dmaengine.h 33 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027
  1. /*
  2. * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or modify it
  5. * under the terms of the GNU General Public License as published by the Free
  6. * Software Foundation; either version 2 of the License, or (at your option)
  7. * any later version.
  8. *
  9. * This program is distributed in the hope that it will be useful, but WITHOUT
  10. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  12. * more details.
  13. *
  14. * You should have received a copy of the GNU General Public License along with
  15. * this program; if not, write to the Free Software Foundation, Inc., 59
  16. * Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  17. *
  18. * The full GNU General Public License is included in this distribution in the
  19. * file called COPYING.
  20. */
  21. #ifndef LINUX_DMAENGINE_H
  22. #define LINUX_DMAENGINE_H
  23. #include <linux/device.h>
  24. #include <linux/uio.h>
  25. #include <linux/bug.h>
  26. #include <linux/scatterlist.h>
  27. #include <linux/bitmap.h>
  28. #include <linux/types.h>
  29. #include <asm/page.h>
  30. /**
  31. * typedef dma_cookie_t - an opaque DMA cookie
  32. *
  33. * if dma_cookie_t is >0 it's a DMA request cookie, <0 it's an error code
  34. */
  35. typedef s32 dma_cookie_t;
  36. #define DMA_MIN_COOKIE 1
  37. #define DMA_MAX_COOKIE INT_MAX
  38. #define dma_submit_error(cookie) ((cookie) < 0 ? 1 : 0)
  39. /**
  40. * enum dma_status - DMA transaction status
  41. * @DMA_SUCCESS: transaction completed successfully
  42. * @DMA_IN_PROGRESS: transaction not yet processed
  43. * @DMA_PAUSED: transaction is paused
  44. * @DMA_ERROR: transaction failed
  45. */
  46. enum dma_status {
  47. DMA_SUCCESS,
  48. DMA_IN_PROGRESS,
  49. DMA_PAUSED,
  50. DMA_ERROR,
  51. };
  52. /**
  53. * enum dma_transaction_type - DMA transaction types/indexes
  54. *
  55. * Note: The DMA_ASYNC_TX capability is not to be set by drivers. It is
  56. * automatically set as dma devices are registered.
  57. */
  58. enum dma_transaction_type {
  59. DMA_MEMCPY,
  60. DMA_XOR,
  61. DMA_PQ,
  62. DMA_XOR_VAL,
  63. DMA_PQ_VAL,
  64. DMA_MEMSET,
  65. DMA_INTERRUPT,
  66. DMA_SG,
  67. DMA_PRIVATE,
  68. DMA_ASYNC_TX,
  69. DMA_SLAVE,
  70. DMA_CYCLIC,
  71. DMA_INTERLEAVE,
  72. /* last transaction type for creation of the capabilities mask */
  73. DMA_TX_TYPE_END,
  74. };
  75. /**
  76. * enum dma_transfer_direction - dma transfer mode and direction indicator
  77. * @DMA_MEM_TO_MEM: Async/Memcpy mode
  78. * @DMA_MEM_TO_DEV: Slave mode & From Memory to Device
  79. * @DMA_DEV_TO_MEM: Slave mode & From Device to Memory
  80. * @DMA_DEV_TO_DEV: Slave mode & From Device to Device
  81. */
  82. enum dma_transfer_direction {
  83. DMA_MEM_TO_MEM,
  84. DMA_MEM_TO_DEV,
  85. DMA_DEV_TO_MEM,
  86. DMA_DEV_TO_DEV,
  87. DMA_TRANS_NONE,
  88. };
  89. /**
  90. * Interleaved Transfer Request
  91. * ----------------------------
  92. * A chunk is collection of contiguous bytes to be transfered.
  93. * The gap(in bytes) between two chunks is called inter-chunk-gap(ICG).
  94. * ICGs may or maynot change between chunks.
  95. * A FRAME is the smallest series of contiguous {chunk,icg} pairs,
  96. * that when repeated an integral number of times, specifies the transfer.
  97. * A transfer template is specification of a Frame, the number of times
  98. * it is to be repeated and other per-transfer attributes.
  99. *
  100. * Practically, a client driver would have ready a template for each
  101. * type of transfer it is going to need during its lifetime and
  102. * set only 'src_start' and 'dst_start' before submitting the requests.
  103. *
  104. *
  105. * | Frame-1 | Frame-2 | ~ | Frame-'numf' |
  106. * |====....==.===...=...|====....==.===...=...| ~ |====....==.===...=...|
  107. *
  108. * == Chunk size
  109. * ... ICG
  110. */
  111. /**
  112. * struct data_chunk - Element of scatter-gather list that makes a frame.
  113. * @size: Number of bytes to read from source.
  114. * size_dst := fn(op, size_src), so doesn't mean much for destination.
  115. * @icg: Number of bytes to jump after last src/dst address of this
  116. * chunk and before first src/dst address for next chunk.
  117. * Ignored for dst(assumed 0), if dst_inc is true and dst_sgl is false.
  118. * Ignored for src(assumed 0), if src_inc is true and src_sgl is false.
  119. */
  120. struct data_chunk {
  121. size_t size;
  122. size_t icg;
  123. };
  124. /**
  125. * struct dma_interleaved_template - Template to convey DMAC the transfer pattern
  126. * and attributes.
