA32_DEBUGCTLMSR:
  1525. case MSR_IA32_LASTBRANCHFROMIP:
  1526. case MSR_IA32_LASTBRANCHTOIP:
  1527. case MSR_IA32_LASTINTFROMIP:
  1528. case MSR_IA32_LASTINTTOIP:
  1529. case MSR_K8_SYSCFG:
  1530. case MSR_K7_HWCR:
  1531. case MSR_VM_HSAVE_PA:
  1532. case MSR_P6_PERFCTR0:
  1533. case MSR_P6_PERFCTR1:
  1534. case MSR_P6_EVNTSEL0:
  1535. case MSR_P6_EVNTSEL1:
  1536. case MSR_K7_EVNTSEL0:
  1537. case MSR_K7_PERFCTR0:
  1538. case MSR_K8_INT_PENDING_MSG:
  1539. case MSR_AMD64_NB_CFG:
  1540. case MSR_FAM10H_MMIO_CONF_BASE:
  1541. data = 0;
  1542. break;
  1543. case MSR_MTRRcap:
  1544. data = 0x500 | KVM_NR_VAR_MTRR;
  1545. break;
  1546. case 0x200 ... 0x2ff:
  1547. return get_msr_mtrr(vcpu, msr, pdata);
  1548. case 0xcd: /* fsb frequency */
  1549. data = 3;
  1550. break;
  1551. /*
  1552. * MSR_EBC_FREQUENCY_ID
  1553. * Conservative value valid for even the basic CPU models.
  1554. * Models 0,1: 000 in bits 23:21 indicating a bus speed of
  1555. * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
  1556. * and 266MHz for model 3, or 4. Set Core Clock
  1557. * Frequency to System Bus Frequency Ratio to 1 (bits
  1558. * 31:24) even though these are only valid for CPU
  1559. * models > 2, however guests may end up dividing or
  1560. * multiplying by zero otherwise.
  1561. */
  1562. case MSR_EBC_FREQUENCY_ID:
  1563. data = 1 << 24;
  1564. break;
  1565. case MSR_IA32_APICBASE:
  1566. data = kvm_get_apic_base(vcpu);
  1567. break;
  1568. case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
  1569. return kvm_x2apic_msr_read(vcpu, msr, pdata);
  1570. break;
  1571. case MSR_IA32_MISC_ENABLE:
  1572. data = vcpu->arch.ia32_misc_enable_msr;
  1573. break;
  1574. case MSR_IA32_PERF_STATUS:
  1575. /* TSC increment by tick */
  1576. data = 1000ULL;
  1577. /* CPU multiplier */
  1578. data |= (((uint64_t)4ULL) << 40);
  1579. break;
  1580. case MSR_EFER:
  1581. data = vcpu->arch.efer;
  1582. break;
  1583. case MSR_KVM_WALL_CLOCK:
  1584. case MSR_KVM_WALL_CLOCK_NEW:
  1585. data = vcpu->kvm->arch.wall_clock;
  1586. break;
  1587. case MSR_KVM_SYSTEM_TIME:
  1588. case MSR_KVM_SYSTEM_TIME_NEW:
  1589. data = vcpu->arch.time;
  1590. break;
  1591. case MSR_KVM_ASYNC_PF_EN:
  1592. data = vcpu->arch.apf.msr_val;
  1593. break;
  1594. case MSR_IA32_P5_MC_ADDR:
  1595. case MSR_IA32_P5_MC_TYPE:
  1596. case MSR_IA32_MCG_CAP:
  1597. case MSR_IA32_MCG_CTL:
  1598. case MSR_IA32_MCG_STATUS:
  1599. case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
  1600. return get_msr_mce(vcpu, msr, pdata);
  1601. case MSR_K7_CLK_CTL:
  1602. /*
  1603. * Provide expected ramp-up count for K7. All other
  1604. * are set to zero, indicating minimum divisors for
  1605. * every field.
  1606. *
  1607. * This prevents guest kernels on AMD host with CPU
  1608. * type 6, model 8 and higher from exploding due to
  1609. * the rdmsr failing.
  1610. */
  1611. data = 0x20000000;
  1612. break;
  1613. case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
  1614. if (kvm_hv_msr_partition_wide(msr)) {
  1615. int r;
  1616. mutex_lock(&vcpu->kvm->lock);
  1617. r = get_msr_hyperv_pw(vcpu, msr, pdata);
  1618. mutex_unlock(&vcpu->kvm->lock);
  1619. return r;
  1620. } else
  1621. return get_msr_hyperv(vcpu, msr, pdata);
  1622. break;
  1623. default:
  1624. if (!ignore_msrs) {
  1625. pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
  1626. return 1;
  1627. } else {
  1628. pr_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
  1629. data = 0;
  1630. }
  1631. break;
  1632. }
  1633. *pdata = data;
  1634. return 0;
  1635. }
  1636. EXPORT_SYMBOL_GPL(kvm_get_msr_common);
  1637. /*
  1638. * Read or write a bunch of msrs. All parameters are kernel addresses.
  1639. *
  1640. * @return number of msrs set successfully.
  1641. */
  1642. static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
  1643. struct kvm_msr_entry *entries,
  1644. int (*do_msr)(struct kvm_vcpu *vcpu,
  1645. unsigned index, u64 *data))
  1646. {
  1647. int i, idx;
  1648. idx = srcu_read_lock(&vcpu->kvm->srcu);
  1649. for (i = 0; i < msrs->nmsrs; ++i)
  1650. if (do_msr(vcpu, entries[i].index, &entries[i].data))
  1651. break;
  1652. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  1653. return i;
  1654. }
  1655. /*
  1656. * Read or write a bunch of msrs. Parameters are user addresses.
  1657. *
  1658. * @return number of msrs set successfully.
  1659. */
  1660. static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
  1661. int (*do_msr)(struct kvm_vcpu *vcpu,
  1662. unsigned index, u64 *data),
  1663. int writeback)
  1664. {
  1665. struct kvm_msrs msrs;
  1666. struct kvm_msr_entry *entries;
  1667. int r, n;
  1668. unsigned size;
  1669. r = -EFAULT;
  1670. if (copy_from_user(&msrs, user_msrs, sizeof msrs))
  1671. goto out;
  1672. r = -E2BIG;
  1673. if (msrs.nmsrs >= MAX_IO_MSRS)
  1674. goto out;
  1675. r = -ENOMEM;
  1676. size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
  1677. entries = kmalloc(size, GFP_KERNEL);
  1678. if (!entries)
  1679. goto out;
  1680. r = -EFAULT;
  1681. if (copy_from_user(entries, user_msrs->entries, size))
  1682. goto out_free;
  1683. r = n = __msr_io(vcpu, &msrs, entries, do_msr);
  1684. if (r < 0)
  1685. goto out_free;
  1686. r = -EFAULT;
  1687. if (writeback && copy_to_user(user_msrs->entries, entries, size))
  1688. goto out_free;
  1689. r = n;
  1690. out_free:
  1691. kfree(entries);
  1692. out:
  1693. return r;
  1694. }
  1695. int kvm_dev_ioctl_check_extension(long ext)
  1696. {
  1697. int r;
  1698. switch (ext) {
  1699. case KVM_CAP_IRQCHIP:
  1700. case KVM_CAP_HLT:
  1701. case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
  1702. case KVM_CAP_SET_TSS_ADDR:
  1703. case KVM_CAP_EXT_CPUID:
  1704. case KVM_CAP_CLOCKSOURCE:
  1705. case KVM_CAP_PIT:
  1706. case KVM_CAP_NOP_IO_DELAY:
  1707. case KVM_CAP_MP_STATE:
  1708. case KVM_CAP_SYNC_MMU:
  1709. case KVM_CAP_REINJECT_CONTROL:
  1710. case KVM_CAP_IRQ_INJECT_STATUS:
  1711. case KVM_CAP_ASSIGN_DEV_IRQ:
  1712. case KVM_CAP_IRQFD:
  1713. case KVM_CAP_IOEVENTFD:
  1714. case KVM_CAP_PIT2:
  1715. case KVM_CAP_PIT_STATE2:
  1716. case KVM_CAP_SET_IDENTITY_MAP_ADDR:
  1717. case KVM_CAP_XEN_HVM:
  1718. case KVM_CAP_ADJUST_CLOCK:
  1719. case KVM_CAP_VCPU_EVENTS:
  1720. case KVM_CAP_HYPERV:
  1721. case KVM_CAP_HYPERV_VAPIC:
  1722. case KVM_CAP_HYPERV_SPIN:
  1723. case KVM_CAP_PCI_SEGMENT:
  1724. case KVM_CAP_DEBUGREGS:
  1725. case KVM_CAP_X86_ROBUST_SINGLESTEP:
  1726. case KVM_CAP_XSAVE:
  1727. case KVM_CAP_ASYNC_PF:
  1728. r = 1;
  1729. break;
  1730. case KVM_CAP_COALESCED_MMIO:
  1731. r = KVM_COALESCED_MMIO_PAGE_OFFSET;
  1732. break;
  1733. case KVM_CAP_VAPIC:
  1734. r = !kvm_x86_ops->cpu_has_accelerated_tpr();
  1735. break;
  1736. case KVM_CAP_NR_VCPUS:
  1737. r = KVM_MAX_VCPUS;
  1738. break;
  1739. case KVM_CAP_NR_MEMSLOTS:
  1740. r = KVM_MEMORY_SLOTS;
  1741. break;
  1742. case KVM_CAP_PV_MMU: /* obsolete */
  1743. r = 0;
  1744. break;
  1745. case KVM_CAP_IOMMU:
  1746. r = iommu_found();
  1747. break;
  1748. case KVM_CAP_MCE:
  1749. r = KVM_MAX_MCE_BANKS;
  1750. break;
  1751. case KVM_CAP_XCRS:
  1752. r = cpu_has_xsave;
  1753. break;
  1754. default:
  1755. r = 0;
  1756. break;
  1757. }
  1758. return r;
  1759. }
  1760. long kvm_arch_dev_ioctl(struct file *filp,
  1761. unsigned int ioctl, unsigned long arg)
  1762. {
  1763. void __user *argp = (void __user *)arg;
  1764. long r;
  1765. switch (ioctl) {
  1766. case KVM_GET_MSR_INDEX_LIST: {
  1767. struct kvm_msr_list __user *user_msr_list = argp;
  1768. struct kvm_msr_list msr_list;
  1769. unsigned n;
  1770. r = -EFAULT;
  1771. if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
  1772. goto out;
  1773. n = msr_list.nmsrs;
  1774. msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
  1775. if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
  1776. goto out;
  1777. r = -E2BIG;
  1778. if (n < msr_list.nmsrs)
  1779. goto out;
  1780. r = -EFAULT;
  1781. if (copy_to_user(user_msr_list->indices, &msrs_to_save,
  1782. num_msrs_to_save * sizeof(u32)))
  1783. goto out;
  1784. if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
  1785. &emulated_msrs,
  1786. ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
  1787. goto out;
  1788. r = 0;
  1789. break;
  1790. }
  1791. case KVM_GET_SUPPORTED_CPUID: {
  1792. struct kvm_cpuid2 __user *cpuid_arg = argp;
  1793. struct kvm_cpuid2 cpuid;
  1794. r = -EFAULT;
  1795. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1796. goto out;
  1797. r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
  1798. cpuid_arg->entries);
  1799. if (r)
  1800. goto out;
  1801. r = -EFAULT;
  1802. if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
  1803. goto out;
  1804. r = 0;
  1805. break;
  1806. }
  1807. case KVM_X86_GET_MCE_CAP_SUPPORTED: {
  1808. u64 mce_cap;
  1809. mce_cap = KVM_MCE_CAP_SUPPORTED;
  1810. r = -EFAULT;
  1811. if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
  1812. goto out;
  1813. r = 0;
  1814. break;
  1815. }
  1816. default:
  1817. r = -EINVAL;
  1818. }
  1819. out:
  1820. return r;
  1821. }
  1822. static void wbinvd_ipi(void *garbage)
  1823. {
  1824. wbinvd();
  1825. }
  1826. static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
  1827. {
  1828. return vcpu->kvm->arch.iommu_domain &&
  1829. !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY);
  1830. }
  1831. void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  1832. {
  1833. /* Address WBINVD may be executed by guest */
  1834. if (need_emulate_wbinvd(vcpu)) {
  1835. if (kvm_x86_ops->has_wbinvd_exit())
  1836. cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
  1837. else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
  1838. smp_call_function_single(vcpu->cpu,
  1839. wbinvd_ipi, NULL, 1);
  1840. }
  1841. kvm_x86_ops->vcpu_load(vcpu, cpu);
  1842. if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
  1843. /* Make sure TSC doesn't go backwards */
  1844. s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
  1845. native_read_tsc() - vcpu->arch.last_host_tsc;
  1846. if (tsc_delta < 0)
  1847. mark_tsc_unstable("KVM discovered backwards TSC");
  1848. if (check_tsc_unstable()) {
  1849. kvm_x86_ops->adjust_tsc_offset(vcpu, -tsc_delta);
  1850. vcpu->arch.tsc_catchup = 1;
  1851. kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
  1852. }
  1853. if (vcpu->cpu != cpu)
  1854. kvm_migrate_timers(vcpu);
  1855. vcpu->cpu = cpu;
  1856. }
  1857. }
  1858. void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
  1859. {
  1860. kvm_x86_ops->vcpu_put(vcpu);
  1861. kvm_put_guest_fpu(vcpu);
  1862. vcpu->arch.last_host_tsc = native_read_tsc();
  1863. }
  1864. static int is_efer_nx(void)
  1865. {
  1866. unsigned long long efer = 0;
  1867. rdmsrl_safe(MSR_EFER, &efer);
  1868. return efer & EFER_NX;
  1869. }
  1870. static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
  1871. {
  1872. int i;
  1873. struct kvm_cpuid_entry2 *e, *entry;
  1874. entry = NULL;
  1875. for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
  1876. e = &vcpu->arch.cpuid_entries[i];
  1877. if (e->function == 0x80000001) {
  1878. entry = e;
  1879. break;
  1880. }
  1881. }
  1882. if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
  1883. entry->edx &= ~(1 << 20);
  1884. printk(KERN_INFO "kvm: guest NX capability removed\n");
  1885. }
  1886. }
  1887. /* when an old userspace process fills a new kernel module */
  1888. static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
  1889. struct kvm_cpuid *cpuid,
  1890. struct kvm_cpuid_entry __user *entries)
  1891. {
  1892. int r, i;
  1893. struct kvm_cpuid_entry *cpuid_entries;
  1894. r = -E2BIG;
  1895. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  1896. goto out;
  1897. r = -ENOMEM;
  1898. cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
  1899. if (!cpuid_entries)
  1900. goto out;
  1901. r = -EFAULT;
  1902. if (copy_from_user(cpuid_entries, entries,
  1903. cpuid->nent * sizeof(struct kvm_cpuid_entry)))
  1904. goto out_free;
  1905. for (i = 0; i < cpuid->nent; i++) {
  1906. vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
  1907. vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
  1908. vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
  1909. vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
  1910. vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
  1911. vcpu->arch.cpuid_entries[i].index = 0;
  1912. vcpu->arch.cpuid_entries[i].flags = 0;
  1913. vcpu->arch.cpuid_entries[i].padding[0] = 0;
  1914. vcpu->arch.cpuid_entries[i].padding[1] = 0;
  1915. vcpu->arch.cpuid_entries[i].padding[2] = 0;
  1916. }
  1917. vcpu->arch.cpuid_nent = cpuid->nent;
  1918. cpuid_fix_nx_cap(vcpu);
  1919. r = 0;
  1920. kvm_apic_set_version(vcpu);
  1921. kvm_x86_ops->cpuid_update(vcpu);
  1922. update_cpuid(vcpu);
  1923. out_free:
  1924. vfree(cpuid_entries);
  1925. out:
  1926. return r;
  1927. }
  1928. static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
  1929. struct kvm_cpuid2 *cpuid,
  1930. struct kvm_cpuid_entry2 __user *entries)
  1931. {
  1932. int r;
  1933. r = -E2BIG;
  1934. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  1935. goto out;
  1936. r = -EFAULT;
  1937. if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
  1938. cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
  1939. goto out;
  1940. vcpu->arch.cpuid_nent = cpuid->nent;
  1941. kvm_apic_set_version(vcpu);
  1942. kvm_x86_ops->cpuid_update(vcpu);
  1943. update_cpuid(vcpu);
  1944. return 0;
  1945. out:
  1946. return r;
  1947. }
  1948. static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
  1949. struct kvm_cpuid2 *cpuid,
  1950. struct kvm_cpuid_entry2 __user *entries)
  1951. {
  1952. int r;
  1953. r = -E2BIG;
  1954. if (cpuid->nent < vcpu->arch.cpuid_nent)
  1955. goto out;
  1956. r = -EFAULT;
  1957. if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
  1958. vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
  1959. goto out;
  1960. return 0;
  1961. out:
  1962. cpuid->nent = vcpu->arch.cpuid_nent;
  1963. return r;
  1964. }
  1965. static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
  1966. u32 index)
  1967. {
  1968. entry->function = function;
  1969. entry->index = index;
  1970. cpuid_count(entry->function, entry->index,
  1971. &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
  1972. entry->flags = 0;
  1973. }
  1974. #define F(x) bit(X86_FEATURE_##x)
  1975. static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
  1976. u32 index, int *nent, int maxnent)
  1977. {
  1978. unsigned f_nx = is_efer_nx() ? F(NX) : 0;
  1979. #ifdef CONFIG_X86_64
  1980. unsigned f_gbpages = (kvm_x86_ops->get_lpage_level() == PT_PDPE_LEVEL)
  1981. ? F(GBPAGES) : 0;
  1982. unsigned f_lm = F(LM);
  1983. #else
  1984. unsigned f_gbpages = 0;
  1985. unsigned f_lm = 0;
  1986. #endif
  1987. unsigned f_rdtscp = kvm_x86_ops->rdtscp_supported() ? F(RDTSCP) : 0;
  1988. /* cpuid 1.edx */
  1989. const u32 kvm_supported_word0_x86_features =
  1990. F(FPU) | F(VME) | F(DE) | F(PSE) |
  1991. F(TSC) | F(MSR) | F(PAE) | F(MCE) |
