skbuff.h 78 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818
  1. /*
  2. * Definitions for the 'struct sk_buff' memory handlers.
  3. *
  4. * Authors:
  5. * Alan Cox, <gw4pts@gw4pts.ampr.org>
  6. * Florian La Roche, <rzsfl@rz.uni-sb.de>
  7. *
  8. * This program is free software; you can redistribute it and/or
  9. * modify it under the terms of the GNU General Public License
  10. * as published by the Free Software Foundation; either version
  11. * 2 of the License, or (at your option) any later version.
  12. */
  13. #ifndef _LINUX_SKBUFF_H
  14. #define _LINUX_SKBUFF_H
  15. #include <linux/kernel.h>
  16. #include <linux/kmemcheck.h>
  17. #include <linux/compiler.h>
  18. #include <linux/time.h>
  19. #include <linux/bug.h>
  20. #include <linux/cache.h>
  21. #include <linux/atomic.h>
  22. #include <asm/types.h>
  23. #include <linux/spinlock.h>
  24. #include <linux/net.h>
  25. #include <linux/textsearch.h>
  26. #include <net/checksum.h>
  27. #include <linux/rcupdate.h>
  28. #include <linux/dmaengine.h>
  29. #include <linux/hrtimer.h>
  30. #include <linux/dma-mapping.h>
  31. #include <linux/netdev_features.h>
  32. #include <net/flow_keys.h>
  33. /* Don't change this without changing skb_csum_unnecessary! */
  34. #define CHECKSUM_NONE 0
  35. #define CHECKSUM_UNNECESSARY 1
  36. #define CHECKSUM_COMPLETE 2
  37. #define CHECKSUM_PARTIAL 3
  38. #define SKB_DATA_ALIGN(X) (((X) + (SMP_CACHE_BYTES - 1)) & \
  39. ~(SMP_CACHE_BYTES - 1))
  40. #define SKB_WITH_OVERHEAD(X) \
  41. ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
  42. #define SKB_MAX_ORDER(X, ORDER) \
  43. SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
  44. #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
  45. #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
  46. /* return minimum truesize of one skb containing X bytes of data */
  47. #define SKB_TRUESIZE(X) ((X) + \
  48. SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \
  49. SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
  50. /* A. Checksumming of received packets by device.
  51. *
  52. * NONE: device failed to checksum this packet.
  53. * skb->csum is undefined.
  54. *
  55. * UNNECESSARY: device parsed packet and wouldbe verified checksum.
  56. * skb->csum is undefined.
  57. * It is bad option, but, unfortunately, many of vendors do this.
  58. * Apparently with secret goal to sell you new device, when you
  59. * will add new protocol to your host. F.e. IPv6. 8)
  60. *
  61. * COMPLETE: the most generic way. Device supplied checksum of _all_
  62. * the packet as seen by netif_rx in skb->csum.
  63. * NOTE: Even if device supports only some protocols, but
  64. * is able to produce some skb->csum, it MUST use COMPLETE,
  65. * not UNNECESSARY.
  66. *
  67. * PARTIAL: identical to the case for output below. This may occur
  68. * on a packet received directly from another Linux OS, e.g.,
  69. * a virtualised Linux kernel on the same host. The packet can
  70. * be treated in the same way as UNNECESSARY except that on
  71. * output (i.e., forwarding) the checksum must be filled in
  72. * by the OS or the hardware.
  73. *
  74. * B. Checksumming on output.
  75. *
  76. * NONE: skb is checksummed by protocol or csum is not required.
  77. *
  78. * PARTIAL: device is required to csum packet as seen by hard_start_xmit
  79. * from skb->csum_start to the end and to record the checksum
  80. * at skb->csum_start + skb->csum_offset.
  81. *
  82. * Device must show its capabilities in dev->features, set
  83. * at device setup time.
  84. * NETIF_F_HW_CSUM - it is clever device, it is able to checksum
  85. * everything.
  86. * NETIF_F_IP_CSUM - device is dumb. It is able to csum only
  87. * TCP/UDP over IPv4. Sigh. Vendors like this
  88. * way by an unknown reason. Though, see comment above
  89. * about CHECKSUM_UNNECESSARY. 8)
  90. * NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead.
  91. *
  92. * UNNECESSARY: device will do per protocol specific csum. Protocol drivers
  93. * that do not want net to perform the checksum calculation should use
  94. * this flag in their outgoing skbs.
  95. * NETIF_F_FCOE_CRC this indicates the device can do FCoE FC CRC
  96. * offload. Correspondingly, the FCoE protocol driver
  97. * stack should use CHECKSUM_UNNECESSARY.
  98. *
  99. * Any questions? No questions, good. --ANK
  100. */
  101. struct net_device;
  102. struct scatterlist;
  103. struct pipe_inode_info;
  104. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  105. struct nf_conntrack {
  106. atomic_t use;
  107. };
  108. #endif
  109. #ifdef CONFIG_BRIDGE_NETFILTER
  110. struct nf_bridge_info {
  111. atomic_t use;
  112. unsigned int mask;
  113. struct net_device *physindev;
  114. struct net_device *physoutdev;
  115. unsigned long data[32 / sizeof(unsigned long)];
  116. };
  117. #endif
  118. struct sk_buff_head {
  119. /* These two members must be first. */
  120. struct sk_buff *next;
  121. struct sk_buff *prev;
  122. __u32 qlen;
  123. spinlock_t lock;
  124. };
  125. struct sk_buff;
  126. /* To allow 64K frame to be packed as single skb without frag_list we
  127. * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
  128. * buffers which do not start on a page boundary.
  129. *
  130. * Since GRO uses frags we allocate at least 16 regardless of page
  131. * size.
  132. */
  133. #if (65536/PAGE_SIZE + 1) < 16
  134. #define MAX_SKB_FRAGS 16UL
  135. #else
  136. #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
  137. #endif
  138. typedef struct skb_frag_struct skb_frag_t;
  139. struct skb_frag_struct {
  140. struct {
  141. struct page *p;
  142. } page;
  143. #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
  144. __u32 page_offset;
  145. __u32 size;
  146. #else
  147. __u16 page_offset;
  148. __u16 size;
  149. #endif
  150. };
  151. static inline unsigned int skb_frag_size(const skb_frag_t *frag)
  152. {
  153. return frag->size;
  154. }
  155. static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
  156. {
  157. frag->size = size;
  158. }
  159. static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
  160. {
  161. frag->size += delta;
  162. }
  163. static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
  164. {
  165. frag->size -= delta;
  166. }
  167. #define HAVE_HW_TIME_STAMP
  168. /**
  169. * struct skb_shared_hwtstamps - hardware time stamps
  170. * @hwtstamp: hardware time stamp transformed into duration
  171. * since arbitrary point in time
  172. * @syststamp: hwtstamp transformed to system time base
  173. *
  174. * Software time stamps generated by ktime_get_real() are stored in
  175. * skb->tstamp. The relation between the different kinds of time
  176. * stamps is as follows:
  177. *
  178. * syststamp and tstamp can be compared against each other in
  179. * arbitrary combinations. The accuracy of a
  180. * syststamp/tstamp/"syststamp from other device" comparison is
  181. * limited by the accuracy of the transformation into system time
  182. * base. This depends on the device driver and its underlying
  183. * hardware.
  184. *
  185. * hwtstamps can only be compared against other hwtstamps from
  186. * the same device.
  187. *
  188. * This structure is attached to packets as part of the
  189. * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
  190. */
  191. struct skb_shared_hwtstamps {
  192. ktime_t hwtstamp;
  193. ktime_t syststamp;
  194. };
  195. /* Definitions for tx_flags in struct skb_shared_info */
  196. enum {
  197. /* generate hardware time stamp */
  198. SKBTX_HW_TSTAMP = 1 << 0,
  199. /* generate software time stamp */
  200. SKBTX_SW_TSTAMP = 1 << 1,
  201. /* device driver is going to provide hardware time stamp */
  202. SKBTX_IN_PROGRESS = 1 << 2,
  203. /* device driver supports TX zero-copy buffers */
  204. SKBTX_DEV_ZEROCOPY = 1 << 3,
  205. /* generate wifi status information (where possible) */
  206. SKBTX_WIFI_STATUS = 1 << 4,
  207. /* This indicates at least one fragment might be overwritten
  208. * (as in vmsplice(), sendfile() ...)
  209. * If we need to compute a TX checksum, we'll need to copy
  210. * all frags to avoid possible bad checksum
  211. */
  212. SKBTX_SHARED_FRAG = 1 << 5,
  213. };
  214. /*
  215. * The callback notifies userspace to release buffers when skb DMA is done in
  216. * lower device, the skb last reference should be 0 when calling this.
  217. * The zerocopy_success argument is true if zero copy transmit occurred,
  218. * false on data copy or out of memory error caused by data copy attempt.
  219. * The ctx field is used to track device context.
  220. * The desc field is used to track userspace buffer index.
  221. */
  222. struct ubuf_info {
  223. void (*callback)(struct ubuf_info *, bool zerocopy_success);
  224. void *ctx;
  225. unsigned long desc;
  226. };
  227. /* This data is invariant across clones and lives at
  228. * the end of the header data, ie. at skb->end.
  229. */
  230. struct skb_shared_info {
  231. unsigned char nr_frags;
  232. __u8 tx_flags;
  233. unsigned short gso_size;
  234. /* Warning: this field is not always filled in (UFO)! */
  235. unsigned short gso_segs;
  236. unsigned short gso_type;
  237. struct sk_buff *frag_list;
  238. struct skb_shared_hwtstamps hwtstamps;
  239. __be32 ip6_frag_id;
  240. /*
  241. * Warning : all fields before dataref are cleared in __alloc_skb()
  242. */
  243. atomic_t dataref;
  244. /* Intermediate layers must ensure that destructor_arg
  245. * remains valid until skb destructor */
  246. void * destructor_arg;
  247. /* must be last field, see pskb_expand_head() */
  248. skb_frag_t frags[MAX_SKB_FRAGS];
  249. };
  250. /* We divide dataref into two halves. The higher 16 bits hold references
  251. * to the payload part of skb->data. The lower 16 bits hold references to
  252. * the entire skb->data. A clone of a headerless skb holds the length of
  253. * the header in skb->hdr_len.
  254. *
  255. * All users must obey the rule that the skb->data reference count must be
  256. * greater than or equal to the payload reference count.
  257. *
  258. * Holding a reference to the payload part means that the user does not
  259. * care about modifications to the header part of skb->data.