  127. * @src_start: Bus address of source for the first chunk.
  128. * @dst_start: Bus address of destination for the first chunk.
  129. * @dir: Specifies the type of Source and Destination.
  130. * @src_inc: If the source address increments after reading from it.
  131. * @dst_inc: If the destination address increments after writing to it.
  132. * @src_sgl: If the 'icg' of sgl[] applies to Source (scattered read).
  133. * Otherwise, source is read contiguously (icg ignored).
  134. * Ignored if src_inc is false.
  135. * @dst_sgl: If the 'icg' of sgl[] applies to Destination (scattered write).
  136. * Otherwise, destination is filled contiguously (icg ignored).
  137. * Ignored if dst_inc is false.
  138. * @numf: Number of frames in this template.
  139. * @frame_size: Number of chunks in a frame i.e, size of sgl[].
  140. * @sgl: Array of {chunk,icg} pairs that make up a frame.
  141. */
  142. struct dma_interleaved_template {
  143. dma_addr_t src_start;
  144. dma_addr_t dst_start;
  145. enum dma_transfer_direction dir;
  146. bool src_inc;
  147. bool dst_inc;
  148. bool src_sgl;
  149. bool dst_sgl;
  150. size_t numf;
  151. size_t frame_size;
  152. struct data_chunk sgl[0];
  153. };
  154. /**
  155. * enum dma_ctrl_flags - DMA flags to augment operation preparation,
  156. * control completion, and communicate status.
  157. * @DMA_PREP_INTERRUPT - trigger an interrupt (callback) upon completion of
  158. * this transaction
  159. * @DMA_CTRL_ACK - if clear, the descriptor cannot be reused until the client
  160. * acknowledges receipt, i.e. has has a chance to establish any dependency
  161. * chains
  162. * @DMA_COMPL_SKIP_SRC_UNMAP - set to disable dma-unmapping the source buffer(s)
  163. * @DMA_COMPL_SKIP_DEST_UNMAP - set to disable dma-unmapping the destination(s)
  164. * @DMA_COMPL_SRC_UNMAP_SINGLE - set to do the source dma-unmapping as single
  165. * (if not set, do the source dma-unmapping as page)
  166. * @DMA_COMPL_DEST_UNMAP_SINGLE - set to do the destination dma-unmapping as single
  167. * (if not set, do the destination dma-unmapping as page)
  168. * @DMA_PREP_PQ_DISABLE_P - prevent generation of P while generating Q
  169. * @DMA_PREP_PQ_DISABLE_Q - prevent generation of Q while generating P
  170. * @DMA_PREP_CONTINUE - indicate to a driver that it is reusing buffers as
  171. * sources that were the result of a previous operation, in the case of a PQ
  172. * operation it continues the calculation with new sources
  173. * @DMA_PREP_FENCE - tell the driver that subsequent operations depend
  174. * on the result of this operation
  175. */
  176. enum dma_ctrl_flags {
  177. DMA_PREP_INTERRUPT = (1 << 0),
  178. DMA_CTRL_ACK = (1 << 1),
  179. DMA_COMPL_SKIP_SRC_UNMAP = (1 << 2),
  180. DMA_COMPL_SKIP_DEST_UNMAP = (1 << 3),
  181. DMA_COMPL_SRC_UNMAP_SINGLE = (1 << 4),
  182. DMA_COMPL_DEST_UNMAP_SINGLE = (1 << 5),
  183. DMA_PREP_PQ_DISABLE_P = (1 << 6),
  184. DMA_PREP_PQ_DISABLE_Q = (1 << 7),
  185. DMA_PREP_CONTINUE = (1 << 8),
  186. DMA_PREP_FENCE = (1 << 9),
  187. };
  188. /**
  189. * enum dma_ctrl_cmd - DMA operations that can optionally be exercised
  190. * on a running channel.
  191. * @DMA_TERMINATE_ALL: terminate all ongoing transfers
  192. * @DMA_PAUSE: pause ongoing transfers
  193. * @DMA_RESUME: resume paused transfer
  194. * @DMA_SLAVE_CONFIG: this command is only implemented by DMA controllers
  195. * that need to runtime reconfigure the slave channels (as opposed to passing
  196. * configuration data in statically from the platform). An additional
  197. * argument of struct dma_slave_config must be passed in with this
  198. * command.
  199. * @FSLDMA_EXTERNAL_START: this command will put the Freescale DMA controller
  200. * into external start mode.
  201. */
  202. enum dma_ctrl_cmd {
  203. DMA_TERMINATE_ALL,
  204. DMA_PAUSE,
  205. DMA_RESUME,
  206. DMA_SLAVE_CONFIG,
  207. FSLDMA_EXTERNAL_START,
  208. };
  209. /**
  210. * enum sum_check_bits - bit position of pq_check_flags
  211. */
  212. enum sum_check_bits {
  213. SUM_CHECK_P = 0,
  214. SUM_CHECK_Q = 1,
  215. };
  216. /**
  217. * enum pq_check_flags - result of async_{xor,pq}_zero_sum operations
  218. * @SUM_CHECK_P_RESULT - 1 if xor zero sum error, 0 otherwise
  219. * @SUM_CHECK_Q_RESULT - 1 if reed-solomon zero sum error, 0 otherwise
  220. */
  221. enum sum_check_flags {
  222. SUM_CHECK_P_RESULT = (1 << SUM_CHECK_P),
  223. SUM_CHECK_Q_RESULT = (1 << SUM_CHECK_Q),
  224. };
  225. /**
  226. * dma_cap_mask_t - capabilities bitmap modeled after cpumask_t.
