intel_display.c 205 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731
  1. /*
  2. * Copyright © 2006-2007 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
  21. * DEALINGS IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. */
  26. #include <linux/dmi.h>
  27. #include <linux/module.h>
  28. #include <linux/input.h>
  29. #include <linux/i2c.h>
  30. #include <linux/kernel.h>
  31. #include <linux/slab.h>
  32. #include <linux/vgaarb.h>
  33. #include <drm/drm_edid.h>
  34. #include "drmP.h"
  35. #include "intel_drv.h"
  36. #include "i915_drm.h"
  37. #include "i915_drv.h"
  38. #include "i915_trace.h"
  39. #include "drm_dp_helper.h"
  40. #include "drm_crtc_helper.h"
  41. #include <linux/dma_remapping.h>
  42. #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
  43. bool intel_pipe_has_type(struct drm_crtc *crtc, int type);
  44. static void intel_increase_pllclock(struct drm_crtc *crtc);
  45. static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
  46. typedef struct {
  47. /* given values */
  48. int n;
  49. int m1, m2;
  50. int p1, p2;
  51. /* derived values */
  52. int dot;
  53. int vco;
  54. int m;
  55. int p;
  56. } intel_clock_t;
  57. typedef struct {
  58. int min, max;
  59. } intel_range_t;
  60. typedef struct {
  61. int dot_limit;
  62. int p2_slow, p2_fast;
  63. } intel_p2_t;
  64. #define INTEL_P2_NUM 2
  65. typedef struct intel_limit intel_limit_t;
  66. struct intel_limit {
  67. intel_range_t dot, vco, n, m, m1, m2, p, p1;
  68. intel_p2_t p2;
  69. bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
  70. int, int, intel_clock_t *, intel_clock_t *);
  71. };
  72. /* FDI */
  73. #define IRONLAKE_FDI_FREQ 2700000 /* in kHz for mode->clock */
  74. static bool
  75. intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  76. int target, int refclk, intel_clock_t *match_clock,
  77. intel_clock_t *best_clock);
  78. static bool
  79. intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  80. int target, int refclk, intel_clock_t *match_clock,
  81. intel_clock_t *best_clock);
  82. static bool
  83. intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
  84. int target, int refclk, intel_clock_t *match_clock,
  85. intel_clock_t *best_clock);
  86. static bool
  87. intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
  88. int target, int refclk, intel_clock_t *match_clock,
  89. intel_clock_t *best_clock);
  90. static bool
  91. intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
  92. int target, int refclk, intel_clock_t *match_clock,
  93. intel_clock_t *best_clock);
  94. static inline u32 /* units of 100MHz */
  95. intel_fdi_link_freq(struct drm_device *dev)
  96. {
  97. if (IS_GEN5(dev)) {
  98. struct drm_i915_private *dev_priv = dev->dev_private;
  99. return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
  100. } else
  101. return 27;
  102. }
  103. static const intel_limit_t intel_limits_i8xx_dvo = {
  104. .dot = { .min = 25000, .max = 350000 },
  105. .vco = { .min = 930000, .max = 1400000 },
  106. .n = { .min = 3, .max = 16 },
  107. .m = { .min = 96, .max = 140 },
  108. .m1 = { .min = 18, .max = 26 },
  109. .m2 = { .min = 6, .max = 16 },
  110. .p = { .min = 4, .max = 128 },
  111. .p1 = { .min = 2, .max = 33 },
  112. .p2 = { .dot_limit = 165000,
  113. .p2_slow = 4, .p2_fast = 2 },
  114. .find_pll = intel_find_best_PLL,
  115. };
  116. static const intel_limit_t intel_limits_i8xx_lvds = {
  117. .dot = { .min = 25000, .max = 350000 },
  118. .vco = { .min = 930000, .max = 1400000 },
  119. .n = { .min = 3, .max = 16 },
  120. .m = { .min = 96, .max = 140 },
  121. .m1 = { .min = 18, .max = 26 },
  122. .m2 = { .min = 6, .max = 16 },
  123. .p = { .min = 4, .max = 128 },
  124. .p1 = { .min = 1, .max = 6 },
  125. .p2 = { .dot_limit = 165000,
  126. .p2_slow = 14, .p2_fast = 7 },
  127. .find_pll = intel_find_best_PLL,
  128. };
  129. static const intel_limit_t intel_limits_i9xx_sdvo = {
  130. .dot = { .min = 20000, .max = 400000 },
  131. .vco = { .min = 1400000, .max = 2800000 },
  132. .n = { .min = 1, .max = 6 },
  133. .m = { .min = 70, .max = 120 },
  134. .m1 = { .min = 10, .max = 22 },
  135. .m2 = { .min = 5, .max = 9 },
  136. .p = { .min = 5, .max = 80 },
  137. .p1 = { .min = 1, .max = 8 },
  138. .p2 = { .dot_limit = 200000,
  139. .p2_slow = 10, .p2_fast = 5 },
  140. .find_pll = intel_find_best_PLL,
  141. };
  142. static const intel_limit_t intel_limits_i9xx_lvds = {
  143. .dot = { .min = 20000, .max = 400000 },
  144. .vco = { .min = 1400000, .max = 2800000 },
  145. .n = { .min = 1, .max = 6 },
  146. .m = { .min = 70, .max = 120 },
  147. .m1 = { .min = 10, .max = 22 },
  148. .m2 = { .min = 5, .max = 9 },
  149. .p = { .min = 7, .max = 98 },
  150. .p1 = { .min = 1, .max = 8 },
  151. .p2 = { .dot_limit = 112000,
  152. .p2_slow = 14, .p2_fast = 7 },
  153. .find_pll = intel_find_best_PLL,
  154. };
  155. static const intel_limit_t intel_limits_g4x_sdvo = {
  156. .dot = { .min = 25000, .max = 270000 },
  157. .vco = { .min = 1750000, .max = 3500000},
  158. .n = { .min = 1, .max = 4 },
  159. .m = { .min = 104, .max = 138 },
  160. .m1 = { .min = 17, .max = 23 },
  161. .m2 = { .min = 5, .max = 11 },
  162. .p = { .min = 10, .max = 30 },
  163. .p1 = { .min = 1, .max = 3},
  164. .p2 = { .dot_limit = 270000,
  165. .p2_slow = 10,
  166. .p2_fast = 10
  167. },
  168. .find_pll = intel_g4x_find_best_PLL,
  169. };
  170. static const intel_limit_t intel_limits_g4x_hdmi = {
  171. .dot = { .min = 22000, .max = 400000 },
  172. .vco = { .min = 1750000, .max = 3500000},
  173. .n = { .min = 1, .max = 4 },
  174. .m = { .min = 104, .max = 138 },
  175. .m1 = { .min = 16, .max = 23 },
  176. .m2 = { .min = 5, .max = 11 },
  177. .p = { .min = 5, .max = 80 },
  178. .p1 = { .min = 1, .max = 8},
  179. .p2 = { .dot_limit = 165000,
  180. .p2_slow = 10, .p2_fast = 5 },
  181. .find_pll = intel_g4x_find_best_PLL,
  182. };
  183. static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
  184. .dot = { .min = 20000, .max = 115000 },
  185. .vco = { .min = 1750000, .max = 3500000 },
  186. .n = { .min = 1, .max = 3 },
  187. .m = { .min = 104, .max = 138 },
  188. .m1 = { .min = 17, .max = 23 },
  189. .m2 = { .min = 5, .max = 11 },
  190. .p = { .min = 28, .max = 112 },
  191. .p1 = { .min = 2, .max = 8 },
  192. .p2 = { .dot_limit = 0,
  193. .p2_slow = 14, .p2_fast = 14
  194. },
  195. .find_pll = intel_g4x_find_best_PLL,
  196. };
  197. static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
  198. .dot = { .min = 80000, .max = 224000 },
  199. .vco = { .min = 1750000, .max = 3500000 },
  200. .n = { .min = 1, .max = 3 },
  201. .m = { .min = 104, .max = 138 },
  202. .m1 = { .min = 17, .max = 23 },
  203. .m2 = { .min = 5, .max = 11 },
  204. .p = { .min = 14, .max = 42 },
  205. .p1 = { .min = 2, .max = 6 },
  206. .p2 = { .dot_limit = 0,
  207. .p2_slow = 7, .p2_fast = 7
  208. },
  209. .find_pll = intel_g4x_find_best_PLL,
  210. };
  211. static const intel_limit_t intel_limits_g4x_display_port = {
  212. .dot = { .min = 161670, .max = 227000 },
  213. .vco = { .min = 1750000, .max = 3500000},
  214. .n = { .min = 1, .max = 2 },
  215. .m = { .min = 97, .max = 108 },
  216. .m1 = { .min = 0x10, .max = 0x12 },
  217. .m2 = { .min = 0x05, .max = 0x06 },
  218. .p = { .min = 10, .max = 20 },
  219. .p1 = { .min = 1, .max = 2},
  220. .p2 = { .dot_limit = 0,
  221. .p2_slow = 10, .p2_fast = 10 },
  222. .find_pll = intel_find_pll_g4x_dp,
  223. };
  224. static const intel_limit_t intel_limits_pineview_sdvo = {
  225. .dot = { .min = 20000, .max = 400000},
  226. .vco = { .min = 1700000, .max = 3500000 },
  227. /* Pineview's Ncounter is a ring counter */
  228. .n = { .min = 3, .max = 6 },
  229. .m = { .min = 2, .max = 256 },
  230. /* Pineview only has one combined m divider, which we treat as m2. */
  231. .m1 = { .min = 0, .max = 0 },
  232. .m2 = { .min = 0, .max = 254 },
  233. .p = { .min = 5, .max = 80 },
  234. .p1 = { .min = 1, .max = 8 },
  235. .p2 = { .dot_limit = 200000,
  236. .p2_slow = 10, .p2_fast = 5 },
  237. .find_pll = intel_find_best_PLL,
  238. };
  239. static const intel_limit_t intel_limits_pineview_lvds = {
  240. .dot = { .min = 20000, .max = 400000 },
  241. .vco = { .min = 1700000, .max = 3500000 },
  242. .n = { .min = 3, .max = 6 },
  243. .m = { .min = 2, .max = 256 },
  244. .m1 = { .min = 0, .max = 0 },
  245. .m2 = { .min = 0, .max = 254 },
  246. .p = { .min = 7, .max = 112 },
  247. .p1 = { .min = 1, .max = 8 },
  248. .p2 = { .dot_limit = 112000,
  249. .p2_slow = 14, .p2_fast = 14 },
  250. .find_pll = intel_find_best_PLL,
  251. };
  252. /* Ironlake / Sandybridge
  253. *
  254. * We calculate clock using (register_value + 2) for N/M1/M2, so here
  255. * the range value for them is (actual_value - 2).
  256. */
  257. static const intel_limit_t intel_limits_ironlake_dac = {
  258. .dot = { .min = 25000, .max = 350000 },
  259. .vco = { .min = 1760000, .max = 3510000 },
  260. .n = { .min = 1, .max = 5 },
  261. .m = { .min = 79, .max = 127 },
  262. .m1 = { .min = 12, .max = 22 },
  263. .m2 = { .min = 5, .max = 9 },
  264. .p = { .min = 5, .max = 80 },
  265. .p1 = { .min = 1, .max = 8 },
  266. .p2 = { .dot_limit = 225000,
  267. .p2_slow = 10, .p2_fast = 5 },
  268. .find_pll = intel_g4x_find_best_PLL,
  269. };
  270. static const intel_limit_t intel_limits_ironlake_single_lvds = {
  271. .dot = { .min = 25000, .max = 350000 },
  272. .vco = { .min = 1760000, .max = 3510000 },
  273. .n = { .min = 1, .max = 3 },
  274. .m = { .min = 79, .max = 118 },
  275. .m1 = { .min = 12, .max = 22 },
  276. .m2 = { .min = 5, .max = 9 },
  277. .p = { .min = 28, .max = 112 },
  278. .p1 = { .min = 2, .max = 8 },
  279. .p2 = { .dot_limit = 225000,
  280. .p2_slow = 14, .p2_fast = 14 },
  281. .find_pll = intel_g4x_find_best_PLL,
  282. };
  283. static const intel_limit_t intel_limits_ironlake_dual_lvds = {
  284. .dot = { .min = 25000, .max = 350000 },
  285. .vco = { .min = 1760000, .max = 3510000 },
  286. .n = { .min = 1, .max = 3 },
  287. .m = { .min = 79, .max = 127 },
  288. .m1 = { .min = 12, .max = 22 },
  289. .m2 = { .min = 5, .max = 9 },
  290. .p = { .min = 14, .max = 56 },
  291. .p1 = { .min = 2, .max = 8 },
  292. .p2 = { .dot_limit = 225000,
  293. .p2_slow = 7, .p2_fast = 7 },
  294. .find_pll = intel_g4x_find_best_PLL,
  295. };
  296. /* LVDS 100mhz refclk limits. */
  297. static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
  298. .dot = { .min = 25000, .max = 350000 },
  299. .vco = { .min = 1760000, .max = 3510000 },
  300. .n = { .min = 1, .max = 2 },
  301. .m = { .min = 79, .max = 126 },
  302. .m1 = { .min = 12, .max = 22 },
  303. .m2 = { .min = 5, .max = 9 },
  304. .p = { .min = 28, .max = 112 },
  305. .p1 = { .min = 2, .max = 8 },
  306. .p2 = { .dot_limit = 225000,
  307. .p2_slow = 14, .p2_fast = 14 },
  308. .find_pll = intel_g4x_find_best_PLL,
  309. };
  310. static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
  311. .dot = { .min = 25000, .max = 350000 },
  312. .vco = { .min = 1760000, .max = 3510000 },
  313. .n = { .min = 1, .max = 3 },
  314. .m = { .min = 79, .max = 126 },
  315. .m1 = { .min = 12, .max = 22 },
  316. .m2 = { .min = 5, .max = 9 },
  317. .p = { .min = 14, .max = 42 },
  318. .p1 = { .min = 2, .max = 6 },
  319. .p2 = { .dot_limit = 225000,
  320. .p2_slow = 7, .p2_fast = 7 },
  321. .find_pll = intel_g4x_find_best_PLL,
  322. };
  323. static const intel_limit_t intel_limits_ironlake_display_port = {
  324. .dot = { .min = 25000, .max = 350000 },
  325. .vco = { .min = 1760000, .max = 3510000},
  326. .n = { .min = 1, .max = 2 },
  327. .m = { .min = 81, .max = 90 },
  328. .m1 = { .min = 12, .max = 22 },
  329. .m2 = { .min = 5, .max = 9 },
  330. .p = { .min = 10, .max = 20 },
  331. .p1 = { .min = 1, .max = 2},
  332. .p2 = { .dot_limit = 0,
  333. .p2_slow = 10, .p2_fast = 10 },
  334. .find_pll = intel_find_pll_ironlake_dp,
  335. };
  336. static const intel_limit_t intel_limits_vlv_dac = {
  337. .dot = { .min = 25000, .max = 270000 },
  338. .vco = { .min = 4000000, .max = 6000000 },
  339. .n = { .min = 1, .max = 7 },
  340. .m = { .min = 22, .max = 450 }, /* guess */
  341. .m1 = { .min = 2, .max = 3 },
  342. .m2 = { .min = 11, .max = 156 },
  343. .p = { .min = 10, .max = 30 },
  344. .p1 = { .min = 2, .max = 3 },
  345. .p2 = { .dot_limit = 270000,
  346. .p2_slow = 2, .p2_fast = 20 },
  347. .find_pll = intel_vlv_find_best_pll,
  348. };
  349. static const intel_limit_t intel_limits_vlv_hdmi = {
  350. .dot = { .min = 20000, .max = 165000 },
  351. .vco = { .min = 5994000, .max = 4000000 },
  352. .n = { .min = 1, .max = 7 },
  353. .m = { .min = 60, .max = 300 }, /* guess */
  354. .m1 = { .min = 2, .max = 3 },
  355. .m2 = { .min = 11, .max = 156 },
  356. .p = { .min = 10, .max = 30 },
  357. .p1 = { .min = 2, .max = 3 },
  358. .p2 = { .dot_limit = 270000,
  359. .p2_slow = 2, .p2_fast = 20 },
  360. .find_pll = intel_vlv_find_best_pll,
  361. };
  362. static const intel_limit_t intel_limits_vlv_dp = {
  363. .dot = { .min = 162000, .max = 270000 },
  364. .vco = { .min = 5994000, .max = 4000000 },
  365. .n = { .min = 1, .max = 7 },
  366. .m = { .min = 60, .max = 300 }, /* guess */
  367. .m1 = { .min = 2, .max = 3 },
  368. .m2 = { .min = 11, .max = 156 },
  369. .p = { .min = 10, .max = 30 },
  370. .p1 = { .min = 2, .max = 3 },
  371. .p2 = { .dot_limit = 270000,
  372. .p2_slow = 2, .p2_fast = 20 },
  373. .find_pll = intel_vlv_find_best_pll,
  374. };
  375. u32 intel_dpio_read(struct drm_i915_private *dev_priv, int reg)
  376. {
  377. unsigned long flags;
  378. u32 val = 0;
  379. spin_lock_irqsave(&dev_priv->dpio_lock, flags);
  380. if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
  381. DRM_ERROR("DPIO idle wait timed out\n");
  382. goto out_unlock;
  383. }
  384. I915_WRITE(DPIO_REG, reg);
  385. I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_READ | DPIO_PORTID |
  386. DPIO_BYTE);
  387. if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
  388. DRM_ERROR("DPIO read wait timed out\n");
  389. goto out_unlock;
  390. }
  391. val = I915_READ(DPIO_DATA);
  392. out_unlock:
  393. spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
  394. return val;
  395. }
  396. static void intel_dpio_write(struct drm_i915_private *dev_priv, int reg,
  397. u32 val)
  398. {
  399. unsigned long flags;
  400. spin_lock_irqsave(&dev_priv->dpio_lock, flags);
  401. if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100)) {
  402. DRM_ERROR("DPIO idle wait timed out\n");
  403. goto out_unlock;
  404. }
  405. I915_WRITE(DPIO_DATA, val);
  406. I915_WRITE(DPIO_REG, reg);
  407. I915_WRITE(DPIO_PKT, DPIO_RID | DPIO_OP_WRITE | DPIO_PORTID |
  408. DPIO_BYTE);
  409. if (wait_for_atomic_us((I915_READ(DPIO_PKT) & DPIO_BUSY) == 0, 100))
  410. DRM_ERROR("DPIO write wait timed out\n");
  411. out_unlock:
  412. spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
  413. }
  414. static void vlv_init_dpio(struct drm_device *dev)
  415. {
  416. struct drm_i915_private *dev_priv = dev->dev_private;
  417. /* Reset the DPIO config */
  418. I915_WRITE(DPIO_CTL, 0);
  419. POSTING_READ(DPIO_CTL);
  420. I915_WRITE(DPIO_CTL, 1);
  421. POSTING_READ(DPIO_CTL);
  422. }
  423. static int intel_dual_link_lvds_callback(const struct dmi_system_id *id)
  424. {
  425. DRM_INFO("Forcing lvds to dual link mode on %s\n", id->ident);
  426. return 1;
  427. }
  428. static const struct dmi_system_id intel_dual_link_lvds[] = {
  429. {
  430. .callback = intel_dual_link_lvds_callback,
  431. .ident = "Apple MacBook Pro (Core i5/i7 Series)",
  432. .matches = {
  433. DMI_MATCH(DMI_SYS_VENDOR, "Apple Inc."),
  434. DMI_MATCH(DMI_PRODUCT_NAME, "MacBookPro8,2"),
  435. },
  436. },
  437. { } /* terminating entry */
  438. };
  439. static bool is_dual_link_lvds(struct drm_i915_private *dev_priv,
  440. unsigned int reg)
  441. {
  442. unsigned int val;
  443. /* use the module option value if specified */
  444. if (i915_lvds_channel_mode > 0)
  445. return i915_lvds_channel_mode == 2;
  446. if (dmi_check_system(intel_dual_link_lvds))
  447. return true;
  448. if (dev_priv->lvds_val)
  449. val = dev_priv->lvds_val;
  450. else {
  451. /* BIOS should set the proper LVDS register value at boot, but
  452. * in reality, it doesn't set the value when the lid is closed;
  453. * we need to check "the value to be set" in VBT when LVDS
  454. * register is uninitialized.