  260. */
  261. #define SKB_DATAREF_SHIFT 16
  262. #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
  263. enum {
  264. SKB_FCLONE_UNAVAILABLE,
  265. SKB_FCLONE_ORIG,
  266. SKB_FCLONE_CLONE,
  267. };
  268. enum {
  269. SKB_GSO_TCPV4 = 1 << 0,
  270. SKB_GSO_UDP = 1 << 1,
  271. /* This indicates the skb is from an untrusted source. */
  272. SKB_GSO_DODGY = 1 << 2,
  273. /* This indicates the tcp segment has CWR set. */
  274. SKB_GSO_TCP_ECN = 1 << 3,
  275. SKB_GSO_TCPV6 = 1 << 4,
  276. SKB_GSO_FCOE = 1 << 5,
  277. SKB_GSO_GRE = 1 << 6,
  278. SKB_GSO_UDP_TUNNEL = 1 << 7,
  279. SKB_GSO_MPLS = 1 << 8,
  280. };
  281. #if BITS_PER_LONG > 32
  282. #define NET_SKBUFF_DATA_USES_OFFSET 1
  283. #endif
  284. #ifdef NET_SKBUFF_DATA_USES_OFFSET
  285. typedef unsigned int sk_buff_data_t;
  286. #else
  287. typedef unsigned char *sk_buff_data_t;
  288. #endif
  289. #if defined(CONFIG_NF_DEFRAG_IPV4) || defined(CONFIG_NF_DEFRAG_IPV4_MODULE) || \
  290. defined(CONFIG_NF_DEFRAG_IPV6) || defined(CONFIG_NF_DEFRAG_IPV6_MODULE)
  291. #define NET_SKBUFF_NF_DEFRAG_NEEDED 1
  292. #endif
  293. /**
  294. * struct sk_buff - socket buffer
  295. * @next: Next buffer in list
  296. * @prev: Previous buffer in list
  297. * @tstamp: Time we arrived
  298. * @sk: Socket we are owned by
  299. * @dev: Device we arrived on/are leaving by
  300. * @cb: Control buffer. Free for use by every layer. Put private vars here
  301. * @_skb_refdst: destination entry (with norefcount bit)
  302. * @sp: the security path, used for xfrm
  303. * @len: Length of actual data
  304. * @data_len: Data length
  305. * @mac_len: Length of link layer header
  306. * @hdr_len: writable header length of cloned skb
  307. * @csum: Checksum (must include start/offset pair)
  308. * @csum_start: Offset from skb->head where checksumming should start
  309. * @csum_offset: Offset from csum_start where checksum should be stored
  310. * @priority: Packet queueing priority
  311. * @local_df: allow local fragmentation
  312. * @cloned: Head may be cloned (check refcnt to be sure)
  313. * @ip_summed: Driver fed us an IP checksum
  314. * @nohdr: Payload reference only, must not modify header
  315. * @nfctinfo: Relationship of this skb to the connection
  316. * @pkt_type: Packet class
  317. * @fclone: skbuff clone status
  318. * @ipvs_property: skbuff is owned by ipvs
  319. * @peeked: this packet has been seen already, so stats have been
  320. * done for it, don't do them again
  321. * @nf_trace: netfilter packet trace flag
  322. * @protocol: Packet protocol from driver
  323. * @destructor: Destruct function
  324. * @nfct: Associated connection, if any
  325. * @nfct_reasm: netfilter conntrack re-assembly pointer
  326. * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
  327. * @skb_iif: ifindex of device we arrived on
  328. * @tc_index: Traffic control index
  329. * @tc_verd: traffic control verdict
  330. * @rxhash: the packet hash computed on receive
  331. * @queue_mapping: Queue mapping for multiqueue devices
  332. * @ndisc_nodetype: router type (from link layer)
  333. * @ooo_okay: allow the mapping of a socket to a queue to be changed
  334. * @l4_rxhash: indicate rxhash is a canonical 4-tuple hash over transport
  335. * ports.
  336. * @wifi_acked_valid: wifi_acked was set
  337. * @wifi_acked: whether frame was acked on wifi or not
  338. * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS
  339. * @dma_cookie: a cookie to one of several possible DMA operations
  340. * done by skb DMA functions
  341. * @secmark: security marking
  342. * @mark: Generic packet mark
  343. * @dropcount: total number of sk_receive_queue overflows
  344. * @vlan_proto: vlan encapsulation protocol
  345. * @vlan_tci: vlan tag control information
  346. * @inner_protocol: Protocol (encapsulation)
  347. * @inner_transport_header: Inner transport layer header (encapsulation)
  348. * @inner_network_header: Network layer header (encapsulation)
  349. * @inner_mac_header: Link layer header (encapsulation)
  350. * @transport_header: Transport layer header
  351. * @network_header: Network layer header
  352. * @mac_header: Link layer header
  353. * @tail: Tail pointer
  354. * @end: End pointer
  355. * @head: Head of buffer
  356. * @data: Data head pointer
  357. * @truesize: Buffer size
  358. * @users: User count - see {datagram,tcp}.c
  359. */
  360. struct sk_buff {
  361. /* These two members must be first. */
  362. struct sk_buff *next;
  363. struct sk_buff *prev;
  364. ktime_t tstamp;
  365. struct sock *sk;
  366. struct net_device *dev;
  367. /*
  368. * This is the control buffer. It is free to use for every
  369. * layer. Please put your private variables there. If you
  370. * want to keep them across layers you have to do a skb_clone()
  371. * first. This is owned by whoever has the skb queued ATM.
  372. */
  373. char cb[48] __aligned(8);
  374. unsigned long _skb_refdst;
  375. #ifdef CONFIG_XFRM
  376. struct sec_path *sp;
  377. #endif
  378. unsigned int len,
  379. data_len;
  380. __u16 mac_len,
  381. hdr_len;
  382. union {
  383. __wsum csum;
  384. struct {
  385. __u16 csum_start;
  386. __u16 csum_offset;
  387. };
  388. };
  389. __u32 priority;
  390. kmemcheck_bitfield_begin(flags1);
  391. __u8 local_df:1,
  392. cloned:1,
  393. ip_summed:2,
  394. nohdr:1,
  395. nfctinfo:3;
  396. __u8 pkt_type:3,
  397. fclone:2,
  398. ipvs_property:1,
  399. peeked:1,
  400. nf_trace:1;
  401. kmemcheck_bitfield_end(flags1);
  402. __be16 protocol;
  403. void (*destructor)(struct sk_buff *skb);
  404. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  405. struct nf_conntrack *nfct;
  406. #endif
  407. #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
  408. struct sk_buff *nfct_reasm;
  409. #endif
  410. #ifdef CONFIG_BRIDGE_NETFILTER
  411. struct nf_bridge_info *nf_bridge;
  412. #endif
  413. int skb_iif;
  414. __u32 rxhash;
  415. __be16 vlan_proto;
  416. __u16 vlan_tci;
  417. #ifdef CONFIG_NET_SCHED
  418. __u16 tc_index; /* traffic control index */
  419. #ifdef CONFIG_NET_CLS_ACT
  420. __u16 tc_verd; /* traffic control verdict */
  421. #endif
  422. #endif
  423. __u16 queue_mapping;
  424. kmemcheck_bitfield_begin(flags2);
  425. #ifdef CONFIG_IPV6_NDISC_NODETYPE
  426. __u8 ndisc_nodetype:2;
  427. #endif
  428. __u8 pfmemalloc:1;
  429. __u8 ooo_okay:1;
  430. __u8 l4_rxhash:1;
  431. __u8 wifi_acked_valid:1;
  432. __u8 wifi_acked:1;
  433. __u8 no_fcs:1;
  434. __u8 head_frag:1;
  435. /* Encapsulation protocol and NIC drivers should use
  436. * this flag to indicate to each other if the skb contains
  437. * encapsulated packet or not and maybe use the inner packet
  438. * headers if needed
  439. */
  440. __u8 encapsulation:1;
  441. /* 7/9 bit hole (depending on ndisc_nodetype presence) */
  442. kmemcheck_bitfield_end(flags2);
  443. #ifdef CONFIG_NET_DMA
  444. dma_cookie_t dma_cookie;
  445. #endif
  446. #ifdef CONFIG_NETWORK_SECMARK
  447. __u32 secmark;
  448. #endif
  449. union {
  450. __u32 mark;
  451. __u32 dropcount;
  452. __u32 reserved_tailroom;
  453. };
  454. __be16 inner_protocol;
  455. __u16 inner_transport_header;
  456. __u16 inner_network_header;
  457. __u16 inner_mac_header;
  458. __u16 transport_header;
  459. __u16 network_header;
  460. __u16 mac_header;
  461. /* These elements must be at the end, see alloc_skb() for details. */
  462. sk_buff_data_t tail;
  463. sk_buff_data_t end;
  464. unsigned char *head,
  465. *data;
  466. unsigned int truesize;
  467. atomic_t users;
  468. };
  469. #ifdef __KERNEL__
  470. /*
  471. * Handling routines are only of interest to the kernel
  472. */
  473. #include <linux/slab.h>
  474. #define SKB_ALLOC_FCLONE 0x01
  475. #define SKB_ALLOC_RX 0x02
  476. /* Returns true if the skb was allocated from PFMEMALLOC reserves */
  477. static inline bool skb_pfmemalloc(const struct sk_buff *skb)
  478. {
  479. return unlikely(skb->pfmemalloc);
  480. }
  481. /*
  482. * skb might have a dst pointer attached, refcounted or not.
  483. * _skb_refdst low order bit is set if refcount was _not_ taken
  484. */
  485. #define SKB_DST_NOREF 1UL
  486. #define SKB_DST_PTRMASK ~(SKB_DST_NOREF)
  487. /**
  488. * skb_dst - returns skb dst_entry
  489. * @skb: buffer
  490. *
  491. * Returns skb dst_entry, regardless of reference taken or not.
  492. */
  493. static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
  494. {
  495. /* If refdst was not refcounted, check we still are in a
  496. * rcu_read_lock section
  497. */
  498. WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
  499. !rcu_read_lock_held() &&
  500. !rcu_read_lock_bh_held());
  501. return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
  502. }
  503. /**
  504. * skb_dst_set - sets skb dst
  505. * @skb: buffer
  506. * @dst: dst entry
  507. *
  508. * Sets skb dst, assuming a reference was taken on dst and should
  509. * be released by skb_dst_drop()
  510. */
  511. static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
  512. {
  513. skb->_skb_refdst = (unsigned long)dst;
  514. }
  515. extern void __skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst,
  516. bool force);
  517. /**
  518. * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
  519. * @skb: buffer
  520. * @dst: dst entry
  521. *
  522. * Sets skb dst, assuming a reference was not taken on dst.
  523. * If dst entry is cached, we do not take reference and dst_release
  524. * will be avoided by refdst_drop. If dst entry is not cached, we take
  525. * reference, so that last dst_release can destroy the dst immediately.
  526. */
  527. static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
  528. {
  529. __skb_dst_set_noref(skb, dst, false);
  530. }
  531. /**
  532. * skb_dst_set_noref_force - sets skb dst, without taking reference
  533. * @skb: buffer
  534. * @dst: dst entry
  535. *
  536. * Sets skb dst, assuming a reference was not taken on dst.
  537. * No reference is taken and no dst_release will be called. While for
  538. * cached dsts deferred reclaim is a basic feature, for entries that are
  539. * not cached it is caller's job to guarantee that last dst_release for
  540. * provided dst happens when nobody uses it, eg. after a RCU grace period.
