common.c 27 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153
  1. #include <linux/init.h>
  2. #include <linux/kernel.h>
  3. #include <linux/sched.h>
  4. #include <linux/string.h>
  5. #include <linux/bootmem.h>
  6. #include <linux/bitops.h>
  7. #include <linux/module.h>
  8. #include <linux/kgdb.h>
  9. #include <linux/topology.h>
  10. #include <linux/delay.h>
  11. #include <linux/smp.h>
  12. #include <linux/percpu.h>
  13. #include <asm/i387.h>
  14. #include <asm/msr.h>
  15. #include <asm/io.h>
  16. #include <asm/linkage.h>
  17. #include <asm/mmu_context.h>
  18. #include <asm/mtrr.h>
  19. #include <asm/mce.h>
  20. #include <asm/pat.h>
  21. #include <asm/asm.h>
  22. #include <asm/numa.h>
  23. #ifdef CONFIG_X86_LOCAL_APIC
  24. #include <asm/mpspec.h>
  25. #include <asm/apic.h>
  26. #include <mach_apic.h>
  27. #include <asm/genapic.h>
  28. #endif
  29. #include <asm/pda.h>
  30. #include <asm/pgtable.h>
  31. #include <asm/processor.h>
  32. #include <asm/desc.h>
  33. #include <asm/atomic.h>
  34. #include <asm/proto.h>
  35. #include <asm/sections.h>
  36. #include <asm/setup.h>
  37. #include "cpu.h"
  38. static struct cpu_dev *this_cpu __cpuinitdata;
  39. #ifdef CONFIG_X86_64
  40. /* We need valid kernel segments for data and code in long mode too
  41. * IRET will check the segment types kkeil 2000/10/28
  42. * Also sysret mandates a special GDT layout
  43. */
  44. /* The TLS descriptors are currently at a different place compared to i386.
  45. Hopefully nobody expects them at a fixed place (Wine?) */
  46. DEFINE_PER_CPU(struct gdt_page, gdt_page) = { .gdt = {
  47. [GDT_ENTRY_KERNEL32_CS] = { { { 0x0000ffff, 0x00cf9b00 } } },
  48. [GDT_ENTRY_KERNEL_CS] = { { { 0x0000ffff, 0x00af9b00 } } },
  49. [GDT_ENTRY_KERNEL_DS] = { { { 0x0000ffff, 0x00cf9300 } } },
  50. [GDT_ENTRY_DEFAULT_USER32_CS] = { { { 0x0000ffff, 0x00cffb00 } } },
  51. [GDT_ENTRY_DEFAULT_USER_DS] = { { { 0x0000ffff, 0x00cff300 } } },
  52. [GDT_ENTRY_DEFAULT_USER_CS] = { { { 0x0000ffff, 0x00affb00 } } },
  53. } };
  54. #else
  55. DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
  56. [GDT_ENTRY_KERNEL_CS] = { { { 0x0000ffff, 0x00cf9a00 } } },
  57. [GDT_ENTRY_KERNEL_DS] = { { { 0x0000ffff, 0x00cf9200 } } },
  58. [GDT_ENTRY_DEFAULT_USER_CS] = { { { 0x0000ffff, 0x00cffa00 } } },
  59. [GDT_ENTRY_DEFAULT_USER_DS] = { { { 0x0000ffff, 0x00cff200 } } },
  60. /*
  61. * Segments used for calling PnP BIOS have byte granularity.
  62. * They code segments and data segments have fixed 64k limits,
  63. * the transfer segment sizes are set at run time.
  64. */
  65. /* 32-bit code */
  66. [GDT_ENTRY_PNPBIOS_CS32] = { { { 0x0000ffff, 0x00409a00 } } },
  67. /* 16-bit code */
  68. [GDT_ENTRY_PNPBIOS_CS16] = { { { 0x0000ffff, 0x00009a00 } } },
  69. /* 16-bit data */
  70. [GDT_ENTRY_PNPBIOS_DS] = { { { 0x0000ffff, 0x00009200 } } },
  71. /* 16-bit data */
  72. [GDT_ENTRY_PNPBIOS_TS1] = { { { 0x00000000, 0x00009200 } } },
  73. /* 16-bit data */
  74. [GDT_ENTRY_PNPBIOS_TS2] = { { { 0x00000000, 0x00009200 } } },
  75. /*
  76. * The APM segments have byte granularity and their bases
  77. * are set at run time. All have 64k limits.
