amba-pl08x.c 59 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228
  1. /*
  2. * Copyright (c) 2006 ARM Ltd.
  3. * Copyright (c) 2010 ST-Ericsson SA
  4. *
  5. * Author: Peter Pearse <peter.pearse@arm.com>
  6. * Author: Linus Walleij <linus.walleij@stericsson.com>
  7. *
  8. * This program is free software; you can redistribute it and/or modify it
  9. * under the terms of the GNU General Public License as published by the Free
  10. * Software Foundation; either version 2 of the License, or (at your option)
  11. * any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful, but WITHOUT
  14. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  15. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  16. * more details.
  17. *
  18. * You should have received a copy of the GNU General Public License along with
  19. * this program; if not, write to the Free Software Foundation, Inc., 59
  20. * Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  21. *
  22. * The full GNU General Public License is in this distribution in the file
  23. * called COPYING.
  24. *
  25. * Documentation: ARM DDI 0196G == PL080
  26. * Documentation: ARM DDI 0218E == PL081
  27. * Documentation: S3C6410 User's Manual == PL080S
  28. *
  29. * PL080 & PL081 both have 16 sets of DMA signals that can be routed to any
  30. * channel.
  31. *
  32. * The PL080 has 8 channels available for simultaneous use, and the PL081
  33. * has only two channels. So on these DMA controllers the number of channels
  34. * and the number of incoming DMA signals are two totally different things.
  35. * It is usually not possible to theoretically handle all physical signals,
  36. * so a multiplexing scheme with possible denial of use is necessary.
  37. *
  38. * The PL080 has a dual bus master, PL081 has a single master.
  39. *
  40. * PL080S is a version modified by Samsung and used in S3C64xx SoCs.
  41. * It differs in following aspects:
  42. * - CH_CONFIG register at different offset,
  43. * - separate CH_CONTROL2 register for transfer size,
  44. * - bigger maximum transfer size,
  45. * - 8-word aligned LLI, instead of 4-word, due to extra CCTL2 word,
  46. * - no support for peripheral flow control.
  47. *
  48. * Memory to peripheral transfer may be visualized as
  49. * Get data from memory to DMAC
  50. * Until no data left
  51. * On burst request from peripheral
  52. * Destination burst from DMAC to peripheral
  53. * Clear burst request
  54. * Raise terminal count interrupt
  55. *
  56. * For peripherals with a FIFO:
  57. * Source burst size == half the depth of the peripheral FIFO
  58. * Destination burst size == the depth of the peripheral FIFO
  59. *
  60. * (Bursts are irrelevant for mem to mem transfers - there are no burst
  61. * signals, the DMA controller will simply facilitate its AHB master.)
  62. *
  63. * ASSUMES default (little) endianness for DMA transfers
  64. *
  65. * The PL08x has two flow control settings:
  66. * - DMAC flow control: the transfer size defines the number of transfers
  67. * which occur for the current LLI entry, and the DMAC raises TC at the
  68. * end of every LLI entry. Observed behaviour shows the DMAC listening
  69. * to both the BREQ and SREQ signals (contrary to documented),
  70. * transferring data if either is active. The LBREQ and LSREQ signals
  71. * are ignored.
  72. *
  73. * - Peripheral flow control: the transfer size is ignored (and should be
  74. * zero). The data is transferred from the current LLI entry, until
  75. * after the final transfer signalled by LBREQ or LSREQ. The DMAC
  76. * will then move to the next LLI entry. Unsupported by PL080S.
  77. */
  78. #include <linux/amba/bus.h>
  79. #include <linux/amba/pl08x.h>
  80. #include <linux/debugfs.h>
  81. #include <linux/delay.h>
  82. #include <linux/device.h>
  83. #include <linux/dmaengine.h>
  84. #include <linux/dmapool.h>
  85. #include <linux/dma-mapping.h>
  86. #include <linux/init.h>
  87. #include <linux/interrupt.h>
  88. #include <linux/module.h>
  89. #include <linux/pm_runtime.h>
  90. #include <linux/seq_file.h>
  91. #include <linux/slab.h>
  92. #include <linux/amba/pl080.h>
  93. #include "dmaengine.h"
  94. #include "virt-dma.h"
  95. #define DRIVER_NAME "pl08xdmac"
  96. static struct amba_driver pl08x_amba_driver;
  97. struct pl08x_driver_data;
  98. /**
  99. * struct vendor_data - vendor-specific config parameters for PL08x derivatives
  100. * @channels: the number of channels available in this variant
  101. * @dualmaster: whether this version supports dual AHB masters or not.
  102. * @nomadik: whether the channels have Nomadik security extension bits
  103. * that need to be checked for permission before use and some registers are
  104. * missing
  105. * @pl080s: whether this version is a PL080S, which has separate register and
  106. * LLI word for transfer size.
  107. */
  108. struct vendor_data {
  109. u8 config_offset;
  110. u8 channels;
  111. bool dualmaster;
  112. bool nomadik;
  113. bool pl080s;
  114. u32 max_transfer_size;
  115. };
  116. /**
  117. * struct pl08x_bus_data - information of source or destination
  118. * busses for a transfer
  119. * @addr: current address
  120. * @maxwidth: the maximum width of a transfer on this bus
  121. * @buswidth: the width of this bus in bytes: 1, 2 or 4
  122. */
  123. struct pl08x_bus_data {
  124. dma_addr_t addr;
  125. u8 maxwidth;
  126. u8 buswidth;
  127. };
  128. /**
  129. * struct pl08x_phy_chan - holder for the physical channels
  130. * @id: physical index to this channel
  131. * @lock: a lock to use when altering an instance of this struct
  132. * @serving: the virtual channel currently being served by this physical
  133. * channel
  134. * @locked: channel unavailable for the system, e.g. dedicated to secure
  135. * world
  136. */
  137. struct pl08x_phy_chan {
  138. unsigned int id;
  139. void __iomem *base;
  140. void __iomem *reg_config;
  141. spinlock_t lock;
  142. struct pl08x_dma_chan *serving;
  143. bool locked;
  144. };
  145. /**
  146. * struct pl08x_sg - structure containing data per sg
  147. * @src_addr: src address of sg
  148. * @dst_addr: dst address of sg
  149. * @len: transfer len in bytes
  150. * @node: node for txd's dsg_list
  151. */
  152. struct pl08x_sg {
  153. dma_addr_t src_addr;
  154. dma_addr_t dst_addr;
  155. size_t len;
  156. struct list_head node;
  157. };
  158. /**
  159. * struct pl08x_txd - wrapper for struct dma_async_tx_descriptor
  160. * @vd: virtual DMA descriptor
  161. * @dsg_list: list of children sg's
  162. * @llis_bus: DMA memory address (physical) start for the LLIs
  163. * @llis_va: virtual memory address start for the LLIs
  164. * @cctl: control reg values for current txd
  165. * @ccfg: config reg values for current txd
  166. * @done: this marks completed descriptors, which should not have their
  167. * mux released.
  168. */
  169. struct pl08x_txd {
  170. struct virt_dma_desc vd;
  171. struct list_head dsg_list;
  172. dma_addr_t llis_bus;
  173. u32 *llis_va;
  174. /* Default cctl value for LLIs */
  175. u32 cctl;
  176. /*
  177. * Settings to be put into the physical channel when we
  178. * trigger this txd. Other registers are in llis_va[0].
  179. */
  180. u32 ccfg;
  181. bool done;
  182. };
  183. /**
  184. * struct pl08x_dma_chan_state - holds the PL08x specific virtual channel
  185. * states
  186. * @PL08X_CHAN_IDLE: the channel is idle
  187. * @PL08X_CHAN_RUNNING: the channel has allocated a physical transport
  188. * channel and is running a transfer on it
  189. * @PL08X_CHAN_PAUSED: the channel has allocated a physical transport
  190. * channel, but the transfer is currently paused
  191. * @PL08X_CHAN_WAITING: the channel is waiting for a physical transport
  192. * channel to become available (only pertains to memcpy channels)
  193. */
  194. enum pl08x_dma_chan_state {
  195. PL08X_CHAN_IDLE,
  196. PL08X_CHAN_RUNNING,
  197. PL08X_CHAN_PAUSED,
  198. PL08X_CHAN_WAITING,
  199. };
  200. /**
  201. * struct pl08x_dma_chan - this structure wraps a DMA ENGINE channel
  202. * @vc: wrappped virtual channel
  203. * @phychan: the physical channel utilized by this channel, if there is one
  204. * @name: name of channel
  205. * @cd: channel platform data
  206. * @runtime_addr: address for RX/TX according to the runtime config
  207. * @at: active transaction on this channel
  208. * @lock: a lock for this channel data
  209. * @host: a pointer to the host (internal use)
  210. * @state: whether the channel is idle, paused, running etc
  211. * @slave: whether this channel is a device (slave) or for memcpy
  212. * @signal: the physical DMA request signal which this channel is using
  213. * @mux_use: count of descriptors using this DMA request signal setting
  214. */
  215. struct pl08x_dma_chan {
  216. struct virt_dma_chan vc;
  217. struct pl08x_phy_chan *phychan;
  218. const char *name;
  219. const struct pl08x_channel_data *cd;
  220. struct dma_slave_config cfg;
  221. struct pl08x_txd *at;
  222. struct pl08x_driver_data *host;
  223. enum pl08x_dma_chan_state state;
  224. bool slave;
  225. int signal;
  226. unsigned mux_use;
  227. };
  228. /**
  229. * struct pl08x_driver_data - the local state holder for the PL08x
  230. * @slave: slave engine for this instance
  231. * @memcpy: memcpy engine for this instance
  232. * @base: virtual memory base (remapped) for the PL08x
  233. * @adev: the corresponding AMBA (PrimeCell) bus entry
  234. * @vd: vendor data for this PL08x variant
  235. * @pd: platform data passed in from the platform/machine
  236. * @phy_chans: array of data for the physical channels
  237. * @pool: a pool for the LLI descriptors
  238. * @lli_buses: bitmask to or in to LLI pointer selecting AHB port for LLI
  239. * fetches
  240. * @mem_buses: set to indicate memory transfers on AHB2.
  241. * @lock: a spinlock for this struct
  242. */
  243. struct pl08x_driver_data {
  244. struct dma_device slave;
  245. struct dma_device memcpy;
  246. void __iomem *base;
  247. struct amba_device *adev;
  248. const struct vendor_data *vd;
  249. struct pl08x_platform_data *pd;
  250. struct pl08x_phy_chan *phy_chans;
  251. struct dma_pool *pool;
  252. u8 lli_buses;
  253. u8 mem_buses;
  254. u8 lli_words;
  255. };
  256. /*
  257. * PL08X specific defines
  258. */
  259. /* The order of words in an LLI. */
  260. #define PL080_LLI_SRC 0
  261. #define PL080_LLI_DST 1
  262. #define PL080_LLI_LLI 2
  263. #define PL080_LLI_CCTL 3
  264. #define PL080S_LLI_CCTL2 4
  265. /* Total words in an LLI. */
  266. #define PL080_LLI_WORDS 4
  267. #define PL080S_LLI_WORDS 8
  268. /*
  269. * Number of LLIs in each LLI buffer allocated for one transfer
  270. * (maximum times we call dma_pool_alloc on this pool without freeing)
  271. */
  272. #define MAX_NUM_TSFR_LLIS 512
  273. #define PL08X_ALIGN 8
  274. static inline struct pl08x_dma_chan *to_pl08x_chan(struct dma_chan *chan)
  275. {
  276. return container_of(chan, struct pl08x_dma_chan, vc.chan);
  277. }
  278. static inline struct pl08x_txd *to_pl08x_txd(struct dma_async_tx_descriptor *tx)
  279. {
  280. return container_of(tx, struct pl08x_txd, vd.tx);
  281. }
  282. /*
  283. * Mux handling.
