book3s_hv.c 44 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797
  1. /*
  2. * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
  3. * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
  4. *
  5. * Authors:
  6. * Paul Mackerras <paulus@au1.ibm.com>
  7. * Alexander Graf <agraf@suse.de>
  8. * Kevin Wolf <mail@kevin-wolf.de>
  9. *
  10. * Description: KVM functions specific to running on Book 3S
  11. * processors in hypervisor mode (specifically POWER7 and later).
  12. *
  13. * This file is derived from arch/powerpc/kvm/book3s.c,
  14. * by Alexander Graf <agraf@suse.de>.
  15. *
  16. * This program is free software; you can redistribute it and/or modify
  17. * it under the terms of the GNU General Public License, version 2, as
  18. * published by the Free Software Foundation.
  19. */
  20. #include <linux/kvm_host.h>
  21. #include <linux/err.h>
  22. #include <linux/slab.h>
  23. #include <linux/preempt.h>
  24. #include <linux/sched.h>
  25. #include <linux/delay.h>
  26. #include <linux/export.h>
  27. #include <linux/fs.h>
  28. #include <linux/anon_inodes.h>
  29. #include <linux/cpumask.h>
  30. #include <linux/spinlock.h>
  31. #include <linux/page-flags.h>
  32. #include <linux/srcu.h>
  33. #include <asm/reg.h>
  34. #include <asm/cputable.h>
  35. #include <asm/cacheflush.h>
  36. #include <asm/tlbflush.h>
  37. #include <asm/uaccess.h>
  38. #include <asm/io.h>
  39. #include <asm/kvm_ppc.h>
  40. #include <asm/kvm_book3s.h>
  41. #include <asm/mmu_context.h>
  42. #include <asm/lppaca.h>
  43. #include <asm/processor.h>
  44. #include <asm/cputhreads.h>
  45. #include <asm/page.h>
  46. #include <asm/hvcall.h>
  47. #include <asm/switch_to.h>
  48. #include <asm/smp.h>
  49. #include <linux/gfp.h>
  50. #include <linux/vmalloc.h>
  51. #include <linux/highmem.h>
  52. #include <linux/hugetlb.h>
  53. /* #define EXIT_DEBUG */
  54. /* #define EXIT_DEBUG_SIMPLE */
  55. /* #define EXIT_DEBUG_INT */
  56. static void kvmppc_end_cede(struct kvm_vcpu *vcpu);
  57. static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu);
  58. void kvmppc_core_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  59. {
  60. struct kvmppc_vcore *vc = vcpu->arch.vcore;
  61. local_paca->kvm_hstate.kvm_vcpu = vcpu;
  62. local_paca->kvm_hstate.kvm_vcore = vc;
  63. if (vc->runner == vcpu && vc->vcore_state != VCORE_INACTIVE)
  64. vc->stolen_tb += mftb() - vc->preempt_tb;
  65. }
  66. void kvmppc_core_vcpu_put(struct kvm_vcpu *vcpu)
  67. {
  68. struct kvmppc_vcore *vc = vcpu->arch.vcore;
  69. if (vc->runner == vcpu && vc->vcore_state != VCORE_INACTIVE)
  70. vc->preempt_tb = mftb();
  71. }
  72. void kvmppc_set_msr(struct kvm_vcpu *vcpu, u64 msr)
  73. {
  74. vcpu->arch.shregs.msr = msr;
  75. kvmppc_end_cede(vcpu);
  76. }
  77. void kvmppc_set_pvr(struct kvm_vcpu *vcpu, u32 pvr)
  78. {
  79. vcpu->arch.pvr = pvr;
  80. }
  81. void kvmppc_dump_regs(struct kvm_vcpu *vcpu)
  82. {
  83. int r;
  84. pr_err("vcpu %p (%d):\n", vcpu, vcpu->vcpu_id);
  85. pr_err("pc = %.16lx msr = %.16llx trap = %x\n",
  86. vcpu->arch.pc, vcpu->arch.shregs.msr, vcpu->arch.trap);
  87. for (r = 0; r < 16; ++r)
  88. pr_err("r%2d = %.16lx r%d = %.16lx\n",
  89. r, kvmppc_get_gpr(vcpu, r),
  90. r+16, kvmppc_get_gpr(vcpu, r+16));
  91. pr_err("ctr = %.16lx lr = %.16lx\n",
  92. vcpu->arch.ctr, vcpu->arch.lr);
  93. pr_err("srr0 = %.16llx srr1 = %.16llx\n",
  94. vcpu->arch.shregs.srr0, vcpu->arch.shregs.srr1);
  95. pr_err("sprg0 = %.16llx sprg1 = %.16llx\n",
  96. vcpu->arch.shregs.sprg0, vcpu->arch.shregs.sprg1);
  97. pr_err("sprg2 = %.16llx sprg3 = %.16llx\n",
  98. vcpu->arch.shregs.sprg2, vcpu->arch.shregs.sprg3);
  99. pr_err("cr = %.8x xer = %.16lx dsisr = %.8x\n",
  100. vcpu->arch.cr, vcpu->arch.xer, vcpu->arch.shregs.dsisr);
  101. pr_err("dar = %.16llx\n", vcpu->arch.shregs.dar);
  102. pr_err("fault dar = %.16lx dsisr = %.8x\n",
  103. vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
  104. pr_err("SLB (%d entries):\n", vcpu->arch.slb_max);
  105. for (r = 0; r < vcpu->arch.slb_max; ++r)
  106. pr_err(" ESID = %.16llx VSID = %.16llx\n",
  107. vcpu->arch.slb[r].orige, vcpu->arch.slb[r].origv);
  108. pr_err("lpcr = %.16lx sdr1 = %.16lx last_inst = %.8x\n",
  109. vcpu->kvm->arch.lpcr, vcpu->kvm->arch.sdr1,
  110. vcpu->arch.last_inst);
  111. }
  112. struct kvm_vcpu *kvmppc_find_vcpu(struct kvm *kvm, int id)
  113. {
  114. int r;
  115. struct kvm_vcpu *v, *ret = NULL;
  116. mutex_lock(&kvm->lock);
  117. kvm_for_each_vcpu(r, v, kvm) {
  118. if (v->vcpu_id == id) {
  119. ret = v;
  120. break;
  121. }
  122. }
  123. mutex_unlock(&kvm->lock);
  124. return ret;
  125. }
  126. static void init_vpa(struct kvm_vcpu *vcpu, struct lppaca *vpa)
  127. {
  128. vpa->shared_proc = 1;
  129. vpa->yield_count = 1;
  130. }
  131. static int set_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *v,
  132. unsigned long addr, unsigned long len)
  133. {
  134. /* check address is cacheline aligned */
  135. if (addr & (L1_CACHE_BYTES - 1))
  136. return -EINVAL;
  137. spin_lock(&vcpu->arch.vpa_update_lock);
  138. if (v->next_gpa != addr || v->len != len) {
  139. v->next_gpa = addr;
  140. v->len = addr ? len : 0;
  141. v->update_pending = 1;
  142. }
  143. spin_unlock(&vcpu->arch.vpa_update_lock);
  144. return 0;
  145. }
  146. /* Length for a per-processor buffer is passed in at offset 4 in the buffer */
  147. struct reg_vpa {
  148. u32 dummy;
  149. union {
  150. u16 hword;
  151. u32 word;
  152. } length;
  153. };
  154. static int vpa_is_registered(struct kvmppc_vpa *vpap)
  155. {
  156. if (vpap->update_pending)
  157. return vpap->next_gpa != 0;
  158. return vpap->pinned_addr != NULL;
  159. }
  160. static unsigned long do_h_register_vpa(struct kvm_vcpu *vcpu,
  161. unsigned long flags,
  162. unsigned long vcpuid, unsigned long vpa)
  163. {
  164. struct kvm *kvm = vcpu->kvm;
  165. unsigned long len, nb;
  166. void *va;
  167. struct kvm_vcpu *tvcpu;
  168. int err;
  169. int subfunc;
  170. struct kvmppc_vpa *vpap;
  171. tvcpu = kvmppc_find_vcpu(kvm, vcpuid);
  172. if (!tvcpu)
  173. return H_PARAMETER;
  174. subfunc = (flags >> H_VPA_FUNC_SHIFT) & H_VPA_FUNC_MASK;
  175. if (subfunc == H_VPA_REG_VPA || subfunc == H_VPA_REG_DTL ||
  176. subfunc == H_VPA_REG_SLB) {
  177. /* Registering new area - address must be cache-line aligned */
  178. if ((vpa & (L1_CACHE_BYTES - 1)) || !vpa)
  179. return H_PARAMETER;
  180. /* convert logical addr to kernel addr and read length */
  181. va = kvmppc_pin_guest_page(kvm, vpa, &nb);
  182. if (va == NULL)
  183. return H_PARAMETER;
  184. if (subfunc == H_VPA_REG_VPA)
  185. len = ((struct reg_vpa *)va)->length.hword;
  186. else
  187. len = ((struct reg_vpa *)va)->length.word;
  188. kvmppc_unpin_guest_page(kvm, va);
  189. /* Check length */
  190. if (len > nb || len < sizeof(struct reg_vpa))
  191. return H_PARAMETER;
  192. } else {
  193. vpa = 0;
  194. len = 0;
  195. }
  196. err = H_PARAMETER;
  197. vpap = NULL;
  198. spin_lock(&tvcpu->arch.vpa_update_lock);