  1992. F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
  1993. F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
  1994. F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLSH) |
  1995. 0 /* Reserved, DS, ACPI */ | F(MMX) |
  1996. F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
  1997. 0 /* HTT, TM, Reserved, PBE */;
  1998. /* cpuid 0x80000001.edx */
  1999. const u32 kvm_supported_word1_x86_features =
  2000. F(FPU) | F(VME) | F(DE) | F(PSE) |
  2001. F(TSC) | F(MSR) | F(PAE) | F(MCE) |
  2002. F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
  2003. F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
  2004. F(PAT) | F(PSE36) | 0 /* Reserved */ |
  2005. f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
  2006. F(FXSR) | F(FXSR_OPT) | f_gbpages | f_rdtscp |
  2007. 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
  2008. /* cpuid 1.ecx */
  2009. const u32 kvm_supported_word4_x86_features =
  2010. F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
  2011. 0 /* DS-CPL, VMX, SMX, EST */ |
  2012. 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
  2013. 0 /* Reserved */ | F(CX16) | 0 /* xTPR Update, PDCM */ |
  2014. 0 /* Reserved, DCA */ | F(XMM4_1) |
  2015. F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
  2016. 0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
  2017. F(F16C);
  2018. /* cpuid 0x80000001.ecx */
  2019. const u32 kvm_supported_word6_x86_features =
  2020. F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
  2021. F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
  2022. F(3DNOWPREFETCH) | 0 /* OSVW */ | 0 /* IBS */ | F(XOP) |
  2023. 0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM);
  2024. /* all calls to cpuid_count() should be made on the same cpu */
  2025. get_cpu();
  2026. do_cpuid_1_ent(entry, function, index);
  2027. ++*nent;
  2028. switch (function) {
  2029. case 0:
  2030. entry->eax = min(entry->eax, (u32)0xd);
  2031. break;
  2032. case 1:
  2033. entry->edx &= kvm_supported_word0_x86_features;
  2034. entry->ecx &= kvm_supported_word4_x86_features;
  2035. /* we support x2apic emulation even if host does not support
  2036. * it since we emulate x2apic in software */
  2037. entry->ecx |= F(X2APIC);
  2038. break;
  2039. /* function 2 entries are STATEFUL. That is, repeated cpuid commands
  2040. * may return different values. This forces us to get_cpu() before
  2041. * issuing the first command, and also to emulate this annoying behavior
  2042. * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
  2043. case 2: {
  2044. int t, times = entry->eax & 0xff;
  2045. entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
  2046. entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
  2047. for (t = 1; t < times && *nent < maxnent; ++t) {
  2048. do_cpuid_1_ent(&entry[t], function, 0);
  2049. entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
  2050. ++*nent;
  2051. }
  2052. break;
  2053. }
  2054. /* function 4 and 0xb have additional index. */
  2055. case 4: {
  2056. int i, cache_type;
  2057. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  2058. /* read more entries until cache_type is zero */
  2059. for (i = 1; *nent < maxnent; ++i) {
  2060. cache_type = entry[i - 1].eax & 0x1f;
  2061. if (!cache_type)
  2062. break;
  2063. do_cpuid_1_ent(&entry[i], function, i);
  2064. entry[i].flags |=
  2065. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  2066. ++*nent;
  2067. }
  2068. break;
  2069. }
  2070. case 0xb: {
  2071. int i, level_type;
  2072. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  2073. /* read more entries until level_type is zero */
  2074. for (i = 1; *nent < maxnent; ++i) {
  2075. level_type = entry[i - 1].ecx & 0xff00;
  2076. if (!level_type)
  2077. break;
  2078. do_cpuid_1_ent(&entry[i], function, i);
  2079. entry[i].flags |=
  2080. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  2081. ++*nent;
  2082. }
  2083. break;
  2084. }
  2085. case 0xd: {
  2086. int i;
  2087. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  2088. for (i = 1; *nent < maxnent; ++i) {
  2089. if (entry[i - 1].eax == 0 && i != 2)
  2090. break;
  2091. do_cpuid_1_ent(&entry[i], function, i);
  2092. entry[i].flags |=
  2093. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  2094. ++*nent;
  2095. }
  2096. break;
  2097. }
  2098. case KVM_CPUID_SIGNATURE: {
  2099. char signature[12] = "KVMKVMKVM\0\0";
  2100. u32 *sigptr = (u32 *)signature;
  2101. entry->eax = 0;
  2102. entry->ebx = sigptr[0];
  2103. entry->ecx = sigptr[1];
  2104. entry->edx = sigptr[2];
  2105. break;
  2106. }
  2107. case KVM_CPUID_FEATURES:
  2108. entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
  2109. (1 << KVM_FEATURE_NOP_IO_DELAY) |
  2110. (1 << KVM_FEATURE_CLOCKSOURCE2) |
  2111. (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT);
  2112. entry->ebx = 0;
  2113. entry->ecx = 0;
  2114. entry->edx = 0;
  2115. break;
  2116. case 0x80000000:
  2117. entry->eax = min(entry->eax, 0x8000001a);
  2118. break;
  2119. case 0x80000001:
  2120. entry->edx &= kvm_supported_word1_x86_features;
  2121. entry->ecx &= kvm_supported_word6_x86_features;
  2122. break;
  2123. }
  2124. kvm_x86_ops->set_supported_cpuid(function, entry);
  2125. put_cpu();
  2126. }
  2127. #undef F
  2128. static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
  2129. struct kvm_cpuid_entry2 __user *entries)
  2130. {
  2131. struct kvm_cpuid_entry2 *cpuid_entries;
  2132. int limit, nent = 0, r = -E2BIG;
  2133. u32 func;
  2134. if (cpuid->nent < 1)
  2135. goto out;
  2136. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  2137. cpuid->nent = KVM_MAX_CPUID_ENTRIES;
  2138. r = -ENOMEM;
  2139. cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
  2140. if (!cpuid_entries)
  2141. goto out;
  2142. do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
  2143. limit = cpuid_entries[0].eax;
  2144. for (func = 1; func <= limit && nent < cpuid->nent; ++func)
  2145. do_cpuid_ent(&cpuid_entries[nent], func, 0,
  2146. &nent, cpuid->nent);
  2147. r = -E2BIG;
  2148. if (nent >= cpuid->nent)
  2149. goto out_free;
  2150. do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
  2151. limit = cpuid_entries[nent - 1].eax;
  2152. for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
  2153. do_cpuid_ent(&cpuid_entries[nent], func, 0,
  2154. &nent, cpuid->nent);
  2155. r = -E2BIG;
  2156. if (nent >= cpuid->nent)
  2157. goto out_free;
  2158. do_cpuid_ent(&cpuid_entries[nent], KVM_CPUID_SIGNATURE, 0, &nent,
  2159. cpuid->nent);
  2160. r = -E2BIG;
  2161. if (nent >= cpuid->nent)
  2162. goto out_free;
  2163. do_cpuid_ent(&cpuid_entries[nent], KVM_CPUID_FEATURES, 0, &nent,
  2164. cpuid->nent);
  2165. r = -E2BIG;
  2166. if (nent >= cpuid->nent)
  2167. goto out_free;
  2168. r = -EFAULT;
  2169. if (copy_to_user(entries, cpuid_entries,
  2170. nent * sizeof(struct kvm_cpuid_entry2)))
  2171. goto out_free;
  2172. cpuid->nent = nent;
  2173. r = 0;
  2174. out_free:
  2175. vfree(cpuid_entries);
  2176. out:
  2177. return r;
  2178. }
  2179. static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
  2180. struct kvm_lapic_state *s)
  2181. {
  2182. memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
  2183. return 0;
  2184. }
  2185. static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
  2186. struct kvm_lapic_state *s)
  2187. {
  2188. memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
  2189. kvm_apic_post_state_restore(vcpu);
  2190. update_cr8_intercept(vcpu);
  2191. return 0;
  2192. }
  2193. static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
  2194. struct kvm_interrupt *irq)
  2195. {
  2196. if (irq->irq < 0 || irq->irq >= 256)
  2197. return -EINVAL;
  2198. if (irqchip_in_kernel(vcpu->kvm))
  2199. return -ENXIO;
  2200. kvm_queue_interrupt(vcpu, irq->irq, false);
  2201. kvm_make_request(KVM_REQ_EVENT, vcpu);
  2202. return 0;
  2203. }
  2204. static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
  2205. {
  2206. kvm_inject_nmi(vcpu);
  2207. return 0;
  2208. }
  2209. static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
  2210. struct kvm_tpr_access_ctl *tac)
  2211. {
  2212. if (tac->flags)
  2213. return -EINVAL;
  2214. vcpu->arch.tpr_access_reporting = !!tac->enabled;
  2215. return 0;
  2216. }
  2217. static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
  2218. u64 mcg_cap)
  2219. {
  2220. int r;
  2221. unsigned bank_num = mcg_cap & 0xff, bank;
  2222. r = -EINVAL;
  2223. if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
  2224. goto out;
  2225. if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
  2226. goto out;
  2227. r = 0;
  2228. vcpu->arch.mcg_cap = mcg_cap;
  2229. /* Init IA32_MCG_CTL to all 1s */
  2230. if (mcg_cap & MCG_CTL_P)
  2231. vcpu->arch.mcg_ctl = ~(u64)0;
  2232. /* Init IA32_MCi_CTL to all 1s */
  2233. for (bank = 0; bank < bank_num; bank++)
  2234. vcpu->arch.mce_banks[bank*4] = ~(u64)0;
  2235. out:
  2236. return r;
  2237. }
  2238. static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
  2239. struct kvm_x86_mce *mce)
  2240. {
  2241. u64 mcg_cap = vcpu->arch.mcg_cap;
  2242. unsigned bank_num = mcg_cap & 0xff;
  2243. u64 *banks = vcpu->arch.mce_banks;
  2244. if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
  2245. return -EINVAL;
  2246. /*
  2247. * if IA32_MCG_CTL is not all 1s, the uncorrected error
  2248. * reporting is disabled
  2249. */
  2250. if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
  2251. vcpu->arch.mcg_ctl != ~(u64)0)
  2252. return 0;
  2253. banks += 4 * mce->bank;
  2254. /*
  2255. * if IA32_MCi_CTL is not all 1s, the uncorrected error
  2256. * reporting is disabled for the bank
  2257. */
  2258. if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
  2259. return 0;
  2260. if (mce->status & MCI_STATUS_UC) {
  2261. if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
  2262. !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
  2263. printk(KERN_DEBUG "kvm: set_mce: "
  2264. "injects mce exception while "
  2265. "previous one is in progress!\n");
  2266. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  2267. return 0;
  2268. }
  2269. if (banks[1] & MCI_STATUS_VAL)
  2270. mce->status |= MCI_STATUS_OVER;
  2271. banks[2] = mce->addr;
  2272. banks[3] = mce->misc;
  2273. vcpu->arch.mcg_status = mce->mcg_status;
  2274. banks[1] = mce->status;
  2275. kvm_queue_exception(vcpu, MC_VECTOR);
  2276. } else if (!(banks[1] & MCI_STATUS_VAL)
  2277. || !(banks[1] & MCI_STATUS_UC)) {
  2278. if (banks[1] & MCI_STATUS_VAL)
  2279. mce->status |= MCI_STATUS_OVER;
  2280. banks[2] = mce->addr;
  2281. banks[3] = mce->misc;
  2282. banks[1] = mce->status;
  2283. } else
  2284. banks[1] |= MCI_STATUS_OVER;
  2285. return 0;
  2286. }
  2287. static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
  2288. struct kvm_vcpu_events *events)
  2289. {
  2290. events->exception.injected =
  2291. vcpu->arch.exception.pending &&
  2292. !kvm_exception_is_soft(vcpu->arch.exception.nr);
  2293. events->exception.nr = vcpu->arch.exception.nr;
  2294. events->exception.has_error_code = vcpu->arch.exception.has_error_code;
  2295. events->exception.pad = 0;
  2296. events->exception.error_code = vcpu->arch.exception.error_code;
  2297. events->interrupt.injected =
  2298. vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
  2299. events->interrupt.nr = vcpu->arch.interrupt.nr;
  2300. events->interrupt.soft = 0;
  2301. events->interrupt.shadow =
  2302. kvm_x86_ops->get_interrupt_shadow(vcpu,
  2303. KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI);
  2304. events->nmi.injected = vcpu->arch.nmi_injected;
  2305. events->nmi.pending = vcpu->arch.nmi_pending;
  2306. events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
  2307. events->nmi.pad = 0;
  2308. events->sipi_vector = vcpu->arch.sipi_vector;
  2309. events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
  2310. | KVM_VCPUEVENT_VALID_SIPI_VECTOR
  2311. | KVM_VCPUEVENT_VALID_SHADOW);
  2312. memset(&events->reserved, 0, sizeof(events->reserved));
  2313. }
  2314. static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
  2315. struct kvm_vcpu_events *events)
  2316. {
  2317. if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
  2318. | KVM_VCPUEVENT_VALID_SIPI_VECTOR
  2319. | KVM_VCPUEVENT_VALID_SHADOW))
  2320. return -EINVAL;
  2321. vcpu->arch.exception.pending = events->exception.injected;
  2322. vcpu->arch.exception.nr = events->exception.nr;
  2323. vcpu->arch.exception.has_error_code = events->exception.has_error_code;
  2324. vcpu->arch.exception.error_code = events->exception.error_code;
  2325. vcpu->arch.interrupt.pending = events->interrupt.injected;
  2326. vcpu->arch.interrupt.nr = events->interrupt.nr;
  2327. vcpu->arch.interrupt.soft = events->interrupt.soft;
  2328. if (vcpu->arch.interrupt.pending && irqchip_in_kernel(vcpu->kvm))
  2329. kvm_pic_clear_isr_ack(vcpu->kvm);
  2330. if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
  2331. kvm_x86_ops->set_interrupt_shadow(vcpu,
  2332. events->interrupt.shadow);
  2333. vcpu->arch.nmi_injected = events->nmi.injected;
  2334. if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
  2335. vcpu->arch.nmi_pending = events->nmi.pending;
  2336. kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
  2337. if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR)
  2338. vcpu->arch.sipi_vector = events->sipi_vector;
  2339. kvm_make_request(KVM_REQ_EVENT, vcpu);
  2340. return 0;
  2341. }
  2342. static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
  2343. struct kvm_debugregs *dbgregs)
  2344. {
  2345. memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
  2346. dbgregs->dr6 = vcpu->arch.dr6;
  2347. dbgregs->dr7 = vcpu->arch.dr7;
  2348. dbgregs->flags = 0;
  2349. memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
  2350. }
  2351. static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
  2352. struct kvm_debugregs *dbgregs)
  2353. {
  2354. if (dbgregs->flags)
  2355. return -EINVAL;
  2356. memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
  2357. vcpu->arch.dr6 = dbgregs->dr6;
  2358. vcpu->arch.dr7 = dbgregs->dr7;
  2359. return 0;
  2360. }
  2361. static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
  2362. struct kvm_xsave *guest_xsave)
  2363. {
  2364. if (cpu_has_xsave)
  2365. memcpy(guest_xsave->region,
  2366. &vcpu->arch.guest_fpu.state->xsave,
  2367. xstate_size);
  2368. else {
  2369. memcpy(guest_xsave->region,
  2370. &vcpu->arch.guest_fpu.state->fxsave,
  2371. sizeof(struct i387_fxsave_struct));
  2372. *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
  2373. XSTATE_FPSSE;
  2374. }
  2375. }
  2376. static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
  2377. struct kvm_xsave *guest_xsave)
  2378. {
  2379. u64 xstate_bv =
  2380. *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
  2381. if (cpu_has_xsave)
  2382. memcpy(&vcpu->arch.guest_fpu.state->xsave,
  2383. guest_xsave->region, xstate_size);
  2384. else {
  2385. if (xstate_bv & ~XSTATE_FPSSE)
  2386. return -EINVAL;
  2387. memcpy(&vcpu->arch.guest_fpu.state->fxsave,
  2388. guest_xsave->region, sizeof(struct i387_fxsave_struct));