  227. * See linux/cpumask.h
  228. */
  229. typedef struct { DECLARE_BITMAP(bits, DMA_TX_TYPE_END); } dma_cap_mask_t;
  230. /**
  231. * struct dma_chan_percpu - the per-CPU part of struct dma_chan
  232. * @memcpy_count: transaction counter
  233. * @bytes_transferred: byte counter
  234. */
  235. struct dma_chan_percpu {
  236. /* stats */
  237. unsigned long memcpy_count;
  238. unsigned long bytes_transferred;
  239. };
  240. /**
  241. * struct dma_chan - devices supply DMA channels, clients use them
  242. * @device: ptr to the dma device who supplies this channel, always !%NULL
  243. * @cookie: last cookie value returned to client
  244. * @completed_cookie: last completed cookie for this channel
  245. * @chan_id: channel ID for sysfs
  246. * @dev: class device for sysfs
  247. * @device_node: used to add this to the device chan list
  248. * @local: per-cpu pointer to a struct dma_chan_percpu
  249. * @client-count: how many clients are using this channel
  250. * @table_count: number of appearances in the mem-to-mem allocation table
  251. * @private: private data for certain client-channel associations
  252. */
  253. struct dma_chan {
  254. struct dma_device *device;
  255. dma_cookie_t cookie;
  256. dma_cookie_t completed_cookie;
  257. /* sysfs */
  258. int chan_id;
  259. struct dma_chan_dev *dev;
  260. struct list_head device_node;
  261. struct dma_chan_percpu __percpu *local;
  262. int client_count;
  263. int table_count;
  264. void *private;
  265. };
  266. /**
  267. * struct dma_chan_dev - relate sysfs device node to backing channel device
  268. * @chan - driver channel device
  269. * @device - sysfs device
  270. * @dev_id - parent dma_device dev_id
  271. * @idr_ref - reference count to gate release of dma_device dev_id
  272. */
  273. struct dma_chan_dev {
  274. struct dma_chan *chan;
  275. struct device device;
  276. int dev_id;
  277. atomic_t *idr_ref;
  278. };
  279. /**
  280. * enum dma_slave_buswidth - defines bus with of the DMA slave
  281. * device, source or target buses
  282. */
  283. enum dma_slave_buswidth {
  284. DMA_SLAVE_BUSWIDTH_UNDEFINED = 0,
  285. DMA_SLAVE_BUSWIDTH_1_BYTE = 1,
  286. DMA_SLAVE_BUSWIDTH_2_BYTES = 2,
  287. DMA_SLAVE_BUSWIDTH_4_BYTES = 4,
  288. DMA_SLAVE_BUSWIDTH_8_BYTES = 8,
  289. };
  290. /**
  291. * struct dma_slave_config - dma slave channel runtime config
  292. * @direction: whether the data shall go in or out on this slave
  293. * channel, right now. DMA_TO_DEVICE and DMA_FROM_DEVICE are
  294. * legal values, DMA_BIDIRECTIONAL is not acceptable since we
  295. * need to differentiate source and target addresses.
  296. * @src_addr: this is the physical address where DMA slave data
  297. * should be read (RX), if the source is memory this argument is
  298. * ignored.
  299. * @dst_addr: this is the physical address where DMA slave data
  300. * should be written (TX), if the source is memory this argument
  301. * is ignored.
  302. * @src_addr_width: this is the width in bytes of the source (RX)
  303. * register where DMA data shall be read. If the source
  304. * is memory this may be ignored depending on architecture.
  305. * Legal values: 1, 2, 4, 8.
  306. * @dst_addr_width: same as src_addr_width but for destination
  307. * target (TX) mutatis mutandis.
  308. * @src_maxburst: the maximum number of words (note: words, as in
  309. * units of the src_addr_width member, not bytes) that can be sent
  310. * in one burst to the device. Typically something like half the
  311. * FIFO depth on I/O peripherals so you don't overflow it. This
  312. * may or may not be applicable on memory sources.
  313. * @dst_maxburst: same as src_maxburst but for destination target
  314. * mutatis mutandis.
  315. * @device_fc: Flow Controller Settings. Only valid for slave channels. Fill
  316. * with 'true' if peripheral should be flow controller. Direction will be
  317. * selected at Runtime.
  318. * @slave_id: Slave requester id. Only valid for slave channels. The dma
  319. * slave peripheral will have unique id as dma requester which need to be
  320. * pass as slave config.
  321. *
  322. * This struct is passed in as configuration data to a DMA engine
  323. * in order to set up a certain channel for DMA transport at runtime.
  324. * The DMA device/engine has to provide support for an additional
  325. * command in the channel config interface, DMA_SLAVE_CONFIG
  326. * and this struct will then be passed in as an argument to the
  327. * DMA engine device_control() function.
  328. *
  329. * The rationale for adding configuration information to this struct
  330. * is as follows: if it is likely that most DMA slave controllers in
  331. * the world will support the configuration option, then make it
  332. * generic. If not: if it is fixed so that it be sent in static from
  333. * the platform data, then prefer to do that. Else, if it is neither
  334. * fixed at runtime, nor generic enough (such as bus mastership on
  335. * some CPU family and whatnot) then create a custom slave config
  336. * struct and pass that, then make this config a member of that
  337. * struct, if applicable.
