efx.c 79 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032
  1. /****************************************************************************
  2. * Driver for Solarflare Solarstorm network controllers and boards
  3. * Copyright 2005-2006 Fen Systems Ltd.
  4. * Copyright 2005-2011 Solarflare Communications Inc.
  5. *
  6. * This program is free software; you can redistribute it and/or modify it
  7. * under the terms of the GNU General Public License version 2 as published
  8. * by the Free Software Foundation, incorporated herein by reference.
  9. */
  10. #include <linux/module.h>
  11. #include <linux/pci.h>
  12. #include <linux/netdevice.h>
  13. #include <linux/etherdevice.h>
  14. #include <linux/delay.h>
  15. #include <linux/notifier.h>
  16. #include <linux/ip.h>
  17. #include <linux/tcp.h>
  18. #include <linux/in.h>
  19. #include <linux/crc32.h>
  20. #include <linux/ethtool.h>
  21. #include <linux/topology.h>
  22. #include <linux/gfp.h>
  23. #include <linux/aer.h>
  24. #include <linux/interrupt.h>
  25. #include "net_driver.h"
  26. #include "efx.h"
  27. #include "nic.h"
  28. #include "selftest.h"
  29. #include "mcdi.h"
  30. #include "workarounds.h"
  31. /**************************************************************************
  32. *
  33. * Type name strings
  34. *
  35. **************************************************************************
  36. */
  37. /* Loopback mode names (see LOOPBACK_MODE()) */
  38. const unsigned int efx_loopback_mode_max = LOOPBACK_MAX;
  39. const char *const efx_loopback_mode_names[] = {
  40. [LOOPBACK_NONE] = "NONE",
  41. [LOOPBACK_DATA] = "DATAPATH",
  42. [LOOPBACK_GMAC] = "GMAC",
  43. [LOOPBACK_XGMII] = "XGMII",
  44. [LOOPBACK_XGXS] = "XGXS",
  45. [LOOPBACK_XAUI] = "XAUI",
  46. [LOOPBACK_GMII] = "GMII",
  47. [LOOPBACK_SGMII] = "SGMII",
  48. [LOOPBACK_XGBR] = "XGBR",
  49. [LOOPBACK_XFI] = "XFI",
  50. [LOOPBACK_XAUI_FAR] = "XAUI_FAR",
  51. [LOOPBACK_GMII_FAR] = "GMII_FAR",
  52. [LOOPBACK_SGMII_FAR] = "SGMII_FAR",
  53. [LOOPBACK_XFI_FAR] = "XFI_FAR",
  54. [LOOPBACK_GPHY] = "GPHY",
  55. [LOOPBACK_PHYXS] = "PHYXS",
  56. [LOOPBACK_PCS] = "PCS",
  57. [LOOPBACK_PMAPMD] = "PMA/PMD",
  58. [LOOPBACK_XPORT] = "XPORT",
  59. [LOOPBACK_XGMII_WS] = "XGMII_WS",
  60. [LOOPBACK_XAUI_WS] = "XAUI_WS",
  61. [LOOPBACK_XAUI_WS_FAR] = "XAUI_WS_FAR",
  62. [LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR",
  63. [LOOPBACK_GMII_WS] = "GMII_WS",
  64. [LOOPBACK_XFI_WS] = "XFI_WS",
  65. [LOOPBACK_XFI_WS_FAR] = "XFI_WS_FAR",
  66. [LOOPBACK_PHYXS_WS] = "PHYXS_WS",
  67. };
  68. const unsigned int efx_reset_type_max = RESET_TYPE_MAX;
  69. const char *const efx_reset_type_names[] = {
  70. [RESET_TYPE_INVISIBLE] = "INVISIBLE",
  71. [RESET_TYPE_ALL] = "ALL",
  72. [RESET_TYPE_RECOVER_OR_ALL] = "RECOVER_OR_ALL",
  73. [RESET_TYPE_WORLD] = "WORLD",
  74. [RESET_TYPE_RECOVER_OR_DISABLE] = "RECOVER_OR_DISABLE",
  75. [RESET_TYPE_DISABLE] = "DISABLE",
  76. [RESET_TYPE_TX_WATCHDOG] = "TX_WATCHDOG",
  77. [RESET_TYPE_INT_ERROR] = "INT_ERROR",
  78. [RESET_TYPE_RX_RECOVERY] = "RX_RECOVERY",
  79. [RESET_TYPE_RX_DESC_FETCH] = "RX_DESC_FETCH",
  80. [RESET_TYPE_TX_DESC_FETCH] = "TX_DESC_FETCH",
  81. [RESET_TYPE_TX_SKIP] = "TX_SKIP",
  82. [RESET_TYPE_MC_FAILURE] = "MC_FAILURE",
  83. };
  84. /* Reset workqueue. If any NIC has a hardware failure then a reset will be
  85. * queued onto this work queue. This is not a per-nic work queue, because
  86. * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
  87. */
  88. static struct workqueue_struct *reset_workqueue;
  89. /**************************************************************************
  90. *
  91. * Configurable values
  92. *
  93. *************************************************************************/
  94. /*
  95. * Use separate channels for TX and RX events
  96. *
  97. * Set this to 1 to use separate channels for TX and RX. It allows us
  98. * to control interrupt affinity separately for TX and RX.
  99. *
  100. * This is only used in MSI-X interrupt mode
  101. */
  102. static bool separate_tx_channels;
  103. module_param(separate_tx_channels, bool, 0444);
  104. MODULE_PARM_DESC(separate_tx_channels,
  105. "Use separate channels for TX and RX");
  106. /* This is the weight assigned to each of the (per-channel) virtual
  107. * NAPI devices.
  108. */
  109. static int napi_weight = 64;
  110. /* This is the time (in jiffies) between invocations of the hardware
  111. * monitor.
  112. * On Falcon-based NICs, this will:
  113. * - Check the on-board hardware monitor;
  114. * - Poll the link state and reconfigure the hardware as necessary.
  115. * On Siena-based NICs for power systems with EEH support, this will give EEH a
  116. * chance to start.
  117. */
  118. static unsigned int efx_monitor_interval = 1 * HZ;
  119. /* Initial interrupt moderation settings. They can be modified after
  120. * module load with ethtool.
  121. *
  122. * The default for RX should strike a balance between increasing the
  123. * round-trip latency and reducing overhead.
  124. */
  125. static unsigned int rx_irq_mod_usec = 60;
  126. /* Initial interrupt moderation settings. They can be modified after
  127. * module load with ethtool.
  128. *
  129. * This default is chosen to ensure that a 10G link does not go idle
  130. * while a TX queue is stopped after it has become full. A queue is
  131. * restarted when it drops below half full. The time this takes (assuming
  132. * worst case 3 descriptors per packet and 1024 descriptors) is
  133. * 512 / 3 * 1.2 = 205 usec.
  134. */
  135. static unsigned int tx_irq_mod_usec = 150;
  136. /* This is the first interrupt mode to try out of:
  137. * 0 => MSI-X
  138. * 1 => MSI
  139. * 2 => legacy
  140. */
  141. static unsigned int interrupt_mode;
  142. /* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
  143. * i.e. the number of CPUs among which we may distribute simultaneous
  144. * interrupt handling.
  145. *
  146. * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
  147. * The default (0) means to assign an interrupt to each core.
  148. */
  149. static unsigned int rss_cpus;
  150. module_param(rss_cpus, uint, 0444);
  151. MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");
  152. static bool phy_flash_cfg;
  153. module_param(phy_flash_cfg, bool, 0644);
  154. MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");
  155. static unsigned irq_adapt_low_thresh = 8000;
  156. module_param(irq_adapt_low_thresh, uint, 0644);
  157. MODULE_PARM_DESC(irq_adapt_low_thresh,
  158. "Threshold score for reducing IRQ moderation");
  159. static unsigned irq_adapt_high_thresh = 16000;
  160. module_param(irq_adapt_high_thresh, uint, 0644);
  161. MODULE_PARM_DESC(irq_adapt_high_thresh,
  162. "Threshold score for increasing IRQ moderation");
  163. static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
  164. NETIF_MSG_LINK | NETIF_MSG_IFDOWN |
  165. NETIF_MSG_IFUP | NETIF_MSG_RX_ERR |
  166. NETIF_MSG_TX_ERR | NETIF_MSG_HW);
  167. module_param(debug, uint, 0);
  168. MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value");
  169. /**************************************************************************
  170. *
  171. * Utility functions and prototypes
  172. *
  173. *************************************************************************/
  174. static void efx_start_interrupts(struct efx_nic *efx, bool may_keep_eventq);
  175. static void efx_stop_interrupts(struct efx_nic *efx, bool may_keep_eventq);
  176. static void efx_remove_channel(struct efx_channel *channel);
  177. static void efx_remove_channels(struct efx_nic *efx);
  178. static const struct efx_channel_type efx_default_channel_type;
  179. static void efx_remove_port(struct efx_nic *efx);
  180. static void efx_init_napi_channel(struct efx_channel *channel);
  181. static void efx_fini_napi(struct efx_nic *efx);
  182. static void efx_fini_napi_channel(struct efx_channel *channel);
  183. static void efx_fini_struct(struct efx_nic *efx);
  184. static void efx_start_all(struct efx_nic *efx);
  185. static void efx_stop_all(struct efx_nic *efx);
  186. #define EFX_ASSERT_RESET_SERIALISED(efx) \
  187. do { \
  188. if ((efx->state == STATE_READY) || \
  189. (efx->state == STATE_RECOVERY) || \
  190. (efx->state == STATE_DISABLED)) \
  191. ASSERT_RTNL(); \
  192. } while (0)
  193. static int efx_check_disabled(struct efx_nic *efx)
  194. {
  195. if (efx->state == STATE_DISABLED || efx->state == STATE_RECOVERY) {
  196. netif_err(efx, drv, efx->net_dev,
  197. "device is disabled due to earlier errors\n");
  198. return -EIO;
  199. }
  200. return 0;
  201. }
  202. /**************************************************************************
  203. *
  204. * Event queue processing
  205. *
  206. *************************************************************************/
  207. /* Process channel's event queue
  208. *
  209. * This function is responsible for processing the event queue of a
  210. * single channel. The caller must guarantee that this function will
  211. * never be concurrently called more than once on the same channel,
  212. * though different channels may be being processed concurrently.
  213. */
  214. static int efx_process_channel(struct efx_channel *channel, int budget)
  215. {
  216. int spent;
  217. if (unlikely(!channel->enabled))
  218. return 0;
  219. spent = efx_nic_process_eventq(channel, budget);
  220. if (spent && efx_channel_has_rx_queue(channel)) {
  221. struct efx_rx_queue *rx_queue =
  222. efx_channel_get_rx_queue(channel);
  223. efx_rx_flush_packet(channel);
  224. if (rx_queue->enabled)
  225. efx_fast_push_rx_descriptors(rx_queue);
  226. }
  227. return spent;
  228. }
  229. /* NAPI poll handler
  230. *
  231. * NAPI guarantees serialisation of polls of the same device, which
  232. * provides the guarantee required by efx_process_channel().
  233. */
  234. static int efx_poll(struct napi_struct *napi, int budget)
  235. {
  236. struct efx_channel *channel =
  237. container_of(napi, struct efx_channel, napi_str);
  238. struct efx_nic *efx = channel->efx;
  239. int spent;
  240. netif_vdbg(efx, intr, efx->net_dev,
  241. "channel %d NAPI poll executing on CPU %d\n",
  242. channel->channel, raw_smp_processor_id());
  243. spent = efx_process_channel(channel, budget);
  244. if (spent < budget) {
  245. if (efx_channel_has_rx_queue(channel) &&
  246. efx->irq_rx_adaptive &&
  247. unlikely(++channel->irq_count == 1000)) {
  248. if (unlikely(channel->irq_mod_score <
  249. irq_adapt_low_thresh)) {
  250. if (channel->irq_moderation > 1) {
  251. channel->irq_moderation -= 1;
  252. efx->type->push_irq_moderation(channel);
  253. }
  254. } else if (unlikely(channel->irq_mod_score >
  255. irq_adapt_high_thresh)) {
  256. if (channel->irq_moderation <
  257. efx->irq_rx_moderation) {
  258. channel->irq_moderation += 1;
  259. efx->type->push_irq_moderation(channel);
  260. }
  261. }
  262. channel->irq_count = 0;
  263. channel->irq_mod_score = 0;
  264. }
  265. efx_filter_rfs_expire(channel);
  266. /* There is no race here; although napi_disable() will
  267. * only wait for napi_complete(), this isn't a problem
  268. * since efx_nic_eventq_read_ack() will have no effect if
  269. * interrupts have already been disabled.
  270. */
  271. napi_complete(napi);
  272. efx_nic_eventq_read_ack(channel);
  273. }
  274. return spent;
  275. }
  276. /* Create event queue
  277. * Event queue memory allocations are done only once. If the channel
  278. * is reset, the memory buffer will be reused; this guards against
  279. * errors during channel reset and also simplifies interrupt handling.