  455. */
  456. val = I915_READ(reg);
  457. if (!(val & ~(LVDS_PIPE_MASK | LVDS_DETECTED)))
  458. val = dev_priv->bios_lvds_val;
  459. dev_priv->lvds_val = val;
  460. }
  461. return (val & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP;
  462. }
  463. static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc,
  464. int refclk)
  465. {
  466. struct drm_device *dev = crtc->dev;
  467. struct drm_i915_private *dev_priv = dev->dev_private;
  468. const intel_limit_t *limit;
  469. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  470. if (is_dual_link_lvds(dev_priv, PCH_LVDS)) {
  471. /* LVDS dual channel */
  472. if (refclk == 100000)
  473. limit = &intel_limits_ironlake_dual_lvds_100m;
  474. else
  475. limit = &intel_limits_ironlake_dual_lvds;
  476. } else {
  477. if (refclk == 100000)
  478. limit = &intel_limits_ironlake_single_lvds_100m;
  479. else
  480. limit = &intel_limits_ironlake_single_lvds;
  481. }
  482. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
  483. HAS_eDP)
  484. limit = &intel_limits_ironlake_display_port;
  485. else
  486. limit = &intel_limits_ironlake_dac;
  487. return limit;
  488. }
  489. static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
  490. {
  491. struct drm_device *dev = crtc->dev;
  492. struct drm_i915_private *dev_priv = dev->dev_private;
  493. const intel_limit_t *limit;
  494. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  495. if (is_dual_link_lvds(dev_priv, LVDS))
  496. /* LVDS with dual channel */
  497. limit = &intel_limits_g4x_dual_channel_lvds;
  498. else
  499. /* LVDS with dual channel */
  500. limit = &intel_limits_g4x_single_channel_lvds;
  501. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
  502. intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
  503. limit = &intel_limits_g4x_hdmi;
  504. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
  505. limit = &intel_limits_g4x_sdvo;
  506. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
  507. limit = &intel_limits_g4x_display_port;
  508. } else /* The option is for other outputs */
  509. limit = &intel_limits_i9xx_sdvo;
  510. return limit;
  511. }
  512. static const intel_limit_t *intel_limit(struct drm_crtc *crtc, int refclk)
  513. {
  514. struct drm_device *dev = crtc->dev;
  515. const intel_limit_t *limit;
  516. if (HAS_PCH_SPLIT(dev))
  517. limit = intel_ironlake_limit(crtc, refclk);
  518. else if (IS_G4X(dev)) {
  519. limit = intel_g4x_limit(crtc);
  520. } else if (IS_PINEVIEW(dev)) {
  521. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  522. limit = &intel_limits_pineview_lvds;
  523. else
  524. limit = &intel_limits_pineview_sdvo;
  525. } else if (IS_VALLEYVIEW(dev)) {
  526. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG))
  527. limit = &intel_limits_vlv_dac;
  528. else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
  529. limit = &intel_limits_vlv_hdmi;
  530. else
  531. limit = &intel_limits_vlv_dp;
  532. } else if (!IS_GEN2(dev)) {
  533. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  534. limit = &intel_limits_i9xx_lvds;
  535. else
  536. limit = &intel_limits_i9xx_sdvo;
  537. } else {
  538. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  539. limit = &intel_limits_i8xx_lvds;
  540. else
  541. limit = &intel_limits_i8xx_dvo;
  542. }
  543. return limit;
  544. }
  545. /* m1 is reserved as 0 in Pineview, n is a ring counter */
  546. static void pineview_clock(int refclk, intel_clock_t *clock)
  547. {
  548. clock->m = clock->m2 + 2;
  549. clock->p = clock->p1 * clock->p2;
  550. clock->vco = refclk * clock->m / clock->n;
  551. clock->dot = clock->vco / clock->p;
  552. }
  553. static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
  554. {
  555. if (IS_PINEVIEW(dev)) {
  556. pineview_clock(refclk, clock);
  557. return;
  558. }
  559. clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
  560. clock->p = clock->p1 * clock->p2;
  561. clock->vco = refclk * clock->m / (clock->n + 2);
  562. clock->dot = clock->vco / clock->p;
  563. }
  564. /**
  565. * Returns whether any output on the specified pipe is of the specified type
  566. */
  567. bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
  568. {
  569. struct drm_device *dev = crtc->dev;
  570. struct intel_encoder *encoder;
  571. for_each_encoder_on_crtc(dev, crtc, encoder)
  572. if (encoder->type == type)
  573. return true;
  574. return false;
  575. }
  576. #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
  577. /**
  578. * Returns whether the given set of divisors are valid for a given refclk with
  579. * the given connectors.
  580. */
  581. static bool intel_PLL_is_valid(struct drm_device *dev,
  582. const intel_limit_t *limit,
  583. const intel_clock_t *clock)
  584. {
  585. if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
  586. INTELPllInvalid("p1 out of range\n");
  587. if (clock->p < limit->p.min || limit->p.max < clock->p)
  588. INTELPllInvalid("p out of range\n");
  589. if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
  590. INTELPllInvalid("m2 out of range\n");
  591. if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
  592. INTELPllInvalid("m1 out of range\n");
  593. if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
  594. INTELPllInvalid("m1 <= m2\n");
  595. if (clock->m < limit->m.min || limit->m.max < clock->m)
  596. INTELPllInvalid("m out of range\n");
  597. if (clock->n < limit->n.min || limit->n.max < clock->n)
  598. INTELPllInvalid("n out of range\n");
  599. if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
  600. INTELPllInvalid("vco out of range\n");
  601. /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
  602. * connector, etc., rather than just a single range.
  603. */
  604. if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
  605. INTELPllInvalid("dot out of range\n");
  606. return true;
  607. }
  608. static bool
  609. intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  610. int target, int refclk, intel_clock_t *match_clock,
  611. intel_clock_t *best_clock)
  612. {
  613. struct drm_device *dev = crtc->dev;
  614. struct drm_i915_private *dev_priv = dev->dev_private;
  615. intel_clock_t clock;
  616. int err = target;
  617. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
  618. (I915_READ(LVDS)) != 0) {
  619. /*
  620. * For LVDS, if the panel is on, just rely on its current
  621. * settings for dual-channel. We haven't figured out how to
  622. * reliably set up different single/dual channel state, if we
  623. * even can.
  624. */
  625. if (is_dual_link_lvds(dev_priv, LVDS))
  626. clock.p2 = limit->p2.p2_fast;
  627. else
  628. clock.p2 = limit->p2.p2_slow;
  629. } else {
  630. if (target < limit->p2.dot_limit)
  631. clock.p2 = limit->p2.p2_slow;
  632. else
  633. clock.p2 = limit->p2.p2_fast;
  634. }
  635. memset(best_clock, 0, sizeof(*best_clock));
  636. for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
  637. clock.m1++) {
  638. for (clock.m2 = limit->m2.min;
  639. clock.m2 <= limit->m2.max; clock.m2++) {
  640. /* m1 is always 0 in Pineview */
  641. if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
  642. break;
  643. for (clock.n = limit->n.min;
  644. clock.n <= limit->n.max; clock.n++) {
  645. for (clock.p1 = limit->p1.min;
  646. clock.p1 <= limit->p1.max; clock.p1++) {
  647. int this_err;
  648. intel_clock(dev, refclk, &clock);
  649. if (!intel_PLL_is_valid(dev, limit,
  650. &clock))
  651. continue;
  652. if (match_clock &&
  653. clock.p != match_clock->p)
  654. continue;
  655. this_err = abs(clock.dot - target);
  656. if (this_err < err) {
  657. *best_clock = clock;
  658. err = this_err;
  659. }
  660. }
  661. }
  662. }
  663. }
  664. return (err != target);
  665. }
  666. static bool
  667. intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
  668. int target, int refclk, intel_clock_t *match_clock,
  669. intel_clock_t *best_clock)
  670. {
  671. struct drm_device *dev = crtc->dev;
  672. struct drm_i915_private *dev_priv = dev->dev_private;
  673. intel_clock_t clock;
  674. int max_n;
  675. bool found;
  676. /* approximately equals target * 0.00585 */
  677. int err_most = (target >> 8) + (target >> 9);
  678. found = false;
  679. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  680. int lvds_reg;
  681. if (HAS_PCH_SPLIT(dev))
  682. lvds_reg = PCH_LVDS;
  683. else
  684. lvds_reg = LVDS;
  685. if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
  686. LVDS_CLKB_POWER_UP)
  687. clock.p2 = limit->p2.p2_fast;
  688. else
  689. clock.p2 = limit->p2.p2_slow;
  690. } else {
  691. if (target < limit->p2.dot_limit)
  692. clock.p2 = limit->p2.p2_slow;
  693. else
  694. clock.p2 = limit->p2.p2_fast;
  695. }
  696. memset(best_clock, 0, sizeof(*best_clock));
  697. max_n = limit->n.max;
  698. /* based on hardware requirement, prefer smaller n to precision */
  699. for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
  700. /* based on hardware requirement, prefere larger m1,m2 */
  701. for (clock.m1 = limit->m1.max;
  702. clock.m1 >= limit->m1.min; clock.m1--) {
  703. for (clock.m2 = limit->m2.max;
  704. clock.m2 >= limit->m2.min; clock.m2--) {
  705. for (clock.p1 = limit->p1.max;
  706. clock.p1 >= limit->p1.min; clock.p1--) {
  707. int this_err;
  708. intel_clock(dev, refclk, &clock);
  709. if (!intel_PLL_is_valid(dev, limit,
  710. &clock))
  711. continue;
  712. if (match_clock &&
  713. clock.p != match_clock->p)
  714. continue;
  715. this_err = abs(clock.dot - target);
  716. if (this_err < err_most) {
  717. *best_clock = clock;
  718. err_most = this_err;
  719. max_n = clock.n;
  720. found = true;
  721. }
  722. }
  723. }
  724. }
  725. }
  726. return found;
  727. }
  728. static bool
  729. intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
  730. int target, int refclk, intel_clock_t *match_clock,
  731. intel_clock_t *best_clock)
  732. {
  733. struct drm_device *dev = crtc->dev;
  734. intel_clock_t clock;
  735. if (target < 200000) {
  736. clock.n = 1;
  737. clock.p1 = 2;
  738. clock.p2 = 10;
  739. clock.m1 = 12;
  740. clock.m2 = 9;
  741. } else {
  742. clock.n = 2;
  743. clock.p1 = 1;
  744. clock.p2 = 10;
  745. clock.m1 = 14;
  746. clock.m2 = 8;
  747. }
  748. intel_clock(dev, refclk, &clock);
  749. memcpy(best_clock, &clock, sizeof(intel_clock_t));
  750. return true;
  751. }
  752. /* DisplayPort has only two frequencies, 162MHz and 270MHz */
  753. static bool
  754. intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
  755. int target, int refclk, intel_clock_t *match_clock,
  756. intel_clock_t *best_clock)
  757. {
  758. intel_clock_t clock;
  759. if (target < 200000) {
  760. clock.p1 = 2;
  761. clock.p2 = 10;
  762. clock.n = 2;
  763. clock.m1 = 23;
  764. clock.m2 = 8;
  765. } else {
  766. clock.p1 = 1;
  767. clock.p2 = 10;
  768. clock.n = 1;
  769. clock.m1 = 14;
  770. clock.m2 = 2;
  771. }
  772. clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
  773. clock.p = (clock.p1 * clock.p2);
  774. clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
  775. clock.vco = 0;
  776. memcpy(best_clock, &clock, sizeof(intel_clock_t));
  777. return true;
  778. }
  779. static bool
  780. intel_vlv_find_best_pll(const intel_limit_t *limit, struct drm_crtc *crtc,
  781. int target, int refclk, intel_clock_t *match_clock,
  782. intel_clock_t *best_clock)
  783. {
  784. u32 p1, p2, m1, m2, vco, bestn, bestm1, bestm2, bestp1, bestp2;
  785. u32 m, n, fastclk;
  786. u32 updrate, minupdate, fracbits, p;
  787. unsigned long bestppm, ppm, absppm;
  788. int dotclk, flag;
  789. flag = 0;
  790. dotclk = target * 1000;
  791. bestppm = 1000000;
  792. ppm = absppm = 0;
  793. fastclk = dotclk / (2*100);
  794. updrate = 0;
  795. minupdate = 19200;
  796. fracbits = 1;
  797. n = p = p1 = p2 = m = m1 = m2 = vco = bestn = 0;
  798. bestm1 = bestm2 = bestp1 = bestp2 = 0;
  799. /* based on hardware requirement, prefer smaller n to precision */
  800. for (n = limit->n.min; n <= ((refclk) / minupdate); n++) {
  801. updrate = refclk / n;
  802. for (p1 = limit->p1.max; p1 > limit->p1.min; p1--) {
  803. for (p2 = limit->p2.p2_fast+1; p2 > 0; p2--) {
  804. if (p2 > 10)
  805. p2 = p2 - 1;
  806. p = p1 * p2;
  807. /* based on hardware requirement, prefer bigger m1,m2 values */
  808. for (m1 = limit->m1.min; m1 <= limit->m1.max; m1++) {
  809. m2 = (((2*(fastclk * p * n / m1 )) +
  810. refclk) / (2*refclk));
  811. m = m1 * m2;
  812. vco = updrate * m;
  813. if (vco >= limit->vco.min && vco < limit->vco.max) {
  814. ppm = 1000000 * ((vco / p) - fastclk) / fastclk;
  815. absppm = (ppm > 0) ? ppm : (-ppm);
  816. if (absppm < 100 && ((p1 * p2) > (bestp1 * bestp2))) {
  817. bestppm = 0;
  818. flag = 1;
  819. }
  820. if (absppm < bestppm - 10) {
  821. bestppm = absppm;
  822. flag = 1;
  823. }
  824. if (flag) {
  825. bestn = n;
  826. bestm1 = m1;
  827. bestm2 = m2;
  828. bestp1 = p1;
  829. bestp2 = p2;
  830. flag = 0;
  831. }
  832. }
  833. }
  834. }
  835. }
  836. }
  837. best_clock->n = bestn;
  838. best_clock->m1 = bestm1;
  839. best_clock->m2 = bestm2;
  840. best_clock->p1 = bestp1;
  841. best_clock->p2 = bestp2;
  842. return true;
  843. }
  844. static void ironlake_wait_for_vblank(struct drm_device *dev, int pipe)
  845. {
  846. struct drm_i915_private *dev_priv = dev->dev_private;
  847. u32 frame, frame_reg = PIPEFRAME(pipe);
  848. frame = I915_READ(frame_reg);
  849. if (wait_for(I915_READ_NOTRACE(frame_reg) != frame, 50))
  850. DRM_DEBUG_KMS("vblank wait timed out\n");
  851. }
  852. /**
  853. * intel_wait_for_vblank - wait for vblank on a given pipe
  854. * @dev: drm device
  855. * @pipe: pipe to wait for
  856. *
  857. * Wait for vblank to occur on a given pipe. Needed for various bits of
  858. * mode setting code.
  859. */
  860. void intel_wait_for_vblank(struct drm_device *dev, int pipe)
  861. {
  862. struct drm_i915_private *dev_priv = dev->dev_private;
  863. int pipestat_reg = PIPESTAT(pipe);
  864. if (INTEL_INFO(dev)->gen >= 5) {
  865. ironlake_wait_for_vblank(dev, pipe);
  866. return;
  867. }
  868. /* Clear existing vblank status. Note this will clear any other
  869. * sticky status fields as well.
  870. *
  871. * This races with i915_driver_irq_handler() with the result
  872. * that either function could miss a vblank event. Here it is not
  873. * fatal, as we will either wait upon the next vblank interrupt or
  874. * timeout. Generally speaking intel_wait_for_vblank() is only
  875. * called during modeset at which time the GPU should be idle and
  876. * should *not* be performing page flips and thus not waiting on
  877. * vblanks...
  878. * Currently, the result of us stealing a vblank from the irq
  879. * handler is that a single frame will be skipped during swapbuffers.
  880. */
  881. I915_WRITE(pipestat_reg,
  882. I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
  883. /* Wait for vblank interrupt bit to set */
  884. if (wait_for(I915_READ(pipestat_reg) &
  885. PIPE_VBLANK_INTERRUPT_STATUS,
  886. 50))
  887. DRM_DEBUG_KMS("vblank wait timed out\n");
  888. }
  889. /*
  890. * intel_wait_for_pipe_off - wait for pipe to turn off
  891. * @dev: drm device
  892. * @pipe: pipe to wait for
  893. *
  894. * After disabling a pipe, we can't wait for vblank in the usual way,
  895. * spinning on the vblank interrupt status bit, since we won't actually
  896. * see an interrupt when the pipe is disabled.
  897. *
  898. * On Gen4 and above:
  899. * wait for the pipe register state bit to turn off
  900. *
  901. * Otherwise:
  902. * wait for the display line value to settle (it usually
  903. * ends up stopping at the start of the next frame).