  541. */
  542. static inline void skb_dst_set_noref_force(struct sk_buff *skb,
  543. struct dst_entry *dst)
  544. {
  545. __skb_dst_set_noref(skb, dst, true);
  546. }
  547. /**
  548. * skb_dst_is_noref - Test if skb dst isn't refcounted
  549. * @skb: buffer
  550. */
  551. static inline bool skb_dst_is_noref(const struct sk_buff *skb)
  552. {
  553. return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
  554. }
  555. static inline struct rtable *skb_rtable(const struct sk_buff *skb)
  556. {
  557. return (struct rtable *)skb_dst(skb);
  558. }
  559. extern void kfree_skb(struct sk_buff *skb);
  560. extern void skb_tx_error(struct sk_buff *skb);
  561. extern void consume_skb(struct sk_buff *skb);
  562. extern void __kfree_skb(struct sk_buff *skb);
  563. extern struct kmem_cache *skbuff_head_cache;
  564. extern void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
  565. extern bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
  566. bool *fragstolen, int *delta_truesize);
  567. extern struct sk_buff *__alloc_skb(unsigned int size,
  568. gfp_t priority, int flags, int node);
  569. extern struct sk_buff *build_skb(void *data, unsigned int frag_size);
  570. static inline struct sk_buff *alloc_skb(unsigned int size,
  571. gfp_t priority)
  572. {
  573. return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
  574. }
  575. static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
  576. gfp_t priority)
  577. {
  578. return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
  579. }
  580. extern struct sk_buff *__alloc_skb_head(gfp_t priority, int node);
  581. static inline struct sk_buff *alloc_skb_head(gfp_t priority)
  582. {
  583. return __alloc_skb_head(priority, -1);
  584. }
  585. extern struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
  586. extern int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
  587. extern struct sk_buff *skb_clone(struct sk_buff *skb,
  588. gfp_t priority);
  589. extern struct sk_buff *skb_copy(const struct sk_buff *skb,
  590. gfp_t priority);
  591. extern struct sk_buff *__pskb_copy(struct sk_buff *skb,
  592. int headroom, gfp_t gfp_mask);
  593. extern int pskb_expand_head(struct sk_buff *skb,
  594. int nhead, int ntail,
  595. gfp_t gfp_mask);
  596. extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
  597. unsigned int headroom);
  598. extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
  599. int newheadroom, int newtailroom,
  600. gfp_t priority);
  601. extern int skb_to_sgvec(struct sk_buff *skb,
  602. struct scatterlist *sg, int offset,
  603. int len);
  604. extern int skb_cow_data(struct sk_buff *skb, int tailbits,
  605. struct sk_buff **trailer);
  606. extern int skb_pad(struct sk_buff *skb, int pad);
  607. #define dev_kfree_skb(a) consume_skb(a)
  608. extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
  609. int getfrag(void *from, char *to, int offset,
  610. int len,int odd, struct sk_buff *skb),
  611. void *from, int length);
  612. struct skb_seq_state {
  613. __u32 lower_offset;
  614. __u32 upper_offset;
  615. __u32 frag_idx;
  616. __u32 stepped_offset;
  617. struct sk_buff *root_skb;
  618. struct sk_buff *cur_skb;
  619. __u8 *frag_data;
  620. };
  621. extern void skb_prepare_seq_read(struct sk_buff *skb,
  622. unsigned int from, unsigned int to,
  623. struct skb_seq_state *st);
  624. extern unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
  625. struct skb_seq_state *st);
  626. extern void skb_abort_seq_read(struct skb_seq_state *st);
  627. extern unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
  628. unsigned int to, struct ts_config *config,
  629. struct ts_state *state);
  630. extern void __skb_get_rxhash(struct sk_buff *skb);
  631. static inline __u32 skb_get_rxhash(struct sk_buff *skb)
  632. {
  633. if (!skb->l4_rxhash)
  634. __skb_get_rxhash(skb);
  635. return skb->rxhash;
  636. }
  637. #ifdef NET_SKBUFF_DATA_USES_OFFSET
  638. static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
  639. {
  640. return skb->head + skb->end;
  641. }
  642. static inline unsigned int skb_end_offset(const struct sk_buff *skb)
  643. {
  644. return skb->end;
  645. }
  646. #else
  647. static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
  648. {
  649. return skb->end;
  650. }
  651. static inline unsigned int skb_end_offset(const struct sk_buff *skb)
  652. {
  653. return skb->end - skb->head;
  654. }
  655. #endif
  656. /* Internal */
  657. #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
  658. static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
  659. {
  660. return &skb_shinfo(skb)->hwtstamps;
  661. }
  662. /**
  663. * skb_queue_empty - check if a queue is empty
  664. * @list: queue head
  665. *
  666. * Returns true if the queue is empty, false otherwise.
  667. */
  668. static inline int skb_queue_empty(const struct sk_buff_head *list)
  669. {
  670. return list->next == (struct sk_buff *)list;
  671. }
  672. /**
  673. * skb_queue_is_last - check if skb is the last entry in the queue
  674. * @list: queue head
  675. * @skb: buffer
  676. *
  677. * Returns true if @skb is the last buffer on the list.
  678. */
  679. static inline bool skb_queue_is_last(const struct sk_buff_head *list,
  680. const struct sk_buff *skb)
  681. {
  682. return skb->next == (struct sk_buff *)list;
  683. }
  684. /**
  685. * skb_queue_is_first - check if skb is the first entry in the queue
  686. * @list: queue head
  687. * @skb: buffer
  688. *
  689. * Returns true if @skb is the first buffer on the list.
  690. */
  691. static inline bool skb_queue_is_first(const struct sk_buff_head *list,
  692. const struct sk_buff *skb)
  693. {
  694. return skb->prev == (struct sk_buff *)list;
  695. }
  696. /**
  697. * skb_queue_next - return the next packet in the queue
  698. * @list: queue head
  699. * @skb: current buffer
  700. *
  701. * Return the next packet in @list after @skb. It is only valid to
  702. * call this if skb_queue_is_last() evaluates to false.
  703. */
  704. static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
  705. const struct sk_buff *skb)
  706. {
  707. /* This BUG_ON may seem severe, but if we just return then we
  708. * are going to dereference garbage.
  709. */
  710. BUG_ON(skb_queue_is_last(list, skb));
  711. return skb->next;
  712. }
  713. /**
  714. * skb_queue_prev - return the prev packet in the queue
  715. * @list: queue head
  716. * @skb: current buffer
  717. *
  718. * Return the prev packet in @list before @skb. It is only valid to
  719. * call this if skb_queue_is_first() evaluates to false.
  720. */
  721. static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
  722. const struct sk_buff *skb)
  723. {
  724. /* This BUG_ON may seem severe, but if we just return then we
  725. * are going to dereference garbage.
  726. */
  727. BUG_ON(skb_queue_is_first(list, skb));
  728. return skb->prev;
  729. }
  730. /**
  731. * skb_get - reference buffer
  732. * @skb: buffer to reference
  733. *
  734. * Makes another reference to a socket buffer and returns a pointer
  735. * to the buffer.
  736. */
  737. static inline struct sk_buff *skb_get(struct sk_buff *skb)
  738. {
  739. atomic_inc(&skb->users);
  740. return skb;
  741. }
  742. /*
  743. * If users == 1, we are the only owner and are can avoid redundant
  744. * atomic change.
  745. */
  746. /**
  747. * skb_cloned - is the buffer a clone
  748. * @skb: buffer to check
  749. *
  750. * Returns true if the buffer was generated with skb_clone() and is
  751. * one of multiple shared copies of the buffer. Cloned buffers are
  752. * shared data so must not be written to under normal circumstances.
  753. */
  754. static inline int skb_cloned(const struct sk_buff *skb)
  755. {
  756. return skb->cloned &&
  757. (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
  758. }
  759. static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
  760. {
  761. might_sleep_if(pri & __GFP_WAIT);
  762. if (skb_cloned(skb))
  763. return pskb_expand_head(skb, 0, 0, pri);
  764. return 0;
  765. }
  766. /**
  767. * skb_header_cloned - is the header a clone
  768. * @skb: buffer to check
  769. *
  770. * Returns true if modifying the header part of the buffer requires
  771. * the data to be copied.
  772. */
  773. static inline int skb_header_cloned(const struct sk_buff *skb)
  774. {
  775. int dataref;
  776. if (!skb->cloned)
  777. return 0;
  778. dataref = atomic_read(&skb_shinfo(skb)->dataref);
  779. dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
  780. return dataref != 1;
  781. }
  782. /**
  783. * skb_header_release - release reference to header
  784. * @skb: buffer to operate on
  785. *
  786. * Drop a reference to the header part of the buffer. This is done
  787. * by acquiring a payload reference. You must not read from the header
  788. * part of skb->data after this.
  789. */
  790. static inline void skb_header_release(struct sk_buff *skb)
  791. {
  792. BUG_ON(skb->nohdr);
  793. skb->nohdr = 1;
  794. atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
  795. }
  796. /**
  797. * skb_shared - is the buffer shared
  798. * @skb: buffer to check
  799. *
  800. * Returns true if more than one person has a reference to this
  801. * buffer.
  802. */
  803. static inline int skb_shared(const struct sk_buff *skb)
  804. {
  805. return atomic_read(&skb->users) != 1;
  806. }
  807. /**
  808. * skb_share_check - check if buffer is shared and if so clone it
  809. * @skb: buffer to check
  810. * @pri: priority for memory allocation
  811. *
  812. * If the buffer is shared the buffer is cloned and the old copy
  813. * drops a reference. A new clone with a single reference is returned.
  814. * If the buffer is not shared the original buffer is returned. When
  815. * being called from interrupt status or with spinlocks held pri must
  816. * be GFP_ATOMIC.
  817. *
  818. * NULL is returned on a memory allocation failure.
  819. */
  820. static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
  821. {
  822. might_sleep_if(pri & __GFP_WAIT);
  823. if (skb_shared(skb)) {
  824. struct sk_buff *nskb = skb_clone(skb, pri);
  825. if (likely(nskb))
  826. consume_skb(skb);
  827. else
  828. kfree_skb(skb);
  829. skb = nskb;
  830. }
  831. return skb;
  832. }
  833. /*
  834. * Copy shared buffers into a new sk_buff. We effectively do COW on
  835. * packets to handle cases where we have a local reader and forward
  836. * and a couple of other messy ones. The normal one is tcpdumping
  837. * a packet thats being forwarded.
  838. */
  839. /**
  840. * skb_unshare - make a copy of a shared buffer
  841. * @skb: buffer to check
  842. * @pri: priority for memory allocation
  843. *
  844. * If the socket buffer is a clone then this function creates a new
  845. * copy of the data, drops a reference count on the old copy and returns
  846. * the new copy with the reference count at 1. If the buffer is not a clone
  847. * the original buffer is returned. When called with a spinlock held or
  848. * from interrupt state @pri must be %GFP_ATOMIC
  849. *
  850. * %NULL is returned on a memory allocation failure.
  851. */
  852. static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
  853. gfp_t pri)
  854. {
  855. might_sleep_if(pri & __GFP_WAIT);
  856. if (skb_cloned(skb)) {
  857. struct sk_buff *nskb = skb_copy(skb, pri);
  858. kfree_skb(skb); /* Free our shared copy */
  859. skb = nskb;
  860. }
  861. return skb;
  862. }
  863. /**
  864. * skb_peek - peek at the head of an &sk_buff_head
  865. * @list_: list to peek at
  866. *
  867. * Peek an &sk_buff. Unlike most other operations you _MUST_
  868. * be careful with this one. A peek leaves the buffer on the
  869. * list and someone else may run off with it. You must hold
  870. * the appropriate locks or have a private queue to do this.
  871. *
  872. * Returns %NULL for an empty list or a pointer to the head element.
  873. * The reference count is not incremented and the reference is therefore
  874. * volatile. Use with caution.
  875. */
  876. static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
  877. {
  878. struct sk_buff *skb = list_->next;
  879. if (skb == (struct sk_buff *)list_)
  880. skb = NULL;
  881. return skb;
  882. }
  883. /**
  884. * skb_peek_next - peek skb following the given one from a queue
  885. * @skb: skb to start from
  886. * @list_: list to peek at
  887. *
  888. * Returns %NULL when the end of the list is met or a pointer to the
  889. * next element. The reference count is not incremented and the
  890. * reference is therefore volatile. Use with caution.
  891. */
  892. static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
  893. const struct sk_buff_head *list_)
  894. {
  895. struct sk_buff *next = skb->next;
  896. if (next == (struct sk_buff *)list_)
  897. next = NULL;
  898. return next;
  899. }
  900. /**
  901. * skb_peek_tail - peek at the tail of an &sk_buff_head
  902. * @list_: list to peek at
  903. *
  904. * Peek an &sk_buff. Unlike most other operations you _MUST_
  905. * be careful with this one. A peek leaves the buffer on the
  906. * list and someone else may run off with it. You must hold
  907. * the appropriate locks or have a private queue to do this.
  908. *
  909. * Returns %NULL for an empty list or a pointer to the tail element.
  910. * The reference count is not incremented and the reference is therefore
  911. * volatile. Use with caution.
  912. */
  913. static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
  914. {
  915. struct sk_buff *skb = list_->prev;
  916. if (skb == (struct sk_buff *)list_)
  917. skb = NULL;
  918. return skb;
  919. }
  920. /**
  921. * skb_queue_len - get queue length
  922. * @list_: list to measure
  923. *
  924. * Return the length of an &sk_buff queue.