  280. */
  281. static int efx_probe_eventq(struct efx_channel *channel)
  282. {
  283. struct efx_nic *efx = channel->efx;
  284. unsigned long entries;
  285. netif_dbg(efx, probe, efx->net_dev,
  286. "chan %d create event queue\n", channel->channel);
  287. /* Build an event queue with room for one event per tx and rx buffer,
  288. * plus some extra for link state events and MCDI completions. */
  289. entries = roundup_pow_of_two(efx->rxq_entries + efx->txq_entries + 128);
  290. EFX_BUG_ON_PARANOID(entries > EFX_MAX_EVQ_SIZE);
  291. channel->eventq_mask = max(entries, EFX_MIN_EVQ_SIZE) - 1;
  292. return efx_nic_probe_eventq(channel);
  293. }
  294. /* Prepare channel's event queue */
  295. static void efx_init_eventq(struct efx_channel *channel)
  296. {
  297. netif_dbg(channel->efx, drv, channel->efx->net_dev,
  298. "chan %d init event queue\n", channel->channel);
  299. channel->eventq_read_ptr = 0;
  300. efx_nic_init_eventq(channel);
  301. }
  302. /* Enable event queue processing and NAPI */
  303. static void efx_start_eventq(struct efx_channel *channel)
  304. {
  305. netif_dbg(channel->efx, ifup, channel->efx->net_dev,
  306. "chan %d start event queue\n", channel->channel);
  307. /* Make sure the NAPI handler sees the enabled flag set */
  308. channel->enabled = true;
  309. smp_wmb();
  310. napi_enable(&channel->napi_str);
  311. efx_nic_eventq_read_ack(channel);
  312. }
  313. /* Disable event queue processing and NAPI */
  314. static void efx_stop_eventq(struct efx_channel *channel)
  315. {
  316. if (!channel->enabled)
  317. return;
  318. napi_disable(&channel->napi_str);
  319. channel->enabled = false;
  320. }
  321. static void efx_fini_eventq(struct efx_channel *channel)
  322. {
  323. netif_dbg(channel->efx, drv, channel->efx->net_dev,
  324. "chan %d fini event queue\n", channel->channel);
  325. efx_nic_fini_eventq(channel);
  326. }
  327. static void efx_remove_eventq(struct efx_channel *channel)
  328. {
  329. netif_dbg(channel->efx, drv, channel->efx->net_dev,
  330. "chan %d remove event queue\n", channel->channel);
  331. efx_nic_remove_eventq(channel);
  332. }
  333. /**************************************************************************
  334. *
  335. * Channel handling
  336. *
  337. *************************************************************************/
  338. /* Allocate and initialise a channel structure. */
  339. static struct efx_channel *
  340. efx_alloc_channel(struct efx_nic *efx, int i, struct efx_channel *old_channel)
  341. {
  342. struct efx_channel *channel;
  343. struct efx_rx_queue *rx_queue;
  344. struct efx_tx_queue *tx_queue;
  345. int j;
  346. channel = kzalloc(sizeof(*channel), GFP_KERNEL);
  347. if (!channel)
  348. return NULL;
  349. channel->efx = efx;
  350. channel->channel = i;
  351. channel->type = &efx_default_channel_type;
  352. for (j = 0; j < EFX_TXQ_TYPES; j++) {
  353. tx_queue = &channel->tx_queue[j];
  354. tx_queue->efx = efx;
  355. tx_queue->queue = i * EFX_TXQ_TYPES + j;
  356. tx_queue->channel = channel;
  357. }
  358. rx_queue = &channel->rx_queue;
  359. rx_queue->efx = efx;
  360. setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
  361. (unsigned long)rx_queue);
  362. return channel;
  363. }
  364. /* Allocate and initialise a channel structure, copying parameters
  365. * (but not resources) from an old channel structure.
  366. */
  367. static struct efx_channel *
  368. efx_copy_channel(const struct efx_channel *old_channel)
  369. {
  370. struct efx_channel *channel;
  371. struct efx_rx_queue *rx_queue;
  372. struct efx_tx_queue *tx_queue;
  373. int j;
  374. channel = kmalloc(sizeof(*channel), GFP_KERNEL);
  375. if (!channel)
  376. return NULL;
  377. *channel = *old_channel;
  378. channel->napi_dev = NULL;
  379. memset(&channel->eventq, 0, sizeof(channel->eventq));
  380. for (j = 0; j < EFX_TXQ_TYPES; j++) {
  381. tx_queue = &channel->tx_queue[j];
  382. if (tx_queue->channel)
  383. tx_queue->channel = channel;
  384. tx_queue->buffer = NULL;
  385. memset(&tx_queue->txd, 0, sizeof(tx_queue->txd));
  386. }
  387. rx_queue = &channel->rx_queue;
  388. rx_queue->buffer = NULL;
  389. memset(&rx_queue->rxd, 0, sizeof(rx_queue->rxd));
  390. setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill,
  391. (unsigned long)rx_queue);
  392. return channel;
  393. }
  394. static int efx_probe_channel(struct efx_channel *channel)
  395. {
  396. struct efx_tx_queue *tx_queue;
  397. struct efx_rx_queue *rx_queue;
  398. int rc;
  399. netif_dbg(channel->efx, probe, channel->efx->net_dev,
  400. "creating channel %d\n", channel->channel);
  401. rc = channel->type->pre_probe(channel);
  402. if (rc)
  403. goto fail;
  404. rc = efx_probe_eventq(channel);
  405. if (rc)
  406. goto fail;
  407. efx_for_each_channel_tx_queue(tx_queue, channel) {
  408. rc = efx_probe_tx_queue(tx_queue);
  409. if (rc)
  410. goto fail;
  411. }
  412. efx_for_each_channel_rx_queue(rx_queue, channel) {
  413. rc = efx_probe_rx_queue(rx_queue);
  414. if (rc)
  415. goto fail;
  416. }
  417. channel->n_rx_frm_trunc = 0;
  418. return 0;
  419. fail:
  420. efx_remove_channel(channel);
  421. return rc;
  422. }
  423. static void
  424. efx_get_channel_name(struct efx_channel *channel, char *buf, size_t len)
  425. {
  426. struct efx_nic *efx = channel->efx;
  427. const char *type;
  428. int number;
  429. number = channel->channel;
  430. if (efx->tx_channel_offset == 0) {
  431. type = "";
  432. } else if (channel->channel < efx->tx_channel_offset) {
  433. type = "-rx";
  434. } else {
  435. type = "-tx";
  436. number -= efx->tx_channel_offset;
  437. }
  438. snprintf(buf, len, "%s%s-%d", efx->name, type, number);
  439. }
  440. static void efx_set_channel_names(struct efx_nic *efx)
  441. {
  442. struct efx_channel *channel;
  443. efx_for_each_channel(channel, efx)
  444. channel->type->get_name(channel,
  445. efx->channel_name[channel->channel],
  446. sizeof(efx->channel_name[0]));
  447. }
  448. static int efx_probe_channels(struct efx_nic *efx)
  449. {
  450. struct efx_channel *channel;
  451. int rc;
  452. /* Restart special buffer allocation */
  453. efx->next_buffer_table = 0;
  454. /* Probe channels in reverse, so that any 'extra' channels
  455. * use the start of the buffer table. This allows the traffic
  456. * channels to be resized without moving them or wasting the
  457. * entries before them.
  458. */
  459. efx_for_each_channel_rev(channel, efx) {
  460. rc = efx_probe_channel(channel);
  461. if (rc) {
  462. netif_err(efx, probe, efx->net_dev,
  463. "failed to create channel %d\n",
  464. channel->channel);
  465. goto fail;
  466. }
  467. }
  468. efx_set_channel_names(efx);
  469. return 0;
  470. fail:
  471. efx_remove_channels(efx);
  472. return rc;
  473. }
  474. /* Channels are shutdown and reinitialised whilst the NIC is running
  475. * to propagate configuration changes (mtu, checksum offload), or
  476. * to clear hardware error conditions
  477. */
  478. static void efx_start_datapath(struct efx_nic *efx)
  479. {
  480. bool old_rx_scatter = efx->rx_scatter;
  481. struct efx_tx_queue *tx_queue;
  482. struct efx_rx_queue *rx_queue;
  483. struct efx_channel *channel;
  484. size_t rx_buf_len;
  485. /* Calculate the rx buffer allocation parameters required to
  486. * support the current MTU, including padding for header
  487. * alignment and overruns.
  488. */
  489. efx->rx_dma_len = (efx->type->rx_buffer_hash_size +
  490. EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
  491. efx->type->rx_buffer_padding);
  492. rx_buf_len = (sizeof(struct efx_rx_page_state) +
  493. NET_IP_ALIGN + efx->rx_dma_len);
  494. if (rx_buf_len <= PAGE_SIZE) {
  495. efx->rx_scatter = false;
  496. efx->rx_buffer_order = 0;
  497. } else if (efx->type->can_rx_scatter) {
  498. BUILD_BUG_ON(EFX_RX_USR_BUF_SIZE % L1_CACHE_BYTES);
  499. BUILD_BUG_ON(sizeof(struct efx_rx_page_state) +
  500. 2 * ALIGN(NET_IP_ALIGN + EFX_RX_USR_BUF_SIZE,
  501. EFX_RX_BUF_ALIGNMENT) >
  502. PAGE_SIZE);
  503. efx->rx_scatter = true;
  504. efx->rx_dma_len = EFX_RX_USR_BUF_SIZE;
  505. efx->rx_buffer_order = 0;
  506. } else {
  507. efx->rx_scatter = false;
  508. efx->rx_buffer_order = get_order(rx_buf_len);
  509. }
  510. efx_rx_config_page_split(efx);
  511. if (efx->rx_buffer_order)
  512. netif_dbg(efx, drv, efx->net_dev,
  513. "RX buf len=%u; page order=%u batch=%u\n",
  514. efx->rx_dma_len, efx->rx_buffer_order,
  515. efx->rx_pages_per_batch);
  516. else
  517. netif_dbg(efx, drv, efx->net_dev,
  518. "RX buf len=%u step=%u bpp=%u; page batch=%u\n",
  519. efx->rx_dma_len, efx->rx_page_buf_step,
  520. efx->rx_bufs_per_page, efx->rx_pages_per_batch);
  521. /* RX filters also have scatter-enabled flags */
  522. if (efx->rx_scatter != old_rx_scatter)
  523. efx_filter_update_rx_scatter(efx);
  524. /* We must keep at least one descriptor in a TX ring empty.
  525. * We could avoid this when the queue size does not exactly
  526. * match the hardware ring size, but it's not that important.
  527. * Therefore we stop the queue when one more skb might fill
  528. * the ring completely. We wake it when half way back to
  529. * empty.
  530. */
  531. efx->txq_stop_thresh = efx->txq_entries - efx_tx_max_skb_descs(efx);
  532. efx->txq_wake_thresh = efx->txq_stop_thresh / 2;
  533. /* Initialise the channels */
  534. efx_for_each_channel(channel, efx) {
  535. efx_for_each_channel_tx_queue(tx_queue, channel)
  536. efx_init_tx_queue(tx_queue);
  537. efx_for_each_channel_rx_queue(rx_queue, channel) {
  538. efx_init_rx_queue(rx_queue);
  539. efx_nic_generate_fill_event(rx_queue);
  540. }
  541. WARN_ON(channel->rx_pkt_n_frags);
  542. }
  543. if (netif_device_present(efx->net_dev))
  544. netif_tx_wake_all_queues(efx->net_dev);
  545. }
  546. static void efx_stop_datapath(struct efx_nic *efx)
  547. {
  548. struct efx_channel *channel;
  549. struct efx_tx_queue *tx_queue;
  550. struct efx_rx_queue *rx_queue;
  551. struct pci_dev *dev = efx->pci_dev;
  552. int rc;
  553. EFX_ASSERT_RESET_SERIALISED(efx);
  554. BUG_ON(efx->port_enabled);
  555. /* Only perform flush if dma is enabled */
  556. if (dev->is_busmaster && efx->state != STATE_RECOVERY) {
  557. rc = efx_nic_flush_queues(efx);
  558. if (rc && EFX_WORKAROUND_7803(efx)) {
  559. /* Schedule a reset to recover from the flush failure. The
  560. * descriptor caches reference memory we're about to free,
  561. * but falcon_reconfigure_mac_wrapper() won't reconnect
  562. * the MACs because of the pending reset. */
  563. netif_err(efx, drv, efx->net_dev,
  564. "Resetting to recover from flush failure\n");
  565. efx_schedule_reset(efx, RESET_TYPE_ALL);
  566. } else if (rc) {
  567. netif_err(efx, drv, efx->net_dev, "failed to flush queues\n");
  568. } else {
  569. netif_dbg(efx, drv, efx->net_dev,
  570. "successfully flushed all queues\n");
  571. }
  572. }
  573. efx_for_each_channel(channel, efx) {
  574. /* RX packet processing is pipelined, so wait for the
  575. * NAPI handler to complete. At least event queue 0
  576. * might be kept active by non-data events, so don't
  577. * use napi_synchronize() but actually disable NAPI
  578. * temporarily.
  579. */
  580. if (efx_channel_has_rx_queue(channel)) {
  581. efx_stop_eventq(channel);
  582. efx_start_eventq(channel);
  583. }
  584. efx_for_each_channel_rx_queue(rx_queue, channel)
  585. efx_fini_rx_queue(rx_queue);
  586. efx_for_each_possible_channel_tx_queue(tx_queue, channel)
  587. efx_fini_tx_queue(tx_queue);
  588. }
  589. }
  590. static void efx_remove_channel(struct efx_channel *channel)
  591. {
  592. struct efx_tx_queue *tx_queue;
  593. struct efx_rx_queue *rx_queue;
  594. netif_dbg(channel->efx, drv, channel->efx->net_dev,
  595. "destroy chan %d\n", channel->channel);
  596. efx_for_each_channel_rx_queue(rx_queue, channel)
  597. efx_remove_rx_queue(rx_queue);
  598. efx_for_each_possible_channel_tx_queue(tx_queue, channel)
  599. efx_remove_tx_queue(tx_queue);
  600. efx_remove_eventq(channel);
  601. channel->type->post_remove(channel);
  602. }
  603. static void efx_remove_channels(struct efx_nic *efx)
  604. {
  605. struct efx_channel *channel;
  606. efx_for_each_channel(channel, efx)
  607. efx_remove_channel(channel);
  608. }
  609. int
  610. efx_realloc_channels(struct efx_nic *efx, u32 rxq_entries, u32 txq_entries)
  611. {
  612. struct efx_channel *other_channel[EFX_MAX_CHANNELS], *channel;
  613. u32 old_rxq_entries, old_txq_entries;
  614. unsigned i, next_buffer_table = 0;
  615. int rc;
  616. rc = efx_check_disabled(efx);
  617. if (rc)
  618. return rc;
  619. /* Not all channels should be reallocated. We must avoid
  620. * reallocating their buffer table entries.