  199. switch (subfunc) {
  200. case H_VPA_REG_VPA: /* register VPA */
  201. if (len < sizeof(struct lppaca))
  202. break;
  203. vpap = &tvcpu->arch.vpa;
  204. err = 0;
  205. break;
  206. case H_VPA_REG_DTL: /* register DTL */
  207. if (len < sizeof(struct dtl_entry))
  208. break;
  209. len -= len % sizeof(struct dtl_entry);
  210. /* Check that they have previously registered a VPA */
  211. err = H_RESOURCE;
  212. if (!vpa_is_registered(&tvcpu->arch.vpa))
  213. break;
  214. vpap = &tvcpu->arch.dtl;
  215. err = 0;
  216. break;
  217. case H_VPA_REG_SLB: /* register SLB shadow buffer */
  218. /* Check that they have previously registered a VPA */
  219. err = H_RESOURCE;
  220. if (!vpa_is_registered(&tvcpu->arch.vpa))
  221. break;
  222. vpap = &tvcpu->arch.slb_shadow;
  223. err = 0;
  224. break;
  225. case H_VPA_DEREG_VPA: /* deregister VPA */
  226. /* Check they don't still have a DTL or SLB buf registered */
  227. err = H_RESOURCE;
  228. if (vpa_is_registered(&tvcpu->arch.dtl) ||
  229. vpa_is_registered(&tvcpu->arch.slb_shadow))
  230. break;
  231. vpap = &tvcpu->arch.vpa;
  232. err = 0;
  233. break;
  234. case H_VPA_DEREG_DTL: /* deregister DTL */
  235. vpap = &tvcpu->arch.dtl;
  236. err = 0;
  237. break;
  238. case H_VPA_DEREG_SLB: /* deregister SLB shadow buffer */
  239. vpap = &tvcpu->arch.slb_shadow;
  240. err = 0;
  241. break;
  242. }
  243. if (vpap) {
  244. vpap->next_gpa = vpa;
  245. vpap->len = len;
  246. vpap->update_pending = 1;
  247. }
  248. spin_unlock(&tvcpu->arch.vpa_update_lock);
  249. return err;
  250. }
  251. static void kvmppc_update_vpa(struct kvm_vcpu *vcpu, struct kvmppc_vpa *vpap)
  252. {
  253. struct kvm *kvm = vcpu->kvm;
  254. void *va;
  255. unsigned long nb;
  256. unsigned long gpa;
  257. /*
  258. * We need to pin the page pointed to by vpap->next_gpa,
  259. * but we can't call kvmppc_pin_guest_page under the lock
  260. * as it does get_user_pages() and down_read(). So we
  261. * have to drop the lock, pin the page, then get the lock
  262. * again and check that a new area didn't get registered
  263. * in the meantime.
  264. */
  265. for (;;) {
  266. gpa = vpap->next_gpa;
  267. spin_unlock(&vcpu->arch.vpa_update_lock);
  268. va = NULL;
  269. nb = 0;
  270. if (gpa)
  271. va = kvmppc_pin_guest_page(kvm, vpap->next_gpa, &nb);
  272. spin_lock(&vcpu->arch.vpa_update_lock);
  273. if (gpa == vpap->next_gpa)
  274. break;
  275. /* sigh... unpin that one and try again */
  276. if (va)
  277. kvmppc_unpin_guest_page(kvm, va);
  278. }
  279. vpap->update_pending = 0;
  280. if (va && nb < vpap->len) {
  281. /*
  282. * If it's now too short, it must be that userspace
  283. * has changed the mappings underlying guest memory,
  284. * so unregister the region.
  285. */
  286. kvmppc_unpin_guest_page(kvm, va);
  287. va = NULL;
  288. }
  289. if (vpap->pinned_addr)
  290. kvmppc_unpin_guest_page(kvm, vpap->pinned_addr);
  291. vpap->pinned_addr = va;
  292. if (va)
  293. vpap->pinned_end = va + vpap->len;
  294. }
  295. static void kvmppc_update_vpas(struct kvm_vcpu *vcpu)
  296. {
  297. spin_lock(&vcpu->arch.vpa_update_lock);
  298. if (vcpu->arch.vpa.update_pending) {
  299. kvmppc_update_vpa(vcpu, &vcpu->arch.vpa);
  300. if (vcpu->arch.vpa.pinned_addr)
  301. init_vpa(vcpu, vcpu->arch.vpa.pinned_addr);
  302. }
  303. if (vcpu->arch.dtl.update_pending) {
  304. kvmppc_update_vpa(vcpu, &vcpu->arch.dtl);
  305. vcpu->arch.dtl_ptr = vcpu->arch.dtl.pinned_addr;
  306. vcpu->arch.dtl_index = 0;
  307. }
  308. if (vcpu->arch.slb_shadow.update_pending)
  309. kvmppc_update_vpa(vcpu, &vcpu->arch.slb_shadow);
  310. spin_unlock(&vcpu->arch.vpa_update_lock);
  311. }
  312. static void kvmppc_create_dtl_entry(struct kvm_vcpu *vcpu,
  313. struct kvmppc_vcore *vc)
  314. {
  315. struct dtl_entry *dt;
  316. struct lppaca *vpa;
  317. unsigned long old_stolen;
  318. dt = vcpu->arch.dtl_ptr;
  319. vpa = vcpu->arch.vpa.pinned_addr;
  320. old_stolen = vcpu->arch.stolen_logged;
  321. vcpu->arch.stolen_logged = vc->stolen_tb;
  322. if (!dt || !vpa)
  323. return;
  324. memset(dt, 0, sizeof(struct dtl_entry));
  325. dt->dispatch_reason = 7;
  326. dt->processor_id = vc->pcpu + vcpu->arch.ptid;
  327. dt->timebase = mftb();
  328. dt->enqueue_to_dispatch_time = vc->stolen_tb - old_stolen;
  329. dt->srr0 = kvmppc_get_pc(vcpu);
  330. dt->srr1 = vcpu->arch.shregs.msr;
  331. ++dt;
  332. if (dt == vcpu->arch.dtl.pinned_end)
  333. dt = vcpu->arch.dtl.pinned_addr;
  334. vcpu->arch.dtl_ptr = dt;
  335. /* order writing *dt vs. writing vpa->dtl_idx */
  336. smp_wmb();
  337. vpa->dtl_idx = ++vcpu->arch.dtl_index;
  338. }
  339. int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu)
  340. {
  341. unsigned long req = kvmppc_get_gpr(vcpu, 3);
  342. unsigned long target, ret = H_SUCCESS;
  343. struct kvm_vcpu *tvcpu;
  344. int idx;
  345. switch (req) {
  346. case H_ENTER:
  347. idx = srcu_read_lock(&vcpu->kvm->srcu);
  348. ret = kvmppc_virtmode_h_enter(vcpu, kvmppc_get_gpr(vcpu, 4),
  349. kvmppc_get_gpr(vcpu, 5),
  350. kvmppc_get_gpr(vcpu, 6),
  351. kvmppc_get_gpr(vcpu, 7));
  352. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  353. break;
  354. case H_CEDE:
  355. break;
  356. case H_PROD:
  357. target = kvmppc_get_gpr(vcpu, 4);
  358. tvcpu = kvmppc_find_vcpu(vcpu->kvm, target);
  359. if (!tvcpu) {
  360. ret = H_PARAMETER;
  361. break;
  362. }
  363. tvcpu->arch.prodded = 1;
  364. smp_mb();
  365. if (vcpu->arch.ceded) {
  366. if (waitqueue_active(&vcpu->wq)) {
  367. wake_up_interruptible(&vcpu->wq);
  368. vcpu->stat.halt_wakeup++;
  369. }
  370. }
  371. break;
  372. case H_CONFER:
  373. break;
  374. case H_REGISTER_VPA:
  375. ret = do_h_register_vpa(vcpu, kvmppc_get_gpr(vcpu, 4),
  376. kvmppc_get_gpr(vcpu, 5),
  377. kvmppc_get_gpr(vcpu, 6));
  378. break;
  379. default:
  380. return RESUME_HOST;
  381. }
  382. kvmppc_set_gpr(vcpu, 3, ret);
  383. vcpu->arch.hcall_needed = 0;
  384. return RESUME_GUEST;
  385. }
  386. static int kvmppc_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu,
  387. struct task_struct *tsk)
  388. {
  389. int r = RESUME_HOST;
  390. int srcu_idx;
  391. vcpu->stat.sum_exits++;
  392. run->exit_reason = KVM_EXIT_UNKNOWN;
  393. run->ready_for_interrupt_injection = 1;
  394. switch (vcpu->arch.trap) {
  395. /* We're good on these - the host merely wanted to get our attention */
  396. case BOOK3S_INTERRUPT_HV_DECREMENTER:
  397. vcpu->stat.dec_exits++;
  398. r = RESUME_GUEST;
  399. break;
  400. case BOOK3S_INTERRUPT_EXTERNAL:
  401. vcpu->stat.ext_intr_exits++;
  402. r = RESUME_GUEST;
  403. break;
  404. case BOOK3S_INTERRUPT_PERFMON:
  405. r = RESUME_GUEST;
  406. break;
  407. case BOOK3S_INTERRUPT_PROGRAM:
  408. {
  409. ulong flags;
  410. /*
  411. * Normally program interrupts are delivered directly
  412. * to the guest by the hardware, but we can get here
  413. * as a result of a hypervisor emulation interrupt
  414. * (e40) getting turned into a 700 by BML RTAS.
