kprobes-decode.c 51 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663
  1. /*
  2. * arch/arm/kernel/kprobes-decode.c
  3. *
  4. * Copyright (C) 2006, 2007 Motorola Inc.
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License version 2 as
  8. * published by the Free Software Foundation.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  13. * General Public License for more details.
  14. */
  15. /*
  16. * We do not have hardware single-stepping on ARM, This
  17. * effort is further complicated by the ARM not having a
  18. * "next PC" register. Instructions that change the PC
  19. * can't be safely single-stepped in a MP environment, so
  20. * we have a lot of work to do:
  21. *
  22. * In the prepare phase:
  23. * *) If it is an instruction that does anything
  24. * with the CPU mode, we reject it for a kprobe.
  25. * (This is out of laziness rather than need. The
  26. * instructions could be simulated.)
  27. *
  28. * *) Otherwise, decode the instruction rewriting its
  29. * registers to take fixed, ordered registers and
  30. * setting a handler for it to run the instruction.
  31. *
  32. * In the execution phase by an instruction's handler:
  33. *
  34. * *) If the PC is written to by the instruction, the
  35. * instruction must be fully simulated in software.
  36. * If it is a conditional instruction, the handler
  37. * will use insn[0] to copy its condition code to
  38. * set r0 to 1 and insn[1] to "mov pc, lr" to return.
  39. *
  40. * *) Otherwise, a modified form of the instruction is
  41. * directly executed. Its handler calls the
  42. * instruction in insn[0]. In insn[1] is a
  43. * "mov pc, lr" to return.
  44. *
  45. * Before calling, load up the reordered registers
  46. * from the original instruction's registers. If one
  47. * of the original input registers is the PC, compute
  48. * and adjust the appropriate input register.
  49. *
  50. * After call completes, copy the output registers to
  51. * the original instruction's original registers.
  52. *
  53. * We don't use a real breakpoint instruction since that
  54. * would have us in the kernel go from SVC mode to SVC
  55. * mode losing the link register. Instead we use an
  56. * undefined instruction. To simplify processing, the
  57. * undefined instruction used for kprobes must be reserved
  58. * exclusively for kprobes use.
  59. *
  60. * TODO: ifdef out some instruction decoding based on architecture.
  61. */
  62. #include <linux/kernel.h>
  63. #include <linux/kprobes.h>
  64. #define sign_extend(x, signbit) ((x) | (0 - ((x) & (1 << (signbit)))))
  65. #define branch_displacement(insn) sign_extend(((insn) & 0xffffff) << 2, 25)
  66. #define PSR_fs (PSR_f|PSR_s)
  67. #define KPROBE_RETURN_INSTRUCTION 0xe1a0f00e /* mov pc, lr */
  68. typedef long (insn_0arg_fn_t)(void);
  69. typedef long (insn_1arg_fn_t)(long);
  70. typedef long (insn_2arg_fn_t)(long, long);
  71. typedef long (insn_3arg_fn_t)(long, long, long);
  72. typedef long (insn_4arg_fn_t)(long, long, long, long);
  73. typedef long long (insn_llret_0arg_fn_t)(void);
  74. typedef long long (insn_llret_3arg_fn_t)(long, long, long);
  75. typedef long long (insn_llret_4arg_fn_t)(long, long, long, long);
  76. union reg_pair {
  77. long long dr;
  78. #ifdef __LITTLE_ENDIAN
  79. struct { long r0, r1; };
  80. #else
  81. struct { long r1, r0; };
  82. #endif
  83. };
  84. /*
  85. * For STR and STM instructions, an ARM core may choose to use either
  86. * a +8 or a +12 displacement from the current instruction's address.
  87. * Whichever value is chosen for a given core, it must be the same for
  88. * both instructions and may not change. This function measures it.
  89. */
  90. static int str_pc_offset;
  91. static void __init find_str_pc_offset(void)
  92. {
  93. int addr, scratch, ret;
  94. __asm__ (
  95. "sub %[ret], pc, #4 \n\t"
  96. "str pc, %[addr] \n\t"
  97. "ldr %[scr], %[addr] \n\t"
  98. "sub %[ret], %[scr], %[ret] \n\t"
  99. : [ret] "=r" (ret), [scr] "=r" (scratch), [addr] "+m" (addr));
  100. str_pc_offset = ret;
  101. }
  102. /*
  103. * The insnslot_?arg_r[w]flags() functions below are to keep the
  104. * msr -> *fn -> mrs instruction sequences indivisible so that
  105. * the state of the CPSR flags aren't inadvertently modified
  106. * just before or just after the call.
  107. */
  108. static inline long __kprobes
  109. insnslot_0arg_rflags(long cpsr, insn_0arg_fn_t *fn)
  110. {
  111. register long ret asm("r0");
  112. __asm__ __volatile__ (
  113. "msr cpsr_fs, %[cpsr] \n\t"
  114. "mov lr, pc \n\t"
  115. "mov pc, %[fn] \n\t"
  116. : "=r" (ret)
  117. : [cpsr] "r" (cpsr), [fn] "r" (fn)
  118. : "lr", "cc"
  119. );
  120. return ret;
  121. }
  122. static inline long long __kprobes
  123. insnslot_llret_0arg_rflags(long cpsr, insn_llret_0arg_fn_t *fn)
  124. {
  125. register long ret0 asm("r0");
  126. register long ret1 asm("r1");
  127. union reg_pair fnr;
  128. __asm__ __volatile__ (
  129. "msr cpsr_fs, %[cpsr] \n\t"
  130. "mov lr, pc \n\t"
  131. "mov pc, %[fn] \n\t"
  132. : "=r" (ret0), "=r" (ret1)
  133. : [cpsr] "r" (cpsr), [fn] "r" (fn)
  134. : "lr", "cc"
  135. );
  136. fnr.r0 = ret0;
  137. fnr.r1 = ret1;
  138. return fnr.dr;
  139. }
  140. static inline long __kprobes
  141. insnslot_1arg_rflags(long r0, long cpsr, insn_1arg_fn_t *fn)
  142. {
  143. register long rr0 asm("r0") = r0;
  144. register long ret asm("r0");
  145. __asm__ __volatile__ (
  146. "msr cpsr_fs, %[cpsr] \n\t"
  147. "mov lr, pc \n\t"
  148. "mov pc, %[fn] \n\t"
  149. : "=r" (ret)
  150. : "0" (rr0), [cpsr] "r" (cpsr), [fn] "r" (fn)
  151. : "lr", "cc"
  152. );
  153. return ret;
  154. }
  155. static inline long __kprobes
  156. insnslot_2arg_rflags(long r0, long r1, long cpsr, insn_2arg_fn_t *fn)
  157. {
  158. register long rr0 asm("r0") = r0;
  159. register long rr1 asm("r1") = r1;
  160. register long ret asm("r0");
  161. __asm__ __volatile__ (
  162. "msr cpsr_fs, %[cpsr] \n\t"
  163. "mov lr, pc \n\t"
  164. "mov pc, %[fn] \n\t"
  165. : "=r" (ret)
  166. : "0" (rr0), "r" (rr1),
  167. [cpsr] "r" (cpsr), [fn] "r" (fn)
  168. : "lr", "cc"
  169. );
  170. return ret;
  171. }
  172. static inline long __kprobes
  173. insnslot_3arg_rflags(long r0, long r1, long r2, long cpsr, insn_3arg_fn_t *fn)
  174. {
  175. register long rr0 asm("r0") = r0;
  176. register long rr1 asm("r1") = r1;
  177. register long rr2 asm("r2") = r2;
  178. register long ret asm("r0");
  179. __asm__ __volatile__ (
  180. "msr cpsr_fs, %[cpsr] \n\t"
  181. "mov lr, pc \n\t"
  182. "mov pc, %[fn] \n\t"
  183. : "=r" (ret)
  184. : "0" (rr0), "r" (rr1), "r" (rr2),
  185. [cpsr] "r" (cpsr), [fn] "r" (fn)
  186. : "lr", "cc"
  187. );
  188. return ret;
  189. }
  190. static inline long long __kprobes
  191. insnslot_llret_3arg_rflags(long r0, long r1, long r2, long cpsr,
  192. insn_llret_3arg_fn_t *fn)
  193. {
  194. register long rr0 asm("r0") = r0;
  195. register long rr1 asm("r1") = r1;
  196. register long rr2 asm("r2") = r2;
  197. register long ret0 asm("r0");
  198. register long ret1 asm("r1");
  199. union reg_pair fnr;
  200. __asm__ __volatile__ (
  201. "msr cpsr_fs, %[cpsr] \n\t"
  202. "mov lr, pc \n\t"
  203. "mov pc, %[fn] \n\t"
  204. : "=r" (ret0), "=r" (ret1)
  205. : "0" (rr0), "r" (rr1), "r" (rr2),
  206. [cpsr] "r" (cpsr), [fn] "r" (fn)
  207. : "lr", "cc"
  208. );
  209. fnr.r0 = ret0;
  210. fnr.r1 = ret1;
  211. return fnr.dr;
  212. }
  213. static inline long __kprobes
  214. insnslot_4arg_rflags(long r0, long r1, long r2, long r3, long cpsr,
  215. insn_4arg_fn_t *fn)
  216. {
  217. register long rr0 asm("r0") = r0;
  218. register long rr1 asm("r1") = r1;
  219. register long rr2 asm("r2") = r2;
  220. register long rr3 asm("r3") = r3;
  221. register long ret asm("r0");
  222. __asm__ __volatile__ (
  223. "msr cpsr_fs, %[cpsr] \n\t"
  224. "mov lr, pc \n\t"
  225. "mov pc, %[fn] \n\t"
  226. : "=r" (ret)