  78. */
  79. /* 32-bit code */
  80. [GDT_ENTRY_APMBIOS_BASE] = { { { 0x0000ffff, 0x00409a00 } } },
  81. /* 16-bit code */
  82. [GDT_ENTRY_APMBIOS_BASE+1] = { { { 0x0000ffff, 0x00009a00 } } },
  83. /* data */
  84. [GDT_ENTRY_APMBIOS_BASE+2] = { { { 0x0000ffff, 0x00409200 } } },
  85. [GDT_ENTRY_ESPFIX_SS] = { { { 0x00000000, 0x00c09200 } } },
  86. [GDT_ENTRY_PERCPU] = { { { 0x00000000, 0x00000000 } } },
  87. } };
  88. #endif
  89. EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
  90. #ifdef CONFIG_X86_32
  91. static int cachesize_override __cpuinitdata = -1;
  92. static int disable_x86_serial_nr __cpuinitdata = 1;
  93. static int __init cachesize_setup(char *str)
  94. {
  95. get_option(&str, &cachesize_override);
  96. return 1;
  97. }
  98. __setup("cachesize=", cachesize_setup);
  99. /*
  100. * Naming convention should be: <Name> [(<Codename>)]
  101. * This table only is used unless init_<vendor>() below doesn't set it;
  102. * in particular, if CPUID levels 0x80000002..4 are supported, this isn't used
  103. *
  104. */
  105. /* Look up CPU names by table lookup. */
  106. static char __cpuinit *table_lookup_model(struct cpuinfo_x86 *c)
  107. {
  108. struct cpu_model_info *info;
  109. if (c->x86_model >= 16)
  110. return NULL; /* Range check */
  111. if (!this_cpu)
  112. return NULL;
  113. info = this_cpu->c_models;
  114. while (info && info->family) {
  115. if (info->family == c->x86)
  116. return info->model_names[c->x86_model];
  117. info++;
  118. }
  119. return NULL; /* Not found */
  120. }
  121. static int __init x86_fxsr_setup(char *s)
  122. {
  123. setup_clear_cpu_cap(X86_FEATURE_FXSR);
  124. setup_clear_cpu_cap(X86_FEATURE_XMM);
  125. return 1;
  126. }
  127. __setup("nofxsr", x86_fxsr_setup);
  128. static int __init x86_sep_setup(char *s)
  129. {
  130. setup_clear_cpu_cap(X86_FEATURE_SEP);
  131. return 1;
  132. }
  133. __setup("nosep", x86_sep_setup);
  134. /* Standard macro to see if a specific flag is changeable */
  135. static inline int flag_is_changeable_p(u32 flag)
  136. {
  137. u32 f1, f2;
  138. asm("pushfl\n\t"
  139. "pushfl\n\t"
  140. "popl %0\n\t"
  141. "movl %0,%1\n\t"
  142. "xorl %2,%0\n\t"
  143. "pushl %0\n\t"
  144. "popfl\n\t"
  145. "pushfl\n\t"
  146. "popl %0\n\t"
  147. "popfl\n\t"
  148. : "=&r" (f1), "=&r" (f2)
  149. : "ir" (flag));
  150. return ((f1^f2) & flag) != 0;
  151. }
  152. /* Probe for the CPUID instruction */
  153. static int __cpuinit have_cpuid_p(void)
  154. {
  155. return flag_is_changeable_p(X86_EFLAGS_ID);
  156. }
  157. static void __cpuinit squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
  158. {
  159. if (cpu_has(c, X86_FEATURE_PN) && disable_x86_serial_nr) {
  160. /* Disable processor serial number */
  161. unsigned long lo, hi;
  162. rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
  163. lo |= 0x200000;
  164. wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
  165. printk(KERN_NOTICE "CPU serial number disabled.\n");
  166. clear_cpu_cap(c, X86_FEATURE_PN);
  167. /* Disabling the serial number may affect the cpuid level */
  168. c->cpuid_level = cpuid_eax(0);
  169. }
  170. }
  171. static int __init x86_serial_nr_setup(char *s)
  172. {
  173. disable_x86_serial_nr = 0;
  174. return 1;
  175. }
  176. __setup("serialnumber", x86_serial_nr_setup);
  177. #else
  178. /* Probe for the CPUID instruction */
  179. static inline int have_cpuid_p(void)
  180. {
  181. return 1;
  182. }
  183. #endif
  184. __u32 cleared_cpu_caps[NCAPINTS] __cpuinitdata;
  185. /* Current gdt points %fs at the "master" per-cpu area: after this,
  186. * it's on the real one. */
  187. void switch_to_new_gdt(void)
  188. {
  189. struct desc_ptr gdt_descr;
  190. gdt_descr.address = (long)get_cpu_gdt_table(smp_processor_id());
  191. gdt_descr.size = GDT_SIZE - 1;
  192. load_gdt(&gdt_descr);
  193. #ifdef CONFIG_X86_32
  194. asm("mov %0, %%fs" : : "r" (__KERNEL_PERCPU) : "memory");
  195. #endif
  196. }
  197. static struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
  198. static void __cpuinit default_init(struct cpuinfo_x86 *c)
  199. {
  200. #ifdef CONFIG_X86_64
  201. display_cacheinfo(c);
  202. #else
  203. /* Not much we can do here... */
  204. /* Check if at least it has cpuid */
  205. if (c->cpuid_level == -1) {
  206. /* No cpuid. It must be an ancient CPU */
  207. if (c->x86 == 4)
  208. strcpy(c->x86_model_id, "486");