  2389. }
  2390. return 0;
  2391. }
  2392. static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
  2393. struct kvm_xcrs *guest_xcrs)
  2394. {
  2395. if (!cpu_has_xsave) {
  2396. guest_xcrs->nr_xcrs = 0;
  2397. return;
  2398. }
  2399. guest_xcrs->nr_xcrs = 1;
  2400. guest_xcrs->flags = 0;
  2401. guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
  2402. guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
  2403. }
  2404. static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
  2405. struct kvm_xcrs *guest_xcrs)
  2406. {
  2407. int i, r = 0;
  2408. if (!cpu_has_xsave)
  2409. return -EINVAL;
  2410. if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
  2411. return -EINVAL;
  2412. for (i = 0; i < guest_xcrs->nr_xcrs; i++)
  2413. /* Only support XCR0 currently */
  2414. if (guest_xcrs->xcrs[0].xcr == XCR_XFEATURE_ENABLED_MASK) {
  2415. r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
  2416. guest_xcrs->xcrs[0].value);
  2417. break;
  2418. }
  2419. if (r)
  2420. r = -EINVAL;
  2421. return r;
  2422. }
  2423. long kvm_arch_vcpu_ioctl(struct file *filp,
  2424. unsigned int ioctl, unsigned long arg)
  2425. {
  2426. struct kvm_vcpu *vcpu = filp->private_data;
  2427. void __user *argp = (void __user *)arg;
  2428. int r;
  2429. union {
  2430. struct kvm_lapic_state *lapic;
  2431. struct kvm_xsave *xsave;
  2432. struct kvm_xcrs *xcrs;
  2433. void *buffer;
  2434. } u;
  2435. u.buffer = NULL;
  2436. switch (ioctl) {
  2437. case KVM_GET_LAPIC: {
  2438. r = -EINVAL;
  2439. if (!vcpu->arch.apic)
  2440. goto out;
  2441. u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
  2442. r = -ENOMEM;
  2443. if (!u.lapic)
  2444. goto out;
  2445. r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
  2446. if (r)
  2447. goto out;
  2448. r = -EFAULT;
  2449. if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
  2450. goto out;
  2451. r = 0;
  2452. break;
  2453. }
  2454. case KVM_SET_LAPIC: {
  2455. r = -EINVAL;
  2456. if (!vcpu->arch.apic)
  2457. goto out;
  2458. u.lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
  2459. r = -ENOMEM;
  2460. if (!u.lapic)
  2461. goto out;
  2462. r = -EFAULT;
  2463. if (copy_from_user(u.lapic, argp, sizeof(struct kvm_lapic_state)))
  2464. goto out;
  2465. r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
  2466. if (r)
  2467. goto out;
  2468. r = 0;
  2469. break;
  2470. }
  2471. case KVM_INTERRUPT: {
  2472. struct kvm_interrupt irq;
  2473. r = -EFAULT;
  2474. if (copy_from_user(&irq, argp, sizeof irq))
  2475. goto out;
  2476. r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
  2477. if (r)
  2478. goto out;
  2479. r = 0;
  2480. break;
  2481. }
  2482. case KVM_NMI: {
  2483. r = kvm_vcpu_ioctl_nmi(vcpu);
  2484. if (r)
  2485. goto out;
  2486. r = 0;
  2487. break;
  2488. }
  2489. case KVM_SET_CPUID: {
  2490. struct kvm_cpuid __user *cpuid_arg = argp;
  2491. struct kvm_cpuid cpuid;
  2492. r = -EFAULT;
  2493. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  2494. goto out;
  2495. r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
  2496. if (r)
  2497. goto out;
  2498. break;
  2499. }
  2500. case KVM_SET_CPUID2: {
  2501. struct kvm_cpuid2 __user *cpuid_arg = argp;
  2502. struct kvm_cpuid2 cpuid;
  2503. r = -EFAULT;
  2504. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  2505. goto out;
  2506. r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
  2507. cpuid_arg->entries);
  2508. if (r)
  2509. goto out;
  2510. break;
  2511. }
  2512. case KVM_GET_CPUID2: {
  2513. struct kvm_cpuid2 __user *cpuid_arg = argp;
  2514. struct kvm_cpuid2 cpuid;
  2515. r = -EFAULT;
  2516. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  2517. goto out;
  2518. r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
  2519. cpuid_arg->entries);
  2520. if (r)
  2521. goto out;
  2522. r = -EFAULT;
  2523. if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
  2524. goto out;
  2525. r = 0;
  2526. break;
  2527. }
  2528. case KVM_GET_MSRS:
  2529. r = msr_io(vcpu, argp, kvm_get_msr, 1);
  2530. break;
  2531. case KVM_SET_MSRS:
  2532. r = msr_io(vcpu, argp, do_set_msr, 0);
  2533. break;
  2534. case KVM_TPR_ACCESS_REPORTING: {
  2535. struct kvm_tpr_access_ctl tac;
  2536. r = -EFAULT;
  2537. if (copy_from_user(&tac, argp, sizeof tac))
  2538. goto out;
  2539. r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
  2540. if (r)
  2541. goto out;
  2542. r = -EFAULT;
  2543. if (copy_to_user(argp, &tac, sizeof tac))
  2544. goto out;
  2545. r = 0;
  2546. break;
  2547. };
  2548. case KVM_SET_VAPIC_ADDR: {
  2549. struct kvm_vapic_addr va;
  2550. r = -EINVAL;
  2551. if (!irqchip_in_kernel(vcpu->kvm))
  2552. goto out;
  2553. r = -EFAULT;
  2554. if (copy_from_user(&va, argp, sizeof va))
  2555. goto out;
  2556. r = 0;
  2557. kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
  2558. break;
  2559. }
  2560. case KVM_X86_SETUP_MCE: {
  2561. u64 mcg_cap;
  2562. r = -EFAULT;
  2563. if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
  2564. goto out;
  2565. r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
  2566. break;
  2567. }
  2568. case KVM_X86_SET_MCE: {
  2569. struct kvm_x86_mce mce;
  2570. r = -EFAULT;
  2571. if (copy_from_user(&mce, argp, sizeof mce))
  2572. goto out;
  2573. r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
  2574. break;
  2575. }
  2576. case KVM_GET_VCPU_EVENTS: {
  2577. struct kvm_vcpu_events events;
  2578. kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
  2579. r = -EFAULT;
  2580. if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
  2581. break;
  2582. r = 0;
  2583. break;
  2584. }
  2585. case KVM_SET_VCPU_EVENTS: {
  2586. struct kvm_vcpu_events events;
  2587. r = -EFAULT;
  2588. if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
  2589. break;
  2590. r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
  2591. break;
  2592. }
  2593. case KVM_GET_DEBUGREGS: {
  2594. struct kvm_debugregs dbgregs;
  2595. kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
  2596. r = -EFAULT;
  2597. if (copy_to_user(argp, &dbgregs,
  2598. sizeof(struct kvm_debugregs)))
  2599. break;
  2600. r = 0;
  2601. break;
  2602. }
  2603. case KVM_SET_DEBUGREGS: {
  2604. struct kvm_debugregs dbgregs;
  2605. r = -EFAULT;
  2606. if (copy_from_user(&dbgregs, argp,
  2607. sizeof(struct kvm_debugregs)))
  2608. break;
  2609. r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
  2610. break;
  2611. }
  2612. case KVM_GET_XSAVE: {
  2613. u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
  2614. r = -ENOMEM;
  2615. if (!u.xsave)
  2616. break;
  2617. kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
  2618. r = -EFAULT;
  2619. if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
  2620. break;
  2621. r = 0;
  2622. break;
  2623. }
  2624. case KVM_SET_XSAVE: {
  2625. u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
  2626. r = -ENOMEM;
  2627. if (!u.xsave)
  2628. break;
  2629. r = -EFAULT;
  2630. if (copy_from_user(u.xsave, argp, sizeof(struct kvm_xsave)))
  2631. break;
  2632. r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
  2633. break;
  2634. }
  2635. case KVM_GET_XCRS: {
  2636. u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
  2637. r = -ENOMEM;
  2638. if (!u.xcrs)
  2639. break;
  2640. kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
  2641. r = -EFAULT;
  2642. if (copy_to_user(argp, u.xcrs,
  2643. sizeof(struct kvm_xcrs)))
  2644. break;
  2645. r = 0;
  2646. break;
  2647. }
  2648. case KVM_SET_XCRS: {
  2649. u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
  2650. r = -ENOMEM;
  2651. if (!u.xcrs)
  2652. break;
  2653. r = -EFAULT;
  2654. if (copy_from_user(u.xcrs, argp,
  2655. sizeof(struct kvm_xcrs)))
  2656. break;
  2657. r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
  2658. break;
  2659. }
  2660. default:
  2661. r = -EINVAL;
  2662. }
  2663. out:
  2664. kfree(u.buffer);
  2665. return r;
  2666. }
  2667. static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
  2668. {
  2669. int ret;
  2670. if (addr > (unsigned int)(-3 * PAGE_SIZE))
  2671. return -1;
  2672. ret = kvm_x86_ops->set_tss_addr(kvm, addr);
  2673. return ret;
  2674. }
  2675. static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
  2676. u64 ident_addr)
  2677. {
  2678. kvm->arch.ept_identity_map_addr = ident_addr;
  2679. return 0;
  2680. }
  2681. static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
  2682. u32 kvm_nr_mmu_pages)
  2683. {
  2684. if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
  2685. return -EINVAL;
  2686. mutex_lock(&kvm->slots_lock);
  2687. spin_lock(&kvm->mmu_lock);
  2688. kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
  2689. kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
  2690. spin_unlock(&kvm->mmu_lock);
  2691. mutex_unlock(&kvm->slots_lock);
  2692. return 0;
  2693. }
  2694. static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
  2695. {
  2696. return kvm->arch.n_max_mmu_pages;
  2697. }
  2698. static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  2699. {
  2700. int r;
  2701. r = 0;
  2702. switch (chip->chip_id) {
  2703. case KVM_IRQCHIP_PIC_MASTER:
  2704. memcpy(&chip->chip.pic,
  2705. &pic_irqchip(kvm)->pics[0],
  2706. sizeof(struct kvm_pic_state));
  2707. break;
  2708. case KVM_IRQCHIP_PIC_SLAVE:
  2709. memcpy(&chip->chip.pic,
  2710. &pic_irqchip(kvm)->pics[1],
  2711. sizeof(struct kvm_pic_state));
  2712. break;
  2713. case KVM_IRQCHIP_IOAPIC:
  2714. r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
  2715. break;
  2716. default:
  2717. r = -EINVAL;
  2718. break;
  2719. }
  2720. return r;
  2721. }
  2722. static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  2723. {
  2724. int r;
  2725. r = 0;
  2726. switch (chip->chip_id) {
  2727. case KVM_IRQCHIP_PIC_MASTER:
  2728. spin_lock(&pic_irqchip(kvm)->lock);
  2729. memcpy(&pic_irqchip(kvm)->pics[0],
  2730. &chip->chip.pic,
  2731. sizeof(struct kvm_pic_state));
  2732. spin_unlock(&pic_irqchip(kvm)->lock);
  2733. break;
  2734. case KVM_IRQCHIP_PIC_SLAVE:
  2735. spin_lock(&pic_irqchip(kvm)->lock);
  2736. memcpy(&pic_irqchip(kvm)->pics[1],
  2737. &chip->chip.pic,
  2738. sizeof(struct kvm_pic_state));
  2739. spin_unlock(&pic_irqchip(kvm)->lock);
  2740. break;
  2741. case KVM_IRQCHIP_IOAPIC:
  2742. r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
  2743. break;
  2744. default:
  2745. r = -EINVAL;
  2746. break;
  2747. }
  2748. kvm_pic_update_irq(pic_irqchip(kvm));
  2749. return r;
  2750. }
  2751. static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
  2752. {
  2753. int r = 0;
  2754. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2755. memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
  2756. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2757. return r;
  2758. }
  2759. static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
  2760. {
  2761. int r = 0;
  2762. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2763. memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
  2764. kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
  2765. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2766. return r;
  2767. }
  2768. static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
  2769. {
  2770. int r = 0;
  2771. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2772. memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
  2773. sizeof(ps->channels));
  2774. ps->flags = kvm->arch.vpit->pit_state.flags;
  2775. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2776. memset(&ps->reserved, 0, sizeof(ps->reserved));
  2777. return r;
  2778. }
  2779. static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
  2780. {
  2781. int r = 0, start = 0;
  2782. u32 prev_legacy, cur_legacy;
  2783. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2784. prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
  2785. cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
  2786. if (!prev_legacy && cur_legacy)
  2787. start = 1;
  2788. memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
  2789. sizeof(kvm->arch.vpit->pit_state.channels));
  2790. kvm->arch.vpit->pit_state.flags = ps->flags;
  2791. kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
  2792. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2793. return r;
  2794. }
  2795. static int kvm_vm_ioctl_reinject(struct kvm *kvm,
  2796. struct kvm_reinject_control *control)
  2797. {
  2798. if (!kvm->arch.vpit)
  2799. return -ENXIO;
  2800. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2801. kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
  2802. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2803. return 0;
  2804. }
  2805. /*
  2806. * Get (and clear) the dirty memory log for a memory slot.
  2807. */
  2808. int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
  2809. struct kvm_dirty_log *log)
  2810. {
  2811. int r, i;
  2812. struct kvm_memory_slot *memslot;
  2813. unsigned long n;
  2814. unsigned long is_dirty = 0;
  2815. mutex_lock(&kvm->slots_lock);
  2816. r = -EINVAL;
  2817. if (log->slot >= KVM_MEMORY_SLOTS)
  2818. goto out;
  2819. memslot = &kvm->memslots->memslots[log->slot];
  2820. r = -ENOENT;
  2821. if (!memslot->dirty_bitmap)
  2822. goto out;
  2823. n = kvm_dirty_bitmap_bytes(memslot);
  2824. for (i = 0; !is_dirty && i < n/sizeof(long); i++)
  2825. is_dirty = memslot->dirty_bitmap[i];
  2826. /* If nothing is dirty, don't bother messing with page tables. */
  2827. if (is_dirty) {
  2828. struct kvm_memslots *slots, *old_slots;
  2829. unsigned long *dirty_bitmap;
  2830. dirty_bitmap = memslot->dirty_bitmap_head;
  2831. if (memslot->dirty_bitmap == dirty_bitmap)
  2832. dirty_bitmap += n / sizeof(long);
  2833. memset(dirty_bitmap, 0, n);
  2834. r = -ENOMEM;
  2835. slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
  2836. if (!slots)
  2837. goto out;
  2838. memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
  2839. slots->memslots[log->slot].dirty_bitmap = dirty_bitmap;
  2840. slots->generation++;
  2841. old_slots = kvm->memslots;
  2842. rcu_assign_pointer(kvm->memslots, slots);
  2843. synchronize_srcu_expedited(&kvm->srcu);
  2844. dirty_bitmap = old_slots->memslots[log->slot].dirty_bitmap;
  2845. kfree(old_slots);
  2846. spin_lock(&kvm->mmu_lock);
  2847. kvm_mmu_slot_remove_write_access(kvm, log->slot);
  2848. spin_unlock(&kvm->mmu_lock);
  2849. r = -EFAULT;
  2850. if (copy_to_user(log->dirty_bitmap, dirty_bitmap, n))
  2851. goto out;
  2852. } else {
  2853. r = -EFAULT;
  2854. if (clear_user(log->dirty_bitmap, n))
  2855. goto out;
  2856. }
  2857. r = 0;
  2858. out:
  2859. mutex_unlock(&kvm->slots_lock);
  2860. return r;
  2861. }
  2862. long kvm_arch_vm_ioctl(struct file *filp,
  2863. unsigned int ioctl, unsigned long arg)
  2864. {
  2865. struct kvm *kvm = filp->private_data;
  2866. void __user *argp = (void __user *)arg;
  2867. int r = -ENOTTY;
  2868. /*
  2869. * This union makes it completely explicit to gcc-3.x
  2870. * that these two variables' stack usage should be
  2871. * combined, not added together.