  227. : "0" (rr0), "r" (rr1), "r" (rr2), "r" (rr3),
  228. [cpsr] "r" (cpsr), [fn] "r" (fn)
  229. : "lr", "cc"
  230. );
  231. return ret;
  232. }
  233. static inline long __kprobes
  234. insnslot_1arg_rwflags(long r0, long *cpsr, insn_1arg_fn_t *fn)
  235. {
  236. register long rr0 asm("r0") = r0;
  237. register long ret asm("r0");
  238. long oldcpsr = *cpsr;
  239. long newcpsr;
  240. __asm__ __volatile__ (
  241. "msr cpsr_fs, %[oldcpsr] \n\t"
  242. "mov lr, pc \n\t"
  243. "mov pc, %[fn] \n\t"
  244. "mrs %[newcpsr], cpsr \n\t"
  245. : "=r" (ret), [newcpsr] "=r" (newcpsr)
  246. : "0" (rr0), [oldcpsr] "r" (oldcpsr), [fn] "r" (fn)
  247. : "lr", "cc"
  248. );
  249. *cpsr = (oldcpsr & ~PSR_fs) | (newcpsr & PSR_fs);
  250. return ret;
  251. }
  252. static inline long __kprobes
  253. insnslot_2arg_rwflags(long r0, long r1, long *cpsr, insn_2arg_fn_t *fn)
  254. {
  255. register long rr0 asm("r0") = r0;
  256. register long rr1 asm("r1") = r1;
  257. register long ret asm("r0");
  258. long oldcpsr = *cpsr;
  259. long newcpsr;
  260. __asm__ __volatile__ (
  261. "msr cpsr_fs, %[oldcpsr] \n\t"
  262. "mov lr, pc \n\t"
  263. "mov pc, %[fn] \n\t"
  264. "mrs %[newcpsr], cpsr \n\t"
  265. : "=r" (ret), [newcpsr] "=r" (newcpsr)
  266. : "0" (rr0), "r" (rr1), [oldcpsr] "r" (oldcpsr), [fn] "r" (fn)
  267. : "lr", "cc"
  268. );
  269. *cpsr = (oldcpsr & ~PSR_fs) | (newcpsr & PSR_fs);
  270. return ret;
  271. }
  272. static inline long __kprobes
  273. insnslot_3arg_rwflags(long r0, long r1, long r2, long *cpsr,
  274. insn_3arg_fn_t *fn)
  275. {
  276. register long rr0 asm("r0") = r0;
  277. register long rr1 asm("r1") = r1;
  278. register long rr2 asm("r2") = r2;
  279. register long ret asm("r0");
  280. long oldcpsr = *cpsr;
  281. long newcpsr;
  282. __asm__ __volatile__ (
  283. "msr cpsr_fs, %[oldcpsr] \n\t"
  284. "mov lr, pc \n\t"
  285. "mov pc, %[fn] \n\t"
  286. "mrs %[newcpsr], cpsr \n\t"
  287. : "=r" (ret), [newcpsr] "=r" (newcpsr)
  288. : "0" (rr0), "r" (rr1), "r" (rr2),
  289. [oldcpsr] "r" (oldcpsr), [fn] "r" (fn)
  290. : "lr", "cc"
  291. );
  292. *cpsr = (oldcpsr & ~PSR_fs) | (newcpsr & PSR_fs);
  293. return ret;
  294. }
  295. static inline long __kprobes
  296. insnslot_4arg_rwflags(long r0, long r1, long r2, long r3, long *cpsr,
  297. insn_4arg_fn_t *fn)
  298. {
  299. register long rr0 asm("r0") = r0;
  300. register long rr1 asm("r1") = r1;
  301. register long rr2 asm("r2") = r2;
  302. register long rr3 asm("r3") = r3;
  303. register long ret asm("r0");
  304. long oldcpsr = *cpsr;
  305. long newcpsr;
  306. __asm__ __volatile__ (
  307. "msr cpsr_fs, %[oldcpsr] \n\t"
  308. "mov lr, pc \n\t"
  309. "mov pc, %[fn] \n\t"
  310. "mrs %[newcpsr], cpsr \n\t"
  311. : "=r" (ret), [newcpsr] "=r" (newcpsr)
  312. : "0" (rr0), "r" (rr1), "r" (rr2), "r" (rr3),
  313. [oldcpsr] "r" (oldcpsr), [fn] "r" (fn)
  314. : "lr", "cc"
  315. );
  316. *cpsr = (oldcpsr & ~PSR_fs) | (newcpsr & PSR_fs);
  317. return ret;
  318. }
  319. static inline long long __kprobes
  320. insnslot_llret_4arg_rwflags(long r0, long r1, long r2, long r3, long *cpsr,
  321. insn_llret_4arg_fn_t *fn)
  322. {
  323. register long rr0 asm("r0") = r0;
  324. register long rr1 asm("r1") = r1;
  325. register long rr2 asm("r2") = r2;
  326. register long rr3 asm("r3") = r3;
  327. register long ret0 asm("r0");
  328. register long ret1 asm("r1");
  329. long oldcpsr = *cpsr;
  330. long newcpsr;
  331. union reg_pair fnr;
  332. __asm__ __volatile__ (
  333. "msr cpsr_fs, %[oldcpsr] \n\t"
  334. "mov lr, pc \n\t"
  335. "mov pc, %[fn] \n\t"
  336. "mrs %[newcpsr], cpsr \n\t"
  337. : "=r" (ret0), "=r" (ret1), [newcpsr] "=r" (newcpsr)
  338. : "0" (rr0), "r" (rr1), "r" (rr2), "r" (rr3),
  339. [oldcpsr] "r" (oldcpsr), [fn] "r" (fn)
  340. : "lr", "cc"
  341. );
  342. *cpsr = (oldcpsr & ~PSR_fs) | (newcpsr & PSR_fs);
  343. fnr.r0 = ret0;
  344. fnr.r1 = ret1;
  345. return fnr.dr;
  346. }
  347. /*
  348. * To avoid the complications of mimicing single-stepping on a
  349. * processor without a Next-PC or a single-step mode, and to
  350. * avoid having to deal with the side-effects of boosting, we
  351. * simulate or emulate (almost) all ARM instructions.
  352. *
  353. * "Simulation" is where the instruction's behavior is duplicated in
  354. * C code. "Emulation" is where the original instruction is rewritten
  355. * and executed, often by altering its registers.
  356. *
  357. * By having all behavior of the kprobe'd instruction completed before
  358. * returning from the kprobe_handler(), all locks (scheduler and
  359. * interrupt) can safely be released. There is no need for secondary
  360. * breakpoints, no race with MP or preemptable kernels, nor having to
  361. * clean up resources counts at a later time impacting overall system
  362. * performance. By rewriting the instruction, only the minimum registers
  363. * need to be loaded and saved back optimizing performance.
  364. *
  365. * Calling the insnslot_*_rwflags version of a function doesn't hurt
  366. * anything even when the CPSR flags aren't updated by the
  367. * instruction. It's just a little slower in return for saving
  368. * a little space by not having a duplicate function that doesn't
  369. * update the flags. (The same optimization can be said for
  370. * instructions that do or don't perform register writeback)
  371. * Also, instructions can either read the flags, only write the
  372. * flags, or read and write the flags. To save combinations
  373. * rather than for sheer performance, flag functions just assume
  374. * read and write of flags.
  375. */
  376. static void __kprobes simulate_bbl(struct kprobe *p, struct pt_regs *regs)
  377. {
  378. kprobe_opcode_t insn = p->opcode;
  379. long iaddr = (long)p->addr;
  380. int disp = branch_displacement(insn);
  381. if (insn & (1 << 24))
  382. regs->ARM_lr = iaddr + 4;
  383. regs->ARM_pc = iaddr + 8 + disp;
  384. }
  385. static void __kprobes simulate_blx1(struct kprobe *p, struct pt_regs *regs)
  386. {
  387. kprobe_opcode_t insn = p->opcode;
  388. long iaddr = (long)p->addr;
  389. int disp = branch_displacement(insn);
  390. regs->ARM_lr = iaddr + 4;
  391. regs->ARM_pc = iaddr + 8 + disp + ((insn >> 23) & 0x2);
  392. regs->ARM_cpsr |= PSR_T_BIT;
  393. }
  394. static void __kprobes simulate_blx2bx(struct kprobe *p, struct pt_regs *regs)
  395. {
  396. kprobe_opcode_t insn = p->opcode;
  397. int rm = insn & 0xf;
  398. long rmv = regs->uregs[rm];
  399. if (insn & (1 << 5))
  400. regs->ARM_lr = (long)p->addr + 4;
  401. regs->ARM_pc = rmv & ~0x1;
  402. regs->ARM_cpsr &= ~PSR_T_BIT;
  403. if (rmv & 0x1)
  404. regs->ARM_cpsr |= PSR_T_BIT;
  405. }
  406. static void __kprobes simulate_ldm1stm1(struct kprobe *p, struct pt_regs *regs)
  407. {
  408. kprobe_opcode_t insn = p->opcode;
  409. int rn = (insn >> 16) & 0xf;
  410. int lbit = insn & (1 << 20);
  411. int wbit = insn & (1 << 21);
  412. int ubit = insn & (1 << 23);
  413. int pbit = insn & (1 << 24);
  414. long *addr = (long *)regs->uregs[rn];
  415. int reg_bit_vector;
  416. int reg_count;
  417. reg_count = 0;
  418. reg_bit_vector = insn & 0xffff;
  419. while (reg_bit_vector) {
  420. reg_bit_vector &= (reg_bit_vector - 1);
  421. ++reg_count;
  422. }
  423. if (!ubit)
  424. addr -= reg_count;
  425. addr += (!pbit == !ubit);
  426. reg_bit_vector = insn & 0xffff;
  427. while (reg_bit_vector) {
  428. int reg = __ffs(reg_bit_vector);
  429. reg_bit_vector &= (reg_bit_vector - 1);
  430. if (lbit)
  431. regs->uregs[reg] = *addr++;
  432. else
  433. *addr++ = regs->uregs[reg];
  434. }
  435. if (wbit) {
  436. if (!ubit)
  437. addr -= reg_count;
  438. addr -= (!pbit == !ubit);
  439. regs->uregs[rn] = (long)addr;
  440. }
  441. }
  442. static void __kprobes simulate_stm1_pc(struct kprobe *p, struct pt_regs *regs)
  443. {
  444. regs->ARM_pc = (long)p->addr + str_pc_offset;
  445. simulate_ldm1stm1(p, regs);