  925. */
  926. static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
  927. {
  928. return list_->qlen;
  929. }
  930. /**
  931. * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
  932. * @list: queue to initialize
  933. *
  934. * This initializes only the list and queue length aspects of
  935. * an sk_buff_head object. This allows to initialize the list
  936. * aspects of an sk_buff_head without reinitializing things like
  937. * the spinlock. It can also be used for on-stack sk_buff_head
  938. * objects where the spinlock is known to not be used.
  939. */
  940. static inline void __skb_queue_head_init(struct sk_buff_head *list)
  941. {
  942. list->prev = list->next = (struct sk_buff *)list;
  943. list->qlen = 0;
  944. }
  945. /*
  946. * This function creates a split out lock class for each invocation;
  947. * this is needed for now since a whole lot of users of the skb-queue
  948. * infrastructure in drivers have different locking usage (in hardirq)
  949. * than the networking core (in softirq only). In the long run either the
  950. * network layer or drivers should need annotation to consolidate the
  951. * main types of usage into 3 classes.
  952. */
  953. static inline void skb_queue_head_init(struct sk_buff_head *list)
  954. {
  955. spin_lock_init(&list->lock);
  956. __skb_queue_head_init(list);
  957. }
  958. static inline void skb_queue_head_init_class(struct sk_buff_head *list,
  959. struct lock_class_key *class)
  960. {
  961. skb_queue_head_init(list);
  962. lockdep_set_class(&list->lock, class);
  963. }
  964. /*
  965. * Insert an sk_buff on a list.
  966. *
  967. * The "__skb_xxxx()" functions are the non-atomic ones that
  968. * can only be called with interrupts disabled.
  969. */
  970. extern void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
  971. static inline void __skb_insert(struct sk_buff *newsk,
  972. struct sk_buff *prev, struct sk_buff *next,
  973. struct sk_buff_head *list)
  974. {
  975. newsk->next = next;
  976. newsk->prev = prev;
  977. next->prev = prev->next = newsk;
  978. list->qlen++;
  979. }
  980. static inline void __skb_queue_splice(const struct sk_buff_head *list,
  981. struct sk_buff *prev,
  982. struct sk_buff *next)
  983. {
  984. struct sk_buff *first = list->next;
  985. struct sk_buff *last = list->prev;
  986. first->prev = prev;
  987. prev->next = first;
  988. last->next = next;
  989. next->prev = last;
  990. }
  991. /**
  992. * skb_queue_splice - join two skb lists, this is designed for stacks
  993. * @list: the new list to add
  994. * @head: the place to add it in the first list
  995. */
  996. static inline void skb_queue_splice(const struct sk_buff_head *list,
  997. struct sk_buff_head *head)
  998. {
  999. if (!skb_queue_empty(list)) {
  1000. __skb_queue_splice(list, (struct sk_buff *) head, head->next);
  1001. head->qlen += list->qlen;
  1002. }
  1003. }
  1004. /**
  1005. * skb_queue_splice_init - join two skb lists and reinitialise the emptied list
  1006. * @list: the new list to add
  1007. * @head: the place to add it in the first list
  1008. *
  1009. * The list at @list is reinitialised
  1010. */
  1011. static inline void skb_queue_splice_init(struct sk_buff_head *list,
  1012. struct sk_buff_head *head)
  1013. {
  1014. if (!skb_queue_empty(list)) {
  1015. __skb_queue_splice(list, (struct sk_buff *) head, head->next);
  1016. head->qlen += list->qlen;
  1017. __skb_queue_head_init(list);
  1018. }
  1019. }
  1020. /**
  1021. * skb_queue_splice_tail - join two skb lists, each list being a queue
  1022. * @list: the new list to add
  1023. * @head: the place to add it in the first list
  1024. */
  1025. static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
  1026. struct sk_buff_head *head)
  1027. {
  1028. if (!skb_queue_empty(list)) {
  1029. __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
  1030. head->qlen += list->qlen;
  1031. }
  1032. }
  1033. /**
  1034. * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
  1035. * @list: the new list to add
  1036. * @head: the place to add it in the first list
  1037. *
  1038. * Each of the lists is a queue.
  1039. * The list at @list is reinitialised
  1040. */
  1041. static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
  1042. struct sk_buff_head *head)
  1043. {
  1044. if (!skb_queue_empty(list)) {
  1045. __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
  1046. head->qlen += list->qlen;
  1047. __skb_queue_head_init(list);
  1048. }
  1049. }
  1050. /**
  1051. * __skb_queue_after - queue a buffer at the list head
  1052. * @list: list to use
  1053. * @prev: place after this buffer
  1054. * @newsk: buffer to queue
  1055. *
  1056. * Queue a buffer int the middle of a list. This function takes no locks
  1057. * and you must therefore hold required locks before calling it.
  1058. *
  1059. * A buffer cannot be placed on two lists at the same time.
  1060. */
  1061. static inline void __skb_queue_after(struct sk_buff_head *list,
  1062. struct sk_buff *prev,
  1063. struct sk_buff *newsk)
  1064. {
  1065. __skb_insert(newsk, prev, prev->next, list);
  1066. }
  1067. extern void skb_append(struct sk_buff *old, struct sk_buff *newsk,
  1068. struct sk_buff_head *list);
  1069. static inline void __skb_queue_before(struct sk_buff_head *list,
  1070. struct sk_buff *next,
  1071. struct sk_buff *newsk)
  1072. {
  1073. __skb_insert(newsk, next->prev, next, list);
  1074. }
  1075. /**
  1076. * __skb_queue_head - queue a buffer at the list head
  1077. * @list: list to use
  1078. * @newsk: buffer to queue
  1079. *
  1080. * Queue a buffer at the start of a list. This function takes no locks
  1081. * and you must therefore hold required locks before calling it.
  1082. *
  1083. * A buffer cannot be placed on two lists at the same time.
  1084. */
  1085. extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
  1086. static inline void __skb_queue_head(struct sk_buff_head *list,
  1087. struct sk_buff *newsk)
  1088. {
  1089. __skb_queue_after(list, (struct sk_buff *)list, newsk);
  1090. }
  1091. /**
  1092. * __skb_queue_tail - queue a buffer at the list tail
  1093. * @list: list to use
  1094. * @newsk: buffer to queue
  1095. *
  1096. * Queue a buffer at the end of a list. This function takes no locks
  1097. * and you must therefore hold required locks before calling it.
  1098. *
  1099. * A buffer cannot be placed on two lists at the same time.
  1100. */
  1101. extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
  1102. static inline void __skb_queue_tail(struct sk_buff_head *list,
  1103. struct sk_buff *newsk)
  1104. {
  1105. __skb_queue_before(list, (struct sk_buff *)list, newsk);
  1106. }
  1107. /*
  1108. * remove sk_buff from list. _Must_ be called atomically, and with
  1109. * the list known..
  1110. */
  1111. extern void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
  1112. static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
  1113. {
  1114. struct sk_buff *next, *prev;
  1115. list->qlen--;
  1116. next = skb->next;
  1117. prev = skb->prev;
  1118. skb->next = skb->prev = NULL;
  1119. next->prev = prev;
  1120. prev->next = next;
  1121. }
  1122. /**
  1123. * __skb_dequeue - remove from the head of the queue
  1124. * @list: list to dequeue from
  1125. *
  1126. * Remove the head of the list. This function does not take any locks
  1127. * so must be used with appropriate locks held only. The head item is
  1128. * returned or %NULL if the list is empty.
  1129. */
  1130. extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
  1131. static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
  1132. {
  1133. struct sk_buff *skb = skb_peek(list);
  1134. if (skb)
  1135. __skb_unlink(skb, list);
  1136. return skb;
  1137. }
  1138. /**
  1139. * __skb_dequeue_tail - remove from the tail of the queue
  1140. * @list: list to dequeue from
  1141. *
  1142. * Remove the tail of the list. This function does not take any locks
  1143. * so must be used with appropriate locks held only. The tail item is
  1144. * returned or %NULL if the list is empty.
  1145. */
  1146. extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
  1147. static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
  1148. {
  1149. struct sk_buff *skb = skb_peek_tail(list);
  1150. if (skb)
  1151. __skb_unlink(skb, list);
  1152. return skb;
  1153. }
  1154. static inline bool skb_is_nonlinear(const struct sk_buff *skb)
  1155. {
  1156. return skb->data_len;
  1157. }
  1158. static inline unsigned int skb_headlen(const struct sk_buff *skb)
  1159. {
  1160. return skb->len - skb->data_len;
  1161. }
  1162. static inline int skb_pagelen(const struct sk_buff *skb)
  1163. {
  1164. int i, len = 0;
  1165. for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
  1166. len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
  1167. return len + skb_headlen(skb);
  1168. }
  1169. /**
  1170. * __skb_fill_page_desc - initialise a paged fragment in an skb
  1171. * @skb: buffer containing fragment to be initialised
  1172. * @i: paged fragment index to initialise
  1173. * @page: the page to use for this fragment
  1174. * @off: the offset to the data with @page
  1175. * @size: the length of the data
  1176. *
  1177. * Initialises the @i'th fragment of @skb to point to &size bytes at
  1178. * offset @off within @page.
  1179. *
  1180. * Does not take any additional reference on the fragment.
  1181. */
  1182. static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
  1183. struct page *page, int off, int size)
  1184. {
  1185. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  1186. /*
  1187. * Propagate page->pfmemalloc to the skb if we can. The problem is
  1188. * that not all callers have unique ownership of the page. If
  1189. * pfmemalloc is set, we check the mapping as a mapping implies
  1190. * page->index is set (index and pfmemalloc share space).
  1191. * If it's a valid mapping, we cannot use page->pfmemalloc but we
  1192. * do not lose pfmemalloc information as the pages would not be
  1193. * allocated using __GFP_MEMALLOC.
  1194. */
  1195. frag->page.p = page;
  1196. frag->page_offset = off;
  1197. skb_frag_size_set(frag, size);
  1198. page = compound_head(page);
  1199. if (page->pfmemalloc && !page->mapping)
  1200. skb->pfmemalloc = true;
  1201. }
  1202. /**
  1203. * skb_fill_page_desc - initialise a paged fragment in an skb
  1204. * @skb: buffer containing fragment to be initialised
  1205. * @i: paged fragment index to initialise
  1206. * @page: the page to use for this fragment
  1207. * @off: the offset to the data with @page
  1208. * @size: the length of the data
  1209. *
  1210. * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
  1211. * @skb to point to &size bytes at offset @off within @page. In
  1212. * addition updates @skb such that @i is the last fragment.
  1213. *
  1214. * Does not take any additional reference on the fragment.