  284. *
  285. * This gives us the DMA request input to the PL08x primecell which the
  286. * peripheral described by the channel data will be routed to, possibly
  287. * via a board/SoC specific external MUX. One important point to note
  288. * here is that this does not depend on the physical channel.
  289. */
  290. static int pl08x_request_mux(struct pl08x_dma_chan *plchan)
  291. {
  292. const struct pl08x_platform_data *pd = plchan->host->pd;
  293. int ret;
  294. if (plchan->mux_use++ == 0 && pd->get_xfer_signal) {
  295. ret = pd->get_xfer_signal(plchan->cd);
  296. if (ret < 0) {
  297. plchan->mux_use = 0;
  298. return ret;
  299. }
  300. plchan->signal = ret;
  301. }
  302. return 0;
  303. }
  304. static void pl08x_release_mux(struct pl08x_dma_chan *plchan)
  305. {
  306. const struct pl08x_platform_data *pd = plchan->host->pd;
  307. if (plchan->signal >= 0) {
  308. WARN_ON(plchan->mux_use == 0);
  309. if (--plchan->mux_use == 0 && pd->put_xfer_signal) {
  310. pd->put_xfer_signal(plchan->cd, plchan->signal);
  311. plchan->signal = -1;
  312. }
  313. }
  314. }
  315. /*
  316. * Physical channel handling
  317. */
  318. /* Whether a certain channel is busy or not */
  319. static int pl08x_phy_channel_busy(struct pl08x_phy_chan *ch)
  320. {
  321. unsigned int val;
  322. val = readl(ch->reg_config);
  323. return val & PL080_CONFIG_ACTIVE;
  324. }
  325. static void pl08x_write_lli(struct pl08x_driver_data *pl08x,
  326. struct pl08x_phy_chan *phychan, const u32 *lli, u32 ccfg)
  327. {
  328. if (pl08x->vd->pl080s)
  329. dev_vdbg(&pl08x->adev->dev,
  330. "WRITE channel %d: csrc=0x%08x, cdst=0x%08x, "
  331. "clli=0x%08x, cctl=0x%08x, cctl2=0x%08x, ccfg=0x%08x\n",
  332. phychan->id, lli[PL080_LLI_SRC], lli[PL080_LLI_DST],
  333. lli[PL080_LLI_LLI], lli[PL080_LLI_CCTL],
  334. lli[PL080S_LLI_CCTL2], ccfg);
  335. else
  336. dev_vdbg(&pl08x->adev->dev,
  337. "WRITE channel %d: csrc=0x%08x, cdst=0x%08x, "
  338. "clli=0x%08x, cctl=0x%08x, ccfg=0x%08x\n",
  339. phychan->id, lli[PL080_LLI_SRC], lli[PL080_LLI_DST],
  340. lli[PL080_LLI_LLI], lli[PL080_LLI_CCTL], ccfg);
  341. writel_relaxed(lli[PL080_LLI_SRC], phychan->base + PL080_CH_SRC_ADDR);
  342. writel_relaxed(lli[PL080_LLI_DST], phychan->base + PL080_CH_DST_ADDR);
  343. writel_relaxed(lli[PL080_LLI_LLI], phychan->base + PL080_CH_LLI);
  344. writel_relaxed(lli[PL080_LLI_CCTL], phychan->base + PL080_CH_CONTROL);
  345. if (pl08x->vd->pl080s)
  346. writel_relaxed(lli[PL080S_LLI_CCTL2],
  347. phychan->base + PL080S_CH_CONTROL2);
  348. writel(ccfg, phychan->reg_config);
  349. }
  350. /*
  351. * Set the initial DMA register values i.e. those for the first LLI
  352. * The next LLI pointer and the configuration interrupt bit have
  353. * been set when the LLIs were constructed. Poke them into the hardware
  354. * and start the transfer.
  355. */
  356. static void pl08x_start_next_txd(struct pl08x_dma_chan *plchan)
  357. {
  358. struct pl08x_driver_data *pl08x = plchan->host;
  359. struct pl08x_phy_chan *phychan = plchan->phychan;
  360. struct virt_dma_desc *vd = vchan_next_desc(&plchan->vc);
  361. struct pl08x_txd *txd = to_pl08x_txd(&vd->tx);
  362. u32 val;
  363. list_del(&txd->vd.node);
  364. plchan->at = txd;
  365. /* Wait for channel inactive */
  366. while (pl08x_phy_channel_busy(phychan))
  367. cpu_relax();
  368. pl08x_write_lli(pl08x, phychan, &txd->llis_va[0], txd->ccfg);
  369. /* Enable the DMA channel */
  370. /* Do not access config register until channel shows as disabled */
  371. while (readl(pl08x->base + PL080_EN_CHAN) & (1 << phychan->id))
  372. cpu_relax();
  373. /* Do not access config register until channel shows as inactive */
  374. val = readl(phychan->reg_config);
  375. while ((val & PL080_CONFIG_ACTIVE) || (val & PL080_CONFIG_ENABLE))
  376. val = readl(phychan->reg_config);
  377. writel(val | PL080_CONFIG_ENABLE, phychan->reg_config);
  378. }
  379. /*
  380. * Pause the channel by setting the HALT bit.
  381. *
  382. * For M->P transfers, pause the DMAC first and then stop the peripheral -
  383. * the FIFO can only drain if the peripheral is still requesting data.
  384. * (note: this can still timeout if the DMAC FIFO never drains of data.)
  385. *
  386. * For P->M transfers, disable the peripheral first to stop it filling
  387. * the DMAC FIFO, and then pause the DMAC.
  388. */
  389. static void pl08x_pause_phy_chan(struct pl08x_phy_chan *ch)
  390. {
  391. u32 val;
  392. int timeout;
  393. /* Set the HALT bit and wait for the FIFO to drain */
  394. val = readl(ch->reg_config);
  395. val |= PL080_CONFIG_HALT;
  396. writel(val, ch->reg_config);
  397. /* Wait for channel inactive */
  398. for (timeout = 1000; timeout; timeout--) {
  399. if (!pl08x_phy_channel_busy(ch))
  400. break;
  401. udelay(1);
  402. }
  403. if (pl08x_phy_channel_busy(ch))
  404. pr_err("pl08x: channel%u timeout waiting for pause\n", ch->id);
  405. }
  406. static void pl08x_resume_phy_chan(struct pl08x_phy_chan *ch)
  407. {
  408. u32 val;
  409. /* Clear the HALT bit */
  410. val = readl(ch->reg_config);
  411. val &= ~PL080_CONFIG_HALT;
  412. writel(val, ch->reg_config);
  413. }
  414. /*
  415. * pl08x_terminate_phy_chan() stops the channel, clears the FIFO and
  416. * clears any pending interrupt status. This should not be used for
  417. * an on-going transfer, but as a method of shutting down a channel
  418. * (eg, when it's no longer used) or terminating a transfer.
  419. */
  420. static void pl08x_terminate_phy_chan(struct pl08x_driver_data *pl08x,
  421. struct pl08x_phy_chan *ch)
  422. {
  423. u32 val = readl(ch->reg_config);
  424. val &= ~(PL080_CONFIG_ENABLE | PL080_CONFIG_ERR_IRQ_MASK |
  425. PL080_CONFIG_TC_IRQ_MASK);
  426. writel(val, ch->reg_config);
  427. writel(1 << ch->id, pl08x->base + PL080_ERR_CLEAR);
  428. writel(1 << ch->id, pl08x->base + PL080_TC_CLEAR);
  429. }
  430. static inline u32 get_bytes_in_cctl(u32 cctl)
  431. {
  432. /* The source width defines the number of bytes */
  433. u32 bytes = cctl & PL080_CONTROL_TRANSFER_SIZE_MASK;
  434. switch (cctl >> PL080_CONTROL_SWIDTH_SHIFT) {
  435. case PL080_WIDTH_8BIT:
  436. break;
  437. case PL080_WIDTH_16BIT:
  438. bytes *= 2;
  439. break;
  440. case PL080_WIDTH_32BIT:
  441. bytes *= 4;
  442. break;
  443. }
  444. return bytes;
  445. }
  446. static inline u32 get_bytes_in_cctl_pl080s(u32 cctl, u32 cctl1)
  447. {
  448. /* The source width defines the number of bytes */
  449. u32 bytes = cctl1 & PL080S_CONTROL_TRANSFER_SIZE_MASK;
  450. switch (cctl >> PL080_CONTROL_SWIDTH_SHIFT) {
  451. case PL080_WIDTH_8BIT:
  452. break;
  453. case PL080_WIDTH_16BIT:
  454. bytes *= 2;
  455. break;
  456. case PL080_WIDTH_32BIT:
  457. bytes *= 4;
  458. break;
  459. }
  460. return bytes;
  461. }
  462. /* The channel should be paused when calling this */
  463. static u32 pl08x_getbytes_chan(struct pl08x_dma_chan *plchan)
  464. {
  465. struct pl08x_driver_data *pl08x = plchan->host;
  466. const u32 *llis_va, *llis_va_limit;
  467. struct pl08x_phy_chan *ch;
  468. dma_addr_t llis_bus;
  469. struct pl08x_txd *txd;
  470. u32 llis_max_words;
  471. size_t bytes;
  472. u32 clli;
  473. ch = plchan->phychan;
  474. txd = plchan->at;
  475. if (!ch || !txd)
  476. return 0;
  477. /*
  478. * Follow the LLIs to get the number of remaining
  479. * bytes in the currently active transaction.
  480. */
  481. clli = readl(ch->base + PL080_CH_LLI) & ~PL080_LLI_LM_AHB2;
  482. /* First get the remaining bytes in the active transfer */
  483. if (pl08x->vd->pl080s)
  484. bytes = get_bytes_in_cctl_pl080s(
  485. readl(ch->base + PL080_CH_CONTROL),
  486. readl(ch->base + PL080S_CH_CONTROL2));
  487. else
  488. bytes = get_bytes_in_cctl(readl(ch->base + PL080_CH_CONTROL));
  489. if (!clli)
  490. return bytes;
  491. llis_va = txd->llis_va;
  492. llis_bus = txd->llis_bus;
  493. llis_max_words = pl08x->lli_words * MAX_NUM_TSFR_LLIS;
  494. BUG_ON(clli < llis_bus || clli >= llis_bus +
  495. sizeof(u32) * llis_max_words);
  496. /*
  497. * Locate the next LLI - as this is an array,
  498. * it's simple maths to find.