  446. regs->ARM_pc = (long)p->addr + 4;
  447. }
  448. static void __kprobes simulate_mov_ipsp(struct kprobe *p, struct pt_regs *regs)
  449. {
  450. regs->uregs[12] = regs->uregs[13];
  451. }
  452. static void __kprobes emulate_ldcstc(struct kprobe *p, struct pt_regs *regs)
  453. {
  454. insn_1arg_fn_t *i_fn = (insn_1arg_fn_t *)&p->ainsn.insn[0];
  455. kprobe_opcode_t insn = p->opcode;
  456. int rn = (insn >> 16) & 0xf;
  457. long rnv = regs->uregs[rn];
  458. /* Save Rn in case of writeback. */
  459. regs->uregs[rn] = insnslot_1arg_rflags(rnv, regs->ARM_cpsr, i_fn);
  460. }
  461. static void __kprobes emulate_ldrd(struct kprobe *p, struct pt_regs *regs)
  462. {
  463. insn_2arg_fn_t *i_fn = (insn_2arg_fn_t *)&p->ainsn.insn[0];
  464. kprobe_opcode_t insn = p->opcode;
  465. long ppc = (long)p->addr + 8;
  466. int rd = (insn >> 12) & 0xf;
  467. int rn = (insn >> 16) & 0xf;
  468. int rm = insn & 0xf; /* rm may be invalid, don't care. */
  469. long rmv = (rm == 15) ? ppc : regs->uregs[rm];
  470. long rnv = (rn == 15) ? ppc : regs->uregs[rn];
  471. /* Not following the C calling convention here, so need asm(). */
  472. __asm__ __volatile__ (
  473. "ldr r0, %[rn] \n\t"
  474. "ldr r1, %[rm] \n\t"
  475. "msr cpsr_fs, %[cpsr]\n\t"
  476. "mov lr, pc \n\t"
  477. "mov pc, %[i_fn] \n\t"
  478. "str r0, %[rn] \n\t" /* in case of writeback */
  479. "str r2, %[rd0] \n\t"
  480. "str r3, %[rd1] \n\t"
  481. : [rn] "+m" (rnv),
  482. [rd0] "=m" (regs->uregs[rd]),
  483. [rd1] "=m" (regs->uregs[rd+1])
  484. : [rm] "m" (rmv),
  485. [cpsr] "r" (regs->ARM_cpsr),
  486. [i_fn] "r" (i_fn)
  487. : "r0", "r1", "r2", "r3", "lr", "cc"
  488. );
  489. if (rn != 15)
  490. regs->uregs[rn] = rnv; /* Save Rn in case of writeback. */
  491. }
  492. static void __kprobes emulate_strd(struct kprobe *p, struct pt_regs *regs)
  493. {
  494. insn_4arg_fn_t *i_fn = (insn_4arg_fn_t *)&p->ainsn.insn[0];
  495. kprobe_opcode_t insn = p->opcode;
  496. long ppc = (long)p->addr + 8;
  497. int rd = (insn >> 12) & 0xf;
  498. int rn = (insn >> 16) & 0xf;
  499. int rm = insn & 0xf;
  500. long rnv = (rn == 15) ? ppc : regs->uregs[rn];
  501. /* rm/rmv may be invalid, don't care. */
  502. long rmv = (rm == 15) ? ppc : regs->uregs[rm];
  503. long rnv_wb;
  504. rnv_wb = insnslot_4arg_rflags(rnv, rmv, regs->uregs[rd],
  505. regs->uregs[rd+1],
  506. regs->ARM_cpsr, i_fn);
  507. if (rn != 15)
  508. regs->uregs[rn] = rnv_wb; /* Save Rn in case of writeback. */
  509. }
  510. static void __kprobes emulate_ldr(struct kprobe *p, struct pt_regs *regs)
  511. {
  512. insn_llret_3arg_fn_t *i_fn = (insn_llret_3arg_fn_t *)&p->ainsn.insn[0];
  513. kprobe_opcode_t insn = p->opcode;
  514. long ppc = (long)p->addr + 8;
  515. union reg_pair fnr;
  516. int rd = (insn >> 12) & 0xf;
  517. int rn = (insn >> 16) & 0xf;
  518. int rm = insn & 0xf;
  519. long rdv;
  520. long rnv = (rn == 15) ? ppc : regs->uregs[rn];
  521. long rmv = (rm == 15) ? ppc : regs->uregs[rm];
  522. long cpsr = regs->ARM_cpsr;
  523. fnr.dr = insnslot_llret_3arg_rflags(rnv, 0, rmv, cpsr, i_fn);
  524. if (rn != 15)
  525. regs->uregs[rn] = fnr.r0; /* Save Rn in case of writeback. */
  526. rdv = fnr.r1;
  527. if (rd == 15) {
  528. #if __LINUX_ARM_ARCH__ >= 5
  529. cpsr &= ~PSR_T_BIT;
  530. if (rdv & 0x1)
  531. cpsr |= PSR_T_BIT;
  532. regs->ARM_cpsr = cpsr;
  533. rdv &= ~0x1;
  534. #else
  535. rdv &= ~0x2;
  536. #endif
  537. }
  538. regs->uregs[rd] = rdv;
  539. }
  540. static void __kprobes emulate_str(struct kprobe *p, struct pt_regs *regs)
  541. {
  542. insn_3arg_fn_t *i_fn = (insn_3arg_fn_t *)&p->ainsn.insn[0];
  543. kprobe_opcode_t insn = p->opcode;
  544. long iaddr = (long)p->addr;
  545. int rd = (insn >> 12) & 0xf;
  546. int rn = (insn >> 16) & 0xf;
  547. int rm = insn & 0xf;
  548. long rdv = (rd == 15) ? iaddr + str_pc_offset : regs->uregs[rd];
  549. long rnv = (rn == 15) ? iaddr + 8 : regs->uregs[rn];
  550. long rmv = regs->uregs[rm]; /* rm/rmv may be invalid, don't care. */
  551. long rnv_wb;
  552. rnv_wb = insnslot_3arg_rflags(rnv, rdv, rmv, regs->ARM_cpsr, i_fn);
  553. if (rn != 15)
  554. regs->uregs[rn] = rnv_wb; /* Save Rn in case of writeback. */
  555. }
  556. static void __kprobes emulate_mrrc(struct kprobe *p, struct pt_regs *regs)
  557. {
  558. insn_llret_0arg_fn_t *i_fn = (insn_llret_0arg_fn_t *)&p->ainsn.insn[0];
  559. kprobe_opcode_t insn = p->opcode;
  560. union reg_pair fnr;
  561. int rd = (insn >> 12) & 0xf;
  562. int rn = (insn >> 16) & 0xf;
  563. fnr.dr = insnslot_llret_0arg_rflags(regs->ARM_cpsr, i_fn);
  564. regs->uregs[rn] = fnr.r0;
  565. regs->uregs[rd] = fnr.r1;
  566. }
  567. static void __kprobes emulate_mcrr(struct kprobe *p, struct pt_regs *regs)
  568. {
  569. insn_2arg_fn_t *i_fn = (insn_2arg_fn_t *)&p->ainsn.insn[0];
  570. kprobe_opcode_t insn = p->opcode;
  571. int rd = (insn >> 12) & 0xf;
  572. int rn = (insn >> 16) & 0xf;
  573. long rnv = regs->uregs[rn];
  574. long rdv = regs->uregs[rd];
  575. insnslot_2arg_rflags(rnv, rdv, regs->ARM_cpsr, i_fn);
  576. }
  577. static void __kprobes emulate_sat(struct kprobe *p, struct pt_regs *regs)
  578. {
  579. insn_1arg_fn_t *i_fn = (insn_1arg_fn_t *)&p->ainsn.insn[0];
  580. kprobe_opcode_t insn = p->opcode;
  581. int rd = (insn >> 12) & 0xf;
  582. int rm = insn & 0xf;
  583. long rmv = regs->uregs[rm];
  584. /* Writes Q flag */
  585. regs->uregs[rd] = insnslot_1arg_rwflags(rmv, &regs->ARM_cpsr, i_fn);
  586. }
  587. static void __kprobes emulate_sel(struct kprobe *p, struct pt_regs *regs)
  588. {
  589. insn_2arg_fn_t *i_fn = (insn_2arg_fn_t *)&p->ainsn.insn[0];
  590. kprobe_opcode_t insn = p->opcode;
  591. int rd = (insn >> 12) & 0xf;
  592. int rn = (insn >> 16) & 0xf;
  593. int rm = insn & 0xf;
  594. long rnv = regs->uregs[rn];
  595. long rmv = regs->uregs[rm];
  596. /* Reads GE bits */
  597. regs->uregs[rd] = insnslot_2arg_rflags(rnv, rmv, regs->ARM_cpsr, i_fn);
  598. }
  599. static void __kprobes emulate_none(struct kprobe *p, struct pt_regs *regs)
  600. {
  601. insn_0arg_fn_t *i_fn = (insn_0arg_fn_t *)&p->ainsn.insn[0];
  602. insnslot_0arg_rflags(regs->ARM_cpsr, i_fn);
  603. }
  604. static void __kprobes emulate_rd12(struct kprobe *p, struct pt_regs *regs)
  605. {
  606. insn_0arg_fn_t *i_fn = (insn_0arg_fn_t *)&p->ainsn.insn[0];
  607. kprobe_opcode_t insn = p->opcode;
  608. int rd = (insn >> 12) & 0xf;
  609. regs->uregs[rd] = insnslot_0arg_rflags(regs->ARM_cpsr, i_fn);
  610. }
  611. static void __kprobes emulate_ird12(struct kprobe *p, struct pt_regs *regs)
  612. {
  613. insn_1arg_fn_t *i_fn = (insn_1arg_fn_t *)&p->ainsn.insn[0];
  614. kprobe_opcode_t insn = p->opcode;
  615. int ird = (insn >> 12) & 0xf;
  616. insnslot_1arg_rflags(regs->uregs[ird], regs->ARM_cpsr, i_fn);
  617. }
  618. static void __kprobes emulate_rn16(struct kprobe *p, struct pt_regs *regs)
  619. {
  620. insn_1arg_fn_t *i_fn = (insn_1arg_fn_t *)&p->ainsn.insn[0];
  621. kprobe_opcode_t insn = p->opcode;
  622. int rn = (insn >> 16) & 0xf;
  623. long rnv = regs->uregs[rn];
  624. insnslot_1arg_rflags(rnv, regs->ARM_cpsr, i_fn);
  625. }
  626. static void __kprobes emulate_rd12rm0(struct kprobe *p, struct pt_regs *regs)
  627. {
  628. insn_1arg_fn_t *i_fn = (insn_1arg_fn_t *)&p->ainsn.insn[0];
  629. kprobe_opcode_t insn = p->opcode;
  630. int rd = (insn >> 12) & 0xf;
  631. int rm = insn & 0xf;
  632. long rmv = regs->uregs[rm];
  633. regs->uregs[rd] = insnslot_1arg_rflags(rmv, regs->ARM_cpsr, i_fn);
  634. }
  635. static void __kprobes
  636. emulate_rd12rn16rm0_rwflags(struct kprobe *p, struct pt_regs *regs)
  637. {
  638. insn_2arg_fn_t *i_fn = (insn_2arg_fn_t *)&p->ainsn.insn[0];
  639. kprobe_opcode_t insn = p->opcode;
  640. int rd = (insn >> 12) & 0xf;
  641. int rn = (insn >> 16) & 0xf;
  642. int rm = insn & 0xf;
  643. long rnv = regs->uregs[rn];
  644. long rmv = regs->uregs[rm];
  645. regs->uregs[rd] =
  646. insnslot_2arg_rwflags(rnv, rmv, &regs->ARM_cpsr, i_fn);