  338. */
  339. struct dma_slave_config {
  340. enum dma_transfer_direction direction;
  341. dma_addr_t src_addr;
  342. dma_addr_t dst_addr;
  343. enum dma_slave_buswidth src_addr_width;
  344. enum dma_slave_buswidth dst_addr_width;
  345. u32 src_maxburst;
  346. u32 dst_maxburst;
  347. bool device_fc;
  348. unsigned int slave_id;
  349. };
  350. static inline const char *dma_chan_name(struct dma_chan *chan)
  351. {
  352. return dev_name(&chan->dev->device);
  353. }
  354. void dma_chan_cleanup(struct kref *kref);
  355. /**
  356. * typedef dma_filter_fn - callback filter for dma_request_channel
  357. * @chan: channel to be reviewed
  358. * @filter_param: opaque parameter passed through dma_request_channel
  359. *
  360. * When this optional parameter is specified in a call to dma_request_channel a
  361. * suitable channel is passed to this routine for further dispositioning before
  362. * being returned. Where 'suitable' indicates a non-busy channel that
  363. * satisfies the given capability mask. It returns 'true' to indicate that the
  364. * channel is suitable.
  365. */
  366. typedef bool (*dma_filter_fn)(struct dma_chan *chan, void *filter_param);
  367. typedef void (*dma_async_tx_callback)(void *dma_async_param);
  368. /**
  369. * struct dma_async_tx_descriptor - async transaction descriptor
  370. * ---dma generic offload fields---
  371. * @cookie: tracking cookie for this transaction, set to -EBUSY if
  372. * this tx is sitting on a dependency list
  373. * @flags: flags to augment operation preparation, control completion, and
  374. * communicate status
  375. * @phys: physical address of the descriptor
  376. * @chan: target channel for this operation
  377. * @tx_submit: set the prepared descriptor(s) to be executed by the engine
  378. * @callback: routine to call after this operation is complete
  379. * @callback_param: general parameter to pass to the callback routine
  380. * ---async_tx api specific fields---
  381. * @next: at completion submit this descriptor
  382. * @parent: pointer to the next level up in the dependency chain
  383. * @lock: protect the parent and next pointers
  384. */
  385. struct dma_async_tx_descriptor {
  386. dma_cookie_t cookie;
  387. enum dma_ctrl_flags flags; /* not a 'long' to pack with cookie */
  388. dma_addr_t phys;
  389. struct dma_chan *chan;
  390. dma_cookie_t (*tx_submit)(struct dma_async_tx_descriptor *tx);
  391. dma_async_tx_callback callback;
  392. void *callback_param;
  393. #ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
  394. struct dma_async_tx_descriptor *next;
  395. struct dma_async_tx_descriptor *parent;
  396. spinlock_t lock;
  397. #endif
  398. };
  399. #ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
  400. static inline void txd_lock(struct dma_async_tx_descriptor *txd)
  401. {
  402. }
  403. static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
  404. {
  405. }
  406. static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
  407. {
  408. BUG();
  409. }
  410. static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
  411. {
  412. }
  413. static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
  414. {
  415. }
  416. static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
  417. {
  418. return NULL;
  419. }
  420. static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
  421. {
  422. return NULL;
  423. }
  424. #else
  425. static inline void txd_lock(struct dma_async_tx_descriptor *txd)
  426. {
  427. spin_lock_bh(&txd->lock);
  428. }
  429. static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
  430. {
  431. spin_unlock_bh(&txd->lock);
  432. }
  433. static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
  434. {
  435. txd->next = next;
  436. next->parent = txd;
  437. }
  438. static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
  439. {
  440. txd->parent = NULL;
  441. }
  442. static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
  443. {
  444. txd->next = NULL;
  445. }
  446. static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
  447. {
  448. return txd->parent;
  449. }
  450. static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
  451. {
  452. return txd->next;
  453. }
  454. #endif
  455. /**
  456. * struct dma_tx_state - filled in to report the status of
  457. * a transfer.
  458. * @last: last completed DMA cookie
  459. * @used: last issued DMA cookie (i.e. the one in progress)
  460. * @residue: the remaining number of bytes left to transmit
  461. * on the selected transfer for states DMA_IN_PROGRESS and
  462. * DMA_PAUSED if this is implemented in the driver, else 0
  463. */
  464. struct dma_tx_state {
  465. dma_cookie_t last;
  466. dma_cookie_t used;
  467. u32 residue;
  468. };
  469. /**
  470. * struct dma_device - info on the entity supplying DMA services
  471. * @chancnt: how many DMA channels are supported
  472. * @privatecnt: how many DMA channels are requested by dma_request_channel
  473. * @channels: the list of struct dma_chan
  474. * @global_node: list_head for global dma_device_list
  475. * @cap_mask: one or more dma_capability flags
  476. * @max_xor: maximum number of xor sources, 0 if no capability
  477. * @max_pq: maximum number of PQ sources and PQ-continue capability
  478. * @copy_align: alignment shift for memcpy operations
  479. * @xor_align: alignment shift for xor operations
  480. * @pq_align: alignment shift for pq operations
  481. * @fill_align: alignment shift for memset operations
  482. * @dev_id: unique device ID
  483. * @dev: struct device reference for dma mapping api
  484. * @device_alloc_chan_resources: allocate resources and return the
  485. * number of allocated descriptors
  486. * @device_free_chan_resources: release DMA channel's resources
  487. * @device_prep_dma_memcpy: prepares a memcpy operation
  488. * @device_prep_dma_xor: prepares a xor operation
  489. * @device_prep_dma_xor_val: prepares a xor validation operation
  490. * @device_prep_dma_pq: prepares a pq operation
  491. * @device_prep_dma_pq_val: prepares a pqzero_sum operation
  492. * @device_prep_dma_memset: prepares a memset operation
  493. * @device_prep_dma_interrupt: prepares an end of chain interrupt operation
  494. * @device_prep_slave_sg: prepares a slave dma operation
  495. * @device_prep_dma_cyclic: prepare a cyclic dma operation suitable for audio.