  904. *
  905. */
  906. void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
  907. {
  908. struct drm_i915_private *dev_priv = dev->dev_private;
  909. if (INTEL_INFO(dev)->gen >= 4) {
  910. int reg = PIPECONF(pipe);
  911. /* Wait for the Pipe State to go off */
  912. if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
  913. 100))
  914. DRM_DEBUG_KMS("pipe_off wait timed out\n");
  915. } else {
  916. u32 last_line, line_mask;
  917. int reg = PIPEDSL(pipe);
  918. unsigned long timeout = jiffies + msecs_to_jiffies(100);
  919. if (IS_GEN2(dev))
  920. line_mask = DSL_LINEMASK_GEN2;
  921. else
  922. line_mask = DSL_LINEMASK_GEN3;
  923. /* Wait for the display line to settle */
  924. do {
  925. last_line = I915_READ(reg) & line_mask;
  926. mdelay(5);
  927. } while (((I915_READ(reg) & line_mask) != last_line) &&
  928. time_after(timeout, jiffies));
  929. if (time_after(jiffies, timeout))
  930. DRM_DEBUG_KMS("pipe_off wait timed out\n");
  931. }
  932. }
  933. static const char *state_string(bool enabled)
  934. {
  935. return enabled ? "on" : "off";
  936. }
  937. /* Only for pre-ILK configs */
  938. static void assert_pll(struct drm_i915_private *dev_priv,
  939. enum pipe pipe, bool state)
  940. {
  941. int reg;
  942. u32 val;
  943. bool cur_state;
  944. reg = DPLL(pipe);
  945. val = I915_READ(reg);
  946. cur_state = !!(val & DPLL_VCO_ENABLE);
  947. WARN(cur_state != state,
  948. "PLL state assertion failure (expected %s, current %s)\n",
  949. state_string(state), state_string(cur_state));
  950. }
  951. #define assert_pll_enabled(d, p) assert_pll(d, p, true)
  952. #define assert_pll_disabled(d, p) assert_pll(d, p, false)
  953. /* For ILK+ */
  954. static void assert_pch_pll(struct drm_i915_private *dev_priv,
  955. struct intel_pch_pll *pll,
  956. struct intel_crtc *crtc,
  957. bool state)
  958. {
  959. u32 val;
  960. bool cur_state;
  961. if (HAS_PCH_LPT(dev_priv->dev)) {
  962. DRM_DEBUG_DRIVER("LPT detected: skipping PCH PLL test\n");
  963. return;
  964. }
  965. if (WARN (!pll,
  966. "asserting PCH PLL %s with no PLL\n", state_string(state)))
  967. return;
  968. val = I915_READ(pll->pll_reg);
  969. cur_state = !!(val & DPLL_VCO_ENABLE);
  970. WARN(cur_state != state,
  971. "PCH PLL state for reg %x assertion failure (expected %s, current %s), val=%08x\n",
  972. pll->pll_reg, state_string(state), state_string(cur_state), val);
  973. /* Make sure the selected PLL is correctly attached to the transcoder */
  974. if (crtc && HAS_PCH_CPT(dev_priv->dev)) {
  975. u32 pch_dpll;
  976. pch_dpll = I915_READ(PCH_DPLL_SEL);
  977. cur_state = pll->pll_reg == _PCH_DPLL_B;
  978. if (!WARN(((pch_dpll >> (4 * crtc->pipe)) & 1) != cur_state,
  979. "PLL[%d] not attached to this transcoder %d: %08x\n",
  980. cur_state, crtc->pipe, pch_dpll)) {
  981. cur_state = !!(val >> (4*crtc->pipe + 3));
  982. WARN(cur_state != state,
  983. "PLL[%d] not %s on this transcoder %d: %08x\n",
  984. pll->pll_reg == _PCH_DPLL_B,
  985. state_string(state),
  986. crtc->pipe,
  987. val);
  988. }
  989. }
  990. }
  991. #define assert_pch_pll_enabled(d, p, c) assert_pch_pll(d, p, c, true)
  992. #define assert_pch_pll_disabled(d, p, c) assert_pch_pll(d, p, c, false)
  993. static void assert_fdi_tx(struct drm_i915_private *dev_priv,
  994. enum pipe pipe, bool state)
  995. {
  996. int reg;
  997. u32 val;
  998. bool cur_state;
  999. if (IS_HASWELL(dev_priv->dev)) {
  1000. /* On Haswell, DDI is used instead of FDI_TX_CTL */
  1001. reg = DDI_FUNC_CTL(pipe);
  1002. val = I915_READ(reg);
  1003. cur_state = !!(val & PIPE_DDI_FUNC_ENABLE);
  1004. } else {
  1005. reg = FDI_TX_CTL(pipe);
  1006. val = I915_READ(reg);
  1007. cur_state = !!(val & FDI_TX_ENABLE);
  1008. }
  1009. WARN(cur_state != state,
  1010. "FDI TX state assertion failure (expected %s, current %s)\n",
  1011. state_string(state), state_string(cur_state));
  1012. }
  1013. #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
  1014. #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
  1015. static void assert_fdi_rx(struct drm_i915_private *dev_priv,
  1016. enum pipe pipe, bool state)
  1017. {
  1018. int reg;
  1019. u32 val;
  1020. bool cur_state;
  1021. if (IS_HASWELL(dev_priv->dev) && pipe > 0) {
  1022. DRM_ERROR("Attempting to enable FDI_RX on Haswell pipe > 0\n");
  1023. return;
  1024. } else {
  1025. reg = FDI_RX_CTL(pipe);
  1026. val = I915_READ(reg);
  1027. cur_state = !!(val & FDI_RX_ENABLE);
  1028. }
  1029. WARN(cur_state != state,
  1030. "FDI RX state assertion failure (expected %s, current %s)\n",
  1031. state_string(state), state_string(cur_state));
  1032. }
  1033. #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
  1034. #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
  1035. static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
  1036. enum pipe pipe)
  1037. {
  1038. int reg;
  1039. u32 val;
  1040. /* ILK FDI PLL is always enabled */
  1041. if (dev_priv->info->gen == 5)
  1042. return;
  1043. /* On Haswell, DDI ports are responsible for the FDI PLL setup */
  1044. if (IS_HASWELL(dev_priv->dev))
  1045. return;
  1046. reg = FDI_TX_CTL(pipe);
  1047. val = I915_READ(reg);
  1048. WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
  1049. }
  1050. static void assert_fdi_rx_pll_enabled(struct drm_i915_private *dev_priv,
  1051. enum pipe pipe)
  1052. {
  1053. int reg;
  1054. u32 val;
  1055. if (IS_HASWELL(dev_priv->dev) && pipe > 0) {
  1056. DRM_ERROR("Attempting to enable FDI on Haswell with pipe > 0\n");
  1057. return;
  1058. }
  1059. reg = FDI_RX_CTL(pipe);
  1060. val = I915_READ(reg);
  1061. WARN(!(val & FDI_RX_PLL_ENABLE), "FDI RX PLL assertion failure, should be active but is disabled\n");
  1062. }
  1063. static void assert_panel_unlocked(struct drm_i915_private *dev_priv,
  1064. enum pipe pipe)
  1065. {
  1066. int pp_reg, lvds_reg;
  1067. u32 val;
  1068. enum pipe panel_pipe = PIPE_A;
  1069. bool locked = true;
  1070. if (HAS_PCH_SPLIT(dev_priv->dev)) {
  1071. pp_reg = PCH_PP_CONTROL;
  1072. lvds_reg = PCH_LVDS;
  1073. } else {
  1074. pp_reg = PP_CONTROL;
  1075. lvds_reg = LVDS;
  1076. }
  1077. val = I915_READ(pp_reg);
  1078. if (!(val & PANEL_POWER_ON) ||
  1079. ((val & PANEL_UNLOCK_REGS) == PANEL_UNLOCK_REGS))
  1080. locked = false;
  1081. if (I915_READ(lvds_reg) & LVDS_PIPEB_SELECT)
  1082. panel_pipe = PIPE_B;
  1083. WARN(panel_pipe == pipe && locked,
  1084. "panel assertion failure, pipe %c regs locked\n",
  1085. pipe_name(pipe));
  1086. }
  1087. void assert_pipe(struct drm_i915_private *dev_priv,
  1088. enum pipe pipe, bool state)
  1089. {
  1090. int reg;
  1091. u32 val;
  1092. bool cur_state;
  1093. /* if we need the pipe A quirk it must be always on */
  1094. if (pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE)
  1095. state = true;
  1096. reg = PIPECONF(pipe);
  1097. val = I915_READ(reg);
  1098. cur_state = !!(val & PIPECONF_ENABLE);
  1099. WARN(cur_state != state,
  1100. "pipe %c assertion failure (expected %s, current %s)\n",
  1101. pipe_name(pipe), state_string(state), state_string(cur_state));
  1102. }
  1103. static void assert_plane(struct drm_i915_private *dev_priv,
  1104. enum plane plane, bool state)
  1105. {
  1106. int reg;
  1107. u32 val;
  1108. bool cur_state;
  1109. reg = DSPCNTR(plane);
  1110. val = I915_READ(reg);
  1111. cur_state = !!(val & DISPLAY_PLANE_ENABLE);
  1112. WARN(cur_state != state,
  1113. "plane %c assertion failure (expected %s, current %s)\n",
  1114. plane_name(plane), state_string(state), state_string(cur_state));
  1115. }
  1116. #define assert_plane_enabled(d, p) assert_plane(d, p, true)
  1117. #define assert_plane_disabled(d, p) assert_plane(d, p, false)
  1118. static void assert_planes_disabled(struct drm_i915_private *dev_priv,
  1119. enum pipe pipe)
  1120. {
  1121. int reg, i;
  1122. u32 val;
  1123. int cur_pipe;
  1124. /* Planes are fixed to pipes on ILK+ */
  1125. if (HAS_PCH_SPLIT(dev_priv->dev)) {
  1126. reg = DSPCNTR(pipe);
  1127. val = I915_READ(reg);
  1128. WARN((val & DISPLAY_PLANE_ENABLE),
  1129. "plane %c assertion failure, should be disabled but not\n",
  1130. plane_name(pipe));
  1131. return;
  1132. }
  1133. /* Need to check both planes against the pipe */
  1134. for (i = 0; i < 2; i++) {
  1135. reg = DSPCNTR(i);
  1136. val = I915_READ(reg);
  1137. cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
  1138. DISPPLANE_SEL_PIPE_SHIFT;
  1139. WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
  1140. "plane %c assertion failure, should be off on pipe %c but is still active\n",
  1141. plane_name(i), pipe_name(pipe));
  1142. }
  1143. }
  1144. static void assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
  1145. {
  1146. u32 val;
  1147. bool enabled;
  1148. if (HAS_PCH_LPT(dev_priv->dev)) {
  1149. DRM_DEBUG_DRIVER("LPT does not has PCH refclk, skipping check\n");
  1150. return;
  1151. }
  1152. val = I915_READ(PCH_DREF_CONTROL);
  1153. enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
  1154. DREF_SUPERSPREAD_SOURCE_MASK));
  1155. WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
  1156. }
  1157. static void assert_transcoder_disabled(struct drm_i915_private *dev_priv,
  1158. enum pipe pipe)
  1159. {
  1160. int reg;
  1161. u32 val;
  1162. bool enabled;
  1163. reg = TRANSCONF(pipe);
  1164. val = I915_READ(reg);
  1165. enabled = !!(val & TRANS_ENABLE);
  1166. WARN(enabled,
  1167. "transcoder assertion failed, should be off on pipe %c but is still active\n",
  1168. pipe_name(pipe));
  1169. }
  1170. static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
  1171. enum pipe pipe, u32 port_sel, u32 val)
  1172. {
  1173. if ((val & DP_PORT_EN) == 0)
  1174. return false;
  1175. if (HAS_PCH_CPT(dev_priv->dev)) {
  1176. u32 trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
  1177. u32 trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
  1178. if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
  1179. return false;
  1180. } else {
  1181. if ((val & DP_PIPE_MASK) != (pipe << 30))
  1182. return false;
  1183. }
  1184. return true;
  1185. }
  1186. static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
  1187. enum pipe pipe, u32 val)
  1188. {
  1189. if ((val & PORT_ENABLE) == 0)
  1190. return false;
  1191. if (HAS_PCH_CPT(dev_priv->dev)) {
  1192. if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
  1193. return false;
  1194. } else {
  1195. if ((val & TRANSCODER_MASK) != TRANSCODER(pipe))
  1196. return false;
  1197. }
  1198. return true;
  1199. }
  1200. static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
  1201. enum pipe pipe, u32 val)
  1202. {
  1203. if ((val & LVDS_PORT_EN) == 0)
  1204. return false;
  1205. if (HAS_PCH_CPT(dev_priv->dev)) {
  1206. if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
  1207. return false;
  1208. } else {
  1209. if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
  1210. return false;
  1211. }
  1212. return true;
  1213. }
  1214. static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
  1215. enum pipe pipe, u32 val)
  1216. {
  1217. if ((val & ADPA_DAC_ENABLE) == 0)
  1218. return false;
  1219. if (HAS_PCH_CPT(dev_priv->dev)) {
  1220. if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
  1221. return false;
  1222. } else {
  1223. if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
  1224. return false;
  1225. }
  1226. return true;
  1227. }
  1228. static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
  1229. enum pipe pipe, int reg, u32 port_sel)
  1230. {
  1231. u32 val = I915_READ(reg);
  1232. WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
  1233. "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
  1234. reg, pipe_name(pipe));
  1235. WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_PIPE_B_SELECT),
  1236. "IBX PCH dp port still using transcoder B\n");
  1237. }
  1238. static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
  1239. enum pipe pipe, int reg)
  1240. {
  1241. u32 val = I915_READ(reg);
  1242. WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
  1243. "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
  1244. reg, pipe_name(pipe));
  1245. WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_PIPE_B_SELECT),
  1246. "IBX PCH hdmi port still using transcoder B\n");
  1247. }
  1248. static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
  1249. enum pipe pipe)
  1250. {
  1251. int reg;
  1252. u32 val;
  1253. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
  1254. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
  1255. assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
  1256. reg = PCH_ADPA;
  1257. val = I915_READ(reg);
  1258. WARN(adpa_pipe_enabled(dev_priv, pipe, val),
  1259. "PCH VGA enabled on transcoder %c, should be disabled\n",
  1260. pipe_name(pipe));
  1261. reg = PCH_LVDS;
  1262. val = I915_READ(reg);
  1263. WARN(lvds_pipe_enabled(dev_priv, pipe, val),
  1264. "PCH LVDS enabled on transcoder %c, should be disabled\n",
  1265. pipe_name(pipe));
  1266. assert_pch_hdmi_disabled(dev_priv, pipe, HDMIB);
  1267. assert_pch_hdmi_disabled(dev_priv, pipe, HDMIC);
  1268. assert_pch_hdmi_disabled(dev_priv, pipe, HDMID);
  1269. }
  1270. /**
  1271. * intel_enable_pll - enable a PLL
  1272. * @dev_priv: i915 private structure
  1273. * @pipe: pipe PLL to enable
  1274. *
  1275. * Enable @pipe's PLL so we can start pumping pixels from a plane. Check to
  1276. * make sure the PLL reg is writable first though, since the panel write
  1277. * protect mechanism may be enabled.
  1278. *
  1279. * Note! This is for pre-ILK only.
  1280. *
  1281. * Unfortunately needed by dvo_ns2501 since the dvo depends on it running.
  1282. */
  1283. static void intel_enable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
  1284. {
  1285. int reg;
  1286. u32 val;
  1287. /* No really, not for ILK+ */
  1288. BUG_ON(!IS_VALLEYVIEW(dev_priv->dev) && dev_priv->info->gen >= 5);
  1289. /* PLL is protected by panel, make sure we can write it */
  1290. if (IS_MOBILE(dev_priv->dev) && !IS_I830(dev_priv->dev))
  1291. assert_panel_unlocked(dev_priv, pipe);
  1292. reg = DPLL(pipe);
  1293. val = I915_READ(reg);
  1294. val |= DPLL_VCO_ENABLE;
  1295. /* We do this three times for luck */
  1296. I915_WRITE(reg, val);
  1297. POSTING_READ(reg);
  1298. udelay(150); /* wait for warmup */
  1299. I915_WRITE(reg, val);
  1300. POSTING_READ(reg);
  1301. udelay(150); /* wait for warmup */
  1302. I915_WRITE(reg, val);
  1303. POSTING_READ(reg);
  1304. udelay(150); /* wait for warmup */
  1305. }
  1306. /**
  1307. * intel_disable_pll - disable a PLL
  1308. * @dev_priv: i915 private structure
  1309. * @pipe: pipe PLL to disable
  1310. *
  1311. * Disable the PLL for @pipe, making sure the pipe is off first.
  1312. *
  1313. * Note! This is for pre-ILK only.
  1314. */
  1315. static void intel_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
  1316. {
  1317. int reg;
  1318. u32 val;
  1319. /* Don't disable pipe A or pipe A PLLs if needed */
  1320. if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
  1321. return;
  1322. /* Make sure the pipe isn't still relying on us */
  1323. assert_pipe_disabled(dev_priv, pipe);
  1324. reg = DPLL(pipe);
  1325. val = I915_READ(reg);
  1326. val &= ~DPLL_VCO_ENABLE;
  1327. I915_WRITE(reg, val);
  1328. POSTING_READ(reg);
  1329. }
  1330. /* SBI access */
  1331. static void
  1332. intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value)
  1333. {
  1334. unsigned long flags;
  1335. spin_lock_irqsave(&dev_priv->dpio_lock, flags);
  1336. if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
  1337. 100)) {
  1338. DRM_ERROR("timeout waiting for SBI to become ready\n");
  1339. goto out_unlock;
  1340. }
  1341. I915_WRITE(SBI_ADDR,
  1342. (reg << 16));
  1343. I915_WRITE(SBI_DATA,
  1344. value);
  1345. I915_WRITE(SBI_CTL_STAT,
  1346. SBI_BUSY |
  1347. SBI_CTL_OP_CRWR);
  1348. if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
  1349. 100)) {
  1350. DRM_ERROR("timeout waiting for SBI to complete write transaction\n");
  1351. goto out_unlock;
  1352. }
  1353. out_unlock:
  1354. spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
  1355. }
  1356. static u32
  1357. intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg)
  1358. {
  1359. unsigned long flags;
  1360. u32 value = 0;
  1361. spin_lock_irqsave(&dev_priv->dpio_lock, flags);
  1362. if (wait_for((I915_READ(SBI_CTL_STAT) & SBI_BUSY) == 0,
  1363. 100)) {
  1364. DRM_ERROR("timeout waiting for SBI to become ready\n");
  1365. goto out_unlock;
  1366. }
  1367. I915_WRITE(SBI_ADDR,
  1368. (reg << 16));
  1369. I915_WRITE(SBI_CTL_STAT,
  1370. SBI_BUSY |
  1371. SBI_CTL_OP_CRRD);
  1372. if (wait_for((I915_READ(SBI_CTL_STAT) & (SBI_BUSY | SBI_RESPONSE_FAIL)) == 0,
  1373. 100)) {
  1374. DRM_ERROR("timeout waiting for SBI to complete read transaction\n");
  1375. goto out_unlock;
  1376. }
  1377. value = I915_READ(SBI_DATA);
  1378. out_unlock:
  1379. spin_unlock_irqrestore(&dev_priv->dpio_lock, flags);
  1380. return value;
  1381. }
  1382. /**
  1383. * intel_enable_pch_pll - enable PCH PLL
  1384. * @dev_priv: i915 private structure
  1385. * @pipe: pipe PLL to enable
  1386. *
  1387. * The PCH PLL needs to be enabled before the PCH transcoder, since it
  1388. * drives the transcoder clock.
  1389. */
  1390. static void intel_enable_pch_pll(struct intel_crtc *intel_crtc)
  1391. {
  1392. struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
  1393. struct intel_pch_pll *pll;
  1394. int reg;
  1395. u32 val;
  1396. /* PCH PLLs only available on ILK, SNB and IVB */
  1397. BUG_ON(dev_priv->info->gen < 5);
  1398. pll = intel_crtc->pch_pll;
  1399. if (pll == NULL)
  1400. return;
  1401. if (WARN_ON(pll->refcount == 0))
  1402. return;
  1403. DRM_DEBUG_KMS("enable PCH PLL %x (active %d, on? %d)for crtc %d\n",
  1404. pll->pll_reg, pll->active, pll->on,
  1405. intel_crtc->base.base.id);
  1406. /* PCH refclock must be enabled first */
  1407. assert_pch_refclk_enabled(dev_priv);
  1408. if (pll->active++ && pll->on) {
  1409. assert_pch_pll_enabled(dev_priv, pll, NULL);
  1410. return;
  1411. }
  1412. DRM_DEBUG_KMS("enabling PCH PLL %x\n", pll->pll_reg);
  1413. reg = pll->pll_reg;
  1414. val = I915_READ(reg);
  1415. val |= DPLL_VCO_ENABLE;
  1416. I915_WRITE(reg, val);
  1417. POSTING_READ(reg);
  1418. udelay(200);
  1419. pll->on = true;
  1420. }
  1421. static void intel_disable_pch_pll(struct intel_crtc *intel_crtc)
  1422. {
  1423. struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
  1424. struct intel_pch_pll *pll = intel_crtc->pch_pll;
  1425. int reg;
  1426. u32 val;
  1427. /* PCH only available on ILK+ */
  1428. BUG_ON(dev_priv->info->gen < 5);
  1429. if (pll == NULL)
  1430. return;
  1431. if (WARN_ON(pll->refcount == 0))
  1432. return;
  1433. DRM_DEBUG_KMS("disable PCH PLL %x (active %d, on? %d) for crtc %d\n",
  1434. pll->pll_reg, pll->active, pll->on,
  1435. intel_crtc->base.base.id);
  1436. if (WARN_ON(pll->active == 0)) {
  1437. assert_pch_pll_disabled(dev_priv, pll, NULL);
  1438. return;
  1439. }
  1440. if (--pll->active) {
  1441. assert_pch_pll_enabled(dev_priv, pll, NULL);
  1442. return;
  1443. }
  1444. DRM_DEBUG_KMS("disabling PCH PLL %x\n", pll->pll_reg);
  1445. /* Make sure transcoder isn't still depending on us */
  1446. assert_transcoder_disabled(dev_priv, intel_crtc->pipe);
  1447. reg = pll->pll_reg;
  1448. val = I915_READ(reg);
  1449. val &= ~DPLL_VCO_ENABLE;
  1450. I915_WRITE(reg, val);
  1451. POSTING_READ(reg);
  1452. udelay(200);
  1453. pll->on = false;
  1454. }
  1455. static void intel_enable_transcoder(struct drm_i915_private *dev_priv,
  1456. enum pipe pipe)
  1457. {
  1458. int reg;
  1459. u32 val, pipeconf_val;
  1460. struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  1461. /* PCH only available on ILK+ */
  1462. BUG_ON(dev_priv->info->gen < 5);
  1463. /* Make sure PCH DPLL is enabled */
  1464. assert_pch_pll_enabled(dev_priv,
  1465. to_intel_crtc(crtc)->pch_pll,
  1466. to_intel_crtc(crtc));
  1467. /* FDI must be feeding us bits for PCH ports */
  1468. assert_fdi_tx_enabled(dev_priv, pipe);
  1469. assert_fdi_rx_enabled(dev_priv, pipe);
  1470. if (IS_HASWELL(dev_priv->dev) && pipe > 0) {
  1471. DRM_ERROR("Attempting to enable transcoder on Haswell with pipe > 0\n");
  1472. return;
  1473. }
  1474. reg = TRANSCONF(pipe);
  1475. val = I915_READ(reg);
  1476. pipeconf_val = I915_READ(PIPECONF(pipe));
  1477. if (HAS_PCH_IBX(dev_priv->dev)) {
  1478. /*
  1479. * make the BPC in transcoder be consistent with
  1480. * that in pipeconf reg.
  1481. */
  1482. val &= ~PIPE_BPC_MASK;
  1483. val |= pipeconf_val & PIPE_BPC_MASK;
  1484. }
  1485. val &= ~TRANS_INTERLACE_MASK;
  1486. if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
  1487. if (HAS_PCH_IBX(dev_priv->dev) &&
  1488. intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO))
  1489. val |= TRANS_LEGACY_INTERLACED_ILK;
  1490. else
  1491. val |= TRANS_INTERLACED;
  1492. else
  1493. val |= TRANS_PROGRESSIVE;
  1494. I915_WRITE(reg, val | TRANS_ENABLE);
  1495. if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
  1496. DRM_ERROR("failed to enable transcoder %d\n", pipe);
  1497. }
  1498. static void intel_disable_transcoder(struct drm_i915_private *dev_priv,
  1499. enum pipe pipe)
  1500. {
  1501. int reg;
  1502. u32 val;
  1503. /* FDI relies on the transcoder */
  1504. assert_fdi_tx_disabled(dev_priv, pipe);
  1505. assert_fdi_rx_disabled(dev_priv, pipe);
  1506. /* Ports must be off as well */
  1507. assert_pch_ports_disabled(dev_priv, pipe);
  1508. reg = TRANSCONF(pipe);
  1509. val = I915_READ(reg);
  1510. val &= ~TRANS_ENABLE;
  1511. I915_WRITE(reg, val);
  1512. /* wait for PCH transcoder off, transcoder state */
  1513. if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
  1514. DRM_ERROR("failed to disable transcoder %d\n", pipe);
  1515. }
  1516. /**
  1517. * intel_enable_pipe - enable a pipe, asserting requirements
  1518. * @dev_priv: i915 private structure
  1519. * @pipe: pipe to enable
  1520. * @pch_port: on ILK+, is this pipe driving a PCH port or not
  1521. *
  1522. * Enable @pipe, making sure that various hardware specific requirements
  1523. * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
  1524. *
  1525. * @pipe should be %PIPE_A or %PIPE_B.