  415. */
  416. flags = vcpu->arch.shregs.msr & 0x1f0000ull;
  417. kvmppc_core_queue_program(vcpu, flags);
  418. r = RESUME_GUEST;
  419. break;
  420. }
  421. case BOOK3S_INTERRUPT_SYSCALL:
  422. {
  423. /* hcall - punt to userspace */
  424. int i;
  425. if (vcpu->arch.shregs.msr & MSR_PR) {
  426. /* sc 1 from userspace - reflect to guest syscall */
  427. kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_SYSCALL);
  428. r = RESUME_GUEST;
  429. break;
  430. }
  431. run->papr_hcall.nr = kvmppc_get_gpr(vcpu, 3);
  432. for (i = 0; i < 9; ++i)
  433. run->papr_hcall.args[i] = kvmppc_get_gpr(vcpu, 4 + i);
  434. run->exit_reason = KVM_EXIT_PAPR_HCALL;
  435. vcpu->arch.hcall_needed = 1;
  436. r = RESUME_HOST;
  437. break;
  438. }
  439. /*
  440. * We get these next two if the guest accesses a page which it thinks
  441. * it has mapped but which is not actually present, either because
  442. * it is for an emulated I/O device or because the corresonding
  443. * host page has been paged out. Any other HDSI/HISI interrupts
  444. * have been handled already.
  445. */
  446. case BOOK3S_INTERRUPT_H_DATA_STORAGE:
  447. srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
  448. r = kvmppc_book3s_hv_page_fault(run, vcpu,
  449. vcpu->arch.fault_dar, vcpu->arch.fault_dsisr);
  450. srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
  451. break;
  452. case BOOK3S_INTERRUPT_H_INST_STORAGE:
  453. srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
  454. r = kvmppc_book3s_hv_page_fault(run, vcpu,
  455. kvmppc_get_pc(vcpu), 0);
  456. srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
  457. break;
  458. /*
  459. * This occurs if the guest executes an illegal instruction.
  460. * We just generate a program interrupt to the guest, since
  461. * we don't emulate any guest instructions at this stage.
  462. */
  463. case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
  464. kvmppc_core_queue_program(vcpu, 0x80000);
  465. r = RESUME_GUEST;
  466. break;
  467. default:
  468. kvmppc_dump_regs(vcpu);
  469. printk(KERN_EMERG "trap=0x%x | pc=0x%lx | msr=0x%llx\n",
  470. vcpu->arch.trap, kvmppc_get_pc(vcpu),
  471. vcpu->arch.shregs.msr);
  472. r = RESUME_HOST;
  473. BUG();
  474. break;
  475. }
  476. return r;
  477. }
  478. int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
  479. struct kvm_sregs *sregs)
  480. {
  481. int i;
  482. sregs->pvr = vcpu->arch.pvr;
  483. memset(sregs, 0, sizeof(struct kvm_sregs));
  484. for (i = 0; i < vcpu->arch.slb_max; i++) {
  485. sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige;
  486. sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
  487. }
  488. return 0;
  489. }
  490. int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
  491. struct kvm_sregs *sregs)
  492. {
  493. int i, j;
  494. kvmppc_set_pvr(vcpu, sregs->pvr);
  495. j = 0;
  496. for (i = 0; i < vcpu->arch.slb_nr; i++) {
  497. if (sregs->u.s.ppc64.slb[i].slbe & SLB_ESID_V) {
  498. vcpu->arch.slb[j].orige = sregs->u.s.ppc64.slb[i].slbe;
  499. vcpu->arch.slb[j].origv = sregs->u.s.ppc64.slb[i].slbv;
  500. ++j;
  501. }
  502. }
  503. vcpu->arch.slb_max = j;
  504. return 0;
  505. }
  506. int kvmppc_get_one_reg(struct kvm_vcpu *vcpu, u64 id, union kvmppc_one_reg *val)
  507. {
  508. int r = 0;
  509. long int i;
  510. switch (id) {
  511. case KVM_REG_PPC_HIOR:
  512. *val = get_reg_val(id, 0);
  513. break;
  514. case KVM_REG_PPC_DABR:
  515. *val = get_reg_val(id, vcpu->arch.dabr);
  516. break;
  517. case KVM_REG_PPC_DSCR:
  518. *val = get_reg_val(id, vcpu->arch.dscr);
  519. break;
  520. case KVM_REG_PPC_PURR:
  521. *val = get_reg_val(id, vcpu->arch.purr);
  522. break;
  523. case KVM_REG_PPC_SPURR:
  524. *val = get_reg_val(id, vcpu->arch.spurr);
  525. break;
  526. case KVM_REG_PPC_AMR:
  527. *val = get_reg_val(id, vcpu->arch.amr);
  528. break;
  529. case KVM_REG_PPC_UAMOR:
  530. *val = get_reg_val(id, vcpu->arch.uamor);
  531. break;
  532. case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRA:
  533. i = id - KVM_REG_PPC_MMCR0;
  534. *val = get_reg_val(id, vcpu->arch.mmcr[i]);
  535. break;
  536. case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
  537. i = id - KVM_REG_PPC_PMC1;
  538. *val = get_reg_val(id, vcpu->arch.pmc[i]);
  539. break;
  540. #ifdef CONFIG_VSX
  541. case KVM_REG_PPC_FPR0 ... KVM_REG_PPC_FPR31:
  542. if (cpu_has_feature(CPU_FTR_VSX)) {
  543. /* VSX => FP reg i is stored in arch.vsr[2*i] */
  544. long int i = id - KVM_REG_PPC_FPR0;
  545. *val = get_reg_val(id, vcpu->arch.vsr[2 * i]);
  546. } else {
  547. /* let generic code handle it */
  548. r = -EINVAL;
  549. }
  550. break;
  551. case KVM_REG_PPC_VSR0 ... KVM_REG_PPC_VSR31:
  552. if (cpu_has_feature(CPU_FTR_VSX)) {
  553. long int i = id - KVM_REG_PPC_VSR0;
  554. val->vsxval[0] = vcpu->arch.vsr[2 * i];
  555. val->vsxval[1] = vcpu->arch.vsr[2 * i + 1];
  556. } else {
  557. r = -ENXIO;
  558. }
  559. break;
  560. #endif /* CONFIG_VSX */
  561. case KVM_REG_PPC_VPA_ADDR:
  562. spin_lock(&vcpu->arch.vpa_update_lock);
  563. *val = get_reg_val(id, vcpu->arch.vpa.next_gpa);
  564. spin_unlock(&vcpu->arch.vpa_update_lock);
  565. break;
  566. case KVM_REG_PPC_VPA_SLB:
  567. spin_lock(&vcpu->arch.vpa_update_lock);
  568. val->vpaval.addr = vcpu->arch.slb_shadow.next_gpa;
  569. val->vpaval.length = vcpu->arch.slb_shadow.len;
  570. spin_unlock(&vcpu->arch.vpa_update_lock);
  571. break;
  572. case KVM_REG_PPC_VPA_DTL:
  573. spin_lock(&vcpu->arch.vpa_update_lock);
  574. val->vpaval.addr = vcpu->arch.dtl.next_gpa;
  575. val->vpaval.length = vcpu->arch.dtl.len;
  576. spin_unlock(&vcpu->arch.vpa_update_lock);
  577. break;
  578. default:
  579. r = -EINVAL;
  580. break;
  581. }
  582. return r;
  583. }
  584. int kvmppc_set_one_reg(struct kvm_vcpu *vcpu, u64 id, union kvmppc_one_reg *val)
  585. {
  586. int r = 0;
  587. long int i;
  588. unsigned long addr, len;
  589. switch (id) {
  590. case KVM_REG_PPC_HIOR:
  591. /* Only allow this to be set to zero */
  592. if (set_reg_val(id, *val))
  593. r = -EINVAL;
  594. break;
  595. case KVM_REG_PPC_DABR:
  596. vcpu->arch.dabr = set_reg_val(id, *val);
  597. break;
  598. case KVM_REG_PPC_DSCR:
  599. vcpu->arch.dscr = set_reg_val(id, *val);
  600. break;
  601. case KVM_REG_PPC_PURR:
  602. vcpu->arch.purr = set_reg_val(id, *val);
  603. break;
  604. case KVM_REG_PPC_SPURR:
  605. vcpu->arch.spurr = set_reg_val(id, *val);