  621. */
  622. efx_for_each_channel(channel, efx) {
  623. struct efx_rx_queue *rx_queue;
  624. struct efx_tx_queue *tx_queue;
  625. if (channel->type->copy)
  626. continue;
  627. next_buffer_table = max(next_buffer_table,
  628. channel->eventq.index +
  629. channel->eventq.entries);
  630. efx_for_each_channel_rx_queue(rx_queue, channel)
  631. next_buffer_table = max(next_buffer_table,
  632. rx_queue->rxd.index +
  633. rx_queue->rxd.entries);
  634. efx_for_each_channel_tx_queue(tx_queue, channel)
  635. next_buffer_table = max(next_buffer_table,
  636. tx_queue->txd.index +
  637. tx_queue->txd.entries);
  638. }
  639. efx_device_detach_sync(efx);
  640. efx_stop_all(efx);
  641. efx_stop_interrupts(efx, true);
  642. /* Clone channels (where possible) */
  643. memset(other_channel, 0, sizeof(other_channel));
  644. for (i = 0; i < efx->n_channels; i++) {
  645. channel = efx->channel[i];
  646. if (channel->type->copy)
  647. channel = channel->type->copy(channel);
  648. if (!channel) {
  649. rc = -ENOMEM;
  650. goto out;
  651. }
  652. other_channel[i] = channel;
  653. }
  654. /* Swap entry counts and channel pointers */
  655. old_rxq_entries = efx->rxq_entries;
  656. old_txq_entries = efx->txq_entries;
  657. efx->rxq_entries = rxq_entries;
  658. efx->txq_entries = txq_entries;
  659. for (i = 0; i < efx->n_channels; i++) {
  660. channel = efx->channel[i];
  661. efx->channel[i] = other_channel[i];
  662. other_channel[i] = channel;
  663. }
  664. /* Restart buffer table allocation */
  665. efx->next_buffer_table = next_buffer_table;
  666. for (i = 0; i < efx->n_channels; i++) {
  667. channel = efx->channel[i];
  668. if (!channel->type->copy)
  669. continue;
  670. rc = efx_probe_channel(channel);
  671. if (rc)
  672. goto rollback;
  673. efx_init_napi_channel(efx->channel[i]);
  674. }
  675. out:
  676. /* Destroy unused channel structures */
  677. for (i = 0; i < efx->n_channels; i++) {
  678. channel = other_channel[i];
  679. if (channel && channel->type->copy) {
  680. efx_fini_napi_channel(channel);
  681. efx_remove_channel(channel);
  682. kfree(channel);
  683. }
  684. }
  685. efx_start_interrupts(efx, true);
  686. efx_start_all(efx);
  687. netif_device_attach(efx->net_dev);
  688. return rc;
  689. rollback:
  690. /* Swap back */
  691. efx->rxq_entries = old_rxq_entries;
  692. efx->txq_entries = old_txq_entries;
  693. for (i = 0; i < efx->n_channels; i++) {
  694. channel = efx->channel[i];
  695. efx->channel[i] = other_channel[i];
  696. other_channel[i] = channel;
  697. }
  698. goto out;
  699. }
  700. void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue)
  701. {
  702. mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(100));
  703. }
  704. static const struct efx_channel_type efx_default_channel_type = {
  705. .pre_probe = efx_channel_dummy_op_int,
  706. .post_remove = efx_channel_dummy_op_void,
  707. .get_name = efx_get_channel_name,
  708. .copy = efx_copy_channel,
  709. .keep_eventq = false,
  710. };
  711. int efx_channel_dummy_op_int(struct efx_channel *channel)
  712. {
  713. return 0;
  714. }
  715. void efx_channel_dummy_op_void(struct efx_channel *channel)
  716. {
  717. }
  718. /**************************************************************************
  719. *
  720. * Port handling
  721. *
  722. **************************************************************************/
  723. /* This ensures that the kernel is kept informed (via
  724. * netif_carrier_on/off) of the link status, and also maintains the
  725. * link status's stop on the port's TX queue.
  726. */
  727. void efx_link_status_changed(struct efx_nic *efx)
  728. {
  729. struct efx_link_state *link_state = &efx->link_state;
  730. /* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
  731. * that no events are triggered between unregister_netdev() and the
  732. * driver unloading. A more general condition is that NETDEV_CHANGE
  733. * can only be generated between NETDEV_UP and NETDEV_DOWN */
  734. if (!netif_running(efx->net_dev))
  735. return;
  736. if (link_state->up != netif_carrier_ok(efx->net_dev)) {
  737. efx->n_link_state_changes++;
  738. if (link_state->up)
  739. netif_carrier_on(efx->net_dev);
  740. else
  741. netif_carrier_off(efx->net_dev);
  742. }
  743. /* Status message for kernel log */
  744. if (link_state->up)
  745. netif_info(efx, link, efx->net_dev,
  746. "link up at %uMbps %s-duplex (MTU %d)%s\n",
  747. link_state->speed, link_state->fd ? "full" : "half",
  748. efx->net_dev->mtu,
  749. (efx->promiscuous ? " [PROMISC]" : ""));
  750. else
  751. netif_info(efx, link, efx->net_dev, "link down\n");
  752. }
  753. void efx_link_set_advertising(struct efx_nic *efx, u32 advertising)
  754. {
  755. efx->link_advertising = advertising;
  756. if (advertising) {
  757. if (advertising & ADVERTISED_Pause)
  758. efx->wanted_fc |= (EFX_FC_TX | EFX_FC_RX);
  759. else
  760. efx->wanted_fc &= ~(EFX_FC_TX | EFX_FC_RX);
  761. if (advertising & ADVERTISED_Asym_Pause)
  762. efx->wanted_fc ^= EFX_FC_TX;
  763. }
  764. }
  765. void efx_link_set_wanted_fc(struct efx_nic *efx, u8 wanted_fc)
  766. {
  767. efx->wanted_fc = wanted_fc;
  768. if (efx->link_advertising) {
  769. if (wanted_fc & EFX_FC_RX)
  770. efx->link_advertising |= (ADVERTISED_Pause |
  771. ADVERTISED_Asym_Pause);
  772. else
  773. efx->link_advertising &= ~(ADVERTISED_Pause |
  774. ADVERTISED_Asym_Pause);
  775. if (wanted_fc & EFX_FC_TX)
  776. efx->link_advertising ^= ADVERTISED_Asym_Pause;
  777. }
  778. }
  779. static void efx_fini_port(struct efx_nic *efx);
  780. /* Push loopback/power/transmit disable settings to the PHY, and reconfigure
  781. * the MAC appropriately. All other PHY configuration changes are pushed
  782. * through phy_op->set_settings(), and pushed asynchronously to the MAC
  783. * through efx_monitor().
  784. *
  785. * Callers must hold the mac_lock
  786. */
  787. int __efx_reconfigure_port(struct efx_nic *efx)
  788. {
  789. enum efx_phy_mode phy_mode;
  790. int rc;
  791. WARN_ON(!mutex_is_locked(&efx->mac_lock));
  792. /* Serialise the promiscuous flag with efx_set_rx_mode. */
  793. netif_addr_lock_bh(efx->net_dev);
  794. netif_addr_unlock_bh(efx->net_dev);
  795. /* Disable PHY transmit in mac level loopbacks */
  796. phy_mode = efx->phy_mode;
  797. if (LOOPBACK_INTERNAL(efx))
  798. efx->phy_mode |= PHY_MODE_TX_DISABLED;
  799. else
  800. efx->phy_mode &= ~PHY_MODE_TX_DISABLED;
  801. rc = efx->type->reconfigure_port(efx);
  802. if (rc)
  803. efx->phy_mode = phy_mode;
  804. return rc;
  805. }
  806. /* Reinitialise the MAC to pick up new PHY settings, even if the port is
  807. * disabled. */
  808. int efx_reconfigure_port(struct efx_nic *efx)
  809. {
  810. int rc;
  811. EFX_ASSERT_RESET_SERIALISED(efx);
  812. mutex_lock(&efx->mac_lock);
  813. rc = __efx_reconfigure_port(efx);
  814. mutex_unlock(&efx->mac_lock);
  815. return rc;
  816. }
  817. /* Asynchronous work item for changing MAC promiscuity and multicast
  818. * hash. Avoid a drain/rx_ingress enable by reconfiguring the current
  819. * MAC directly. */
  820. static void efx_mac_work(struct work_struct *data)
  821. {
  822. struct efx_nic *efx = container_of(data, struct efx_nic, mac_work);
  823. mutex_lock(&efx->mac_lock);
  824. if (efx->port_enabled)
  825. efx->type->reconfigure_mac(efx);
  826. mutex_unlock(&efx->mac_lock);
  827. }
  828. static int efx_probe_port(struct efx_nic *efx)
  829. {
  830. int rc;
  831. netif_dbg(efx, probe, efx->net_dev, "create port\n");
  832. if (phy_flash_cfg)
  833. efx->phy_mode = PHY_MODE_SPECIAL;
  834. /* Connect up MAC/PHY operations table */
  835. rc = efx->type->probe_port(efx);
  836. if (rc)
  837. return rc;
  838. /* Initialise MAC address to permanent address */
  839. memcpy(efx->net_dev->dev_addr, efx->net_dev->perm_addr, ETH_ALEN);
  840. return 0;
  841. }
  842. static int efx_init_port(struct efx_nic *efx)
  843. {
  844. int rc;
  845. netif_dbg(efx, drv, efx->net_dev, "init port\n");
  846. mutex_lock(&efx->mac_lock);
  847. rc = efx->phy_op->init(efx);
  848. if (rc)
  849. goto fail1;
  850. efx->port_initialized = true;
  851. /* Reconfigure the MAC before creating dma queues (required for
  852. * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */
  853. efx->type->reconfigure_mac(efx);
  854. /* Ensure the PHY advertises the correct flow control settings */
  855. rc = efx->phy_op->reconfigure(efx);
  856. if (rc)
  857. goto fail2;
  858. mutex_unlock(&efx->mac_lock);
  859. return 0;
  860. fail2:
  861. efx->phy_op->fini(efx);
  862. fail1:
  863. mutex_unlock(&efx->mac_lock);
  864. return rc;
  865. }
  866. static void efx_start_port(struct efx_nic *efx)
  867. {
  868. netif_dbg(efx, ifup, efx->net_dev, "start port\n");
  869. BUG_ON(efx->port_enabled);
  870. mutex_lock(&efx->mac_lock);
  871. efx->port_enabled = true;
  872. /* efx_mac_work() might have been scheduled after efx_stop_port(),
  873. * and then cancelled by efx_flush_all() */
  874. efx->type->reconfigure_mac(efx);
  875. mutex_unlock(&efx->mac_lock);
  876. }
  877. /* Prevent efx_mac_work() and efx_monitor() from working */
  878. static void efx_stop_port(struct efx_nic *efx)
  879. {
  880. netif_dbg(efx, ifdown, efx->net_dev, "stop port\n");
  881. mutex_lock(&efx->mac_lock);
  882. efx->port_enabled = false;
  883. mutex_unlock(&efx->mac_lock);
  884. /* Serialise against efx_set_multicast_list() */
  885. netif_addr_lock_bh(efx->net_dev);
  886. netif_addr_unlock_bh(efx->net_dev);
  887. }
  888. static void efx_fini_port(struct efx_nic *efx)
  889. {
  890. netif_dbg(efx, drv, efx->net_dev, "shut down port\n");
  891. if (!efx->port_initialized)
  892. return;
  893. efx->phy_op->fini(efx);
  894. efx->port_initialized = false;
  895. efx->link_state.up = false;
  896. efx_link_status_changed(efx);
  897. }
  898. static void efx_remove_port(struct efx_nic *efx)
  899. {
  900. netif_dbg(efx, drv, efx->net_dev, "destroying port\n");
  901. efx->type->remove_port(efx);
  902. }
  903. /**************************************************************************
  904. *
  905. * NIC handling
  906. *
  907. **************************************************************************/
  908. /* This configures the PCI device to enable I/O and DMA. */
  909. static int efx_init_io(struct efx_nic *efx)
  910. {
  911. struct pci_dev *pci_dev = efx->pci_dev;
  912. dma_addr_t dma_mask = efx->type->max_dma_mask;
  913. int rc;
  914. netif_dbg(efx, probe, efx->net_dev, "initialising I/O\n");
  915. rc = pci_enable_device(pci_dev);
  916. if (rc) {
  917. netif_err(efx, probe, efx->net_dev,
  918. "failed to enable PCI device\n");
  919. goto fail1;
  920. }
  921. pci_set_master(pci_dev);
  922. /* Set the PCI DMA mask. Try all possibilities from our
  923. * genuine mask down to 32 bits, because some architectures
  924. * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
  925. * masks event though they reject 46 bit masks.
  926. */
  927. while (dma_mask > 0x7fffffffUL) {
  928. if (dma_supported(&pci_dev->dev, dma_mask)) {
  929. rc = dma_set_mask(&pci_dev->dev, dma_mask);
  930. if (rc == 0)
  931. break;
  932. }
  933. dma_mask >>= 1;
  934. }
  935. if (rc) {
  936. netif_err(efx, probe, efx->net_dev,
  937. "could not find a suitable DMA mask\n");
  938. goto fail2;
  939. }
  940. netif_dbg(efx, probe, efx->net_dev,
  941. "using DMA mask %llx\n", (unsigned long long) dma_mask);
  942. rc = dma_set_coherent_mask(&pci_dev->dev, dma_mask);
  943. if (rc) {
  944. /* dma_set_coherent_mask() is not *allowed* to
  945. * fail with a mask that dma_set_mask() accepted,
  946. * but just in case...