  499. */
  500. llis_va += (clli - llis_bus) / sizeof(u32);
  501. llis_va_limit = llis_va + llis_max_words;
  502. for (; llis_va < llis_va_limit; llis_va += pl08x->lli_words) {
  503. if (pl08x->vd->pl080s)
  504. bytes += get_bytes_in_cctl_pl080s(
  505. llis_va[PL080_LLI_CCTL],
  506. llis_va[PL080S_LLI_CCTL2]);
  507. else
  508. bytes += get_bytes_in_cctl(llis_va[PL080_LLI_CCTL]);
  509. /*
  510. * A LLI pointer of 0 terminates the LLI list
  511. */
  512. if (!llis_va[PL080_LLI_LLI])
  513. break;
  514. }
  515. return bytes;
  516. }
  517. /*
  518. * Allocate a physical channel for a virtual channel
  519. *
  520. * Try to locate a physical channel to be used for this transfer. If all
  521. * are taken return NULL and the requester will have to cope by using
  522. * some fallback PIO mode or retrying later.
  523. */
  524. static struct pl08x_phy_chan *
  525. pl08x_get_phy_channel(struct pl08x_driver_data *pl08x,
  526. struct pl08x_dma_chan *virt_chan)
  527. {
  528. struct pl08x_phy_chan *ch = NULL;
  529. unsigned long flags;
  530. int i;
  531. for (i = 0; i < pl08x->vd->channels; i++) {
  532. ch = &pl08x->phy_chans[i];
  533. spin_lock_irqsave(&ch->lock, flags);
  534. if (!ch->locked && !ch->serving) {
  535. ch->serving = virt_chan;
  536. spin_unlock_irqrestore(&ch->lock, flags);
  537. break;
  538. }
  539. spin_unlock_irqrestore(&ch->lock, flags);
  540. }
  541. if (i == pl08x->vd->channels) {
  542. /* No physical channel available, cope with it */
  543. return NULL;
  544. }
  545. return ch;
  546. }
  547. /* Mark the physical channel as free. Note, this write is atomic. */
  548. static inline void pl08x_put_phy_channel(struct pl08x_driver_data *pl08x,
  549. struct pl08x_phy_chan *ch)
  550. {
  551. ch->serving = NULL;
  552. }
  553. /*
  554. * Try to allocate a physical channel. When successful, assign it to
  555. * this virtual channel, and initiate the next descriptor. The
  556. * virtual channel lock must be held at this point.
  557. */
  558. static void pl08x_phy_alloc_and_start(struct pl08x_dma_chan *plchan)
  559. {
  560. struct pl08x_driver_data *pl08x = plchan->host;
  561. struct pl08x_phy_chan *ch;
  562. ch = pl08x_get_phy_channel(pl08x, plchan);
  563. if (!ch) {
  564. dev_dbg(&pl08x->adev->dev, "no physical channel available for xfer on %s\n", plchan->name);
  565. plchan->state = PL08X_CHAN_WAITING;
  566. return;
  567. }
  568. dev_dbg(&pl08x->adev->dev, "allocated physical channel %d for xfer on %s\n",
  569. ch->id, plchan->name);
  570. plchan->phychan = ch;
  571. plchan->state = PL08X_CHAN_RUNNING;
  572. pl08x_start_next_txd(plchan);
  573. }
  574. static void pl08x_phy_reassign_start(struct pl08x_phy_chan *ch,
  575. struct pl08x_dma_chan *plchan)
  576. {
  577. struct pl08x_driver_data *pl08x = plchan->host;
  578. dev_dbg(&pl08x->adev->dev, "reassigned physical channel %d for xfer on %s\n",
  579. ch->id, plchan->name);
  580. /*
  581. * We do this without taking the lock; we're really only concerned
  582. * about whether this pointer is NULL or not, and we're guaranteed
  583. * that this will only be called when it _already_ is non-NULL.
  584. */
  585. ch->serving = plchan;
  586. plchan->phychan = ch;
  587. plchan->state = PL08X_CHAN_RUNNING;
  588. pl08x_start_next_txd(plchan);
  589. }
  590. /*
  591. * Free a physical DMA channel, potentially reallocating it to another
  592. * virtual channel if we have any pending.
  593. */
  594. static void pl08x_phy_free(struct pl08x_dma_chan *plchan)
  595. {
  596. struct pl08x_driver_data *pl08x = plchan->host;
  597. struct pl08x_dma_chan *p, *next;
  598. retry:
  599. next = NULL;
  600. /* Find a waiting virtual channel for the next transfer. */
  601. list_for_each_entry(p, &pl08x->memcpy.channels, vc.chan.device_node)
  602. if (p->state == PL08X_CHAN_WAITING) {
  603. next = p;
  604. break;
  605. }
  606. if (!next) {
  607. list_for_each_entry(p, &pl08x->slave.channels, vc.chan.device_node)
  608. if (p->state == PL08X_CHAN_WAITING) {
  609. next = p;
  610. break;
  611. }
  612. }
  613. /* Ensure that the physical channel is stopped */
  614. pl08x_terminate_phy_chan(pl08x, plchan->phychan);
  615. if (next) {
  616. bool success;
  617. /*
  618. * Eww. We know this isn't going to deadlock
  619. * but lockdep probably doesn't.
  620. */
  621. spin_lock(&next->vc.lock);
  622. /* Re-check the state now that we have the lock */
  623. success = next->state == PL08X_CHAN_WAITING;
  624. if (success)
  625. pl08x_phy_reassign_start(plchan->phychan, next);
  626. spin_unlock(&next->vc.lock);
  627. /* If the state changed, try to find another channel */
  628. if (!success)
  629. goto retry;
  630. } else {
  631. /* No more jobs, so free up the physical channel */
  632. pl08x_put_phy_channel(pl08x, plchan->phychan);
  633. }
  634. plchan->phychan = NULL;
  635. plchan->state = PL08X_CHAN_IDLE;
  636. }
  637. /*
  638. * LLI handling
  639. */
  640. static inline unsigned int pl08x_get_bytes_for_cctl(unsigned int coded)
  641. {
  642. switch (coded) {
  643. case PL080_WIDTH_8BIT:
  644. return 1;
  645. case PL080_WIDTH_16BIT:
  646. return 2;
  647. case PL080_WIDTH_32BIT:
  648. return 4;
  649. default:
  650. break;
  651. }
  652. BUG();
  653. return 0;
  654. }
  655. static inline u32 pl08x_cctl_bits(u32 cctl, u8 srcwidth, u8 dstwidth,
  656. size_t tsize)
  657. {
  658. u32 retbits = cctl;
  659. /* Remove all src, dst and transfer size bits */
  660. retbits &= ~PL080_CONTROL_DWIDTH_MASK;
  661. retbits &= ~PL080_CONTROL_SWIDTH_MASK;
  662. retbits &= ~PL080_CONTROL_TRANSFER_SIZE_MASK;
  663. /* Then set the bits according to the parameters */
  664. switch (srcwidth) {
  665. case 1:
  666. retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_SWIDTH_SHIFT;
  667. break;
  668. case 2:
  669. retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_SWIDTH_SHIFT;
  670. break;
  671. case 4:
  672. retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_SWIDTH_SHIFT;
  673. break;
  674. default:
  675. BUG();
  676. break;
  677. }
  678. switch (dstwidth) {
  679. case 1:
  680. retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_DWIDTH_SHIFT;
  681. break;
  682. case 2:
  683. retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_DWIDTH_SHIFT;
  684. break;
  685. case 4:
  686. retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_DWIDTH_SHIFT;
  687. break;
  688. default:
  689. BUG();
  690. break;
  691. }
  692. tsize &= PL080_CONTROL_TRANSFER_SIZE_MASK;
  693. retbits |= tsize << PL080_CONTROL_TRANSFER_SIZE_SHIFT;
  694. return retbits;
  695. }
  696. struct pl08x_lli_build_data {
  697. struct pl08x_txd *txd;
  698. struct pl08x_bus_data srcbus;
  699. struct pl08x_bus_data dstbus;
  700. size_t remainder;
  701. u32 lli_bus;
  702. };
  703. /*
  704. * Autoselect a master bus to use for the transfer. Slave will be the chosen as
  705. * victim in case src & dest are not similarly aligned. i.e. If after aligning
  706. * masters address with width requirements of transfer (by sending few byte by
  707. * byte data), slave is still not aligned, then its width will be reduced to
  708. * BYTE.