  606. break;
  607. case KVM_REG_PPC_AMR:
  608. vcpu->arch.amr = set_reg_val(id, *val);
  609. break;
  610. case KVM_REG_PPC_UAMOR:
  611. vcpu->arch.uamor = set_reg_val(id, *val);
  612. break;
  613. case KVM_REG_PPC_MMCR0 ... KVM_REG_PPC_MMCRA:
  614. i = id - KVM_REG_PPC_MMCR0;
  615. vcpu->arch.mmcr[i] = set_reg_val(id, *val);
  616. break;
  617. case KVM_REG_PPC_PMC1 ... KVM_REG_PPC_PMC8:
  618. i = id - KVM_REG_PPC_PMC1;
  619. vcpu->arch.pmc[i] = set_reg_val(id, *val);
  620. break;
  621. #ifdef CONFIG_VSX
  622. case KVM_REG_PPC_FPR0 ... KVM_REG_PPC_FPR31:
  623. if (cpu_has_feature(CPU_FTR_VSX)) {
  624. /* VSX => FP reg i is stored in arch.vsr[2*i] */
  625. long int i = id - KVM_REG_PPC_FPR0;
  626. vcpu->arch.vsr[2 * i] = set_reg_val(id, *val);
  627. } else {
  628. /* let generic code handle it */
  629. r = -EINVAL;
  630. }
  631. break;
  632. case KVM_REG_PPC_VSR0 ... KVM_REG_PPC_VSR31:
  633. if (cpu_has_feature(CPU_FTR_VSX)) {
  634. long int i = id - KVM_REG_PPC_VSR0;
  635. vcpu->arch.vsr[2 * i] = val->vsxval[0];
  636. vcpu->arch.vsr[2 * i + 1] = val->vsxval[1];
  637. } else {
  638. r = -ENXIO;
  639. }
  640. break;
  641. #endif /* CONFIG_VSX */
  642. case KVM_REG_PPC_VPA_ADDR:
  643. addr = set_reg_val(id, *val);
  644. r = -EINVAL;
  645. if (!addr && (vcpu->arch.slb_shadow.next_gpa ||
  646. vcpu->arch.dtl.next_gpa))
  647. break;
  648. r = set_vpa(vcpu, &vcpu->arch.vpa, addr, sizeof(struct lppaca));
  649. break;
  650. case KVM_REG_PPC_VPA_SLB:
  651. addr = val->vpaval.addr;
  652. len = val->vpaval.length;
  653. r = -EINVAL;
  654. if (addr && !vcpu->arch.vpa.next_gpa)
  655. break;
  656. r = set_vpa(vcpu, &vcpu->arch.slb_shadow, addr, len);
  657. break;
  658. case KVM_REG_PPC_VPA_DTL:
  659. addr = val->vpaval.addr;
  660. len = val->vpaval.length;
  661. r = -EINVAL;
  662. if (len < sizeof(struct dtl_entry))
  663. break;
  664. if (addr && !vcpu->arch.vpa.next_gpa)
  665. break;
  666. len -= len % sizeof(struct dtl_entry);
  667. r = set_vpa(vcpu, &vcpu->arch.dtl, addr, len);
  668. break;
  669. default:
  670. r = -EINVAL;
  671. break;
  672. }
  673. return r;
  674. }
  675. int kvmppc_core_check_processor_compat(void)
  676. {
  677. if (cpu_has_feature(CPU_FTR_HVMODE))
  678. return 0;
  679. return -EIO;
  680. }
  681. struct kvm_vcpu *kvmppc_core_vcpu_create(struct kvm *kvm, unsigned int id)
  682. {
  683. struct kvm_vcpu *vcpu;
  684. int err = -EINVAL;
  685. int core;
  686. struct kvmppc_vcore *vcore;
  687. core = id / threads_per_core;
  688. if (core >= KVM_MAX_VCORES)
  689. goto out;
  690. err = -ENOMEM;
  691. vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
  692. if (!vcpu)
  693. goto out;
  694. err = kvm_vcpu_init(vcpu, kvm, id);
  695. if (err)
  696. goto free_vcpu;
  697. vcpu->arch.shared = &vcpu->arch.shregs;
  698. vcpu->arch.last_cpu = -1;
  699. vcpu->arch.mmcr[0] = MMCR0_FC;
  700. vcpu->arch.ctrl = CTRL_RUNLATCH;
  701. /* default to host PVR, since we can't spoof it */
  702. vcpu->arch.pvr = mfspr(SPRN_PVR);
  703. kvmppc_set_pvr(vcpu, vcpu->arch.pvr);
  704. spin_lock_init(&vcpu->arch.vpa_update_lock);
  705. kvmppc_mmu_book3s_hv_init(vcpu);
  706. /*
  707. * We consider the vcpu stopped until we see the first run ioctl for it.
  708. */
  709. vcpu->arch.state = KVMPPC_VCPU_STOPPED;
  710. init_waitqueue_head(&vcpu->arch.cpu_run);
  711. mutex_lock(&kvm->lock);
  712. vcore = kvm->arch.vcores[core];
  713. if (!vcore) {
  714. vcore = kzalloc(sizeof(struct kvmppc_vcore), GFP_KERNEL);
  715. if (vcore) {
  716. INIT_LIST_HEAD(&vcore->runnable_threads);
  717. spin_lock_init(&vcore->lock);
  718. init_waitqueue_head(&vcore->wq);
  719. vcore->preempt_tb = mftb();
  720. }
  721. kvm->arch.vcores[core] = vcore;
  722. }
  723. mutex_unlock(&kvm->lock);
  724. if (!vcore)
  725. goto free_vcpu;
  726. spin_lock(&vcore->lock);
  727. ++vcore->num_threads;
  728. spin_unlock(&vcore->lock);
  729. vcpu->arch.vcore = vcore;
  730. vcpu->arch.stolen_logged = vcore->stolen_tb;
  731. vcpu->arch.cpu_type = KVM_CPU_3S_64;
  732. kvmppc_sanity_check(vcpu);
  733. return vcpu;
  734. free_vcpu:
  735. kmem_cache_free(kvm_vcpu_cache, vcpu);
  736. out:
  737. return ERR_PTR(err);
  738. }
  739. void kvmppc_core_vcpu_free(struct kvm_vcpu *vcpu)
  740. {
  741. spin_lock(&vcpu->arch.vpa_update_lock);
  742. if (vcpu->arch.dtl.pinned_addr)
  743. kvmppc_unpin_guest_page(vcpu->kvm, vcpu->arch.dtl.pinned_addr);
  744. if (vcpu->arch.slb_shadow.pinned_addr)
  745. kvmppc_unpin_guest_page(vcpu->kvm, vcpu->arch.slb_shadow.pinned_addr);
  746. if (vcpu->arch.vpa.pinned_addr)
  747. kvmppc_unpin_guest_page(vcpu->kvm, vcpu->arch.vpa.pinned_addr);
  748. spin_unlock(&vcpu->arch.vpa_update_lock);
  749. kvm_vcpu_uninit(vcpu);
  750. kmem_cache_free(kvm_vcpu_cache, vcpu);
  751. }
  752. static void kvmppc_set_timer(struct kvm_vcpu *vcpu)
  753. {
  754. unsigned long dec_nsec, now;
  755. now = get_tb();
  756. if (now > vcpu->arch.dec_expires) {
  757. /* decrementer has already gone negative */
  758. kvmppc_core_queue_dec(vcpu);
  759. kvmppc_core_prepare_to_enter(vcpu);
  760. return;
  761. }
  762. dec_nsec = (vcpu->arch.dec_expires - now) * NSEC_PER_SEC
  763. / tb_ticks_per_sec;
  764. hrtimer_start(&vcpu->arch.dec_timer, ktime_set(0, dec_nsec),
  765. HRTIMER_MODE_REL);
  766. vcpu->arch.timer_running = 1;
  767. }
  768. static void kvmppc_end_cede(struct kvm_vcpu *vcpu)
  769. {
  770. vcpu->arch.ceded = 0;
  771. if (vcpu->arch.timer_running) {
  772. hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
  773. vcpu->arch.timer_running = 0;
  774. }
  775. }
  776. extern int __kvmppc_vcore_entry(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu);
  777. extern void xics_wake_cpu(int cpu);
  778. static void kvmppc_remove_runnable(struct kvmppc_vcore *vc,
  779. struct kvm_vcpu *vcpu)
  780. {
  781. if (vcpu->arch.state != KVMPPC_VCPU_RUNNABLE)
  782. return;
  783. vcpu->arch.state = KVMPPC_VCPU_BUSY_IN_HOST;
  784. --vc->n_runnable;
  785. ++vc->n_busy;
  786. list_del(&vcpu->arch.run_list);
  787. }
  788. static int kvmppc_grab_hwthread(int cpu)
  789. {
  790. struct paca_struct *tpaca;
  791. long timeout = 1000;
  792. tpaca = &paca[cpu];
  793. /* Ensure the thread won't go into the kernel if it wakes */
  794. tpaca->kvm_hstate.hwthread_req = 1;
  795. /*
  796. * If the thread is already executing in the kernel (e.g. handling
  797. * a stray interrupt), wait for it to get back to nap mode.