  209. else if (c->x86 == 3)
  210. strcpy(c->x86_model_id, "386");
  211. }
  212. #endif
  213. }
  214. static struct cpu_dev __cpuinitdata default_cpu = {
  215. .c_init = default_init,
  216. .c_vendor = "Unknown",
  217. .c_x86_vendor = X86_VENDOR_UNKNOWN,
  218. };
  219. int __cpuinit get_model_name(struct cpuinfo_x86 *c)
  220. {
  221. unsigned int *v;
  222. char *p, *q;
  223. if (c->extended_cpuid_level < 0x80000004)
  224. return 0;
  225. v = (unsigned int *) c->x86_model_id;
  226. cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
  227. cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
  228. cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
  229. c->x86_model_id[48] = 0;
  230. /* Intel chips right-justify this string for some dumb reason;
  231. undo that brain damage */
  232. p = q = &c->x86_model_id[0];
  233. while (*p == ' ')
  234. p++;
  235. if (p != q) {
  236. while (*p)
  237. *q++ = *p++;
  238. while (q <= &c->x86_model_id[48])
  239. *q++ = '\0'; /* Zero-pad the rest */
  240. }
  241. return 1;
  242. }
  243. void __cpuinit display_cacheinfo(struct cpuinfo_x86 *c)
  244. {
  245. unsigned int n, dummy, ebx, ecx, edx, l2size;
  246. n = c->extended_cpuid_level;
  247. if (n >= 0x80000005) {
  248. cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
  249. printk(KERN_INFO "CPU: L1 I Cache: %dK (%d bytes/line), D cache %dK (%d bytes/line)\n",
  250. edx>>24, edx&0xFF, ecx>>24, ecx&0xFF);
  251. c->x86_cache_size = (ecx>>24) + (edx>>24);
  252. #ifdef CONFIG_X86_64
  253. /* On K8 L1 TLB is inclusive, so don't count it */
  254. c->x86_tlbsize = 0;
  255. #endif
  256. }
  257. if (n < 0x80000006) /* Some chips just has a large L1. */
  258. return;
  259. cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
  260. l2size = ecx >> 16;
  261. #ifdef CONFIG_X86_64
  262. c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
  263. #else
  264. /* do processor-specific cache resizing */
  265. if (this_cpu->c_size_cache)
  266. l2size = this_cpu->c_size_cache(c, l2size);
  267. /* Allow user to override all this if necessary. */
  268. if (cachesize_override != -1)
  269. l2size = cachesize_override;
  270. if (l2size == 0)
  271. return; /* Again, no L2 cache is possible */
  272. #endif
  273. c->x86_cache_size = l2size;
  274. printk(KERN_INFO "CPU: L2 Cache: %dK (%d bytes/line)\n",
  275. l2size, ecx & 0xFF);
  276. }
  277. void __cpuinit detect_ht(struct cpuinfo_x86 *c)
  278. {
  279. #ifdef CONFIG_X86_HT
  280. u32 eax, ebx, ecx, edx;
  281. int index_msb, core_bits;
  282. if (!cpu_has(c, X86_FEATURE_HT))
  283. return;
  284. if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
  285. goto out;
  286. if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
  287. return;
  288. cpuid(1, &eax, &ebx, &ecx, &edx);
  289. smp_num_siblings = (ebx & 0xff0000) >> 16;
  290. if (smp_num_siblings == 1) {
  291. printk(KERN_INFO "CPU: Hyper-Threading is disabled\n");
  292. } else if (smp_num_siblings > 1) {
  293. if (smp_num_siblings > NR_CPUS) {
  294. printk(KERN_WARNING "CPU: Unsupported number of siblings %d",
  295. smp_num_siblings);
  296. smp_num_siblings = 1;
  297. return;
  298. }
  299. index_msb = get_count_order(smp_num_siblings);
  300. #ifdef CONFIG_X86_64
  301. c->phys_proc_id = phys_pkg_id(index_msb);
  302. #else
  303. c->phys_proc_id = phys_pkg_id(c->initial_apicid, index_msb);
  304. #endif
  305. smp_num_siblings = smp_num_siblings / c->x86_max_cores;
  306. index_msb = get_count_order(smp_num_siblings);
  307. core_bits = get_count_order(c->x86_max_cores);
  308. #ifdef CONFIG_X86_64
  309. c->cpu_core_id = phys_pkg_id(index_msb) &
  310. ((1 << core_bits) - 1);
  311. #else
  312. c->cpu_core_id = phys_pkg_id(c->initial_apicid, index_msb) &
  313. ((1 << core_bits) - 1);
  314. #endif
  315. }
  316. out:
  317. if ((c->x86_max_cores * smp_num_siblings) > 1) {
  318. printk(KERN_INFO "CPU: Physical Processor ID: %d\n",
  319. c->phys_proc_id);
  320. printk(KERN_INFO "CPU: Processor Core ID: %d\n",
  321. c->cpu_core_id);
  322. }
  323. #endif
  324. }
  325. static void __cpuinit get_cpu_vendor(struct cpuinfo_x86 *c)
  326. {
  327. char *v = c->x86_vendor_id;
  328. int i;
  329. static int printed;
  330. for (i = 0; i < X86_VENDOR_NUM; i++) {
  331. if (!cpu_devs[i])
  332. break;
  333. if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
  334. (cpu_devs[i]->c_ident[1] &&