  496. * The function takes a buffer of size buf_len. The callback function will
  497. * be called after period_len bytes have been transferred.
  498. * @device_prep_interleaved_dma: Transfer expression in a generic way.
  499. * @device_control: manipulate all pending operations on a channel, returns
  500. * zero or error code
  501. * @device_tx_status: poll for transaction completion, the optional
  502. * txstate parameter can be supplied with a pointer to get a
  503. * struct with auxiliary transfer status information, otherwise the call
  504. * will just return a simple status code
  505. * @device_issue_pending: push pending transactions to hardware
  506. */
  507. struct dma_device {
  508. unsigned int chancnt;
  509. unsigned int privatecnt;
  510. struct list_head channels;
  511. struct list_head global_node;
  512. dma_cap_mask_t cap_mask;
  513. unsigned short max_xor;
  514. unsigned short max_pq;
  515. u8 copy_align;
  516. u8 xor_align;
  517. u8 pq_align;
  518. u8 fill_align;
  519. #define DMA_HAS_PQ_CONTINUE (1 << 15)
  520. int dev_id;
  521. struct device *dev;
  522. int (*device_alloc_chan_resources)(struct dma_chan *chan);
  523. void (*device_free_chan_resources)(struct dma_chan *chan);
  524. struct dma_async_tx_descriptor *(*device_prep_dma_memcpy)(
  525. struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
  526. size_t len, unsigned long flags);
  527. struct dma_async_tx_descriptor *(*device_prep_dma_xor)(
  528. struct dma_chan *chan, dma_addr_t dest, dma_addr_t *src,
  529. unsigned int src_cnt, size_t len, unsigned long flags);
  530. struct dma_async_tx_descriptor *(*device_prep_dma_xor_val)(
  531. struct dma_chan *chan, dma_addr_t *src, unsigned int src_cnt,
  532. size_t len, enum sum_check_flags *result, unsigned long flags);
  533. struct dma_async_tx_descriptor *(*device_prep_dma_pq)(
  534. struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src,
  535. unsigned int src_cnt, const unsigned char *scf,
  536. size_t len, unsigned long flags);
  537. struct dma_async_tx_descriptor *(*device_prep_dma_pq_val)(
  538. struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src,
  539. unsigned int src_cnt, const unsigned char *scf, size_t len,
  540. enum sum_check_flags *pqres, unsigned long flags);
  541. struct dma_async_tx_descriptor *(*device_prep_dma_memset)(
  542. struct dma_chan *chan, dma_addr_t dest, int value, size_t len,
  543. unsigned long flags);
  544. struct dma_async_tx_descriptor *(*device_prep_dma_interrupt)(
  545. struct dma_chan *chan, unsigned long flags);
  546. struct dma_async_tx_descriptor *(*device_prep_dma_sg)(
  547. struct dma_chan *chan,
  548. struct scatterlist *dst_sg, unsigned int dst_nents,
  549. struct scatterlist *src_sg, unsigned int src_nents,
  550. unsigned long flags);
  551. struct dma_async_tx_descriptor *(*device_prep_slave_sg)(
  552. struct dma_chan *chan, struct scatterlist *sgl,
  553. unsigned int sg_len, enum dma_transfer_direction direction,
  554. unsigned long flags, void *context);
  555. struct dma_async_tx_descriptor *(*device_prep_dma_cyclic)(
  556. struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
  557. size_t period_len, enum dma_transfer_direction direction,
  558. unsigned long flags, void *context);
  559. struct dma_async_tx_descriptor *(*device_prep_interleaved_dma)(
  560. struct dma_chan *chan, struct dma_interleaved_template *xt,
  561. unsigned long flags);
  562. int (*device_control)(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
  563. unsigned long arg);
  564. enum dma_status (*device_tx_status)(struct dma_chan *chan,
  565. dma_cookie_t cookie,
  566. struct dma_tx_state *txstate);
  567. void (*device_issue_pending)(struct dma_chan *chan);
  568. };
  569. static inline int dmaengine_device_control(struct dma_chan *chan,
  570. enum dma_ctrl_cmd cmd,
  571. unsigned long arg)
  572. {
  573. if (chan->device->device_control)
  574. return chan->device->device_control(chan, cmd, arg);
  575. return -ENOSYS;
  576. }
  577. static inline int dmaengine_slave_config(struct dma_chan *chan,
  578. struct dma_slave_config *config)
  579. {
  580. return dmaengine_device_control(chan, DMA_SLAVE_CONFIG,
  581. (unsigned long)config);
  582. }
  583. static inline bool is_slave_direction(enum dma_transfer_direction direction)
  584. {
  585. return (direction == DMA_MEM_TO_DEV) || (direction == DMA_DEV_TO_MEM);
  586. }
  587. static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_single(