  709. * - prefers the destination bus if both available
  710. * - prefers bus with fixed address (i.e. peripheral)
  711. */
  712. static void pl08x_choose_master_bus(struct pl08x_lli_build_data *bd,
  713. struct pl08x_bus_data **mbus, struct pl08x_bus_data **sbus, u32 cctl)
  714. {
  715. if (!(cctl & PL080_CONTROL_DST_INCR)) {
  716. *mbus = &bd->dstbus;
  717. *sbus = &bd->srcbus;
  718. } else if (!(cctl & PL080_CONTROL_SRC_INCR)) {
  719. *mbus = &bd->srcbus;
  720. *sbus = &bd->dstbus;
  721. } else {
  722. if (bd->dstbus.buswidth >= bd->srcbus.buswidth) {
  723. *mbus = &bd->dstbus;
  724. *sbus = &bd->srcbus;
  725. } else {
  726. *mbus = &bd->srcbus;
  727. *sbus = &bd->dstbus;
  728. }
  729. }
  730. }
  731. /*
  732. * Fills in one LLI for a certain transfer descriptor and advance the counter
  733. */
  734. static void pl08x_fill_lli_for_desc(struct pl08x_driver_data *pl08x,
  735. struct pl08x_lli_build_data *bd,
  736. int num_llis, int len, u32 cctl, u32 cctl2)
  737. {
  738. u32 offset = num_llis * pl08x->lli_words;
  739. u32 *llis_va = bd->txd->llis_va + offset;
  740. dma_addr_t llis_bus = bd->txd->llis_bus;
  741. BUG_ON(num_llis >= MAX_NUM_TSFR_LLIS);
  742. /* Advance the offset to next LLI. */
  743. offset += pl08x->lli_words;
  744. llis_va[PL080_LLI_SRC] = bd->srcbus.addr;
  745. llis_va[PL080_LLI_DST] = bd->dstbus.addr;
  746. llis_va[PL080_LLI_LLI] = (llis_bus + sizeof(u32) * offset);
  747. llis_va[PL080_LLI_LLI] |= bd->lli_bus;
  748. llis_va[PL080_LLI_CCTL] = cctl;
  749. if (pl08x->vd->pl080s)
  750. llis_va[PL080S_LLI_CCTL2] = cctl2;
  751. if (cctl & PL080_CONTROL_SRC_INCR)
  752. bd->srcbus.addr += len;
  753. if (cctl & PL080_CONTROL_DST_INCR)
  754. bd->dstbus.addr += len;
  755. BUG_ON(bd->remainder < len);
  756. bd->remainder -= len;
  757. }
  758. static inline void prep_byte_width_lli(struct pl08x_driver_data *pl08x,
  759. struct pl08x_lli_build_data *bd, u32 *cctl, u32 len,
  760. int num_llis, size_t *total_bytes)
  761. {
  762. *cctl = pl08x_cctl_bits(*cctl, 1, 1, len);
  763. pl08x_fill_lli_for_desc(pl08x, bd, num_llis, len, *cctl, len);
  764. (*total_bytes) += len;
  765. }
  766. #ifdef VERBOSE_DEBUG
  767. static void pl08x_dump_lli(struct pl08x_driver_data *pl08x,
  768. const u32 *llis_va, int num_llis)
  769. {
  770. int i;
  771. if (pl08x->vd->pl080s) {
  772. dev_vdbg(&pl08x->adev->dev,
  773. "%-3s %-9s %-10s %-10s %-10s %-10s %s\n",
  774. "lli", "", "csrc", "cdst", "clli", "cctl", "cctl2");
  775. for (i = 0; i < num_llis; i++) {
  776. dev_vdbg(&pl08x->adev->dev,
  777. "%3d @%p: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n",
  778. i, llis_va, llis_va[PL080_LLI_SRC],
  779. llis_va[PL080_LLI_DST], llis_va[PL080_LLI_LLI],
  780. llis_va[PL080_LLI_CCTL],
  781. llis_va[PL080S_LLI_CCTL2]);
  782. llis_va += pl08x->lli_words;
  783. }
  784. } else {
  785. dev_vdbg(&pl08x->adev->dev,
  786. "%-3s %-9s %-10s %-10s %-10s %s\n",
  787. "lli", "", "csrc", "cdst", "clli", "cctl");
  788. for (i = 0; i < num_llis; i++) {
  789. dev_vdbg(&pl08x->adev->dev,
  790. "%3d @%p: 0x%08x 0x%08x 0x%08x 0x%08x\n",
  791. i, llis_va, llis_va[PL080_LLI_SRC],
  792. llis_va[PL080_LLI_DST], llis_va[PL080_LLI_LLI],
  793. llis_va[PL080_LLI_CCTL]);
  794. llis_va += pl08x->lli_words;
  795. }
  796. }
  797. }
  798. #else
  799. static inline void pl08x_dump_lli(struct pl08x_driver_data *pl08x,
  800. const u32 *llis_va, int num_llis) {}
  801. #endif
  802. /*
  803. * This fills in the table of LLIs for the transfer descriptor
  804. * Note that we assume we never have to change the burst sizes
  805. * Return 0 for error
  806. */
  807. static int pl08x_fill_llis_for_desc(struct pl08x_driver_data *pl08x,
  808. struct pl08x_txd *txd)
  809. {
  810. struct pl08x_bus_data *mbus, *sbus;
  811. struct pl08x_lli_build_data bd;
  812. int num_llis = 0;
  813. u32 cctl, early_bytes = 0;
  814. size_t max_bytes_per_lli, total_bytes;
  815. u32 *llis_va, *last_lli;
  816. struct pl08x_sg *dsg;
  817. txd->llis_va = dma_pool_alloc(pl08x->pool, GFP_NOWAIT, &txd->llis_bus);
  818. if (!txd->llis_va) {
  819. dev_err(&pl08x->adev->dev, "%s no memory for llis\n", __func__);
  820. return 0;
  821. }
  822. bd.txd = txd;
  823. bd.lli_bus = (pl08x->lli_buses & PL08X_AHB2) ? PL080_LLI_LM_AHB2 : 0;
  824. cctl = txd->cctl;
  825. /* Find maximum width of the source bus */
  826. bd.srcbus.maxwidth =
  827. pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_SWIDTH_MASK) >>
  828. PL080_CONTROL_SWIDTH_SHIFT);
  829. /* Find maximum width of the destination bus */
  830. bd.dstbus.maxwidth =
  831. pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_DWIDTH_MASK) >>
  832. PL080_CONTROL_DWIDTH_SHIFT);
  833. list_for_each_entry(dsg, &txd->dsg_list, node) {
  834. total_bytes = 0;
  835. cctl = txd->cctl;
  836. bd.srcbus.addr = dsg->src_addr;
  837. bd.dstbus.addr = dsg->dst_addr;
  838. bd.remainder = dsg->len;
  839. bd.srcbus.buswidth = bd.srcbus.maxwidth;
  840. bd.dstbus.buswidth = bd.dstbus.maxwidth;
  841. pl08x_choose_master_bus(&bd, &mbus, &sbus, cctl);
  842. dev_vdbg(&pl08x->adev->dev, "src=0x%08x%s/%u dst=0x%08x%s/%u len=%zu\n",
  843. bd.srcbus.addr, cctl & PL080_CONTROL_SRC_INCR ? "+" : "",
  844. bd.srcbus.buswidth,
  845. bd.dstbus.addr, cctl & PL080_CONTROL_DST_INCR ? "+" : "",
  846. bd.dstbus.buswidth,
  847. bd.remainder);
  848. dev_vdbg(&pl08x->adev->dev, "mbus=%s sbus=%s\n",
  849. mbus == &bd.srcbus ? "src" : "dst",
  850. sbus == &bd.srcbus ? "src" : "dst");
  851. /*
  852. * Zero length is only allowed if all these requirements are
  853. * met:
  854. * - flow controller is peripheral.
  855. * - src.addr is aligned to src.width
  856. * - dst.addr is aligned to dst.width
  857. *
  858. * sg_len == 1 should be true, as there can be two cases here:
  859. *
  860. * - Memory addresses are contiguous and are not scattered.
  861. * Here, Only one sg will be passed by user driver, with
  862. * memory address and zero length. We pass this to controller
  863. * and after the transfer it will receive the last burst
  864. * request from peripheral and so transfer finishes.
  865. *
  866. * - Memory addresses are scattered and are not contiguous.
  867. * Here, Obviously as DMA controller doesn't know when a lli's
  868. * transfer gets over, it can't load next lli. So in this
  869. * case, there has to be an assumption that only one lli is
  870. * supported. Thus, we can't have scattered addresses.
  871. */
  872. if (!bd.remainder) {
  873. u32 fc = (txd->ccfg & PL080_CONFIG_FLOW_CONTROL_MASK) >>
  874. PL080_CONFIG_FLOW_CONTROL_SHIFT;
  875. if (!((fc >= PL080_FLOW_SRC2DST_DST) &&
  876. (fc <= PL080_FLOW_SRC2DST_SRC))) {
  877. dev_err(&pl08x->adev->dev, "%s sg len can't be zero",
  878. __func__);
  879. return 0;
  880. }
  881. if ((bd.srcbus.addr % bd.srcbus.buswidth) ||
  882. (bd.dstbus.addr % bd.dstbus.buswidth)) {
  883. dev_err(&pl08x->adev->dev,
  884. "%s src & dst address must be aligned to src"
  885. " & dst width if peripheral is flow controller",
  886. __func__);
  887. return 0;
  888. }
  889. cctl = pl08x_cctl_bits(cctl, bd.srcbus.buswidth,
  890. bd.dstbus.buswidth, 0);
  891. pl08x_fill_lli_for_desc(pl08x, &bd, num_llis++,
  892. 0, cctl, 0);
  893. break;
  894. }
  895. /*
  896. * Send byte by byte for following cases
  897. * - Less than a bus width available
  898. * - until master bus is aligned
  899. */
  900. if (bd.remainder < mbus->buswidth)
  901. early_bytes = bd.remainder;
  902. else if ((mbus->addr) % (mbus->buswidth)) {
  903. early_bytes = mbus->buswidth - (mbus->addr) %
  904. (mbus->buswidth);
  905. if ((bd.remainder - early_bytes) < mbus->buswidth)
  906. early_bytes = bd.remainder;
  907. }
  908. if (early_bytes) {
  909. dev_vdbg(&pl08x->adev->dev,
  910. "%s byte width LLIs (remain 0x%08x)\n",
  911. __func__, bd.remainder);
  912. prep_byte_width_lli(pl08x, &bd, &cctl, early_bytes,
  913. num_llis++, &total_bytes);
  914. }
  915. if (bd.remainder) {
  916. /*
  917. * Master now aligned
  918. * - if slave is not then we must set its width down
  919. */
  920. if (sbus->addr % sbus->buswidth) {
  921. dev_dbg(&pl08x->adev->dev,
  922. "%s set down bus width to one byte\n",
  923. __func__);
  924. sbus->buswidth = 1;
  925. }
  926. /*
  927. * Bytes transferred = tsize * src width, not
  928. * MIN(buswidths)
  929. */
  930. max_bytes_per_lli = bd.srcbus.buswidth *
  931. pl08x->vd->max_transfer_size;
  932. dev_vdbg(&pl08x->adev->dev,
  933. "%s max bytes per lli = %zu\n",
  934. __func__, max_bytes_per_lli);
  935. /*
  936. * Make largest possible LLIs until less than one bus
  937. * width left
  938. */
  939. while (bd.remainder > (mbus->buswidth - 1)) {
  940. size_t lli_len, tsize, width;
  941. /*
  942. * If enough left try to send max possible,
  943. * otherwise try to send the remainder
  944. */
  945. lli_len = min(bd.remainder, max_bytes_per_lli);
  946. /*
  947. * Check against maximum bus alignment:
  948. * Calculate actual transfer size in relation to
  949. * bus width an get a maximum remainder of the