  798. * The smp_mb() is to ensure that our setting of hwthread_req
  799. * is visible before we look at hwthread_state, so if this
  800. * races with the code at system_reset_pSeries and the thread
  801. * misses our setting of hwthread_req, we are sure to see its
  802. * setting of hwthread_state, and vice versa.
  803. */
  804. smp_mb();
  805. while (tpaca->kvm_hstate.hwthread_state == KVM_HWTHREAD_IN_KERNEL) {
  806. if (--timeout <= 0) {
  807. pr_err("KVM: couldn't grab cpu %d\n", cpu);
  808. return -EBUSY;
  809. }
  810. udelay(1);
  811. }
  812. return 0;
  813. }
  814. static void kvmppc_release_hwthread(int cpu)
  815. {
  816. struct paca_struct *tpaca;
  817. tpaca = &paca[cpu];
  818. tpaca->kvm_hstate.hwthread_req = 0;
  819. tpaca->kvm_hstate.kvm_vcpu = NULL;
  820. }
  821. static void kvmppc_start_thread(struct kvm_vcpu *vcpu)
  822. {
  823. int cpu;
  824. struct paca_struct *tpaca;
  825. struct kvmppc_vcore *vc = vcpu->arch.vcore;
  826. if (vcpu->arch.timer_running) {
  827. hrtimer_try_to_cancel(&vcpu->arch.dec_timer);
  828. vcpu->arch.timer_running = 0;
  829. }
  830. cpu = vc->pcpu + vcpu->arch.ptid;
  831. tpaca = &paca[cpu];
  832. tpaca->kvm_hstate.kvm_vcpu = vcpu;
  833. tpaca->kvm_hstate.kvm_vcore = vc;
  834. tpaca->kvm_hstate.napping = 0;
  835. vcpu->cpu = vc->pcpu;
  836. smp_wmb();
  837. #if defined(CONFIG_PPC_ICP_NATIVE) && defined(CONFIG_SMP)
  838. if (vcpu->arch.ptid) {
  839. kvmppc_grab_hwthread(cpu);
  840. xics_wake_cpu(cpu);
  841. ++vc->n_woken;
  842. }
  843. #endif
  844. }
  845. static void kvmppc_wait_for_nap(struct kvmppc_vcore *vc)
  846. {
  847. int i;
  848. HMT_low();
  849. i = 0;
  850. while (vc->nap_count < vc->n_woken) {
  851. if (++i >= 1000000) {
  852. pr_err("kvmppc_wait_for_nap timeout %d %d\n",
  853. vc->nap_count, vc->n_woken);
  854. break;
  855. }
  856. cpu_relax();
  857. }
  858. HMT_medium();
  859. }
  860. /*
  861. * Check that we are on thread 0 and that any other threads in
  862. * this core are off-line.
  863. */
  864. static int on_primary_thread(void)
  865. {
  866. int cpu = smp_processor_id();
  867. int thr = cpu_thread_in_core(cpu);
  868. if (thr)
  869. return 0;
  870. while (++thr < threads_per_core)
  871. if (cpu_online(cpu + thr))
  872. return 0;
  873. return 1;
  874. }
  875. /*
  876. * Run a set of guest threads on a physical core.
  877. * Called with vc->lock held.
  878. */
  879. static int kvmppc_run_core(struct kvmppc_vcore *vc)
  880. {
  881. struct kvm_vcpu *vcpu, *vcpu0, *vnext;
  882. long ret;
  883. u64 now;
  884. int ptid, i, need_vpa_update;
  885. int srcu_idx;
  886. /* don't start if any threads have a signal pending */
  887. need_vpa_update = 0;
  888. list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
  889. if (signal_pending(vcpu->arch.run_task))
  890. return 0;
  891. need_vpa_update |= vcpu->arch.vpa.update_pending |
  892. vcpu->arch.slb_shadow.update_pending |
  893. vcpu->arch.dtl.update_pending;
  894. }
  895. /*
  896. * Initialize *vc, in particular vc->vcore_state, so we can
  897. * drop the vcore lock if necessary.
  898. */
  899. vc->n_woken = 0;
  900. vc->nap_count = 0;
  901. vc->entry_exit_count = 0;
  902. vc->vcore_state = VCORE_RUNNING;
  903. vc->in_guest = 0;
  904. vc->napping_threads = 0;
  905. /*
  906. * Updating any of the vpas requires calling kvmppc_pin_guest_page,
  907. * which can't be called with any spinlocks held.
  908. */
  909. if (need_vpa_update) {
  910. spin_unlock(&vc->lock);
  911. list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
  912. kvmppc_update_vpas(vcpu);
  913. spin_lock(&vc->lock);
  914. }
  915. /*
  916. * Make sure we are running on thread 0, and that
  917. * secondary threads are offline.
  918. */
  919. if (threads_per_core > 1 && !on_primary_thread()) {
  920. list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
  921. vcpu->arch.ret = -EBUSY;
  922. goto out;
  923. }
  924. /*
  925. * Assign physical thread IDs, first to non-ceded vcpus
  926. * and then to ceded ones.
  927. */
  928. ptid = 0;
  929. vcpu0 = NULL;
  930. list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
  931. if (!vcpu->arch.ceded) {
  932. if (!ptid)
  933. vcpu0 = vcpu;
  934. vcpu->arch.ptid = ptid++;
  935. }
  936. }
  937. if (!vcpu0)
  938. return 0; /* nothing to run */
  939. list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
  940. if (vcpu->arch.ceded)
  941. vcpu->arch.ptid = ptid++;
  942. vc->stolen_tb += mftb() - vc->preempt_tb;
  943. vc->pcpu = smp_processor_id();
  944. list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
  945. kvmppc_start_thread(vcpu);
  946. kvmppc_create_dtl_entry(vcpu, vc);
  947. }
  948. /* Grab any remaining hw threads so they can't go into the kernel */
  949. for (i = ptid; i < threads_per_core; ++i)
  950. kvmppc_grab_hwthread(vc->pcpu + i);
  951. preempt_disable();
  952. spin_unlock(&vc->lock);
  953. kvm_guest_enter();
  954. srcu_idx = srcu_read_lock(&vcpu0->kvm->srcu);
  955. __kvmppc_vcore_entry(NULL, vcpu0);
  956. for (i = 0; i < threads_per_core; ++i)
  957. kvmppc_release_hwthread(vc->pcpu + i);
  958. spin_lock(&vc->lock);
  959. /* disable sending of IPIs on virtual external irqs */
  960. list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list)
  961. vcpu->cpu = -1;
  962. /* wait for secondary threads to finish writing their state to memory */
  963. if (vc->nap_count < vc->n_woken)
  964. kvmppc_wait_for_nap(vc);
  965. /* prevent other vcpu threads from doing kvmppc_start_thread() now */
  966. vc->vcore_state = VCORE_EXITING;
  967. spin_unlock(&vc->lock);
  968. srcu_read_unlock(&vcpu0->kvm->srcu, srcu_idx);
  969. /* make sure updates to secondary vcpu structs are visible now */
  970. smp_mb();
  971. kvm_guest_exit();
  972. preempt_enable();
  973. kvm_resched(vcpu);
  974. now = get_tb();
  975. list_for_each_entry(vcpu, &vc->runnable_threads, arch.run_list) {
  976. /* cancel pending dec exception if dec is positive */
  977. if (now < vcpu->arch.dec_expires &&
  978. kvmppc_core_pending_dec(vcpu))
  979. kvmppc_core_dequeue_dec(vcpu);
  980. ret = RESUME_GUEST;
  981. if (vcpu->arch.trap)
  982. ret = kvmppc_handle_exit(vcpu->arch.kvm_run, vcpu,
  983. vcpu->arch.run_task);
  984. vcpu->arch.ret = ret;
  985. vcpu->arch.trap = 0;
  986. if (vcpu->arch.ceded) {
  987. if (ret != RESUME_GUEST)
  988. kvmppc_end_cede(vcpu);
  989. else
  990. kvmppc_set_timer(vcpu);
  991. }
  992. }
  993. spin_lock(&vc->lock);
  994. out:
  995. vc->vcore_state = VCORE_INACTIVE;
  996. vc->preempt_tb = mftb();
  997. list_for_each_entry_safe(vcpu, vnext, &vc->runnable_threads,
  998. arch.run_list) {
  999. if (vcpu->arch.ret != RESUME_GUEST) {
  1000. kvmppc_remove_runnable(vc, vcpu);
  1001. wake_up(&vcpu->arch.cpu_run);
  1002. }
  1003. }
  1004. return 1;
  1005. }
  1006. /*
  1007. * Wait for some other vcpu thread to execute us, and
  1008. * wake us up when we need to handle something in the host.