  647. }
  648. static void __kprobes
  649. emulate_rd16rn12rs8rm0_rwflags(struct kprobe *p, struct pt_regs *regs)
  650. {
  651. insn_3arg_fn_t *i_fn = (insn_3arg_fn_t *)&p->ainsn.insn[0];
  652. kprobe_opcode_t insn = p->opcode;
  653. int rd = (insn >> 16) & 0xf;
  654. int rn = (insn >> 12) & 0xf;
  655. int rs = (insn >> 8) & 0xf;
  656. int rm = insn & 0xf;
  657. long rnv = regs->uregs[rn];
  658. long rsv = regs->uregs[rs];
  659. long rmv = regs->uregs[rm];
  660. regs->uregs[rd] =
  661. insnslot_3arg_rwflags(rnv, rsv, rmv, &regs->ARM_cpsr, i_fn);
  662. }
  663. static void __kprobes
  664. emulate_rd16rs8rm0_rwflags(struct kprobe *p, struct pt_regs *regs)
  665. {
  666. insn_2arg_fn_t *i_fn = (insn_2arg_fn_t *)&p->ainsn.insn[0];
  667. kprobe_opcode_t insn = p->opcode;
  668. int rd = (insn >> 16) & 0xf;
  669. int rs = (insn >> 8) & 0xf;
  670. int rm = insn & 0xf;
  671. long rsv = regs->uregs[rs];
  672. long rmv = regs->uregs[rm];
  673. regs->uregs[rd] =
  674. insnslot_2arg_rwflags(rsv, rmv, &regs->ARM_cpsr, i_fn);
  675. }
  676. static void __kprobes
  677. emulate_rdhi16rdlo12rs8rm0_rwflags(struct kprobe *p, struct pt_regs *regs)
  678. {
  679. insn_llret_4arg_fn_t *i_fn = (insn_llret_4arg_fn_t *)&p->ainsn.insn[0];
  680. kprobe_opcode_t insn = p->opcode;
  681. union reg_pair fnr;
  682. int rdhi = (insn >> 16) & 0xf;
  683. int rdlo = (insn >> 12) & 0xf;
  684. int rs = (insn >> 8) & 0xf;
  685. int rm = insn & 0xf;
  686. long rsv = regs->uregs[rs];
  687. long rmv = regs->uregs[rm];
  688. fnr.dr = insnslot_llret_4arg_rwflags(regs->uregs[rdhi],
  689. regs->uregs[rdlo], rsv, rmv,
  690. &regs->ARM_cpsr, i_fn);
  691. regs->uregs[rdhi] = fnr.r0;
  692. regs->uregs[rdlo] = fnr.r1;
  693. }
  694. static void __kprobes
  695. emulate_alu_imm_rflags(struct kprobe *p, struct pt_regs *regs)
  696. {
  697. insn_1arg_fn_t *i_fn = (insn_1arg_fn_t *)&p->ainsn.insn[0];
  698. kprobe_opcode_t insn = p->opcode;
  699. int rd = (insn >> 12) & 0xf;
  700. int rn = (insn >> 16) & 0xf;
  701. long rnv = (rn == 15) ? (long)p->addr + 8 : regs->uregs[rn];
  702. regs->uregs[rd] = insnslot_1arg_rflags(rnv, regs->ARM_cpsr, i_fn);
  703. }
  704. static void __kprobes
  705. emulate_alu_imm_rwflags(struct kprobe *p, struct pt_regs *regs)
  706. {
  707. insn_1arg_fn_t *i_fn = (insn_1arg_fn_t *)&p->ainsn.insn[0];
  708. kprobe_opcode_t insn = p->opcode;
  709. int rd = (insn >> 12) & 0xf;
  710. int rn = (insn >> 16) & 0xf;
  711. long rnv = (rn == 15) ? (long)p->addr + 8 : regs->uregs[rn];
  712. regs->uregs[rd] = insnslot_1arg_rwflags(rnv, &regs->ARM_cpsr, i_fn);
  713. }
  714. static void __kprobes
  715. emulate_alu_tests_imm(struct kprobe *p, struct pt_regs *regs)
  716. {
  717. insn_1arg_fn_t *i_fn = (insn_1arg_fn_t *)&p->ainsn.insn[0];
  718. kprobe_opcode_t insn = p->opcode;
  719. int rn = (insn >> 16) & 0xf;
  720. long rnv = (rn == 15) ? (long)p->addr + 8 : regs->uregs[rn];
  721. insnslot_1arg_rwflags(rnv, &regs->ARM_cpsr, i_fn);
  722. }
  723. static void __kprobes
  724. emulate_alu_rflags(struct kprobe *p, struct pt_regs *regs)
  725. {
  726. insn_3arg_fn_t *i_fn = (insn_3arg_fn_t *)&p->ainsn.insn[0];
  727. kprobe_opcode_t insn = p->opcode;
  728. long ppc = (long)p->addr + 8;
  729. int rd = (insn >> 12) & 0xf;
  730. int rn = (insn >> 16) & 0xf; /* rn/rnv/rs/rsv may be */
  731. int rs = (insn >> 8) & 0xf; /* invalid, don't care. */
  732. int rm = insn & 0xf;
  733. long rnv = (rn == 15) ? ppc : regs->uregs[rn];
  734. long rmv = (rm == 15) ? ppc : regs->uregs[rm];
  735. long rsv = regs->uregs[rs];
  736. regs->uregs[rd] =
  737. insnslot_3arg_rflags(rnv, rmv, rsv, regs->ARM_cpsr, i_fn);
  738. }
  739. static void __kprobes
  740. emulate_alu_rwflags(struct kprobe *p, struct pt_regs *regs)
  741. {
  742. insn_3arg_fn_t *i_fn = (insn_3arg_fn_t *)&p->ainsn.insn[0];
  743. kprobe_opcode_t insn = p->opcode;
  744. long ppc = (long)p->addr + 8;
  745. int rd = (insn >> 12) & 0xf;
  746. int rn = (insn >> 16) & 0xf; /* rn/rnv/rs/rsv may be */
  747. int rs = (insn >> 8) & 0xf; /* invalid, don't care. */
  748. int rm = insn & 0xf;
  749. long rnv = (rn == 15) ? ppc : regs->uregs[rn];
  750. long rmv = (rm == 15) ? ppc : regs->uregs[rm];
  751. long rsv = regs->uregs[rs];
  752. regs->uregs[rd] =
  753. insnslot_3arg_rwflags(rnv, rmv, rsv, &regs->ARM_cpsr, i_fn);
  754. }
  755. static void __kprobes
  756. emulate_alu_tests(struct kprobe *p, struct pt_regs *regs)
  757. {
  758. insn_3arg_fn_t *i_fn = (insn_3arg_fn_t *)&p->ainsn.insn[0];
  759. kprobe_opcode_t insn = p->opcode;
  760. long ppc = (long)p->addr + 8;
  761. int rn = (insn >> 16) & 0xf;
  762. int rs = (insn >> 8) & 0xf; /* rs/rsv may be invalid, don't care. */
  763. int rm = insn & 0xf;
  764. long rnv = (rn == 15) ? ppc : regs->uregs[rn];
  765. long rmv = (rm == 15) ? ppc : regs->uregs[rm];
  766. long rsv = regs->uregs[rs];
  767. insnslot_3arg_rwflags(rnv, rmv, rsv, &regs->ARM_cpsr, i_fn);
  768. }
  769. static enum kprobe_insn __kprobes
  770. prep_emulate_ldr_str(kprobe_opcode_t insn, struct arch_specific_insn *asi)
  771. {
  772. int ibit = (insn & (1 << 26)) ? 25 : 22;
  773. insn &= 0xfff00fff;
  774. insn |= 0x00001000; /* Rn = r0, Rd = r1 */
  775. if (insn & (1 << ibit)) {
  776. insn &= ~0xf;
  777. insn |= 2; /* Rm = r2 */
  778. }
  779. asi->insn[0] = insn;
  780. asi->insn_handler = (insn & (1 << 20)) ? emulate_ldr : emulate_str;
  781. return INSN_GOOD;
  782. }
  783. static enum kprobe_insn __kprobes
  784. prep_emulate_rd12rm0(kprobe_opcode_t insn, struct arch_specific_insn *asi)
  785. {
  786. insn &= 0xffff0ff0; /* Rd = r0, Rm = r0 */
  787. asi->insn[0] = insn;
  788. asi->insn_handler = emulate_rd12rm0;
  789. return INSN_GOOD;
  790. }
  791. static enum kprobe_insn __kprobes
  792. prep_emulate_rd12(kprobe_opcode_t insn, struct arch_specific_insn *asi)
  793. {
  794. insn &= 0xffff0fff; /* Rd = r0 */
  795. asi->insn[0] = insn;
  796. asi->insn_handler = emulate_rd12;
  797. return INSN_GOOD;
  798. }
  799. static enum kprobe_insn __kprobes
  800. prep_emulate_rd12rn16rm0_wflags(kprobe_opcode_t insn,
  801. struct arch_specific_insn *asi)
  802. {
  803. insn &= 0xfff00ff0; /* Rd = r0, Rn = r0 */
  804. insn |= 0x00000001; /* Rm = r1 */
  805. asi->insn[0] = insn;
  806. asi->insn_handler = emulate_rd12rn16rm0_rwflags;
  807. return INSN_GOOD;
  808. }
  809. static enum kprobe_insn __kprobes
  810. prep_emulate_rd16rs8rm0_wflags(kprobe_opcode_t insn,
  811. struct arch_specific_insn *asi)
  812. {
  813. insn &= 0xfff0f0f0; /* Rd = r0, Rs = r0 */
  814. insn |= 0x00000001; /* Rm = r1 */
  815. asi->insn[0] = insn;
  816. asi->insn_handler = emulate_rd16rs8rm0_rwflags;
  817. return INSN_GOOD;
  818. }
  819. static enum kprobe_insn __kprobes
  820. prep_emulate_rd16rn12rs8rm0_wflags(kprobe_opcode_t insn,
  821. struct arch_specific_insn *asi)
  822. {
  823. insn &= 0xfff000f0; /* Rd = r0, Rn = r0 */
  824. insn |= 0x00000102; /* Rs = r1, Rm = r2 */
  825. asi->insn[0] = insn;
  826. asi->insn_handler = emulate_rd16rn12rs8rm0_rwflags;
  827. return INSN_GOOD;
  828. }
  829. static enum kprobe_insn __kprobes
  830. prep_emulate_rdhi16rdlo12rs8rm0_wflags(kprobe_opcode_t insn,
  831. struct arch_specific_insn *asi)
  832. {
  833. insn &= 0xfff000f0; /* RdHi = r0, RdLo = r1 */
  834. insn |= 0x00001203; /* Rs = r2, Rm = r3 */
  835. asi->insn[0] = insn;
  836. asi->insn_handler = emulate_rdhi16rdlo12rs8rm0_rwflags;
  837. return INSN_GOOD;
  838. }
  839. /*
  840. * For the instruction masking and comparisons in all the "space_*"
  841. * functions below, Do _not_ rearrange the order of tests unless
  842. * you're very, very sure of what you are doing. For the sake of
  843. * efficiency, the masks for some tests sometimes assume other test
  844. * have been done prior to them so the number of patterns to test
  845. * for an instruction set can be as broad as possible to reduce the
  846. * number of tests needed.