  335. !strcmp(v, cpu_devs[i]->c_ident[1]))) {
  336. this_cpu = cpu_devs[i];
  337. c->x86_vendor = this_cpu->c_x86_vendor;
  338. return;
  339. }
  340. }
  341. if (!printed) {
  342. printed++;
  343. printk(KERN_ERR "CPU: Vendor unknown, using generic init.\n");
  344. printk(KERN_ERR "CPU: Your system may be unstable.\n");
  345. }
  346. c->x86_vendor = X86_VENDOR_UNKNOWN;
  347. this_cpu = &default_cpu;
  348. }
  349. void __cpuinit cpu_detect(struct cpuinfo_x86 *c)
  350. {
  351. /* Get vendor name */
  352. cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
  353. (unsigned int *)&c->x86_vendor_id[0],
  354. (unsigned int *)&c->x86_vendor_id[8],
  355. (unsigned int *)&c->x86_vendor_id[4]);
  356. c->x86 = 4;
  357. /* Intel-defined flags: level 0x00000001 */
  358. if (c->cpuid_level >= 0x00000001) {
  359. u32 junk, tfms, cap0, misc;
  360. cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
  361. c->x86 = (tfms >> 8) & 0xf;
  362. c->x86_model = (tfms >> 4) & 0xf;
  363. c->x86_mask = tfms & 0xf;
  364. if (c->x86 == 0xf)
  365. c->x86 += (tfms >> 20) & 0xff;
  366. if (c->x86 >= 0x6)
  367. c->x86_model += ((tfms >> 16) & 0xf) << 4;
  368. if (cap0 & (1<<19)) {
  369. c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
  370. c->x86_cache_alignment = c->x86_clflush_size;
  371. }
  372. }
  373. }
  374. static void __cpuinit get_cpu_cap(struct cpuinfo_x86 *c)
  375. {
  376. u32 tfms, xlvl;
  377. u32 ebx;
  378. /* Intel-defined flags: level 0x00000001 */
  379. if (c->cpuid_level >= 0x00000001) {
  380. u32 capability, excap;
  381. cpuid(0x00000001, &tfms, &ebx, &excap, &capability);
  382. c->x86_capability[0] = capability;
  383. c->x86_capability[4] = excap;
  384. }
  385. /* AMD-defined flags: level 0x80000001 */
  386. xlvl = cpuid_eax(0x80000000);
  387. c->extended_cpuid_level = xlvl;
  388. if ((xlvl & 0xffff0000) == 0x80000000) {
  389. if (xlvl >= 0x80000001) {
  390. c->x86_capability[1] = cpuid_edx(0x80000001);
  391. c->x86_capability[6] = cpuid_ecx(0x80000001);
  392. }
  393. }
  394. #ifdef CONFIG_X86_64
  395. /* Transmeta-defined flags: level 0x80860001 */
  396. xlvl = cpuid_eax(0x80860000);
  397. if ((xlvl & 0xffff0000) == 0x80860000) {
  398. /* Don't set x86_cpuid_level here for now to not confuse. */
  399. if (xlvl >= 0x80860001)
  400. c->x86_capability[2] = cpuid_edx(0x80860001);
  401. }
  402. if (c->extended_cpuid_level >= 0x80000007)
  403. c->x86_power = cpuid_edx(0x80000007);
  404. if (c->extended_cpuid_level >= 0x80000008) {
  405. u32 eax = cpuid_eax(0x80000008);
  406. c->x86_virt_bits = (eax >> 8) & 0xff;
  407. c->x86_phys_bits = eax & 0xff;
  408. }
  409. #endif
  410. }
  411. /*
  412. * Do minimum CPU detection early.
  413. * Fields really needed: vendor, cpuid_level, family, model, mask,
  414. * cache alignment.
  415. * The others are not touched to avoid unwanted side effects.
  416. *
  417. * WARNING: this function is only called on the BP. Don't add code here
  418. * that is supposed to run on all CPUs.
  419. */
  420. static void __init early_identify_cpu(struct cpuinfo_x86 *c)
  421. {
  422. c->x86_clflush_size = 32;
  423. c->x86_cache_alignment = c->x86_clflush_size;
  424. if (!have_cpuid_p())
  425. return;
  426. memset(&c->x86_capability, 0, sizeof c->x86_capability);
  427. c->extended_cpuid_level = 0;
  428. cpu_detect(c);
  429. get_cpu_vendor(c);
  430. get_cpu_cap(c);
  431. if (this_cpu->c_early_init)
  432. this_cpu->c_early_init(c);
  433. validate_pat_support(c);
  434. }
  435. void __init early_cpu_init(void)
  436. {
  437. struct cpu_dev **cdev;
  438. int count = 0;
  439. printk("KERNEL supported cpus:\n");
  440. for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
  441. struct cpu_dev *cpudev = *cdev;
  442. unsigned int j;
  443. if (count >= X86_VENDOR_NUM)
  444. break;
  445. cpu_devs[count] = cpudev;
  446. count++;
  447. for (j = 0; j < 2; j++) {
  448. if (!cpudev->c_ident[j])
  449. continue;
  450. printk(" %s %s\n", cpudev->c_vendor,
  451. cpudev->c_ident[j]);
  452. }
  453. }
  454. early_identify_cpu(&boot_cpu_data);
  455. }
  456. /*
  457. * The NOPL instruction is supposed to exist on all CPUs with
  458. * family >= 6, unfortunately, that's not true in practice because
  459. * of early VIA chips and (more importantly) broken virtualizers that
  460. * are not easy to detect. Hence, probe for it based on first
  461. * principles.