  2872. */
  2873. union {
  2874. struct kvm_pit_state ps;
  2875. struct kvm_pit_state2 ps2;
  2876. struct kvm_pit_config pit_config;
  2877. } u;
  2878. switch (ioctl) {
  2879. case KVM_SET_TSS_ADDR:
  2880. r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
  2881. if (r < 0)
  2882. goto out;
  2883. break;
  2884. case KVM_SET_IDENTITY_MAP_ADDR: {
  2885. u64 ident_addr;
  2886. r = -EFAULT;
  2887. if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
  2888. goto out;
  2889. r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
  2890. if (r < 0)
  2891. goto out;
  2892. break;
  2893. }
  2894. case KVM_SET_NR_MMU_PAGES:
  2895. r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
  2896. if (r)
  2897. goto out;
  2898. break;
  2899. case KVM_GET_NR_MMU_PAGES:
  2900. r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
  2901. break;
  2902. case KVM_CREATE_IRQCHIP: {
  2903. struct kvm_pic *vpic;
  2904. mutex_lock(&kvm->lock);
  2905. r = -EEXIST;
  2906. if (kvm->arch.vpic)
  2907. goto create_irqchip_unlock;
  2908. r = -ENOMEM;
  2909. vpic = kvm_create_pic(kvm);
  2910. if (vpic) {
  2911. r = kvm_ioapic_init(kvm);
  2912. if (r) {
  2913. kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
  2914. &vpic->dev);
  2915. kfree(vpic);
  2916. goto create_irqchip_unlock;
  2917. }
  2918. } else
  2919. goto create_irqchip_unlock;
  2920. smp_wmb();
  2921. kvm->arch.vpic = vpic;
  2922. smp_wmb();
  2923. r = kvm_setup_default_irq_routing(kvm);
  2924. if (r) {
  2925. mutex_lock(&kvm->irq_lock);
  2926. kvm_ioapic_destroy(kvm);
  2927. kvm_destroy_pic(kvm);
  2928. mutex_unlock(&kvm->irq_lock);
  2929. }
  2930. create_irqchip_unlock:
  2931. mutex_unlock(&kvm->lock);
  2932. break;
  2933. }
  2934. case KVM_CREATE_PIT:
  2935. u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
  2936. goto create_pit;
  2937. case KVM_CREATE_PIT2:
  2938. r = -EFAULT;
  2939. if (copy_from_user(&u.pit_config, argp,
  2940. sizeof(struct kvm_pit_config)))
  2941. goto out;
  2942. create_pit:
  2943. mutex_lock(&kvm->slots_lock);
  2944. r = -EEXIST;
  2945. if (kvm->arch.vpit)
  2946. goto create_pit_unlock;
  2947. r = -ENOMEM;
  2948. kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
  2949. if (kvm->arch.vpit)
  2950. r = 0;
  2951. create_pit_unlock:
  2952. mutex_unlock(&kvm->slots_lock);
  2953. break;
  2954. case KVM_IRQ_LINE_STATUS:
  2955. case KVM_IRQ_LINE: {
  2956. struct kvm_irq_level irq_event;
  2957. r = -EFAULT;
  2958. if (copy_from_user(&irq_event, argp, sizeof irq_event))
  2959. goto out;
  2960. r = -ENXIO;
  2961. if (irqchip_in_kernel(kvm)) {
  2962. __s32 status;
  2963. status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
  2964. irq_event.irq, irq_event.level);
  2965. if (ioctl == KVM_IRQ_LINE_STATUS) {
  2966. r = -EFAULT;
  2967. irq_event.status = status;
  2968. if (copy_to_user(argp, &irq_event,
  2969. sizeof irq_event))
  2970. goto out;
  2971. }
  2972. r = 0;
  2973. }
  2974. break;
  2975. }
  2976. case KVM_GET_IRQCHIP: {
  2977. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  2978. struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
  2979. r = -ENOMEM;
  2980. if (!chip)
  2981. goto out;
  2982. r = -EFAULT;
  2983. if (copy_from_user(chip, argp, sizeof *chip))
  2984. goto get_irqchip_out;
  2985. r = -ENXIO;
  2986. if (!irqchip_in_kernel(kvm))
  2987. goto get_irqchip_out;
  2988. r = kvm_vm_ioctl_get_irqchip(kvm, chip);
  2989. if (r)
  2990. goto get_irqchip_out;
  2991. r = -EFAULT;
  2992. if (copy_to_user(argp, chip, sizeof *chip))
  2993. goto get_irqchip_out;
  2994. r = 0;
  2995. get_irqchip_out:
  2996. kfree(chip);
  2997. if (r)
  2998. goto out;
  2999. break;
  3000. }
  3001. case KVM_SET_IRQCHIP: {
  3002. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  3003. struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
  3004. r = -ENOMEM;
  3005. if (!chip)
  3006. goto out;
  3007. r = -EFAULT;
  3008. if (copy_from_user(chip, argp, sizeof *chip))
  3009. goto set_irqchip_out;
  3010. r = -ENXIO;
  3011. if (!irqchip_in_kernel(kvm))
  3012. goto set_irqchip_out;
  3013. r = kvm_vm_ioctl_set_irqchip(kvm, chip);
  3014. if (r)
  3015. goto set_irqchip_out;
  3016. r = 0;
  3017. set_irqchip_out:
  3018. kfree(chip);
  3019. if (r)
  3020. goto out;
  3021. break;
  3022. }
  3023. case KVM_GET_PIT: {
  3024. r = -EFAULT;
  3025. if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
  3026. goto out;
  3027. r = -ENXIO;
  3028. if (!kvm->arch.vpit)
  3029. goto out;
  3030. r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
  3031. if (r)
  3032. goto out;
  3033. r = -EFAULT;
  3034. if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
  3035. goto out;
  3036. r = 0;
  3037. break;
  3038. }
  3039. case KVM_SET_PIT: {
  3040. r = -EFAULT;
  3041. if (copy_from_user(&u.ps, argp, sizeof u.ps))
  3042. goto out;
  3043. r = -ENXIO;
  3044. if (!kvm->arch.vpit)
  3045. goto out;
  3046. r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
  3047. if (r)
  3048. goto out;
  3049. r = 0;
  3050. break;
  3051. }
  3052. case KVM_GET_PIT2: {
  3053. r = -ENXIO;
  3054. if (!kvm->arch.vpit)
  3055. goto out;
  3056. r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
  3057. if (r)
  3058. goto out;
  3059. r = -EFAULT;
  3060. if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
  3061. goto out;
  3062. r = 0;
  3063. break;
  3064. }
  3065. case KVM_SET_PIT2: {
  3066. r = -EFAULT;
  3067. if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
  3068. goto out;
  3069. r = -ENXIO;
  3070. if (!kvm->arch.vpit)
  3071. goto out;
  3072. r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
  3073. if (r)
  3074. goto out;
  3075. r = 0;
  3076. break;
  3077. }
  3078. case KVM_REINJECT_CONTROL: {
  3079. struct kvm_reinject_control control;
  3080. r = -EFAULT;
  3081. if (copy_from_user(&control, argp, sizeof(control)))
  3082. goto out;
  3083. r = kvm_vm_ioctl_reinject(kvm, &control);
  3084. if (r)
  3085. goto out;
  3086. r = 0;
  3087. break;
  3088. }
  3089. case KVM_XEN_HVM_CONFIG: {
  3090. r = -EFAULT;
  3091. if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
  3092. sizeof(struct kvm_xen_hvm_config)))
  3093. goto out;
  3094. r = -EINVAL;
  3095. if (kvm->arch.xen_hvm_config.flags)
  3096. goto out;
  3097. r = 0;
  3098. break;
  3099. }
  3100. case KVM_SET_CLOCK: {
  3101. struct kvm_clock_data user_ns;
  3102. u64 now_ns;
  3103. s64 delta;
  3104. r = -EFAULT;
  3105. if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
  3106. goto out;
  3107. r = -EINVAL;
  3108. if (user_ns.flags)
  3109. goto out;
  3110. r = 0;
  3111. local_irq_disable();
  3112. now_ns = get_kernel_ns();
  3113. delta = user_ns.clock - now_ns;
  3114. local_irq_enable();
  3115. kvm->arch.kvmclock_offset = delta;
  3116. break;
  3117. }
  3118. case KVM_GET_CLOCK: {
  3119. struct kvm_clock_data user_ns;
  3120. u64 now_ns;
  3121. local_irq_disable();
  3122. now_ns = get_kernel_ns();
  3123. user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
  3124. local_irq_enable();
  3125. user_ns.flags = 0;
  3126. memset(&user_ns.pad, 0, sizeof(user_ns.pad));
  3127. r = -EFAULT;
  3128. if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
  3129. goto out;
  3130. r = 0;
  3131. break;
  3132. }
  3133. default:
  3134. ;
  3135. }
  3136. out:
  3137. return r;
  3138. }
  3139. static void kvm_init_msr_list(void)
  3140. {
  3141. u32 dummy[2];
  3142. unsigned i, j;
  3143. /* skip the first msrs in the list. KVM-specific */
  3144. for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
  3145. if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
  3146. continue;
  3147. if (j < i)
  3148. msrs_to_save[j] = msrs_to_save[i];
  3149. j++;
  3150. }
  3151. num_msrs_to_save = j;
  3152. }
  3153. static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
  3154. const void *v)
  3155. {
  3156. if (vcpu->arch.apic &&
  3157. !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, len, v))
  3158. return 0;
  3159. return kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, len, v);
  3160. }
  3161. static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
  3162. {
  3163. if (vcpu->arch.apic &&
  3164. !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, len, v))
  3165. return 0;
  3166. return kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, len, v);
  3167. }
  3168. static void kvm_set_segment(struct kvm_vcpu *vcpu,
  3169. struct kvm_segment *var, int seg)
  3170. {
  3171. kvm_x86_ops->set_segment(vcpu, var, seg);
  3172. }
  3173. void kvm_get_segment(struct kvm_vcpu *vcpu,
  3174. struct kvm_segment *var, int seg)
  3175. {
  3176. kvm_x86_ops->get_segment(vcpu, var, seg);
  3177. }
  3178. static gpa_t translate_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access)
  3179. {
  3180. return gpa;
  3181. }
  3182. static gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access)
  3183. {
  3184. gpa_t t_gpa;
  3185. u32 error;
  3186. BUG_ON(!mmu_is_nested(vcpu));
  3187. /* NPT walks are always user-walks */
  3188. access |= PFERR_USER_MASK;
  3189. t_gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, &error);
  3190. if (t_gpa == UNMAPPED_GVA)
  3191. vcpu->arch.fault.nested = true;
  3192. return t_gpa;
  3193. }
  3194. gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
  3195. {
  3196. u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
  3197. return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, error);
  3198. }
  3199. gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
  3200. {
  3201. u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
  3202. access |= PFERR_FETCH_MASK;
  3203. return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, error);
  3204. }
  3205. gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
  3206. {
  3207. u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
  3208. access |= PFERR_WRITE_MASK;
  3209. return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, error);
  3210. }
  3211. /* uses this to access any guest's mapped memory without checking CPL */
  3212. gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, u32 *error)
  3213. {
  3214. return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, error);
  3215. }
  3216. static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
  3217. struct kvm_vcpu *vcpu, u32 access,
  3218. u32 *error)
  3219. {
  3220. void *data = val;
  3221. int r = X86EMUL_CONTINUE;
  3222. while (bytes) {
  3223. gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
  3224. error);
  3225. unsigned offset = addr & (PAGE_SIZE-1);
  3226. unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
  3227. int ret;
  3228. if (gpa == UNMAPPED_GVA) {
  3229. r = X86EMUL_PROPAGATE_FAULT;
  3230. goto out;
  3231. }
  3232. ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
  3233. if (ret < 0) {
  3234. r = X86EMUL_IO_NEEDED;
  3235. goto out;
  3236. }
  3237. bytes -= toread;
  3238. data += toread;
  3239. addr += toread;
  3240. }
  3241. out:
  3242. return r;
  3243. }
  3244. /* used for instruction fetching */
  3245. static int kvm_fetch_guest_virt(gva_t addr, void *val, unsigned int bytes,
  3246. struct kvm_vcpu *vcpu, u32 *error)
  3247. {
  3248. u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
  3249. return kvm_read_guest_virt_helper(addr, val, bytes, vcpu,
  3250. access | PFERR_FETCH_MASK, error);
  3251. }
  3252. static int kvm_read_guest_virt(gva_t addr, void *val, unsigned int bytes,
  3253. struct kvm_vcpu *vcpu, u32 *error)
  3254. {
  3255. u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
  3256. return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
  3257. error);
  3258. }
  3259. static int kvm_read_guest_virt_system(gva_t addr, void *val, unsigned int bytes,
  3260. struct kvm_vcpu *vcpu, u32 *error)
  3261. {
  3262. return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, error);
  3263. }
  3264. static int kvm_write_guest_virt_system(gva_t addr, void *val,
  3265. unsigned int bytes,
  3266. struct kvm_vcpu *vcpu,
  3267. u32 *error)
  3268. {
  3269. void *data = val;
  3270. int r = X86EMUL_CONTINUE;
  3271. while (bytes) {
  3272. gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
  3273. PFERR_WRITE_MASK,
  3274. error);
  3275. unsigned offset = addr & (PAGE_SIZE-1);
  3276. unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
  3277. int ret;
  3278. if (gpa == UNMAPPED_GVA) {
  3279. r = X86EMUL_PROPAGATE_FAULT;
  3280. goto out;
  3281. }
  3282. ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
  3283. if (ret < 0) {
  3284. r = X86EMUL_IO_NEEDED;
  3285. goto out;
  3286. }
  3287. bytes -= towrite;
  3288. data += towrite;
  3289. addr += towrite;
  3290. }
  3291. out:
  3292. return r;
  3293. }
  3294. static int emulator_read_emulated(unsigned long addr,
  3295. void *val,
  3296. unsigned int bytes,
  3297. unsigned int *error_code,
  3298. struct kvm_vcpu *vcpu)
  3299. {
  3300. gpa_t gpa;
  3301. if (vcpu->mmio_read_completed) {
  3302. memcpy(val, vcpu->mmio_data, bytes);
  3303. trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
  3304. vcpu->mmio_phys_addr, *(u64 *)val);
  3305. vcpu->mmio_read_completed = 0;
  3306. return X86EMUL_CONTINUE;
  3307. }
  3308. gpa = kvm_mmu_gva_to_gpa_read(vcpu, addr, error_code);
  3309. if (gpa == UNMAPPED_GVA)
  3310. return X86EMUL_PROPAGATE_FAULT;
  3311. /* For APIC access vmexit */
  3312. if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  3313. goto mmio;
  3314. if (kvm_read_guest_virt(addr, val, bytes, vcpu, NULL)
  3315. == X86EMUL_CONTINUE)
  3316. return X86EMUL_CONTINUE;
  3317. mmio:
  3318. /*
  3319. * Is this MMIO handled locally?
  3320. */
  3321. if (!vcpu_mmio_read(vcpu, gpa, bytes, val)) {
  3322. trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, gpa, *(u64 *)val);
  3323. return X86EMUL_CONTINUE;
  3324. }
  3325. trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
  3326. vcpu->mmio_needed = 1;
  3327. vcpu->run->exit_reason = KVM_EXIT_MMIO;
  3328. vcpu->run->mmio.phys_addr = vcpu->mmio_phys_addr = gpa;
  3329. vcpu->run->mmio.len = vcpu->mmio_size = bytes;
  3330. vcpu->run->mmio.is_write = vcpu->mmio_is_write = 0;
  3331. return X86EMUL_IO_NEEDED;
  3332. }
  3333. int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
  3334. const void *val, int bytes)
  3335. {
  3336. int ret;
  3337. ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
  3338. if (ret < 0)
  3339. return 0;
  3340. kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1);
  3341. return 1;
  3342. }
  3343. static int emulator_write_emulated_onepage(unsigned long addr,
  3344. const void *val,
  3345. unsigned int bytes,
  3346. unsigned int *error_code,
  3347. struct kvm_vcpu *vcpu)
  3348. {
  3349. gpa_t gpa;
  3350. gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, error_code);
  3351. if (gpa == UNMAPPED_GVA)
  3352. return X86EMUL_PROPAGATE_FAULT;
  3353. /* For APIC access vmexit */
  3354. if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  3355. goto mmio;
  3356. if (emulator_write_phys(vcpu, gpa, val, bytes))
  3357. return X86EMUL_CONTINUE;
  3358. mmio:
  3359. trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
  3360. /*
  3361. * Is this MMIO handled locally?
  3362. */
  3363. if (!vcpu_mmio_write(vcpu, gpa, bytes, val))
  3364. return X86EMUL_CONTINUE;
  3365. vcpu->mmio_needed = 1;
  3366. vcpu->run->exit_reason = KVM_EXIT_MMIO;
  3367. vcpu->run->mmio.phys_addr = vcpu->mmio_phys_addr = gpa;
  3368. vcpu->run->mmio.len = vcpu->mmio_size = bytes;
  3369. vcpu->run->mmio.is_write = vcpu->mmio_is_write = 1;
  3370. memcpy(vcpu->run->mmio.data, val, bytes);
  3371. return X86EMUL_CONTINUE;
  3372. }
  3373. int emulator_write_emulated(unsigned long addr,
  3374. const void *val,
  3375. unsigned int bytes,
  3376. unsigned int *error_code,
  3377. struct kvm_vcpu *vcpu)
  3378. {
  3379. /* Crossing a page boundary? */
  3380. if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
  3381. int rc, now;
  3382. now = -addr & ~PAGE_MASK;
  3383. rc = emulator_write_emulated_onepage(addr, val, now, error_code,
  3384. vcpu);
  3385. if (rc != X86EMUL_CONTINUE)
  3386. return rc;
  3387. addr += now;
  3388. val += now;
  3389. bytes -= now;
  3390. }
  3391. return emulator_write_emulated_onepage(addr, val, bytes, error_code,
  3392. vcpu);
  3393. }
  3394. #define CMPXCHG_TYPE(t, ptr, old, new) \
  3395. (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
  3396. #ifdef CONFIG_X86_64
  3397. # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
  3398. #else
  3399. # define CMPXCHG64(ptr, old, new) \
  3400. (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
  3401. #endif
  3402. static int emulator_cmpxchg_emulated(unsigned long addr,
  3403. const void *old,
  3404. const void *new,
  3405. unsigned int bytes,
  3406. unsigned int *error_code,
  3407. struct kvm_vcpu *vcpu)
  3408. {
  3409. gpa_t gpa;
  3410. struct page *page;
  3411. char *kaddr;
  3412. bool exchanged;
  3413. /* guests cmpxchg8b have to be emulated atomically */
  3414. if (bytes > 8 || (bytes & (bytes - 1)))
  3415. goto emul_write;
  3416. gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
  3417. if (gpa == UNMAPPED_GVA ||
  3418. (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  3419. goto emul_write;
  3420. if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
  3421. goto emul_write;
  3422. page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  3423. if (is_error_page(page)) {
  3424. kvm_release_page_clean(page);
  3425. goto emul_write;
  3426. }
  3427. kaddr = kmap_atomic(page, KM_USER0);
  3428. kaddr += offset_in_page(gpa);
  3429. switch (bytes) {
  3430. case 1:
  3431. exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
  3432. break;
  3433. case 2:
  3434. exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
  3435. break;
  3436. case 4:
  3437. exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
  3438. break;
  3439. case 8:
  3440. exchanged = CMPXCHG64(kaddr, old, new);
  3441. break;
  3442. default:
  3443. BUG();
  3444. }
  3445. kunmap_atomic(kaddr, KM_USER0);
  3446. kvm_release_page_dirty(page);
  3447. if (!exchanged)
  3448. return X86EMUL_CMPXCHG_FAILED;
  3449. kvm_mmu_pte_write(vcpu, gpa, new, bytes, 1);
  3450. return X86EMUL_CONTINUE;
  3451. emul_write:
  3452. printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
  3453. return emulator_write_emulated(addr, new, bytes, error_code, vcpu);
  3454. }
  3455. static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
  3456. {
  3457. /* TODO: String I/O for in kernel device */
  3458. int r;
  3459. if (vcpu->arch.pio.in)