  947. */
  948. netif_err(efx, probe, efx->net_dev,
  949. "failed to set consistent DMA mask\n");
  950. goto fail2;
  951. }
  952. efx->membase_phys = pci_resource_start(efx->pci_dev, EFX_MEM_BAR);
  953. rc = pci_request_region(pci_dev, EFX_MEM_BAR, "sfc");
  954. if (rc) {
  955. netif_err(efx, probe, efx->net_dev,
  956. "request for memory BAR failed\n");
  957. rc = -EIO;
  958. goto fail3;
  959. }
  960. efx->membase = ioremap_nocache(efx->membase_phys,
  961. efx->type->mem_map_size);
  962. if (!efx->membase) {
  963. netif_err(efx, probe, efx->net_dev,
  964. "could not map memory BAR at %llx+%x\n",
  965. (unsigned long long)efx->membase_phys,
  966. efx->type->mem_map_size);
  967. rc = -ENOMEM;
  968. goto fail4;
  969. }
  970. netif_dbg(efx, probe, efx->net_dev,
  971. "memory BAR at %llx+%x (virtual %p)\n",
  972. (unsigned long long)efx->membase_phys,
  973. efx->type->mem_map_size, efx->membase);
  974. return 0;
  975. fail4:
  976. pci_release_region(efx->pci_dev, EFX_MEM_BAR);
  977. fail3:
  978. efx->membase_phys = 0;
  979. fail2:
  980. pci_disable_device(efx->pci_dev);
  981. fail1:
  982. return rc;
  983. }
  984. static void efx_fini_io(struct efx_nic *efx)
  985. {
  986. netif_dbg(efx, drv, efx->net_dev, "shutting down I/O\n");
  987. if (efx->membase) {
  988. iounmap(efx->membase);
  989. efx->membase = NULL;
  990. }
  991. if (efx->membase_phys) {
  992. pci_release_region(efx->pci_dev, EFX_MEM_BAR);
  993. efx->membase_phys = 0;
  994. }
  995. pci_disable_device(efx->pci_dev);
  996. }
  997. static unsigned int efx_wanted_parallelism(struct efx_nic *efx)
  998. {
  999. cpumask_var_t thread_mask;
  1000. unsigned int count;
  1001. int cpu;
  1002. if (rss_cpus) {
  1003. count = rss_cpus;
  1004. } else {
  1005. if (unlikely(!zalloc_cpumask_var(&thread_mask, GFP_KERNEL))) {
  1006. netif_warn(efx, probe, efx->net_dev,
  1007. "RSS disabled due to allocation failure\n");
  1008. return 1;
  1009. }
  1010. count = 0;
  1011. for_each_online_cpu(cpu) {
  1012. if (!cpumask_test_cpu(cpu, thread_mask)) {
  1013. ++count;
  1014. cpumask_or(thread_mask, thread_mask,
  1015. topology_thread_cpumask(cpu));
  1016. }
  1017. }
  1018. free_cpumask_var(thread_mask);
  1019. }
  1020. /* If RSS is requested for the PF *and* VFs then we can't write RSS
  1021. * table entries that are inaccessible to VFs
  1022. */
  1023. if (efx_sriov_wanted(efx) && efx_vf_size(efx) > 1 &&
  1024. count > efx_vf_size(efx)) {
  1025. netif_warn(efx, probe, efx->net_dev,
  1026. "Reducing number of RSS channels from %u to %u for "
  1027. "VF support. Increase vf-msix-limit to use more "
  1028. "channels on the PF.\n",
  1029. count, efx_vf_size(efx));
  1030. count = efx_vf_size(efx);
  1031. }
  1032. return count;
  1033. }
  1034. /* Probe the number and type of interrupts we are able to obtain, and
  1035. * the resulting numbers of channels and RX queues.
  1036. */
  1037. static int efx_probe_interrupts(struct efx_nic *efx)
  1038. {
  1039. unsigned int max_channels =
  1040. min(efx->type->phys_addr_channels, EFX_MAX_CHANNELS);
  1041. unsigned int extra_channels = 0;
  1042. unsigned int i, j;
  1043. int rc;
  1044. for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++)
  1045. if (efx->extra_channel_type[i])
  1046. ++extra_channels;
  1047. if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
  1048. struct msix_entry xentries[EFX_MAX_CHANNELS];
  1049. unsigned int n_channels;
  1050. n_channels = efx_wanted_parallelism(efx);
  1051. if (separate_tx_channels)
  1052. n_channels *= 2;
  1053. n_channels += extra_channels;
  1054. n_channels = min(n_channels, max_channels);
  1055. for (i = 0; i < n_channels; i++)
  1056. xentries[i].entry = i;
  1057. rc = pci_enable_msix(efx->pci_dev, xentries, n_channels);
  1058. if (rc > 0) {
  1059. netif_err(efx, drv, efx->net_dev,
  1060. "WARNING: Insufficient MSI-X vectors"
  1061. " available (%d < %u).\n", rc, n_channels);
  1062. netif_err(efx, drv, efx->net_dev,
  1063. "WARNING: Performance may be reduced.\n");
  1064. EFX_BUG_ON_PARANOID(rc >= n_channels);
  1065. n_channels = rc;
  1066. rc = pci_enable_msix(efx->pci_dev, xentries,
  1067. n_channels);
  1068. }
  1069. if (rc == 0) {
  1070. efx->n_channels = n_channels;
  1071. if (n_channels > extra_channels)
  1072. n_channels -= extra_channels;
  1073. if (separate_tx_channels) {
  1074. efx->n_tx_channels = max(n_channels / 2, 1U);
  1075. efx->n_rx_channels = max(n_channels -
  1076. efx->n_tx_channels,
  1077. 1U);
  1078. } else {
  1079. efx->n_tx_channels = n_channels;
  1080. efx->n_rx_channels = n_channels;
  1081. }
  1082. for (i = 0; i < efx->n_channels; i++)
  1083. efx_get_channel(efx, i)->irq =
  1084. xentries[i].vector;
  1085. } else {
  1086. /* Fall back to single channel MSI */
  1087. efx->interrupt_mode = EFX_INT_MODE_MSI;
  1088. netif_err(efx, drv, efx->net_dev,
  1089. "could not enable MSI-X\n");
  1090. }
  1091. }
  1092. /* Try single interrupt MSI */
  1093. if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
  1094. efx->n_channels = 1;
  1095. efx->n_rx_channels = 1;
  1096. efx->n_tx_channels = 1;
  1097. rc = pci_enable_msi(efx->pci_dev);
  1098. if (rc == 0) {
  1099. efx_get_channel(efx, 0)->irq = efx->pci_dev->irq;
  1100. } else {
  1101. netif_err(efx, drv, efx->net_dev,
  1102. "could not enable MSI\n");
  1103. efx->interrupt_mode = EFX_INT_MODE_LEGACY;
  1104. }
  1105. }
  1106. /* Assume legacy interrupts */
  1107. if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
  1108. efx->n_channels = 1 + (separate_tx_channels ? 1 : 0);
  1109. efx->n_rx_channels = 1;
  1110. efx->n_tx_channels = 1;
  1111. efx->legacy_irq = efx->pci_dev->irq;
  1112. }
  1113. /* Assign extra channels if possible */
  1114. j = efx->n_channels;
  1115. for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++) {
  1116. if (!efx->extra_channel_type[i])
  1117. continue;
  1118. if (efx->interrupt_mode != EFX_INT_MODE_MSIX ||
  1119. efx->n_channels <= extra_channels) {
  1120. efx->extra_channel_type[i]->handle_no_channel(efx);
  1121. } else {
  1122. --j;
  1123. efx_get_channel(efx, j)->type =
  1124. efx->extra_channel_type[i];
  1125. }
  1126. }
  1127. /* RSS might be usable on VFs even if it is disabled on the PF */
  1128. efx->rss_spread = ((efx->n_rx_channels > 1 || !efx_sriov_wanted(efx)) ?
  1129. efx->n_rx_channels : efx_vf_size(efx));
  1130. return 0;
  1131. }
  1132. /* Enable interrupts, then probe and start the event queues */
  1133. static void efx_start_interrupts(struct efx_nic *efx, bool may_keep_eventq)
  1134. {
  1135. struct efx_channel *channel;
  1136. BUG_ON(efx->state == STATE_DISABLED);
  1137. if (efx->eeh_disabled_legacy_irq) {
  1138. enable_irq(efx->legacy_irq);
  1139. efx->eeh_disabled_legacy_irq = false;
  1140. }
  1141. if (efx->legacy_irq)
  1142. efx->legacy_irq_enabled = true;
  1143. efx_nic_enable_interrupts(efx);
  1144. efx_for_each_channel(channel, efx) {
  1145. if (!channel->type->keep_eventq || !may_keep_eventq)
  1146. efx_init_eventq(channel);
  1147. efx_start_eventq(channel);
  1148. }
  1149. efx_mcdi_mode_event(efx);
  1150. }
  1151. static void efx_stop_interrupts(struct efx_nic *efx, bool may_keep_eventq)
  1152. {
  1153. struct efx_channel *channel;
  1154. if (efx->state == STATE_DISABLED)
  1155. return;
  1156. efx_mcdi_mode_poll(efx);
  1157. efx_nic_disable_interrupts(efx);
  1158. if (efx->legacy_irq) {
  1159. synchronize_irq(efx->legacy_irq);
  1160. efx->legacy_irq_enabled = false;
  1161. }
  1162. efx_for_each_channel(channel, efx) {
  1163. if (channel->irq)
  1164. synchronize_irq(channel->irq);
  1165. efx_stop_eventq(channel);
  1166. if (!channel->type->keep_eventq || !may_keep_eventq)
  1167. efx_fini_eventq(channel);
  1168. }
  1169. }
  1170. static void efx_remove_interrupts(struct efx_nic *efx)
  1171. {
  1172. struct efx_channel *channel;
  1173. /* Remove MSI/MSI-X interrupts */
  1174. efx_for_each_channel(channel, efx)
  1175. channel->irq = 0;
  1176. pci_disable_msi(efx->pci_dev);
  1177. pci_disable_msix(efx->pci_dev);
  1178. /* Remove legacy interrupt */
  1179. efx->legacy_irq = 0;
  1180. }
  1181. static void efx_set_channels(struct efx_nic *efx)
  1182. {
  1183. struct efx_channel *channel;
  1184. struct efx_tx_queue *tx_queue;
  1185. efx->tx_channel_offset =
  1186. separate_tx_channels ? efx->n_channels - efx->n_tx_channels : 0;
  1187. /* We need to mark which channels really have RX and TX
  1188. * queues, and adjust the TX queue numbers if we have separate
  1189. * RX-only and TX-only channels.
  1190. */
  1191. efx_for_each_channel(channel, efx) {
  1192. if (channel->channel < efx->n_rx_channels)
  1193. channel->rx_queue.core_index = channel->channel;
  1194. else
  1195. channel->rx_queue.core_index = -1;
  1196. efx_for_each_channel_tx_queue(tx_queue, channel)
  1197. tx_queue->queue -= (efx->tx_channel_offset *
  1198. EFX_TXQ_TYPES);
  1199. }
  1200. }
  1201. static int efx_probe_nic(struct efx_nic *efx)
  1202. {
  1203. size_t i;
  1204. int rc;
  1205. netif_dbg(efx, probe, efx->net_dev, "creating NIC\n");
  1206. /* Carry out hardware-type specific initialisation */
  1207. rc = efx->type->probe(efx);
  1208. if (rc)
  1209. return rc;
  1210. /* Determine the number of channels and queues by trying to hook
  1211. * in MSI-X interrupts. */
  1212. rc = efx_probe_interrupts(efx);
  1213. if (rc)
  1214. goto fail;
  1215. efx->type->dimension_resources(efx);
  1216. if (efx->n_channels > 1)
  1217. get_random_bytes(&efx->rx_hash_key, sizeof(efx->rx_hash_key));
  1218. for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); i++)
  1219. efx->rx_indir_table[i] =
  1220. ethtool_rxfh_indir_default(i, efx->rss_spread);
  1221. efx_set_channels(efx);
  1222. netif_set_real_num_tx_queues(efx->net_dev, efx->n_tx_channels);
  1223. netif_set_real_num_rx_queues(efx->net_dev, efx->n_rx_channels);
  1224. /* Initialise the interrupt moderation settings */
  1225. efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true,
  1226. true);
  1227. return 0;
  1228. fail:
  1229. efx->type->remove(efx);
  1230. return rc;
  1231. }
  1232. static void efx_remove_nic(struct efx_nic *efx)
  1233. {
  1234. netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n");
  1235. efx_remove_interrupts(efx);
  1236. efx->type->remove(efx);
  1237. }
  1238. /**************************************************************************
  1239. *
  1240. * NIC startup/shutdown
  1241. *
  1242. *************************************************************************/
  1243. static int efx_probe_all(struct efx_nic *efx)
  1244. {
  1245. int rc;
  1246. rc = efx_probe_nic(efx);
  1247. if (rc) {
  1248. netif_err(efx, probe, efx->net_dev, "failed to create NIC\n");
  1249. goto fail1;
  1250. }
  1251. rc = efx_probe_port(efx);
  1252. if (rc) {
  1253. netif_err(efx, probe, efx->net_dev, "failed to create port\n");
  1254. goto fail2;
  1255. }
  1256. BUILD_BUG_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_RXQ_MIN_ENT);
  1257. if (WARN_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_TXQ_MIN_ENT(efx))) {
  1258. rc = -EINVAL;
  1259. goto fail3;
  1260. }
  1261. efx->rxq_entries = efx->txq_entries = EFX_DEFAULT_DMAQ_SIZE;
  1262. rc = efx_probe_filters(efx);
  1263. if (rc) {
  1264. netif_err(efx, probe, efx->net_dev,
  1265. "failed to create filter tables\n");
  1266. goto fail3;
  1267. }
  1268. rc = efx_probe_channels(efx);
  1269. if (rc)
  1270. goto fail4;
  1271. return 0;
  1272. fail4:
  1273. efx_remove_filters(efx);
  1274. fail3:
  1275. efx_remove_port(efx);
  1276. fail2:
  1277. efx_remove_nic(efx);
  1278. fail1:
  1279. return rc;
  1280. }
  1281. /* If the interface is supposed to be running but is not, start
  1282. * the hardware and software data path, regular activity for the port
  1283. * (MAC statistics, link polling, etc.) and schedule the port to be
  1284. * reconfigured. Interrupts must already be enabled. This function
  1285. * is safe to call multiple times, so long as the NIC is not disabled.