  1526. *
  1527. * Will wait until the pipe is actually running (i.e. first vblank) before
  1528. * returning.
  1529. */
  1530. static void intel_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe,
  1531. bool pch_port)
  1532. {
  1533. int reg;
  1534. u32 val;
  1535. /*
  1536. * A pipe without a PLL won't actually be able to drive bits from
  1537. * a plane. On ILK+ the pipe PLLs are integrated, so we don't
  1538. * need the check.
  1539. */
  1540. if (!HAS_PCH_SPLIT(dev_priv->dev))
  1541. assert_pll_enabled(dev_priv, pipe);
  1542. else {
  1543. if (pch_port) {
  1544. /* if driving the PCH, we need FDI enabled */
  1545. assert_fdi_rx_pll_enabled(dev_priv, pipe);
  1546. assert_fdi_tx_pll_enabled(dev_priv, pipe);
  1547. }
  1548. /* FIXME: assert CPU port conditions for SNB+ */
  1549. }
  1550. reg = PIPECONF(pipe);
  1551. val = I915_READ(reg);
  1552. if (val & PIPECONF_ENABLE)
  1553. return;
  1554. I915_WRITE(reg, val | PIPECONF_ENABLE);
  1555. intel_wait_for_vblank(dev_priv->dev, pipe);
  1556. }
  1557. /**
  1558. * intel_disable_pipe - disable a pipe, asserting requirements
  1559. * @dev_priv: i915 private structure
  1560. * @pipe: pipe to disable
  1561. *
  1562. * Disable @pipe, making sure that various hardware specific requirements
  1563. * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
  1564. *
  1565. * @pipe should be %PIPE_A or %PIPE_B.
  1566. *
  1567. * Will wait until the pipe has shut down before returning.
  1568. */
  1569. static void intel_disable_pipe(struct drm_i915_private *dev_priv,
  1570. enum pipe pipe)
  1571. {
  1572. int reg;
  1573. u32 val;
  1574. /*
  1575. * Make sure planes won't keep trying to pump pixels to us,
  1576. * or we might hang the display.
  1577. */
  1578. assert_planes_disabled(dev_priv, pipe);
  1579. /* Don't disable pipe A or pipe A PLLs if needed */
  1580. if (pipe == PIPE_A && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
  1581. return;
  1582. reg = PIPECONF(pipe);
  1583. val = I915_READ(reg);
  1584. if ((val & PIPECONF_ENABLE) == 0)
  1585. return;
  1586. I915_WRITE(reg, val & ~PIPECONF_ENABLE);
  1587. intel_wait_for_pipe_off(dev_priv->dev, pipe);
  1588. }
  1589. /*
  1590. * Plane regs are double buffered, going from enabled->disabled needs a
  1591. * trigger in order to latch. The display address reg provides this.
  1592. */
  1593. void intel_flush_display_plane(struct drm_i915_private *dev_priv,
  1594. enum plane plane)
  1595. {
  1596. I915_WRITE(DSPADDR(plane), I915_READ(DSPADDR(plane)));
  1597. I915_WRITE(DSPSURF(plane), I915_READ(DSPSURF(plane)));
  1598. }
  1599. /**
  1600. * intel_enable_plane - enable a display plane on a given pipe
  1601. * @dev_priv: i915 private structure
  1602. * @plane: plane to enable
  1603. * @pipe: pipe being fed
  1604. *
  1605. * Enable @plane on @pipe, making sure that @pipe is running first.
  1606. */
  1607. static void intel_enable_plane(struct drm_i915_private *dev_priv,
  1608. enum plane plane, enum pipe pipe)
  1609. {
  1610. int reg;
  1611. u32 val;
  1612. /* If the pipe isn't enabled, we can't pump pixels and may hang */
  1613. assert_pipe_enabled(dev_priv, pipe);
  1614. reg = DSPCNTR(plane);
  1615. val = I915_READ(reg);
  1616. if (val & DISPLAY_PLANE_ENABLE)
  1617. return;
  1618. I915_WRITE(reg, val | DISPLAY_PLANE_ENABLE);
  1619. intel_flush_display_plane(dev_priv, plane);
  1620. intel_wait_for_vblank(dev_priv->dev, pipe);
  1621. }
  1622. /**
  1623. * intel_disable_plane - disable a display plane
  1624. * @dev_priv: i915 private structure
  1625. * @plane: plane to disable
  1626. * @pipe: pipe consuming the data
  1627. *
  1628. * Disable @plane; should be an independent operation.
  1629. */
  1630. static void intel_disable_plane(struct drm_i915_private *dev_priv,
  1631. enum plane plane, enum pipe pipe)
  1632. {
  1633. int reg;
  1634. u32 val;
  1635. reg = DSPCNTR(plane);
  1636. val = I915_READ(reg);
  1637. if ((val & DISPLAY_PLANE_ENABLE) == 0)
  1638. return;
  1639. I915_WRITE(reg, val & ~DISPLAY_PLANE_ENABLE);
  1640. intel_flush_display_plane(dev_priv, plane);
  1641. intel_wait_for_vblank(dev_priv->dev, pipe);
  1642. }
  1643. static void disable_pch_dp(struct drm_i915_private *dev_priv,
  1644. enum pipe pipe, int reg, u32 port_sel)
  1645. {
  1646. u32 val = I915_READ(reg);
  1647. if (dp_pipe_enabled(dev_priv, pipe, port_sel, val)) {
  1648. DRM_DEBUG_KMS("Disabling pch dp %x on pipe %d\n", reg, pipe);
  1649. I915_WRITE(reg, val & ~DP_PORT_EN);
  1650. }
  1651. }
  1652. static void disable_pch_hdmi(struct drm_i915_private *dev_priv,
  1653. enum pipe pipe, int reg)
  1654. {
  1655. u32 val = I915_READ(reg);
  1656. if (hdmi_pipe_enabled(dev_priv, pipe, val)) {
  1657. DRM_DEBUG_KMS("Disabling pch HDMI %x on pipe %d\n",
  1658. reg, pipe);
  1659. I915_WRITE(reg, val & ~PORT_ENABLE);
  1660. }
  1661. }
  1662. /* Disable any ports connected to this transcoder */
  1663. static void intel_disable_pch_ports(struct drm_i915_private *dev_priv,
  1664. enum pipe pipe)
  1665. {
  1666. u32 reg, val;
  1667. val = I915_READ(PCH_PP_CONTROL);
  1668. I915_WRITE(PCH_PP_CONTROL, val | PANEL_UNLOCK_REGS);
  1669. disable_pch_dp(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
  1670. disable_pch_dp(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
  1671. disable_pch_dp(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
  1672. reg = PCH_ADPA;
  1673. val = I915_READ(reg);
  1674. if (adpa_pipe_enabled(dev_priv, pipe, val))
  1675. I915_WRITE(reg, val & ~ADPA_DAC_ENABLE);
  1676. reg = PCH_LVDS;
  1677. val = I915_READ(reg);
  1678. if (lvds_pipe_enabled(dev_priv, pipe, val)) {
  1679. DRM_DEBUG_KMS("disable lvds on pipe %d val 0x%08x\n", pipe, val);
  1680. I915_WRITE(reg, val & ~LVDS_PORT_EN);
  1681. POSTING_READ(reg);
  1682. udelay(100);
  1683. }
  1684. disable_pch_hdmi(dev_priv, pipe, HDMIB);
  1685. disable_pch_hdmi(dev_priv, pipe, HDMIC);
  1686. disable_pch_hdmi(dev_priv, pipe, HDMID);
  1687. }
  1688. int
  1689. intel_pin_and_fence_fb_obj(struct drm_device *dev,
  1690. struct drm_i915_gem_object *obj,
  1691. struct intel_ring_buffer *pipelined)
  1692. {
  1693. struct drm_i915_private *dev_priv = dev->dev_private;
  1694. u32 alignment;
  1695. int ret;
  1696. switch (obj->tiling_mode) {
  1697. case I915_TILING_NONE:
  1698. if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
  1699. alignment = 128 * 1024;
  1700. else if (INTEL_INFO(dev)->gen >= 4)
  1701. alignment = 4 * 1024;
  1702. else
  1703. alignment = 64 * 1024;
  1704. break;
  1705. case I915_TILING_X:
  1706. /* pin() will align the object as required by fence */
  1707. alignment = 0;
  1708. break;
  1709. case I915_TILING_Y:
  1710. /* FIXME: Is this true? */
  1711. DRM_ERROR("Y tiled not allowed for scan out buffers\n");
  1712. return -EINVAL;
  1713. default:
  1714. BUG();
  1715. }
  1716. dev_priv->mm.interruptible = false;
  1717. ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined);
  1718. if (ret)
  1719. goto err_interruptible;
  1720. /* Install a fence for tiled scan-out. Pre-i965 always needs a
  1721. * fence, whereas 965+ only requires a fence if using
  1722. * framebuffer compression. For simplicity, we always install
  1723. * a fence as the cost is not that onerous.
  1724. */
  1725. ret = i915_gem_object_get_fence(obj);
  1726. if (ret)
  1727. goto err_unpin;
  1728. i915_gem_object_pin_fence(obj);
  1729. dev_priv->mm.interruptible = true;
  1730. return 0;
  1731. err_unpin:
  1732. i915_gem_object_unpin(obj);
  1733. err_interruptible:
  1734. dev_priv->mm.interruptible = true;
  1735. return ret;
  1736. }
  1737. void intel_unpin_fb_obj(struct drm_i915_gem_object *obj)
  1738. {
  1739. i915_gem_object_unpin_fence(obj);
  1740. i915_gem_object_unpin(obj);
  1741. }
  1742. /* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
  1743. * is assumed to be a power-of-two. */
  1744. static unsigned long gen4_compute_dspaddr_offset_xtiled(int *x, int *y,
  1745. unsigned int bpp,
  1746. unsigned int pitch)
  1747. {
  1748. int tile_rows, tiles;
  1749. tile_rows = *y / 8;
  1750. *y %= 8;
  1751. tiles = *x / (512/bpp);
  1752. *x %= 512/bpp;
  1753. return tile_rows * pitch * 8 + tiles * 4096;
  1754. }
  1755. static int i9xx_update_plane(struct drm_crtc *crtc, struct drm_framebuffer *fb,
  1756. int x, int y)
  1757. {
  1758. struct drm_device *dev = crtc->dev;
  1759. struct drm_i915_private *dev_priv = dev->dev_private;
  1760. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1761. struct intel_framebuffer *intel_fb;
  1762. struct drm_i915_gem_object *obj;
  1763. int plane = intel_crtc->plane;
  1764. unsigned long linear_offset;
  1765. u32 dspcntr;
  1766. u32 reg;
  1767. switch (plane) {
  1768. case 0:
  1769. case 1:
  1770. break;
  1771. default:
  1772. DRM_ERROR("Can't update plane %d in SAREA\n", plane);
  1773. return -EINVAL;
  1774. }
  1775. intel_fb = to_intel_framebuffer(fb);
  1776. obj = intel_fb->obj;
  1777. reg = DSPCNTR(plane);
  1778. dspcntr = I915_READ(reg);
  1779. /* Mask out pixel format bits in case we change it */
  1780. dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
  1781. switch (fb->bits_per_pixel) {
  1782. case 8:
  1783. dspcntr |= DISPPLANE_8BPP;
  1784. break;
  1785. case 16:
  1786. if (fb->depth == 15)
  1787. dspcntr |= DISPPLANE_15_16BPP;
  1788. else
  1789. dspcntr |= DISPPLANE_16BPP;
  1790. break;
  1791. case 24:
  1792. case 32:
  1793. dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
  1794. break;
  1795. default:
  1796. DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
  1797. return -EINVAL;
  1798. }
  1799. if (INTEL_INFO(dev)->gen >= 4) {
  1800. if (obj->tiling_mode != I915_TILING_NONE)
  1801. dspcntr |= DISPPLANE_TILED;
  1802. else
  1803. dspcntr &= ~DISPPLANE_TILED;
  1804. }
  1805. I915_WRITE(reg, dspcntr);
  1806. linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
  1807. if (INTEL_INFO(dev)->gen >= 4) {
  1808. intel_crtc->dspaddr_offset =
  1809. gen4_compute_dspaddr_offset_xtiled(&x, &y,
  1810. fb->bits_per_pixel / 8,
  1811. fb->pitches[0]);
  1812. linear_offset -= intel_crtc->dspaddr_offset;
  1813. } else {
  1814. intel_crtc->dspaddr_offset = linear_offset;
  1815. }
  1816. DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
  1817. obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
  1818. I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
  1819. if (INTEL_INFO(dev)->gen >= 4) {
  1820. I915_MODIFY_DISPBASE(DSPSURF(plane),
  1821. obj->gtt_offset + intel_crtc->dspaddr_offset);
  1822. I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
  1823. I915_WRITE(DSPLINOFF(plane), linear_offset);
  1824. } else
  1825. I915_WRITE(DSPADDR(plane), obj->gtt_offset + linear_offset);
  1826. POSTING_READ(reg);
  1827. return 0;
  1828. }
  1829. static int ironlake_update_plane(struct drm_crtc *crtc,
  1830. struct drm_framebuffer *fb, int x, int y)
  1831. {
  1832. struct drm_device *dev = crtc->dev;
  1833. struct drm_i915_private *dev_priv = dev->dev_private;
  1834. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1835. struct intel_framebuffer *intel_fb;
  1836. struct drm_i915_gem_object *obj;
  1837. int plane = intel_crtc->plane;
  1838. unsigned long linear_offset;
  1839. u32 dspcntr;
  1840. u32 reg;
  1841. switch (plane) {
  1842. case 0:
  1843. case 1:
  1844. case 2:
  1845. break;
  1846. default:
  1847. DRM_ERROR("Can't update plane %d in SAREA\n", plane);
  1848. return -EINVAL;
  1849. }
  1850. intel_fb = to_intel_framebuffer(fb);
  1851. obj = intel_fb->obj;
  1852. reg = DSPCNTR(plane);
  1853. dspcntr = I915_READ(reg);
  1854. /* Mask out pixel format bits in case we change it */
  1855. dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
  1856. switch (fb->bits_per_pixel) {
  1857. case 8:
  1858. dspcntr |= DISPPLANE_8BPP;
  1859. break;
  1860. case 16:
  1861. if (fb->depth != 16)
  1862. return -EINVAL;
  1863. dspcntr |= DISPPLANE_16BPP;
  1864. break;
  1865. case 24:
  1866. case 32:
  1867. if (fb->depth == 24)
  1868. dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
  1869. else if (fb->depth == 30)
  1870. dspcntr |= DISPPLANE_32BPP_30BIT_NO_ALPHA;
  1871. else
  1872. return -EINVAL;
  1873. break;
  1874. default:
  1875. DRM_ERROR("Unknown color depth %d\n", fb->bits_per_pixel);
  1876. return -EINVAL;
  1877. }
  1878. if (obj->tiling_mode != I915_TILING_NONE)
  1879. dspcntr |= DISPPLANE_TILED;
  1880. else
  1881. dspcntr &= ~DISPPLANE_TILED;
  1882. /* must disable */
  1883. dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
  1884. I915_WRITE(reg, dspcntr);
  1885. linear_offset = y * fb->pitches[0] + x * (fb->bits_per_pixel / 8);
  1886. intel_crtc->dspaddr_offset =
  1887. gen4_compute_dspaddr_offset_xtiled(&x, &y,
  1888. fb->bits_per_pixel / 8,
  1889. fb->pitches[0]);
  1890. linear_offset -= intel_crtc->dspaddr_offset;
  1891. DRM_DEBUG_KMS("Writing base %08X %08lX %d %d %d\n",
  1892. obj->gtt_offset, linear_offset, x, y, fb->pitches[0]);
  1893. I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
  1894. I915_MODIFY_DISPBASE(DSPSURF(plane),
  1895. obj->gtt_offset + intel_crtc->dspaddr_offset);
  1896. I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
  1897. I915_WRITE(DSPLINOFF(plane), linear_offset);
  1898. POSTING_READ(reg);
  1899. return 0;
  1900. }
  1901. /* Assume fb object is pinned & idle & fenced and just update base pointers */
  1902. static int
  1903. intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
  1904. int x, int y, enum mode_set_atomic state)
  1905. {
  1906. struct drm_device *dev = crtc->dev;
  1907. struct drm_i915_private *dev_priv = dev->dev_private;
  1908. if (dev_priv->display.disable_fbc)
  1909. dev_priv->display.disable_fbc(dev);
  1910. intel_increase_pllclock(crtc);
  1911. return dev_priv->display.update_plane(crtc, fb, x, y);
  1912. }
  1913. static int
  1914. intel_finish_fb(struct drm_framebuffer *old_fb)
  1915. {
  1916. struct drm_i915_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
  1917. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  1918. bool was_interruptible = dev_priv->mm.interruptible;
  1919. int ret;
  1920. wait_event(dev_priv->pending_flip_queue,
  1921. atomic_read(&dev_priv->mm.wedged) ||
  1922. atomic_read(&obj->pending_flip) == 0);
  1923. /* Big Hammer, we also need to ensure that any pending
  1924. * MI_WAIT_FOR_EVENT inside a user batch buffer on the
  1925. * current scanout is retired before unpinning the old
  1926. * framebuffer.
  1927. *
  1928. * This should only fail upon a hung GPU, in which case we
  1929. * can safely continue.