  1009. */
  1010. static void kvmppc_wait_for_exec(struct kvm_vcpu *vcpu, int wait_state)
  1011. {
  1012. DEFINE_WAIT(wait);
  1013. prepare_to_wait(&vcpu->arch.cpu_run, &wait, wait_state);
  1014. if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE)
  1015. schedule();
  1016. finish_wait(&vcpu->arch.cpu_run, &wait);
  1017. }
  1018. /*
  1019. * All the vcpus in this vcore are idle, so wait for a decrementer
  1020. * or external interrupt to one of the vcpus. vc->lock is held.
  1021. */
  1022. static void kvmppc_vcore_blocked(struct kvmppc_vcore *vc)
  1023. {
  1024. DEFINE_WAIT(wait);
  1025. struct kvm_vcpu *v;
  1026. int all_idle = 1;
  1027. prepare_to_wait(&vc->wq, &wait, TASK_INTERRUPTIBLE);
  1028. vc->vcore_state = VCORE_SLEEPING;
  1029. spin_unlock(&vc->lock);
  1030. list_for_each_entry(v, &vc->runnable_threads, arch.run_list) {
  1031. if (!v->arch.ceded || v->arch.pending_exceptions) {
  1032. all_idle = 0;
  1033. break;
  1034. }
  1035. }
  1036. if (all_idle)
  1037. schedule();
  1038. finish_wait(&vc->wq, &wait);
  1039. spin_lock(&vc->lock);
  1040. vc->vcore_state = VCORE_INACTIVE;
  1041. }
  1042. static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
  1043. {
  1044. int n_ceded;
  1045. int prev_state;
  1046. struct kvmppc_vcore *vc;
  1047. struct kvm_vcpu *v, *vn;
  1048. kvm_run->exit_reason = 0;
  1049. vcpu->arch.ret = RESUME_GUEST;
  1050. vcpu->arch.trap = 0;
  1051. /*
  1052. * Synchronize with other threads in this virtual core
  1053. */
  1054. vc = vcpu->arch.vcore;
  1055. spin_lock(&vc->lock);
  1056. vcpu->arch.ceded = 0;
  1057. vcpu->arch.run_task = current;
  1058. vcpu->arch.kvm_run = kvm_run;
  1059. prev_state = vcpu->arch.state;
  1060. vcpu->arch.state = KVMPPC_VCPU_RUNNABLE;
  1061. list_add_tail(&vcpu->arch.run_list, &vc->runnable_threads);
  1062. ++vc->n_runnable;
  1063. /*
  1064. * This happens the first time this is called for a vcpu.
  1065. * If the vcore is already running, we may be able to start
  1066. * this thread straight away and have it join in.
  1067. */
  1068. if (prev_state == KVMPPC_VCPU_STOPPED) {
  1069. if (vc->vcore_state == VCORE_RUNNING &&
  1070. VCORE_EXIT_COUNT(vc) == 0) {
  1071. vcpu->arch.ptid = vc->n_runnable - 1;
  1072. kvmppc_start_thread(vcpu);
  1073. }
  1074. } else if (prev_state == KVMPPC_VCPU_BUSY_IN_HOST)
  1075. --vc->n_busy;
  1076. while (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE &&
  1077. !signal_pending(current)) {
  1078. if (vc->n_busy || vc->vcore_state != VCORE_INACTIVE) {
  1079. spin_unlock(&vc->lock);
  1080. kvmppc_wait_for_exec(vcpu, TASK_INTERRUPTIBLE);
  1081. spin_lock(&vc->lock);
  1082. continue;
  1083. }
  1084. vc->runner = vcpu;
  1085. n_ceded = 0;
  1086. list_for_each_entry(v, &vc->runnable_threads, arch.run_list)
  1087. n_ceded += v->arch.ceded;
  1088. if (n_ceded == vc->n_runnable)
  1089. kvmppc_vcore_blocked(vc);
  1090. else
  1091. kvmppc_run_core(vc);
  1092. list_for_each_entry_safe(v, vn, &vc->runnable_threads,
  1093. arch.run_list) {
  1094. kvmppc_core_prepare_to_enter(v);
  1095. if (signal_pending(v->arch.run_task)) {
  1096. kvmppc_remove_runnable(vc, v);
  1097. v->stat.signal_exits++;
  1098. v->arch.kvm_run->exit_reason = KVM_EXIT_INTR;
  1099. v->arch.ret = -EINTR;
  1100. wake_up(&v->arch.cpu_run);
  1101. }
  1102. }
  1103. vc->runner = NULL;
  1104. }
  1105. if (signal_pending(current)) {
  1106. if (vc->vcore_state == VCORE_RUNNING ||
  1107. vc->vcore_state == VCORE_EXITING) {
  1108. spin_unlock(&vc->lock);
  1109. kvmppc_wait_for_exec(vcpu, TASK_UNINTERRUPTIBLE);
  1110. spin_lock(&vc->lock);
  1111. }
  1112. if (vcpu->arch.state == KVMPPC_VCPU_RUNNABLE) {
  1113. kvmppc_remove_runnable(vc, vcpu);
  1114. vcpu->stat.signal_exits++;
  1115. kvm_run->exit_reason = KVM_EXIT_INTR;
  1116. vcpu->arch.ret = -EINTR;
  1117. }
  1118. }
  1119. spin_unlock(&vc->lock);
  1120. return vcpu->arch.ret;
  1121. }
  1122. int kvmppc_vcpu_run(struct kvm_run *run, struct kvm_vcpu *vcpu)
  1123. {
  1124. int r;
  1125. if (!vcpu->arch.sane) {
  1126. run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  1127. return -EINVAL;
  1128. }
  1129. kvmppc_core_prepare_to_enter(vcpu);
  1130. /* No need to go into the guest when all we'll do is come back out */
  1131. if (signal_pending(current)) {
  1132. run->exit_reason = KVM_EXIT_INTR;
  1133. return -EINTR;
  1134. }
  1135. atomic_inc(&vcpu->kvm->arch.vcpus_running);
  1136. /* Order vcpus_running vs. rma_setup_done, see kvmppc_alloc_reset_hpt */
  1137. smp_mb();
  1138. /* On the first time here, set up HTAB and VRMA or RMA */
  1139. if (!vcpu->kvm->arch.rma_setup_done) {
  1140. r = kvmppc_hv_setup_htab_rma(vcpu);
  1141. if (r)
  1142. goto out;
  1143. }
  1144. flush_fp_to_thread(current);
  1145. flush_altivec_to_thread(current);
  1146. flush_vsx_to_thread(current);
  1147. vcpu->arch.wqp = &vcpu->arch.vcore->wq;
  1148. vcpu->arch.pgdir = current->mm->pgd;
  1149. do {
  1150. r = kvmppc_run_vcpu(run, vcpu);
  1151. if (run->exit_reason == KVM_EXIT_PAPR_HCALL &&
  1152. !(vcpu->arch.shregs.msr & MSR_PR)) {
  1153. r = kvmppc_pseries_do_hcall(vcpu);
  1154. kvmppc_core_prepare_to_enter(vcpu);
  1155. }
  1156. } while (r == RESUME_GUEST);
  1157. out:
  1158. atomic_dec(&vcpu->kvm->arch.vcpus_running);
  1159. return r;
  1160. }
  1161. /* Work out RMLS (real mode limit selector) field value for a given RMA size.