  3460. r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
  3461. vcpu->arch.pio.size, pd);
  3462. else
  3463. r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
  3464. vcpu->arch.pio.port, vcpu->arch.pio.size,
  3465. pd);
  3466. return r;
  3467. }
  3468. static int emulator_pio_in_emulated(int size, unsigned short port, void *val,
  3469. unsigned int count, struct kvm_vcpu *vcpu)
  3470. {
  3471. if (vcpu->arch.pio.count)
  3472. goto data_avail;
  3473. trace_kvm_pio(0, port, size, 1);
  3474. vcpu->arch.pio.port = port;
  3475. vcpu->arch.pio.in = 1;
  3476. vcpu->arch.pio.count = count;
  3477. vcpu->arch.pio.size = size;
  3478. if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
  3479. data_avail:
  3480. memcpy(val, vcpu->arch.pio_data, size * count);
  3481. vcpu->arch.pio.count = 0;
  3482. return 1;
  3483. }
  3484. vcpu->run->exit_reason = KVM_EXIT_IO;
  3485. vcpu->run->io.direction = KVM_EXIT_IO_IN;
  3486. vcpu->run->io.size = size;
  3487. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  3488. vcpu->run->io.count = count;
  3489. vcpu->run->io.port = port;
  3490. return 0;
  3491. }
  3492. static int emulator_pio_out_emulated(int size, unsigned short port,
  3493. const void *val, unsigned int count,
  3494. struct kvm_vcpu *vcpu)
  3495. {
  3496. trace_kvm_pio(1, port, size, 1);
  3497. vcpu->arch.pio.port = port;
  3498. vcpu->arch.pio.in = 0;
  3499. vcpu->arch.pio.count = count;
  3500. vcpu->arch.pio.size = size;
  3501. memcpy(vcpu->arch.pio_data, val, size * count);
  3502. if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
  3503. vcpu->arch.pio.count = 0;
  3504. return 1;
  3505. }
  3506. vcpu->run->exit_reason = KVM_EXIT_IO;
  3507. vcpu->run->io.direction = KVM_EXIT_IO_OUT;
  3508. vcpu->run->io.size = size;
  3509. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  3510. vcpu->run->io.count = count;
  3511. vcpu->run->io.port = port;
  3512. return 0;
  3513. }
  3514. static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
  3515. {
  3516. return kvm_x86_ops->get_segment_base(vcpu, seg);
  3517. }
  3518. int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
  3519. {
  3520. kvm_mmu_invlpg(vcpu, address);
  3521. return X86EMUL_CONTINUE;
  3522. }
  3523. int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
  3524. {
  3525. if (!need_emulate_wbinvd(vcpu))
  3526. return X86EMUL_CONTINUE;
  3527. if (kvm_x86_ops->has_wbinvd_exit()) {
  3528. preempt_disable();
  3529. smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
  3530. wbinvd_ipi, NULL, 1);
  3531. preempt_enable();
  3532. cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
  3533. }
  3534. wbinvd();
  3535. return X86EMUL_CONTINUE;
  3536. }
  3537. EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
  3538. int emulate_clts(struct kvm_vcpu *vcpu)
  3539. {
  3540. kvm_x86_ops->set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
  3541. kvm_x86_ops->fpu_activate(vcpu);
  3542. return X86EMUL_CONTINUE;
  3543. }
  3544. int emulator_get_dr(int dr, unsigned long *dest, struct kvm_vcpu *vcpu)
  3545. {
  3546. return _kvm_get_dr(vcpu, dr, dest);
  3547. }
  3548. int emulator_set_dr(int dr, unsigned long value, struct kvm_vcpu *vcpu)
  3549. {
  3550. return __kvm_set_dr(vcpu, dr, value);
  3551. }
  3552. static u64 mk_cr_64(u64 curr_cr, u32 new_val)
  3553. {
  3554. return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
  3555. }
  3556. static unsigned long emulator_get_cr(int cr, struct kvm_vcpu *vcpu)
  3557. {
  3558. unsigned long value;
  3559. switch (cr) {
  3560. case 0:
  3561. value = kvm_read_cr0(vcpu);
  3562. break;
  3563. case 2:
  3564. value = vcpu->arch.cr2;
  3565. break;
  3566. case 3:
  3567. value = vcpu->arch.cr3;
  3568. break;
  3569. case 4:
  3570. value = kvm_read_cr4(vcpu);
  3571. break;
  3572. case 8:
  3573. value = kvm_get_cr8(vcpu);
  3574. break;
  3575. default:
  3576. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
  3577. return 0;
  3578. }
  3579. return value;
  3580. }
  3581. static int emulator_set_cr(int cr, unsigned long val, struct kvm_vcpu *vcpu)
  3582. {
  3583. int res = 0;
  3584. switch (cr) {
  3585. case 0:
  3586. res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
  3587. break;
  3588. case 2:
  3589. vcpu->arch.cr2 = val;
  3590. break;
  3591. case 3:
  3592. res = kvm_set_cr3(vcpu, val);
  3593. break;
  3594. case 4:
  3595. res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
  3596. break;
  3597. case 8:
  3598. res = __kvm_set_cr8(vcpu, val & 0xfUL);
  3599. break;
  3600. default:
  3601. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
  3602. res = -1;
  3603. }
  3604. return res;
  3605. }
  3606. static int emulator_get_cpl(struct kvm_vcpu *vcpu)
  3607. {
  3608. return kvm_x86_ops->get_cpl(vcpu);
  3609. }
  3610. static void emulator_get_gdt(struct desc_ptr *dt, struct kvm_vcpu *vcpu)
  3611. {
  3612. kvm_x86_ops->get_gdt(vcpu, dt);
  3613. }
  3614. static void emulator_get_idt(struct desc_ptr *dt, struct kvm_vcpu *vcpu)
  3615. {
  3616. kvm_x86_ops->get_idt(vcpu, dt);
  3617. }
  3618. static unsigned long emulator_get_cached_segment_base(int seg,
  3619. struct kvm_vcpu *vcpu)
  3620. {
  3621. return get_segment_base(vcpu, seg);
  3622. }
  3623. static bool emulator_get_cached_descriptor(struct desc_struct *desc, int seg,
  3624. struct kvm_vcpu *vcpu)
  3625. {
  3626. struct kvm_segment var;
  3627. kvm_get_segment(vcpu, &var, seg);
  3628. if (var.unusable)
  3629. return false;
  3630. if (var.g)
  3631. var.limit >>= 12;
  3632. set_desc_limit(desc, var.limit);
  3633. set_desc_base(desc, (unsigned long)var.base);
  3634. desc->type = var.type;
  3635. desc->s = var.s;
  3636. desc->dpl = var.dpl;
  3637. desc->p = var.present;
  3638. desc->avl = var.avl;
  3639. desc->l = var.l;
  3640. desc->d = var.db;
  3641. desc->g = var.g;
  3642. return true;
  3643. }
  3644. static void emulator_set_cached_descriptor(struct desc_struct *desc, int seg,
  3645. struct kvm_vcpu *vcpu)
  3646. {
  3647. struct kvm_segment var;
  3648. /* needed to preserve selector */
  3649. kvm_get_segment(vcpu, &var, seg);
  3650. var.base = get_desc_base(desc);
  3651. var.limit = get_desc_limit(desc);
  3652. if (desc->g)
  3653. var.limit = (var.limit << 12) | 0xfff;
  3654. var.type = desc->type;
  3655. var.present = desc->p;
  3656. var.dpl = desc->dpl;
  3657. var.db = desc->d;
  3658. var.s = desc->s;
  3659. var.l = desc->l;
  3660. var.g = desc->g;
  3661. var.avl = desc->avl;
  3662. var.present = desc->p;
  3663. var.unusable = !var.present;
  3664. var.padding = 0;
  3665. kvm_set_segment(vcpu, &var, seg);
  3666. return;
  3667. }
  3668. static u16 emulator_get_segment_selector(int seg, struct kvm_vcpu *vcpu)
  3669. {
  3670. struct kvm_segment kvm_seg;
  3671. kvm_get_segment(vcpu, &kvm_seg, seg);
  3672. return kvm_seg.selector;
  3673. }
  3674. static void emulator_set_segment_selector(u16 sel, int seg,
  3675. struct kvm_vcpu *vcpu)
  3676. {
  3677. struct kvm_segment kvm_seg;
  3678. kvm_get_segment(vcpu, &kvm_seg, seg);
  3679. kvm_seg.selector = sel;
  3680. kvm_set_segment(vcpu, &kvm_seg, seg);
  3681. }
  3682. static struct x86_emulate_ops emulate_ops = {
  3683. .read_std = kvm_read_guest_virt_system,
  3684. .write_std = kvm_write_guest_virt_system,
  3685. .fetch = kvm_fetch_guest_virt,
  3686. .read_emulated = emulator_read_emulated,
  3687. .write_emulated = emulator_write_emulated,
  3688. .cmpxchg_emulated = emulator_cmpxchg_emulated,
  3689. .pio_in_emulated = emulator_pio_in_emulated,
  3690. .pio_out_emulated = emulator_pio_out_emulated,
  3691. .get_cached_descriptor = emulator_get_cached_descriptor,
  3692. .set_cached_descriptor = emulator_set_cached_descriptor,
  3693. .get_segment_selector = emulator_get_segment_selector,
  3694. .set_segment_selector = emulator_set_segment_selector,
  3695. .get_cached_segment_base = emulator_get_cached_segment_base,
  3696. .get_gdt = emulator_get_gdt,
  3697. .get_idt = emulator_get_idt,
  3698. .get_cr = emulator_get_cr,
  3699. .set_cr = emulator_set_cr,
  3700. .cpl = emulator_get_cpl,
  3701. .get_dr = emulator_get_dr,
  3702. .set_dr = emulator_set_dr,
  3703. .set_msr = kvm_set_msr,
  3704. .get_msr = kvm_get_msr,
  3705. };
  3706. static void cache_all_regs(struct kvm_vcpu *vcpu)
  3707. {
  3708. kvm_register_read(vcpu, VCPU_REGS_RAX);
  3709. kvm_register_read(vcpu, VCPU_REGS_RSP);
  3710. kvm_register_read(vcpu, VCPU_REGS_RIP);
  3711. vcpu->arch.regs_dirty = ~0;
  3712. }
  3713. static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
  3714. {
  3715. u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu, mask);
  3716. /*
  3717. * an sti; sti; sequence only disable interrupts for the first
  3718. * instruction. So, if the last instruction, be it emulated or
  3719. * not, left the system with the INT_STI flag enabled, it
  3720. * means that the last instruction is an sti. We should not
  3721. * leave the flag on in this case. The same goes for mov ss
  3722. */
  3723. if (!(int_shadow & mask))
  3724. kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
  3725. }
  3726. static void inject_emulated_exception(struct kvm_vcpu *vcpu)
  3727. {
  3728. struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
  3729. if (ctxt->exception == PF_VECTOR)
  3730. kvm_propagate_fault(vcpu);
  3731. else if (ctxt->error_code_valid)
  3732. kvm_queue_exception_e(vcpu, ctxt->exception, ctxt->error_code);
  3733. else
  3734. kvm_queue_exception(vcpu, ctxt->exception);
  3735. }
  3736. static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
  3737. {
  3738. struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
  3739. int cs_db, cs_l;
  3740. cache_all_regs(vcpu);
  3741. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  3742. vcpu->arch.emulate_ctxt.vcpu = vcpu;
  3743. vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
  3744. vcpu->arch.emulate_ctxt.eip = kvm_rip_read(vcpu);
  3745. vcpu->arch.emulate_ctxt.mode =
  3746. (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
  3747. (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
  3748. ? X86EMUL_MODE_VM86 : cs_l
  3749. ? X86EMUL_MODE_PROT64 : cs_db
  3750. ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
  3751. memset(c, 0, sizeof(struct decode_cache));
  3752. memcpy(c->regs, vcpu->arch.regs, sizeof c->regs);
  3753. }
  3754. int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq)
  3755. {
  3756. struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
  3757. int ret;
  3758. init_emulate_ctxt(vcpu);
  3759. vcpu->arch.emulate_ctxt.decode.op_bytes = 2;
  3760. vcpu->arch.emulate_ctxt.decode.ad_bytes = 2;
  3761. vcpu->arch.emulate_ctxt.decode.eip = vcpu->arch.emulate_ctxt.eip;
  3762. ret = emulate_int_real(&vcpu->arch.emulate_ctxt, &emulate_ops, irq);
  3763. if (ret != X86EMUL_CONTINUE)
  3764. return EMULATE_FAIL;
  3765. vcpu->arch.emulate_ctxt.eip = c->eip;
  3766. memcpy(vcpu->arch.regs, c->regs, sizeof c->regs);
  3767. kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.eip);
  3768. kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
  3769. if (irq == NMI_VECTOR)
  3770. vcpu->arch.nmi_pending = false;
  3771. else
  3772. vcpu->arch.interrupt.pending = false;
  3773. return EMULATE_DONE;
  3774. }
  3775. EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
  3776. static int handle_emulation_failure(struct kvm_vcpu *vcpu)
  3777. {
  3778. ++vcpu->stat.insn_emulation_fail;
  3779. trace_kvm_emulate_insn_failed(vcpu);
  3780. vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  3781. vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
  3782. vcpu->run->internal.ndata = 0;
  3783. kvm_queue_exception(vcpu, UD_VECTOR);
  3784. return EMULATE_FAIL;
  3785. }
  3786. static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t gva)
  3787. {
  3788. gpa_t gpa;
  3789. if (tdp_enabled)
  3790. return false;
  3791. /*
  3792. * if emulation was due to access to shadowed page table
  3793. * and it failed try to unshadow page and re-entetr the
  3794. * guest to let CPU execute the instruction.
  3795. */
  3796. if (kvm_mmu_unprotect_page_virt(vcpu, gva))
  3797. return true;
  3798. gpa = kvm_mmu_gva_to_gpa_system(vcpu, gva, NULL);
  3799. if (gpa == UNMAPPED_GVA)
  3800. return true; /* let cpu generate fault */
  3801. if (!kvm_is_error_hva(gfn_to_hva(vcpu->kvm, gpa >> PAGE_SHIFT)))
  3802. return true;
  3803. return false;
  3804. }
  3805. int emulate_instruction(struct kvm_vcpu *vcpu,
  3806. unsigned long cr2,
  3807. u16 error_code,
  3808. int emulation_type)
  3809. {
  3810. int r;
  3811. struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
  3812. kvm_clear_exception_queue(vcpu);
  3813. vcpu->arch.mmio_fault_cr2 = cr2;
  3814. /*
  3815. * TODO: fix emulate.c to use guest_read/write_register
  3816. * instead of direct ->regs accesses, can save hundred cycles
  3817. * on Intel for instructions that don't read/change RSP, for
  3818. * for example.
  3819. */
  3820. cache_all_regs(vcpu);
  3821. if (!(emulation_type & EMULTYPE_NO_DECODE)) {
  3822. init_emulate_ctxt(vcpu);
  3823. vcpu->arch.emulate_ctxt.interruptibility = 0;
  3824. vcpu->arch.emulate_ctxt.exception = -1;
  3825. vcpu->arch.emulate_ctxt.perm_ok = false;
  3826. r = x86_decode_insn(&vcpu->arch.emulate_ctxt);
  3827. if (r == X86EMUL_PROPAGATE_FAULT)
  3828. goto done;
  3829. trace_kvm_emulate_insn_start(vcpu);
  3830. /* Only allow emulation of specific instructions on #UD
  3831. * (namely VMMCALL, sysenter, sysexit, syscall)*/
  3832. if (emulation_type & EMULTYPE_TRAP_UD) {
  3833. if (!c->twobyte)
  3834. return EMULATE_FAIL;
  3835. switch (c->b) {
  3836. case 0x01: /* VMMCALL */
  3837. if (c->modrm_mod != 3 || c->modrm_rm != 1)
  3838. return EMULATE_FAIL;
  3839. break;
  3840. case 0x34: /* sysenter */
  3841. case 0x35: /* sysexit */
  3842. if (c->modrm_mod != 0 || c->modrm_rm != 0)
  3843. return EMULATE_FAIL;
  3844. break;
  3845. case 0x05: /* syscall */
  3846. if (c->modrm_mod != 0 || c->modrm_rm != 0)
  3847. return EMULATE_FAIL;
  3848. break;
  3849. default:
  3850. return EMULATE_FAIL;
  3851. }
  3852. if (!(c->modrm_reg == 0 || c->modrm_reg == 3))
  3853. return EMULATE_FAIL;
  3854. }
  3855. ++vcpu->stat.insn_emulation;
  3856. if (r) {
  3857. if (reexecute_instruction(vcpu, cr2))
  3858. return EMULATE_DONE;
  3859. if (emulation_type & EMULTYPE_SKIP)
  3860. return EMULATE_FAIL;
  3861. return handle_emulation_failure(vcpu);
  3862. }
  3863. }
  3864. if (emulation_type & EMULTYPE_SKIP) {
  3865. kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.decode.eip);
  3866. return EMULATE_DONE;
  3867. }
  3868. /* this is needed for vmware backdor interface to work since it
  3869. changes registers values during IO operation */
  3870. memcpy(c->regs, vcpu->arch.regs, sizeof c->regs);
  3871. restart:
  3872. r = x86_emulate_insn(&vcpu->arch.emulate_ctxt);
  3873. if (r == EMULATION_FAILED) {
  3874. if (reexecute_instruction(vcpu, cr2))
  3875. return EMULATE_DONE;
  3876. return handle_emulation_failure(vcpu);
  3877. }
  3878. done:
  3879. if (vcpu->arch.emulate_ctxt.exception >= 0) {
  3880. inject_emulated_exception(vcpu);
  3881. r = EMULATE_DONE;
  3882. } else if (vcpu->arch.pio.count) {
  3883. if (!vcpu->arch.pio.in)
  3884. vcpu->arch.pio.count = 0;
  3885. r = EMULATE_DO_MMIO;
  3886. } else if (vcpu->mmio_needed) {
  3887. if (vcpu->mmio_is_write)
  3888. vcpu->mmio_needed = 0;
  3889. r = EMULATE_DO_MMIO;
  3890. } else if (r == EMULATION_RESTART)
  3891. goto restart;
  3892. else
  3893. r = EMULATE_DONE;
  3894. toggle_interruptibility(vcpu, vcpu->arch.emulate_ctxt.interruptibility);
  3895. kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
  3896. kvm_make_request(KVM_REQ_EVENT, vcpu);
  3897. memcpy(vcpu->arch.regs, c->regs, sizeof c->regs);
  3898. kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.eip);
  3899. return r;
  3900. }
  3901. EXPORT_SYMBOL_GPL(emulate_instruction);
  3902. int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
  3903. {
  3904. unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
  3905. int ret = emulator_pio_out_emulated(size, port, &val, 1, vcpu);
  3906. /* do not return to emulator after return from userspace */
  3907. vcpu->arch.pio.count = 0;
  3908. return ret;
  3909. }
  3910. EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
  3911. static void tsc_bad(void *info)
  3912. {
  3913. __get_cpu_var(cpu_tsc_khz) = 0;
  3914. }
  3915. static void tsc_khz_changed(void *data)
  3916. {
  3917. struct cpufreq_freqs *freq = data;
  3918. unsigned long khz = 0;
  3919. if (data)
  3920. khz = freq->new;
  3921. else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
  3922. khz = cpufreq_quick_get(raw_smp_processor_id());
  3923. if (!khz)
  3924. khz = tsc_khz;
  3925. __get_cpu_var(cpu_tsc_khz) = khz;
  3926. }
  3927. static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
  3928. void *data)
  3929. {
  3930. struct cpufreq_freqs *freq = data;
  3931. struct kvm *kvm;
  3932. struct kvm_vcpu *vcpu;
  3933. int i, send_ipi = 0;
  3934. /*
  3935. * We allow guests to temporarily run on slowing clocks,
  3936. * provided we notify them after, or to run on accelerating
  3937. * clocks, provided we notify them before. Thus time never
  3938. * goes backwards.
  3939. *
  3940. * However, we have a problem. We can't atomically update
  3941. * the frequency of a given CPU from this function; it is
  3942. * merely a notifier, which can be called from any CPU.
  3943. * Changing the TSC frequency at arbitrary points in time
  3944. * requires a recomputation of local variables related to
  3945. * the TSC for each VCPU. We must flag these local variables
  3946. * to be updated and be sure the update takes place with the
  3947. * new frequency before any guests proceed.
  3948. *
  3949. * Unfortunately, the combination of hotplug CPU and frequency
  3950. * change creates an intractable locking scenario; the order
  3951. * of when these callouts happen is undefined with respect to
  3952. * CPU hotplug, and they can race with each other. As such,
  3953. * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
  3954. * undefined; you can actually have a CPU frequency change take
  3955. * place in between the computation of X and the setting of the
  3956. * variable. To protect against this problem, all updates of
  3957. * the per_cpu tsc_khz variable are done in an interrupt
  3958. * protected IPI, and all callers wishing to update the value
  3959. * must wait for a synchronous IPI to complete (which is trivial
  3960. * if the caller is on the CPU already). This establishes the
  3961. * necessary total order on variable updates.