  462. */
  463. static void __cpuinit detect_nopl(struct cpuinfo_x86 *c)
  464. {
  465. const u32 nopl_signature = 0x888c53b1; /* Random number */
  466. u32 has_nopl = nopl_signature;
  467. clear_cpu_cap(c, X86_FEATURE_NOPL);
  468. if (c->x86 >= 6) {
  469. asm volatile("\n"
  470. "1: .byte 0x0f,0x1f,0xc0\n" /* nopl %eax */
  471. "2:\n"
  472. " .section .fixup,\"ax\"\n"
  473. "3: xor %0,%0\n"
  474. " jmp 2b\n"
  475. " .previous\n"
  476. _ASM_EXTABLE(1b,3b)
  477. : "+a" (has_nopl));
  478. if (has_nopl == nopl_signature)
  479. set_cpu_cap(c, X86_FEATURE_NOPL);
  480. }
  481. }
  482. static void __cpuinit generic_identify(struct cpuinfo_x86 *c)
  483. {
  484. if (!have_cpuid_p())
  485. return;
  486. c->extended_cpuid_level = 0;
  487. cpu_detect(c);
  488. get_cpu_vendor(c);
  489. get_cpu_cap(c);
  490. if (c->cpuid_level >= 0x00000001) {
  491. c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
  492. #ifdef CONFIG_X86_HT
  493. c->apicid = phys_pkg_id(c->initial_apicid, 0);
  494. c->phys_proc_id = c->initial_apicid;
  495. #else
  496. c->apicid = c->initial_apicid;
  497. #endif
  498. }
  499. if (c->extended_cpuid_level >= 0x80000004)
  500. get_model_name(c); /* Default name */
  501. init_scattered_cpuid_features(c);
  502. detect_nopl(c);
  503. }
  504. /*
  505. * This does the hard work of actually picking apart the CPU stuff...
  506. */
  507. static void __cpuinit identify_cpu(struct cpuinfo_x86 *c)
  508. {
  509. int i;
  510. c->loops_per_jiffy = loops_per_jiffy;
  511. c->x86_cache_size = -1;
  512. c->x86_vendor = X86_VENDOR_UNKNOWN;
  513. c->cpuid_level = -1; /* CPUID not detected */
  514. c->x86_model = c->x86_mask = 0; /* So far unknown... */
  515. c->x86_vendor_id[0] = '\0'; /* Unset */
  516. c->x86_model_id[0] = '\0'; /* Unset */
  517. c->x86_max_cores = 1;
  518. c->x86_clflush_size = 32;
  519. memset(&c->x86_capability, 0, sizeof c->x86_capability);
  520. if (!have_cpuid_p()) {
  521. /*
  522. * First of all, decide if this is a 486 or higher
  523. * It's a 486 if we can modify the AC flag
  524. */
  525. if (flag_is_changeable_p(X86_EFLAGS_AC))
  526. c->x86 = 4;
  527. else
  528. c->x86 = 3;
  529. }
  530. generic_identify(c);
  531. if (this_cpu->c_identify)
  532. this_cpu->c_identify(c);
  533. /*
  534. * Vendor-specific initialization. In this section we
  535. * canonicalize the feature flags, meaning if there are
  536. * features a certain CPU supports which CPUID doesn't
  537. * tell us, CPUID claiming incorrect flags, or other bugs,
  538. * we handle them here.
  539. *
  540. * At the end of this section, c->x86_capability better
  541. * indicate the features this CPU genuinely supports!
  542. */
  543. if (this_cpu->c_init)
  544. this_cpu->c_init(c);
  545. /* Disable the PN if appropriate */
  546. squash_the_stupid_serial_number(c);
  547. /*
  548. * The vendor-specific functions might have changed features. Now
  549. * we do "generic changes."
  550. */
  551. /* If the model name is still unset, do table lookup. */
  552. if (!c->x86_model_id[0]) {
  553. char *p;
  554. p = table_lookup_model(c);
  555. if (p)
  556. strcpy(c->x86_model_id, p);
  557. else
  558. /* Last resort... */
  559. sprintf(c->x86_model_id, "%02x/%02x",
  560. c->x86, c->x86_model);
  561. }
  562. /*
  563. * On SMP, boot_cpu_data holds the common feature set between
  564. * all CPUs; so make sure that we indicate which features are
  565. * common between the CPUs. The first time this routine gets
  566. * executed, c == &boot_cpu_data.