  588. struct dma_chan *chan, dma_addr_t buf, size_t len,
  589. enum dma_transfer_direction dir, unsigned long flags)
  590. {
  591. struct scatterlist sg;
  592. sg_init_table(&sg, 1);
  593. sg_dma_address(&sg) = buf;
  594. sg_dma_len(&sg) = len;
  595. return chan->device->device_prep_slave_sg(chan, &sg, 1,
  596. dir, flags, NULL);
  597. }
  598. static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_sg(
  599. struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len,
  600. enum dma_transfer_direction dir, unsigned long flags)
  601. {
  602. return chan->device->device_prep_slave_sg(chan, sgl, sg_len,
  603. dir, flags, NULL);
  604. }
  605. #ifdef CONFIG_RAPIDIO_DMA_ENGINE
  606. struct rio_dma_ext;
  607. static inline struct dma_async_tx_descriptor *dmaengine_prep_rio_sg(
  608. struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len,
  609. enum dma_transfer_direction dir, unsigned long flags,
  610. struct rio_dma_ext *rio_ext)
  611. {
  612. return chan->device->device_prep_slave_sg(chan, sgl, sg_len,
  613. dir, flags, rio_ext);
  614. }
  615. #endif
  616. static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_cyclic(
  617. struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
  618. size_t period_len, enum dma_transfer_direction dir,
  619. unsigned long flags)
  620. {
  621. return chan->device->device_prep_dma_cyclic(chan, buf_addr, buf_len,
  622. period_len, dir, flags, NULL);
  623. }
  624. static inline struct dma_async_tx_descriptor *dmaengine_prep_interleaved_dma(
  625. struct dma_chan *chan, struct dma_interleaved_template *xt,
  626. unsigned long flags)
  627. {
  628. return chan->device->device_prep_interleaved_dma(chan, xt, flags);
  629. }
  630. static inline int dmaengine_terminate_all(struct dma_chan *chan)
  631. {
  632. return dmaengine_device_control(chan, DMA_TERMINATE_ALL, 0);
  633. }
  634. static inline int dmaengine_pause(struct dma_chan *chan)
  635. {
  636. return dmaengine_device_control(chan, DMA_PAUSE, 0);
  637. }
  638. static inline int dmaengine_resume(struct dma_chan *chan)
  639. {
  640. return dmaengine_device_control(chan, DMA_RESUME, 0);
  641. }
  642. static inline enum dma_status dmaengine_tx_status(struct dma_chan *chan,
  643. dma_cookie_t cookie, struct dma_tx_state *state)
  644. {
  645. return chan->device->device_tx_status(chan, cookie, state);
  646. }
  647. static inline dma_cookie_t dmaengine_submit(struct dma_async_tx_descriptor *desc)
  648. {
  649. return desc->tx_submit(desc);
  650. }
  651. static inline bool dmaengine_check_align(u8 align, size_t off1, size_t off2, size_t len)
  652. {
  653. size_t mask;
  654. if (!align)
  655. return true;
  656. mask = (1 << align) - 1;
  657. if (mask & (off1 | off2 | len))
  658. return false;
  659. return true;
  660. }
  661. static inline bool is_dma_copy_aligned(struct dma_device *dev, size_t off1,
  662. size_t off2, size_t len)
  663. {
  664. return dmaengine_check_align(dev->copy_align, off1, off2, len);
  665. }
  666. static inline bool is_dma_xor_aligned(struct dma_device *dev, size_t off1,
  667. size_t off2, size_t len)
  668. {
  669. return dmaengine_check_align(dev->xor_align, off1, off2, len);
  670. }
  671. static inline bool is_dma_pq_aligned(struct dma_device *dev, size_t off1,
  672. size_t off2, size_t len)
  673. {
  674. return dmaengine_check_align(dev->pq_align, off1, off2, len);
  675. }
  676. static inline bool is_dma_fill_aligned(struct dma_device *dev, size_t off1,
  677. size_t off2, size_t len)
  678. {
  679. return dmaengine_check_align(dev->fill_align, off1, off2, len);
  680. }
  681. static inline void
  682. dma_set_maxpq(struct dma_device *dma, int maxpq, int has_pq_continue)
  683. {
  684. dma->max_pq = maxpq;
  685. if (has_pq_continue)
  686. dma->max_pq |= DMA_HAS_PQ_CONTINUE;
  687. }
  688. static inline bool dmaf_continue(enum dma_ctrl_flags flags)
  689. {
  690. return (flags & DMA_PREP_CONTINUE) == DMA_PREP_CONTINUE;
  691. }
  692. static inline bool dmaf_p_disabled_continue(enum dma_ctrl_flags flags)
  693. {
  694. enum dma_ctrl_flags mask = DMA_PREP_CONTINUE | DMA_PREP_PQ_DISABLE_P;
  695. return (flags & mask) == mask;
  696. }
  697. static inline bool dma_dev_has_pq_continue(struct dma_device *dma)
  698. {
  699. return (dma->max_pq & DMA_HAS_PQ_CONTINUE) == DMA_HAS_PQ_CONTINUE;
  700. }
  701. static inline unsigned short dma_dev_to_maxpq(struct dma_device *dma)
  702. {
  703. return dma->max_pq & ~DMA_HAS_PQ_CONTINUE;
  704. }
  705. /* dma_maxpq - reduce maxpq in the face of continued operations