  1215. */
  1216. static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
  1217. struct page *page, int off, int size)
  1218. {
  1219. __skb_fill_page_desc(skb, i, page, off, size);
  1220. skb_shinfo(skb)->nr_frags = i + 1;
  1221. }
  1222. extern void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page,
  1223. int off, int size, unsigned int truesize);
  1224. #define SKB_PAGE_ASSERT(skb) BUG_ON(skb_shinfo(skb)->nr_frags)
  1225. #define SKB_FRAG_ASSERT(skb) BUG_ON(skb_has_frag_list(skb))
  1226. #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
  1227. #ifdef NET_SKBUFF_DATA_USES_OFFSET
  1228. static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
  1229. {
  1230. return skb->head + skb->tail;
  1231. }
  1232. static inline void skb_reset_tail_pointer(struct sk_buff *skb)
  1233. {
  1234. skb->tail = skb->data - skb->head;
  1235. }
  1236. static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
  1237. {
  1238. skb_reset_tail_pointer(skb);
  1239. skb->tail += offset;
  1240. }
  1241. #else /* NET_SKBUFF_DATA_USES_OFFSET */
  1242. static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
  1243. {
  1244. return skb->tail;
  1245. }
  1246. static inline void skb_reset_tail_pointer(struct sk_buff *skb)
  1247. {
  1248. skb->tail = skb->data;
  1249. }
  1250. static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
  1251. {
  1252. skb->tail = skb->data + offset;
  1253. }
  1254. #endif /* NET_SKBUFF_DATA_USES_OFFSET */
  1255. /*
  1256. * Add data to an sk_buff
  1257. */
  1258. extern unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
  1259. static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
  1260. {
  1261. unsigned char *tmp = skb_tail_pointer(skb);
  1262. SKB_LINEAR_ASSERT(skb);
  1263. skb->tail += len;
  1264. skb->len += len;
  1265. return tmp;
  1266. }
  1267. extern unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
  1268. static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
  1269. {
  1270. skb->data -= len;
  1271. skb->len += len;
  1272. return skb->data;
  1273. }
  1274. extern unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
  1275. static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
  1276. {
  1277. skb->len -= len;
  1278. BUG_ON(skb->len < skb->data_len);
  1279. return skb->data += len;
  1280. }
  1281. static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len)
  1282. {
  1283. return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
  1284. }
  1285. extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
  1286. static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
  1287. {
  1288. if (len > skb_headlen(skb) &&
  1289. !__pskb_pull_tail(skb, len - skb_headlen(skb)))
  1290. return NULL;
  1291. skb->len -= len;
  1292. return skb->data += len;
  1293. }
  1294. static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
  1295. {
  1296. return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
  1297. }
  1298. static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
  1299. {
  1300. if (likely(len <= skb_headlen(skb)))
  1301. return 1;
  1302. if (unlikely(len > skb->len))
  1303. return 0;
  1304. return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
  1305. }
  1306. /**
  1307. * skb_headroom - bytes at buffer head
  1308. * @skb: buffer to check
  1309. *
  1310. * Return the number of bytes of free space at the head of an &sk_buff.
  1311. */
  1312. static inline unsigned int skb_headroom(const struct sk_buff *skb)
  1313. {
  1314. return skb->data - skb->head;
  1315. }
  1316. /**
  1317. * skb_tailroom - bytes at buffer end
  1318. * @skb: buffer to check
  1319. *
  1320. * Return the number of bytes of free space at the tail of an sk_buff
  1321. */
  1322. static inline int skb_tailroom(const struct sk_buff *skb)
  1323. {
  1324. return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
  1325. }
  1326. /**
  1327. * skb_availroom - bytes at buffer end
  1328. * @skb: buffer to check
  1329. *
  1330. * Return the number of bytes of free space at the tail of an sk_buff
  1331. * allocated by sk_stream_alloc()
  1332. */
  1333. static inline int skb_availroom(const struct sk_buff *skb)
  1334. {
  1335. if (skb_is_nonlinear(skb))
  1336. return 0;
  1337. return skb->end - skb->tail - skb->reserved_tailroom;
  1338. }
  1339. /**
  1340. * skb_reserve - adjust headroom
  1341. * @skb: buffer to alter
  1342. * @len: bytes to move
  1343. *
  1344. * Increase the headroom of an empty &sk_buff by reducing the tail
  1345. * room. This is only allowed for an empty buffer.
  1346. */
  1347. static inline void skb_reserve(struct sk_buff *skb, int len)
  1348. {
  1349. skb->data += len;
  1350. skb->tail += len;
  1351. }
  1352. static inline void skb_reset_inner_headers(struct sk_buff *skb)
  1353. {
  1354. skb->inner_mac_header = skb->mac_header;
  1355. skb->inner_network_header = skb->network_header;
  1356. skb->inner_transport_header = skb->transport_header;
  1357. }
  1358. static inline void skb_reset_mac_len(struct sk_buff *skb)
  1359. {
  1360. skb->mac_len = skb->network_header - skb->mac_header;
  1361. }
  1362. static inline unsigned char *skb_inner_transport_header(const struct sk_buff
  1363. *skb)
  1364. {
  1365. return skb->head + skb->inner_transport_header;
  1366. }
  1367. static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
  1368. {
  1369. skb->inner_transport_header = skb->data - skb->head;
  1370. }
  1371. static inline void skb_set_inner_transport_header(struct sk_buff *skb,
  1372. const int offset)
  1373. {
  1374. skb_reset_inner_transport_header(skb);
  1375. skb->inner_transport_header += offset;
  1376. }
  1377. static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
  1378. {
  1379. return skb->head + skb->inner_network_header;
  1380. }
  1381. static inline void skb_reset_inner_network_header(struct sk_buff *skb)
  1382. {
  1383. skb->inner_network_header = skb->data - skb->head;
  1384. }
  1385. static inline void skb_set_inner_network_header(struct sk_buff *skb,
  1386. const int offset)
  1387. {
  1388. skb_reset_inner_network_header(skb);
  1389. skb->inner_network_header += offset;
  1390. }
  1391. static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
  1392. {
  1393. return skb->head + skb->inner_mac_header;
  1394. }
  1395. static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
  1396. {
  1397. skb->inner_mac_header = skb->data - skb->head;
  1398. }
  1399. static inline void skb_set_inner_mac_header(struct sk_buff *skb,
  1400. const int offset)
  1401. {
  1402. skb_reset_inner_mac_header(skb);
  1403. skb->inner_mac_header += offset;
  1404. }
  1405. static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
  1406. {
  1407. return skb->transport_header != ~0U;
  1408. }
  1409. static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
  1410. {
  1411. return skb->head + skb->transport_header;
  1412. }
  1413. static inline void skb_reset_transport_header(struct sk_buff *skb)
  1414. {
  1415. skb->transport_header = skb->data - skb->head;
  1416. }
  1417. static inline void skb_set_transport_header(struct sk_buff *skb,
  1418. const int offset)
  1419. {
  1420. skb_reset_transport_header(skb);
  1421. skb->transport_header += offset;
  1422. }
  1423. static inline unsigned char *skb_network_header(const struct sk_buff *skb)
  1424. {
  1425. return skb->head + skb->network_header;
  1426. }
  1427. static inline void skb_reset_network_header(struct sk_buff *skb)
  1428. {
  1429. skb->network_header = skb->data - skb->head;
  1430. }
  1431. static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
  1432. {
  1433. skb_reset_network_header(skb);
  1434. skb->network_header += offset;
  1435. }
  1436. static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
  1437. {
  1438. return skb->head + skb->mac_header;
  1439. }
  1440. static inline int skb_mac_header_was_set(const struct sk_buff *skb)
  1441. {
  1442. return skb->mac_header != ~0U;
  1443. }
  1444. static inline void skb_reset_mac_header(struct sk_buff *skb)
  1445. {
  1446. skb->mac_header = skb->data - skb->head;
  1447. }
  1448. static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
  1449. {
  1450. skb_reset_mac_header(skb);
  1451. skb->mac_header += offset;
  1452. }
  1453. static inline void skb_probe_transport_header(struct sk_buff *skb,
  1454. const int offset_hint)
  1455. {
  1456. struct flow_keys keys;
  1457. if (skb_transport_header_was_set(skb))
  1458. return;
  1459. else if (skb_flow_dissect(skb, &keys))
  1460. skb_set_transport_header(skb, keys.thoff);
  1461. else
  1462. skb_set_transport_header(skb, offset_hint);
  1463. }
  1464. static inline void skb_mac_header_rebuild(struct sk_buff *skb)
  1465. {
  1466. if (skb_mac_header_was_set(skb)) {
  1467. const unsigned char *old_mac = skb_mac_header(skb);
  1468. skb_set_mac_header(skb, -skb->mac_len);
  1469. memmove(skb_mac_header(skb), old_mac, skb->mac_len);
  1470. }
  1471. }
  1472. static inline int skb_checksum_start_offset(const struct sk_buff *skb)
  1473. {
  1474. return skb->csum_start - skb_headroom(skb);
  1475. }
  1476. static inline int skb_transport_offset(const struct sk_buff *skb)
  1477. {
  1478. return skb_transport_header(skb) - skb->data;
  1479. }
  1480. static inline u32 skb_network_header_len(const struct sk_buff *skb)
  1481. {
  1482. return skb->transport_header - skb->network_header;
  1483. }
  1484. static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
  1485. {
  1486. return skb->inner_transport_header - skb->inner_network_header;
  1487. }
  1488. static inline int skb_network_offset(const struct sk_buff *skb)
  1489. {
  1490. return skb_network_header(skb) - skb->data;
  1491. }
  1492. static inline int skb_inner_network_offset(const struct sk_buff *skb)
  1493. {
  1494. return skb_inner_network_header(skb) - skb->data;
  1495. }
  1496. static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
  1497. {
  1498. return pskb_may_pull(skb, skb_network_offset(skb) + len);
  1499. }
  1500. /*
  1501. * CPUs often take a performance hit when accessing unaligned memory
  1502. * locations. The actual performance hit varies, it can be small if the
  1503. * hardware handles it or large if we have to take an exception and fix it
  1504. * in software.
  1505. *
  1506. * Since an ethernet header is 14 bytes network drivers often end up with
  1507. * the IP header at an unaligned offset. The IP header can be aligned by
  1508. * shifting the start of the packet by 2 bytes. Drivers should do this
  1509. * with:
  1510. *
  1511. * skb_reserve(skb, NET_IP_ALIGN);
  1512. *
  1513. * The downside to this alignment of the IP header is that the DMA is now
  1514. * unaligned. On some architectures the cost of an unaligned DMA is high
  1515. * and this cost outweighs the gains made by aligning the IP header.
  1516. *
  1517. * Since this trade off varies between architectures, we allow NET_IP_ALIGN
  1518. * to be overridden.
  1519. */
  1520. #ifndef NET_IP_ALIGN
  1521. #define NET_IP_ALIGN 2
  1522. #endif
  1523. /*
  1524. * The networking layer reserves some headroom in skb data (via
  1525. * dev_alloc_skb). This is used to avoid having to reallocate skb data when
  1526. * the header has to grow. In the default case, if the header has to grow
  1527. * 32 bytes or less we avoid the reallocation.
  1528. *
  1529. * Unfortunately this headroom changes the DMA alignment of the resulting
  1530. * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
  1531. * on some architectures. An architecture can override this value,
  1532. * perhaps setting it to a cacheline in size (since that will maintain
  1533. * cacheline alignment of the DMA). It must be a power of 2.
  1534. *
  1535. * Various parts of the networking layer expect at least 32 bytes of
  1536. * headroom, you should not reduce this.
  1537. *
  1538. * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
  1539. * to reduce average number of cache lines per packet.
  1540. * get_rps_cpus() for example only access one 64 bytes aligned block :
  1541. * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
  1542. */
  1543. #ifndef NET_SKB_PAD
  1544. #define NET_SKB_PAD max(32, L1_CACHE_BYTES)
  1545. #endif
  1546. extern int ___pskb_trim(struct sk_buff *skb, unsigned int len);
  1547. static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
  1548. {
  1549. if (unlikely(skb_is_nonlinear(skb))) {
  1550. WARN_ON(1);
  1551. return;
  1552. }
  1553. skb->len = len;
  1554. skb_set_tail_pointer(skb, len);
  1555. }
  1556. extern void skb_trim(struct sk_buff *skb, unsigned int len);
  1557. static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
  1558. {
  1559. if (skb->data_len)
  1560. return ___pskb_trim(skb, len);
  1561. __skb_trim(skb, len);
  1562. return 0;
  1563. }
  1564. static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
  1565. {
  1566. return (len < skb->len) ? __pskb_trim(skb, len) : 0;
  1567. }
  1568. /**
  1569. * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
  1570. * @skb: buffer to alter
  1571. * @len: new length
  1572. *
  1573. * This is identical to pskb_trim except that the caller knows that
  1574. * the skb is not cloned so we should never get an error due to out-
  1575. * of-memory.