  3962. *
  3963. * Note that because a guest time update may take place
  3964. * anytime after the setting of the VCPU's request bit, the
  3965. * correct TSC value must be set before the request. However,
  3966. * to ensure the update actually makes it to any guest which
  3967. * starts running in hardware virtualization between the set
  3968. * and the acquisition of the spinlock, we must also ping the
  3969. * CPU after setting the request bit.
  3970. *
  3971. */
  3972. if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
  3973. return 0;
  3974. if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
  3975. return 0;
  3976. smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
  3977. spin_lock(&kvm_lock);
  3978. list_for_each_entry(kvm, &vm_list, vm_list) {
  3979. kvm_for_each_vcpu(i, vcpu, kvm) {
  3980. if (vcpu->cpu != freq->cpu)
  3981. continue;
  3982. kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
  3983. if (vcpu->cpu != smp_processor_id())
  3984. send_ipi = 1;
  3985. }
  3986. }
  3987. spin_unlock(&kvm_lock);
  3988. if (freq->old < freq->new && send_ipi) {
  3989. /*
  3990. * We upscale the frequency. Must make the guest
  3991. * doesn't see old kvmclock values while running with
  3992. * the new frequency, otherwise we risk the guest sees
  3993. * time go backwards.
  3994. *
  3995. * In case we update the frequency for another cpu
  3996. * (which might be in guest context) send an interrupt
  3997. * to kick the cpu out of guest context. Next time
  3998. * guest context is entered kvmclock will be updated,
  3999. * so the guest will not see stale values.
  4000. */
  4001. smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
  4002. }
  4003. return 0;
  4004. }
  4005. static struct notifier_block kvmclock_cpufreq_notifier_block = {
  4006. .notifier_call = kvmclock_cpufreq_notifier
  4007. };
  4008. static int kvmclock_cpu_notifier(struct notifier_block *nfb,
  4009. unsigned long action, void *hcpu)
  4010. {
  4011. unsigned int cpu = (unsigned long)hcpu;
  4012. switch (action) {
  4013. case CPU_ONLINE:
  4014. case CPU_DOWN_FAILED:
  4015. smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
  4016. break;
  4017. case CPU_DOWN_PREPARE:
  4018. smp_call_function_single(cpu, tsc_bad, NULL, 1);
  4019. break;
  4020. }
  4021. return NOTIFY_OK;
  4022. }
  4023. static struct notifier_block kvmclock_cpu_notifier_block = {
  4024. .notifier_call = kvmclock_cpu_notifier,
  4025. .priority = -INT_MAX
  4026. };
  4027. static void kvm_timer_init(void)
  4028. {
  4029. int cpu;
  4030. max_tsc_khz = tsc_khz;
  4031. register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
  4032. if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
  4033. #ifdef CONFIG_CPU_FREQ
  4034. struct cpufreq_policy policy;
  4035. memset(&policy, 0, sizeof(policy));
  4036. cpu = get_cpu();
  4037. cpufreq_get_policy(&policy, cpu);
  4038. if (policy.cpuinfo.max_freq)
  4039. max_tsc_khz = policy.cpuinfo.max_freq;
  4040. put_cpu();
  4041. #endif
  4042. cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
  4043. CPUFREQ_TRANSITION_NOTIFIER);
  4044. }
  4045. pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
  4046. for_each_online_cpu(cpu)
  4047. smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
  4048. }
  4049. static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
  4050. static int kvm_is_in_guest(void)
  4051. {
  4052. return percpu_read(current_vcpu) != NULL;
  4053. }
  4054. static int kvm_is_user_mode(void)
  4055. {
  4056. int user_mode = 3;
  4057. if (percpu_read(current_vcpu))
  4058. user_mode = kvm_x86_ops->get_cpl(percpu_read(current_vcpu));
  4059. return user_mode != 0;
  4060. }
  4061. static unsigned long kvm_get_guest_ip(void)
  4062. {
  4063. unsigned long ip = 0;
  4064. if (percpu_read(current_vcpu))
  4065. ip = kvm_rip_read(percpu_read(current_vcpu));
  4066. return ip;
  4067. }
  4068. static struct perf_guest_info_callbacks kvm_guest_cbs = {
  4069. .is_in_guest = kvm_is_in_guest,
  4070. .is_user_mode = kvm_is_user_mode,
  4071. .get_guest_ip = kvm_get_guest_ip,
  4072. };
  4073. void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
  4074. {
  4075. percpu_write(current_vcpu, vcpu);
  4076. }
  4077. EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
  4078. void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
  4079. {
  4080. percpu_write(current_vcpu, NULL);
  4081. }
  4082. EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
  4083. int kvm_arch_init(void *opaque)
  4084. {
  4085. int r;
  4086. struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
  4087. if (kvm_x86_ops) {
  4088. printk(KERN_ERR "kvm: already loaded the other module\n");
  4089. r = -EEXIST;
  4090. goto out;
  4091. }
  4092. if (!ops->cpu_has_kvm_support()) {
  4093. printk(KERN_ERR "kvm: no hardware support\n");
  4094. r = -EOPNOTSUPP;
  4095. goto out;
  4096. }
  4097. if (ops->disabled_by_bios()) {
  4098. printk(KERN_ERR "kvm: disabled by bios\n");
  4099. r = -EOPNOTSUPP;
  4100. goto out;
  4101. }
  4102. r = kvm_mmu_module_init();
  4103. if (r)
  4104. goto out;
  4105. kvm_init_msr_list();
  4106. kvm_x86_ops = ops;
  4107. kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
  4108. kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
  4109. PT_DIRTY_MASK, PT64_NX_MASK, 0);
  4110. kvm_timer_init();
  4111. perf_register_guest_info_callbacks(&kvm_guest_cbs);
  4112. if (cpu_has_xsave)
  4113. host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
  4114. return 0;
  4115. out:
  4116. return r;
  4117. }
  4118. void kvm_arch_exit(void)
  4119. {
  4120. perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
  4121. if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
  4122. cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
  4123. CPUFREQ_TRANSITION_NOTIFIER);
  4124. unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
  4125. kvm_x86_ops = NULL;
  4126. kvm_mmu_module_exit();
  4127. }
  4128. int kvm_emulate_halt(struct kvm_vcpu *vcpu)
  4129. {
  4130. ++vcpu->stat.halt_exits;
  4131. if (irqchip_in_kernel(vcpu->kvm)) {
  4132. vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
  4133. return 1;
  4134. } else {
  4135. vcpu->run->exit_reason = KVM_EXIT_HLT;
  4136. return 0;
  4137. }
  4138. }
  4139. EXPORT_SYMBOL_GPL(kvm_emulate_halt);
  4140. static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
  4141. unsigned long a1)
  4142. {
  4143. if (is_long_mode(vcpu))
  4144. return a0;
  4145. else
  4146. return a0 | ((gpa_t)a1 << 32);
  4147. }
  4148. int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
  4149. {
  4150. u64 param, ingpa, outgpa, ret;
  4151. uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
  4152. bool fast, longmode;
  4153. int cs_db, cs_l;
  4154. /*
  4155. * hypercall generates UD from non zero cpl and real mode
  4156. * per HYPER-V spec
  4157. */
  4158. if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
  4159. kvm_queue_exception(vcpu, UD_VECTOR);
  4160. return 0;
  4161. }
  4162. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  4163. longmode = is_long_mode(vcpu) && cs_l == 1;
  4164. if (!longmode) {
  4165. param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
  4166. (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
  4167. ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
  4168. (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
  4169. outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
  4170. (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
  4171. }
  4172. #ifdef CONFIG_X86_64
  4173. else {
  4174. param = kvm_register_read(vcpu, VCPU_REGS_RCX);
  4175. ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
  4176. outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
  4177. }
  4178. #endif
  4179. code = param & 0xffff;
  4180. fast = (param >> 16) & 0x1;
  4181. rep_cnt = (param >> 32) & 0xfff;
  4182. rep_idx = (param >> 48) & 0xfff;
  4183. trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
  4184. switch (code) {
  4185. case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
  4186. kvm_vcpu_on_spin(vcpu);
  4187. break;
  4188. default:
  4189. res = HV_STATUS_INVALID_HYPERCALL_CODE;
  4190. break;
  4191. }
  4192. ret = res | (((u64)rep_done & 0xfff) << 32);
  4193. if (longmode) {
  4194. kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
  4195. } else {
  4196. kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
  4197. kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
  4198. }
  4199. return 1;
  4200. }
  4201. int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
  4202. {
  4203. unsigned long nr, a0, a1, a2, a3, ret;
  4204. int r = 1;
  4205. if (kvm_hv_hypercall_enabled(vcpu->kvm))
  4206. return kvm_hv_hypercall(vcpu);
  4207. nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
  4208. a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
  4209. a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
  4210. a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
  4211. a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
  4212. trace_kvm_hypercall(nr, a0, a1, a2, a3);
  4213. if (!is_long_mode(vcpu)) {
  4214. nr &= 0xFFFFFFFF;
  4215. a0 &= 0xFFFFFFFF;
  4216. a1 &= 0xFFFFFFFF;
  4217. a2 &= 0xFFFFFFFF;
  4218. a3 &= 0xFFFFFFFF;
  4219. }
  4220. if (kvm_x86_ops->get_cpl(vcpu) != 0) {
  4221. ret = -KVM_EPERM;
  4222. goto out;
  4223. }
  4224. switch (nr) {
  4225. case KVM_HC_VAPIC_POLL_IRQ:
  4226. ret = 0;
  4227. break;
  4228. case KVM_HC_MMU_OP:
  4229. r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
  4230. break;
  4231. default:
  4232. ret = -KVM_ENOSYS;
  4233. break;
  4234. }
  4235. out:
  4236. kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
  4237. ++vcpu->stat.hypercalls;
  4238. return r;
  4239. }
  4240. EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
  4241. int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
  4242. {
  4243. char instruction[3];
  4244. unsigned long rip = kvm_rip_read(vcpu);
  4245. /*
  4246. * Blow out the MMU to ensure that no other VCPU has an active mapping
  4247. * to ensure that the updated hypercall appears atomically across all
  4248. * VCPUs.
  4249. */
  4250. kvm_mmu_zap_all(vcpu->kvm);
  4251. kvm_x86_ops->patch_hypercall(vcpu, instruction);
  4252. return emulator_write_emulated(rip, instruction, 3, NULL, vcpu);
  4253. }
  4254. void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  4255. {
  4256. struct desc_ptr dt = { limit, base };
  4257. kvm_x86_ops->set_gdt(vcpu, &dt);
  4258. }
  4259. void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  4260. {
  4261. struct desc_ptr dt = { limit, base };
  4262. kvm_x86_ops->set_idt(vcpu, &dt);
  4263. }
  4264. static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
  4265. {
  4266. struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
  4267. int j, nent = vcpu->arch.cpuid_nent;
  4268. e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
  4269. /* when no next entry is found, the current entry[i] is reselected */
  4270. for (j = i + 1; ; j = (j + 1) % nent) {
  4271. struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
  4272. if (ej->function == e->function) {
  4273. ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
  4274. return j;
  4275. }
  4276. }
  4277. return 0; /* silence gcc, even though control never reaches here */
  4278. }
  4279. /* find an entry with matching function, matching index (if needed), and that
  4280. * should be read next (if it's stateful) */
  4281. static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
  4282. u32 function, u32 index)
  4283. {
  4284. if (e->function != function)
  4285. return 0;
  4286. if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
  4287. return 0;
  4288. if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
  4289. !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
  4290. return 0;
  4291. return 1;
  4292. }
  4293. struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
  4294. u32 function, u32 index)
  4295. {
  4296. int i;
  4297. struct kvm_cpuid_entry2 *best = NULL;
  4298. for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
  4299. struct kvm_cpuid_entry2 *e;
  4300. e = &vcpu->arch.cpuid_entries[i];
  4301. if (is_matching_cpuid_entry(e, function, index)) {
  4302. if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
  4303. move_to_next_stateful_cpuid_entry(vcpu, i);
  4304. best = e;
  4305. break;
  4306. }
  4307. /*
  4308. * Both basic or both extended?
  4309. */
  4310. if (((e->function ^ function) & 0x80000000) == 0)
  4311. if (!best || e->function > best->function)
  4312. best = e;
  4313. }
  4314. return best;
  4315. }
  4316. EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
  4317. int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
  4318. {
  4319. struct kvm_cpuid_entry2 *best;
  4320. best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0);
  4321. if (!best || best->eax < 0x80000008)
  4322. goto not_found;
  4323. best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
  4324. if (best)
  4325. return best->eax & 0xff;
  4326. not_found:
  4327. return 36;
  4328. }
  4329. void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
  4330. {
  4331. u32 function, index;
  4332. struct kvm_cpuid_entry2 *best;
  4333. function = kvm_register_read(vcpu, VCPU_REGS_RAX);
  4334. index = kvm_register_read(vcpu, VCPU_REGS_RCX);
  4335. kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
  4336. kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
  4337. kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
  4338. kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
  4339. best = kvm_find_cpuid_entry(vcpu, function, index);
  4340. if (best) {
  4341. kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
  4342. kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
  4343. kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
  4344. kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
  4345. }
  4346. kvm_x86_ops->skip_emulated_instruction(vcpu);
  4347. trace_kvm_cpuid(function,
  4348. kvm_register_read(vcpu, VCPU_REGS_RAX),
  4349. kvm_register_read(vcpu, VCPU_REGS_RBX),
  4350. kvm_register_read(vcpu, VCPU_REGS_RCX),
  4351. kvm_register_read(vcpu, VCPU_REGS_RDX));
  4352. }
  4353. EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
  4354. /*
  4355. * Check if userspace requested an interrupt window, and that the
  4356. * interrupt window is open.
  4357. *
  4358. * No need to exit to userspace if we already have an interrupt queued.
  4359. */
  4360. static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
  4361. {
  4362. return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
  4363. vcpu->run->request_interrupt_window &&
  4364. kvm_arch_interrupt_allowed(vcpu));
  4365. }
  4366. static void post_kvm_run_save(struct kvm_vcpu *vcpu)
  4367. {
  4368. struct kvm_run *kvm_run = vcpu->run;
  4369. kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
  4370. kvm_run->cr8 = kvm_get_cr8(vcpu);
  4371. kvm_run->apic_base = kvm_get_apic_base(vcpu);
  4372. if (irqchip_in_kernel(vcpu->kvm))
  4373. kvm_run->ready_for_interrupt_injection = 1;
  4374. else
  4375. kvm_run->ready_for_interrupt_injection =
  4376. kvm_arch_interrupt_allowed(vcpu) &&
  4377. !kvm_cpu_has_interrupt(vcpu) &&
  4378. !kvm_event_needs_reinjection(vcpu);
  4379. }
  4380. static void vapic_enter(struct kvm_vcpu *vcpu)
  4381. {
  4382. struct kvm_lapic *apic = vcpu->arch.apic;
  4383. struct page *page;
  4384. if (!apic || !apic->vapic_addr)
  4385. return;
  4386. page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
  4387. vcpu->arch.apic->vapic_page = page;
  4388. }
  4389. static void vapic_exit(struct kvm_vcpu *vcpu)
  4390. {
  4391. struct kvm_lapic *apic = vcpu->arch.apic;
  4392. int idx;
  4393. if (!apic || !apic->vapic_addr)
  4394. return;
  4395. idx = srcu_read_lock(&vcpu->kvm->srcu);
  4396. kvm_release_page_dirty(apic->vapic_page);
  4397. mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
  4398. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  4399. }
  4400. static void update_cr8_intercept(struct kvm_vcpu *vcpu)
  4401. {
  4402. int max_irr, tpr;
  4403. if (!kvm_x86_ops->update_cr8_intercept)
  4404. return;
  4405. if (!vcpu->arch.apic)
  4406. return;
  4407. if (!vcpu->arch.apic->vapic_addr)
  4408. max_irr = kvm_lapic_find_highest_irr(vcpu);
  4409. else
  4410. max_irr = -1;
  4411. if (max_irr != -1)
  4412. max_irr >>= 4;
  4413. tpr = kvm_lapic_get_cr8(vcpu);
  4414. kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
  4415. }
  4416. static void inject_pending_event(struct kvm_vcpu *vcpu)
  4417. {
  4418. /* try to reinject previous events if any */
  4419. if (vcpu->arch.exception.pending) {
  4420. trace_kvm_inj_exception(vcpu->arch.exception.nr,
  4421. vcpu->arch.exception.has_error_code,
  4422. vcpu->arch.exception.error_code);
  4423. kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
  4424. vcpu->arch.exception.has_error_code,
  4425. vcpu->arch.exception.error_code,
  4426. vcpu->arch.exception.reinject);
  4427. return;
  4428. }
  4429. if (vcpu->arch.nmi_injected) {
  4430. kvm_x86_ops->set_nmi(vcpu);
  4431. return;
  4432. }
  4433. if (vcpu->arch.interrupt.pending) {
  4434. kvm_x86_ops->set_irq(vcpu);
  4435. return;
  4436. }
  4437. /* try to inject new event if pending */
  4438. if (vcpu->arch.nmi_pending) {
  4439. if (kvm_x86_ops->nmi_allowed(vcpu)) {
  4440. vcpu->arch.nmi_pending = false;
  4441. vcpu->arch.nmi_injected = true;
  4442. kvm_x86_ops->set_nmi(vcpu);
  4443. }
  4444. } else if (kvm_cpu_has_interrupt(vcpu)) {
  4445. if (kvm_x86_ops->interrupt_allowed(vcpu)) {
  4446. kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
  4447. false);
  4448. kvm_x86_ops->set_irq(vcpu);
  4449. }
  4450. }
  4451. }
  4452. static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
  4453. {
  4454. if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
  4455. !vcpu->guest_xcr0_loaded) {
  4456. /* kvm_set_xcr() also depends on this */
  4457. xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
  4458. vcpu->guest_xcr0_loaded = 1;
  4459. }
  4460. }
  4461. static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
  4462. {
  4463. if (vcpu->guest_xcr0_loaded) {
  4464. if (vcpu->arch.xcr0 != host_xcr0)
  4465. xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
  4466. vcpu->guest_xcr0_loaded = 0;
  4467. }
  4468. }
  4469. static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
  4470. {
  4471. int r;
  4472. bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
  4473. vcpu->run->request_interrupt_window;
  4474. if (vcpu->requests) {
  4475. if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
  4476. kvm_mmu_unload(vcpu);
  4477. if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
  4478. __kvm_migrate_timers(vcpu);
  4479. if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
  4480. r = kvm_guest_time_update(vcpu);
  4481. if (unlikely(r))
  4482. goto out;
  4483. }
  4484. if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
  4485. kvm_mmu_sync_roots(vcpu);
  4486. if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
  4487. kvm_x86_ops->tlb_flush(vcpu);
  4488. if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
  4489. vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
  4490. r = 0;
  4491. goto out;
  4492. }
  4493. if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
  4494. vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
  4495. r = 0;
  4496. goto out;
  4497. }
  4498. if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
  4499. vcpu->fpu_active = 0;
  4500. kvm_x86_ops->fpu_deactivate(vcpu);
  4501. }
  4502. if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
  4503. /* Page is swapped out. Do synthetic halt */
  4504. vcpu->arch.apf.halted = true;
  4505. r = 1;
  4506. goto out;
  4507. }
  4508. }
  4509. r = kvm_mmu_reload(vcpu);
  4510. if (unlikely(r))
  4511. goto out;
  4512. if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
  4513. inject_pending_event(vcpu);
  4514. /* enable NMI/IRQ window open exits if needed */
  4515. if (vcpu->arch.nmi_pending)
  4516. kvm_x86_ops->enable_nmi_window(vcpu);
  4517. else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
  4518. kvm_x86_ops->enable_irq_window(vcpu);
  4519. if (kvm_lapic_enabled(vcpu)) {
  4520. update_cr8_intercept(vcpu);
  4521. kvm_lapic_sync_to_vapic(vcpu);
  4522. }
  4523. }
  4524. preempt_disable();
  4525. kvm_x86_ops->prepare_guest_switch(vcpu);
  4526. if (vcpu->fpu_active)
  4527. kvm_load_guest_fpu(vcpu);
  4528. kvm_load_guest_xcr0(vcpu);
  4529. atomic_set(&vcpu->guest_mode, 1);
  4530. smp_wmb();
  4531. local_irq_disable();
  4532. if (!atomic_read(&vcpu->guest_mode) || vcpu->requests
  4533. || need_resched() || signal_pending(current)) {
  4534. atomic_set(&vcpu->guest_mode, 0);
  4535. smp_wmb();
  4536. local_irq_enable();
  4537. preempt_enable();
  4538. kvm_x86_ops->cancel_injection(vcpu);
  4539. r = 1;
  4540. goto out;
  4541. }
  4542. srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
  4543. kvm_guest_enter();
  4544. if (unlikely(vcpu->arch.switch_db_regs)) {
  4545. set_debugreg(0, 7);
  4546. set_debugreg(vcpu->arch.eff_db[0], 0);
  4547. set_debugreg(vcpu->arch.eff_db[1], 1);
  4548. set_debugreg(vcpu->arch.eff_db[2], 2);
  4549. set_debugreg(vcpu->arch.eff_db[3], 3);
  4550. }
  4551. trace_kvm_entry(vcpu->vcpu_id);
  4552. kvm_x86_ops->run(vcpu);
  4553. /*
  4554. * If the guest has used debug registers, at least dr7
  4555. * will be disabled while returning to the host.