  706. * @dma - dma device with PQ capability
  707. * @flags - to check if DMA_PREP_CONTINUE and DMA_PREP_PQ_DISABLE_P are set
  708. *
  709. * When an engine does not support native continuation we need 3 extra
  710. * source slots to reuse P and Q with the following coefficients:
  711. * 1/ {00} * P : remove P from Q', but use it as a source for P'
  712. * 2/ {01} * Q : use Q to continue Q' calculation
  713. * 3/ {00} * Q : subtract Q from P' to cancel (2)
  714. *
  715. * In the case where P is disabled we only need 1 extra source:
  716. * 1/ {01} * Q : use Q to continue Q' calculation
  717. */
  718. static inline int dma_maxpq(struct dma_device *dma, enum dma_ctrl_flags flags)
  719. {
  720. if (dma_dev_has_pq_continue(dma) || !dmaf_continue(flags))
  721. return dma_dev_to_maxpq(dma);
  722. else if (dmaf_p_disabled_continue(flags))
  723. return dma_dev_to_maxpq(dma) - 1;
  724. else if (dmaf_continue(flags))
  725. return dma_dev_to_maxpq(dma) - 3;
  726. BUG();
  727. }
  728. /* --- public DMA engine API --- */
  729. #ifdef CONFIG_DMA_ENGINE
  730. void dmaengine_get(void);
  731. void dmaengine_put(void);
  732. #else
  733. static inline void dmaengine_get(void)
  734. {
  735. }
  736. static inline void dmaengine_put(void)
  737. {
  738. }
  739. #endif
  740. #ifdef CONFIG_NET_DMA
  741. #define net_dmaengine_get() dmaengine_get()
  742. #define net_dmaengine_put() dmaengine_put()
  743. #else
  744. static inline void net_dmaengine_get(void)
  745. {
  746. }
  747. static inline void net_dmaengine_put(void)
  748. {
  749. }
  750. #endif
  751. #ifdef CONFIG_ASYNC_TX_DMA
  752. #define async_dmaengine_get() dmaengine_get()
  753. #define async_dmaengine_put() dmaengine_put()
  754. #ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
  755. #define async_dma_find_channel(type) dma_find_channel(DMA_ASYNC_TX)
  756. #else
  757. #define async_dma_find_channel(type) dma_find_channel(type)
  758. #endif /* CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH */
  759. #else
  760. static inline void async_dmaengine_get(void)
  761. {
  762. }
  763. static inline void async_dmaengine_put(void)
  764. {
  765. }
  766. static inline struct dma_chan *
  767. async_dma_find_channel(enum dma_transaction_type type)
  768. {
  769. return NULL;
  770. }
  771. #endif /* CONFIG_ASYNC_TX_DMA */
  772. dma_cookie_t dma_async_memcpy_buf_to_buf(struct dma_chan *chan,
  773. void *dest, void *src, size_t len);
  774. dma_cookie_t dma_async_memcpy_buf_to_pg(struct dma_chan *chan,
  775. struct page *page, unsigned int offset, void *kdata, size_t len);
  776. dma_cookie_t dma_async_memcpy_pg_to_pg(struct dma_chan *chan,
  777. struct page *dest_pg, unsigned int dest_off, struct page *src_pg,
  778. unsigned int src_off, size_t len);
  779. void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx,
  780. struct dma_chan *chan);
  781. static inline void async_tx_ack(struct dma_async_tx_descriptor *tx)
  782. {
  783. tx->flags |= DMA_CTRL_ACK;
  784. }
  785. static inline void async_tx_clear_ack(struct dma_async_tx_descriptor *tx)
  786. {
  787. tx->flags &= ~DMA_CTRL_ACK;
  788. }
  789. static inline bool async_tx_test_ack(struct dma_async_tx_descriptor *tx)
  790. {
  791. return (tx->flags & DMA_CTRL_ACK) == DMA_CTRL_ACK;
  792. }
  793. #define dma_cap_set(tx, mask) __dma_cap_set((tx), &(mask))
  794. static inline void
  795. __dma_cap_set(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
  796. {
  797. set_bit(tx_type, dstp->bits);
  798. }
  799. #define dma_cap_clear(tx, mask) __dma_cap_clear((tx), &(mask))
  800. static inline void
  801. __dma_cap_clear(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
  802. {
  803. clear_bit(tx_type, dstp->bits);
  804. }
  805. #define dma_cap_zero(mask) __dma_cap_zero(&(mask))
  806. static inline void __dma_cap_zero(dma_cap_mask_t *dstp)
  807. {
  808. bitmap_zero(dstp->bits, DMA_TX_TYPE_END);
  809. }
  810. #define dma_has_cap(tx, mask) __dma_has_cap((tx), &(mask))
  811. static inline int
  812. __dma_has_cap(enum dma_transaction_type tx_type, dma_cap_mask_t *srcp)
  813. {
  814. return test_bit(tx_type, srcp->bits);
  815. }
  816. #define for_each_dma_cap_mask(cap, mask) \
  817. for_each_set_bit(cap, mask.bits, DMA_TX_TYPE_END)
  818. /**
  819. * dma_async_issue_pending - flush pending transactions to HW
  820. * @chan: target DMA channel
  821. *
  822. * This allows drivers to push copies to HW in batches,
  823. * reducing MMIO writes where possible.