  1576. */
  1577. static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
  1578. {
  1579. int err = pskb_trim(skb, len);
  1580. BUG_ON(err);
  1581. }
  1582. /**
  1583. * skb_orphan - orphan a buffer
  1584. * @skb: buffer to orphan
  1585. *
  1586. * If a buffer currently has an owner then we call the owner's
  1587. * destructor function and make the @skb unowned. The buffer continues
  1588. * to exist but is no longer charged to its former owner.
  1589. */
  1590. static inline void skb_orphan(struct sk_buff *skb)
  1591. {
  1592. if (skb->destructor)
  1593. skb->destructor(skb);
  1594. skb->destructor = NULL;
  1595. skb->sk = NULL;
  1596. }
  1597. /**
  1598. * skb_orphan_frags - orphan the frags contained in a buffer
  1599. * @skb: buffer to orphan frags from
  1600. * @gfp_mask: allocation mask for replacement pages
  1601. *
  1602. * For each frag in the SKB which needs a destructor (i.e. has an
  1603. * owner) create a copy of that frag and release the original
  1604. * page by calling the destructor.
  1605. */
  1606. static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
  1607. {
  1608. if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY)))
  1609. return 0;
  1610. return skb_copy_ubufs(skb, gfp_mask);
  1611. }
  1612. /**
  1613. * __skb_queue_purge - empty a list
  1614. * @list: list to empty
  1615. *
  1616. * Delete all buffers on an &sk_buff list. Each buffer is removed from
  1617. * the list and one reference dropped. This function does not take the
  1618. * list lock and the caller must hold the relevant locks to use it.
  1619. */
  1620. extern void skb_queue_purge(struct sk_buff_head *list);
  1621. static inline void __skb_queue_purge(struct sk_buff_head *list)
  1622. {
  1623. struct sk_buff *skb;
  1624. while ((skb = __skb_dequeue(list)) != NULL)
  1625. kfree_skb(skb);
  1626. }
  1627. #define NETDEV_FRAG_PAGE_MAX_ORDER get_order(32768)
  1628. #define NETDEV_FRAG_PAGE_MAX_SIZE (PAGE_SIZE << NETDEV_FRAG_PAGE_MAX_ORDER)
  1629. #define NETDEV_PAGECNT_MAX_BIAS NETDEV_FRAG_PAGE_MAX_SIZE
  1630. extern void *netdev_alloc_frag(unsigned int fragsz);
  1631. extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
  1632. unsigned int length,
  1633. gfp_t gfp_mask);
  1634. /**
  1635. * netdev_alloc_skb - allocate an skbuff for rx on a specific device
  1636. * @dev: network device to receive on
  1637. * @length: length to allocate
  1638. *
  1639. * Allocate a new &sk_buff and assign it a usage count of one. The
  1640. * buffer has unspecified headroom built in. Users should allocate
  1641. * the headroom they think they need without accounting for the
  1642. * built in space. The built in space is used for optimisations.
  1643. *
  1644. * %NULL is returned if there is no free memory. Although this function
  1645. * allocates memory it can be called from an interrupt.
  1646. */
  1647. static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
  1648. unsigned int length)
  1649. {
  1650. return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
  1651. }
  1652. /* legacy helper around __netdev_alloc_skb() */
  1653. static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
  1654. gfp_t gfp_mask)
  1655. {
  1656. return __netdev_alloc_skb(NULL, length, gfp_mask);
  1657. }
  1658. /* legacy helper around netdev_alloc_skb() */
  1659. static inline struct sk_buff *dev_alloc_skb(unsigned int length)
  1660. {
  1661. return netdev_alloc_skb(NULL, length);
  1662. }
  1663. static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
  1664. unsigned int length, gfp_t gfp)
  1665. {
  1666. struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
  1667. if (NET_IP_ALIGN && skb)
  1668. skb_reserve(skb, NET_IP_ALIGN);
  1669. return skb;
  1670. }
  1671. static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
  1672. unsigned int length)
  1673. {
  1674. return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
  1675. }
  1676. /*
  1677. * __skb_alloc_page - allocate pages for ps-rx on a skb and preserve pfmemalloc data
  1678. * @gfp_mask: alloc_pages_node mask. Set __GFP_NOMEMALLOC if not for network packet RX
  1679. * @skb: skb to set pfmemalloc on if __GFP_MEMALLOC is used
  1680. * @order: size of the allocation
  1681. *
  1682. * Allocate a new page.
  1683. *
  1684. * %NULL is returned if there is no free memory.
  1685. */
  1686. static inline struct page *__skb_alloc_pages(gfp_t gfp_mask,
  1687. struct sk_buff *skb,
  1688. unsigned int order)
  1689. {
  1690. struct page *page;
  1691. gfp_mask |= __GFP_COLD;
  1692. if (!(gfp_mask & __GFP_NOMEMALLOC))
  1693. gfp_mask |= __GFP_MEMALLOC;
  1694. page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
  1695. if (skb && page && page->pfmemalloc)
  1696. skb->pfmemalloc = true;
  1697. return page;
  1698. }
  1699. /**
  1700. * __skb_alloc_page - allocate a page for ps-rx for a given skb and preserve pfmemalloc data
  1701. * @gfp_mask: alloc_pages_node mask. Set __GFP_NOMEMALLOC if not for network packet RX
  1702. * @skb: skb to set pfmemalloc on if __GFP_MEMALLOC is used
  1703. *
  1704. * Allocate a new page.
  1705. *
  1706. * %NULL is returned if there is no free memory.
  1707. */
  1708. static inline struct page *__skb_alloc_page(gfp_t gfp_mask,
  1709. struct sk_buff *skb)
  1710. {
  1711. return __skb_alloc_pages(gfp_mask, skb, 0);
  1712. }
  1713. /**
  1714. * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
  1715. * @page: The page that was allocated from skb_alloc_page
  1716. * @skb: The skb that may need pfmemalloc set
  1717. */
  1718. static inline void skb_propagate_pfmemalloc(struct page *page,
  1719. struct sk_buff *skb)
  1720. {
  1721. if (page && page->pfmemalloc)
  1722. skb->pfmemalloc = true;
  1723. }
  1724. /**
  1725. * skb_frag_page - retrieve the page refered to by a paged fragment
  1726. * @frag: the paged fragment
  1727. *
  1728. * Returns the &struct page associated with @frag.
  1729. */
  1730. static inline struct page *skb_frag_page(const skb_frag_t *frag)
  1731. {
  1732. return frag->page.p;
  1733. }
  1734. /**
  1735. * __skb_frag_ref - take an addition reference on a paged fragment.
  1736. * @frag: the paged fragment
  1737. *
  1738. * Takes an additional reference on the paged fragment @frag.
  1739. */
  1740. static inline void __skb_frag_ref(skb_frag_t *frag)
  1741. {
  1742. get_page(skb_frag_page(frag));
  1743. }
  1744. /**
  1745. * skb_frag_ref - take an addition reference on a paged fragment of an skb.
  1746. * @skb: the buffer
  1747. * @f: the fragment offset.
  1748. *
  1749. * Takes an additional reference on the @f'th paged fragment of @skb.
  1750. */
  1751. static inline void skb_frag_ref(struct sk_buff *skb, int f)
  1752. {
  1753. __skb_frag_ref(&skb_shinfo(skb)->frags[f]);
  1754. }
  1755. /**
  1756. * __skb_frag_unref - release a reference on a paged fragment.
  1757. * @frag: the paged fragment
  1758. *
  1759. * Releases a reference on the paged fragment @frag.
  1760. */
  1761. static inline void __skb_frag_unref(skb_frag_t *frag)
  1762. {
  1763. put_page(skb_frag_page(frag));
  1764. }
  1765. /**
  1766. * skb_frag_unref - release a reference on a paged fragment of an skb.
  1767. * @skb: the buffer
  1768. * @f: the fragment offset
  1769. *
  1770. * Releases a reference on the @f'th paged fragment of @skb.
  1771. */
  1772. static inline void skb_frag_unref(struct sk_buff *skb, int f)
  1773. {
  1774. __skb_frag_unref(&skb_shinfo(skb)->frags[f]);
  1775. }
  1776. /**
  1777. * skb_frag_address - gets the address of the data contained in a paged fragment
  1778. * @frag: the paged fragment buffer
  1779. *
  1780. * Returns the address of the data within @frag. The page must already
  1781. * be mapped.
  1782. */
  1783. static inline void *skb_frag_address(const skb_frag_t *frag)
  1784. {
  1785. return page_address(skb_frag_page(frag)) + frag->page_offset;
  1786. }
  1787. /**
  1788. * skb_frag_address_safe - gets the address of the data contained in a paged fragment
  1789. * @frag: the paged fragment buffer
  1790. *
  1791. * Returns the address of the data within @frag. Checks that the page
  1792. * is mapped and returns %NULL otherwise.
  1793. */
  1794. static inline void *skb_frag_address_safe(const skb_frag_t *frag)
  1795. {
  1796. void *ptr = page_address(skb_frag_page(frag));
  1797. if (unlikely(!ptr))
  1798. return NULL;
  1799. return ptr + frag->page_offset;
  1800. }
  1801. /**
  1802. * __skb_frag_set_page - sets the page contained in a paged fragment
  1803. * @frag: the paged fragment
  1804. * @page: the page to set
  1805. *
  1806. * Sets the fragment @frag to contain @page.
  1807. */
  1808. static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
  1809. {
  1810. frag->page.p = page;
  1811. }
  1812. /**
  1813. * skb_frag_set_page - sets the page contained in a paged fragment of an skb
  1814. * @skb: the buffer
  1815. * @f: the fragment offset
  1816. * @page: the page to set
  1817. *
  1818. * Sets the @f'th fragment of @skb to contain @page.
  1819. */
  1820. static inline void skb_frag_set_page(struct sk_buff *skb, int f,
  1821. struct page *page)
  1822. {
  1823. __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
  1824. }
  1825. /**
  1826. * skb_frag_dma_map - maps a paged fragment via the DMA API
  1827. * @dev: the device to map the fragment to
  1828. * @frag: the paged fragment to map
  1829. * @offset: the offset within the fragment (starting at the
  1830. * fragment's own offset)
  1831. * @size: the number of bytes to map
  1832. * @dir: the direction of the mapping (%PCI_DMA_*)
  1833. *
  1834. * Maps the page associated with @frag to @device.
  1835. */
  1836. static inline dma_addr_t skb_frag_dma_map(struct device *dev,
  1837. const skb_frag_t *frag,
  1838. size_t offset, size_t size,
  1839. enum dma_data_direction dir)
  1840. {
  1841. return dma_map_page(dev, skb_frag_page(frag),
  1842. frag->page_offset + offset, size, dir);
  1843. }
  1844. static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
  1845. gfp_t gfp_mask)
  1846. {
  1847. return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
  1848. }
  1849. /**
  1850. * skb_clone_writable - is the header of a clone writable
  1851. * @skb: buffer to check
  1852. * @len: length up to which to write
  1853. *
  1854. * Returns true if modifying the header part of the cloned buffer
  1855. * does not requires the data to be copied.
  1856. */
  1857. static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
  1858. {
  1859. return !skb_header_cloned(skb) &&
  1860. skb_headroom(skb) + len <= skb->hdr_len;
  1861. }
  1862. static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
  1863. int cloned)
  1864. {
  1865. int delta = 0;
  1866. if (headroom > skb_headroom(skb))
  1867. delta = headroom - skb_headroom(skb);
  1868. if (delta || cloned)
  1869. return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
  1870. GFP_ATOMIC);
  1871. return 0;
  1872. }
  1873. /**
  1874. * skb_cow - copy header of skb when it is required
  1875. * @skb: buffer to cow
  1876. * @headroom: needed headroom
  1877. *
  1878. * If the skb passed lacks sufficient headroom or its data part
  1879. * is shared, data is reallocated. If reallocation fails, an error
  1880. * is returned and original skb is not changed.