  847. */
  848. static enum kprobe_insn __kprobes
  849. space_1111(kprobe_opcode_t insn, struct arch_specific_insn *asi)
  850. {
  851. /* CPS mmod == 1 : 1111 0001 0000 xx10 xxxx xxxx xx0x xxxx */
  852. /* RFE : 1111 100x x0x1 xxxx xxxx 1010 xxxx xxxx */
  853. /* SRS : 1111 100x x1x0 1101 xxxx 0101 xxxx xxxx */
  854. if ((insn & 0xfff30020) == 0xf1020000 ||
  855. (insn & 0xfe500f00) == 0xf8100a00 ||
  856. (insn & 0xfe5f0f00) == 0xf84d0500)
  857. return INSN_REJECTED;
  858. /* PLD : 1111 01x1 x101 xxxx xxxx xxxx xxxx xxxx : */
  859. if ((insn & 0xfd700000) == 0xf4500000) {
  860. insn &= 0xfff0ffff; /* Rn = r0 */
  861. asi->insn[0] = insn;
  862. asi->insn_handler = emulate_rn16;
  863. return INSN_GOOD;
  864. }
  865. /* BLX(1) : 1111 101x xxxx xxxx xxxx xxxx xxxx xxxx : */
  866. if ((insn & 0xfe000000) == 0xfa000000) {
  867. asi->insn_handler = simulate_blx1;
  868. return INSN_GOOD_NO_SLOT;
  869. }
  870. /* SETEND : 1111 0001 0000 0001 xxxx xxxx 0000 xxxx */
  871. /* CDP2 : 1111 1110 xxxx xxxx xxxx xxxx xxx0 xxxx */
  872. if ((insn & 0xffff00f0) == 0xf1010000 ||
  873. (insn & 0xff000010) == 0xfe000000) {
  874. asi->insn[0] = insn;
  875. asi->insn_handler = emulate_none;
  876. return INSN_GOOD;
  877. }
  878. /* MCRR2 : 1111 1100 0100 xxxx xxxx xxxx xxxx xxxx : (Rd != Rn) */
  879. /* MRRC2 : 1111 1100 0101 xxxx xxxx xxxx xxxx xxxx : (Rd != Rn) */
  880. if ((insn & 0xffe00000) == 0xfc400000) {
  881. insn &= 0xfff00fff; /* Rn = r0 */
  882. insn |= 0x00001000; /* Rd = r1 */
  883. asi->insn[0] = insn;
  884. asi->insn_handler =
  885. (insn & (1 << 20)) ? emulate_mrrc : emulate_mcrr;
  886. return INSN_GOOD;
  887. }
  888. /* LDC2 : 1111 110x xxx1 xxxx xxxx xxxx xxxx xxxx */
  889. /* STC2 : 1111 110x xxx0 xxxx xxxx xxxx xxxx xxxx */
  890. if ((insn & 0xfe000000) == 0xfc000000) {
  891. insn &= 0xfff0ffff; /* Rn = r0 */
  892. asi->insn[0] = insn;
  893. asi->insn_handler = emulate_ldcstc;
  894. return INSN_GOOD;
  895. }
  896. /* MCR2 : 1111 1110 xxx0 xxxx xxxx xxxx xxx1 xxxx */
  897. /* MRC2 : 1111 1110 xxx1 xxxx xxxx xxxx xxx1 xxxx */
  898. insn &= 0xffff0fff; /* Rd = r0 */
  899. asi->insn[0] = insn;
  900. asi->insn_handler = (insn & (1 << 20)) ? emulate_rd12 : emulate_ird12;
  901. return INSN_GOOD;
  902. }
  903. static enum kprobe_insn __kprobes
  904. space_cccc_000x(kprobe_opcode_t insn, struct arch_specific_insn *asi)
  905. {
  906. /* cccc 0001 0xx0 xxxx xxxx xxxx xxxx xxx0 xxxx */
  907. if ((insn & 0x0f900010) == 0x01000000) {
  908. /* BXJ : cccc 0001 0010 xxxx xxxx xxxx 0010 xxxx */
  909. /* MSR : cccc 0001 0x10 xxxx xxxx xxxx 0000 xxxx */
  910. /* MRS spsr : cccc 0001 0100 xxxx xxxx xxxx 0000 xxxx */
  911. if ((insn & 0x0ff000f0) == 0x01200020 ||
  912. (insn & 0x0fb000f0) == 0x01200000 ||
  913. (insn & 0x0ff000f0) == 0x01400000)
  914. return INSN_REJECTED;
  915. /* MRS cpsr : cccc 0001 0000 xxxx xxxx xxxx 0000 xxxx */
  916. if ((insn & 0x0ff000f0) == 0x01000000)
  917. return prep_emulate_rd12(insn, asi);
  918. /* SMLALxy : cccc 0001 0100 xxxx xxxx xxxx 1xx0 xxxx */
  919. if ((insn & 0x0ff00090) == 0x01400080)
  920. return prep_emulate_rdhi16rdlo12rs8rm0_wflags(insn, asi);
  921. /* SMULWy : cccc 0001 0010 xxxx xxxx xxxx 1x10 xxxx */
  922. /* SMULxy : cccc 0001 0110 xxxx xxxx xxxx 1xx0 xxxx */
  923. if ((insn & 0x0ff000b0) == 0x012000a0 ||
  924. (insn & 0x0ff00090) == 0x01600080)
  925. return prep_emulate_rd16rs8rm0_wflags(insn, asi);
  926. /* SMLAxy : cccc 0001 0000 xxxx xxxx xxxx 1xx0 xxxx : Q */
  927. /* SMLAWy : cccc 0001 0010 xxxx xxxx xxxx 0x00 xxxx : Q */
  928. return prep_emulate_rd16rn12rs8rm0_wflags(insn, asi);
  929. }
  930. /* cccc 0001 0xx0 xxxx xxxx xxxx xxxx 0xx1 xxxx */
  931. else if ((insn & 0x0f900090) == 0x01000010) {
  932. /* BKPT : 1110 0001 0010 xxxx xxxx xxxx 0111 xxxx */
  933. if ((insn & 0xfff000f0) == 0xe1200070)
  934. return INSN_REJECTED;
  935. /* BLX(2) : cccc 0001 0010 xxxx xxxx xxxx 0011 xxxx */
  936. /* BX : cccc 0001 0010 xxxx xxxx xxxx 0001 xxxx */
  937. if ((insn & 0x0ff000d0) == 0x01200010) {
  938. asi->insn_handler = simulate_blx2bx;
  939. return INSN_GOOD_NO_SLOT;
  940. }
  941. /* CLZ : cccc 0001 0110 xxxx xxxx xxxx 0001 xxxx */
  942. if ((insn & 0x0ff000f0) == 0x01600010)
  943. return prep_emulate_rd12rm0(insn, asi);
  944. /* QADD : cccc 0001 0000 xxxx xxxx xxxx 0101 xxxx :Q */
  945. /* QSUB : cccc 0001 0010 xxxx xxxx xxxx 0101 xxxx :Q */
  946. /* QDADD : cccc 0001 0100 xxxx xxxx xxxx 0101 xxxx :Q */
  947. /* QDSUB : cccc 0001 0110 xxxx xxxx xxxx 0101 xxxx :Q */
  948. return prep_emulate_rd12rn16rm0_wflags(insn, asi);
  949. }
  950. /* cccc 0000 xxxx xxxx xxxx xxxx xxxx 1001 xxxx */
  951. else if ((insn & 0x0f000090) == 0x00000090) {
  952. /* MUL : cccc 0000 0000 xxxx xxxx xxxx 1001 xxxx : */
  953. /* MULS : cccc 0000 0001 xxxx xxxx xxxx 1001 xxxx :cc */
  954. /* MLA : cccc 0000 0010 xxxx xxxx xxxx 1001 xxxx : */
  955. /* MLAS : cccc 0000 0011 xxxx xxxx xxxx 1001 xxxx :cc */
  956. /* UMAAL : cccc 0000 0100 xxxx xxxx xxxx 1001 xxxx : */
  957. /* UMULL : cccc 0000 1000 xxxx xxxx xxxx 1001 xxxx : */
  958. /* UMULLS : cccc 0000 1001 xxxx xxxx xxxx 1001 xxxx :cc */
  959. /* UMLAL : cccc 0000 1010 xxxx xxxx xxxx 1001 xxxx : */
  960. /* UMLALS : cccc 0000 1011 xxxx xxxx xxxx 1001 xxxx :cc */
  961. /* SMULL : cccc 0000 1100 xxxx xxxx xxxx 1001 xxxx : */
  962. /* SMULLS : cccc 0000 1101 xxxx xxxx xxxx 1001 xxxx :cc */
  963. /* SMLAL : cccc 0000 1110 xxxx xxxx xxxx 1001 xxxx : */
  964. /* SMLALS : cccc 0000 1111 xxxx xxxx xxxx 1001 xxxx :cc */
  965. if ((insn & 0x0fe000f0) == 0x00000090) {
  966. return prep_emulate_rd16rs8rm0_wflags(insn, asi);
  967. } else if ((insn & 0x0fe000f0) == 0x00200090) {
  968. return prep_emulate_rd16rn12rs8rm0_wflags(insn, asi);
  969. } else {
  970. return prep_emulate_rdhi16rdlo12rs8rm0_wflags(insn, asi);
  971. }
  972. }
  973. /* cccc 000x xxxx xxxx xxxx xxxx xxxx 1xx1 xxxx */
  974. else if ((insn & 0x0e000090) == 0x00000090) {
  975. /* SWP : cccc 0001 0000 xxxx xxxx xxxx 1001 xxxx */
  976. /* SWPB : cccc 0001 0100 xxxx xxxx xxxx 1001 xxxx */
  977. /* LDRD : cccc 000x xxx0 xxxx xxxx xxxx 1101 xxxx */
  978. /* STRD : cccc 000x xxx0 xxxx xxxx xxxx 1111 xxxx */
  979. /* STREX : cccc 0001 1000 xxxx xxxx xxxx 1001 xxxx */
  980. /* LDREX : cccc 0001 1001 xxxx xxxx xxxx 1001 xxxx */
  981. /* LDRH : cccc 000x xxx1 xxxx xxxx xxxx 1011 xxxx */
  982. /* STRH : cccc 000x xxx0 xxxx xxxx xxxx 1011 xxxx */
  983. /* LDRSB : cccc 000x xxx1 xxxx xxxx xxxx 1101 xxxx */
  984. /* LDRSH : cccc 000x xxx1 xxxx xxxx xxxx 1111 xxxx */
  985. if ((insn & 0x0fb000f0) == 0x01000090) {
  986. /* SWP/SWPB */
  987. return prep_emulate_rd12rn16rm0_wflags(insn, asi);
  988. } else if ((insn & 0x0e1000d0) == 0x00000d0) {
  989. /* STRD/LDRD */
  990. insn &= 0xfff00fff;
  991. insn |= 0x00002000; /* Rn = r0, Rd = r2 */
  992. if (insn & (1 << 22)) {
  993. /* I bit */
  994. insn &= ~0xf;
  995. insn |= 1; /* Rm = r1 */
  996. }
  997. asi->insn[0] = insn;
  998. asi->insn_handler =
  999. (insn & (1 << 5)) ? emulate_strd : emulate_ldrd;
  1000. return INSN_GOOD;
  1001. }
  1002. return prep_emulate_ldr_str(insn, asi);
  1003. }
  1004. /* cccc 000x xxxx xxxx xxxx xxxx xxxx xxxx xxxx */
  1005. /*
  1006. * ALU op with S bit and Rd == 15 :
  1007. * cccc 000x xxx1 xxxx 1111 xxxx xxxx xxxx
  1008. */
  1009. if ((insn & 0x0e10f000) == 0x0010f000)
  1010. return INSN_REJECTED;
  1011. /*
  1012. * "mov ip, sp" is the most common kprobe'd instruction by far.