  4556. * If we don't have active breakpoints in the host, we don't
  4557. * care about the messed up debug address registers. But if
  4558. * we have some of them active, restore the old state.
  4559. */
  4560. if (hw_breakpoint_active())
  4561. hw_breakpoint_restore();
  4562. kvm_get_msr(vcpu, MSR_IA32_TSC, &vcpu->arch.last_guest_tsc);
  4563. atomic_set(&vcpu->guest_mode, 0);
  4564. smp_wmb();
  4565. local_irq_enable();
  4566. ++vcpu->stat.exits;
  4567. /*
  4568. * We must have an instruction between local_irq_enable() and
  4569. * kvm_guest_exit(), so the timer interrupt isn't delayed by
  4570. * the interrupt shadow. The stat.exits increment will do nicely.
  4571. * But we need to prevent reordering, hence this barrier():
  4572. */
  4573. barrier();
  4574. kvm_guest_exit();
  4575. preempt_enable();
  4576. vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
  4577. /*
  4578. * Profile KVM exit RIPs:
  4579. */
  4580. if (unlikely(prof_on == KVM_PROFILING)) {
  4581. unsigned long rip = kvm_rip_read(vcpu);
  4582. profile_hit(KVM_PROFILING, (void *)rip);
  4583. }
  4584. kvm_lapic_sync_from_vapic(vcpu);
  4585. r = kvm_x86_ops->handle_exit(vcpu);
  4586. out:
  4587. return r;
  4588. }
  4589. static int __vcpu_run(struct kvm_vcpu *vcpu)
  4590. {
  4591. int r;
  4592. struct kvm *kvm = vcpu->kvm;
  4593. if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
  4594. pr_debug("vcpu %d received sipi with vector # %x\n",
  4595. vcpu->vcpu_id, vcpu->arch.sipi_vector);
  4596. kvm_lapic_reset(vcpu);
  4597. r = kvm_arch_vcpu_reset(vcpu);
  4598. if (r)
  4599. return r;
  4600. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  4601. }
  4602. vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
  4603. vapic_enter(vcpu);
  4604. r = 1;
  4605. while (r > 0) {
  4606. if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
  4607. !vcpu->arch.apf.halted)
  4608. r = vcpu_enter_guest(vcpu);
  4609. else {
  4610. srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
  4611. kvm_vcpu_block(vcpu);
  4612. vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
  4613. if (kvm_check_request(KVM_REQ_UNHALT, vcpu))
  4614. {
  4615. switch(vcpu->arch.mp_state) {
  4616. case KVM_MP_STATE_HALTED:
  4617. vcpu->arch.mp_state =
  4618. KVM_MP_STATE_RUNNABLE;
  4619. case KVM_MP_STATE_RUNNABLE:
  4620. vcpu->arch.apf.halted = false;
  4621. break;
  4622. case KVM_MP_STATE_SIPI_RECEIVED:
  4623. default:
  4624. r = -EINTR;
  4625. break;
  4626. }
  4627. }
  4628. }
  4629. if (r <= 0)
  4630. break;
  4631. clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
  4632. if (kvm_cpu_has_pending_timer(vcpu))
  4633. kvm_inject_pending_timer_irqs(vcpu);
  4634. if (dm_request_for_irq_injection(vcpu)) {
  4635. r = -EINTR;
  4636. vcpu->run->exit_reason = KVM_EXIT_INTR;
  4637. ++vcpu->stat.request_irq_exits;
  4638. }
  4639. kvm_check_async_pf_completion(vcpu);
  4640. if (signal_pending(current)) {
  4641. r = -EINTR;
  4642. vcpu->run->exit_reason = KVM_EXIT_INTR;
  4643. ++vcpu->stat.signal_exits;
  4644. }
  4645. if (need_resched()) {
  4646. srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
  4647. kvm_resched(vcpu);
  4648. vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
  4649. }
  4650. }
  4651. srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
  4652. vapic_exit(vcpu);
  4653. return r;
  4654. }
  4655. int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  4656. {
  4657. int r;
  4658. sigset_t sigsaved;
  4659. if (vcpu->sigset_active)
  4660. sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
  4661. if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
  4662. kvm_vcpu_block(vcpu);
  4663. clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
  4664. r = -EAGAIN;
  4665. goto out;
  4666. }
  4667. /* re-sync apic's tpr */
  4668. if (!irqchip_in_kernel(vcpu->kvm))
  4669. kvm_set_cr8(vcpu, kvm_run->cr8);
  4670. if (vcpu->arch.pio.count || vcpu->mmio_needed) {
  4671. if (vcpu->mmio_needed) {
  4672. memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
  4673. vcpu->mmio_read_completed = 1;
  4674. vcpu->mmio_needed = 0;
  4675. }
  4676. vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
  4677. r = emulate_instruction(vcpu, 0, 0, EMULTYPE_NO_DECODE);
  4678. srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
  4679. if (r != EMULATE_DONE) {
  4680. r = 0;
  4681. goto out;
  4682. }
  4683. }
  4684. if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
  4685. kvm_register_write(vcpu, VCPU_REGS_RAX,
  4686. kvm_run->hypercall.ret);
  4687. r = __vcpu_run(vcpu);
  4688. out:
  4689. post_kvm_run_save(vcpu);
  4690. if (vcpu->sigset_active)
  4691. sigprocmask(SIG_SETMASK, &sigsaved, NULL);
  4692. return r;
  4693. }
  4694. int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  4695. {
  4696. regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
  4697. regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
  4698. regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
  4699. regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
  4700. regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
  4701. regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
  4702. regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
  4703. regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
  4704. #ifdef CONFIG_X86_64
  4705. regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
  4706. regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
  4707. regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
  4708. regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
  4709. regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
  4710. regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
  4711. regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
  4712. regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
  4713. #endif
  4714. regs->rip = kvm_rip_read(vcpu);
  4715. regs->rflags = kvm_get_rflags(vcpu);
  4716. return 0;
  4717. }
  4718. int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  4719. {
  4720. kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
  4721. kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
  4722. kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
  4723. kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
  4724. kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
  4725. kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
  4726. kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
  4727. kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
  4728. #ifdef CONFIG_X86_64
  4729. kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
  4730. kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
  4731. kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
  4732. kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
  4733. kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
  4734. kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
  4735. kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
  4736. kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
  4737. #endif
  4738. kvm_rip_write(vcpu, regs->rip);
  4739. kvm_set_rflags(vcpu, regs->rflags);
  4740. vcpu->arch.exception.pending = false;
  4741. kvm_make_request(KVM_REQ_EVENT, vcpu);
  4742. return 0;
  4743. }
  4744. void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  4745. {
  4746. struct kvm_segment cs;
  4747. kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
  4748. *db = cs.db;
  4749. *l = cs.l;
  4750. }
  4751. EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
  4752. int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
  4753. struct kvm_sregs *sregs)
  4754. {
  4755. struct desc_ptr dt;
  4756. kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  4757. kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  4758. kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  4759. kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  4760. kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  4761. kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  4762. kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  4763. kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  4764. kvm_x86_ops->get_idt(vcpu, &dt);
  4765. sregs->idt.limit = dt.size;
  4766. sregs->idt.base = dt.address;
  4767. kvm_x86_ops->get_gdt(vcpu, &dt);
  4768. sregs->gdt.limit = dt.size;
  4769. sregs->gdt.base = dt.address;
  4770. sregs->cr0 = kvm_read_cr0(vcpu);
  4771. sregs->cr2 = vcpu->arch.cr2;
  4772. sregs->cr3 = vcpu->arch.cr3;
  4773. sregs->cr4 = kvm_read_cr4(vcpu);
  4774. sregs->cr8 = kvm_get_cr8(vcpu);
  4775. sregs->efer = vcpu->arch.efer;
  4776. sregs->apic_base = kvm_get_apic_base(vcpu);
  4777. memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
  4778. if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
  4779. set_bit(vcpu->arch.interrupt.nr,
  4780. (unsigned long *)sregs->interrupt_bitmap);
  4781. return 0;
  4782. }
  4783. int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
  4784. struct kvm_mp_state *mp_state)
  4785. {
  4786. mp_state->mp_state = vcpu->arch.mp_state;
  4787. return 0;
  4788. }
  4789. int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
  4790. struct kvm_mp_state *mp_state)
  4791. {
  4792. vcpu->arch.mp_state = mp_state->mp_state;
  4793. kvm_make_request(KVM_REQ_EVENT, vcpu);
  4794. return 0;
  4795. }
  4796. int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason,
  4797. bool has_error_code, u32 error_code)
  4798. {
  4799. struct decode_cache *c = &vcpu->arch.emulate_ctxt.decode;
  4800. int ret;
  4801. init_emulate_ctxt(vcpu);
  4802. ret = emulator_task_switch(&vcpu->arch.emulate_ctxt,
  4803. tss_selector, reason, has_error_code,
  4804. error_code);
  4805. if (ret)
  4806. return EMULATE_FAIL;
  4807. memcpy(vcpu->arch.regs, c->regs, sizeof c->regs);
  4808. kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.eip);
  4809. kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
  4810. kvm_make_request(KVM_REQ_EVENT, vcpu);
  4811. return EMULATE_DONE;
  4812. }
  4813. EXPORT_SYMBOL_GPL(kvm_task_switch);
  4814. int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
  4815. struct kvm_sregs *sregs)
  4816. {
  4817. int mmu_reset_needed = 0;
  4818. int pending_vec, max_bits;
  4819. struct desc_ptr dt;
  4820. dt.size = sregs->idt.limit;
  4821. dt.address = sregs->idt.base;
  4822. kvm_x86_ops->set_idt(vcpu, &dt);
  4823. dt.size = sregs->gdt.limit;
  4824. dt.address = sregs->gdt.base;
  4825. kvm_x86_ops->set_gdt(vcpu, &dt);
  4826. vcpu->arch.cr2 = sregs->cr2;
  4827. mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
  4828. vcpu->arch.cr3 = sregs->cr3;
  4829. kvm_set_cr8(vcpu, sregs->cr8);
  4830. mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
  4831. kvm_x86_ops->set_efer(vcpu, sregs->efer);
  4832. kvm_set_apic_base(vcpu, sregs->apic_base);
  4833. mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
  4834. kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
  4835. vcpu->arch.cr0 = sregs->cr0;
  4836. mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
  4837. kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
  4838. if (sregs->cr4 & X86_CR4_OSXSAVE)
  4839. update_cpuid(vcpu);
  4840. if (!is_long_mode(vcpu) && is_pae(vcpu)) {
  4841. load_pdptrs(vcpu, vcpu->arch.walk_mmu, vcpu->arch.cr3);
  4842. mmu_reset_needed = 1;
  4843. }
  4844. if (mmu_reset_needed)
  4845. kvm_mmu_reset_context(vcpu);
  4846. max_bits = (sizeof sregs->interrupt_bitmap) << 3;
  4847. pending_vec = find_first_bit(
  4848. (const unsigned long *)sregs->interrupt_bitmap, max_bits);
  4849. if (pending_vec < max_bits) {
  4850. kvm_queue_interrupt(vcpu, pending_vec, false);
  4851. pr_debug("Set back pending irq %d\n", pending_vec);
  4852. if (irqchip_in_kernel(vcpu->kvm))
  4853. kvm_pic_clear_isr_ack(vcpu->kvm);
  4854. }
  4855. kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  4856. kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  4857. kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  4858. kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  4859. kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  4860. kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  4861. kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  4862. kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  4863. update_cr8_intercept(vcpu);
  4864. /* Older userspace won't unhalt the vcpu on reset. */
  4865. if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
  4866. sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
  4867. !is_protmode(vcpu))
  4868. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  4869. kvm_make_request(KVM_REQ_EVENT, vcpu);
  4870. return 0;
  4871. }
  4872. int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
  4873. struct kvm_guest_debug *dbg)
  4874. {
  4875. unsigned long rflags;
  4876. int i, r;
  4877. if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
  4878. r = -EBUSY;
  4879. if (vcpu->arch.exception.pending)
  4880. goto out;
  4881. if (dbg->control & KVM_GUESTDBG_INJECT_DB)
  4882. kvm_queue_exception(vcpu, DB_VECTOR);
  4883. else
  4884. kvm_queue_exception(vcpu, BP_VECTOR);
  4885. }
  4886. /*
  4887. * Read rflags as long as potentially injected trace flags are still
  4888. * filtered out.
  4889. */
  4890. rflags = kvm_get_rflags(vcpu);
  4891. vcpu->guest_debug = dbg->control;
  4892. if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
  4893. vcpu->guest_debug = 0;
  4894. if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
  4895. for (i = 0; i < KVM_NR_DB_REGS; ++i)
  4896. vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
  4897. vcpu->arch.switch_db_regs =
  4898. (dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
  4899. } else {
  4900. for (i = 0; i < KVM_NR_DB_REGS; i++)
  4901. vcpu->arch.eff_db[i] = vcpu->arch.db[i];
  4902. vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
  4903. }
  4904. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  4905. vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
  4906. get_segment_base(vcpu, VCPU_SREG_CS);
  4907. /*
  4908. * Trigger an rflags update that will inject or remove the trace
  4909. * flags.
  4910. */
  4911. kvm_set_rflags(vcpu, rflags);
  4912. kvm_x86_ops->set_guest_debug(vcpu, dbg);
  4913. r = 0;
  4914. out:
  4915. return r;
  4916. }
  4917. /*
  4918. * Translate a guest virtual address to a guest physical address.
  4919. */
  4920. int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
  4921. struct kvm_translation *tr)
  4922. {
  4923. unsigned long vaddr = tr->linear_address;
  4924. gpa_t gpa;
  4925. int idx;
  4926. idx = srcu_read_lock(&vcpu->kvm->srcu);
  4927. gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
  4928. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  4929. tr->physical_address = gpa;
  4930. tr->valid = gpa != UNMAPPED_GVA;
  4931. tr->writeable = 1;
  4932. tr->usermode = 0;
  4933. return 0;
  4934. }
  4935. int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  4936. {
  4937. struct i387_fxsave_struct *fxsave =
  4938. &vcpu->arch.guest_fpu.state->fxsave;
  4939. memcpy(fpu->fpr, fxsave->st_space, 128);
  4940. fpu->fcw = fxsave->cwd;
  4941. fpu->fsw = fxsave->swd;
  4942. fpu->ftwx = fxsave->twd;
  4943. fpu->last_opcode = fxsave->fop;
  4944. fpu->last_ip = fxsave->rip;
  4945. fpu->last_dp = fxsave->rdp;
  4946. memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
  4947. return 0;
  4948. }
  4949. int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  4950. {
  4951. struct i387_fxsave_struct *fxsave =
  4952. &vcpu->arch.guest_fpu.state->fxsave;
  4953. memcpy(fxsave->st_space, fpu->fpr, 128);
  4954. fxsave->cwd = fpu->fcw;
  4955. fxsave->swd = fpu->fsw;
  4956. fxsave->twd = fpu->ftwx;
  4957. fxsave->fop = fpu->last_opcode;
  4958. fxsave->rip = fpu->last_ip;
  4959. fxsave->rdp = fpu->last_dp;
  4960. memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
  4961. return 0;
  4962. }
  4963. int fx_init(struct kvm_vcpu *vcpu)
  4964. {
  4965. int err;
  4966. err = fpu_alloc(&vcpu->arch.guest_fpu);
  4967. if (err)
  4968. return err;
  4969. fpu_finit(&vcpu->arch.guest_fpu);
  4970. /*
  4971. * Ensure guest xcr0 is valid for loading
  4972. */
  4973. vcpu->arch.xcr0 = XSTATE_FP;
  4974. vcpu->arch.cr0 |= X86_CR0_ET;
  4975. return 0;
  4976. }
  4977. EXPORT_SYMBOL_GPL(fx_init);
  4978. static void fx_free(struct kvm_vcpu *vcpu)
  4979. {
  4980. fpu_free(&vcpu->arch.guest_fpu);
  4981. }
  4982. void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
  4983. {
  4984. if (vcpu->guest_fpu_loaded)
  4985. return;
  4986. /*
  4987. * Restore all possible states in the guest,
  4988. * and assume host would use all available bits.