  950. * highest bus width - 1
  951. */
  952. width = max(mbus->buswidth, sbus->buswidth);
  953. lli_len = (lli_len / width) * width;
  954. tsize = lli_len / bd.srcbus.buswidth;
  955. dev_vdbg(&pl08x->adev->dev,
  956. "%s fill lli with single lli chunk of "
  957. "size 0x%08zx (remainder 0x%08zx)\n",
  958. __func__, lli_len, bd.remainder);
  959. cctl = pl08x_cctl_bits(cctl, bd.srcbus.buswidth,
  960. bd.dstbus.buswidth, tsize);
  961. pl08x_fill_lli_for_desc(pl08x, &bd, num_llis++,
  962. lli_len, cctl, tsize);
  963. total_bytes += lli_len;
  964. }
  965. /*
  966. * Send any odd bytes
  967. */
  968. if (bd.remainder) {
  969. dev_vdbg(&pl08x->adev->dev,
  970. "%s align with boundary, send odd bytes (remain %zu)\n",
  971. __func__, bd.remainder);
  972. prep_byte_width_lli(pl08x, &bd, &cctl,
  973. bd.remainder, num_llis++, &total_bytes);
  974. }
  975. }
  976. if (total_bytes != dsg->len) {
  977. dev_err(&pl08x->adev->dev,
  978. "%s size of encoded lli:s don't match total txd, transferred 0x%08zx from size 0x%08zx\n",
  979. __func__, total_bytes, dsg->len);
  980. return 0;
  981. }
  982. if (num_llis >= MAX_NUM_TSFR_LLIS) {
  983. dev_err(&pl08x->adev->dev,
  984. "%s need to increase MAX_NUM_TSFR_LLIS from 0x%08x\n",
  985. __func__, MAX_NUM_TSFR_LLIS);
  986. return 0;
  987. }
  988. }
  989. llis_va = txd->llis_va;
  990. last_lli = llis_va + (num_llis - 1) * pl08x->lli_words;
  991. /* The final LLI terminates the LLI. */
  992. last_lli[PL080_LLI_LLI] = 0;
  993. /* The final LLI element shall also fire an interrupt. */
  994. last_lli[PL080_LLI_CCTL] |= PL080_CONTROL_TC_IRQ_EN;
  995. pl08x_dump_lli(pl08x, llis_va, num_llis);
  996. return num_llis;
  997. }
  998. static void pl08x_free_txd(struct pl08x_driver_data *pl08x,
  999. struct pl08x_txd *txd)
  1000. {
  1001. struct pl08x_sg *dsg, *_dsg;
  1002. if (txd->llis_va)
  1003. dma_pool_free(pl08x->pool, txd->llis_va, txd->llis_bus);
  1004. list_for_each_entry_safe(dsg, _dsg, &txd->dsg_list, node) {
  1005. list_del(&dsg->node);
  1006. kfree(dsg);
  1007. }
  1008. kfree(txd);
  1009. }
  1010. static void pl08x_unmap_buffers(struct pl08x_txd *txd)
  1011. {
  1012. struct device *dev = txd->vd.tx.chan->device->dev;
  1013. struct pl08x_sg *dsg;
  1014. if (!(txd->vd.tx.flags & DMA_COMPL_SKIP_SRC_UNMAP)) {
  1015. if (txd->vd.tx.flags & DMA_COMPL_SRC_UNMAP_SINGLE)
  1016. list_for_each_entry(dsg, &txd->dsg_list, node)
  1017. dma_unmap_single(dev, dsg->src_addr, dsg->len,
  1018. DMA_TO_DEVICE);
  1019. else {
  1020. list_for_each_entry(dsg, &txd->dsg_list, node)
  1021. dma_unmap_page(dev, dsg->src_addr, dsg->len,
  1022. DMA_TO_DEVICE);
  1023. }
  1024. }
  1025. if (!(txd->vd.tx.flags & DMA_COMPL_SKIP_DEST_UNMAP)) {
  1026. if (txd->vd.tx.flags & DMA_COMPL_DEST_UNMAP_SINGLE)
  1027. list_for_each_entry(dsg, &txd->dsg_list, node)
  1028. dma_unmap_single(dev, dsg->dst_addr, dsg->len,
  1029. DMA_FROM_DEVICE);
  1030. else
  1031. list_for_each_entry(dsg, &txd->dsg_list, node)
  1032. dma_unmap_page(dev, dsg->dst_addr, dsg->len,
  1033. DMA_FROM_DEVICE);
  1034. }
  1035. }
  1036. static void pl08x_desc_free(struct virt_dma_desc *vd)
  1037. {
  1038. struct pl08x_txd *txd = to_pl08x_txd(&vd->tx);
  1039. struct pl08x_dma_chan *plchan = to_pl08x_chan(vd->tx.chan);
  1040. if (!plchan->slave)
  1041. pl08x_unmap_buffers(txd);
  1042. if (!txd->done)
  1043. pl08x_release_mux(plchan);
  1044. pl08x_free_txd(plchan->host, txd);
  1045. }
  1046. static void pl08x_free_txd_list(struct pl08x_driver_data *pl08x,
  1047. struct pl08x_dma_chan *plchan)
  1048. {
  1049. LIST_HEAD(head);
  1050. vchan_get_all_descriptors(&plchan->vc, &head);
  1051. vchan_dma_desc_free_list(&plchan->vc, &head);
  1052. }
  1053. /*
  1054. * The DMA ENGINE API
  1055. */
  1056. static int pl08x_alloc_chan_resources(struct dma_chan *chan)
  1057. {
  1058. return 0;
  1059. }
  1060. static void pl08x_free_chan_resources(struct dma_chan *chan)
  1061. {
  1062. /* Ensure all queued descriptors are freed */
  1063. vchan_free_chan_resources(to_virt_chan(chan));
  1064. }
  1065. static struct dma_async_tx_descriptor *pl08x_prep_dma_interrupt(
  1066. struct dma_chan *chan, unsigned long flags)
  1067. {
  1068. struct dma_async_tx_descriptor *retval = NULL;
  1069. return retval;
  1070. }
  1071. /*
  1072. * Code accessing dma_async_is_complete() in a tight loop may give problems.
  1073. * If slaves are relying on interrupts to signal completion this function
  1074. * must not be called with interrupts disabled.
  1075. */
  1076. static enum dma_status pl08x_dma_tx_status(struct dma_chan *chan,
  1077. dma_cookie_t cookie, struct dma_tx_state *txstate)
  1078. {
  1079. struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
  1080. struct virt_dma_desc *vd;
  1081. unsigned long flags;
  1082. enum dma_status ret;
  1083. size_t bytes = 0;
  1084. ret = dma_cookie_status(chan, cookie, txstate);
  1085. if (ret == DMA_SUCCESS)
  1086. return ret;
  1087. /*
  1088. * There's no point calculating the residue if there's
  1089. * no txstate to store the value.
  1090. */
  1091. if (!txstate) {
  1092. if (plchan->state == PL08X_CHAN_PAUSED)
  1093. ret = DMA_PAUSED;
  1094. return ret;
  1095. }
  1096. spin_lock_irqsave(&plchan->vc.lock, flags);
  1097. ret = dma_cookie_status(chan, cookie, txstate);
  1098. if (ret != DMA_SUCCESS) {
  1099. vd = vchan_find_desc(&plchan->vc, cookie);
  1100. if (vd) {
  1101. /* On the issued list, so hasn't been processed yet */
  1102. struct pl08x_txd *txd = to_pl08x_txd(&vd->tx);
  1103. struct pl08x_sg *dsg;
  1104. list_for_each_entry(dsg, &txd->dsg_list, node)
  1105. bytes += dsg->len;
  1106. } else {
  1107. bytes = pl08x_getbytes_chan(plchan);
  1108. }
  1109. }
  1110. spin_unlock_irqrestore(&plchan->vc.lock, flags);
  1111. /*
  1112. * This cookie not complete yet
  1113. * Get number of bytes left in the active transactions and queue
  1114. */
  1115. dma_set_residue(txstate, bytes);
  1116. if (plchan->state == PL08X_CHAN_PAUSED && ret == DMA_IN_PROGRESS)
  1117. ret = DMA_PAUSED;
  1118. /* Whether waiting or running, we're in progress */
  1119. return ret;
  1120. }
  1121. /* PrimeCell DMA extension */
  1122. struct burst_table {
  1123. u32 burstwords;
  1124. u32 reg;
  1125. };
  1126. static const struct burst_table burst_sizes[] = {
  1127. {
  1128. .burstwords = 256,
  1129. .reg = PL080_BSIZE_256,
  1130. },
  1131. {
  1132. .burstwords = 128,
  1133. .reg = PL080_BSIZE_128,
  1134. },
  1135. {
  1136. .burstwords = 64,
  1137. .reg = PL080_BSIZE_64,
  1138. },
  1139. {
  1140. .burstwords = 32,
  1141. .reg = PL080_BSIZE_32,
  1142. },
  1143. {
  1144. .burstwords = 16,
  1145. .reg = PL080_BSIZE_16,
  1146. },
  1147. {
  1148. .burstwords = 8,
  1149. .reg = PL080_BSIZE_8,
  1150. },
  1151. {
  1152. .burstwords = 4,
  1153. .reg = PL080_BSIZE_4,
  1154. },
  1155. {
  1156. .burstwords = 0,
  1157. .reg = PL080_BSIZE_1,
  1158. },
  1159. };
  1160. /*
  1161. * Given the source and destination available bus masks, select which
  1162. * will be routed to each port. We try to have source and destination
  1163. * on separate ports, but always respect the allowable settings.
  1164. */
  1165. static u32 pl08x_select_bus(u8 src, u8 dst)
  1166. {
  1167. u32 cctl = 0;
  1168. if (!(dst & PL08X_AHB1) || ((dst & PL08X_AHB2) && (src & PL08X_AHB1)))
  1169. cctl |= PL080_CONTROL_DST_AHB2;
  1170. if (!(src & PL08X_AHB1) || ((src & PL08X_AHB2) && !(dst & PL08X_AHB2)))
  1171. cctl |= PL080_CONTROL_SRC_AHB2;
  1172. return cctl;
  1173. }
  1174. static u32 pl08x_cctl(u32 cctl)
  1175. {
  1176. cctl &= ~(PL080_CONTROL_SRC_AHB2 | PL080_CONTROL_DST_AHB2 |
  1177. PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR |
  1178. PL080_CONTROL_PROT_MASK);
  1179. /* Access the cell in privileged mode, non-bufferable, non-cacheable */
  1180. return cctl | PL080_CONTROL_PROT_SYS;
  1181. }
  1182. static u32 pl08x_width(enum dma_slave_buswidth width)
  1183. {
  1184. switch (width) {
  1185. case DMA_SLAVE_BUSWIDTH_1_BYTE:
  1186. return PL080_WIDTH_8BIT;
  1187. case DMA_SLAVE_BUSWIDTH_2_BYTES:
  1188. return PL080_WIDTH_16BIT;
  1189. case DMA_SLAVE_BUSWIDTH_4_BYTES:
  1190. return PL080_WIDTH_32BIT;
  1191. default:
  1192. return ~0;
  1193. }
  1194. }
  1195. static u32 pl08x_burst(u32 maxburst)
  1196. {
  1197. int i;
  1198. for (i = 0; i < ARRAY_SIZE(burst_sizes); i++)
  1199. if (burst_sizes[i].burstwords <= maxburst)
  1200. break;
  1201. return burst_sizes[i].reg;
  1202. }
  1203. static u32 pl08x_get_cctl(struct pl08x_dma_chan *plchan,
  1204. enum dma_slave_buswidth addr_width, u32 maxburst)
  1205. {
  1206. u32 width, burst, cctl = 0;
  1207. width = pl08x_width(addr_width);
  1208. if (width == ~0)
  1209. return ~0;
  1210. cctl |= width << PL080_CONTROL_SWIDTH_SHIFT;
  1211. cctl |= width << PL080_CONTROL_DWIDTH_SHIFT;
  1212. /*
  1213. * If this channel will only request single transfers, set this
  1214. * down to ONE element. Also select one element if no maxburst
  1215. * is specified.