  1286. * Requires the RTNL lock.
  1287. */
  1288. static void efx_start_all(struct efx_nic *efx)
  1289. {
  1290. EFX_ASSERT_RESET_SERIALISED(efx);
  1291. BUG_ON(efx->state == STATE_DISABLED);
  1292. /* Check that it is appropriate to restart the interface. All
  1293. * of these flags are safe to read under just the rtnl lock */
  1294. if (efx->port_enabled || !netif_running(efx->net_dev))
  1295. return;
  1296. efx_start_port(efx);
  1297. efx_start_datapath(efx);
  1298. /* Start the hardware monitor if there is one */
  1299. if (efx->type->monitor != NULL)
  1300. queue_delayed_work(efx->workqueue, &efx->monitor_work,
  1301. efx_monitor_interval);
  1302. /* If link state detection is normally event-driven, we have
  1303. * to poll now because we could have missed a change
  1304. */
  1305. if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) {
  1306. mutex_lock(&efx->mac_lock);
  1307. if (efx->phy_op->poll(efx))
  1308. efx_link_status_changed(efx);
  1309. mutex_unlock(&efx->mac_lock);
  1310. }
  1311. efx->type->start_stats(efx);
  1312. }
  1313. /* Flush all delayed work. Should only be called when no more delayed work
  1314. * will be scheduled. This doesn't flush pending online resets (efx_reset),
  1315. * since we're holding the rtnl_lock at this point. */
  1316. static void efx_flush_all(struct efx_nic *efx)
  1317. {
  1318. /* Make sure the hardware monitor and event self-test are stopped */
  1319. cancel_delayed_work_sync(&efx->monitor_work);
  1320. efx_selftest_async_cancel(efx);
  1321. /* Stop scheduled port reconfigurations */
  1322. cancel_work_sync(&efx->mac_work);
  1323. }
  1324. /* Quiesce the hardware and software data path, and regular activity
  1325. * for the port without bringing the link down. Safe to call multiple
  1326. * times with the NIC in almost any state, but interrupts should be
  1327. * enabled. Requires the RTNL lock.
  1328. */
  1329. static void efx_stop_all(struct efx_nic *efx)
  1330. {
  1331. EFX_ASSERT_RESET_SERIALISED(efx);
  1332. /* port_enabled can be read safely under the rtnl lock */
  1333. if (!efx->port_enabled)
  1334. return;
  1335. efx->type->stop_stats(efx);
  1336. efx_stop_port(efx);
  1337. /* Flush efx_mac_work(), refill_workqueue, monitor_work */
  1338. efx_flush_all(efx);
  1339. /* Stop the kernel transmit interface. This is only valid if
  1340. * the device is stopped or detached; otherwise the watchdog
  1341. * may fire immediately.
  1342. */
  1343. WARN_ON(netif_running(efx->net_dev) &&
  1344. netif_device_present(efx->net_dev));
  1345. netif_tx_disable(efx->net_dev);
  1346. efx_stop_datapath(efx);
  1347. }
  1348. static void efx_remove_all(struct efx_nic *efx)
  1349. {
  1350. efx_remove_channels(efx);
  1351. efx_remove_filters(efx);
  1352. efx_remove_port(efx);
  1353. efx_remove_nic(efx);
  1354. }
  1355. /**************************************************************************
  1356. *
  1357. * Interrupt moderation
  1358. *
  1359. **************************************************************************/
  1360. static unsigned int irq_mod_ticks(unsigned int usecs, unsigned int quantum_ns)
  1361. {
  1362. if (usecs == 0)
  1363. return 0;
  1364. if (usecs * 1000 < quantum_ns)
  1365. return 1; /* never round down to 0 */
  1366. return usecs * 1000 / quantum_ns;
  1367. }
  1368. /* Set interrupt moderation parameters */
  1369. int efx_init_irq_moderation(struct efx_nic *efx, unsigned int tx_usecs,
  1370. unsigned int rx_usecs, bool rx_adaptive,
  1371. bool rx_may_override_tx)
  1372. {
  1373. struct efx_channel *channel;
  1374. unsigned int irq_mod_max = DIV_ROUND_UP(efx->type->timer_period_max *
  1375. efx->timer_quantum_ns,
  1376. 1000);
  1377. unsigned int tx_ticks;
  1378. unsigned int rx_ticks;
  1379. EFX_ASSERT_RESET_SERIALISED(efx);
  1380. if (tx_usecs > irq_mod_max || rx_usecs > irq_mod_max)
  1381. return -EINVAL;
  1382. tx_ticks = irq_mod_ticks(tx_usecs, efx->timer_quantum_ns);
  1383. rx_ticks = irq_mod_ticks(rx_usecs, efx->timer_quantum_ns);
  1384. if (tx_ticks != rx_ticks && efx->tx_channel_offset == 0 &&
  1385. !rx_may_override_tx) {
  1386. netif_err(efx, drv, efx->net_dev, "Channels are shared. "
  1387. "RX and TX IRQ moderation must be equal\n");
  1388. return -EINVAL;
  1389. }
  1390. efx->irq_rx_adaptive = rx_adaptive;
  1391. efx->irq_rx_moderation = rx_ticks;
  1392. efx_for_each_channel(channel, efx) {
  1393. if (efx_channel_has_rx_queue(channel))
  1394. channel->irq_moderation = rx_ticks;
  1395. else if (efx_channel_has_tx_queues(channel))
  1396. channel->irq_moderation = tx_ticks;
  1397. }
  1398. return 0;
  1399. }
  1400. void efx_get_irq_moderation(struct efx_nic *efx, unsigned int *tx_usecs,
  1401. unsigned int *rx_usecs, bool *rx_adaptive)
  1402. {
  1403. /* We must round up when converting ticks to microseconds
  1404. * because we round down when converting the other way.
  1405. */
  1406. *rx_adaptive = efx->irq_rx_adaptive;
  1407. *rx_usecs = DIV_ROUND_UP(efx->irq_rx_moderation *
  1408. efx->timer_quantum_ns,
  1409. 1000);
  1410. /* If channels are shared between RX and TX, so is IRQ
  1411. * moderation. Otherwise, IRQ moderation is the same for all
  1412. * TX channels and is not adaptive.
  1413. */
  1414. if (efx->tx_channel_offset == 0)
  1415. *tx_usecs = *rx_usecs;
  1416. else
  1417. *tx_usecs = DIV_ROUND_UP(
  1418. efx->channel[efx->tx_channel_offset]->irq_moderation *
  1419. efx->timer_quantum_ns,
  1420. 1000);
  1421. }
  1422. /**************************************************************************
  1423. *
  1424. * Hardware monitor
  1425. *
  1426. **************************************************************************/
  1427. /* Run periodically off the general workqueue */
  1428. static void efx_monitor(struct work_struct *data)
  1429. {
  1430. struct efx_nic *efx = container_of(data, struct efx_nic,
  1431. monitor_work.work);
  1432. netif_vdbg(efx, timer, efx->net_dev,
  1433. "hardware monitor executing on CPU %d\n",
  1434. raw_smp_processor_id());
  1435. BUG_ON(efx->type->monitor == NULL);
  1436. /* If the mac_lock is already held then it is likely a port
  1437. * reconfiguration is already in place, which will likely do
  1438. * most of the work of monitor() anyway. */
  1439. if (mutex_trylock(&efx->mac_lock)) {
  1440. if (efx->port_enabled)
  1441. efx->type->monitor(efx);
  1442. mutex_unlock(&efx->mac_lock);
  1443. }
  1444. queue_delayed_work(efx->workqueue, &efx->monitor_work,
  1445. efx_monitor_interval);
  1446. }
  1447. /**************************************************************************
  1448. *
  1449. * ioctls
  1450. *
  1451. *************************************************************************/
  1452. /* Net device ioctl
  1453. * Context: process, rtnl_lock() held.
  1454. */
  1455. static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
  1456. {
  1457. struct efx_nic *efx = netdev_priv(net_dev);
  1458. struct mii_ioctl_data *data = if_mii(ifr);
  1459. if (cmd == SIOCSHWTSTAMP)
  1460. return efx_ptp_ioctl(efx, ifr, cmd);
  1461. /* Convert phy_id from older PRTAD/DEVAD format */
  1462. if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
  1463. (data->phy_id & 0xfc00) == 0x0400)
  1464. data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;
  1465. return mdio_mii_ioctl(&efx->mdio, data, cmd);
  1466. }
  1467. /**************************************************************************
  1468. *
  1469. * NAPI interface
  1470. *
  1471. **************************************************************************/
  1472. static void efx_init_napi_channel(struct efx_channel *channel)
  1473. {
  1474. struct efx_nic *efx = channel->efx;
  1475. channel->napi_dev = efx->net_dev;
  1476. netif_napi_add(channel->napi_dev, &channel->napi_str,
  1477. efx_poll, napi_weight);
  1478. }
  1479. static void efx_init_napi(struct efx_nic *efx)
  1480. {
  1481. struct efx_channel *channel;
  1482. efx_for_each_channel(channel, efx)
  1483. efx_init_napi_channel(channel);
  1484. }
  1485. static void efx_fini_napi_channel(struct efx_channel *channel)
  1486. {
  1487. if (channel->napi_dev)
  1488. netif_napi_del(&channel->napi_str);
  1489. channel->napi_dev = NULL;
  1490. }
  1491. static void efx_fini_napi(struct efx_nic *efx)
  1492. {
  1493. struct efx_channel *channel;
  1494. efx_for_each_channel(channel, efx)
  1495. efx_fini_napi_channel(channel);
  1496. }
  1497. /**************************************************************************
  1498. *
  1499. * Kernel netpoll interface
  1500. *
  1501. *************************************************************************/
  1502. #ifdef CONFIG_NET_POLL_CONTROLLER
  1503. /* Although in the common case interrupts will be disabled, this is not
  1504. * guaranteed. However, all our work happens inside the NAPI callback,
  1505. * so no locking is required.
  1506. */
  1507. static void efx_netpoll(struct net_device *net_dev)
  1508. {
  1509. struct efx_nic *efx = netdev_priv(net_dev);
  1510. struct efx_channel *channel;
  1511. efx_for_each_channel(channel, efx)
  1512. efx_schedule_channel(channel);
  1513. }
  1514. #endif
  1515. /**************************************************************************
  1516. *
  1517. * Kernel net device interface
  1518. *
  1519. *************************************************************************/
  1520. /* Context: process, rtnl_lock() held. */
  1521. static int efx_net_open(struct net_device *net_dev)
  1522. {
  1523. struct efx_nic *efx = netdev_priv(net_dev);
  1524. int rc;
  1525. netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n",
  1526. raw_smp_processor_id());
  1527. rc = efx_check_disabled(efx);
  1528. if (rc)
  1529. return rc;
  1530. if (efx->phy_mode & PHY_MODE_SPECIAL)
  1531. return -EBUSY;
  1532. if (efx_mcdi_poll_reboot(efx) && efx_reset(efx, RESET_TYPE_ALL))
  1533. return -EIO;
  1534. /* Notify the kernel of the link state polled during driver load,
  1535. * before the monitor starts running */
  1536. efx_link_status_changed(efx);
  1537. efx_start_all(efx);
  1538. efx_selftest_async_start(efx);
  1539. return 0;
  1540. }
  1541. /* Context: process, rtnl_lock() held.
  1542. * Note that the kernel will ignore our return code; this method
  1543. * should really be a void.