  1881. *
  1882. * The result is skb with writable area skb->head...skb->tail
  1883. * and at least @headroom of space at head.
  1884. */
  1885. static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
  1886. {
  1887. return __skb_cow(skb, headroom, skb_cloned(skb));
  1888. }
  1889. /**
  1890. * skb_cow_head - skb_cow but only making the head writable
  1891. * @skb: buffer to cow
  1892. * @headroom: needed headroom
  1893. *
  1894. * This function is identical to skb_cow except that we replace the
  1895. * skb_cloned check by skb_header_cloned. It should be used when
  1896. * you only need to push on some header and do not need to modify
  1897. * the data.
  1898. */
  1899. static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
  1900. {
  1901. return __skb_cow(skb, headroom, skb_header_cloned(skb));
  1902. }
  1903. /**
  1904. * skb_padto - pad an skbuff up to a minimal size
  1905. * @skb: buffer to pad
  1906. * @len: minimal length
  1907. *
  1908. * Pads up a buffer to ensure the trailing bytes exist and are
  1909. * blanked. If the buffer already contains sufficient data it
  1910. * is untouched. Otherwise it is extended. Returns zero on
  1911. * success. The skb is freed on error.
  1912. */
  1913. static inline int skb_padto(struct sk_buff *skb, unsigned int len)
  1914. {
  1915. unsigned int size = skb->len;
  1916. if (likely(size >= len))
  1917. return 0;
  1918. return skb_pad(skb, len - size);
  1919. }
  1920. static inline int skb_add_data(struct sk_buff *skb,
  1921. char __user *from, int copy)
  1922. {
  1923. const int off = skb->len;
  1924. if (skb->ip_summed == CHECKSUM_NONE) {
  1925. int err = 0;
  1926. __wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy),
  1927. copy, 0, &err);
  1928. if (!err) {
  1929. skb->csum = csum_block_add(skb->csum, csum, off);
  1930. return 0;
  1931. }
  1932. } else if (!copy_from_user(skb_put(skb, copy), from, copy))
  1933. return 0;
  1934. __skb_trim(skb, off);
  1935. return -EFAULT;
  1936. }
  1937. static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
  1938. const struct page *page, int off)
  1939. {
  1940. if (i) {
  1941. const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
  1942. return page == skb_frag_page(frag) &&
  1943. off == frag->page_offset + skb_frag_size(frag);
  1944. }
  1945. return false;
  1946. }
  1947. static inline int __skb_linearize(struct sk_buff *skb)
  1948. {
  1949. return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
  1950. }
  1951. /**
  1952. * skb_linearize - convert paged skb to linear one
  1953. * @skb: buffer to linarize
  1954. *
  1955. * If there is no free memory -ENOMEM is returned, otherwise zero
  1956. * is returned and the old skb data released.
  1957. */
  1958. static inline int skb_linearize(struct sk_buff *skb)
  1959. {
  1960. return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
  1961. }
  1962. /**
  1963. * skb_has_shared_frag - can any frag be overwritten
  1964. * @skb: buffer to test
  1965. *
  1966. * Return true if the skb has at least one frag that might be modified
  1967. * by an external entity (as in vmsplice()/sendfile())
  1968. */
  1969. static inline bool skb_has_shared_frag(const struct sk_buff *skb)
  1970. {
  1971. return skb_is_nonlinear(skb) &&
  1972. skb_shinfo(skb)->tx_flags & SKBTX_SHARED_FRAG;
  1973. }
  1974. /**
  1975. * skb_linearize_cow - make sure skb is linear and writable
  1976. * @skb: buffer to process
  1977. *
  1978. * If there is no free memory -ENOMEM is returned, otherwise zero
  1979. * is returned and the old skb data released.
  1980. */
  1981. static inline int skb_linearize_cow(struct sk_buff *skb)
  1982. {
  1983. return skb_is_nonlinear(skb) || skb_cloned(skb) ?
  1984. __skb_linearize(skb) : 0;
  1985. }
  1986. /**
  1987. * skb_postpull_rcsum - update checksum for received skb after pull
  1988. * @skb: buffer to update
  1989. * @start: start of data before pull
  1990. * @len: length of data pulled
  1991. *
  1992. * After doing a pull on a received packet, you need to call this to
  1993. * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
  1994. * CHECKSUM_NONE so that it can be recomputed from scratch.
  1995. */
  1996. static inline void skb_postpull_rcsum(struct sk_buff *skb,
  1997. const void *start, unsigned int len)
  1998. {
  1999. if (skb->ip_summed == CHECKSUM_COMPLETE)
  2000. skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
  2001. }
  2002. unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
  2003. /**
  2004. * pskb_trim_rcsum - trim received skb and update checksum
  2005. * @skb: buffer to trim
  2006. * @len: new length
  2007. *
  2008. * This is exactly the same as pskb_trim except that it ensures the
  2009. * checksum of received packets are still valid after the operation.
  2010. */
  2011. static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
  2012. {
  2013. if (likely(len >= skb->len))
  2014. return 0;
  2015. if (skb->ip_summed == CHECKSUM_COMPLETE)
  2016. skb->ip_summed = CHECKSUM_NONE;
  2017. return __pskb_trim(skb, len);
  2018. }
  2019. #define skb_queue_walk(queue, skb) \
  2020. for (skb = (queue)->next; \
  2021. skb != (struct sk_buff *)(queue); \
  2022. skb = skb->next)
  2023. #define skb_queue_walk_safe(queue, skb, tmp) \
  2024. for (skb = (queue)->next, tmp = skb->next; \
  2025. skb != (struct sk_buff *)(queue); \
  2026. skb = tmp, tmp = skb->next)
  2027. #define skb_queue_walk_from(queue, skb) \
  2028. for (; skb != (struct sk_buff *)(queue); \
  2029. skb = skb->next)
  2030. #define skb_queue_walk_from_safe(queue, skb, tmp) \
  2031. for (tmp = skb->next; \
  2032. skb != (struct sk_buff *)(queue); \
  2033. skb = tmp, tmp = skb->next)
  2034. #define skb_queue_reverse_walk(queue, skb) \
  2035. for (skb = (queue)->prev; \
  2036. skb != (struct sk_buff *)(queue); \
  2037. skb = skb->prev)
  2038. #define skb_queue_reverse_walk_safe(queue, skb, tmp) \
  2039. for (skb = (queue)->prev, tmp = skb->prev; \
  2040. skb != (struct sk_buff *)(queue); \
  2041. skb = tmp, tmp = skb->prev)
  2042. #define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \
  2043. for (tmp = skb->prev; \
  2044. skb != (struct sk_buff *)(queue); \
  2045. skb = tmp, tmp = skb->prev)
  2046. static inline bool skb_has_frag_list(const struct sk_buff *skb)
  2047. {
  2048. return skb_shinfo(skb)->frag_list != NULL;
  2049. }
  2050. static inline void skb_frag_list_init(struct sk_buff *skb)
  2051. {
  2052. skb_shinfo(skb)->frag_list = NULL;
  2053. }
  2054. static inline void skb_frag_add_head(struct sk_buff *skb, struct sk_buff *frag)
  2055. {
  2056. frag->next = skb_shinfo(skb)->frag_list;
  2057. skb_shinfo(skb)->frag_list = frag;
  2058. }
  2059. #define skb_walk_frags(skb, iter) \
  2060. for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
  2061. extern struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
  2062. int *peeked, int *off, int *err);
  2063. extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
  2064. int noblock, int *err);
  2065. extern unsigned int datagram_poll(struct file *file, struct socket *sock,
  2066. struct poll_table_struct *wait);
  2067. extern int skb_copy_datagram_iovec(const struct sk_buff *from,
  2068. int offset, struct iovec *to,
  2069. int size);
  2070. extern int skb_copy_and_csum_datagram_iovec(struct sk_buff *skb,
  2071. int hlen,
  2072. struct iovec *iov);
  2073. extern int skb_copy_datagram_from_iovec(struct sk_buff *skb,
  2074. int offset,
  2075. const struct iovec *from,
  2076. int from_offset,
  2077. int len);
  2078. extern int skb_copy_datagram_const_iovec(const struct sk_buff *from,
  2079. int offset,
  2080. const struct iovec *to,
  2081. int to_offset,
  2082. int size);
  2083. extern void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
  2084. extern void skb_free_datagram_locked(struct sock *sk,
  2085. struct sk_buff *skb);
  2086. extern int skb_kill_datagram(struct sock *sk, struct sk_buff *skb,
  2087. unsigned int flags);
  2088. extern __wsum skb_checksum(const struct sk_buff *skb, int offset,
  2089. int len, __wsum csum);
  2090. extern int skb_copy_bits(const struct sk_buff *skb, int offset,
  2091. void *to, int len);
  2092. extern int skb_store_bits(struct sk_buff *skb, int offset,
  2093. const void *from, int len);
  2094. extern __wsum skb_copy_and_csum_bits(const struct sk_buff *skb,
  2095. int offset, u8 *to, int len,
  2096. __wsum csum);
  2097. extern int skb_splice_bits(struct sk_buff *skb,
  2098. unsigned int offset,
  2099. struct pipe_inode_info *pipe,
  2100. unsigned int len,
  2101. unsigned int flags);
  2102. extern void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
  2103. extern void skb_split(struct sk_buff *skb,
  2104. struct sk_buff *skb1, const u32 len);
  2105. extern int skb_shift(struct sk_buff *tgt, struct sk_buff *skb,
  2106. int shiftlen);
  2107. extern struct sk_buff *skb_segment(struct sk_buff *skb,
  2108. netdev_features_t features);
  2109. static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
  2110. int len, void *buffer)
  2111. {
  2112. int hlen = skb_headlen(skb);
  2113. if (hlen - offset >= len)
  2114. return skb->data + offset;
  2115. if (skb_copy_bits(skb, offset, buffer, len) < 0)
  2116. return NULL;
  2117. return buffer;
  2118. }
  2119. static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
  2120. void *to,
  2121. const unsigned int len)
  2122. {
  2123. memcpy(to, skb->data, len);
  2124. }
  2125. static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
  2126. const int offset, void *to,
  2127. const unsigned int len)
  2128. {
  2129. memcpy(to, skb->data + offset, len);
  2130. }
  2131. static inline void skb_copy_to_linear_data(struct sk_buff *skb,
  2132. const void *from,
  2133. const unsigned int len)
  2134. {
  2135. memcpy(skb->data, from, len);
  2136. }
  2137. static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
  2138. const int offset,
  2139. const void *from,
  2140. const unsigned int len)
  2141. {
  2142. memcpy(skb->data + offset, from, len);
  2143. }
  2144. extern void skb_init(void);
  2145. static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
  2146. {
  2147. return skb->tstamp;
  2148. }
  2149. /**
  2150. * skb_get_timestamp - get timestamp from a skb
  2151. * @skb: skb to get stamp from
  2152. * @stamp: pointer to struct timeval to store stamp in
  2153. *
  2154. * Timestamps are stored in the skb as offsets to a base timestamp.
  2155. * This function converts the offset back to a struct timeval and stores
  2156. * it in stamp.