  1216. */
  1217. if (plchan->cd->single)
  1218. maxburst = 1;
  1219. burst = pl08x_burst(maxburst);
  1220. cctl |= burst << PL080_CONTROL_SB_SIZE_SHIFT;
  1221. cctl |= burst << PL080_CONTROL_DB_SIZE_SHIFT;
  1222. return pl08x_cctl(cctl);
  1223. }
  1224. static int dma_set_runtime_config(struct dma_chan *chan,
  1225. struct dma_slave_config *config)
  1226. {
  1227. struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
  1228. struct pl08x_driver_data *pl08x = plchan->host;
  1229. if (!plchan->slave)
  1230. return -EINVAL;
  1231. /* Reject definitely invalid configurations */
  1232. if (config->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES ||
  1233. config->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES)
  1234. return -EINVAL;
  1235. if (config->device_fc && pl08x->vd->pl080s) {
  1236. dev_err(&pl08x->adev->dev,
  1237. "%s: PL080S does not support peripheral flow control\n",
  1238. __func__);
  1239. return -EINVAL;
  1240. }
  1241. plchan->cfg = *config;
  1242. return 0;
  1243. }
  1244. /*
  1245. * Slave transactions callback to the slave device to allow
  1246. * synchronization of slave DMA signals with the DMAC enable
  1247. */
  1248. static void pl08x_issue_pending(struct dma_chan *chan)
  1249. {
  1250. struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
  1251. unsigned long flags;
  1252. spin_lock_irqsave(&plchan->vc.lock, flags);
  1253. if (vchan_issue_pending(&plchan->vc)) {
  1254. if (!plchan->phychan && plchan->state != PL08X_CHAN_WAITING)
  1255. pl08x_phy_alloc_and_start(plchan);
  1256. }
  1257. spin_unlock_irqrestore(&plchan->vc.lock, flags);
  1258. }
  1259. static struct pl08x_txd *pl08x_get_txd(struct pl08x_dma_chan *plchan)
  1260. {
  1261. struct pl08x_txd *txd = kzalloc(sizeof(*txd), GFP_NOWAIT);
  1262. if (txd) {
  1263. INIT_LIST_HEAD(&txd->dsg_list);
  1264. /* Always enable error and terminal interrupts */
  1265. txd->ccfg = PL080_CONFIG_ERR_IRQ_MASK |
  1266. PL080_CONFIG_TC_IRQ_MASK;
  1267. }
  1268. return txd;
  1269. }
  1270. /*
  1271. * Initialize a descriptor to be used by memcpy submit
  1272. */
  1273. static struct dma_async_tx_descriptor *pl08x_prep_dma_memcpy(
  1274. struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
  1275. size_t len, unsigned long flags)
  1276. {
  1277. struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
  1278. struct pl08x_driver_data *pl08x = plchan->host;
  1279. struct pl08x_txd *txd;
  1280. struct pl08x_sg *dsg;
  1281. int ret;
  1282. txd = pl08x_get_txd(plchan);
  1283. if (!txd) {
  1284. dev_err(&pl08x->adev->dev,
  1285. "%s no memory for descriptor\n", __func__);
  1286. return NULL;
  1287. }
  1288. dsg = kzalloc(sizeof(struct pl08x_sg), GFP_NOWAIT);
  1289. if (!dsg) {
  1290. pl08x_free_txd(pl08x, txd);
  1291. dev_err(&pl08x->adev->dev, "%s no memory for pl080 sg\n",
  1292. __func__);
  1293. return NULL;
  1294. }
  1295. list_add_tail(&dsg->node, &txd->dsg_list);
  1296. dsg->src_addr = src;
  1297. dsg->dst_addr = dest;
  1298. dsg->len = len;
  1299. /* Set platform data for m2m */
  1300. txd->ccfg |= PL080_FLOW_MEM2MEM << PL080_CONFIG_FLOW_CONTROL_SHIFT;
  1301. txd->cctl = pl08x->pd->memcpy_channel.cctl_memcpy &
  1302. ~(PL080_CONTROL_DST_AHB2 | PL080_CONTROL_SRC_AHB2);
  1303. /* Both to be incremented or the code will break */
  1304. txd->cctl |= PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR;
  1305. if (pl08x->vd->dualmaster)
  1306. txd->cctl |= pl08x_select_bus(pl08x->mem_buses,
  1307. pl08x->mem_buses);
  1308. ret = pl08x_fill_llis_for_desc(plchan->host, txd);
  1309. if (!ret) {
  1310. pl08x_free_txd(pl08x, txd);
  1311. return NULL;
  1312. }
  1313. return vchan_tx_prep(&plchan->vc, &txd->vd, flags);
  1314. }
  1315. static struct dma_async_tx_descriptor *pl08x_prep_slave_sg(
  1316. struct dma_chan *chan, struct scatterlist *sgl,
  1317. unsigned int sg_len, enum dma_transfer_direction direction,
  1318. unsigned long flags, void *context)
  1319. {
  1320. struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
  1321. struct pl08x_driver_data *pl08x = plchan->host;
  1322. struct pl08x_txd *txd;
  1323. struct pl08x_sg *dsg;
  1324. struct scatterlist *sg;
  1325. enum dma_slave_buswidth addr_width;
  1326. dma_addr_t slave_addr;
  1327. int ret, tmp;
  1328. u8 src_buses, dst_buses;
  1329. u32 maxburst, cctl;
  1330. dev_dbg(&pl08x->adev->dev, "%s prepare transaction of %d bytes from %s\n",
  1331. __func__, sg_dma_len(sgl), plchan->name);
  1332. txd = pl08x_get_txd(plchan);
  1333. if (!txd) {
  1334. dev_err(&pl08x->adev->dev, "%s no txd\n", __func__);
  1335. return NULL;
  1336. }
  1337. /*
  1338. * Set up addresses, the PrimeCell configured address
  1339. * will take precedence since this may configure the
  1340. * channel target address dynamically at runtime.
  1341. */
  1342. if (direction == DMA_MEM_TO_DEV) {
  1343. cctl = PL080_CONTROL_SRC_INCR;
  1344. slave_addr = plchan->cfg.dst_addr;
  1345. addr_width = plchan->cfg.dst_addr_width;
  1346. maxburst = plchan->cfg.dst_maxburst;
  1347. src_buses = pl08x->mem_buses;
  1348. dst_buses = plchan->cd->periph_buses;
  1349. } else if (direction == DMA_DEV_TO_MEM) {
  1350. cctl = PL080_CONTROL_DST_INCR;
  1351. slave_addr = plchan->cfg.src_addr;
  1352. addr_width = plchan->cfg.src_addr_width;
  1353. maxburst = plchan->cfg.src_maxburst;
  1354. src_buses = plchan->cd->periph_buses;
  1355. dst_buses = pl08x->mem_buses;
  1356. } else {
  1357. pl08x_free_txd(pl08x, txd);
  1358. dev_err(&pl08x->adev->dev,
  1359. "%s direction unsupported\n", __func__);
  1360. return NULL;
  1361. }
  1362. cctl |= pl08x_get_cctl(plchan, addr_width, maxburst);
  1363. if (cctl == ~0) {
  1364. pl08x_free_txd(pl08x, txd);
  1365. dev_err(&pl08x->adev->dev,
  1366. "DMA slave configuration botched?\n");
  1367. return NULL;
  1368. }
  1369. txd->cctl = cctl | pl08x_select_bus(src_buses, dst_buses);
  1370. if (plchan->cfg.device_fc)
  1371. tmp = (direction == DMA_MEM_TO_DEV) ? PL080_FLOW_MEM2PER_PER :
  1372. PL080_FLOW_PER2MEM_PER;
  1373. else
  1374. tmp = (direction == DMA_MEM_TO_DEV) ? PL080_FLOW_MEM2PER :
  1375. PL080_FLOW_PER2MEM;
  1376. txd->ccfg |= tmp << PL080_CONFIG_FLOW_CONTROL_SHIFT;
  1377. ret = pl08x_request_mux(plchan);
  1378. if (ret < 0) {
  1379. pl08x_free_txd(pl08x, txd);
  1380. dev_dbg(&pl08x->adev->dev,
  1381. "unable to mux for transfer on %s due to platform restrictions\n",
  1382. plchan->name);
  1383. return NULL;
  1384. }
  1385. dev_dbg(&pl08x->adev->dev, "allocated DMA request signal %d for xfer on %s\n",
  1386. plchan->signal, plchan->name);
  1387. /* Assign the flow control signal to this channel */
  1388. if (direction == DMA_MEM_TO_DEV)
  1389. txd->ccfg |= plchan->signal << PL080_CONFIG_DST_SEL_SHIFT;
  1390. else
  1391. txd->ccfg |= plchan->signal << PL080_CONFIG_SRC_SEL_SHIFT;
  1392. for_each_sg(sgl, sg, sg_len, tmp) {
  1393. dsg = kzalloc(sizeof(struct pl08x_sg), GFP_NOWAIT);
  1394. if (!dsg) {
  1395. pl08x_release_mux(plchan);
  1396. pl08x_free_txd(pl08x, txd);
  1397. dev_err(&pl08x->adev->dev, "%s no mem for pl080 sg\n",
  1398. __func__);
  1399. return NULL;
  1400. }
  1401. list_add_tail(&dsg->node, &txd->dsg_list);
  1402. dsg->len = sg_dma_len(sg);
  1403. if (direction == DMA_MEM_TO_DEV) {
  1404. dsg->src_addr = sg_dma_address(sg);
  1405. dsg->dst_addr = slave_addr;
  1406. } else {
  1407. dsg->src_addr = slave_addr;
  1408. dsg->dst_addr = sg_dma_address(sg);
  1409. }
  1410. }
  1411. ret = pl08x_fill_llis_for_desc(plchan->host, txd);
  1412. if (!ret) {
  1413. pl08x_release_mux(plchan);
  1414. pl08x_free_txd(pl08x, txd);
  1415. return NULL;
  1416. }
  1417. return vchan_tx_prep(&plchan->vc, &txd->vd, flags);
  1418. }
  1419. static int pl08x_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
  1420. unsigned long arg)
  1421. {
  1422. struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
  1423. struct pl08x_driver_data *pl08x = plchan->host;
  1424. unsigned long flags;
  1425. int ret = 0;
  1426. /* Controls applicable to inactive channels */
  1427. if (cmd == DMA_SLAVE_CONFIG) {
  1428. return dma_set_runtime_config(chan,
  1429. (struct dma_slave_config *)arg);
  1430. }
  1431. /*
  1432. * Anything succeeds on channels with no physical allocation and
  1433. * no queued transfers.