  1544. */
  1545. static int efx_net_stop(struct net_device *net_dev)
  1546. {
  1547. struct efx_nic *efx = netdev_priv(net_dev);
  1548. netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n",
  1549. raw_smp_processor_id());
  1550. /* Stop the device and flush all the channels */
  1551. efx_stop_all(efx);
  1552. return 0;
  1553. }
  1554. /* Context: process, dev_base_lock or RTNL held, non-blocking. */
  1555. static struct rtnl_link_stats64 *efx_net_stats(struct net_device *net_dev,
  1556. struct rtnl_link_stats64 *stats)
  1557. {
  1558. struct efx_nic *efx = netdev_priv(net_dev);
  1559. struct efx_mac_stats *mac_stats = &efx->mac_stats;
  1560. spin_lock_bh(&efx->stats_lock);
  1561. efx->type->update_stats(efx);
  1562. stats->rx_packets = mac_stats->rx_packets;
  1563. stats->tx_packets = mac_stats->tx_packets;
  1564. stats->rx_bytes = mac_stats->rx_bytes;
  1565. stats->tx_bytes = mac_stats->tx_bytes;
  1566. stats->rx_dropped = efx->n_rx_nodesc_drop_cnt;
  1567. stats->multicast = mac_stats->rx_multicast;
  1568. stats->collisions = mac_stats->tx_collision;
  1569. stats->rx_length_errors = (mac_stats->rx_gtjumbo +
  1570. mac_stats->rx_length_error);
  1571. stats->rx_crc_errors = mac_stats->rx_bad;
  1572. stats->rx_frame_errors = mac_stats->rx_align_error;
  1573. stats->rx_fifo_errors = mac_stats->rx_overflow;
  1574. stats->rx_missed_errors = mac_stats->rx_missed;
  1575. stats->tx_window_errors = mac_stats->tx_late_collision;
  1576. stats->rx_errors = (stats->rx_length_errors +
  1577. stats->rx_crc_errors +
  1578. stats->rx_frame_errors +
  1579. mac_stats->rx_symbol_error);
  1580. stats->tx_errors = (stats->tx_window_errors +
  1581. mac_stats->tx_bad);
  1582. spin_unlock_bh(&efx->stats_lock);
  1583. return stats;
  1584. }
  1585. /* Context: netif_tx_lock held, BHs disabled. */
  1586. static void efx_watchdog(struct net_device *net_dev)
  1587. {
  1588. struct efx_nic *efx = netdev_priv(net_dev);
  1589. netif_err(efx, tx_err, efx->net_dev,
  1590. "TX stuck with port_enabled=%d: resetting channels\n",
  1591. efx->port_enabled);
  1592. efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
  1593. }
  1594. /* Context: process, rtnl_lock() held. */
  1595. static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
  1596. {
  1597. struct efx_nic *efx = netdev_priv(net_dev);
  1598. int rc;
  1599. rc = efx_check_disabled(efx);
  1600. if (rc)
  1601. return rc;
  1602. if (new_mtu > EFX_MAX_MTU)
  1603. return -EINVAL;
  1604. netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu);
  1605. efx_device_detach_sync(efx);
  1606. efx_stop_all(efx);
  1607. mutex_lock(&efx->mac_lock);
  1608. net_dev->mtu = new_mtu;
  1609. efx->type->reconfigure_mac(efx);
  1610. mutex_unlock(&efx->mac_lock);
  1611. efx_start_all(efx);
  1612. netif_device_attach(efx->net_dev);
  1613. return 0;
  1614. }
  1615. static int efx_set_mac_address(struct net_device *net_dev, void *data)
  1616. {
  1617. struct efx_nic *efx = netdev_priv(net_dev);
  1618. struct sockaddr *addr = data;
  1619. char *new_addr = addr->sa_data;
  1620. if (!is_valid_ether_addr(new_addr)) {
  1621. netif_err(efx, drv, efx->net_dev,
  1622. "invalid ethernet MAC address requested: %pM\n",
  1623. new_addr);
  1624. return -EADDRNOTAVAIL;
  1625. }
  1626. memcpy(net_dev->dev_addr, new_addr, net_dev->addr_len);
  1627. efx_sriov_mac_address_changed(efx);
  1628. /* Reconfigure the MAC */
  1629. mutex_lock(&efx->mac_lock);
  1630. efx->type->reconfigure_mac(efx);
  1631. mutex_unlock(&efx->mac_lock);
  1632. return 0;
  1633. }
  1634. /* Context: netif_addr_lock held, BHs disabled. */
  1635. static void efx_set_rx_mode(struct net_device *net_dev)
  1636. {
  1637. struct efx_nic *efx = netdev_priv(net_dev);
  1638. struct netdev_hw_addr *ha;
  1639. union efx_multicast_hash *mc_hash = &efx->multicast_hash;
  1640. u32 crc;
  1641. int bit;
  1642. efx->promiscuous = !!(net_dev->flags & IFF_PROMISC);
  1643. /* Build multicast hash table */
  1644. if (efx->promiscuous || (net_dev->flags & IFF_ALLMULTI)) {
  1645. memset(mc_hash, 0xff, sizeof(*mc_hash));
  1646. } else {
  1647. memset(mc_hash, 0x00, sizeof(*mc_hash));
  1648. netdev_for_each_mc_addr(ha, net_dev) {
  1649. crc = ether_crc_le(ETH_ALEN, ha->addr);
  1650. bit = crc & (EFX_MCAST_HASH_ENTRIES - 1);
  1651. __set_bit_le(bit, mc_hash);
  1652. }
  1653. /* Broadcast packets go through the multicast hash filter.
  1654. * ether_crc_le() of the broadcast address is 0xbe2612ff
  1655. * so we always add bit 0xff to the mask.
  1656. */
  1657. __set_bit_le(0xff, mc_hash);
  1658. }
  1659. if (efx->port_enabled)
  1660. queue_work(efx->workqueue, &efx->mac_work);
  1661. /* Otherwise efx_start_port() will do this */
  1662. }
  1663. static int efx_set_features(struct net_device *net_dev, netdev_features_t data)
  1664. {
  1665. struct efx_nic *efx = netdev_priv(net_dev);
  1666. /* If disabling RX n-tuple filtering, clear existing filters */
  1667. if (net_dev->features & ~data & NETIF_F_NTUPLE)
  1668. efx_filter_clear_rx(efx, EFX_FILTER_PRI_MANUAL);
  1669. return 0;
  1670. }
  1671. static const struct net_device_ops efx_netdev_ops = {
  1672. .ndo_open = efx_net_open,
  1673. .ndo_stop = efx_net_stop,
  1674. .ndo_get_stats64 = efx_net_stats,
  1675. .ndo_tx_timeout = efx_watchdog,
  1676. .ndo_start_xmit = efx_hard_start_xmit,
  1677. .ndo_validate_addr = eth_validate_addr,
  1678. .ndo_do_ioctl = efx_ioctl,
  1679. .ndo_change_mtu = efx_change_mtu,
  1680. .ndo_set_mac_address = efx_set_mac_address,
  1681. .ndo_set_rx_mode = efx_set_rx_mode,
  1682. .ndo_set_features = efx_set_features,
  1683. #ifdef CONFIG_SFC_SRIOV
  1684. .ndo_set_vf_mac = efx_sriov_set_vf_mac,
  1685. .ndo_set_vf_vlan = efx_sriov_set_vf_vlan,
  1686. .ndo_set_vf_spoofchk = efx_sriov_set_vf_spoofchk,
  1687. .ndo_get_vf_config = efx_sriov_get_vf_config,
  1688. #endif
  1689. #ifdef CONFIG_NET_POLL_CONTROLLER
  1690. .ndo_poll_controller = efx_netpoll,
  1691. #endif
  1692. .ndo_setup_tc = efx_setup_tc,
  1693. #ifdef CONFIG_RFS_ACCEL
  1694. .ndo_rx_flow_steer = efx_filter_rfs,
  1695. #endif
  1696. };
  1697. static void efx_update_name(struct efx_nic *efx)
  1698. {
  1699. strcpy(efx->name, efx->net_dev->name);
  1700. efx_mtd_rename(efx);
  1701. efx_set_channel_names(efx);
  1702. }
  1703. static int efx_netdev_event(struct notifier_block *this,
  1704. unsigned long event, void *ptr)
  1705. {
  1706. struct net_device *net_dev = netdev_notifier_info_to_dev(ptr);
  1707. if (net_dev->netdev_ops == &efx_netdev_ops &&
  1708. event == NETDEV_CHANGENAME)
  1709. efx_update_name(netdev_priv(net_dev));
  1710. return NOTIFY_DONE;
  1711. }
  1712. static struct notifier_block efx_netdev_notifier = {
  1713. .notifier_call = efx_netdev_event,
  1714. };
  1715. static ssize_t
  1716. show_phy_type(struct device *dev, struct device_attribute *attr, char *buf)
  1717. {
  1718. struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
  1719. return sprintf(buf, "%d\n", efx->phy_type);
  1720. }
  1721. static DEVICE_ATTR(phy_type, 0444, show_phy_type, NULL);
  1722. static int efx_register_netdev(struct efx_nic *efx)
  1723. {
  1724. struct net_device *net_dev = efx->net_dev;
  1725. struct efx_channel *channel;
  1726. int rc;
  1727. net_dev->watchdog_timeo = 5 * HZ;
  1728. net_dev->irq = efx->pci_dev->irq;
  1729. net_dev->netdev_ops = &efx_netdev_ops;
  1730. SET_ETHTOOL_OPS(net_dev, &efx_ethtool_ops);
  1731. net_dev->gso_max_segs = EFX_TSO_MAX_SEGS;
  1732. rtnl_lock();
  1733. /* Enable resets to be scheduled and check whether any were
  1734. * already requested. If so, the NIC is probably hosed so we
  1735. * abort.
  1736. */
  1737. efx->state = STATE_READY;
  1738. smp_mb(); /* ensure we change state before checking reset_pending */
  1739. if (efx->reset_pending) {
  1740. netif_err(efx, probe, efx->net_dev,
  1741. "aborting probe due to scheduled reset\n");
  1742. rc = -EIO;
  1743. goto fail_locked;
  1744. }
  1745. rc = dev_alloc_name(net_dev, net_dev->name);
  1746. if (rc < 0)
  1747. goto fail_locked;
  1748. efx_update_name(efx);
  1749. /* Always start with carrier off; PHY events will detect the link */
  1750. netif_carrier_off(net_dev);
  1751. rc = register_netdevice(net_dev);
  1752. if (rc)
  1753. goto fail_locked;
  1754. efx_for_each_channel(channel, efx) {
  1755. struct efx_tx_queue *tx_queue;
  1756. efx_for_each_channel_tx_queue(tx_queue, channel)
  1757. efx_init_tx_queue_core_txq(tx_queue);
  1758. }
  1759. rtnl_unlock();
  1760. rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
  1761. if (rc) {
  1762. netif_err(efx, drv, efx->net_dev,
  1763. "failed to init net dev attributes\n");
  1764. goto fail_registered;
  1765. }
  1766. return 0;
  1767. fail_registered:
  1768. rtnl_lock();
  1769. unregister_netdevice(net_dev);
  1770. fail_locked:
  1771. efx->state = STATE_UNINIT;
  1772. rtnl_unlock();
  1773. netif_err(efx, drv, efx->net_dev, "could not register net dev\n");
  1774. return rc;
  1775. }
  1776. static void efx_unregister_netdev(struct efx_nic *efx)
  1777. {
  1778. struct efx_channel *channel;
  1779. struct efx_tx_queue *tx_queue;
  1780. if (!efx->net_dev)
  1781. return;
  1782. BUG_ON(netdev_priv(efx->net_dev) != efx);
  1783. /* Free up any skbs still remaining. This has to happen before
  1784. * we try to unregister the netdev as running their destructors
  1785. * may be needed to get the device ref. count to 0. */
  1786. efx_for_each_channel(channel, efx) {
  1787. efx_for_each_channel_tx_queue(tx_queue, channel)
  1788. efx_release_tx_buffers(tx_queue);
  1789. }
  1790. strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
  1791. device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
  1792. rtnl_lock();
  1793. unregister_netdevice(efx->net_dev);
  1794. efx->state = STATE_UNINIT;
  1795. rtnl_unlock();
  1796. }
  1797. /**************************************************************************
  1798. *
  1799. * Device reset and suspend
  1800. *
  1801. **************************************************************************/
  1802. /* Tears down the entire software state and most of the hardware state
  1803. * before reset. */
  1804. void efx_reset_down(struct efx_nic *efx, enum reset_type method)
  1805. {
  1806. EFX_ASSERT_RESET_SERIALISED(efx);
  1807. efx_stop_all(efx);
  1808. efx_stop_interrupts(efx, false);
  1809. mutex_lock(&efx->mac_lock);
  1810. if (efx->port_initialized && method != RESET_TYPE_INVISIBLE)
  1811. efx->phy_op->fini(efx);
  1812. efx->type->fini(efx);
  1813. }
  1814. /* This function will always ensure that the locks acquired in
  1815. * efx_reset_down() are released. A failure return code indicates
  1816. * that we were unable to reinitialise the hardware, and the
  1817. * driver should be disabled. If ok is false, then the rx and tx
  1818. * engines are not restarted, pending a RESET_DISABLE. */
  1819. int efx_reset_up(struct efx_nic *efx, enum reset_type method, bool ok)
  1820. {
  1821. int rc;
  1822. EFX_ASSERT_RESET_SERIALISED(efx);
  1823. rc = efx->type->init(efx);
  1824. if (rc) {
  1825. netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n");
  1826. goto fail;
  1827. }
  1828. if (!ok)
  1829. goto fail;
  1830. if (efx->port_initialized && method != RESET_TYPE_INVISIBLE) {
  1831. rc = efx->phy_op->init(efx);
  1832. if (rc)
  1833. goto fail;
  1834. if (efx->phy_op->reconfigure(efx))
  1835. netif_err(efx, drv, efx->net_dev,
  1836. "could not restore PHY settings\n");
  1837. }
  1838. efx->type->reconfigure_mac(efx);
  1839. efx_start_interrupts(efx, false);
  1840. efx_restore_filters(efx);
  1841. efx_sriov_reset(efx);
  1842. mutex_unlock(&efx->mac_lock);
  1843. efx_start_all(efx);
  1844. return 0;
  1845. fail:
  1846. efx->port_initialized = false;
  1847. mutex_unlock(&efx->mac_lock);
  1848. return rc;
  1849. }
  1850. /* Reset the NIC using the specified method. Note that the reset may
  1851. * fail, in which case the card will be left in an unusable state.
  1852. *
  1853. * Caller must hold the rtnl_lock.
  1854. */
  1855. int efx_reset(struct efx_nic *efx, enum reset_type method)
  1856. {
  1857. int rc, rc2;
  1858. bool disabled;
  1859. netif_info(efx, drv, efx->net_dev, "resetting (%s)\n",
  1860. RESET_TYPE(method));
  1861. efx_device_detach_sync(efx);
  1862. efx_reset_down(efx, method);
  1863. rc = efx->type->reset(efx, method);
  1864. if (rc) {
  1865. netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n");
  1866. goto out;
  1867. }
  1868. /* Clear flags for the scopes we covered. We assume the NIC and
  1869. * driver are now quiescent so that there is no race here.