  1013. * Check and optimize for it explicitly.
  1014. */
  1015. if (insn == 0xe1a0c00d) {
  1016. asi->insn_handler = simulate_mov_ipsp;
  1017. return INSN_GOOD_NO_SLOT;
  1018. }
  1019. /*
  1020. * Data processing: Immediate-shift / Register-shift
  1021. * ALU op : cccc 000x xxxx xxxx xxxx xxxx xxxx xxxx
  1022. * CPY : cccc 0001 1010 xxxx xxxx 0000 0000 xxxx
  1023. * MOV : cccc 0001 101x xxxx xxxx xxxx xxxx xxxx
  1024. * *S (bit 20) updates condition codes
  1025. * ADC/SBC/RSC reads the C flag
  1026. */
  1027. insn &= 0xfff00ff0; /* Rn = r0, Rd = r0 */
  1028. insn |= 0x00000001; /* Rm = r1 */
  1029. if (insn & 0x010) {
  1030. insn &= 0xfffff0ff; /* register shift */
  1031. insn |= 0x00000200; /* Rs = r2 */
  1032. }
  1033. asi->insn[0] = insn;
  1034. if ((insn & 0x0f900000) == 0x01100000) {
  1035. /*
  1036. * TST : cccc 0001 0001 xxxx xxxx xxxx xxxx xxxx
  1037. * TEQ : cccc 0001 0011 xxxx xxxx xxxx xxxx xxxx
  1038. * CMP : cccc 0001 0101 xxxx xxxx xxxx xxxx xxxx
  1039. * CMN : cccc 0001 0111 xxxx xxxx xxxx xxxx xxxx
  1040. */
  1041. asi->insn_handler = emulate_alu_tests;
  1042. } else {
  1043. /* ALU ops which write to Rd */
  1044. asi->insn_handler = (insn & (1 << 20)) ? /* S-bit */
  1045. emulate_alu_rwflags : emulate_alu_rflags;
  1046. }
  1047. return INSN_GOOD;
  1048. }
  1049. static enum kprobe_insn __kprobes
  1050. space_cccc_001x(kprobe_opcode_t insn, struct arch_specific_insn *asi)
  1051. {
  1052. /*
  1053. * MSR : cccc 0011 0x10 xxxx xxxx xxxx xxxx xxxx
  1054. * Undef : cccc 0011 0100 xxxx xxxx xxxx xxxx xxxx
  1055. * ALU op with S bit and Rd == 15 :
  1056. * cccc 001x xxx1 xxxx 1111 xxxx xxxx xxxx
  1057. */
  1058. if ((insn & 0x0fb00000) == 0x03200000 || /* MSR */
  1059. (insn & 0x0ff00000) == 0x03400000 || /* Undef */
  1060. (insn & 0x0e10f000) == 0x0210f000) /* ALU s-bit, R15 */
  1061. return INSN_REJECTED;
  1062. /*
  1063. * Data processing: 32-bit Immediate
  1064. * ALU op : cccc 001x xxxx xxxx xxxx xxxx xxxx xxxx
  1065. * MOV : cccc 0011 101x xxxx xxxx xxxx xxxx xxxx
  1066. * *S (bit 20) updates condition codes
  1067. * ADC/SBC/RSC reads the C flag
  1068. */
  1069. insn &= 0xfff00fff; /* Rn = r0 and Rd = r0 */
  1070. asi->insn[0] = insn;
  1071. if ((insn & 0x0f900000) == 0x03100000) {
  1072. /*
  1073. * TST : cccc 0011 0001 xxxx xxxx xxxx xxxx xxxx
  1074. * TEQ : cccc 0011 0011 xxxx xxxx xxxx xxxx xxxx
  1075. * CMP : cccc 0011 0101 xxxx xxxx xxxx xxxx xxxx
  1076. * CMN : cccc 0011 0111 xxxx xxxx xxxx xxxx xxxx
  1077. */
  1078. asi->insn_handler = emulate_alu_tests_imm;
  1079. } else {
  1080. /* ALU ops which write to Rd */
  1081. asi->insn_handler = (insn & (1 << 20)) ? /* S-bit */
  1082. emulate_alu_imm_rwflags : emulate_alu_imm_rflags;
  1083. }
  1084. return INSN_GOOD;
  1085. }
  1086. static enum kprobe_insn __kprobes
  1087. space_cccc_0110__1(kprobe_opcode_t insn, struct arch_specific_insn *asi)
  1088. {
  1089. /* SEL : cccc 0110 1000 xxxx xxxx xxxx 1011 xxxx GE: !!! */
  1090. if ((insn & 0x0ff000f0) == 0x068000b0) {
  1091. insn &= 0xfff00ff0; /* Rd = r0, Rn = r0 */
  1092. insn |= 0x00000001; /* Rm = r1 */
  1093. asi->insn[0] = insn;
  1094. asi->insn_handler = emulate_sel;
  1095. return INSN_GOOD;
  1096. }
  1097. /* SSAT : cccc 0110 101x xxxx xxxx xxxx xx01 xxxx :Q */
  1098. /* USAT : cccc 0110 111x xxxx xxxx xxxx xx01 xxxx :Q */
  1099. /* SSAT16 : cccc 0110 1010 xxxx xxxx xxxx 0011 xxxx :Q */
  1100. /* USAT16 : cccc 0110 1110 xxxx xxxx xxxx 0011 xxxx :Q */
  1101. if ((insn & 0x0fa00030) == 0x06a00010 ||
  1102. (insn & 0x0fb000f0) == 0x06a00030) {
  1103. insn &= 0xffff0ff0; /* Rd = r0, Rm = r0 */
  1104. asi->insn[0] = insn;
  1105. asi->insn_handler = emulate_sat;
  1106. return INSN_GOOD;
  1107. }
  1108. /* REV : cccc 0110 1011 xxxx xxxx xxxx 0011 xxxx */
  1109. /* REV16 : cccc 0110 1011 xxxx xxxx xxxx 1011 xxxx */
  1110. /* REVSH : cccc 0110 1111 xxxx xxxx xxxx 1011 xxxx */
  1111. if ((insn & 0x0ff00070) == 0x06b00030 ||
  1112. (insn & 0x0ff000f0) == 0x06f000b0)
  1113. return prep_emulate_rd12rm0(insn, asi);
  1114. /* SADD16 : cccc 0110 0001 xxxx xxxx xxxx 0001 xxxx :GE */
  1115. /* SADDSUBX : cccc 0110 0001 xxxx xxxx xxxx 0011 xxxx :GE */
  1116. /* SSUBADDX : cccc 0110 0001 xxxx xxxx xxxx 0101 xxxx :GE */
  1117. /* SSUB16 : cccc 0110 0001 xxxx xxxx xxxx 0111 xxxx :GE */
  1118. /* SADD8 : cccc 0110 0001 xxxx xxxx xxxx 1001 xxxx :GE */
  1119. /* SSUB8 : cccc 0110 0001 xxxx xxxx xxxx 1111 xxxx :GE */
  1120. /* QADD16 : cccc 0110 0010 xxxx xxxx xxxx 0001 xxxx : */
  1121. /* QADDSUBX : cccc 0110 0010 xxxx xxxx xxxx 0011 xxxx : */
  1122. /* QSUBADDX : cccc 0110 0010 xxxx xxxx xxxx 0101 xxxx : */
  1123. /* QSUB16 : cccc 0110 0010 xxxx xxxx xxxx 0111 xxxx : */
  1124. /* QADD8 : cccc 0110 0010 xxxx xxxx xxxx 1001 xxxx : */
  1125. /* QSUB8 : cccc 0110 0010 xxxx xxxx xxxx 1111 xxxx : */
  1126. /* SHADD16 : cccc 0110 0011 xxxx xxxx xxxx 0001 xxxx : */
  1127. /* SHADDSUBX : cccc 0110 0011 xxxx xxxx xxxx 0011 xxxx : */
  1128. /* SHSUBADDX : cccc 0110 0011 xxxx xxxx xxxx 0101 xxxx : */
  1129. /* SHSUB16 : cccc 0110 0011 xxxx xxxx xxxx 0111 xxxx : */
  1130. /* SHADD8 : cccc 0110 0011 xxxx xxxx xxxx 1001 xxxx : */
  1131. /* SHSUB8 : cccc 0110 0011 xxxx xxxx xxxx 1111 xxxx : */
  1132. /* UADD16 : cccc 0110 0101 xxxx xxxx xxxx 0001 xxxx :GE */
  1133. /* UADDSUBX : cccc 0110 0101 xxxx xxxx xxxx 0011 xxxx :GE */
  1134. /* USUBADDX : cccc 0110 0101 xxxx xxxx xxxx 0101 xxxx :GE */
  1135. /* USUB16 : cccc 0110 0101 xxxx xxxx xxxx 0111 xxxx :GE */
  1136. /* UADD8 : cccc 0110 0101 xxxx xxxx xxxx 1001 xxxx :GE */
  1137. /* USUB8 : cccc 0110 0101 xxxx xxxx xxxx 1111 xxxx :GE */
  1138. /* UQADD16 : cccc 0110 0110 xxxx xxxx xxxx 0001 xxxx : */
  1139. /* UQADDSUBX : cccc 0110 0110 xxxx xxxx xxxx 0011 xxxx : */
  1140. /* UQSUBADDX : cccc 0110 0110 xxxx xxxx xxxx 0101 xxxx : */
  1141. /* UQSUB16 : cccc 0110 0110 xxxx xxxx xxxx 0111 xxxx : */
  1142. /* UQADD8 : cccc 0110 0110 xxxx xxxx xxxx 1001 xxxx : */
  1143. /* UQSUB8 : cccc 0110 0110 xxxx xxxx xxxx 1111 xxxx : */
  1144. /* UHADD16 : cccc 0110 0111 xxxx xxxx xxxx 0001 xxxx : */
  1145. /* UHADDSUBX : cccc 0110 0111 xxxx xxxx xxxx 0011 xxxx : */
  1146. /* UHSUBADDX : cccc 0110 0111 xxxx xxxx xxxx 0101 xxxx : */
  1147. /* UHSUB16 : cccc 0110 0111 xxxx xxxx xxxx 0111 xxxx : */
  1148. /* UHADD8 : cccc 0110 0111 xxxx xxxx xxxx 1001 xxxx : */
  1149. /* UHSUB8 : cccc 0110 0111 xxxx xxxx xxxx 1111 xxxx : */
  1150. /* PKHBT : cccc 0110 1000 xxxx xxxx xxxx x001 xxxx : */
  1151. /* PKHTB : cccc 0110 1000 xxxx xxxx xxxx x101 xxxx : */
  1152. /* SXTAB16 : cccc 0110 1000 xxxx xxxx xxxx 0111 xxxx : */
  1153. /* SXTB : cccc 0110 1010 xxxx xxxx xxxx 0111 xxxx : */
  1154. /* SXTAB : cccc 0110 1010 xxxx xxxx xxxx 0111 xxxx : */
  1155. /* SXTAH : cccc 0110 1011 xxxx xxxx xxxx 0111 xxxx : */
  1156. /* UXTAB16 : cccc 0110 1100 xxxx xxxx xxxx 0111 xxxx : */
  1157. /* UXTAB : cccc 0110 1110 xxxx xxxx xxxx 0111 xxxx : */
  1158. /* UXTAH : cccc 0110 1111 xxxx xxxx xxxx 0111 xxxx : */
  1159. return prep_emulate_rd12rn16rm0_wflags(insn, asi);
  1160. }
  1161. static enum kprobe_insn __kprobes
  1162. space_cccc_0111__1(kprobe_opcode_t insn, struct arch_specific_insn *asi)
  1163. {
  1164. /* Undef : cccc 0111 1111 xxxx xxxx xxxx 1111 xxxx */
  1165. if ((insn & 0x0ff000f0) == 0x03f000f0)
  1166. return INSN_REJECTED;
  1167. /* USADA8 : cccc 0111 1000 xxxx xxxx xxxx 0001 xxxx */