  1930. */
  1931. dev_priv->mm.interruptible = false;
  1932. ret = i915_gem_object_finish_gpu(obj);
  1933. dev_priv->mm.interruptible = was_interruptible;
  1934. return ret;
  1935. }
  1936. static int
  1937. intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
  1938. struct drm_framebuffer *old_fb)
  1939. {
  1940. struct drm_device *dev = crtc->dev;
  1941. struct drm_i915_private *dev_priv = dev->dev_private;
  1942. struct drm_i915_master_private *master_priv;
  1943. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  1944. int ret;
  1945. /* no fb bound */
  1946. if (!crtc->fb) {
  1947. DRM_ERROR("No FB bound\n");
  1948. return 0;
  1949. }
  1950. if(intel_crtc->plane > dev_priv->num_pipe) {
  1951. DRM_ERROR("no plane for crtc: plane %d, num_pipes %d\n",
  1952. intel_crtc->plane,
  1953. dev_priv->num_pipe);
  1954. return -EINVAL;
  1955. }
  1956. mutex_lock(&dev->struct_mutex);
  1957. ret = intel_pin_and_fence_fb_obj(dev,
  1958. to_intel_framebuffer(crtc->fb)->obj,
  1959. NULL);
  1960. if (ret != 0) {
  1961. mutex_unlock(&dev->struct_mutex);
  1962. DRM_ERROR("pin & fence failed\n");
  1963. return ret;
  1964. }
  1965. if (old_fb)
  1966. intel_finish_fb(old_fb);
  1967. ret = dev_priv->display.update_plane(crtc, crtc->fb, x, y);
  1968. if (ret) {
  1969. intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
  1970. mutex_unlock(&dev->struct_mutex);
  1971. DRM_ERROR("failed to update base address\n");
  1972. return ret;
  1973. }
  1974. if (old_fb) {
  1975. intel_wait_for_vblank(dev, intel_crtc->pipe);
  1976. intel_unpin_fb_obj(to_intel_framebuffer(old_fb)->obj);
  1977. }
  1978. intel_update_fbc(dev);
  1979. mutex_unlock(&dev->struct_mutex);
  1980. if (!dev->primary->master)
  1981. return 0;
  1982. master_priv = dev->primary->master->driver_priv;
  1983. if (!master_priv->sarea_priv)
  1984. return 0;
  1985. if (intel_crtc->pipe) {
  1986. master_priv->sarea_priv->pipeB_x = x;
  1987. master_priv->sarea_priv->pipeB_y = y;
  1988. } else {
  1989. master_priv->sarea_priv->pipeA_x = x;
  1990. master_priv->sarea_priv->pipeA_y = y;
  1991. }
  1992. return 0;
  1993. }
  1994. static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
  1995. {
  1996. struct drm_device *dev = crtc->dev;
  1997. struct drm_i915_private *dev_priv = dev->dev_private;
  1998. u32 dpa_ctl;
  1999. DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
  2000. dpa_ctl = I915_READ(DP_A);
  2001. dpa_ctl &= ~DP_PLL_FREQ_MASK;
  2002. if (clock < 200000) {
  2003. u32 temp;
  2004. dpa_ctl |= DP_PLL_FREQ_160MHZ;
  2005. /* workaround for 160Mhz:
  2006. 1) program 0x4600c bits 15:0 = 0x8124
  2007. 2) program 0x46010 bit 0 = 1
  2008. 3) program 0x46034 bit 24 = 1
  2009. 4) program 0x64000 bit 14 = 1
  2010. */
  2011. temp = I915_READ(0x4600c);
  2012. temp &= 0xffff0000;
  2013. I915_WRITE(0x4600c, temp | 0x8124);
  2014. temp = I915_READ(0x46010);
  2015. I915_WRITE(0x46010, temp | 1);
  2016. temp = I915_READ(0x46034);
  2017. I915_WRITE(0x46034, temp | (1 << 24));
  2018. } else {
  2019. dpa_ctl |= DP_PLL_FREQ_270MHZ;
  2020. }
  2021. I915_WRITE(DP_A, dpa_ctl);
  2022. POSTING_READ(DP_A);
  2023. udelay(500);
  2024. }
  2025. static void intel_fdi_normal_train(struct drm_crtc *crtc)
  2026. {
  2027. struct drm_device *dev = crtc->dev;
  2028. struct drm_i915_private *dev_priv = dev->dev_private;
  2029. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2030. int pipe = intel_crtc->pipe;
  2031. u32 reg, temp;
  2032. /* enable normal train */
  2033. reg = FDI_TX_CTL(pipe);
  2034. temp = I915_READ(reg);
  2035. if (IS_IVYBRIDGE(dev)) {
  2036. temp &= ~FDI_LINK_TRAIN_NONE_IVB;
  2037. temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
  2038. } else {
  2039. temp &= ~FDI_LINK_TRAIN_NONE;
  2040. temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
  2041. }
  2042. I915_WRITE(reg, temp);
  2043. reg = FDI_RX_CTL(pipe);
  2044. temp = I915_READ(reg);
  2045. if (HAS_PCH_CPT(dev)) {
  2046. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2047. temp |= FDI_LINK_TRAIN_NORMAL_CPT;
  2048. } else {
  2049. temp &= ~FDI_LINK_TRAIN_NONE;
  2050. temp |= FDI_LINK_TRAIN_NONE;
  2051. }
  2052. I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
  2053. /* wait one idle pattern time */
  2054. POSTING_READ(reg);
  2055. udelay(1000);
  2056. /* IVB wants error correction enabled */
  2057. if (IS_IVYBRIDGE(dev))
  2058. I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
  2059. FDI_FE_ERRC_ENABLE);
  2060. }
  2061. static void cpt_phase_pointer_enable(struct drm_device *dev, int pipe)
  2062. {
  2063. struct drm_i915_private *dev_priv = dev->dev_private;
  2064. u32 flags = I915_READ(SOUTH_CHICKEN1);
  2065. flags |= FDI_PHASE_SYNC_OVR(pipe);
  2066. I915_WRITE(SOUTH_CHICKEN1, flags); /* once to unlock... */
  2067. flags |= FDI_PHASE_SYNC_EN(pipe);
  2068. I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to enable */
  2069. POSTING_READ(SOUTH_CHICKEN1);
  2070. }
  2071. /* The FDI link training functions for ILK/Ibexpeak. */
  2072. static void ironlake_fdi_link_train(struct drm_crtc *crtc)
  2073. {
  2074. struct drm_device *dev = crtc->dev;
  2075. struct drm_i915_private *dev_priv = dev->dev_private;
  2076. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2077. int pipe = intel_crtc->pipe;
  2078. int plane = intel_crtc->plane;
  2079. u32 reg, temp, tries;
  2080. /* FDI needs bits from pipe & plane first */
  2081. assert_pipe_enabled(dev_priv, pipe);
  2082. assert_plane_enabled(dev_priv, plane);
  2083. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2084. for train result */
  2085. reg = FDI_RX_IMR(pipe);
  2086. temp = I915_READ(reg);
  2087. temp &= ~FDI_RX_SYMBOL_LOCK;
  2088. temp &= ~FDI_RX_BIT_LOCK;
  2089. I915_WRITE(reg, temp);
  2090. I915_READ(reg);
  2091. udelay(150);
  2092. /* enable CPU FDI TX and PCH FDI RX */
  2093. reg = FDI_TX_CTL(pipe);
  2094. temp = I915_READ(reg);
  2095. temp &= ~(7 << 19);
  2096. temp |= (intel_crtc->fdi_lanes - 1) << 19;
  2097. temp &= ~FDI_LINK_TRAIN_NONE;
  2098. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2099. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2100. reg = FDI_RX_CTL(pipe);
  2101. temp = I915_READ(reg);
  2102. temp &= ~FDI_LINK_TRAIN_NONE;
  2103. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2104. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2105. POSTING_READ(reg);
  2106. udelay(150);
  2107. /* Ironlake workaround, enable clock pointer after FDI enable*/
  2108. if (HAS_PCH_IBX(dev)) {
  2109. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
  2110. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
  2111. FDI_RX_PHASE_SYNC_POINTER_EN);
  2112. }
  2113. reg = FDI_RX_IIR(pipe);
  2114. for (tries = 0; tries < 5; tries++) {
  2115. temp = I915_READ(reg);
  2116. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2117. if ((temp & FDI_RX_BIT_LOCK)) {
  2118. DRM_DEBUG_KMS("FDI train 1 done.\n");
  2119. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2120. break;
  2121. }
  2122. }
  2123. if (tries == 5)
  2124. DRM_ERROR("FDI train 1 fail!\n");
  2125. /* Train 2 */
  2126. reg = FDI_TX_CTL(pipe);
  2127. temp = I915_READ(reg);
  2128. temp &= ~FDI_LINK_TRAIN_NONE;
  2129. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2130. I915_WRITE(reg, temp);
  2131. reg = FDI_RX_CTL(pipe);
  2132. temp = I915_READ(reg);
  2133. temp &= ~FDI_LINK_TRAIN_NONE;
  2134. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2135. I915_WRITE(reg, temp);
  2136. POSTING_READ(reg);
  2137. udelay(150);
  2138. reg = FDI_RX_IIR(pipe);
  2139. for (tries = 0; tries < 5; tries++) {
  2140. temp = I915_READ(reg);
  2141. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2142. if (temp & FDI_RX_SYMBOL_LOCK) {
  2143. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2144. DRM_DEBUG_KMS("FDI train 2 done.\n");
  2145. break;
  2146. }
  2147. }
  2148. if (tries == 5)
  2149. DRM_ERROR("FDI train 2 fail!\n");
  2150. DRM_DEBUG_KMS("FDI train done\n");
  2151. }
  2152. static const int snb_b_fdi_train_param[] = {
  2153. FDI_LINK_TRAIN_400MV_0DB_SNB_B,
  2154. FDI_LINK_TRAIN_400MV_6DB_SNB_B,
  2155. FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
  2156. FDI_LINK_TRAIN_800MV_0DB_SNB_B,
  2157. };
  2158. /* The FDI link training functions for SNB/Cougarpoint. */
  2159. static void gen6_fdi_link_train(struct drm_crtc *crtc)
  2160. {
  2161. struct drm_device *dev = crtc->dev;
  2162. struct drm_i915_private *dev_priv = dev->dev_private;
  2163. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2164. int pipe = intel_crtc->pipe;
  2165. u32 reg, temp, i, retry;
  2166. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2167. for train result */
  2168. reg = FDI_RX_IMR(pipe);
  2169. temp = I915_READ(reg);
  2170. temp &= ~FDI_RX_SYMBOL_LOCK;
  2171. temp &= ~FDI_RX_BIT_LOCK;
  2172. I915_WRITE(reg, temp);
  2173. POSTING_READ(reg);
  2174. udelay(150);
  2175. /* enable CPU FDI TX and PCH FDI RX */
  2176. reg = FDI_TX_CTL(pipe);
  2177. temp = I915_READ(reg);
  2178. temp &= ~(7 << 19);
  2179. temp |= (intel_crtc->fdi_lanes - 1) << 19;
  2180. temp &= ~FDI_LINK_TRAIN_NONE;
  2181. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2182. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2183. /* SNB-B */
  2184. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2185. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2186. reg = FDI_RX_CTL(pipe);
  2187. temp = I915_READ(reg);
  2188. if (HAS_PCH_CPT(dev)) {
  2189. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2190. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2191. } else {
  2192. temp &= ~FDI_LINK_TRAIN_NONE;
  2193. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2194. }
  2195. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2196. POSTING_READ(reg);
  2197. udelay(150);
  2198. if (HAS_PCH_CPT(dev))
  2199. cpt_phase_pointer_enable(dev, pipe);
  2200. for (i = 0; i < 4; i++) {
  2201. reg = FDI_TX_CTL(pipe);
  2202. temp = I915_READ(reg);
  2203. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2204. temp |= snb_b_fdi_train_param[i];
  2205. I915_WRITE(reg, temp);
  2206. POSTING_READ(reg);
  2207. udelay(500);
  2208. for (retry = 0; retry < 5; retry++) {
  2209. reg = FDI_RX_IIR(pipe);
  2210. temp = I915_READ(reg);
  2211. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2212. if (temp & FDI_RX_BIT_LOCK) {
  2213. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2214. DRM_DEBUG_KMS("FDI train 1 done.\n");
  2215. break;
  2216. }
  2217. udelay(50);
  2218. }
  2219. if (retry < 5)
  2220. break;
  2221. }
  2222. if (i == 4)
  2223. DRM_ERROR("FDI train 1 fail!\n");
  2224. /* Train 2 */
  2225. reg = FDI_TX_CTL(pipe);
  2226. temp = I915_READ(reg);
  2227. temp &= ~FDI_LINK_TRAIN_NONE;
  2228. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2229. if (IS_GEN6(dev)) {
  2230. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2231. /* SNB-B */
  2232. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2233. }
  2234. I915_WRITE(reg, temp);
  2235. reg = FDI_RX_CTL(pipe);
  2236. temp = I915_READ(reg);
  2237. if (HAS_PCH_CPT(dev)) {
  2238. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2239. temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
  2240. } else {
  2241. temp &= ~FDI_LINK_TRAIN_NONE;
  2242. temp |= FDI_LINK_TRAIN_PATTERN_2;
  2243. }
  2244. I915_WRITE(reg, temp);
  2245. POSTING_READ(reg);
  2246. udelay(150);
  2247. for (i = 0; i < 4; i++) {
  2248. reg = FDI_TX_CTL(pipe);
  2249. temp = I915_READ(reg);
  2250. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2251. temp |= snb_b_fdi_train_param[i];
  2252. I915_WRITE(reg, temp);
  2253. POSTING_READ(reg);
  2254. udelay(500);
  2255. for (retry = 0; retry < 5; retry++) {
  2256. reg = FDI_RX_IIR(pipe);
  2257. temp = I915_READ(reg);
  2258. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2259. if (temp & FDI_RX_SYMBOL_LOCK) {
  2260. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2261. DRM_DEBUG_KMS("FDI train 2 done.\n");
  2262. break;
  2263. }
  2264. udelay(50);
  2265. }
  2266. if (retry < 5)
  2267. break;
  2268. }
  2269. if (i == 4)
  2270. DRM_ERROR("FDI train 2 fail!\n");
  2271. DRM_DEBUG_KMS("FDI train done.\n");
  2272. }
  2273. /* Manual link training for Ivy Bridge A0 parts */
  2274. static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
  2275. {
  2276. struct drm_device *dev = crtc->dev;
  2277. struct drm_i915_private *dev_priv = dev->dev_private;
  2278. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2279. int pipe = intel_crtc->pipe;
  2280. u32 reg, temp, i;
  2281. /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
  2282. for train result */
  2283. reg = FDI_RX_IMR(pipe);
  2284. temp = I915_READ(reg);
  2285. temp &= ~FDI_RX_SYMBOL_LOCK;
  2286. temp &= ~FDI_RX_BIT_LOCK;
  2287. I915_WRITE(reg, temp);
  2288. POSTING_READ(reg);
  2289. udelay(150);
  2290. /* enable CPU FDI TX and PCH FDI RX */
  2291. reg = FDI_TX_CTL(pipe);
  2292. temp = I915_READ(reg);
  2293. temp &= ~(7 << 19);
  2294. temp |= (intel_crtc->fdi_lanes - 1) << 19;
  2295. temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
  2296. temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
  2297. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2298. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2299. temp |= FDI_COMPOSITE_SYNC;
  2300. I915_WRITE(reg, temp | FDI_TX_ENABLE);
  2301. reg = FDI_RX_CTL(pipe);
  2302. temp = I915_READ(reg);
  2303. temp &= ~FDI_LINK_TRAIN_AUTO;
  2304. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2305. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2306. temp |= FDI_COMPOSITE_SYNC;
  2307. I915_WRITE(reg, temp | FDI_RX_ENABLE);
  2308. POSTING_READ(reg);
  2309. udelay(150);
  2310. if (HAS_PCH_CPT(dev))
  2311. cpt_phase_pointer_enable(dev, pipe);
  2312. for (i = 0; i < 4; i++) {
  2313. reg = FDI_TX_CTL(pipe);
  2314. temp = I915_READ(reg);
  2315. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2316. temp |= snb_b_fdi_train_param[i];
  2317. I915_WRITE(reg, temp);
  2318. POSTING_READ(reg);
  2319. udelay(500);
  2320. reg = FDI_RX_IIR(pipe);
  2321. temp = I915_READ(reg);
  2322. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2323. if (temp & FDI_RX_BIT_LOCK ||
  2324. (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
  2325. I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
  2326. DRM_DEBUG_KMS("FDI train 1 done.\n");
  2327. break;
  2328. }
  2329. }
  2330. if (i == 4)
  2331. DRM_ERROR("FDI train 1 fail!\n");
  2332. /* Train 2 */
  2333. reg = FDI_TX_CTL(pipe);
  2334. temp = I915_READ(reg);
  2335. temp &= ~FDI_LINK_TRAIN_NONE_IVB;
  2336. temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
  2337. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2338. temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
  2339. I915_WRITE(reg, temp);
  2340. reg = FDI_RX_CTL(pipe);
  2341. temp = I915_READ(reg);
  2342. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2343. temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
  2344. I915_WRITE(reg, temp);
  2345. POSTING_READ(reg);
  2346. udelay(150);
  2347. for (i = 0; i < 4; i++) {
  2348. reg = FDI_TX_CTL(pipe);
  2349. temp = I915_READ(reg);
  2350. temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
  2351. temp |= snb_b_fdi_train_param[i];
  2352. I915_WRITE(reg, temp);
  2353. POSTING_READ(reg);
  2354. udelay(500);
  2355. reg = FDI_RX_IIR(pipe);
  2356. temp = I915_READ(reg);
  2357. DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
  2358. if (temp & FDI_RX_SYMBOL_LOCK) {
  2359. I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
  2360. DRM_DEBUG_KMS("FDI train 2 done.\n");
  2361. break;
  2362. }
  2363. }
  2364. if (i == 4)
  2365. DRM_ERROR("FDI train 2 fail!\n");
  2366. DRM_DEBUG_KMS("FDI train done.\n");
  2367. }
  2368. static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
  2369. {
  2370. struct drm_device *dev = intel_crtc->base.dev;
  2371. struct drm_i915_private *dev_priv = dev->dev_private;
  2372. int pipe = intel_crtc->pipe;
  2373. u32 reg, temp;
  2374. /* Write the TU size bits so error detection works */
  2375. I915_WRITE(FDI_RX_TUSIZE1(pipe),
  2376. I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
  2377. /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
  2378. reg = FDI_RX_CTL(pipe);
  2379. temp = I915_READ(reg);
  2380. temp &= ~((0x7 << 19) | (0x7 << 16));
  2381. temp |= (intel_crtc->fdi_lanes - 1) << 19;
  2382. temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
  2383. I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
  2384. POSTING_READ(reg);
  2385. udelay(200);
  2386. /* Switch from Rawclk to PCDclk */
  2387. temp = I915_READ(reg);
  2388. I915_WRITE(reg, temp | FDI_PCDCLK);
  2389. POSTING_READ(reg);
  2390. udelay(200);
  2391. /* On Haswell, the PLL configuration for ports and pipes is handled
  2392. * separately, as part of DDI setup */
  2393. if (!IS_HASWELL(dev)) {
  2394. /* Enable CPU FDI TX PLL, always on for Ironlake */
  2395. reg = FDI_TX_CTL(pipe);
  2396. temp = I915_READ(reg);
  2397. if ((temp & FDI_TX_PLL_ENABLE) == 0) {
  2398. I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
  2399. POSTING_READ(reg);
  2400. udelay(100);
  2401. }
  2402. }
  2403. }
  2404. static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
  2405. {
  2406. struct drm_device *dev = intel_crtc->base.dev;
  2407. struct drm_i915_private *dev_priv = dev->dev_private;
  2408. int pipe = intel_crtc->pipe;
  2409. u32 reg, temp;
  2410. /* Switch from PCDclk to Rawclk */
  2411. reg = FDI_RX_CTL(pipe);
  2412. temp = I915_READ(reg);
  2413. I915_WRITE(reg, temp & ~FDI_PCDCLK);
  2414. /* Disable CPU FDI TX PLL */
  2415. reg = FDI_TX_CTL(pipe);
  2416. temp = I915_READ(reg);
  2417. I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
  2418. POSTING_READ(reg);
  2419. udelay(100);
  2420. reg = FDI_RX_CTL(pipe);
  2421. temp = I915_READ(reg);
  2422. I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
  2423. /* Wait for the clocks to turn off. */
  2424. POSTING_READ(reg);
  2425. udelay(100);
  2426. }
  2427. static void cpt_phase_pointer_disable(struct drm_device *dev, int pipe)
  2428. {
  2429. struct drm_i915_private *dev_priv = dev->dev_private;
  2430. u32 flags = I915_READ(SOUTH_CHICKEN1);
  2431. flags &= ~(FDI_PHASE_SYNC_EN(pipe));
  2432. I915_WRITE(SOUTH_CHICKEN1, flags); /* once to disable... */
  2433. flags &= ~(FDI_PHASE_SYNC_OVR(pipe));
  2434. I915_WRITE(SOUTH_CHICKEN1, flags); /* then again to lock */
  2435. POSTING_READ(SOUTH_CHICKEN1);
  2436. }
  2437. static void ironlake_fdi_disable(struct drm_crtc *crtc)
  2438. {
  2439. struct drm_device *dev = crtc->dev;
  2440. struct drm_i915_private *dev_priv = dev->dev_private;
  2441. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2442. int pipe = intel_crtc->pipe;
  2443. u32 reg, temp;
  2444. /* disable CPU FDI tx and PCH FDI rx */
  2445. reg = FDI_TX_CTL(pipe);
  2446. temp = I915_READ(reg);
  2447. I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
  2448. POSTING_READ(reg);
  2449. reg = FDI_RX_CTL(pipe);
  2450. temp = I915_READ(reg);
  2451. temp &= ~(0x7 << 16);
  2452. temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
  2453. I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
  2454. POSTING_READ(reg);
  2455. udelay(100);
  2456. /* Ironlake workaround, disable clock pointer after downing FDI */
  2457. if (HAS_PCH_IBX(dev)) {
  2458. I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
  2459. I915_WRITE(FDI_RX_CHICKEN(pipe),
  2460. I915_READ(FDI_RX_CHICKEN(pipe) &
  2461. ~FDI_RX_PHASE_SYNC_POINTER_EN));
  2462. } else if (HAS_PCH_CPT(dev)) {
  2463. cpt_phase_pointer_disable(dev, pipe);
  2464. }
  2465. /* still set train pattern 1 */
  2466. reg = FDI_TX_CTL(pipe);
  2467. temp = I915_READ(reg);
  2468. temp &= ~FDI_LINK_TRAIN_NONE;
  2469. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2470. I915_WRITE(reg, temp);
  2471. reg = FDI_RX_CTL(pipe);
  2472. temp = I915_READ(reg);
  2473. if (HAS_PCH_CPT(dev)) {
  2474. temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
  2475. temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
  2476. } else {
  2477. temp &= ~FDI_LINK_TRAIN_NONE;
  2478. temp |= FDI_LINK_TRAIN_PATTERN_1;
  2479. }
  2480. /* BPC in FDI rx is consistent with that in PIPECONF */
  2481. temp &= ~(0x07 << 16);
  2482. temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
  2483. I915_WRITE(reg, temp);
  2484. POSTING_READ(reg);
  2485. udelay(100);
  2486. }
  2487. static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
  2488. {
  2489. struct drm_device *dev = crtc->dev;
  2490. if (crtc->fb == NULL)
  2491. return;
  2492. mutex_lock(&dev->struct_mutex);
  2493. intel_finish_fb(crtc->fb);
  2494. mutex_unlock(&dev->struct_mutex);
  2495. }
  2496. static bool intel_crtc_driving_pch(struct drm_crtc *crtc)
  2497. {
  2498. struct drm_device *dev = crtc->dev;
  2499. struct intel_encoder *intel_encoder;
  2500. /*
  2501. * If there's a non-PCH eDP on this crtc, it must be DP_A, and that
  2502. * must be driven by its own crtc; no sharing is possible.