  1870. */
  1871. efx->reset_pending &= -(1 << (method + 1));
  1872. /* Reinitialise bus-mastering, which may have been turned off before
  1873. * the reset was scheduled. This is still appropriate, even in the
  1874. * RESET_TYPE_DISABLE since this driver generally assumes the hardware
  1875. * can respond to requests. */
  1876. pci_set_master(efx->pci_dev);
  1877. out:
  1878. /* Leave device stopped if necessary */
  1879. disabled = rc ||
  1880. method == RESET_TYPE_DISABLE ||
  1881. method == RESET_TYPE_RECOVER_OR_DISABLE;
  1882. rc2 = efx_reset_up(efx, method, !disabled);
  1883. if (rc2) {
  1884. disabled = true;
  1885. if (!rc)
  1886. rc = rc2;
  1887. }
  1888. if (disabled) {
  1889. dev_close(efx->net_dev);
  1890. netif_err(efx, drv, efx->net_dev, "has been disabled\n");
  1891. efx->state = STATE_DISABLED;
  1892. } else {
  1893. netif_dbg(efx, drv, efx->net_dev, "reset complete\n");
  1894. netif_device_attach(efx->net_dev);
  1895. }
  1896. return rc;
  1897. }
  1898. /* Try recovery mechanisms.
  1899. * For now only EEH is supported.
  1900. * Returns 0 if the recovery mechanisms are unsuccessful.
  1901. * Returns a non-zero value otherwise.
  1902. */
  1903. int efx_try_recovery(struct efx_nic *efx)
  1904. {
  1905. #ifdef CONFIG_EEH
  1906. /* A PCI error can occur and not be seen by EEH because nothing
  1907. * happens on the PCI bus. In this case the driver may fail and
  1908. * schedule a 'recover or reset', leading to this recovery handler.
  1909. * Manually call the eeh failure check function.
  1910. */
  1911. struct eeh_dev *eehdev =
  1912. of_node_to_eeh_dev(pci_device_to_OF_node(efx->pci_dev));
  1913. if (eeh_dev_check_failure(eehdev)) {
  1914. /* The EEH mechanisms will handle the error and reset the
  1915. * device if necessary.
  1916. */
  1917. return 1;
  1918. }
  1919. #endif
  1920. return 0;
  1921. }
  1922. /* The worker thread exists so that code that cannot sleep can
  1923. * schedule a reset for later.
  1924. */
  1925. static void efx_reset_work(struct work_struct *data)
  1926. {
  1927. struct efx_nic *efx = container_of(data, struct efx_nic, reset_work);
  1928. unsigned long pending;
  1929. enum reset_type method;
  1930. pending = ACCESS_ONCE(efx->reset_pending);
  1931. method = fls(pending) - 1;
  1932. if ((method == RESET_TYPE_RECOVER_OR_DISABLE ||
  1933. method == RESET_TYPE_RECOVER_OR_ALL) &&
  1934. efx_try_recovery(efx))
  1935. return;
  1936. if (!pending)
  1937. return;
  1938. rtnl_lock();
  1939. /* We checked the state in efx_schedule_reset() but it may
  1940. * have changed by now. Now that we have the RTNL lock,
  1941. * it cannot change again.
  1942. */
  1943. if (efx->state == STATE_READY)
  1944. (void)efx_reset(efx, method);
  1945. rtnl_unlock();
  1946. }
  1947. void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
  1948. {
  1949. enum reset_type method;
  1950. if (efx->state == STATE_RECOVERY) {
  1951. netif_dbg(efx, drv, efx->net_dev,
  1952. "recovering: skip scheduling %s reset\n",
  1953. RESET_TYPE(type));
  1954. return;
  1955. }
  1956. switch (type) {
  1957. case RESET_TYPE_INVISIBLE:
  1958. case RESET_TYPE_ALL:
  1959. case RESET_TYPE_RECOVER_OR_ALL:
  1960. case RESET_TYPE_WORLD:
  1961. case RESET_TYPE_DISABLE:
  1962. case RESET_TYPE_RECOVER_OR_DISABLE:
  1963. method = type;
  1964. netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n",
  1965. RESET_TYPE(method));
  1966. break;
  1967. default:
  1968. method = efx->type->map_reset_reason(type);
  1969. netif_dbg(efx, drv, efx->net_dev,
  1970. "scheduling %s reset for %s\n",
  1971. RESET_TYPE(method), RESET_TYPE(type));
  1972. break;
  1973. }
  1974. set_bit(method, &efx->reset_pending);
  1975. smp_mb(); /* ensure we change reset_pending before checking state */
  1976. /* If we're not READY then just leave the flags set as the cue
  1977. * to abort probing or reschedule the reset later.
  1978. */
  1979. if (ACCESS_ONCE(efx->state) != STATE_READY)
  1980. return;
  1981. /* efx_process_channel() will no longer read events once a
  1982. * reset is scheduled. So switch back to poll'd MCDI completions. */
  1983. efx_mcdi_mode_poll(efx);
  1984. queue_work(reset_workqueue, &efx->reset_work);
  1985. }
  1986. /**************************************************************************
  1987. *
  1988. * List of NICs we support
  1989. *
  1990. **************************************************************************/
  1991. /* PCI device ID table */
  1992. static DEFINE_PCI_DEVICE_TABLE(efx_pci_table) = {
  1993. {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
  1994. PCI_DEVICE_ID_SOLARFLARE_SFC4000A_0),
  1995. .driver_data = (unsigned long) &falcon_a1_nic_type},
  1996. {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE,
  1997. PCI_DEVICE_ID_SOLARFLARE_SFC4000B),
  1998. .driver_data = (unsigned long) &falcon_b0_nic_type},
  1999. {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0803), /* SFC9020 */
  2000. .driver_data = (unsigned long) &siena_a0_nic_type},
  2001. {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0813), /* SFL9021 */
  2002. .driver_data = (unsigned long) &siena_a0_nic_type},
  2003. {0} /* end of list */
  2004. };
  2005. /**************************************************************************
  2006. *
  2007. * Dummy PHY/MAC operations
  2008. *
  2009. * Can be used for some unimplemented operations
  2010. * Needed so all function pointers are valid and do not have to be tested
  2011. * before use
  2012. *
  2013. **************************************************************************/
  2014. int efx_port_dummy_op_int(struct efx_nic *efx)
  2015. {
  2016. return 0;
  2017. }
  2018. void efx_port_dummy_op_void(struct efx_nic *efx) {}
  2019. static bool efx_port_dummy_op_poll(struct efx_nic *efx)
  2020. {
  2021. return false;
  2022. }
  2023. static const struct efx_phy_operations efx_dummy_phy_operations = {
  2024. .init = efx_port_dummy_op_int,
  2025. .reconfigure = efx_port_dummy_op_int,
  2026. .poll = efx_port_dummy_op_poll,
  2027. .fini = efx_port_dummy_op_void,
  2028. };
  2029. /**************************************************************************
  2030. *
  2031. * Data housekeeping
  2032. *
  2033. **************************************************************************/
  2034. /* This zeroes out and then fills in the invariants in a struct
  2035. * efx_nic (including all sub-structures).
  2036. */
  2037. static int efx_init_struct(struct efx_nic *efx,
  2038. struct pci_dev *pci_dev, struct net_device *net_dev)
  2039. {
  2040. int i;
  2041. /* Initialise common structures */
  2042. spin_lock_init(&efx->biu_lock);
  2043. #ifdef CONFIG_SFC_MTD
  2044. INIT_LIST_HEAD(&efx->mtd_list);
  2045. #endif
  2046. INIT_WORK(&efx->reset_work, efx_reset_work);
  2047. INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
  2048. INIT_DELAYED_WORK(&efx->selftest_work, efx_selftest_async_work);
  2049. efx->pci_dev = pci_dev;
  2050. efx->msg_enable = debug;
  2051. efx->state = STATE_UNINIT;
  2052. strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));
  2053. efx->net_dev = net_dev;
  2054. spin_lock_init(&efx->stats_lock);
  2055. mutex_init(&efx->mac_lock);
  2056. efx->phy_op = &efx_dummy_phy_operations;
  2057. efx->mdio.dev = net_dev;
  2058. INIT_WORK(&efx->mac_work, efx_mac_work);
  2059. init_waitqueue_head(&efx->flush_wq);
  2060. for (i = 0; i < EFX_MAX_CHANNELS; i++) {
  2061. efx->channel[i] = efx_alloc_channel(efx, i, NULL);
  2062. if (!efx->channel[i])
  2063. goto fail;
  2064. }
  2065. EFX_BUG_ON_PARANOID(efx->type->phys_addr_channels > EFX_MAX_CHANNELS);
  2066. /* Higher numbered interrupt modes are less capable! */
  2067. efx->interrupt_mode = max(efx->type->max_interrupt_mode,
  2068. interrupt_mode);
  2069. /* Would be good to use the net_dev name, but we're too early */
  2070. snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
  2071. pci_name(pci_dev));
  2072. efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
  2073. if (!efx->workqueue)
  2074. goto fail;
  2075. return 0;
  2076. fail:
  2077. efx_fini_struct(efx);
  2078. return -ENOMEM;
  2079. }
  2080. static void efx_fini_struct(struct efx_nic *efx)
  2081. {
  2082. int i;
  2083. for (i = 0; i < EFX_MAX_CHANNELS; i++)
  2084. kfree(efx->channel[i]);
  2085. if (efx->workqueue) {
  2086. destroy_workqueue(efx->workqueue);
  2087. efx->workqueue = NULL;
  2088. }
  2089. }
  2090. /**************************************************************************
  2091. *
  2092. * PCI interface
  2093. *
  2094. **************************************************************************/
  2095. /* Main body of final NIC shutdown code
  2096. * This is called only at module unload (or hotplug removal).
  2097. */
  2098. static void efx_pci_remove_main(struct efx_nic *efx)
  2099. {
  2100. /* Flush reset_work. It can no longer be scheduled since we
  2101. * are not READY.
  2102. */
  2103. BUG_ON(efx->state == STATE_READY);
  2104. cancel_work_sync(&efx->reset_work);
  2105. efx_stop_interrupts(efx, false);
  2106. efx_nic_fini_interrupt(efx);
  2107. efx_fini_port(efx);
  2108. efx->type->fini(efx);
  2109. efx_fini_napi(efx);
  2110. efx_remove_all(efx);
  2111. }
  2112. /* Final NIC shutdown
  2113. * This is called only at module unload (or hotplug removal).
  2114. */
  2115. static void efx_pci_remove(struct pci_dev *pci_dev)
  2116. {
  2117. struct efx_nic *efx;
  2118. efx = pci_get_drvdata(pci_dev);
  2119. if (!efx)
  2120. return;
  2121. /* Mark the NIC as fini, then stop the interface */
  2122. rtnl_lock();
  2123. dev_close(efx->net_dev);
  2124. efx_stop_interrupts(efx, false);
  2125. rtnl_unlock();
  2126. efx_sriov_fini(efx);
  2127. efx_unregister_netdev(efx);
  2128. efx_mtd_remove(efx);
  2129. efx_pci_remove_main(efx);
  2130. efx_fini_io(efx);
  2131. netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n");
  2132. efx_fini_struct(efx);
  2133. pci_set_drvdata(pci_dev, NULL);
  2134. free_netdev(efx->net_dev);
  2135. pci_disable_pcie_error_reporting(pci_dev);
  2136. };
  2137. /* NIC VPD information
  2138. * Called during probe to display the part number of the
  2139. * installed NIC. VPD is potentially very large but this should
  2140. * always appear within the first 512 bytes.
  2141. */
  2142. #define SFC_VPD_LEN 512
  2143. static void efx_print_product_vpd(struct efx_nic *efx)
  2144. {
  2145. struct pci_dev *dev = efx->pci_dev;
  2146. char vpd_data[SFC_VPD_LEN];
  2147. ssize_t vpd_size;
  2148. int i, j;
  2149. /* Get the vpd data from the device */
  2150. vpd_size = pci_read_vpd(dev, 0, sizeof(vpd_data), vpd_data);
  2151. if (vpd_size <= 0) {
  2152. netif_err(efx, drv, efx->net_dev, "Unable to read VPD\n");
  2153. return;
  2154. }
  2155. /* Get the Read only section */
  2156. i = pci_vpd_find_tag(vpd_data, 0, vpd_size, PCI_VPD_LRDT_RO_DATA);
  2157. if (i < 0) {
  2158. netif_err(efx, drv, efx->net_dev, "VPD Read-only not found\n");
  2159. return;
  2160. }
  2161. j = pci_vpd_lrdt_size(&vpd_data[i]);
  2162. i += PCI_VPD_LRDT_TAG_SIZE;
  2163. if (i + j > vpd_size)
  2164. j = vpd_size - i;
  2165. /* Get the Part number */
  2166. i = pci_vpd_find_info_keyword(vpd_data, i, j, "PN");
  2167. if (i < 0) {
  2168. netif_err(efx, drv, efx->net_dev, "Part number not found\n");
  2169. return;
  2170. }
  2171. j = pci_vpd_info_field_size(&vpd_data[i]);
  2172. i += PCI_VPD_INFO_FLD_HDR_SIZE;
  2173. if (i + j > vpd_size) {
  2174. netif_err(efx, drv, efx->net_dev, "Incomplete part number\n");
  2175. return;
  2176. }
  2177. netif_info(efx, drv, efx->net_dev,
  2178. "Part Number : %.*s\n", j, &vpd_data[i]);
  2179. }
  2180. /* Main body of NIC initialisation
  2181. * This is called at module load (or hotplug insertion, theoretically).