  567. */
  568. if (c != &boot_cpu_data) {
  569. /* AND the already accumulated flags with these */
  570. for (i = 0; i < NCAPINTS; i++)
  571. boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
  572. }
  573. /* Clear all flags overriden by options */
  574. for (i = 0; i < NCAPINTS; i++)
  575. c->x86_capability[i] &= ~cleared_cpu_caps[i];
  576. /* Init Machine Check Exception if available. */
  577. mcheck_init(c);
  578. select_idle_routine(c);
  579. }
  580. void __init identify_boot_cpu(void)
  581. {
  582. identify_cpu(&boot_cpu_data);
  583. sysenter_setup();
  584. enable_sep_cpu();
  585. }
  586. void __cpuinit identify_secondary_cpu(struct cpuinfo_x86 *c)
  587. {
  588. BUG_ON(c == &boot_cpu_data);
  589. identify_cpu(c);
  590. enable_sep_cpu();
  591. mtrr_ap_init();
  592. }
  593. struct msr_range {
  594. unsigned min;
  595. unsigned max;
  596. };
  597. static struct msr_range msr_range_array[] __cpuinitdata = {
  598. { 0x00000000, 0x00000418},
  599. { 0xc0000000, 0xc000040b},
  600. { 0xc0010000, 0xc0010142},
  601. { 0xc0011000, 0xc001103b},
  602. };
  603. static void __cpuinit print_cpu_msr(void)
  604. {
  605. unsigned index;
  606. u64 val;
  607. int i;
  608. unsigned index_min, index_max;
  609. for (i = 0; i < ARRAY_SIZE(msr_range_array); i++) {
  610. index_min = msr_range_array[i].min;
  611. index_max = msr_range_array[i].max;
  612. for (index = index_min; index < index_max; index++) {
  613. if (rdmsrl_amd_safe(index, &val))
  614. continue;
  615. printk(KERN_INFO " MSR%08x: %016llx\n", index, val);
  616. }
  617. }
  618. }
  619. static int show_msr __cpuinitdata;
  620. static __init int setup_show_msr(char *arg)
  621. {
  622. int num;
  623. get_option(&arg, &num);
  624. if (num > 0)
  625. show_msr = num;
  626. return 1;
  627. }
  628. __setup("show_msr=", setup_show_msr);
  629. static __init int setup_noclflush(char *arg)
  630. {
  631. setup_clear_cpu_cap(X86_FEATURE_CLFLSH);
  632. return 1;
  633. }
  634. __setup("noclflush", setup_noclflush);
  635. void __cpuinit print_cpu_info(struct cpuinfo_x86 *c)
  636. {
  637. char *vendor = NULL;
  638. if (c->x86_vendor < X86_VENDOR_NUM)
  639. vendor = this_cpu->c_vendor;
  640. else if (c->cpuid_level >= 0)
  641. vendor = c->x86_vendor_id;
  642. if (vendor && strncmp(c->x86_model_id, vendor, strlen(vendor)))
  643. printk(KERN_CONT "%s ", vendor);
  644. if (c->x86_model_id[0])
  645. printk(KERN_CONT "%s", c->x86_model_id);
  646. else
  647. printk(KERN_CONT "%d86", c->x86);
  648. if (c->x86_mask || c->cpuid_level >= 0)
  649. printk(KERN_CONT " stepping %02x\n", c->x86_mask);
  650. else
  651. printk(KERN_CONT "\n");
  652. #ifdef CONFIG_SMP
  653. if (c->cpu_index < show_msr)
  654. print_cpu_msr();
  655. #else
  656. if (show_msr)
  657. print_cpu_msr();
  658. #endif
  659. }
  660. static __init int setup_disablecpuid(char *arg)
  661. {
  662. int bit;
  663. if (get_option(&arg, &bit) && bit < NCAPINTS*32)
  664. setup_clear_cpu_cap(bit);
  665. else
  666. return 0;
  667. return 1;
  668. }
  669. __setup("clearcpuid=", setup_disablecpuid);
  670. cpumask_t cpu_initialized __cpuinitdata = CPU_MASK_NONE;
  671. #ifdef CONFIG_X86_64
  672. struct x8664_pda **_cpu_pda __read_mostly;
  673. EXPORT_SYMBOL(_cpu_pda);
  674. struct desc_ptr idt_descr = { 256 * 16 - 1, (unsigned long) idt_table };
  675. char boot_cpu_stack[IRQSTACKSIZE] __page_aligned_bss;
  676. unsigned long __supported_pte_mask __read_mostly = ~0UL;
  677. EXPORT_SYMBOL_GPL(__supported_pte_mask);
  678. static int do_not_nx __cpuinitdata;
  679. /* noexec=on|off
  680. Control non executable mappings for 64bit processes.
  681. on Enable(default)
  682. off Disable
  683. */
  684. static int __init nonx_setup(char *str)
  685. {
  686. if (!str)
  687. return -EINVAL;
  688. if (!strncmp(str, "on", 2)) {
  689. __supported_pte_mask |= _PAGE_NX;
  690. do_not_nx = 0;
  691. } else if (!strncmp(str, "off", 3)) {
  692. do_not_nx = 1;
  693. __supported_pte_mask &= ~_PAGE_NX;
  694. }
  695. return 0;
  696. }
  697. early_param("noexec", nonx_setup);
  698. int force_personality32;