  1168. /* USAD8 : cccc 0111 1000 xxxx 1111 xxxx 0001 xxxx */
  1169. if ((insn & 0x0ff000f0) == 0x07800010)
  1170. return prep_emulate_rd16rn12rs8rm0_wflags(insn, asi);
  1171. /* SMLALD : cccc 0111 0100 xxxx xxxx xxxx 00x1 xxxx */
  1172. /* SMLSLD : cccc 0111 0100 xxxx xxxx xxxx 01x1 xxxx */
  1173. if ((insn & 0x0ff00090) == 0x07400010)
  1174. return prep_emulate_rdhi16rdlo12rs8rm0_wflags(insn, asi);
  1175. /* SMLAD : cccc 0111 0000 xxxx xxxx xxxx 00x1 xxxx :Q */
  1176. /* SMLSD : cccc 0111 0000 xxxx xxxx xxxx 01x1 xxxx :Q */
  1177. /* SMMLA : cccc 0111 0101 xxxx xxxx xxxx 00x1 xxxx : */
  1178. /* SMMLS : cccc 0111 0101 xxxx xxxx xxxx 11x1 xxxx : */
  1179. if ((insn & 0x0ff00090) == 0x07000010 ||
  1180. (insn & 0x0ff000d0) == 0x07500010 ||
  1181. (insn & 0x0ff000d0) == 0x075000d0)
  1182. return prep_emulate_rd16rn12rs8rm0_wflags(insn, asi);
  1183. /* SMUSD : cccc 0111 0000 xxxx xxxx xxxx 01x1 xxxx : */
  1184. /* SMUAD : cccc 0111 0000 xxxx 1111 xxxx 00x1 xxxx :Q */
  1185. /* SMMUL : cccc 0111 0101 xxxx 1111 xxxx 00x1 xxxx : */
  1186. return prep_emulate_rd16rs8rm0_wflags(insn, asi);
  1187. }
  1188. static enum kprobe_insn __kprobes
  1189. space_cccc_01xx(kprobe_opcode_t insn, struct arch_specific_insn *asi)
  1190. {
  1191. /* LDR : cccc 01xx x0x1 xxxx xxxx xxxx xxxx xxxx */
  1192. /* LDRB : cccc 01xx x1x1 xxxx xxxx xxxx xxxx xxxx */
  1193. /* LDRBT : cccc 01x0 x111 xxxx xxxx xxxx xxxx xxxx */
  1194. /* LDRT : cccc 01x0 x011 xxxx xxxx xxxx xxxx xxxx */
  1195. /* STR : cccc 01xx x0x0 xxxx xxxx xxxx xxxx xxxx */
  1196. /* STRB : cccc 01xx x1x0 xxxx xxxx xxxx xxxx xxxx */
  1197. /* STRBT : cccc 01x0 x110 xxxx xxxx xxxx xxxx xxxx */
  1198. /* STRT : cccc 01x0 x010 xxxx xxxx xxxx xxxx xxxx */
  1199. return prep_emulate_ldr_str(insn, asi);
  1200. }
  1201. static enum kprobe_insn __kprobes
  1202. space_cccc_100x(kprobe_opcode_t insn, struct arch_specific_insn *asi)
  1203. {
  1204. /* LDM(2) : cccc 100x x101 xxxx 0xxx xxxx xxxx xxxx */
  1205. /* LDM(3) : cccc 100x x1x1 xxxx 1xxx xxxx xxxx xxxx */
  1206. if ((insn & 0x0e708000) == 0x85000000 ||
  1207. (insn & 0x0e508000) == 0x85010000)
  1208. return INSN_REJECTED;
  1209. /* LDM(1) : cccc 100x x0x1 xxxx xxxx xxxx xxxx xxxx */
  1210. /* STM(1) : cccc 100x x0x0 xxxx xxxx xxxx xxxx xxxx */
  1211. asi->insn_handler = ((insn & 0x108000) == 0x008000) ? /* STM & R15 */
  1212. simulate_stm1_pc : simulate_ldm1stm1;
  1213. return INSN_GOOD_NO_SLOT;
  1214. }
  1215. static enum kprobe_insn __kprobes
  1216. space_cccc_101x(kprobe_opcode_t insn, struct arch_specific_insn *asi)
  1217. {
  1218. /* B : cccc 1010 xxxx xxxx xxxx xxxx xxxx xxxx */
  1219. /* BL : cccc 1011 xxxx xxxx xxxx xxxx xxxx xxxx */
  1220. asi->insn_handler = simulate_bbl;
  1221. return INSN_GOOD_NO_SLOT;
  1222. }
  1223. static enum kprobe_insn __kprobes
  1224. space_cccc_1100_010x(kprobe_opcode_t insn, struct arch_specific_insn *asi)
  1225. {
  1226. /* MCRR : cccc 1100 0100 xxxx xxxx xxxx xxxx xxxx : (Rd!=Rn) */
  1227. /* MRRC : cccc 1100 0101 xxxx xxxx xxxx xxxx xxxx : (Rd!=Rn) */
  1228. insn &= 0xfff00fff;
  1229. insn |= 0x00001000; /* Rn = r0, Rd = r1 */
  1230. asi->insn[0] = insn;
  1231. asi->insn_handler = (insn & (1 << 20)) ? emulate_mrrc : emulate_mcrr;
  1232. return INSN_GOOD;
  1233. }
  1234. static enum kprobe_insn __kprobes
  1235. space_cccc_110x(kprobe_opcode_t insn, struct arch_specific_insn *asi)
  1236. {
  1237. /* LDC : cccc 110x xxx1 xxxx xxxx xxxx xxxx xxxx */
  1238. /* STC : cccc 110x xxx0 xxxx xxxx xxxx xxxx xxxx */
  1239. insn &= 0xfff0ffff; /* Rn = r0 */
  1240. asi->insn[0] = insn;
  1241. asi->insn_handler = emulate_ldcstc;
  1242. return INSN_GOOD;
  1243. }
  1244. static enum kprobe_insn __kprobes
  1245. space_cccc_111x(kprobe_opcode_t insn, struct arch_specific_insn *asi)
  1246. {
  1247. /* BKPT : 1110 0001 0010 xxxx xxxx xxxx 0111 xxxx */
  1248. /* SWI : cccc 1111 xxxx xxxx xxxx xxxx xxxx xxxx */
  1249. if ((insn & 0xfff000f0) == 0xe1200070 ||
  1250. (insn & 0x0f000000) == 0x0f000000)
  1251. return INSN_REJECTED;
  1252. /* CDP : cccc 1110 xxxx xxxx xxxx xxxx xxx0 xxxx */
  1253. if ((insn & 0x0f000010) == 0x0e000000) {
  1254. asi->insn[0] = insn;
  1255. asi->insn_handler = emulate_none;
  1256. return INSN_GOOD;
  1257. }
  1258. /* MCR : cccc 1110 xxx0 xxxx xxxx xxxx xxx1 xxxx */
  1259. /* MRC : cccc 1110 xxx1 xxxx xxxx xxxx xxx1 xxxx */
  1260. insn &= 0xffff0fff; /* Rd = r0 */
  1261. asi->insn[0] = insn;
  1262. asi->insn_handler = (insn & (1 << 20)) ? emulate_rd12 : emulate_ird12;
  1263. return INSN_GOOD;
  1264. }
  1265. static unsigned long __kprobes __check_eq(unsigned long cpsr)
  1266. {
  1267. return cpsr & PSR_Z_BIT;
  1268. }
  1269. static unsigned long __kprobes __check_ne(unsigned long cpsr)
  1270. {
  1271. return (~cpsr) & PSR_Z_BIT;
  1272. }
  1273. static unsigned long __kprobes __check_cs(unsigned long cpsr)
  1274. {
  1275. return cpsr & PSR_C_BIT;
  1276. }
  1277. static unsigned long __kprobes __check_cc(unsigned long cpsr)
  1278. {
  1279. return (~cpsr) & PSR_C_BIT;
  1280. }
  1281. static unsigned long __kprobes __check_mi(unsigned long cpsr)
  1282. {
  1283. return cpsr & PSR_N_BIT;
  1284. }
  1285. static unsigned long __kprobes __check_pl(unsigned long cpsr)
  1286. {
  1287. return (~cpsr) & PSR_N_BIT;
  1288. }
  1289. static unsigned long __kprobes __check_vs(unsigned long cpsr)
  1290. {
  1291. return cpsr & PSR_V_BIT;
  1292. }
  1293. static unsigned long __kprobes __check_vc(unsigned long cpsr)
  1294. {
  1295. return (~cpsr) & PSR_V_BIT;
  1296. }
  1297. static unsigned long __kprobes __check_hi(unsigned long cpsr)
  1298. {
  1299. cpsr &= ~(cpsr >> 1); /* PSR_C_BIT &= ~PSR_Z_BIT */
  1300. return cpsr & PSR_C_BIT;
  1301. }
  1302. static unsigned long __kprobes __check_ls(unsigned long cpsr)
  1303. {
  1304. cpsr &= ~(cpsr >> 1); /* PSR_C_BIT &= ~PSR_Z_BIT */
  1305. return (~cpsr) & PSR_C_BIT;
  1306. }
  1307. static unsigned long __kprobes __check_ge(unsigned long cpsr)
  1308. {
  1309. cpsr ^= (cpsr << 3); /* PSR_N_BIT ^= PSR_V_BIT */
  1310. return (~cpsr) & PSR_N_BIT;
  1311. }
  1312. static unsigned long __kprobes __check_lt(unsigned long cpsr)
  1313. {
  1314. cpsr ^= (cpsr << 3); /* PSR_N_BIT ^= PSR_V_BIT */
  1315. return cpsr & PSR_N_BIT;
  1316. }
  1317. static unsigned long __kprobes __check_gt(unsigned long cpsr)
  1318. {
  1319. unsigned long temp = cpsr ^ (cpsr << 3); /* PSR_N_BIT ^= PSR_V_BIT */
  1320. temp |= (cpsr << 1); /* PSR_N_BIT |= PSR_Z_BIT */
  1321. return (~temp) & PSR_N_BIT;
  1322. }
  1323. static unsigned long __kprobes __check_le(unsigned long cpsr)
  1324. {
  1325. unsigned long temp = cpsr ^ (cpsr << 3); /* PSR_N_BIT ^= PSR_V_BIT */
  1326. temp |= (cpsr << 1); /* PSR_N_BIT |= PSR_Z_BIT */
  1327. return temp & PSR_N_BIT;
  1328. }
  1329. static unsigned long __kprobes __check_al(unsigned long cpsr)
  1330. {
  1331. return true;
  1332. }
  1333. static kprobe_check_cc * const condition_checks[16] = {
  1334. &__check_eq, &__check_ne, &__check_cs, &__check_cc,
  1335. &__check_mi, &__check_pl, &__check_vs, &__check_vc,
  1336. &__check_hi, &__check_ls, &__check_ge, &__check_lt,
  1337. &__check_gt, &__check_le, &__check_al, &__check_al
  1338. };
  1339. /* Return:
  1340. * INSN_REJECTED If instruction is one not allowed to kprobe,
  1341. * INSN_GOOD If instruction is supported and uses instruction slot,
  1342. * INSN_GOOD_NO_SLOT If instruction is supported but doesn't use its slot.