  2182. */
  2183. static int efx_pci_probe_main(struct efx_nic *efx)
  2184. {
  2185. int rc;
  2186. /* Do start-of-day initialisation */
  2187. rc = efx_probe_all(efx);
  2188. if (rc)
  2189. goto fail1;
  2190. efx_init_napi(efx);
  2191. rc = efx->type->init(efx);
  2192. if (rc) {
  2193. netif_err(efx, probe, efx->net_dev,
  2194. "failed to initialise NIC\n");
  2195. goto fail3;
  2196. }
  2197. rc = efx_init_port(efx);
  2198. if (rc) {
  2199. netif_err(efx, probe, efx->net_dev,
  2200. "failed to initialise port\n");
  2201. goto fail4;
  2202. }
  2203. rc = efx_nic_init_interrupt(efx);
  2204. if (rc)
  2205. goto fail5;
  2206. efx_start_interrupts(efx, false);
  2207. return 0;
  2208. fail5:
  2209. efx_fini_port(efx);
  2210. fail4:
  2211. efx->type->fini(efx);
  2212. fail3:
  2213. efx_fini_napi(efx);
  2214. efx_remove_all(efx);
  2215. fail1:
  2216. return rc;
  2217. }
  2218. /* NIC initialisation
  2219. *
  2220. * This is called at module load (or hotplug insertion,
  2221. * theoretically). It sets up PCI mappings, resets the NIC,
  2222. * sets up and registers the network devices with the kernel and hooks
  2223. * the interrupt service routine. It does not prepare the device for
  2224. * transmission; this is left to the first time one of the network
  2225. * interfaces is brought up (i.e. efx_net_open).
  2226. */
  2227. static int efx_pci_probe(struct pci_dev *pci_dev,
  2228. const struct pci_device_id *entry)
  2229. {
  2230. struct net_device *net_dev;
  2231. struct efx_nic *efx;
  2232. int rc;
  2233. /* Allocate and initialise a struct net_device and struct efx_nic */
  2234. net_dev = alloc_etherdev_mqs(sizeof(*efx), EFX_MAX_CORE_TX_QUEUES,
  2235. EFX_MAX_RX_QUEUES);
  2236. if (!net_dev)
  2237. return -ENOMEM;
  2238. efx = netdev_priv(net_dev);
  2239. efx->type = (const struct efx_nic_type *) entry->driver_data;
  2240. net_dev->features |= (efx->type->offload_features | NETIF_F_SG |
  2241. NETIF_F_HIGHDMA | NETIF_F_TSO |
  2242. NETIF_F_RXCSUM);
  2243. if (efx->type->offload_features & NETIF_F_V6_CSUM)
  2244. net_dev->features |= NETIF_F_TSO6;
  2245. /* Mask for features that also apply to VLAN devices */
  2246. net_dev->vlan_features |= (NETIF_F_ALL_CSUM | NETIF_F_SG |
  2247. NETIF_F_HIGHDMA | NETIF_F_ALL_TSO |
  2248. NETIF_F_RXCSUM);
  2249. /* All offloads can be toggled */
  2250. net_dev->hw_features = net_dev->features & ~NETIF_F_HIGHDMA;
  2251. pci_set_drvdata(pci_dev, efx);
  2252. SET_NETDEV_DEV(net_dev, &pci_dev->dev);
  2253. rc = efx_init_struct(efx, pci_dev, net_dev);
  2254. if (rc)
  2255. goto fail1;
  2256. netif_info(efx, probe, efx->net_dev,
  2257. "Solarflare NIC detected\n");
  2258. efx_print_product_vpd(efx);
  2259. /* Set up basic I/O (BAR mappings etc) */
  2260. rc = efx_init_io(efx);
  2261. if (rc)
  2262. goto fail2;
  2263. rc = efx_pci_probe_main(efx);
  2264. if (rc)
  2265. goto fail3;
  2266. rc = efx_register_netdev(efx);
  2267. if (rc)
  2268. goto fail4;
  2269. rc = efx_sriov_init(efx);
  2270. if (rc)
  2271. netif_err(efx, probe, efx->net_dev,
  2272. "SR-IOV can't be enabled rc %d\n", rc);
  2273. netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n");
  2274. /* Try to create MTDs, but allow this to fail */
  2275. rtnl_lock();
  2276. rc = efx_mtd_probe(efx);
  2277. rtnl_unlock();
  2278. if (rc)
  2279. netif_warn(efx, probe, efx->net_dev,
  2280. "failed to create MTDs (%d)\n", rc);
  2281. rc = pci_enable_pcie_error_reporting(pci_dev);
  2282. if (rc && rc != -EINVAL)
  2283. netif_warn(efx, probe, efx->net_dev,
  2284. "pci_enable_pcie_error_reporting failed (%d)\n", rc);
  2285. return 0;
  2286. fail4:
  2287. efx_pci_remove_main(efx);
  2288. fail3:
  2289. efx_fini_io(efx);
  2290. fail2:
  2291. efx_fini_struct(efx);
  2292. fail1:
  2293. pci_set_drvdata(pci_dev, NULL);
  2294. WARN_ON(rc > 0);
  2295. netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc);
  2296. free_netdev(net_dev);
  2297. return rc;
  2298. }
  2299. static int efx_pm_freeze(struct device *dev)
  2300. {
  2301. struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
  2302. rtnl_lock();
  2303. if (efx->state != STATE_DISABLED) {
  2304. efx->state = STATE_UNINIT;
  2305. efx_device_detach_sync(efx);
  2306. efx_stop_all(efx);
  2307. efx_stop_interrupts(efx, false);
  2308. }
  2309. rtnl_unlock();
  2310. return 0;
  2311. }
  2312. static int efx_pm_thaw(struct device *dev)
  2313. {
  2314. struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
  2315. rtnl_lock();
  2316. if (efx->state != STATE_DISABLED) {
  2317. efx_start_interrupts(efx, false);
  2318. mutex_lock(&efx->mac_lock);
  2319. efx->phy_op->reconfigure(efx);
  2320. mutex_unlock(&efx->mac_lock);
  2321. efx_start_all(efx);
  2322. netif_device_attach(efx->net_dev);
  2323. efx->state = STATE_READY;
  2324. efx->type->resume_wol(efx);
  2325. }
  2326. rtnl_unlock();
  2327. /* Reschedule any quenched resets scheduled during efx_pm_freeze() */
  2328. queue_work(reset_workqueue, &efx->reset_work);
  2329. return 0;
  2330. }
  2331. static int efx_pm_poweroff(struct device *dev)
  2332. {
  2333. struct pci_dev *pci_dev = to_pci_dev(dev);
  2334. struct efx_nic *efx = pci_get_drvdata(pci_dev);
  2335. efx->type->fini(efx);
  2336. efx->reset_pending = 0;
  2337. pci_save_state(pci_dev);
  2338. return pci_set_power_state(pci_dev, PCI_D3hot);
  2339. }
  2340. /* Used for both resume and restore */
  2341. static int efx_pm_resume(struct device *dev)
  2342. {
  2343. struct pci_dev *pci_dev = to_pci_dev(dev);
  2344. struct efx_nic *efx = pci_get_drvdata(pci_dev);
  2345. int rc;
  2346. rc = pci_set_power_state(pci_dev, PCI_D0);
  2347. if (rc)
  2348. return rc;
  2349. pci_restore_state(pci_dev);
  2350. rc = pci_enable_device(pci_dev);
  2351. if (rc)
  2352. return rc;
  2353. pci_set_master(efx->pci_dev);
  2354. rc = efx->type->reset(efx, RESET_TYPE_ALL);
  2355. if (rc)
  2356. return rc;
  2357. rc = efx->type->init(efx);
  2358. if (rc)
  2359. return rc;
  2360. efx_pm_thaw(dev);
  2361. return 0;
  2362. }
  2363. static int efx_pm_suspend(struct device *dev)
  2364. {
  2365. int rc;
  2366. efx_pm_freeze(dev);
  2367. rc = efx_pm_poweroff(dev);
  2368. if (rc)
  2369. efx_pm_resume(dev);
  2370. return rc;
  2371. }
  2372. static const struct dev_pm_ops efx_pm_ops = {
  2373. .suspend = efx_pm_suspend,
  2374. .resume = efx_pm_resume,
  2375. .freeze = efx_pm_freeze,
  2376. .thaw = efx_pm_thaw,
  2377. .poweroff = efx_pm_poweroff,
  2378. .restore = efx_pm_resume,
  2379. };
  2380. /* A PCI error affecting this device was detected.
  2381. * At this point MMIO and DMA may be disabled.
  2382. * Stop the software path and request a slot reset.
  2383. */
  2384. static pci_ers_result_t efx_io_error_detected(struct pci_dev *pdev,
  2385. enum pci_channel_state state)
  2386. {
  2387. pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
  2388. struct efx_nic *efx = pci_get_drvdata(pdev);
  2389. if (state == pci_channel_io_perm_failure)
  2390. return PCI_ERS_RESULT_DISCONNECT;
  2391. rtnl_lock();
  2392. if (efx->state != STATE_DISABLED) {
  2393. efx->state = STATE_RECOVERY;
  2394. efx->reset_pending = 0;
  2395. efx_device_detach_sync(efx);
  2396. efx_stop_all(efx);
  2397. efx_stop_interrupts(efx, false);
  2398. status = PCI_ERS_RESULT_NEED_RESET;
  2399. } else {
  2400. /* If the interface is disabled we don't want to do anything
  2401. * with it.
  2402. */
  2403. status = PCI_ERS_RESULT_RECOVERED;
  2404. }
  2405. rtnl_unlock();
  2406. pci_disable_device(pdev);
  2407. return status;
  2408. }
  2409. /* Fake a successfull reset, which will be performed later in efx_io_resume. */
  2410. static pci_ers_result_t efx_io_slot_reset(struct pci_dev *pdev)
  2411. {
  2412. struct efx_nic *efx = pci_get_drvdata(pdev);
  2413. pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED;
  2414. int rc;
  2415. if (pci_enable_device(pdev)) {
  2416. netif_err(efx, hw, efx->net_dev,
  2417. "Cannot re-enable PCI device after reset.\n");
  2418. status = PCI_ERS_RESULT_DISCONNECT;
  2419. }
  2420. rc = pci_cleanup_aer_uncorrect_error_status(pdev);
  2421. if (rc) {
  2422. netif_err(efx, hw, efx->net_dev,
  2423. "pci_cleanup_aer_uncorrect_error_status failed (%d)\n", rc);
  2424. /* Non-fatal error. Continue. */
  2425. }
  2426. return status;
  2427. }
  2428. /* Perform the actual reset and resume I/O operations. */
  2429. static void efx_io_resume(struct pci_dev *pdev)
  2430. {
  2431. struct efx_nic *efx = pci_get_drvdata(pdev);
  2432. int rc;
  2433. rtnl_lock();
  2434. if (efx->state == STATE_DISABLED)
  2435. goto out;
  2436. rc = efx_reset(efx, RESET_TYPE_ALL);
  2437. if (rc) {
  2438. netif_err(efx, hw, efx->net_dev,
  2439. "efx_reset failed after PCI error (%d)\n", rc);
  2440. } else {
  2441. efx->state = STATE_READY;
  2442. netif_dbg(efx, hw, efx->net_dev,
  2443. "Done resetting and resuming IO after PCI error.\n");
  2444. }
  2445. out:
  2446. rtnl_unlock();
  2447. }
  2448. /* For simplicity and reliability, we always require a slot reset and try to
  2449. * reset the hardware when a pci error affecting the device is detected.
  2450. * We leave both the link_reset and mmio_enabled callback unimplemented:
  2451. * with our request for slot reset the mmio_enabled callback will never be
  2452. * called, and the link_reset callback is not used by AER or EEH mechanisms.
  2453. */
  2454. static struct pci_error_handlers efx_err_handlers = {
  2455. .error_detected = efx_io_error_detected,
  2456. .slot_reset = efx_io_slot_reset,
  2457. .resume = efx_io_resume,
  2458. };
  2459. static struct pci_driver efx_pci_driver = {
  2460. .name = KBUILD_MODNAME,
  2461. .id_table = efx_pci_table,
  2462. .probe = efx_pci_probe,
  2463. .remove = efx_pci_remove,
  2464. .driver.pm = &efx_pm_ops,
  2465. .err_handler = &efx_err_handlers,
  2466. };
  2467. /**************************************************************************
  2468. *
  2469. * Kernel module interface
  2470. *
  2471. *************************************************************************/
  2472. module_param(interrupt_mode, uint, 0444);
  2473. MODULE_PARM_DESC(interrupt_mode,
  2474. "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
  2475. static int __init efx_init_module(void)
  2476. {
  2477. int rc;
  2478. printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");
  2479. rc = register_netdevice_notifier(&efx_netdev_notifier);
  2480. if (rc)
  2481. goto err_notifier;
  2482. rc = efx_init_sriov();
  2483. if (rc)
  2484. goto err_sriov;
  2485. reset_workqueue = create_singlethread_workqueue("sfc_reset");
  2486. if (!reset_workqueue) {
  2487. rc = -ENOMEM;
  2488. goto err_reset;
  2489. }
  2490. rc = pci_register_driver(&efx_pci_driver);
  2491. if (rc < 0)
  2492. goto err_pci;
  2493. return 0;
  2494. err_pci:
  2495. destroy_workqueue(reset_workqueue);
  2496. err_reset:
  2497. efx_fini_sriov();
  2498. err_sriov:
  2499. unregister_netdevice_notifier(&efx_netdev_notifier);
  2500. err_notifier:
  2501. return rc;
  2502. }
  2503. static void __exit efx_exit_module(void)
  2504. {
  2505. printk(KERN_INFO "Solarflare NET driver unloading\n");
  2506. pci_unregister_driver(&efx_pci_driver);
  2507. destroy_workqueue(reset_workqueue);
  2508. efx_fini_sriov();
  2509. unregister_netdevice_notifier(&efx_netdev_notifier);
  2510. }
  2511. module_init(efx_init_module);
  2512. module_exit(efx_exit_module);
  2513. MODULE_AUTHOR("Solarflare Communications and "
  2514. "Michael Brown <mbrown@fensystems.co.uk>");
  2515. MODULE_DESCRIPTION("Solarflare Communications network driver");
  2516. MODULE_LICENSE("GPL");
  2517. MODULE_DEVICE_TABLE(pci, efx_pci_table);