  699. /* noexec32=on|off
  700. Control non executable heap for 32bit processes.
  701. To control the stack too use noexec=off
  702. on PROT_READ does not imply PROT_EXEC for 32bit processes (default)
  703. off PROT_READ implies PROT_EXEC
  704. */
  705. static int __init nonx32_setup(char *str)
  706. {
  707. if (!strcmp(str, "on"))
  708. force_personality32 &= ~READ_IMPLIES_EXEC;
  709. else if (!strcmp(str, "off"))
  710. force_personality32 |= READ_IMPLIES_EXEC;
  711. return 1;
  712. }
  713. __setup("noexec32=", nonx32_setup);
  714. void pda_init(int cpu)
  715. {
  716. struct x8664_pda *pda = cpu_pda(cpu);
  717. /* Setup up data that may be needed in __get_free_pages early */
  718. loadsegment(fs, 0);
  719. loadsegment(gs, 0);
  720. /* Memory clobbers used to order PDA accessed */
  721. mb();
  722. wrmsrl(MSR_GS_BASE, pda);
  723. mb();
  724. pda->cpunumber = cpu;
  725. pda->irqcount = -1;
  726. pda->kernelstack = (unsigned long)stack_thread_info() -
  727. PDA_STACKOFFSET + THREAD_SIZE;
  728. pda->active_mm = &init_mm;
  729. pda->mmu_state = 0;
  730. if (cpu == 0) {
  731. /* others are initialized in smpboot.c */
  732. pda->pcurrent = &init_task;
  733. pda->irqstackptr = boot_cpu_stack;
  734. pda->irqstackptr += IRQSTACKSIZE - 64;
  735. } else {
  736. if (!pda->irqstackptr) {
  737. pda->irqstackptr = (char *)
  738. __get_free_pages(GFP_ATOMIC, IRQSTACK_ORDER);
  739. if (!pda->irqstackptr)
  740. panic("cannot allocate irqstack for cpu %d",
  741. cpu);
  742. pda->irqstackptr += IRQSTACKSIZE - 64;
  743. }
  744. if (pda->nodenumber == 0 && cpu_to_node(cpu) != NUMA_NO_NODE)
  745. pda->nodenumber = cpu_to_node(cpu);
  746. }
  747. }
  748. char boot_exception_stacks[(N_EXCEPTION_STACKS - 1) * EXCEPTION_STKSZ +
  749. DEBUG_STKSZ] __page_aligned_bss;
  750. extern asmlinkage void ignore_sysret(void);
  751. /* May not be marked __init: used by software suspend */
  752. void syscall_init(void)
  753. {
  754. /*
  755. * LSTAR and STAR live in a bit strange symbiosis.
  756. * They both write to the same internal register. STAR allows to
  757. * set CS/DS but only a 32bit target. LSTAR sets the 64bit rip.
  758. */
  759. wrmsrl(MSR_STAR, ((u64)__USER32_CS)<<48 | ((u64)__KERNEL_CS)<<32);
  760. wrmsrl(MSR_LSTAR, system_call);
  761. wrmsrl(MSR_CSTAR, ignore_sysret);
  762. #ifdef CONFIG_IA32_EMULATION
  763. syscall32_cpu_init();
  764. #endif
  765. /* Flags to clear on syscall */
  766. wrmsrl(MSR_SYSCALL_MASK,
  767. X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|X86_EFLAGS_IOPL);
  768. }
  769. void __cpuinit check_efer(void)
  770. {
  771. unsigned long efer;
  772. rdmsrl(MSR_EFER, efer);
  773. if (!(efer & EFER_NX) || do_not_nx)
  774. __supported_pte_mask &= ~_PAGE_NX;
  775. }
  776. unsigned long kernel_eflags;
  777. /*
  778. * Copies of the original ist values from the tss are only accessed during
  779. * debugging, no special alignment required.
  780. */
  781. DEFINE_PER_CPU(struct orig_ist, orig_ist);
  782. #else
  783. /* Make sure %fs is initialized properly in idle threads */
  784. struct pt_regs * __cpuinit idle_regs(struct pt_regs *regs)
  785. {
  786. memset(regs, 0, sizeof(struct pt_regs));
  787. regs->fs = __KERNEL_PERCPU;
  788. return regs;
  789. }
  790. #endif
  791. /*
  792. * cpu_init() initializes state that is per-CPU. Some data is already
  793. * initialized (naturally) in the bootstrap process, such as the GDT
  794. * and IDT. We reload them nevertheless, this function acts as a
  795. * 'CPU state barrier', nothing should get across.
  796. * A lot of state is already set up in PDA init for 64 bit
  797. */
  798. #ifdef CONFIG_X86_64
  799. void __cpuinit cpu_init(void)
  800. {
  801. int cpu = stack_smp_processor_id();
  802. struct tss_struct *t = &per_cpu(init_tss, cpu);
  803. struct orig_ist *orig_ist = &per_cpu(orig_ist, cpu);
  804. unsigned long v;
  805. char *estacks = NULL;
  806. struct task_struct *me;
  807. int i;
  808. /* CPU 0 is initialised in head64.c */
  809. if (cpu != 0)
  810. pda_init(cpu);
  811. else
  812. estacks = boot_exception_stacks;
  813. me = current;
  814. if (cpu_test_and_set(cpu, cpu_initialized))
  815. panic("CPU#%d already initialized!\n", cpu);
  816. printk(KERN_INFO "Initializing CPU#%d\n", cpu);
  817. clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
  818. /*
  819. * Initialize the per-CPU GDT with the boot GDT,
  820. * and set up the GDT descriptor:
  821. */
  822. switch_to_new_gdt();
  823. load_idt((const struct desc_ptr *)&idt_descr);
  824. memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
  825. syscall_init();
  826. wrmsrl(MSR_FS_BASE, 0);
  827. wrmsrl(MSR_KERNEL_GS_BASE, 0);
  828. barrier();
  829. check_efer();
  830. if (cpu != 0 && x2apic)
  831. enable_x2apic();
  832. /*
  833. * set up and load the per-CPU TSS
  834. */
  835. if (!orig_ist->ist[0]) {
  836. static const unsigned int order[N_EXCEPTION_STACKS] = {
  837. [0 ... N_EXCEPTION_STACKS - 1] = EXCEPTION_STACK_ORDER,
  838. [DEBUG_STACK - 1] = DEBUG_STACK_ORDER
  839. };
  840. for (v = 0; v < N_EXCEPTION_STACKS; v++) {
  841. if (cpu) {
  842. estacks = (char *)__get_free_pages(GFP_ATOMIC, order[v]);
  843. if (!estacks)
  844. panic("Cannot allocate exception "
  845. "stack %ld %d\n", v, cpu);
  846. }
  847. estacks += PAGE_SIZE << order[v];
  848. orig_ist->ist[v] = t->x86_tss.ist[v] =
  849. (unsigned long)estacks;
  850. }
  851. }
  852. t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
  853. /*
  854. * <= is required because the CPU will access up to
  855. * 8 bits beyond the end of the IO permission bitmap.