  1434. */
  1435. spin_lock_irqsave(&plchan->vc.lock, flags);
  1436. if (!plchan->phychan && !plchan->at) {
  1437. spin_unlock_irqrestore(&plchan->vc.lock, flags);
  1438. return 0;
  1439. }
  1440. switch (cmd) {
  1441. case DMA_TERMINATE_ALL:
  1442. plchan->state = PL08X_CHAN_IDLE;
  1443. if (plchan->phychan) {
  1444. /*
  1445. * Mark physical channel as free and free any slave
  1446. * signal
  1447. */
  1448. pl08x_phy_free(plchan);
  1449. }
  1450. /* Dequeue jobs and free LLIs */
  1451. if (plchan->at) {
  1452. pl08x_desc_free(&plchan->at->vd);
  1453. plchan->at = NULL;
  1454. }
  1455. /* Dequeue jobs not yet fired as well */
  1456. pl08x_free_txd_list(pl08x, plchan);
  1457. break;
  1458. case DMA_PAUSE:
  1459. pl08x_pause_phy_chan(plchan->phychan);
  1460. plchan->state = PL08X_CHAN_PAUSED;
  1461. break;
  1462. case DMA_RESUME:
  1463. pl08x_resume_phy_chan(plchan->phychan);
  1464. plchan->state = PL08X_CHAN_RUNNING;
  1465. break;
  1466. default:
  1467. /* Unknown command */
  1468. ret = -ENXIO;
  1469. break;
  1470. }
  1471. spin_unlock_irqrestore(&plchan->vc.lock, flags);
  1472. return ret;
  1473. }
  1474. bool pl08x_filter_id(struct dma_chan *chan, void *chan_id)
  1475. {
  1476. struct pl08x_dma_chan *plchan;
  1477. char *name = chan_id;
  1478. /* Reject channels for devices not bound to this driver */
  1479. if (chan->device->dev->driver != &pl08x_amba_driver.drv)
  1480. return false;
  1481. plchan = to_pl08x_chan(chan);
  1482. /* Check that the channel is not taken! */
  1483. if (!strcmp(plchan->name, name))
  1484. return true;
  1485. return false;
  1486. }
  1487. /*
  1488. * Just check that the device is there and active
  1489. * TODO: turn this bit on/off depending on the number of physical channels
  1490. * actually used, if it is zero... well shut it off. That will save some
  1491. * power. Cut the clock at the same time.
  1492. */
  1493. static void pl08x_ensure_on(struct pl08x_driver_data *pl08x)
  1494. {
  1495. /* The Nomadik variant does not have the config register */
  1496. if (pl08x->vd->nomadik)
  1497. return;
  1498. writel(PL080_CONFIG_ENABLE, pl08x->base + PL080_CONFIG);
  1499. }
  1500. static irqreturn_t pl08x_irq(int irq, void *dev)
  1501. {
  1502. struct pl08x_driver_data *pl08x = dev;
  1503. u32 mask = 0, err, tc, i;
  1504. /* check & clear - ERR & TC interrupts */
  1505. err = readl(pl08x->base + PL080_ERR_STATUS);
  1506. if (err) {
  1507. dev_err(&pl08x->adev->dev, "%s error interrupt, register value 0x%08x\n",
  1508. __func__, err);
  1509. writel(err, pl08x->base + PL080_ERR_CLEAR);
  1510. }
  1511. tc = readl(pl08x->base + PL080_TC_STATUS);
  1512. if (tc)
  1513. writel(tc, pl08x->base + PL080_TC_CLEAR);
  1514. if (!err && !tc)
  1515. return IRQ_NONE;
  1516. for (i = 0; i < pl08x->vd->channels; i++) {
  1517. if (((1 << i) & err) || ((1 << i) & tc)) {
  1518. /* Locate physical channel */
  1519. struct pl08x_phy_chan *phychan = &pl08x->phy_chans[i];
  1520. struct pl08x_dma_chan *plchan = phychan->serving;
  1521. struct pl08x_txd *tx;
  1522. if (!plchan) {
  1523. dev_err(&pl08x->adev->dev,
  1524. "%s Error TC interrupt on unused channel: 0x%08x\n",
  1525. __func__, i);
  1526. continue;
  1527. }
  1528. spin_lock(&plchan->vc.lock);
  1529. tx = plchan->at;
  1530. if (tx) {
  1531. plchan->at = NULL;
  1532. /*
  1533. * This descriptor is done, release its mux
  1534. * reservation.
  1535. */
  1536. pl08x_release_mux(plchan);
  1537. tx->done = true;
  1538. vchan_cookie_complete(&tx->vd);
  1539. /*
  1540. * And start the next descriptor (if any),
  1541. * otherwise free this channel.
  1542. */
  1543. if (vchan_next_desc(&plchan->vc))
  1544. pl08x_start_next_txd(plchan);
  1545. else
  1546. pl08x_phy_free(plchan);
  1547. }
  1548. spin_unlock(&plchan->vc.lock);
  1549. mask |= (1 << i);
  1550. }
  1551. }
  1552. return mask ? IRQ_HANDLED : IRQ_NONE;
  1553. }
  1554. static void pl08x_dma_slave_init(struct pl08x_dma_chan *chan)
  1555. {
  1556. chan->slave = true;
  1557. chan->name = chan->cd->bus_id;
  1558. chan->cfg.src_addr = chan->cd->addr;
  1559. chan->cfg.dst_addr = chan->cd->addr;
  1560. }
  1561. /*
  1562. * Initialise the DMAC memcpy/slave channels.
  1563. * Make a local wrapper to hold required data
  1564. */
  1565. static int pl08x_dma_init_virtual_channels(struct pl08x_driver_data *pl08x,
  1566. struct dma_device *dmadev, unsigned int channels, bool slave)
  1567. {
  1568. struct pl08x_dma_chan *chan;
  1569. int i;
  1570. INIT_LIST_HEAD(&dmadev->channels);
  1571. /*
  1572. * Register as many many memcpy as we have physical channels,
  1573. * we won't always be able to use all but the code will have
  1574. * to cope with that situation.
  1575. */
  1576. for (i = 0; i < channels; i++) {
  1577. chan = kzalloc(sizeof(*chan), GFP_KERNEL);
  1578. if (!chan) {
  1579. dev_err(&pl08x->adev->dev,
  1580. "%s no memory for channel\n", __func__);
  1581. return -ENOMEM;
  1582. }
  1583. chan->host = pl08x;
  1584. chan->state = PL08X_CHAN_IDLE;
  1585. chan->signal = -1;
  1586. if (slave) {
  1587. chan->cd = &pl08x->pd->slave_channels[i];
  1588. pl08x_dma_slave_init(chan);
  1589. } else {
  1590. chan->cd = &pl08x->pd->memcpy_channel;
  1591. chan->name = kasprintf(GFP_KERNEL, "memcpy%d", i);
  1592. if (!chan->name) {
  1593. kfree(chan);
  1594. return -ENOMEM;
  1595. }
  1596. }
  1597. dev_dbg(&pl08x->adev->dev,
  1598. "initialize virtual channel \"%s\"\n",
  1599. chan->name);
  1600. chan->vc.desc_free = pl08x_desc_free;
  1601. vchan_init(&chan->vc, dmadev);
  1602. }
  1603. dev_info(&pl08x->adev->dev, "initialized %d virtual %s channels\n",
  1604. i, slave ? "slave" : "memcpy");
  1605. return i;
  1606. }
  1607. static void pl08x_free_virtual_channels(struct dma_device *dmadev)
  1608. {
  1609. struct pl08x_dma_chan *chan = NULL;
  1610. struct pl08x_dma_chan *next;
  1611. list_for_each_entry_safe(chan,
  1612. next, &dmadev->channels, vc.chan.device_node) {
  1613. list_del(&chan->vc.chan.device_node);
  1614. kfree(chan);
  1615. }
  1616. }
  1617. #ifdef CONFIG_DEBUG_FS
  1618. static const char *pl08x_state_str(enum pl08x_dma_chan_state state)
  1619. {
  1620. switch (state) {
  1621. case PL08X_CHAN_IDLE:
  1622. return "idle";
  1623. case PL08X_CHAN_RUNNING:
  1624. return "running";
  1625. case PL08X_CHAN_PAUSED:
  1626. return "paused";
  1627. case PL08X_CHAN_WAITING:
  1628. return "waiting";
  1629. default:
  1630. break;
  1631. }
  1632. return "UNKNOWN STATE";
  1633. }
  1634. static int pl08x_debugfs_show(struct seq_file *s, void *data)
  1635. {
  1636. struct pl08x_driver_data *pl08x = s->private;
  1637. struct pl08x_dma_chan *chan;
  1638. struct pl08x_phy_chan *ch;
  1639. unsigned long flags;
  1640. int i;
  1641. seq_printf(s, "PL08x physical channels:\n");
  1642. seq_printf(s, "CHANNEL:\tUSER:\n");
  1643. seq_printf(s, "--------\t-----\n");
  1644. for (i = 0; i < pl08x->vd->channels; i++) {
  1645. struct pl08x_dma_chan *virt_chan;
  1646. ch = &pl08x->phy_chans[i];
  1647. spin_lock_irqsave(&ch->lock, flags);
  1648. virt_chan = ch->serving;
  1649. seq_printf(s, "%d\t\t%s%s\n",
  1650. ch->id,
  1651. virt_chan ? virt_chan->name : "(none)",
  1652. ch->locked ? " LOCKED" : "");
  1653. spin_unlock_irqrestore(&ch->lock, flags);
  1654. }
  1655. seq_printf(s, "\nPL08x virtual memcpy channels:\n");
  1656. seq_printf(s, "CHANNEL:\tSTATE:\n");
  1657. seq_printf(s, "--------\t------\n");
  1658. list_for_each_entry(chan, &pl08x->memcpy.channels, vc.chan.device_node) {
  1659. seq_printf(s, "%s\t\t%s\n", chan->name,
  1660. pl08x_state_str(chan->state));
  1661. }
  1662. seq_printf(s, "\nPL08x virtual slave channels:\n");
  1663. seq_printf(s, "CHANNEL:\tSTATE:\n");
  1664. seq_printf(s, "--------\t------\n");
  1665. list_for_each_entry(chan, &pl08x->slave.channels, vc.chan.device_node) {
  1666. seq_printf(s, "%s\t\t%s\n", chan->name,
  1667. pl08x_state_str(chan->state));
  1668. }
  1669. return 0;
  1670. }
  1671. static int pl08x_debugfs_open(struct inode *inode, struct file *file)
  1672. {
  1673. return single_open(file, pl08x_debugfs_show, inode->i_private);
  1674. }
  1675. static const struct file_operations pl08x_debugfs_operations = {
  1676. .open = pl08x_debugfs_open,
  1677. .read = seq_read,
  1678. .llseek = seq_lseek,
  1679. .release = single_release,
  1680. };
  1681. static void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
  1682. {
  1683. /* Expose a simple debugfs interface to view all clocks */
  1684. (void) debugfs_create_file(dev_name(&pl08x->adev->dev),
  1685. S_IFREG | S_IRUGO, NULL, pl08x,
  1686. &pl08x_debugfs_operations);
  1687. }
  1688. #else
  1689. static inline void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
  1690. {
  1691. }
  1692. #endif
  1693. static int pl08x_probe(struct amba_device *adev, const struct amba_id *id)