  2503. */
  2504. for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
  2505. /* On Haswell, LPT PCH handles the VGA connection via FDI, and Haswell
  2506. * CPU handles all others */
  2507. if (IS_HASWELL(dev)) {
  2508. /* It is still unclear how this will work on PPT, so throw up a warning */
  2509. WARN_ON(!HAS_PCH_LPT(dev));
  2510. if (intel_encoder->type == INTEL_OUTPUT_ANALOG) {
  2511. DRM_DEBUG_KMS("Haswell detected DAC encoder, assuming is PCH\n");
  2512. return true;
  2513. } else {
  2514. DRM_DEBUG_KMS("Haswell detected encoder %d, assuming is CPU\n",
  2515. intel_encoder->type);
  2516. return false;
  2517. }
  2518. }
  2519. switch (intel_encoder->type) {
  2520. case INTEL_OUTPUT_EDP:
  2521. if (!intel_encoder_is_pch_edp(&intel_encoder->base))
  2522. return false;
  2523. continue;
  2524. }
  2525. }
  2526. return true;
  2527. }
  2528. /* Program iCLKIP clock to the desired frequency */
  2529. static void lpt_program_iclkip(struct drm_crtc *crtc)
  2530. {
  2531. struct drm_device *dev = crtc->dev;
  2532. struct drm_i915_private *dev_priv = dev->dev_private;
  2533. u32 divsel, phaseinc, auxdiv, phasedir = 0;
  2534. u32 temp;
  2535. /* It is necessary to ungate the pixclk gate prior to programming
  2536. * the divisors, and gate it back when it is done.
  2537. */
  2538. I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
  2539. /* Disable SSCCTL */
  2540. intel_sbi_write(dev_priv, SBI_SSCCTL6,
  2541. intel_sbi_read(dev_priv, SBI_SSCCTL6) |
  2542. SBI_SSCCTL_DISABLE);
  2543. /* 20MHz is a corner case which is out of range for the 7-bit divisor */
  2544. if (crtc->mode.clock == 20000) {
  2545. auxdiv = 1;
  2546. divsel = 0x41;
  2547. phaseinc = 0x20;
  2548. } else {
  2549. /* The iCLK virtual clock root frequency is in MHz,
  2550. * but the crtc->mode.clock in in KHz. To get the divisors,
  2551. * it is necessary to divide one by another, so we
  2552. * convert the virtual clock precision to KHz here for higher
  2553. * precision.
  2554. */
  2555. u32 iclk_virtual_root_freq = 172800 * 1000;
  2556. u32 iclk_pi_range = 64;
  2557. u32 desired_divisor, msb_divisor_value, pi_value;
  2558. desired_divisor = (iclk_virtual_root_freq / crtc->mode.clock);
  2559. msb_divisor_value = desired_divisor / iclk_pi_range;
  2560. pi_value = desired_divisor % iclk_pi_range;
  2561. auxdiv = 0;
  2562. divsel = msb_divisor_value - 2;
  2563. phaseinc = pi_value;
  2564. }
  2565. /* This should not happen with any sane values */
  2566. WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
  2567. ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
  2568. WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
  2569. ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
  2570. DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
  2571. crtc->mode.clock,
  2572. auxdiv,
  2573. divsel,
  2574. phasedir,
  2575. phaseinc);
  2576. /* Program SSCDIVINTPHASE6 */
  2577. temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6);
  2578. temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
  2579. temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
  2580. temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
  2581. temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
  2582. temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
  2583. temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
  2584. intel_sbi_write(dev_priv,
  2585. SBI_SSCDIVINTPHASE6,
  2586. temp);
  2587. /* Program SSCAUXDIV */
  2588. temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6);
  2589. temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
  2590. temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
  2591. intel_sbi_write(dev_priv,
  2592. SBI_SSCAUXDIV6,
  2593. temp);
  2594. /* Enable modulator and associated divider */
  2595. temp = intel_sbi_read(dev_priv, SBI_SSCCTL6);
  2596. temp &= ~SBI_SSCCTL_DISABLE;
  2597. intel_sbi_write(dev_priv,
  2598. SBI_SSCCTL6,
  2599. temp);
  2600. /* Wait for initialization time */
  2601. udelay(24);
  2602. I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
  2603. }
  2604. /*
  2605. * Enable PCH resources required for PCH ports:
  2606. * - PCH PLLs
  2607. * - FDI training & RX/TX
  2608. * - update transcoder timings
  2609. * - DP transcoding bits
  2610. * - transcoder
  2611. */
  2612. static void ironlake_pch_enable(struct drm_crtc *crtc)
  2613. {
  2614. struct drm_device *dev = crtc->dev;
  2615. struct drm_i915_private *dev_priv = dev->dev_private;
  2616. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2617. int pipe = intel_crtc->pipe;
  2618. u32 reg, temp;
  2619. assert_transcoder_disabled(dev_priv, pipe);
  2620. /* For PCH output, training FDI link */
  2621. dev_priv->display.fdi_link_train(crtc);
  2622. intel_enable_pch_pll(intel_crtc);
  2623. if (HAS_PCH_LPT(dev)) {
  2624. DRM_DEBUG_KMS("LPT detected: programming iCLKIP\n");
  2625. lpt_program_iclkip(crtc);
  2626. } else if (HAS_PCH_CPT(dev)) {
  2627. u32 sel;
  2628. temp = I915_READ(PCH_DPLL_SEL);
  2629. switch (pipe) {
  2630. default:
  2631. case 0:
  2632. temp |= TRANSA_DPLL_ENABLE;
  2633. sel = TRANSA_DPLLB_SEL;
  2634. break;
  2635. case 1:
  2636. temp |= TRANSB_DPLL_ENABLE;
  2637. sel = TRANSB_DPLLB_SEL;
  2638. break;
  2639. case 2:
  2640. temp |= TRANSC_DPLL_ENABLE;
  2641. sel = TRANSC_DPLLB_SEL;
  2642. break;
  2643. }
  2644. if (intel_crtc->pch_pll->pll_reg == _PCH_DPLL_B)
  2645. temp |= sel;
  2646. else
  2647. temp &= ~sel;
  2648. I915_WRITE(PCH_DPLL_SEL, temp);
  2649. }
  2650. /* set transcoder timing, panel must allow it */
  2651. assert_panel_unlocked(dev_priv, pipe);
  2652. I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
  2653. I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
  2654. I915_WRITE(TRANS_HSYNC(pipe), I915_READ(HSYNC(pipe)));
  2655. I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
  2656. I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
  2657. I915_WRITE(TRANS_VSYNC(pipe), I915_READ(VSYNC(pipe)));
  2658. I915_WRITE(TRANS_VSYNCSHIFT(pipe), I915_READ(VSYNCSHIFT(pipe)));
  2659. if (!IS_HASWELL(dev))
  2660. intel_fdi_normal_train(crtc);
  2661. /* For PCH DP, enable TRANS_DP_CTL */
  2662. if (HAS_PCH_CPT(dev) &&
  2663. (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
  2664. intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
  2665. u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) >> 5;
  2666. reg = TRANS_DP_CTL(pipe);
  2667. temp = I915_READ(reg);
  2668. temp &= ~(TRANS_DP_PORT_SEL_MASK |
  2669. TRANS_DP_SYNC_MASK |
  2670. TRANS_DP_BPC_MASK);
  2671. temp |= (TRANS_DP_OUTPUT_ENABLE |
  2672. TRANS_DP_ENH_FRAMING);
  2673. temp |= bpc << 9; /* same format but at 11:9 */
  2674. if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
  2675. temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
  2676. if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
  2677. temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
  2678. switch (intel_trans_dp_port_sel(crtc)) {
  2679. case PCH_DP_B:
  2680. temp |= TRANS_DP_PORT_SEL_B;
  2681. break;
  2682. case PCH_DP_C:
  2683. temp |= TRANS_DP_PORT_SEL_C;
  2684. break;
  2685. case PCH_DP_D:
  2686. temp |= TRANS_DP_PORT_SEL_D;
  2687. break;
  2688. default:
  2689. DRM_DEBUG_KMS("Wrong PCH DP port return. Guess port B\n");
  2690. temp |= TRANS_DP_PORT_SEL_B;
  2691. break;
  2692. }
  2693. I915_WRITE(reg, temp);
  2694. }
  2695. intel_enable_transcoder(dev_priv, pipe);
  2696. }
  2697. static void intel_put_pch_pll(struct intel_crtc *intel_crtc)
  2698. {
  2699. struct intel_pch_pll *pll = intel_crtc->pch_pll;
  2700. if (pll == NULL)
  2701. return;
  2702. if (pll->refcount == 0) {
  2703. WARN(1, "bad PCH PLL refcount\n");
  2704. return;
  2705. }
  2706. --pll->refcount;
  2707. intel_crtc->pch_pll = NULL;
  2708. }
  2709. static struct intel_pch_pll *intel_get_pch_pll(struct intel_crtc *intel_crtc, u32 dpll, u32 fp)
  2710. {
  2711. struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
  2712. struct intel_pch_pll *pll;
  2713. int i;
  2714. pll = intel_crtc->pch_pll;
  2715. if (pll) {
  2716. DRM_DEBUG_KMS("CRTC:%d reusing existing PCH PLL %x\n",
  2717. intel_crtc->base.base.id, pll->pll_reg);
  2718. goto prepare;
  2719. }
  2720. if (HAS_PCH_IBX(dev_priv->dev)) {
  2721. /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
  2722. i = intel_crtc->pipe;
  2723. pll = &dev_priv->pch_plls[i];
  2724. DRM_DEBUG_KMS("CRTC:%d using pre-allocated PCH PLL %x\n",
  2725. intel_crtc->base.base.id, pll->pll_reg);
  2726. goto found;
  2727. }
  2728. for (i = 0; i < dev_priv->num_pch_pll; i++) {
  2729. pll = &dev_priv->pch_plls[i];
  2730. /* Only want to check enabled timings first */
  2731. if (pll->refcount == 0)
  2732. continue;
  2733. if (dpll == (I915_READ(pll->pll_reg) & 0x7fffffff) &&
  2734. fp == I915_READ(pll->fp0_reg)) {
  2735. DRM_DEBUG_KMS("CRTC:%d sharing existing PCH PLL %x (refcount %d, ative %d)\n",
  2736. intel_crtc->base.base.id,
  2737. pll->pll_reg, pll->refcount, pll->active);
  2738. goto found;
  2739. }
  2740. }
  2741. /* Ok no matching timings, maybe there's a free one? */
  2742. for (i = 0; i < dev_priv->num_pch_pll; i++) {
  2743. pll = &dev_priv->pch_plls[i];
  2744. if (pll->refcount == 0) {
  2745. DRM_DEBUG_KMS("CRTC:%d allocated PCH PLL %x\n",
  2746. intel_crtc->base.base.id, pll->pll_reg);
  2747. goto found;
  2748. }
  2749. }
  2750. return NULL;
  2751. found:
  2752. intel_crtc->pch_pll = pll;
  2753. pll->refcount++;
  2754. DRM_DEBUG_DRIVER("using pll %d for pipe %d\n", i, intel_crtc->pipe);
  2755. prepare: /* separate function? */
  2756. DRM_DEBUG_DRIVER("switching PLL %x off\n", pll->pll_reg);
  2757. /* Wait for the clocks to stabilize before rewriting the regs */
  2758. I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
  2759. POSTING_READ(pll->pll_reg);
  2760. udelay(150);
  2761. I915_WRITE(pll->fp0_reg, fp);
  2762. I915_WRITE(pll->pll_reg, dpll & ~DPLL_VCO_ENABLE);
  2763. pll->on = false;
  2764. return pll;
  2765. }
  2766. void intel_cpt_verify_modeset(struct drm_device *dev, int pipe)
  2767. {
  2768. struct drm_i915_private *dev_priv = dev->dev_private;
  2769. int dslreg = PIPEDSL(pipe), tc2reg = TRANS_CHICKEN2(pipe);
  2770. u32 temp;
  2771. temp = I915_READ(dslreg);
  2772. udelay(500);
  2773. if (wait_for(I915_READ(dslreg) != temp, 5)) {
  2774. /* Without this, mode sets may fail silently on FDI */
  2775. I915_WRITE(tc2reg, TRANS_AUTOTRAIN_GEN_STALL_DIS);
  2776. udelay(250);
  2777. I915_WRITE(tc2reg, 0);
  2778. if (wait_for(I915_READ(dslreg) != temp, 5))
  2779. DRM_ERROR("mode set failed: pipe %d stuck\n", pipe);
  2780. }
  2781. }
  2782. static void ironlake_crtc_enable(struct drm_crtc *crtc)
  2783. {
  2784. struct drm_device *dev = crtc->dev;
  2785. struct drm_i915_private *dev_priv = dev->dev_private;
  2786. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2787. struct intel_encoder *encoder;
  2788. int pipe = intel_crtc->pipe;
  2789. int plane = intel_crtc->plane;
  2790. u32 temp;
  2791. bool is_pch_port;
  2792. /* XXX: For compatability with the crtc helper code, call the encoder's
  2793. * enable function unconditionally for now. */
  2794. if (intel_crtc->active)
  2795. goto encoders;
  2796. intel_crtc->active = true;
  2797. intel_update_watermarks(dev);
  2798. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  2799. temp = I915_READ(PCH_LVDS);
  2800. if ((temp & LVDS_PORT_EN) == 0)
  2801. I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
  2802. }
  2803. is_pch_port = intel_crtc_driving_pch(crtc);
  2804. if (is_pch_port)
  2805. ironlake_fdi_pll_enable(intel_crtc);
  2806. else
  2807. ironlake_fdi_disable(crtc);
  2808. /* Enable panel fitting for LVDS */
  2809. if (dev_priv->pch_pf_size &&
  2810. (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) || HAS_eDP)) {
  2811. /* Force use of hard-coded filter coefficients
  2812. * as some pre-programmed values are broken,
  2813. * e.g. x201.
  2814. */
  2815. I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
  2816. I915_WRITE(PF_WIN_POS(pipe), dev_priv->pch_pf_pos);
  2817. I915_WRITE(PF_WIN_SZ(pipe), dev_priv->pch_pf_size);
  2818. }
  2819. /*
  2820. * On ILK+ LUT must be loaded before the pipe is running but with
  2821. * clocks enabled
  2822. */
  2823. intel_crtc_load_lut(crtc);
  2824. intel_enable_pipe(dev_priv, pipe, is_pch_port);
  2825. intel_enable_plane(dev_priv, plane, pipe);
  2826. if (is_pch_port)
  2827. ironlake_pch_enable(crtc);
  2828. mutex_lock(&dev->struct_mutex);
  2829. intel_update_fbc(dev);
  2830. mutex_unlock(&dev->struct_mutex);
  2831. intel_crtc_update_cursor(crtc, true);
  2832. encoders:
  2833. for_each_encoder_on_crtc(dev, crtc, encoder)
  2834. encoder->enable(encoder);
  2835. if (HAS_PCH_CPT(dev))
  2836. intel_cpt_verify_modeset(dev, intel_crtc->pipe);
  2837. }
  2838. static void ironlake_crtc_disable(struct drm_crtc *crtc)
  2839. {
  2840. struct drm_device *dev = crtc->dev;
  2841. struct drm_i915_private *dev_priv = dev->dev_private;
  2842. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2843. struct intel_encoder *encoder;
  2844. int pipe = intel_crtc->pipe;
  2845. int plane = intel_crtc->plane;
  2846. u32 reg, temp;
  2847. /* XXX: For compatability with the crtc helper code, call the encoder's
  2848. * disable function unconditionally for now. */
  2849. for_each_encoder_on_crtc(dev, crtc, encoder)
  2850. encoder->disable(encoder);
  2851. if (!intel_crtc->active)
  2852. return;
  2853. intel_crtc_wait_for_pending_flips(crtc);
  2854. drm_vblank_off(dev, pipe);
  2855. intel_crtc_update_cursor(crtc, false);
  2856. intel_disable_plane(dev_priv, plane, pipe);
  2857. if (dev_priv->cfb_plane == plane)
  2858. intel_disable_fbc(dev);
  2859. intel_disable_pipe(dev_priv, pipe);
  2860. /* Disable PF */
  2861. I915_WRITE(PF_CTL(pipe), 0);
  2862. I915_WRITE(PF_WIN_SZ(pipe), 0);
  2863. ironlake_fdi_disable(crtc);
  2864. /* This is a horrible layering violation; we should be doing this in
  2865. * the connector/encoder ->prepare instead, but we don't always have
  2866. * enough information there about the config to know whether it will
  2867. * actually be necessary or just cause undesired flicker.
  2868. */
  2869. intel_disable_pch_ports(dev_priv, pipe);
  2870. intel_disable_transcoder(dev_priv, pipe);
  2871. if (HAS_PCH_CPT(dev)) {
  2872. /* disable TRANS_DP_CTL */
  2873. reg = TRANS_DP_CTL(pipe);
  2874. temp = I915_READ(reg);
  2875. temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
  2876. temp |= TRANS_DP_PORT_SEL_NONE;
  2877. I915_WRITE(reg, temp);
  2878. /* disable DPLL_SEL */
  2879. temp = I915_READ(PCH_DPLL_SEL);
  2880. switch (pipe) {
  2881. case 0:
  2882. temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
  2883. break;
  2884. case 1:
  2885. temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
  2886. break;
  2887. case 2:
  2888. /* C shares PLL A or B */
  2889. temp &= ~(TRANSC_DPLL_ENABLE | TRANSC_DPLLB_SEL);
  2890. break;
  2891. default:
  2892. BUG(); /* wtf */
  2893. }
  2894. I915_WRITE(PCH_DPLL_SEL, temp);
  2895. }
  2896. /* disable PCH DPLL */
  2897. intel_disable_pch_pll(intel_crtc);
  2898. ironlake_fdi_pll_disable(intel_crtc);
  2899. intel_crtc->active = false;
  2900. intel_update_watermarks(dev);
  2901. mutex_lock(&dev->struct_mutex);
  2902. intel_update_fbc(dev);
  2903. mutex_unlock(&dev->struct_mutex);
  2904. }
  2905. static void ironlake_crtc_off(struct drm_crtc *crtc)
  2906. {
  2907. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2908. intel_put_pch_pll(intel_crtc);
  2909. }
  2910. static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
  2911. {
  2912. if (!enable && intel_crtc->overlay) {
  2913. struct drm_device *dev = intel_crtc->base.dev;
  2914. struct drm_i915_private *dev_priv = dev->dev_private;
  2915. mutex_lock(&dev->struct_mutex);
  2916. dev_priv->mm.interruptible = false;
  2917. (void) intel_overlay_switch_off(intel_crtc->overlay);
  2918. dev_priv->mm.interruptible = true;
  2919. mutex_unlock(&dev->struct_mutex);
  2920. }
  2921. /* Let userspace switch the overlay on again. In most cases userspace
  2922. * has to recompute where to put it anyway.
  2923. */
  2924. }
  2925. static void i9xx_crtc_enable(struct drm_crtc *crtc)
  2926. {
  2927. struct drm_device *dev = crtc->dev;
  2928. struct drm_i915_private *dev_priv = dev->dev_private;
  2929. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2930. struct intel_encoder *encoder;
  2931. int pipe = intel_crtc->pipe;
  2932. int plane = intel_crtc->plane;
  2933. /* XXX: For compatability with the crtc helper code, call the encoder's
  2934. * enable function unconditionally for now. */
  2935. if (intel_crtc->active)
  2936. goto encoders;
  2937. intel_crtc->active = true;
  2938. intel_update_watermarks(dev);
  2939. intel_enable_pll(dev_priv, pipe);
  2940. intel_enable_pipe(dev_priv, pipe, false);
  2941. intel_enable_plane(dev_priv, plane, pipe);
  2942. intel_crtc_load_lut(crtc);
  2943. intel_update_fbc(dev);
  2944. /* Give the overlay scaler a chance to enable if it's on this pipe */
  2945. intel_crtc_dpms_overlay(intel_crtc, true);
  2946. intel_crtc_update_cursor(crtc, true);
  2947. encoders:
  2948. for_each_encoder_on_crtc(dev, crtc, encoder)
  2949. encoder->enable(encoder);
  2950. }
  2951. static void i9xx_crtc_disable(struct drm_crtc *crtc)
  2952. {
  2953. struct drm_device *dev = crtc->dev;
  2954. struct drm_i915_private *dev_priv = dev->dev_private;
  2955. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2956. struct intel_encoder *encoder;
  2957. int pipe = intel_crtc->pipe;
  2958. int plane = intel_crtc->plane;
  2959. /* XXX: For compatability with the crtc helper code, call the encoder's
  2960. * disable function unconditionally for now. */
  2961. for_each_encoder_on_crtc(dev, crtc, encoder)
  2962. encoder->disable(encoder);
  2963. if (!intel_crtc->active)
  2964. return;
  2965. /* Give the overlay scaler a chance to disable if it's on this pipe */
  2966. intel_crtc_wait_for_pending_flips(crtc);
  2967. drm_vblank_off(dev, pipe);
  2968. intel_crtc_dpms_overlay(intel_crtc, false);
  2969. intel_crtc_update_cursor(crtc, false);
  2970. if (dev_priv->cfb_plane == plane)
  2971. intel_disable_fbc(dev);
  2972. intel_disable_plane(dev_priv, plane, pipe);
  2973. intel_disable_pipe(dev_priv, pipe);
  2974. intel_disable_pll(dev_priv, pipe);
  2975. intel_crtc->active = false;
  2976. intel_update_fbc(dev);
  2977. intel_update_watermarks(dev);
  2978. }
  2979. static void i9xx_crtc_off(struct drm_crtc *crtc)
  2980. {
  2981. }
  2982. /**
  2983. * Sets the power management mode of the pipe and plane.