  4989. * Guest xcr0 would be loaded later.
  4990. */
  4991. kvm_put_guest_xcr0(vcpu);
  4992. vcpu->guest_fpu_loaded = 1;
  4993. unlazy_fpu(current);
  4994. fpu_restore_checking(&vcpu->arch.guest_fpu);
  4995. trace_kvm_fpu(1);
  4996. }
  4997. void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
  4998. {
  4999. kvm_put_guest_xcr0(vcpu);
  5000. if (!vcpu->guest_fpu_loaded)
  5001. return;
  5002. vcpu->guest_fpu_loaded = 0;
  5003. fpu_save_init(&vcpu->arch.guest_fpu);
  5004. ++vcpu->stat.fpu_reload;
  5005. kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
  5006. trace_kvm_fpu(0);
  5007. }
  5008. void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
  5009. {
  5010. if (vcpu->arch.time_page) {
  5011. kvm_release_page_dirty(vcpu->arch.time_page);
  5012. vcpu->arch.time_page = NULL;
  5013. }
  5014. free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
  5015. fx_free(vcpu);
  5016. kvm_x86_ops->vcpu_free(vcpu);
  5017. }
  5018. struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
  5019. unsigned int id)
  5020. {
  5021. if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
  5022. printk_once(KERN_WARNING
  5023. "kvm: SMP vm created on host with unstable TSC; "
  5024. "guest TSC will not be reliable\n");
  5025. return kvm_x86_ops->vcpu_create(kvm, id);
  5026. }
  5027. int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
  5028. {
  5029. int r;
  5030. vcpu->arch.mtrr_state.have_fixed = 1;
  5031. vcpu_load(vcpu);
  5032. r = kvm_arch_vcpu_reset(vcpu);
  5033. if (r == 0)
  5034. r = kvm_mmu_setup(vcpu);
  5035. vcpu_put(vcpu);
  5036. if (r < 0)
  5037. goto free_vcpu;
  5038. return 0;
  5039. free_vcpu:
  5040. kvm_x86_ops->vcpu_free(vcpu);
  5041. return r;
  5042. }
  5043. void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
  5044. {
  5045. vcpu->arch.apf.msr_val = 0;
  5046. vcpu_load(vcpu);
  5047. kvm_mmu_unload(vcpu);
  5048. vcpu_put(vcpu);
  5049. fx_free(vcpu);
  5050. kvm_x86_ops->vcpu_free(vcpu);
  5051. }
  5052. int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
  5053. {
  5054. vcpu->arch.nmi_pending = false;
  5055. vcpu->arch.nmi_injected = false;
  5056. vcpu->arch.switch_db_regs = 0;
  5057. memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
  5058. vcpu->arch.dr6 = DR6_FIXED_1;
  5059. vcpu->arch.dr7 = DR7_FIXED_1;
  5060. kvm_make_request(KVM_REQ_EVENT, vcpu);
  5061. vcpu->arch.apf.msr_val = 0;
  5062. kvm_clear_async_pf_completion_queue(vcpu);
  5063. kvm_async_pf_hash_reset(vcpu);
  5064. vcpu->arch.apf.halted = false;
  5065. return kvm_x86_ops->vcpu_reset(vcpu);
  5066. }
  5067. int kvm_arch_hardware_enable(void *garbage)
  5068. {
  5069. struct kvm *kvm;
  5070. struct kvm_vcpu *vcpu;
  5071. int i;
  5072. kvm_shared_msr_cpu_online();
  5073. list_for_each_entry(kvm, &vm_list, vm_list)
  5074. kvm_for_each_vcpu(i, vcpu, kvm)
  5075. if (vcpu->cpu == smp_processor_id())
  5076. kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
  5077. return kvm_x86_ops->hardware_enable(garbage);
  5078. }
  5079. void kvm_arch_hardware_disable(void *garbage)
  5080. {
  5081. kvm_x86_ops->hardware_disable(garbage);
  5082. drop_user_return_notifiers(garbage);
  5083. }
  5084. int kvm_arch_hardware_setup(void)
  5085. {
  5086. return kvm_x86_ops->hardware_setup();
  5087. }
  5088. void kvm_arch_hardware_unsetup(void)
  5089. {
  5090. kvm_x86_ops->hardware_unsetup();
  5091. }
  5092. void kvm_arch_check_processor_compat(void *rtn)
  5093. {
  5094. kvm_x86_ops->check_processor_compatibility(rtn);
  5095. }
  5096. int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
  5097. {
  5098. struct page *page;
  5099. struct kvm *kvm;
  5100. int r;
  5101. BUG_ON(vcpu->kvm == NULL);
  5102. kvm = vcpu->kvm;
  5103. vcpu->arch.emulate_ctxt.ops = &emulate_ops;
  5104. vcpu->arch.walk_mmu = &vcpu->arch.mmu;
  5105. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  5106. vcpu->arch.mmu.translate_gpa = translate_gpa;
  5107. vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
  5108. if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
  5109. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  5110. else
  5111. vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
  5112. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  5113. if (!page) {
  5114. r = -ENOMEM;
  5115. goto fail;
  5116. }
  5117. vcpu->arch.pio_data = page_address(page);
  5118. if (!kvm->arch.virtual_tsc_khz)
  5119. kvm_arch_set_tsc_khz(kvm, max_tsc_khz);
  5120. r = kvm_mmu_create(vcpu);
  5121. if (r < 0)
  5122. goto fail_free_pio_data;
  5123. if (irqchip_in_kernel(kvm)) {
  5124. r = kvm_create_lapic(vcpu);
  5125. if (r < 0)
  5126. goto fail_mmu_destroy;
  5127. }
  5128. vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
  5129. GFP_KERNEL);
  5130. if (!vcpu->arch.mce_banks) {
  5131. r = -ENOMEM;
  5132. goto fail_free_lapic;
  5133. }
  5134. vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
  5135. if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL))
  5136. goto fail_free_mce_banks;
  5137. kvm_async_pf_hash_reset(vcpu);
  5138. return 0;
  5139. fail_free_mce_banks:
  5140. kfree(vcpu->arch.mce_banks);
  5141. fail_free_lapic:
  5142. kvm_free_lapic(vcpu);
  5143. fail_mmu_destroy:
  5144. kvm_mmu_destroy(vcpu);
  5145. fail_free_pio_data:
  5146. free_page((unsigned long)vcpu->arch.pio_data);
  5147. fail:
  5148. return r;
  5149. }
  5150. void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
  5151. {
  5152. int idx;
  5153. kfree(vcpu->arch.mce_banks);
  5154. kvm_free_lapic(vcpu);
  5155. idx = srcu_read_lock(&vcpu->kvm->srcu);
  5156. kvm_mmu_destroy(vcpu);
  5157. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  5158. free_page((unsigned long)vcpu->arch.pio_data);
  5159. }
  5160. struct kvm *kvm_arch_create_vm(void)
  5161. {
  5162. struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
  5163. if (!kvm)
  5164. return ERR_PTR(-ENOMEM);
  5165. INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
  5166. INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
  5167. /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
  5168. set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
  5169. spin_lock_init(&kvm->arch.tsc_write_lock);
  5170. return kvm;
  5171. }
  5172. static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
  5173. {
  5174. vcpu_load(vcpu);
  5175. kvm_mmu_unload(vcpu);
  5176. vcpu_put(vcpu);
  5177. }
  5178. static void kvm_free_vcpus(struct kvm *kvm)
  5179. {
  5180. unsigned int i;
  5181. struct kvm_vcpu *vcpu;
  5182. /*
  5183. * Unpin any mmu pages first.
  5184. */
  5185. kvm_for_each_vcpu(i, vcpu, kvm) {
  5186. kvm_clear_async_pf_completion_queue(vcpu);
  5187. kvm_unload_vcpu_mmu(vcpu);
  5188. }
  5189. kvm_for_each_vcpu(i, vcpu, kvm)
  5190. kvm_arch_vcpu_free(vcpu);
  5191. mutex_lock(&kvm->lock);
  5192. for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
  5193. kvm->vcpus[i] = NULL;
  5194. atomic_set(&kvm->online_vcpus, 0);
  5195. mutex_unlock(&kvm->lock);
  5196. }
  5197. void kvm_arch_sync_events(struct kvm *kvm)
  5198. {
  5199. kvm_free_all_assigned_devices(kvm);
  5200. kvm_free_pit(kvm);
  5201. }
  5202. void kvm_arch_destroy_vm(struct kvm *kvm)
  5203. {
  5204. kvm_iommu_unmap_guest(kvm);
  5205. kfree(kvm->arch.vpic);
  5206. kfree(kvm->arch.vioapic);
  5207. kvm_free_vcpus(kvm);
  5208. kvm_free_physmem(kvm);
  5209. if (kvm->arch.apic_access_page)
  5210. put_page(kvm->arch.apic_access_page);
  5211. if (kvm->arch.ept_identity_pagetable)
  5212. put_page(kvm->arch.ept_identity_pagetable);
  5213. cleanup_srcu_struct(&kvm->srcu);
  5214. kfree(kvm);
  5215. }
  5216. int kvm_arch_prepare_memory_region(struct kvm *kvm,
  5217. struct kvm_memory_slot *memslot,
  5218. struct kvm_memory_slot old,
  5219. struct kvm_userspace_memory_region *mem,
  5220. int user_alloc)
  5221. {
  5222. int npages = memslot->npages;
  5223. int map_flags = MAP_PRIVATE | MAP_ANONYMOUS;
  5224. /* Prevent internal slot pages from being moved by fork()/COW. */
  5225. if (memslot->id >= KVM_MEMORY_SLOTS)
  5226. map_flags = MAP_SHARED | MAP_ANONYMOUS;
  5227. /*To keep backward compatibility with older userspace,
  5228. *x86 needs to hanlde !user_alloc case.
  5229. */
  5230. if (!user_alloc) {
  5231. if (npages && !old.rmap) {
  5232. unsigned long userspace_addr;
  5233. down_write(&current->mm->mmap_sem);
  5234. userspace_addr = do_mmap(NULL, 0,
  5235. npages * PAGE_SIZE,
  5236. PROT_READ | PROT_WRITE,
  5237. map_flags,
  5238. 0);
  5239. up_write(&current->mm->mmap_sem);
  5240. if (IS_ERR((void *)userspace_addr))
  5241. return PTR_ERR((void *)userspace_addr);
  5242. memslot->userspace_addr = userspace_addr;
  5243. }
  5244. }
  5245. return 0;
  5246. }
  5247. void kvm_arch_commit_memory_region(struct kvm *kvm,
  5248. struct kvm_userspace_memory_region *mem,
  5249. struct kvm_memory_slot old,
  5250. int user_alloc)
  5251. {
  5252. int npages = mem->memory_size >> PAGE_SHIFT;
  5253. if (!user_alloc && !old.user_alloc && old.rmap && !npages) {
  5254. int ret;
  5255. down_write(&current->mm->mmap_sem);
  5256. ret = do_munmap(current->mm, old.userspace_addr,
  5257. old.npages * PAGE_SIZE);
  5258. up_write(&current->mm->mmap_sem);
  5259. if (ret < 0)
  5260. printk(KERN_WARNING
  5261. "kvm_vm_ioctl_set_memory_region: "
  5262. "failed to munmap memory\n");
  5263. }
  5264. spin_lock(&kvm->mmu_lock);
  5265. if (!kvm->arch.n_requested_mmu_pages) {
  5266. unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
  5267. kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
  5268. }
  5269. kvm_mmu_slot_remove_write_access(kvm, mem->slot);
  5270. spin_unlock(&kvm->mmu_lock);
  5271. }
  5272. void kvm_arch_flush_shadow(struct kvm *kvm)
  5273. {
  5274. kvm_mmu_zap_all(kvm);
  5275. kvm_reload_remote_mmus(kvm);
  5276. }
  5277. int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
  5278. {
  5279. return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
  5280. !vcpu->arch.apf.halted)
  5281. || !list_empty_careful(&vcpu->async_pf.done)
  5282. || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
  5283. || vcpu->arch.nmi_pending ||
  5284. (kvm_arch_interrupt_allowed(vcpu) &&
  5285. kvm_cpu_has_interrupt(vcpu));
  5286. }
  5287. void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
  5288. {
  5289. int me;
  5290. int cpu = vcpu->cpu;
  5291. if (waitqueue_active(&vcpu->wq)) {
  5292. wake_up_interruptible(&vcpu->wq);
  5293. ++vcpu->stat.halt_wakeup;
  5294. }
  5295. me = get_cpu();
  5296. if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
  5297. if (atomic_xchg(&vcpu->guest_mode, 0))
  5298. smp_send_reschedule(cpu);
  5299. put_cpu();
  5300. }
  5301. int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
  5302. {
  5303. return kvm_x86_ops->interrupt_allowed(vcpu);
  5304. }
  5305. bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
  5306. {
  5307. unsigned long current_rip = kvm_rip_read(vcpu) +
  5308. get_segment_base(vcpu, VCPU_SREG_CS);
  5309. return current_rip == linear_rip;
  5310. }
  5311. EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
  5312. unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
  5313. {
  5314. unsigned long rflags;
  5315. rflags = kvm_x86_ops->get_rflags(vcpu);
  5316. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  5317. rflags &= ~X86_EFLAGS_TF;
  5318. return rflags;
  5319. }
  5320. EXPORT_SYMBOL_GPL(kvm_get_rflags);
  5321. void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  5322. {
  5323. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
  5324. kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
  5325. rflags |= X86_EFLAGS_TF;
  5326. kvm_x86_ops->set_rflags(vcpu, rflags);
  5327. kvm_make_request(KVM_REQ_EVENT, vcpu);
  5328. }
  5329. EXPORT_SYMBOL_GPL(kvm_set_rflags);
  5330. void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
  5331. {
  5332. int r;
  5333. if (!vcpu->arch.mmu.direct_map || is_error_page(work->page))
  5334. return;
  5335. r = kvm_mmu_reload(vcpu);
  5336. if (unlikely(r))
  5337. return;
  5338. vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
  5339. }
  5340. static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
  5341. {
  5342. return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
  5343. }
  5344. static inline u32 kvm_async_pf_next_probe(u32 key)
  5345. {
  5346. return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
  5347. }
  5348. static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
  5349. {
  5350. u32 key = kvm_async_pf_hash_fn(gfn);
  5351. while (vcpu->arch.apf.gfns[key] != ~0)
  5352. key = kvm_async_pf_next_probe(key);
  5353. vcpu->arch.apf.gfns[key] = gfn;
  5354. }
  5355. static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
  5356. {
  5357. int i;
  5358. u32 key = kvm_async_pf_hash_fn(gfn);
  5359. for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
  5360. (vcpu->arch.apf.gfns[key] != gfn ||
  5361. vcpu->arch.apf.gfns[key] == ~0); i++)
  5362. key = kvm_async_pf_next_probe(key);
  5363. return key;
  5364. }
  5365. bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
  5366. {
  5367. return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
  5368. }
  5369. static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
  5370. {
  5371. u32 i, j, k;
  5372. i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
  5373. while (true) {
  5374. vcpu->arch.apf.gfns[i] = ~0;
  5375. do {
  5376. j = kvm_async_pf_next_probe(j);
  5377. if (vcpu->arch.apf.gfns[j] == ~0)
  5378. return;
  5379. k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
  5380. /*
  5381. * k lies cyclically in ]i,j]
  5382. * | i.k.j |
  5383. * |....j i.k.| or |.k..j i...|
  5384. */
  5385. } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
  5386. vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
  5387. i = j;
  5388. }
  5389. }
  5390. static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
  5391. {
  5392. return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
  5393. sizeof(val));
  5394. }
  5395. void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
  5396. struct kvm_async_pf *work)
  5397. {
  5398. trace_kvm_async_pf_not_present(work->arch.token, work->gva);
  5399. kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
  5400. if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
  5401. (vcpu->arch.apf.send_user_only &&
  5402. kvm_x86_ops->get_cpl(vcpu) == 0))
  5403. kvm_make_request(KVM_REQ_APF_HALT, vcpu);
  5404. else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
  5405. vcpu->arch.fault.error_code = 0;
  5406. vcpu->arch.fault.address = work->arch.token;
  5407. kvm_inject_page_fault(vcpu);
  5408. }
  5409. }
  5410. void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
  5411. struct kvm_async_pf *work)
  5412. {
  5413. trace_kvm_async_pf_ready(work->arch.token, work->gva);
  5414. if (is_error_page(work->page))
  5415. work->arch.token = ~0; /* broadcast wakeup */
  5416. else
  5417. kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
  5418. if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
  5419. !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
  5420. vcpu->arch.fault.error_code = 0;
  5421. vcpu->arch.fault.address = work->arch.token;
  5422. kvm_inject_page_fault(vcpu);
  5423. }
  5424. }
  5425. bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
  5426. {
  5427. if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
  5428. return true;
  5429. else
  5430. return !kvm_event_needs_reinjection(vcpu) &&
  5431. kvm_x86_ops->interrupt_allowed(vcpu);
  5432. }
  5433. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
  5434. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
  5435. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
  5436. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
  5437. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
  5438. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
  5439. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
  5440. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
  5441. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
  5442. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
  5443. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
  5444. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);