  856. */
  857. for (i = 0; i <= IO_BITMAP_LONGS; i++)
  858. t->io_bitmap[i] = ~0UL;
  859. atomic_inc(&init_mm.mm_count);
  860. me->active_mm = &init_mm;
  861. if (me->mm)
  862. BUG();
  863. enter_lazy_tlb(&init_mm, me);
  864. load_sp0(t, &current->thread);
  865. set_tss_desc(cpu, t);
  866. load_TR_desc();
  867. load_LDT(&init_mm.context);
  868. #ifdef CONFIG_KGDB
  869. /*
  870. * If the kgdb is connected no debug regs should be altered. This
  871. * is only applicable when KGDB and a KGDB I/O module are built
  872. * into the kernel and you are using early debugging with
  873. * kgdbwait. KGDB will control the kernel HW breakpoint registers.
  874. */
  875. if (kgdb_connected && arch_kgdb_ops.correct_hw_break)
  876. arch_kgdb_ops.correct_hw_break();
  877. else {
  878. #endif
  879. /*
  880. * Clear all 6 debug registers:
  881. */
  882. set_debugreg(0UL, 0);
  883. set_debugreg(0UL, 1);
  884. set_debugreg(0UL, 2);
  885. set_debugreg(0UL, 3);
  886. set_debugreg(0UL, 6);
  887. set_debugreg(0UL, 7);
  888. #ifdef CONFIG_KGDB
  889. /* If the kgdb is connected no debug regs should be altered. */
  890. }
  891. #endif
  892. fpu_init();
  893. raw_local_save_flags(kernel_eflags);
  894. if (is_uv_system())
  895. uv_cpu_init();
  896. }
  897. #else
  898. void __cpuinit cpu_init(void)
  899. {
  900. int cpu = smp_processor_id();
  901. struct task_struct *curr = current;
  902. struct tss_struct *t = &per_cpu(init_tss, cpu);
  903. struct thread_struct *thread = &curr->thread;
  904. if (cpu_test_and_set(cpu, cpu_initialized)) {
  905. printk(KERN_WARNING "CPU#%d already initialized!\n", cpu);
  906. for (;;) local_irq_enable();
  907. }
  908. printk(KERN_INFO "Initializing CPU#%d\n", cpu);
  909. if (cpu_has_vme || cpu_has_tsc || cpu_has_de)
  910. clear_in_cr4(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
  911. load_idt(&idt_descr);
  912. switch_to_new_gdt();
  913. /*
  914. * Set up and load the per-CPU TSS and LDT
  915. */
  916. atomic_inc(&init_mm.mm_count);
  917. curr->active_mm = &init_mm;
  918. if (curr->mm)
  919. BUG();
  920. enter_lazy_tlb(&init_mm, curr);
  921. load_sp0(t, thread);
  922. set_tss_desc(cpu, t);
  923. load_TR_desc();
  924. load_LDT(&init_mm.context);
  925. #ifdef CONFIG_DOUBLEFAULT
  926. /* Set up doublefault TSS pointer in the GDT */
  927. __set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
  928. #endif
  929. /* Clear %gs. */
  930. asm volatile ("mov %0, %%gs" : : "r" (0));
  931. /* Clear all 6 debug registers: */
  932. set_debugreg(0, 0);
  933. set_debugreg(0, 1);
  934. set_debugreg(0, 2);
  935. set_debugreg(0, 3);
  936. set_debugreg(0, 6);
  937. set_debugreg(0, 7);
  938. /*
  939. * Force FPU initialization:
  940. */
  941. if (cpu_has_xsave)
  942. current_thread_info()->status = TS_XSAVE;
  943. else
  944. current_thread_info()->status = 0;
  945. clear_used_math();
  946. mxcsr_feature_mask_init();
  947. /*
  948. * Boot processor to setup the FP and extended state context info.
  949. */
  950. if (!smp_processor_id())
  951. init_thread_xstate();
  952. xsave_init();
  953. }
  954. #ifdef CONFIG_HOTPLUG_CPU
  955. void __cpuinit cpu_uninit(void)
  956. {
  957. int cpu = raw_smp_processor_id();
  958. cpu_clear(cpu, cpu_initialized);
  959. /* lazy TLB state */
  960. per_cpu(cpu_tlbstate, cpu).state = 0;
  961. per_cpu(cpu_tlbstate, cpu).active_mm = &init_mm;
  962. }
  963. #endif
  964. #endif