  1694. {
  1695. struct pl08x_driver_data *pl08x;
  1696. const struct vendor_data *vd = id->data;
  1697. u32 tsfr_size;
  1698. int ret = 0;
  1699. int i;
  1700. ret = amba_request_regions(adev, NULL);
  1701. if (ret)
  1702. return ret;
  1703. /* Create the driver state holder */
  1704. pl08x = kzalloc(sizeof(*pl08x), GFP_KERNEL);
  1705. if (!pl08x) {
  1706. ret = -ENOMEM;
  1707. goto out_no_pl08x;
  1708. }
  1709. /* Initialize memcpy engine */
  1710. dma_cap_set(DMA_MEMCPY, pl08x->memcpy.cap_mask);
  1711. pl08x->memcpy.dev = &adev->dev;
  1712. pl08x->memcpy.device_alloc_chan_resources = pl08x_alloc_chan_resources;
  1713. pl08x->memcpy.device_free_chan_resources = pl08x_free_chan_resources;
  1714. pl08x->memcpy.device_prep_dma_memcpy = pl08x_prep_dma_memcpy;
  1715. pl08x->memcpy.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
  1716. pl08x->memcpy.device_tx_status = pl08x_dma_tx_status;
  1717. pl08x->memcpy.device_issue_pending = pl08x_issue_pending;
  1718. pl08x->memcpy.device_control = pl08x_control;
  1719. /* Initialize slave engine */
  1720. dma_cap_set(DMA_SLAVE, pl08x->slave.cap_mask);
  1721. pl08x->slave.dev = &adev->dev;
  1722. pl08x->slave.device_alloc_chan_resources = pl08x_alloc_chan_resources;
  1723. pl08x->slave.device_free_chan_resources = pl08x_free_chan_resources;
  1724. pl08x->slave.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
  1725. pl08x->slave.device_tx_status = pl08x_dma_tx_status;
  1726. pl08x->slave.device_issue_pending = pl08x_issue_pending;
  1727. pl08x->slave.device_prep_slave_sg = pl08x_prep_slave_sg;
  1728. pl08x->slave.device_control = pl08x_control;
  1729. /* Get the platform data */
  1730. pl08x->pd = dev_get_platdata(&adev->dev);
  1731. if (!pl08x->pd) {
  1732. dev_err(&adev->dev, "no platform data supplied\n");
  1733. ret = -EINVAL;
  1734. goto out_no_platdata;
  1735. }
  1736. /* Assign useful pointers to the driver state */
  1737. pl08x->adev = adev;
  1738. pl08x->vd = vd;
  1739. /* By default, AHB1 only. If dualmaster, from platform */
  1740. pl08x->lli_buses = PL08X_AHB1;
  1741. pl08x->mem_buses = PL08X_AHB1;
  1742. if (pl08x->vd->dualmaster) {
  1743. pl08x->lli_buses = pl08x->pd->lli_buses;
  1744. pl08x->mem_buses = pl08x->pd->mem_buses;
  1745. }
  1746. if (vd->pl080s)
  1747. pl08x->lli_words = PL080S_LLI_WORDS;
  1748. else
  1749. pl08x->lli_words = PL080_LLI_WORDS;
  1750. tsfr_size = MAX_NUM_TSFR_LLIS * pl08x->lli_words * sizeof(u32);
  1751. /* A DMA memory pool for LLIs, align on 1-byte boundary */
  1752. pl08x->pool = dma_pool_create(DRIVER_NAME, &pl08x->adev->dev,
  1753. tsfr_size, PL08X_ALIGN, 0);
  1754. if (!pl08x->pool) {
  1755. ret = -ENOMEM;
  1756. goto out_no_lli_pool;
  1757. }
  1758. pl08x->base = ioremap(adev->res.start, resource_size(&adev->res));
  1759. if (!pl08x->base) {
  1760. ret = -ENOMEM;
  1761. goto out_no_ioremap;
  1762. }
  1763. /* Turn on the PL08x */
  1764. pl08x_ensure_on(pl08x);
  1765. /* Attach the interrupt handler */
  1766. writel(0x000000FF, pl08x->base + PL080_ERR_CLEAR);
  1767. writel(0x000000FF, pl08x->base + PL080_TC_CLEAR);
  1768. ret = request_irq(adev->irq[0], pl08x_irq, IRQF_DISABLED,
  1769. DRIVER_NAME, pl08x);
  1770. if (ret) {
  1771. dev_err(&adev->dev, "%s failed to request interrupt %d\n",
  1772. __func__, adev->irq[0]);
  1773. goto out_no_irq;
  1774. }
  1775. /* Initialize physical channels */
  1776. pl08x->phy_chans = kzalloc((vd->channels * sizeof(*pl08x->phy_chans)),
  1777. GFP_KERNEL);
  1778. if (!pl08x->phy_chans) {
  1779. dev_err(&adev->dev, "%s failed to allocate "
  1780. "physical channel holders\n",
  1781. __func__);
  1782. ret = -ENOMEM;
  1783. goto out_no_phychans;
  1784. }
  1785. for (i = 0; i < vd->channels; i++) {
  1786. struct pl08x_phy_chan *ch = &pl08x->phy_chans[i];
  1787. ch->id = i;
  1788. ch->base = pl08x->base + PL080_Cx_BASE(i);
  1789. ch->reg_config = ch->base + vd->config_offset;
  1790. spin_lock_init(&ch->lock);
  1791. /*
  1792. * Nomadik variants can have channels that are locked
  1793. * down for the secure world only. Lock up these channels
  1794. * by perpetually serving a dummy virtual channel.
  1795. */
  1796. if (vd->nomadik) {
  1797. u32 val;
  1798. val = readl(ch->reg_config);
  1799. if (val & (PL080N_CONFIG_ITPROT | PL080N_CONFIG_SECPROT)) {
  1800. dev_info(&adev->dev, "physical channel %d reserved for secure access only\n", i);
  1801. ch->locked = true;
  1802. }
  1803. }
  1804. dev_dbg(&adev->dev, "physical channel %d is %s\n",
  1805. i, pl08x_phy_channel_busy(ch) ? "BUSY" : "FREE");
  1806. }
  1807. /* Register as many memcpy channels as there are physical channels */
  1808. ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->memcpy,
  1809. pl08x->vd->channels, false);
  1810. if (ret <= 0) {
  1811. dev_warn(&pl08x->adev->dev,
  1812. "%s failed to enumerate memcpy channels - %d\n",
  1813. __func__, ret);
  1814. goto out_no_memcpy;
  1815. }
  1816. pl08x->memcpy.chancnt = ret;
  1817. /* Register slave channels */
  1818. ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->slave,
  1819. pl08x->pd->num_slave_channels, true);
  1820. if (ret <= 0) {
  1821. dev_warn(&pl08x->adev->dev,
  1822. "%s failed to enumerate slave channels - %d\n",
  1823. __func__, ret);
  1824. goto out_no_slave;
  1825. }
  1826. pl08x->slave.chancnt = ret;
  1827. ret = dma_async_device_register(&pl08x->memcpy);
  1828. if (ret) {
  1829. dev_warn(&pl08x->adev->dev,
  1830. "%s failed to register memcpy as an async device - %d\n",
  1831. __func__, ret);
  1832. goto out_no_memcpy_reg;
  1833. }
  1834. ret = dma_async_device_register(&pl08x->slave);
  1835. if (ret) {
  1836. dev_warn(&pl08x->adev->dev,
  1837. "%s failed to register slave as an async device - %d\n",
  1838. __func__, ret);
  1839. goto out_no_slave_reg;
  1840. }
  1841. amba_set_drvdata(adev, pl08x);
  1842. init_pl08x_debugfs(pl08x);
  1843. dev_info(&pl08x->adev->dev, "DMA: PL%03x%s rev%u at 0x%08llx irq %d\n",
  1844. amba_part(adev), pl08x->vd->pl080s ? "s" : "", amba_rev(adev),
  1845. (unsigned long long)adev->res.start, adev->irq[0]);
  1846. return 0;
  1847. out_no_slave_reg:
  1848. dma_async_device_unregister(&pl08x->memcpy);
  1849. out_no_memcpy_reg:
  1850. pl08x_free_virtual_channels(&pl08x->slave);
  1851. out_no_slave:
  1852. pl08x_free_virtual_channels(&pl08x->memcpy);
  1853. out_no_memcpy:
  1854. kfree(pl08x->phy_chans);
  1855. out_no_phychans:
  1856. free_irq(adev->irq[0], pl08x);
  1857. out_no_irq:
  1858. iounmap(pl08x->base);
  1859. out_no_ioremap:
  1860. dma_pool_destroy(pl08x->pool);
  1861. out_no_lli_pool:
  1862. out_no_platdata:
  1863. kfree(pl08x);
  1864. out_no_pl08x:
  1865. amba_release_regions(adev);
  1866. return ret;
  1867. }
  1868. /* PL080 has 8 channels and the PL080 have just 2 */
  1869. static struct vendor_data vendor_pl080 = {
  1870. .config_offset = PL080_CH_CONFIG,
  1871. .channels = 8,
  1872. .dualmaster = true,
  1873. .max_transfer_size = PL080_CONTROL_TRANSFER_SIZE_MASK,
  1874. };
  1875. static struct vendor_data vendor_nomadik = {
  1876. .config_offset = PL080_CH_CONFIG,
  1877. .channels = 8,
  1878. .dualmaster = true,
  1879. .nomadik = true,
  1880. .max_transfer_size = PL080_CONTROL_TRANSFER_SIZE_MASK,
  1881. };
  1882. static struct vendor_data vendor_pl080s = {
  1883. .config_offset = PL080S_CH_CONFIG,
  1884. .channels = 8,
  1885. .pl080s = true,
  1886. .max_transfer_size = PL080S_CONTROL_TRANSFER_SIZE_MASK,
  1887. };
  1888. static struct vendor_data vendor_pl081 = {
  1889. .config_offset = PL080_CH_CONFIG,
  1890. .channels = 2,
  1891. .dualmaster = false,
  1892. .max_transfer_size = PL080_CONTROL_TRANSFER_SIZE_MASK,
  1893. };
  1894. static struct amba_id pl08x_ids[] = {
  1895. /* Samsung PL080S variant */
  1896. {
  1897. .id = 0x0a141080,
  1898. .mask = 0xffffffff,
  1899. .data = &vendor_pl080s,
  1900. },
  1901. /* PL080 */
  1902. {
  1903. .id = 0x00041080,
  1904. .mask = 0x000fffff,
  1905. .data = &vendor_pl080,
  1906. },
  1907. /* PL081 */
  1908. {
  1909. .id = 0x00041081,
  1910. .mask = 0x000fffff,
  1911. .data = &vendor_pl081,
  1912. },
  1913. /* Nomadik 8815 PL080 variant */
  1914. {
  1915. .id = 0x00280080,
  1916. .mask = 0x00ffffff,
  1917. .data = &vendor_nomadik,
  1918. },
  1919. { 0, 0 },
  1920. };
  1921. MODULE_DEVICE_TABLE(amba, pl08x_ids);
  1922. static struct amba_driver pl08x_amba_driver = {
  1923. .drv.name = DRIVER_NAME,
  1924. .id_table = pl08x_ids,
  1925. .probe = pl08x_probe,
  1926. };
  1927. static int __init pl08x_init(void)
  1928. {
  1929. int retval;
  1930. retval = amba_driver_register(&pl08x_amba_driver);
  1931. if (retval)
  1932. printk(KERN_WARNING DRIVER_NAME
  1933. "failed to register as an AMBA device (%d)\n",
  1934. retval);
  1935. return retval;
  1936. }
  1937. subsys_initcall(pl08x_init);