  824. */
  825. static inline void dma_async_issue_pending(struct dma_chan *chan)
  826. {
  827. chan->device->device_issue_pending(chan);
  828. }
  829. /**
  830. * dma_async_is_tx_complete - poll for transaction completion
  831. * @chan: DMA channel
  832. * @cookie: transaction identifier to check status of
  833. * @last: returns last completed cookie, can be NULL
  834. * @used: returns last issued cookie, can be NULL
  835. *
  836. * If @last and @used are passed in, upon return they reflect the driver
  837. * internal state and can be used with dma_async_is_complete() to check
  838. * the status of multiple cookies without re-checking hardware state.
  839. */
  840. static inline enum dma_status dma_async_is_tx_complete(struct dma_chan *chan,
  841. dma_cookie_t cookie, dma_cookie_t *last, dma_cookie_t *used)
  842. {
  843. struct dma_tx_state state;
  844. enum dma_status status;
  845. status = chan->device->device_tx_status(chan, cookie, &state);
  846. if (last)
  847. *last = state.last;
  848. if (used)
  849. *used = state.used;
  850. return status;
  851. }
  852. /**
  853. * dma_async_is_complete - test a cookie against chan state
  854. * @cookie: transaction identifier to test status of
  855. * @last_complete: last know completed transaction
  856. * @last_used: last cookie value handed out
  857. *
  858. * dma_async_is_complete() is used in dma_async_is_tx_complete()
  859. * the test logic is separated for lightweight testing of multiple cookies
  860. */
  861. static inline enum dma_status dma_async_is_complete(dma_cookie_t cookie,
  862. dma_cookie_t last_complete, dma_cookie_t last_used)
  863. {
  864. if (last_complete <= last_used) {
  865. if ((cookie <= last_complete) || (cookie > last_used))
  866. return DMA_SUCCESS;
  867. } else {
  868. if ((cookie <= last_complete) && (cookie > last_used))
  869. return DMA_SUCCESS;
  870. }
  871. return DMA_IN_PROGRESS;
  872. }
  873. static inline void
  874. dma_set_tx_state(struct dma_tx_state *st, dma_cookie_t last, dma_cookie_t used, u32 residue)
  875. {
  876. if (st) {
  877. st->last = last;
  878. st->used = used;
  879. st->residue = residue;
  880. }
  881. }
  882. enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie);
  883. #ifdef CONFIG_DMA_ENGINE
  884. enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx);
  885. void dma_issue_pending_all(void);
  886. struct dma_chan *__dma_request_channel(dma_cap_mask_t *mask, dma_filter_fn fn, void *fn_param);
  887. struct dma_chan *dma_request_slave_channel(struct device *dev, char *name);
  888. void dma_release_channel(struct dma_chan *chan);
  889. #else
  890. static inline enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx)
  891. {
  892. return DMA_SUCCESS;
  893. }
  894. static inline void dma_issue_pending_all(void)
  895. {
  896. }
  897. static inline struct dma_chan *__dma_request_channel(dma_cap_mask_t *mask,
  898. dma_filter_fn fn, void *fn_param)
  899. {
  900. return NULL;
  901. }
  902. static inline struct dma_chan *dma_request_slave_channel(struct device *dev,
  903. char *name)
  904. {
  905. return NULL;
  906. }
  907. static inline void dma_release_channel(struct dma_chan *chan)
  908. {
  909. }
  910. #endif
  911. /* --- DMA device --- */
  912. int dma_async_device_register(struct dma_device *device);
  913. void dma_async_device_unregister(struct dma_device *device);
  914. void dma_run_dependencies(struct dma_async_tx_descriptor *tx);
  915. struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type);
  916. struct dma_chan *net_dma_find_channel(void);
  917. #define dma_request_channel(mask, x, y) __dma_request_channel(&(mask), x, y)
  918. /* --- Helper iov-locking functions --- */
  919. struct dma_page_list {
  920. char __user *base_address;
  921. int nr_pages;
  922. struct page **pages;
  923. };
  924. struct dma_pinned_list {
  925. int nr_iovecs;
  926. struct dma_page_list page_list[0];
  927. };
  928. struct dma_pinned_list *dma_pin_iovec_pages(struct iovec *iov, size_t len);
  929. void dma_unpin_iovec_pages(struct dma_pinned_list* pinned_list);
  930. dma_cookie_t dma_memcpy_to_iovec(struct dma_chan *chan, struct iovec *iov,
  931. struct dma_pinned_list *pinned_list, unsigned char *kdata, size_t len);
  932. dma_cookie_t dma_memcpy_pg_to_iovec(struct dma_chan *chan, struct iovec *iov,
  933. struct dma_pinned_list *pinned_list, struct page *page,
  934. unsigned int offset, size_t len);
  935. #endif /* DMAENGINE_H */