  1162. Assumes POWER7 or PPC970. */
  1163. static inline int lpcr_rmls(unsigned long rma_size)
  1164. {
  1165. switch (rma_size) {
  1166. case 32ul << 20: /* 32 MB */
  1167. if (cpu_has_feature(CPU_FTR_ARCH_206))
  1168. return 8; /* only supported on POWER7 */
  1169. return -1;
  1170. case 64ul << 20: /* 64 MB */
  1171. return 3;
  1172. case 128ul << 20: /* 128 MB */
  1173. return 7;
  1174. case 256ul << 20: /* 256 MB */
  1175. return 4;
  1176. case 1ul << 30: /* 1 GB */
  1177. return 2;
  1178. case 16ul << 30: /* 16 GB */
  1179. return 1;
  1180. case 256ul << 30: /* 256 GB */
  1181. return 0;
  1182. default:
  1183. return -1;
  1184. }
  1185. }
  1186. static int kvm_rma_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1187. {
  1188. struct kvmppc_linear_info *ri = vma->vm_file->private_data;
  1189. struct page *page;
  1190. if (vmf->pgoff >= ri->npages)
  1191. return VM_FAULT_SIGBUS;
  1192. page = pfn_to_page(ri->base_pfn + vmf->pgoff);
  1193. get_page(page);
  1194. vmf->page = page;
  1195. return 0;
  1196. }
  1197. static const struct vm_operations_struct kvm_rma_vm_ops = {
  1198. .fault = kvm_rma_fault,
  1199. };
  1200. static int kvm_rma_mmap(struct file *file, struct vm_area_struct *vma)
  1201. {
  1202. vma->vm_flags |= VM_RESERVED;
  1203. vma->vm_ops = &kvm_rma_vm_ops;
  1204. return 0;
  1205. }
  1206. static int kvm_rma_release(struct inode *inode, struct file *filp)
  1207. {
  1208. struct kvmppc_linear_info *ri = filp->private_data;
  1209. kvm_release_rma(ri);
  1210. return 0;
  1211. }
  1212. static struct file_operations kvm_rma_fops = {
  1213. .mmap = kvm_rma_mmap,
  1214. .release = kvm_rma_release,
  1215. };
  1216. long kvm_vm_ioctl_allocate_rma(struct kvm *kvm, struct kvm_allocate_rma *ret)
  1217. {
  1218. struct kvmppc_linear_info *ri;
  1219. long fd;
  1220. ri = kvm_alloc_rma();
  1221. if (!ri)
  1222. return -ENOMEM;
  1223. fd = anon_inode_getfd("kvm-rma", &kvm_rma_fops, ri, O_RDWR);
  1224. if (fd < 0)
  1225. kvm_release_rma(ri);
  1226. ret->rma_size = ri->npages << PAGE_SHIFT;
  1227. return fd;
  1228. }
  1229. static void kvmppc_add_seg_page_size(struct kvm_ppc_one_seg_page_size **sps,
  1230. int linux_psize)
  1231. {
  1232. struct mmu_psize_def *def = &mmu_psize_defs[linux_psize];
  1233. if (!def->shift)
  1234. return;
  1235. (*sps)->page_shift = def->shift;
  1236. (*sps)->slb_enc = def->sllp;
  1237. (*sps)->enc[0].page_shift = def->shift;
  1238. (*sps)->enc[0].pte_enc = def->penc;
  1239. (*sps)++;
  1240. }
  1241. int kvm_vm_ioctl_get_smmu_info(struct kvm *kvm, struct kvm_ppc_smmu_info *info)
  1242. {
  1243. struct kvm_ppc_one_seg_page_size *sps;
  1244. info->flags = KVM_PPC_PAGE_SIZES_REAL;
  1245. if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
  1246. info->flags |= KVM_PPC_1T_SEGMENTS;
  1247. info->slb_size = mmu_slb_size;
  1248. /* We only support these sizes for now, and no muti-size segments */
  1249. sps = &info->sps[0];
  1250. kvmppc_add_seg_page_size(&sps, MMU_PAGE_4K);
  1251. kvmppc_add_seg_page_size(&sps, MMU_PAGE_64K);
  1252. kvmppc_add_seg_page_size(&sps, MMU_PAGE_16M);
  1253. return 0;
  1254. }
  1255. /*
  1256. * Get (and clear) the dirty memory log for a memory slot.
  1257. */
  1258. int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
  1259. {
  1260. struct kvm_memory_slot *memslot;
  1261. int r;
  1262. unsigned long n;
  1263. mutex_lock(&kvm->slots_lock);
  1264. r = -EINVAL;
  1265. if (log->slot >= KVM_MEMORY_SLOTS)
  1266. goto out;
  1267. memslot = id_to_memslot(kvm->memslots, log->slot);
  1268. r = -ENOENT;
  1269. if (!memslot->dirty_bitmap)
  1270. goto out;
  1271. n = kvm_dirty_bitmap_bytes(memslot);
  1272. memset(memslot->dirty_bitmap, 0, n);
  1273. r = kvmppc_hv_get_dirty_log(kvm, memslot, memslot->dirty_bitmap);
  1274. if (r)
  1275. goto out;
  1276. r = -EFAULT;
  1277. if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
  1278. goto out;
  1279. r = 0;
  1280. out:
  1281. mutex_unlock(&kvm->slots_lock);
  1282. return r;
  1283. }
  1284. static unsigned long slb_pgsize_encoding(unsigned long psize)
  1285. {
  1286. unsigned long senc = 0;
  1287. if (psize > 0x1000) {
  1288. senc = SLB_VSID_L;
  1289. if (psize == 0x10000)
  1290. senc |= SLB_VSID_LP_01;
  1291. }
  1292. return senc;
  1293. }
  1294. static void unpin_slot(struct kvm_memory_slot *memslot)
  1295. {
  1296. unsigned long *physp;
  1297. unsigned long j, npages, pfn;
  1298. struct page *page;
  1299. physp = memslot->arch.slot_phys;
  1300. npages = memslot->npages;
  1301. if (!physp)
  1302. return;
  1303. for (j = 0; j < npages; j++) {
  1304. if (!(physp[j] & KVMPPC_GOT_PAGE))
  1305. continue;
  1306. pfn = physp[j] >> PAGE_SHIFT;
  1307. page = pfn_to_page(pfn);
  1308. SetPageDirty(page);
  1309. put_page(page);
  1310. }
  1311. }
  1312. void kvmppc_core_free_memslot(struct kvm_memory_slot *free,
  1313. struct kvm_memory_slot *dont)
  1314. {
  1315. if (!dont || free->arch.rmap != dont->arch.rmap) {
  1316. vfree(free->arch.rmap);
  1317. free->arch.rmap = NULL;
  1318. }
  1319. if (!dont || free->arch.slot_phys != dont->arch.slot_phys) {
  1320. unpin_slot(free);
  1321. vfree(free->arch.slot_phys);
  1322. free->arch.slot_phys = NULL;
  1323. }
  1324. }
  1325. int kvmppc_core_create_memslot(struct kvm_memory_slot *slot,
  1326. unsigned long npages)
  1327. {
  1328. slot->arch.rmap = vzalloc(npages * sizeof(*slot->arch.rmap));
  1329. if (!slot->arch.rmap)
  1330. return -ENOMEM;
  1331. slot->arch.slot_phys = NULL;
  1332. return 0;
  1333. }
  1334. int kvmppc_core_prepare_memory_region(struct kvm *kvm,
  1335. struct kvm_memory_slot *memslot,
  1336. struct kvm_userspace_memory_region *mem)
  1337. {
  1338. unsigned long *phys;
  1339. /* Allocate a slot_phys array if needed */
  1340. phys = memslot->arch.slot_phys;
  1341. if (!kvm->arch.using_mmu_notifiers && !phys && memslot->npages) {
  1342. phys = vzalloc(memslot->npages * sizeof(unsigned long));
  1343. if (!phys)
  1344. return -ENOMEM;
  1345. memslot->arch.slot_phys = phys;
  1346. }
  1347. return 0;
  1348. }
  1349. void kvmppc_core_commit_memory_region(struct kvm *kvm,
  1350. struct kvm_userspace_memory_region *mem,
  1351. struct kvm_memory_slot old)
  1352. {
  1353. unsigned long npages = mem->memory_size >> PAGE_SHIFT;
  1354. struct kvm_memory_slot *memslot;
  1355. if (npages && old.npages) {
  1356. /*
  1357. * If modifying a memslot, reset all the rmap dirty bits.
  1358. * If this is a new memslot, we don't need to do anything
  1359. * since the rmap array starts out as all zeroes,
  1360. * i.e. no pages are dirty.