  2984. */
  2985. void intel_crtc_update_dpms(struct drm_crtc *crtc)
  2986. {
  2987. struct drm_device *dev = crtc->dev;
  2988. struct drm_i915_private *dev_priv = dev->dev_private;
  2989. struct drm_i915_master_private *master_priv;
  2990. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  2991. struct intel_encoder *intel_encoder;
  2992. int pipe = intel_crtc->pipe;
  2993. bool enabled, enable = false;
  2994. int mode;
  2995. for_each_encoder_on_crtc(dev, crtc, intel_encoder)
  2996. enable |= intel_encoder->connectors_active;
  2997. mode = enable ? DRM_MODE_DPMS_ON : DRM_MODE_DPMS_OFF;
  2998. if (intel_crtc->dpms_mode == mode)
  2999. return;
  3000. intel_crtc->dpms_mode = mode;
  3001. if (enable)
  3002. dev_priv->display.crtc_enable(crtc);
  3003. else
  3004. dev_priv->display.crtc_disable(crtc);
  3005. if (!dev->primary->master)
  3006. return;
  3007. master_priv = dev->primary->master->driver_priv;
  3008. if (!master_priv->sarea_priv)
  3009. return;
  3010. enabled = crtc->enabled && enable;
  3011. switch (pipe) {
  3012. case 0:
  3013. master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
  3014. master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
  3015. break;
  3016. case 1:
  3017. master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
  3018. master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
  3019. break;
  3020. default:
  3021. DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe));
  3022. break;
  3023. }
  3024. }
  3025. static void intel_crtc_disable(struct drm_crtc *crtc)
  3026. {
  3027. struct drm_device *dev = crtc->dev;
  3028. struct drm_i915_private *dev_priv = dev->dev_private;
  3029. /* crtc->disable is only called when we have no encoders, hence this
  3030. * will disable the pipe. */
  3031. intel_crtc_update_dpms(crtc);
  3032. dev_priv->display.off(crtc);
  3033. assert_plane_disabled(dev->dev_private, to_intel_crtc(crtc)->plane);
  3034. assert_pipe_disabled(dev->dev_private, to_intel_crtc(crtc)->pipe);
  3035. if (crtc->fb) {
  3036. mutex_lock(&dev->struct_mutex);
  3037. intel_unpin_fb_obj(to_intel_framebuffer(crtc->fb)->obj);
  3038. mutex_unlock(&dev->struct_mutex);
  3039. }
  3040. }
  3041. void intel_encoder_noop(struct drm_encoder *encoder)
  3042. {
  3043. }
  3044. void intel_encoder_disable(struct drm_encoder *encoder)
  3045. {
  3046. struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
  3047. intel_encoder->disable(intel_encoder);
  3048. }
  3049. void intel_encoder_destroy(struct drm_encoder *encoder)
  3050. {
  3051. struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
  3052. drm_encoder_cleanup(encoder);
  3053. kfree(intel_encoder);
  3054. }
  3055. /* Simple dpms helper for encodres with just one connector, no cloning and only
  3056. * one kind of off state. It clamps all !ON modes to fully OFF and changes the
  3057. * state of the entire output pipe. */
  3058. void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
  3059. {
  3060. if (mode == DRM_MODE_DPMS_ON) {
  3061. encoder->connectors_active = true;
  3062. intel_crtc_update_dpms(encoder->base.crtc);
  3063. } else {
  3064. encoder->connectors_active = false;
  3065. intel_crtc_update_dpms(encoder->base.crtc);
  3066. }
  3067. }
  3068. /* Even simpler default implementation, if there's really no special case to
  3069. * consider. */
  3070. void intel_connector_dpms(struct drm_connector *connector, int mode)
  3071. {
  3072. struct intel_encoder *encoder = intel_attached_encoder(connector);
  3073. /* All the simple cases only support two dpms states. */
  3074. if (mode != DRM_MODE_DPMS_ON)
  3075. mode = DRM_MODE_DPMS_OFF;
  3076. if (mode == connector->dpms)
  3077. return;
  3078. connector->dpms = mode;
  3079. /* Only need to change hw state when actually enabled */
  3080. if (encoder->base.crtc)
  3081. intel_encoder_dpms(encoder, mode);
  3082. else
  3083. encoder->connectors_active = false;
  3084. }
  3085. static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
  3086. const struct drm_display_mode *mode,
  3087. struct drm_display_mode *adjusted_mode)
  3088. {
  3089. struct drm_device *dev = crtc->dev;
  3090. if (HAS_PCH_SPLIT(dev)) {
  3091. /* FDI link clock is fixed at 2.7G */
  3092. if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
  3093. return false;
  3094. }
  3095. /* All interlaced capable intel hw wants timings in frames. Note though
  3096. * that intel_lvds_mode_fixup does some funny tricks with the crtc
  3097. * timings, so we need to be careful not to clobber these.*/
  3098. if (!(adjusted_mode->private_flags & INTEL_MODE_CRTC_TIMINGS_SET))
  3099. drm_mode_set_crtcinfo(adjusted_mode, 0);
  3100. return true;
  3101. }
  3102. static int valleyview_get_display_clock_speed(struct drm_device *dev)
  3103. {
  3104. return 400000; /* FIXME */
  3105. }
  3106. static int i945_get_display_clock_speed(struct drm_device *dev)
  3107. {
  3108. return 400000;
  3109. }
  3110. static int i915_get_display_clock_speed(struct drm_device *dev)
  3111. {
  3112. return 333000;
  3113. }
  3114. static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
  3115. {
  3116. return 200000;
  3117. }
  3118. static int i915gm_get_display_clock_speed(struct drm_device *dev)
  3119. {
  3120. u16 gcfgc = 0;
  3121. pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
  3122. if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
  3123. return 133000;
  3124. else {
  3125. switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
  3126. case GC_DISPLAY_CLOCK_333_MHZ:
  3127. return 333000;
  3128. default:
  3129. case GC_DISPLAY_CLOCK_190_200_MHZ:
  3130. return 190000;
  3131. }
  3132. }
  3133. }
  3134. static int i865_get_display_clock_speed(struct drm_device *dev)
  3135. {
  3136. return 266000;
  3137. }
  3138. static int i855_get_display_clock_speed(struct drm_device *dev)
  3139. {
  3140. u16 hpllcc = 0;
  3141. /* Assume that the hardware is in the high speed state. This
  3142. * should be the default.
  3143. */
  3144. switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
  3145. case GC_CLOCK_133_200:
  3146. case GC_CLOCK_100_200:
  3147. return 200000;
  3148. case GC_CLOCK_166_250:
  3149. return 250000;
  3150. case GC_CLOCK_100_133:
  3151. return 133000;
  3152. }
  3153. /* Shouldn't happen */
  3154. return 0;
  3155. }
  3156. static int i830_get_display_clock_speed(struct drm_device *dev)
  3157. {
  3158. return 133000;
  3159. }
  3160. struct fdi_m_n {
  3161. u32 tu;
  3162. u32 gmch_m;
  3163. u32 gmch_n;
  3164. u32 link_m;
  3165. u32 link_n;
  3166. };
  3167. static void
  3168. fdi_reduce_ratio(u32 *num, u32 *den)
  3169. {
  3170. while (*num > 0xffffff || *den > 0xffffff) {
  3171. *num >>= 1;
  3172. *den >>= 1;
  3173. }
  3174. }
  3175. static void
  3176. ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
  3177. int link_clock, struct fdi_m_n *m_n)
  3178. {
  3179. m_n->tu = 64; /* default size */
  3180. /* BUG_ON(pixel_clock > INT_MAX / 36); */
  3181. m_n->gmch_m = bits_per_pixel * pixel_clock;
  3182. m_n->gmch_n = link_clock * nlanes * 8;
  3183. fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
  3184. m_n->link_m = pixel_clock;
  3185. m_n->link_n = link_clock;
  3186. fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
  3187. }
  3188. static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
  3189. {
  3190. if (i915_panel_use_ssc >= 0)
  3191. return i915_panel_use_ssc != 0;
  3192. return dev_priv->lvds_use_ssc
  3193. && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
  3194. }
  3195. /**
  3196. * intel_choose_pipe_bpp_dither - figure out what color depth the pipe should send
  3197. * @crtc: CRTC structure
  3198. * @mode: requested mode
  3199. *
  3200. * A pipe may be connected to one or more outputs. Based on the depth of the
  3201. * attached framebuffer, choose a good color depth to use on the pipe.
  3202. *
  3203. * If possible, match the pipe depth to the fb depth. In some cases, this
  3204. * isn't ideal, because the connected output supports a lesser or restricted
  3205. * set of depths. Resolve that here:
  3206. * LVDS typically supports only 6bpc, so clamp down in that case
  3207. * HDMI supports only 8bpc or 12bpc, so clamp to 8bpc with dither for 10bpc
  3208. * Displays may support a restricted set as well, check EDID and clamp as
  3209. * appropriate.
  3210. * DP may want to dither down to 6bpc to fit larger modes
  3211. *
  3212. * RETURNS:
  3213. * Dithering requirement (i.e. false if display bpc and pipe bpc match,
  3214. * true if they don't match).
  3215. */
  3216. static bool intel_choose_pipe_bpp_dither(struct drm_crtc *crtc,
  3217. unsigned int *pipe_bpp,
  3218. struct drm_display_mode *mode)
  3219. {
  3220. struct drm_device *dev = crtc->dev;
  3221. struct drm_i915_private *dev_priv = dev->dev_private;
  3222. struct drm_connector *connector;
  3223. struct intel_encoder *intel_encoder;
  3224. unsigned int display_bpc = UINT_MAX, bpc;
  3225. /* Walk the encoders & connectors on this crtc, get min bpc */
  3226. for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
  3227. if (intel_encoder->type == INTEL_OUTPUT_LVDS) {
  3228. unsigned int lvds_bpc;
  3229. if ((I915_READ(PCH_LVDS) & LVDS_A3_POWER_MASK) ==
  3230. LVDS_A3_POWER_UP)
  3231. lvds_bpc = 8;
  3232. else
  3233. lvds_bpc = 6;
  3234. if (lvds_bpc < display_bpc) {
  3235. DRM_DEBUG_KMS("clamping display bpc (was %d) to LVDS (%d)\n", display_bpc, lvds_bpc);
  3236. display_bpc = lvds_bpc;
  3237. }
  3238. continue;
  3239. }
  3240. /* Not one of the known troublemakers, check the EDID */
  3241. list_for_each_entry(connector, &dev->mode_config.connector_list,
  3242. head) {
  3243. if (connector->encoder != &intel_encoder->base)
  3244. continue;
  3245. /* Don't use an invalid EDID bpc value */
  3246. if (connector->display_info.bpc &&
  3247. connector->display_info.bpc < display_bpc) {
  3248. DRM_DEBUG_KMS("clamping display bpc (was %d) to EDID reported max of %d\n", display_bpc, connector->display_info.bpc);
  3249. display_bpc = connector->display_info.bpc;
  3250. }
  3251. }
  3252. /*
  3253. * HDMI is either 12 or 8, so if the display lets 10bpc sneak
  3254. * through, clamp it down. (Note: >12bpc will be caught below.)
  3255. */
  3256. if (intel_encoder->type == INTEL_OUTPUT_HDMI) {
  3257. if (display_bpc > 8 && display_bpc < 12) {
  3258. DRM_DEBUG_KMS("forcing bpc to 12 for HDMI\n");
  3259. display_bpc = 12;
  3260. } else {
  3261. DRM_DEBUG_KMS("forcing bpc to 8 for HDMI\n");
  3262. display_bpc = 8;
  3263. }
  3264. }
  3265. }
  3266. if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
  3267. DRM_DEBUG_KMS("Dithering DP to 6bpc\n");
  3268. display_bpc = 6;
  3269. }
  3270. /*
  3271. * We could just drive the pipe at the highest bpc all the time and
  3272. * enable dithering as needed, but that costs bandwidth. So choose
  3273. * the minimum value that expresses the full color range of the fb but
  3274. * also stays within the max display bpc discovered above.
  3275. */
  3276. switch (crtc->fb->depth) {
  3277. case 8:
  3278. bpc = 8; /* since we go through a colormap */
  3279. break;
  3280. case 15:
  3281. case 16:
  3282. bpc = 6; /* min is 18bpp */
  3283. break;
  3284. case 24:
  3285. bpc = 8;
  3286. break;
  3287. case 30:
  3288. bpc = 10;
  3289. break;
  3290. case 48:
  3291. bpc = 12;
  3292. break;
  3293. default:
  3294. DRM_DEBUG("unsupported depth, assuming 24 bits\n");
  3295. bpc = min((unsigned int)8, display_bpc);
  3296. break;
  3297. }
  3298. display_bpc = min(display_bpc, bpc);
  3299. DRM_DEBUG_KMS("setting pipe bpc to %d (max display bpc %d)\n",
  3300. bpc, display_bpc);
  3301. *pipe_bpp = display_bpc * 3;
  3302. return display_bpc != bpc;
  3303. }
  3304. static int vlv_get_refclk(struct drm_crtc *crtc)
  3305. {
  3306. struct drm_device *dev = crtc->dev;
  3307. struct drm_i915_private *dev_priv = dev->dev_private;
  3308. int refclk = 27000; /* for DP & HDMI */
  3309. return 100000; /* only one validated so far */
  3310. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
  3311. refclk = 96000;
  3312. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  3313. if (intel_panel_use_ssc(dev_priv))
  3314. refclk = 100000;
  3315. else
  3316. refclk = 96000;
  3317. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP)) {
  3318. refclk = 100000;
  3319. }
  3320. return refclk;
  3321. }
  3322. static int i9xx_get_refclk(struct drm_crtc *crtc, int num_connectors)
  3323. {
  3324. struct drm_device *dev = crtc->dev;
  3325. struct drm_i915_private *dev_priv = dev->dev_private;
  3326. int refclk;
  3327. if (IS_VALLEYVIEW(dev)) {
  3328. refclk = vlv_get_refclk(crtc);
  3329. } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
  3330. intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
  3331. refclk = dev_priv->lvds_ssc_freq * 1000;
  3332. DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
  3333. refclk / 1000);
  3334. } else if (!IS_GEN2(dev)) {
  3335. refclk = 96000;
  3336. } else {
  3337. refclk = 48000;
  3338. }
  3339. return refclk;
  3340. }
  3341. static void i9xx_adjust_sdvo_tv_clock(struct drm_display_mode *adjusted_mode,
  3342. intel_clock_t *clock)
  3343. {
  3344. /* SDVO TV has fixed PLL values depend on its clock range,
  3345. this mirrors vbios setting. */
  3346. if (adjusted_mode->clock >= 100000
  3347. && adjusted_mode->clock < 140500) {
  3348. clock->p1 = 2;
  3349. clock->p2 = 10;
  3350. clock->n = 3;
  3351. clock->m1 = 16;
  3352. clock->m2 = 8;
  3353. } else if (adjusted_mode->clock >= 140500
  3354. && adjusted_mode->clock <= 200000) {
  3355. clock->p1 = 1;
  3356. clock->p2 = 10;
  3357. clock->n = 6;
  3358. clock->m1 = 12;
  3359. clock->m2 = 8;
  3360. }
  3361. }
  3362. static void i9xx_update_pll_dividers(struct drm_crtc *crtc,
  3363. intel_clock_t *clock,
  3364. intel_clock_t *reduced_clock)
  3365. {
  3366. struct drm_device *dev = crtc->dev;
  3367. struct drm_i915_private *dev_priv = dev->dev_private;
  3368. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3369. int pipe = intel_crtc->pipe;
  3370. u32 fp, fp2 = 0;
  3371. if (IS_PINEVIEW(dev)) {
  3372. fp = (1 << clock->n) << 16 | clock->m1 << 8 | clock->m2;
  3373. if (reduced_clock)
  3374. fp2 = (1 << reduced_clock->n) << 16 |
  3375. reduced_clock->m1 << 8 | reduced_clock->m2;
  3376. } else {
  3377. fp = clock->n << 16 | clock->m1 << 8 | clock->m2;
  3378. if (reduced_clock)
  3379. fp2 = reduced_clock->n << 16 | reduced_clock->m1 << 8 |
  3380. reduced_clock->m2;
  3381. }
  3382. I915_WRITE(FP0(pipe), fp);
  3383. intel_crtc->lowfreq_avail = false;
  3384. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
  3385. reduced_clock && i915_powersave) {
  3386. I915_WRITE(FP1(pipe), fp2);
  3387. intel_crtc->lowfreq_avail = true;
  3388. } else {
  3389. I915_WRITE(FP1(pipe), fp);
  3390. }
  3391. }
  3392. static void intel_update_lvds(struct drm_crtc *crtc, intel_clock_t *clock,
  3393. struct drm_display_mode *adjusted_mode)
  3394. {
  3395. struct drm_device *dev = crtc->dev;
  3396. struct drm_i915_private *dev_priv = dev->dev_private;
  3397. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3398. int pipe = intel_crtc->pipe;
  3399. u32 temp;
  3400. temp = I915_READ(LVDS);
  3401. temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
  3402. if (pipe == 1) {
  3403. temp |= LVDS_PIPEB_SELECT;
  3404. } else {
  3405. temp &= ~LVDS_PIPEB_SELECT;
  3406. }
  3407. /* set the corresponsding LVDS_BORDER bit */
  3408. temp |= dev_priv->lvds_border_bits;
  3409. /* Set the B0-B3 data pairs corresponding to whether we're going to
  3410. * set the DPLLs for dual-channel mode or not.
  3411. */
  3412. if (clock->p2 == 7)
  3413. temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
  3414. else
  3415. temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
  3416. /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
  3417. * appropriately here, but we need to look more thoroughly into how
  3418. * panels behave in the two modes.
  3419. */
  3420. /* set the dithering flag on LVDS as needed */
  3421. if (INTEL_INFO(dev)->gen >= 4) {
  3422. if (dev_priv->lvds_dither)
  3423. temp |= LVDS_ENABLE_DITHER;
  3424. else
  3425. temp &= ~LVDS_ENABLE_DITHER;
  3426. }
  3427. temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
  3428. if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
  3429. temp |= LVDS_HSYNC_POLARITY;
  3430. if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
  3431. temp |= LVDS_VSYNC_POLARITY;
  3432. I915_WRITE(LVDS, temp);
  3433. }
  3434. static void vlv_update_pll(struct drm_crtc *crtc,
  3435. struct drm_display_mode *mode,
  3436. struct drm_display_mode *adjusted_mode,
  3437. intel_clock_t *clock, intel_clock_t *reduced_clock,
  3438. int refclk, int num_connectors)
  3439. {
  3440. struct drm_device *dev = crtc->dev;
  3441. struct drm_i915_private *dev_priv = dev->dev_private;
  3442. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3443. int pipe = intel_crtc->pipe;
  3444. u32 dpll, mdiv, pdiv;
  3445. u32 bestn, bestm1, bestm2, bestp1, bestp2;
  3446. bool is_hdmi;
  3447. is_hdmi = intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
  3448. bestn = clock->n;
  3449. bestm1 = clock->m1;
  3450. bestm2 = clock->m2;
  3451. bestp1 = clock->p1;
  3452. bestp2 = clock->p2;
  3453. /* Enable DPIO clock input */
  3454. dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
  3455. DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
  3456. I915_WRITE(DPLL(pipe), dpll);
  3457. POSTING_READ(DPLL(pipe));
  3458. mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
  3459. mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
  3460. mdiv |= ((bestn << DPIO_N_SHIFT));
  3461. mdiv |= (1 << DPIO_POST_DIV_SHIFT);
  3462. mdiv |= (1 << DPIO_K_SHIFT);
  3463. mdiv |= DPIO_ENABLE_CALIBRATION;
  3464. intel_dpio_write(dev_priv, DPIO_DIV(pipe), mdiv);
  3465. intel_dpio_write(dev_priv, DPIO_CORE_CLK(pipe), 0x01000000);
  3466. pdiv = DPIO_REFSEL_OVERRIDE | (5 << DPIO_PLL_MODESEL_SHIFT) |
  3467. (3 << DPIO_BIAS_CURRENT_CTL_SHIFT) | (1<<20) |
  3468. (8 << DPIO_DRIVER_CTL_SHIFT) | (5 << DPIO_CLK_BIAS_CTL_SHIFT);
  3469. intel_dpio_write(dev_priv, DPIO_REFSFR(pipe), pdiv);
  3470. intel_dpio_write(dev_priv, DPIO_LFP_COEFF(pipe), 0x009f0051);
  3471. dpll |= DPLL_VCO_ENABLE;
  3472. I915_WRITE(DPLL(pipe), dpll);
  3473. POSTING_READ(DPLL(pipe));
  3474. if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
  3475. DRM_ERROR("DPLL %d failed to lock\n", pipe);
  3476. if (is_hdmi) {
  3477. u32 temp = intel_mode_get_pixel_multiplier(adjusted_mode);
  3478. if (temp > 1)
  3479. temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
  3480. else
  3481. temp = 0;
  3482. I915_WRITE(DPLL_MD(pipe), temp);
  3483. POSTING_READ(DPLL_MD(pipe));
  3484. }
  3485. intel_dpio_write(dev_priv, DPIO_FASTCLK_DISABLE, 0x641); /* ??? */
  3486. }
  3487. static void i9xx_update_pll(struct drm_crtc *crtc,
  3488. struct drm_display_mode *mode,
  3489. struct drm_display_mode *adjusted_mode,
  3490. intel_clock_t *clock, intel_clock_t *reduced_clock,
  3491. int num_connectors)
  3492. {
  3493. struct drm_device *dev = crtc->dev;
  3494. struct drm_i915_private *dev_priv = dev->dev_private;
  3495. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3496. int pipe = intel_crtc->pipe;
  3497. u32 dpll;
  3498. bool is_sdvo;
  3499. is_sdvo = intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO) ||
  3500. intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI);
  3501. dpll = DPLL_VGA_MODE_DIS;
  3502. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  3503. dpll |= DPLLB_MODE_LVDS;
  3504. else
  3505. dpll |= DPLLB_MODE_DAC_SERIAL;
  3506. if (is_sdvo) {
  3507. int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
  3508. if (pixel_multiplier > 1) {
  3509. if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  3510. dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
  3511. }
  3512. dpll |= DPLL_DVO_HIGH_SPEED;
  3513. }
  3514. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
  3515. dpll |= DPLL_DVO_HIGH_SPEED;
  3516. /* compute bitmask from p1 value */
  3517. if (IS_PINEVIEW(dev))
  3518. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
  3519. else {
  3520. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  3521. if (IS_G4X(dev) && reduced_clock)
  3522. dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
  3523. }
  3524. switch (clock->p2) {
  3525. case 5:
  3526. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
  3527. break;
  3528. case 7:
  3529. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
  3530. break;
  3531. case 10:
  3532. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
  3533. break;
  3534. case 14:
  3535. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
  3536. break;
  3537. }
  3538. if (INTEL_INFO(dev)->gen >= 4)
  3539. dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
  3540. if (is_sdvo && intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
  3541. dpll |= PLL_REF_INPUT_TVCLKINBC;
  3542. else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
  3543. /* XXX: just matching BIOS for now */
  3544. /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
  3545. dpll |= 3;
  3546. else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
  3547. intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  3548. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  3549. else
  3550. dpll |= PLL_REF_INPUT_DREFCLK;
  3551. dpll |= DPLL_VCO_ENABLE;
  3552. I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
  3553. POSTING_READ(DPLL(pipe));
  3554. udelay(150);
  3555. /* The LVDS pin pair needs to be on before the DPLLs are enabled.