  2157. */
  2158. static inline void skb_get_timestamp(const struct sk_buff *skb,
  2159. struct timeval *stamp)
  2160. {
  2161. *stamp = ktime_to_timeval(skb->tstamp);
  2162. }
  2163. static inline void skb_get_timestampns(const struct sk_buff *skb,
  2164. struct timespec *stamp)
  2165. {
  2166. *stamp = ktime_to_timespec(skb->tstamp);
  2167. }
  2168. static inline void __net_timestamp(struct sk_buff *skb)
  2169. {
  2170. skb->tstamp = ktime_get_real();
  2171. }
  2172. static inline ktime_t net_timedelta(ktime_t t)
  2173. {
  2174. return ktime_sub(ktime_get_real(), t);
  2175. }
  2176. static inline ktime_t net_invalid_timestamp(void)
  2177. {
  2178. return ktime_set(0, 0);
  2179. }
  2180. extern void skb_timestamping_init(void);
  2181. #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
  2182. extern void skb_clone_tx_timestamp(struct sk_buff *skb);
  2183. extern bool skb_defer_rx_timestamp(struct sk_buff *skb);
  2184. #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
  2185. static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
  2186. {
  2187. }
  2188. static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
  2189. {
  2190. return false;
  2191. }
  2192. #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
  2193. /**
  2194. * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
  2195. *
  2196. * PHY drivers may accept clones of transmitted packets for
  2197. * timestamping via their phy_driver.txtstamp method. These drivers
  2198. * must call this function to return the skb back to the stack, with
  2199. * or without a timestamp.
  2200. *
  2201. * @skb: clone of the the original outgoing packet
  2202. * @hwtstamps: hardware time stamps, may be NULL if not available
  2203. *
  2204. */
  2205. void skb_complete_tx_timestamp(struct sk_buff *skb,
  2206. struct skb_shared_hwtstamps *hwtstamps);
  2207. /**
  2208. * skb_tstamp_tx - queue clone of skb with send time stamps
  2209. * @orig_skb: the original outgoing packet
  2210. * @hwtstamps: hardware time stamps, may be NULL if not available
  2211. *
  2212. * If the skb has a socket associated, then this function clones the
  2213. * skb (thus sharing the actual data and optional structures), stores
  2214. * the optional hardware time stamping information (if non NULL) or
  2215. * generates a software time stamp (otherwise), then queues the clone
  2216. * to the error queue of the socket. Errors are silently ignored.
  2217. */
  2218. extern void skb_tstamp_tx(struct sk_buff *orig_skb,
  2219. struct skb_shared_hwtstamps *hwtstamps);
  2220. static inline void sw_tx_timestamp(struct sk_buff *skb)
  2221. {
  2222. if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP &&
  2223. !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
  2224. skb_tstamp_tx(skb, NULL);
  2225. }
  2226. /**
  2227. * skb_tx_timestamp() - Driver hook for transmit timestamping
  2228. *
  2229. * Ethernet MAC Drivers should call this function in their hard_xmit()
  2230. * function immediately before giving the sk_buff to the MAC hardware.
  2231. *
  2232. * @skb: A socket buffer.
  2233. */
  2234. static inline void skb_tx_timestamp(struct sk_buff *skb)
  2235. {
  2236. skb_clone_tx_timestamp(skb);
  2237. sw_tx_timestamp(skb);
  2238. }
  2239. /**
  2240. * skb_complete_wifi_ack - deliver skb with wifi status
  2241. *
  2242. * @skb: the original outgoing packet
  2243. * @acked: ack status
  2244. *
  2245. */
  2246. void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
  2247. extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
  2248. extern __sum16 __skb_checksum_complete(struct sk_buff *skb);
  2249. static inline int skb_csum_unnecessary(const struct sk_buff *skb)
  2250. {
  2251. return skb->ip_summed & CHECKSUM_UNNECESSARY;
  2252. }
  2253. /**
  2254. * skb_checksum_complete - Calculate checksum of an entire packet
  2255. * @skb: packet to process
  2256. *
  2257. * This function calculates the checksum over the entire packet plus
  2258. * the value of skb->csum. The latter can be used to supply the
  2259. * checksum of a pseudo header as used by TCP/UDP. It returns the
  2260. * checksum.
  2261. *
  2262. * For protocols that contain complete checksums such as ICMP/TCP/UDP,
  2263. * this function can be used to verify that checksum on received
  2264. * packets. In that case the function should return zero if the
  2265. * checksum is correct. In particular, this function will return zero
  2266. * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
  2267. * hardware has already verified the correctness of the checksum.
  2268. */
  2269. static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
  2270. {
  2271. return skb_csum_unnecessary(skb) ?
  2272. 0 : __skb_checksum_complete(skb);
  2273. }
  2274. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  2275. extern void nf_conntrack_destroy(struct nf_conntrack *nfct);
  2276. static inline void nf_conntrack_put(struct nf_conntrack *nfct)
  2277. {
  2278. if (nfct && atomic_dec_and_test(&nfct->use))
  2279. nf_conntrack_destroy(nfct);
  2280. }
  2281. static inline void nf_conntrack_get(struct nf_conntrack *nfct)
  2282. {
  2283. if (nfct)
  2284. atomic_inc(&nfct->use);
  2285. }
  2286. #endif
  2287. #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
  2288. static inline void nf_conntrack_get_reasm(struct sk_buff *skb)
  2289. {
  2290. if (skb)
  2291. atomic_inc(&skb->users);
  2292. }
  2293. static inline void nf_conntrack_put_reasm(struct sk_buff *skb)
  2294. {
  2295. if (skb)
  2296. kfree_skb(skb);
  2297. }
  2298. #endif
  2299. #ifdef CONFIG_BRIDGE_NETFILTER
  2300. static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
  2301. {
  2302. if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
  2303. kfree(nf_bridge);
  2304. }
  2305. static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
  2306. {
  2307. if (nf_bridge)
  2308. atomic_inc(&nf_bridge->use);
  2309. }
  2310. #endif /* CONFIG_BRIDGE_NETFILTER */
  2311. static inline void nf_reset(struct sk_buff *skb)
  2312. {
  2313. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  2314. nf_conntrack_put(skb->nfct);
  2315. skb->nfct = NULL;
  2316. #endif
  2317. #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
  2318. nf_conntrack_put_reasm(skb->nfct_reasm);
  2319. skb->nfct_reasm = NULL;
  2320. #endif
  2321. #ifdef CONFIG_BRIDGE_NETFILTER
  2322. nf_bridge_put(skb->nf_bridge);
  2323. skb->nf_bridge = NULL;
  2324. #endif
  2325. }
  2326. static inline void nf_reset_trace(struct sk_buff *skb)
  2327. {
  2328. #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE)
  2329. skb->nf_trace = 0;
  2330. #endif
  2331. }
  2332. /* Note: This doesn't put any conntrack and bridge info in dst. */
  2333. static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src)
  2334. {
  2335. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  2336. dst->nfct = src->nfct;
  2337. nf_conntrack_get(src->nfct);
  2338. dst->nfctinfo = src->nfctinfo;
  2339. #endif
  2340. #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
  2341. dst->nfct_reasm = src->nfct_reasm;
  2342. nf_conntrack_get_reasm(src->nfct_reasm);
  2343. #endif
  2344. #ifdef CONFIG_BRIDGE_NETFILTER
  2345. dst->nf_bridge = src->nf_bridge;
  2346. nf_bridge_get(src->nf_bridge);
  2347. #endif
  2348. }
  2349. static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
  2350. {
  2351. #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  2352. nf_conntrack_put(dst->nfct);
  2353. #endif
  2354. #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
  2355. nf_conntrack_put_reasm(dst->nfct_reasm);
  2356. #endif
  2357. #ifdef CONFIG_BRIDGE_NETFILTER
  2358. nf_bridge_put(dst->nf_bridge);
  2359. #endif
  2360. __nf_copy(dst, src);
  2361. }
  2362. #ifdef CONFIG_NETWORK_SECMARK
  2363. static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
  2364. {
  2365. to->secmark = from->secmark;
  2366. }
  2367. static inline void skb_init_secmark(struct sk_buff *skb)
  2368. {
  2369. skb->secmark = 0;
  2370. }
  2371. #else
  2372. static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
  2373. { }
  2374. static inline void skb_init_secmark(struct sk_buff *skb)
  2375. { }
  2376. #endif
  2377. static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
  2378. {
  2379. skb->queue_mapping = queue_mapping;
  2380. }
  2381. static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
  2382. {
  2383. return skb->queue_mapping;
  2384. }
  2385. static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
  2386. {
  2387. to->queue_mapping = from->queue_mapping;
  2388. }
  2389. static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
  2390. {
  2391. skb->queue_mapping = rx_queue + 1;
  2392. }
  2393. static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
  2394. {
  2395. return skb->queue_mapping - 1;
  2396. }
  2397. static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
  2398. {
  2399. return skb->queue_mapping != 0;
  2400. }
  2401. extern u16 __skb_tx_hash(const struct net_device *dev,
  2402. const struct sk_buff *skb,
  2403. unsigned int num_tx_queues);
  2404. #ifdef CONFIG_XFRM
  2405. static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
  2406. {
  2407. return skb->sp;
  2408. }
  2409. #else
  2410. static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
  2411. {
  2412. return NULL;
  2413. }
  2414. #endif
  2415. /* Keeps track of mac header offset relative to skb->head.
  2416. * It is useful for TSO of Tunneling protocol. e.g. GRE.
  2417. * For non-tunnel skb it points to skb_mac_header() and for
  2418. * tunnel skb it points to outer mac header. */
  2419. struct skb_gso_cb {
  2420. int mac_offset;
  2421. };
  2422. #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)(skb)->cb)
  2423. static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
  2424. {
  2425. return (skb_mac_header(inner_skb) - inner_skb->head) -
  2426. SKB_GSO_CB(inner_skb)->mac_offset;
  2427. }
  2428. static inline bool skb_is_gso(const struct sk_buff *skb)
  2429. {
  2430. return skb_shinfo(skb)->gso_size;
  2431. }
  2432. static inline bool skb_is_gso_v6(const struct sk_buff *skb)
  2433. {
  2434. return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
  2435. }
  2436. extern void __skb_warn_lro_forwarding(const struct sk_buff *skb);
  2437. static inline bool skb_warn_if_lro(const struct sk_buff *skb)
  2438. {
  2439. /* LRO sets gso_size but not gso_type, whereas if GSO is really
  2440. * wanted then gso_type will be set. */
  2441. const struct skb_shared_info *shinfo = skb_shinfo(skb);
  2442. if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
  2443. unlikely(shinfo->gso_type == 0)) {
  2444. __skb_warn_lro_forwarding(skb);
  2445. return true;
  2446. }
  2447. return false;
  2448. }
  2449. static inline void skb_forward_csum(struct sk_buff *skb)
  2450. {
  2451. /* Unfortunately we don't support this one. Any brave souls? */
  2452. if (skb->ip_summed == CHECKSUM_COMPLETE)
  2453. skb->ip_summed = CHECKSUM_NONE;
  2454. }
  2455. /**
  2456. * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
  2457. * @skb: skb to check
  2458. *
  2459. * fresh skbs have their ip_summed set to CHECKSUM_NONE.
  2460. * Instead of forcing ip_summed to CHECKSUM_NONE, we can
  2461. * use this helper, to document places where we make this assertion.
  2462. */
  2463. static inline void skb_checksum_none_assert(const struct sk_buff *skb)
  2464. {
  2465. #ifdef DEBUG
  2466. BUG_ON(skb->ip_summed != CHECKSUM_NONE);
  2467. #endif
  2468. }
  2469. bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
  2470. u32 __skb_get_poff(const struct sk_buff *skb);
  2471. /**
  2472. * skb_head_is_locked - Determine if the skb->head is locked down
  2473. * @skb: skb to check
  2474. *
  2475. * The head on skbs build around a head frag can be removed if they are
  2476. * not cloned. This function returns true if the skb head is locked down
  2477. * due to either being allocated via kmalloc, or by being a clone with
  2478. * multiple references to the head.
  2479. */
  2480. static inline bool skb_head_is_locked(const struct sk_buff *skb)
  2481. {
  2482. return !skb->head_frag || skb_cloned(skb);
  2483. }
  2484. #endif /* __KERNEL__ */
  2485. #endif /* _LINUX_SKBUFF_H */