  1361. */
  1362. memslot = id_to_memslot(kvm->memslots, mem->slot);
  1363. kvmppc_hv_get_dirty_log(kvm, memslot, NULL);
  1364. }
  1365. }
  1366. static int kvmppc_hv_setup_htab_rma(struct kvm_vcpu *vcpu)
  1367. {
  1368. int err = 0;
  1369. struct kvm *kvm = vcpu->kvm;
  1370. struct kvmppc_linear_info *ri = NULL;
  1371. unsigned long hva;
  1372. struct kvm_memory_slot *memslot;
  1373. struct vm_area_struct *vma;
  1374. unsigned long lpcr, senc;
  1375. unsigned long psize, porder;
  1376. unsigned long rma_size;
  1377. unsigned long rmls;
  1378. unsigned long *physp;
  1379. unsigned long i, npages;
  1380. int srcu_idx;
  1381. mutex_lock(&kvm->lock);
  1382. if (kvm->arch.rma_setup_done)
  1383. goto out; /* another vcpu beat us to it */
  1384. /* Allocate hashed page table (if not done already) and reset it */
  1385. if (!kvm->arch.hpt_virt) {
  1386. err = kvmppc_alloc_hpt(kvm, NULL);
  1387. if (err) {
  1388. pr_err("KVM: Couldn't alloc HPT\n");
  1389. goto out;
  1390. }
  1391. }
  1392. /* Look up the memslot for guest physical address 0 */
  1393. srcu_idx = srcu_read_lock(&kvm->srcu);
  1394. memslot = gfn_to_memslot(kvm, 0);
  1395. /* We must have some memory at 0 by now */
  1396. err = -EINVAL;
  1397. if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
  1398. goto out_srcu;
  1399. /* Look up the VMA for the start of this memory slot */
  1400. hva = memslot->userspace_addr;
  1401. down_read(&current->mm->mmap_sem);
  1402. vma = find_vma(current->mm, hva);
  1403. if (!vma || vma->vm_start > hva || (vma->vm_flags & VM_IO))
  1404. goto up_out;
  1405. psize = vma_kernel_pagesize(vma);
  1406. porder = __ilog2(psize);
  1407. /* Is this one of our preallocated RMAs? */
  1408. if (vma->vm_file && vma->vm_file->f_op == &kvm_rma_fops &&
  1409. hva == vma->vm_start)
  1410. ri = vma->vm_file->private_data;
  1411. up_read(&current->mm->mmap_sem);
  1412. if (!ri) {
  1413. /* On POWER7, use VRMA; on PPC970, give up */
  1414. err = -EPERM;
  1415. if (cpu_has_feature(CPU_FTR_ARCH_201)) {
  1416. pr_err("KVM: CPU requires an RMO\n");
  1417. goto out_srcu;
  1418. }
  1419. /* We can handle 4k, 64k or 16M pages in the VRMA */
  1420. err = -EINVAL;
  1421. if (!(psize == 0x1000 || psize == 0x10000 ||
  1422. psize == 0x1000000))
  1423. goto out_srcu;
  1424. /* Update VRMASD field in the LPCR */
  1425. senc = slb_pgsize_encoding(psize);
  1426. kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
  1427. (VRMA_VSID << SLB_VSID_SHIFT_1T);
  1428. lpcr = kvm->arch.lpcr & ~LPCR_VRMASD;
  1429. lpcr |= senc << (LPCR_VRMASD_SH - 4);
  1430. kvm->arch.lpcr = lpcr;
  1431. /* Create HPTEs in the hash page table for the VRMA */
  1432. kvmppc_map_vrma(vcpu, memslot, porder);
  1433. } else {
  1434. /* Set up to use an RMO region */
  1435. rma_size = ri->npages;
  1436. if (rma_size > memslot->npages)
  1437. rma_size = memslot->npages;
  1438. rma_size <<= PAGE_SHIFT;
  1439. rmls = lpcr_rmls(rma_size);
  1440. err = -EINVAL;
  1441. if (rmls < 0) {
  1442. pr_err("KVM: Can't use RMA of 0x%lx bytes\n", rma_size);
  1443. goto out_srcu;
  1444. }
  1445. atomic_inc(&ri->use_count);
  1446. kvm->arch.rma = ri;
  1447. /* Update LPCR and RMOR */
  1448. lpcr = kvm->arch.lpcr;
  1449. if (cpu_has_feature(CPU_FTR_ARCH_201)) {
  1450. /* PPC970; insert RMLS value (split field) in HID4 */
  1451. lpcr &= ~((1ul << HID4_RMLS0_SH) |
  1452. (3ul << HID4_RMLS2_SH));
  1453. lpcr |= ((rmls >> 2) << HID4_RMLS0_SH) |
  1454. ((rmls & 3) << HID4_RMLS2_SH);
  1455. /* RMOR is also in HID4 */
  1456. lpcr |= ((ri->base_pfn >> (26 - PAGE_SHIFT)) & 0xffff)
  1457. << HID4_RMOR_SH;
  1458. } else {
  1459. /* POWER7 */
  1460. lpcr &= ~(LPCR_VPM0 | LPCR_VRMA_L);
  1461. lpcr |= rmls << LPCR_RMLS_SH;
  1462. kvm->arch.rmor = kvm->arch.rma->base_pfn << PAGE_SHIFT;
  1463. }
  1464. kvm->arch.lpcr = lpcr;
  1465. pr_info("KVM: Using RMO at %lx size %lx (LPCR = %lx)\n",
  1466. ri->base_pfn << PAGE_SHIFT, rma_size, lpcr);
  1467. /* Initialize phys addrs of pages in RMO */
  1468. npages = ri->npages;
  1469. porder = __ilog2(npages);
  1470. physp = memslot->arch.slot_phys;
  1471. if (physp) {
  1472. if (npages > memslot->npages)
  1473. npages = memslot->npages;
  1474. spin_lock(&kvm->arch.slot_phys_lock);
  1475. for (i = 0; i < npages; ++i)
  1476. physp[i] = ((ri->base_pfn + i) << PAGE_SHIFT) +
  1477. porder;
  1478. spin_unlock(&kvm->arch.slot_phys_lock);
  1479. }
  1480. }
  1481. /* Order updates to kvm->arch.lpcr etc. vs. rma_setup_done */
  1482. smp_wmb();
  1483. kvm->arch.rma_setup_done = 1;
  1484. err = 0;
  1485. out_srcu:
  1486. srcu_read_unlock(&kvm->srcu, srcu_idx);
  1487. out:
  1488. mutex_unlock(&kvm->lock);
  1489. return err;
  1490. up_out:
  1491. up_read(&current->mm->mmap_sem);
  1492. goto out;
  1493. }
  1494. int kvmppc_core_init_vm(struct kvm *kvm)
  1495. {
  1496. unsigned long lpcr, lpid;
  1497. /* Allocate the guest's logical partition ID */
  1498. lpid = kvmppc_alloc_lpid();
  1499. if (lpid < 0)
  1500. return -ENOMEM;
  1501. kvm->arch.lpid = lpid;
  1502. INIT_LIST_HEAD(&kvm->arch.spapr_tce_tables);
  1503. kvm->arch.rma = NULL;
  1504. kvm->arch.host_sdr1 = mfspr(SPRN_SDR1);
  1505. if (cpu_has_feature(CPU_FTR_ARCH_201)) {
  1506. /* PPC970; HID4 is effectively the LPCR */
  1507. kvm->arch.host_lpid = 0;
  1508. kvm->arch.host_lpcr = lpcr = mfspr(SPRN_HID4);
  1509. lpcr &= ~((3 << HID4_LPID1_SH) | (0xful << HID4_LPID5_SH));
  1510. lpcr |= ((lpid >> 4) << HID4_LPID1_SH) |
  1511. ((lpid & 0xf) << HID4_LPID5_SH);
  1512. } else {
  1513. /* POWER7; init LPCR for virtual RMA mode */
  1514. kvm->arch.host_lpid = mfspr(SPRN_LPID);
  1515. kvm->arch.host_lpcr = lpcr = mfspr(SPRN_LPCR);
  1516. lpcr &= LPCR_PECE | LPCR_LPES;
  1517. lpcr |= (4UL << LPCR_DPFD_SH) | LPCR_HDICE |
  1518. LPCR_VPM0 | LPCR_VPM1;
  1519. kvm->arch.vrma_slb_v = SLB_VSID_B_1T |
  1520. (VRMA_VSID << SLB_VSID_SHIFT_1T);
  1521. }
  1522. kvm->arch.lpcr = lpcr;
  1523. kvm->arch.using_mmu_notifiers = !!cpu_has_feature(CPU_FTR_ARCH_206);
  1524. spin_lock_init(&kvm->arch.slot_phys_lock);
  1525. /*
  1526. * Don't allow secondary CPU threads to come online
  1527. * while any KVM VMs exist.
  1528. */
  1529. inhibit_secondary_onlining();
  1530. return 0;
  1531. }
  1532. void kvmppc_core_destroy_vm(struct kvm *kvm)
  1533. {
  1534. uninhibit_secondary_onlining();
  1535. if (kvm->arch.rma) {
  1536. kvm_release_rma(kvm->arch.rma);
  1537. kvm->arch.rma = NULL;
  1538. }
  1539. kvmppc_free_hpt(kvm);
  1540. WARN_ON(!list_empty(&kvm->arch.spapr_tce_tables));
  1541. }
  1542. /* These are stubs for now */
  1543. void kvmppc_mmu_pte_pflush(struct kvm_vcpu *vcpu, ulong pa_start, ulong pa_end)
  1544. {
  1545. }
  1546. /* We don't need to emulate any privileged instructions or dcbz */
  1547. int kvmppc_core_emulate_op(struct kvm_run *run, struct kvm_vcpu *vcpu,
  1548. unsigned int inst, int *advance)
  1549. {
  1550. return EMULATE_FAIL;
  1551. }
  1552. int kvmppc_core_emulate_mtspr(struct kvm_vcpu *vcpu, int sprn, ulong spr_val)
  1553. {
  1554. return EMULATE_FAIL;
  1555. }
  1556. int kvmppc_core_emulate_mfspr(struct kvm_vcpu *vcpu, int sprn, ulong *spr_val)
  1557. {
  1558. return EMULATE_FAIL;
  1559. }
  1560. static int kvmppc_book3s_hv_init(void)
  1561. {
  1562. int r;
  1563. r = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
  1564. if (r)
  1565. return r;
  1566. r = kvmppc_mmu_hv_init();
  1567. return r;
  1568. }
  1569. static void kvmppc_book3s_hv_exit(void)
  1570. {
  1571. kvm_exit();
  1572. }
  1573. module_init(kvmppc_book3s_hv_init);
  1574. module_exit(kvmppc_book3s_hv_exit);