  1343. *
  1344. * For instructions we don't want to kprobe (INSN_REJECTED return result):
  1345. * These are generally ones that modify the processor state making
  1346. * them "hard" to simulate such as switches processor modes or
  1347. * make accesses in alternate modes. Any of these could be simulated
  1348. * if the work was put into it, but low return considering they
  1349. * should also be very rare.
  1350. */
  1351. enum kprobe_insn __kprobes
  1352. arm_kprobe_decode_insn(kprobe_opcode_t insn, struct arch_specific_insn *asi)
  1353. {
  1354. asi->insn_check_cc = condition_checks[insn>>28];
  1355. asi->insn[1] = KPROBE_RETURN_INSTRUCTION;
  1356. if ((insn & 0xf0000000) == 0xf0000000) {
  1357. return space_1111(insn, asi);
  1358. } else if ((insn & 0x0e000000) == 0x00000000) {
  1359. return space_cccc_000x(insn, asi);
  1360. } else if ((insn & 0x0e000000) == 0x02000000) {
  1361. return space_cccc_001x(insn, asi);
  1362. } else if ((insn & 0x0f000010) == 0x06000010) {
  1363. return space_cccc_0110__1(insn, asi);
  1364. } else if ((insn & 0x0f000010) == 0x07000010) {
  1365. return space_cccc_0111__1(insn, asi);
  1366. } else if ((insn & 0x0c000000) == 0x04000000) {
  1367. return space_cccc_01xx(insn, asi);
  1368. } else if ((insn & 0x0e000000) == 0x08000000) {
  1369. return space_cccc_100x(insn, asi);
  1370. } else if ((insn & 0x0e000000) == 0x0a000000) {
  1371. return space_cccc_101x(insn, asi);
  1372. } else if ((insn & 0x0fe00000) == 0x0c400000) {
  1373. return space_cccc_1100_010x(insn, asi);
  1374. } else if ((insn & 0x0e000000) == 0x0c000000) {
  1375. return space_cccc_110x(insn, asi);
  1376. }
  1377. return space_cccc_111x(insn, asi);
  1378. }
  1379. void __init arm_kprobe_decode_init(void)
  1380. {
  1381. find_str_pc_offset();
  1382. }
  1383. /*
  1384. * All ARM instructions listed below.
  1385. *
  1386. * Instructions and their general purpose registers are given.
  1387. * If a particular register may not use R15, it is prefixed with a "!".
  1388. * If marked with a "*" means the value returned by reading R15
  1389. * is implementation defined.
  1390. *
  1391. * ADC/ADD/AND/BIC/CMN/CMP/EOR/MOV/MVN/ORR/RSB/RSC/SBC/SUB/TEQ
  1392. * TST: Rd, Rn, Rm, !Rs
  1393. * BX: Rm
  1394. * BLX(2): !Rm
  1395. * BX: Rm (R15 legal, but discouraged)
  1396. * BXJ: !Rm,
  1397. * CLZ: !Rd, !Rm
  1398. * CPY: Rd, Rm
  1399. * LDC/2,STC/2 immediate offset & unindex: Rn
  1400. * LDC/2,STC/2 immediate pre/post-indexed: !Rn
  1401. * LDM(1/3): !Rn, register_list
  1402. * LDM(2): !Rn, !register_list
  1403. * LDR,STR,PLD immediate offset: Rd, Rn
  1404. * LDR,STR,PLD register offset: Rd, Rn, !Rm
  1405. * LDR,STR,PLD scaled register offset: Rd, !Rn, !Rm
  1406. * LDR,STR immediate pre/post-indexed: Rd, !Rn
  1407. * LDR,STR register pre/post-indexed: Rd, !Rn, !Rm
  1408. * LDR,STR scaled register pre/post-indexed: Rd, !Rn, !Rm
  1409. * LDRB,STRB immediate offset: !Rd, Rn
  1410. * LDRB,STRB register offset: !Rd, Rn, !Rm
  1411. * LDRB,STRB scaled register offset: !Rd, !Rn, !Rm
  1412. * LDRB,STRB immediate pre/post-indexed: !Rd, !Rn
  1413. * LDRB,STRB register pre/post-indexed: !Rd, !Rn, !Rm
  1414. * LDRB,STRB scaled register pre/post-indexed: !Rd, !Rn, !Rm
  1415. * LDRT,LDRBT,STRBT immediate pre/post-indexed: !Rd, !Rn
  1416. * LDRT,LDRBT,STRBT register pre/post-indexed: !Rd, !Rn, !Rm
  1417. * LDRT,LDRBT,STRBT scaled register pre/post-indexed: !Rd, !Rn, !Rm
  1418. * LDRH/SH/SB/D,STRH/SH/SB/D immediate offset: !Rd, Rn
  1419. * LDRH/SH/SB/D,STRH/SH/SB/D register offset: !Rd, Rn, !Rm
  1420. * LDRH/SH/SB/D,STRH/SH/SB/D immediate pre/post-indexed: !Rd, !Rn
  1421. * LDRH/SH/SB/D,STRH/SH/SB/D register pre/post-indexed: !Rd, !Rn, !Rm
  1422. * LDREX: !Rd, !Rn
  1423. * MCR/2: !Rd
  1424. * MCRR/2,MRRC/2: !Rd, !Rn
  1425. * MLA: !Rd, !Rn, !Rm, !Rs
  1426. * MOV: Rd
  1427. * MRC/2: !Rd (if Rd==15, only changes cond codes, not the register)
  1428. * MRS,MSR: !Rd
  1429. * MUL: !Rd, !Rm, !Rs
  1430. * PKH{BT,TB}: !Rd, !Rn, !Rm
  1431. * QDADD,[U]QADD/16/8/SUBX: !Rd, !Rm, !Rn
  1432. * QDSUB,[U]QSUB/16/8/ADDX: !Rd, !Rm, !Rn
  1433. * REV/16/SH: !Rd, !Rm
  1434. * RFE: !Rn
  1435. * {S,U}[H]ADD{16,8,SUBX},{S,U}[H]SUB{16,8,ADDX}: !Rd, !Rn, !Rm
  1436. * SEL: !Rd, !Rn, !Rm
  1437. * SMLA<x><y>,SMLA{D,W<y>},SMLSD,SMML{A,S}: !Rd, !Rn, !Rm, !Rs
  1438. * SMLAL<x><y>,SMLA{D,LD},SMLSLD,SMMULL,SMULW<y>: !RdHi, !RdLo, !Rm, !Rs
  1439. * SMMUL,SMUAD,SMUL<x><y>,SMUSD: !Rd, !Rm, !Rs
  1440. * SSAT/16: !Rd, !Rm
  1441. * STM(1/2): !Rn, register_list* (R15 in reg list not recommended)
  1442. * STRT immediate pre/post-indexed: Rd*, !Rn
  1443. * STRT register pre/post-indexed: Rd*, !Rn, !Rm
  1444. * STRT scaled register pre/post-indexed: Rd*, !Rn, !Rm
  1445. * STREX: !Rd, !Rn, !Rm
  1446. * SWP/B: !Rd, !Rn, !Rm
  1447. * {S,U}XTA{B,B16,H}: !Rd, !Rn, !Rm
  1448. * {S,U}XT{B,B16,H}: !Rd, !Rm
  1449. * UM{AA,LA,UL}L: !RdHi, !RdLo, !Rm, !Rs
  1450. * USA{D8,A8,T,T16}: !Rd, !Rm, !Rs
  1451. *
  1452. * May transfer control by writing R15 (possible mode changes or alternate
  1453. * mode accesses marked by "*"):
  1454. * ALU op (* with s-bit), B, BL, BKPT, BLX(1/2), BX, BXJ, CPS*, CPY,
  1455. * LDM(1), LDM(2/3)*, LDR, MOV, RFE*, SWI*
  1456. *
  1457. * Instructions that do not take general registers, nor transfer control:
  1458. * CDP/2, SETEND, SRS*
  1459. */