  3556. * This is an exception to the general rule that mode_set doesn't turn
  3557. * things on.
  3558. */
  3559. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  3560. intel_update_lvds(crtc, clock, adjusted_mode);
  3561. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
  3562. intel_dp_set_m_n(crtc, mode, adjusted_mode);
  3563. I915_WRITE(DPLL(pipe), dpll);
  3564. /* Wait for the clocks to stabilize. */
  3565. POSTING_READ(DPLL(pipe));
  3566. udelay(150);
  3567. if (INTEL_INFO(dev)->gen >= 4) {
  3568. u32 temp = 0;
  3569. if (is_sdvo) {
  3570. temp = intel_mode_get_pixel_multiplier(adjusted_mode);
  3571. if (temp > 1)
  3572. temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
  3573. else
  3574. temp = 0;
  3575. }
  3576. I915_WRITE(DPLL_MD(pipe), temp);
  3577. } else {
  3578. /* The pixel multiplier can only be updated once the
  3579. * DPLL is enabled and the clocks are stable.
  3580. *
  3581. * So write it again.
  3582. */
  3583. I915_WRITE(DPLL(pipe), dpll);
  3584. }
  3585. }
  3586. static void i8xx_update_pll(struct drm_crtc *crtc,
  3587. struct drm_display_mode *adjusted_mode,
  3588. intel_clock_t *clock,
  3589. int num_connectors)
  3590. {
  3591. struct drm_device *dev = crtc->dev;
  3592. struct drm_i915_private *dev_priv = dev->dev_private;
  3593. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3594. int pipe = intel_crtc->pipe;
  3595. u32 dpll;
  3596. dpll = DPLL_VGA_MODE_DIS;
  3597. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
  3598. dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  3599. } else {
  3600. if (clock->p1 == 2)
  3601. dpll |= PLL_P1_DIVIDE_BY_TWO;
  3602. else
  3603. dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  3604. if (clock->p2 == 4)
  3605. dpll |= PLL_P2_DIVIDE_BY_4;
  3606. }
  3607. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_TVOUT))
  3608. /* XXX: just matching BIOS for now */
  3609. /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
  3610. dpll |= 3;
  3611. else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
  3612. intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  3613. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  3614. else
  3615. dpll |= PLL_REF_INPUT_DREFCLK;
  3616. dpll |= DPLL_VCO_ENABLE;
  3617. I915_WRITE(DPLL(pipe), dpll & ~DPLL_VCO_ENABLE);
  3618. POSTING_READ(DPLL(pipe));
  3619. udelay(150);
  3620. I915_WRITE(DPLL(pipe), dpll);
  3621. /* Wait for the clocks to stabilize. */
  3622. POSTING_READ(DPLL(pipe));
  3623. udelay(150);
  3624. /* The LVDS pin pair needs to be on before the DPLLs are enabled.
  3625. * This is an exception to the general rule that mode_set doesn't turn
  3626. * things on.
  3627. */
  3628. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
  3629. intel_update_lvds(crtc, clock, adjusted_mode);
  3630. /* The pixel multiplier can only be updated once the
  3631. * DPLL is enabled and the clocks are stable.
  3632. *
  3633. * So write it again.
  3634. */
  3635. I915_WRITE(DPLL(pipe), dpll);
  3636. }
  3637. static int i9xx_crtc_mode_set(struct drm_crtc *crtc,
  3638. struct drm_display_mode *mode,
  3639. struct drm_display_mode *adjusted_mode,
  3640. int x, int y,
  3641. struct drm_framebuffer *old_fb)
  3642. {
  3643. struct drm_device *dev = crtc->dev;
  3644. struct drm_i915_private *dev_priv = dev->dev_private;
  3645. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3646. int pipe = intel_crtc->pipe;
  3647. int plane = intel_crtc->plane;
  3648. int refclk, num_connectors = 0;
  3649. intel_clock_t clock, reduced_clock;
  3650. u32 dspcntr, pipeconf, vsyncshift;
  3651. bool ok, has_reduced_clock = false, is_sdvo = false;
  3652. bool is_lvds = false, is_tv = false, is_dp = false;
  3653. struct intel_encoder *encoder;
  3654. const intel_limit_t *limit;
  3655. int ret;
  3656. for_each_encoder_on_crtc(dev, crtc, encoder) {
  3657. switch (encoder->type) {
  3658. case INTEL_OUTPUT_LVDS:
  3659. is_lvds = true;
  3660. break;
  3661. case INTEL_OUTPUT_SDVO:
  3662. case INTEL_OUTPUT_HDMI:
  3663. is_sdvo = true;
  3664. if (encoder->needs_tv_clock)
  3665. is_tv = true;
  3666. break;
  3667. case INTEL_OUTPUT_TVOUT:
  3668. is_tv = true;
  3669. break;
  3670. case INTEL_OUTPUT_DISPLAYPORT:
  3671. is_dp = true;
  3672. break;
  3673. }
  3674. num_connectors++;
  3675. }
  3676. refclk = i9xx_get_refclk(crtc, num_connectors);
  3677. /*
  3678. * Returns a set of divisors for the desired target clock with the given
  3679. * refclk, or FALSE. The returned values represent the clock equation:
  3680. * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
  3681. */
  3682. limit = intel_limit(crtc, refclk);
  3683. ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
  3684. &clock);
  3685. if (!ok) {
  3686. DRM_ERROR("Couldn't find PLL settings for mode!\n");
  3687. return -EINVAL;
  3688. }
  3689. /* Ensure that the cursor is valid for the new mode before changing... */
  3690. intel_crtc_update_cursor(crtc, true);
  3691. if (is_lvds && dev_priv->lvds_downclock_avail) {
  3692. /*
  3693. * Ensure we match the reduced clock's P to the target clock.
  3694. * If the clocks don't match, we can't switch the display clock
  3695. * by using the FP0/FP1. In such case we will disable the LVDS
  3696. * downclock feature.
  3697. */
  3698. has_reduced_clock = limit->find_pll(limit, crtc,
  3699. dev_priv->lvds_downclock,
  3700. refclk,
  3701. &clock,
  3702. &reduced_clock);
  3703. }
  3704. if (is_sdvo && is_tv)
  3705. i9xx_adjust_sdvo_tv_clock(adjusted_mode, &clock);
  3706. i9xx_update_pll_dividers(crtc, &clock, has_reduced_clock ?
  3707. &reduced_clock : NULL);
  3708. if (IS_GEN2(dev))
  3709. i8xx_update_pll(crtc, adjusted_mode, &clock, num_connectors);
  3710. else if (IS_VALLEYVIEW(dev))
  3711. vlv_update_pll(crtc, mode,adjusted_mode, &clock, NULL,
  3712. refclk, num_connectors);
  3713. else
  3714. i9xx_update_pll(crtc, mode, adjusted_mode, &clock,
  3715. has_reduced_clock ? &reduced_clock : NULL,
  3716. num_connectors);
  3717. /* setup pipeconf */
  3718. pipeconf = I915_READ(PIPECONF(pipe));
  3719. /* Set up the display plane register */
  3720. dspcntr = DISPPLANE_GAMMA_ENABLE;
  3721. if (pipe == 0)
  3722. dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
  3723. else
  3724. dspcntr |= DISPPLANE_SEL_PIPE_B;
  3725. if (pipe == 0 && INTEL_INFO(dev)->gen < 4) {
  3726. /* Enable pixel doubling when the dot clock is > 90% of the (display)
  3727. * core speed.
  3728. *
  3729. * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
  3730. * pipe == 0 check?
  3731. */
  3732. if (mode->clock >
  3733. dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
  3734. pipeconf |= PIPECONF_DOUBLE_WIDE;
  3735. else
  3736. pipeconf &= ~PIPECONF_DOUBLE_WIDE;
  3737. }
  3738. /* default to 8bpc */
  3739. pipeconf &= ~(PIPECONF_BPP_MASK | PIPECONF_DITHER_EN);
  3740. if (is_dp) {
  3741. if (mode->private_flags & INTEL_MODE_DP_FORCE_6BPC) {
  3742. pipeconf |= PIPECONF_BPP_6 |
  3743. PIPECONF_DITHER_EN |
  3744. PIPECONF_DITHER_TYPE_SP;
  3745. }
  3746. }
  3747. DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
  3748. drm_mode_debug_printmodeline(mode);
  3749. if (HAS_PIPE_CXSR(dev)) {
  3750. if (intel_crtc->lowfreq_avail) {
  3751. DRM_DEBUG_KMS("enabling CxSR downclocking\n");
  3752. pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
  3753. } else {
  3754. DRM_DEBUG_KMS("disabling CxSR downclocking\n");
  3755. pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
  3756. }
  3757. }
  3758. pipeconf &= ~PIPECONF_INTERLACE_MASK;
  3759. if (!IS_GEN2(dev) &&
  3760. adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
  3761. pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
  3762. /* the chip adds 2 halflines automatically */
  3763. adjusted_mode->crtc_vtotal -= 1;
  3764. adjusted_mode->crtc_vblank_end -= 1;
  3765. vsyncshift = adjusted_mode->crtc_hsync_start
  3766. - adjusted_mode->crtc_htotal/2;
  3767. } else {
  3768. pipeconf |= PIPECONF_PROGRESSIVE;
  3769. vsyncshift = 0;
  3770. }
  3771. if (!IS_GEN3(dev))
  3772. I915_WRITE(VSYNCSHIFT(pipe), vsyncshift);
  3773. I915_WRITE(HTOTAL(pipe),
  3774. (adjusted_mode->crtc_hdisplay - 1) |
  3775. ((adjusted_mode->crtc_htotal - 1) << 16));
  3776. I915_WRITE(HBLANK(pipe),
  3777. (adjusted_mode->crtc_hblank_start - 1) |
  3778. ((adjusted_mode->crtc_hblank_end - 1) << 16));
  3779. I915_WRITE(HSYNC(pipe),
  3780. (adjusted_mode->crtc_hsync_start - 1) |
  3781. ((adjusted_mode->crtc_hsync_end - 1) << 16));
  3782. I915_WRITE(VTOTAL(pipe),
  3783. (adjusted_mode->crtc_vdisplay - 1) |
  3784. ((adjusted_mode->crtc_vtotal - 1) << 16));
  3785. I915_WRITE(VBLANK(pipe),
  3786. (adjusted_mode->crtc_vblank_start - 1) |
  3787. ((adjusted_mode->crtc_vblank_end - 1) << 16));
  3788. I915_WRITE(VSYNC(pipe),
  3789. (adjusted_mode->crtc_vsync_start - 1) |
  3790. ((adjusted_mode->crtc_vsync_end - 1) << 16));
  3791. /* pipesrc and dspsize control the size that is scaled from,
  3792. * which should always be the user's requested size.
  3793. */
  3794. I915_WRITE(DSPSIZE(plane),
  3795. ((mode->vdisplay - 1) << 16) |
  3796. (mode->hdisplay - 1));
  3797. I915_WRITE(DSPPOS(plane), 0);
  3798. I915_WRITE(PIPESRC(pipe),
  3799. ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
  3800. I915_WRITE(PIPECONF(pipe), pipeconf);
  3801. POSTING_READ(PIPECONF(pipe));
  3802. intel_enable_pipe(dev_priv, pipe, false);
  3803. intel_wait_for_vblank(dev, pipe);
  3804. I915_WRITE(DSPCNTR(plane), dspcntr);
  3805. POSTING_READ(DSPCNTR(plane));
  3806. ret = intel_pipe_set_base(crtc, x, y, old_fb);
  3807. intel_update_watermarks(dev);
  3808. return ret;
  3809. }
  3810. /*
  3811. * Initialize reference clocks when the driver loads
  3812. */
  3813. void ironlake_init_pch_refclk(struct drm_device *dev)
  3814. {
  3815. struct drm_i915_private *dev_priv = dev->dev_private;
  3816. struct drm_mode_config *mode_config = &dev->mode_config;
  3817. struct intel_encoder *encoder;
  3818. u32 temp;
  3819. bool has_lvds = false;
  3820. bool has_cpu_edp = false;
  3821. bool has_pch_edp = false;
  3822. bool has_panel = false;
  3823. bool has_ck505 = false;
  3824. bool can_ssc = false;
  3825. /* We need to take the global config into account */
  3826. list_for_each_entry(encoder, &mode_config->encoder_list,
  3827. base.head) {
  3828. switch (encoder->type) {
  3829. case INTEL_OUTPUT_LVDS:
  3830. has_panel = true;
  3831. has_lvds = true;
  3832. break;
  3833. case INTEL_OUTPUT_EDP:
  3834. has_panel = true;
  3835. if (intel_encoder_is_pch_edp(&encoder->base))
  3836. has_pch_edp = true;
  3837. else
  3838. has_cpu_edp = true;
  3839. break;
  3840. }
  3841. }
  3842. if (HAS_PCH_IBX(dev)) {
  3843. has_ck505 = dev_priv->display_clock_mode;
  3844. can_ssc = has_ck505;
  3845. } else {
  3846. has_ck505 = false;
  3847. can_ssc = true;
  3848. }
  3849. DRM_DEBUG_KMS("has_panel %d has_lvds %d has_pch_edp %d has_cpu_edp %d has_ck505 %d\n",
  3850. has_panel, has_lvds, has_pch_edp, has_cpu_edp,
  3851. has_ck505);
  3852. /* Ironlake: try to setup display ref clock before DPLL
  3853. * enabling. This is only under driver's control after
  3854. * PCH B stepping, previous chipset stepping should be
  3855. * ignoring this setting.
  3856. */
  3857. temp = I915_READ(PCH_DREF_CONTROL);
  3858. /* Always enable nonspread source */
  3859. temp &= ~DREF_NONSPREAD_SOURCE_MASK;
  3860. if (has_ck505)
  3861. temp |= DREF_NONSPREAD_CK505_ENABLE;
  3862. else
  3863. temp |= DREF_NONSPREAD_SOURCE_ENABLE;
  3864. if (has_panel) {
  3865. temp &= ~DREF_SSC_SOURCE_MASK;
  3866. temp |= DREF_SSC_SOURCE_ENABLE;
  3867. /* SSC must be turned on before enabling the CPU output */
  3868. if (intel_panel_use_ssc(dev_priv) && can_ssc) {
  3869. DRM_DEBUG_KMS("Using SSC on panel\n");
  3870. temp |= DREF_SSC1_ENABLE;
  3871. } else
  3872. temp &= ~DREF_SSC1_ENABLE;
  3873. /* Get SSC going before enabling the outputs */
  3874. I915_WRITE(PCH_DREF_CONTROL, temp);
  3875. POSTING_READ(PCH_DREF_CONTROL);
  3876. udelay(200);
  3877. temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  3878. /* Enable CPU source on CPU attached eDP */
  3879. if (has_cpu_edp) {
  3880. if (intel_panel_use_ssc(dev_priv) && can_ssc) {
  3881. DRM_DEBUG_KMS("Using SSC on eDP\n");
  3882. temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
  3883. }
  3884. else
  3885. temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
  3886. } else
  3887. temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  3888. I915_WRITE(PCH_DREF_CONTROL, temp);
  3889. POSTING_READ(PCH_DREF_CONTROL);
  3890. udelay(200);
  3891. } else {
  3892. DRM_DEBUG_KMS("Disabling SSC entirely\n");
  3893. temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
  3894. /* Turn off CPU output */
  3895. temp |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
  3896. I915_WRITE(PCH_DREF_CONTROL, temp);
  3897. POSTING_READ(PCH_DREF_CONTROL);
  3898. udelay(200);
  3899. /* Turn off the SSC source */
  3900. temp &= ~DREF_SSC_SOURCE_MASK;
  3901. temp |= DREF_SSC_SOURCE_DISABLE;
  3902. /* Turn off SSC1 */
  3903. temp &= ~ DREF_SSC1_ENABLE;
  3904. I915_WRITE(PCH_DREF_CONTROL, temp);
  3905. POSTING_READ(PCH_DREF_CONTROL);
  3906. udelay(200);
  3907. }
  3908. }
  3909. static int ironlake_get_refclk(struct drm_crtc *crtc)
  3910. {
  3911. struct drm_device *dev = crtc->dev;
  3912. struct drm_i915_private *dev_priv = dev->dev_private;
  3913. struct intel_encoder *encoder;
  3914. struct intel_encoder *edp_encoder = NULL;
  3915. int num_connectors = 0;
  3916. bool is_lvds = false;
  3917. for_each_encoder_on_crtc(dev, crtc, encoder) {
  3918. switch (encoder->type) {
  3919. case INTEL_OUTPUT_LVDS:
  3920. is_lvds = true;
  3921. break;
  3922. case INTEL_OUTPUT_EDP:
  3923. edp_encoder = encoder;
  3924. break;
  3925. }
  3926. num_connectors++;
  3927. }
  3928. if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
  3929. DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
  3930. dev_priv->lvds_ssc_freq);
  3931. return dev_priv->lvds_ssc_freq * 1000;
  3932. }
  3933. return 120000;
  3934. }
  3935. static int ironlake_crtc_mode_set(struct drm_crtc *crtc,
  3936. struct drm_display_mode *mode,
  3937. struct drm_display_mode *adjusted_mode,
  3938. int x, int y,
  3939. struct drm_framebuffer *old_fb)
  3940. {
  3941. struct drm_device *dev = crtc->dev;
  3942. struct drm_i915_private *dev_priv = dev->dev_private;
  3943. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  3944. int pipe = intel_crtc->pipe;
  3945. int plane = intel_crtc->plane;
  3946. int refclk, num_connectors = 0;
  3947. intel_clock_t clock, reduced_clock;
  3948. u32 dpll, fp = 0, fp2 = 0, dspcntr, pipeconf;
  3949. bool ok, has_reduced_clock = false, is_sdvo = false;
  3950. bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
  3951. struct intel_encoder *encoder, *edp_encoder = NULL;
  3952. const intel_limit_t *limit;
  3953. int ret;
  3954. struct fdi_m_n m_n = {0};
  3955. u32 temp;
  3956. int target_clock, pixel_multiplier, lane, link_bw, factor;
  3957. unsigned int pipe_bpp;
  3958. bool dither;
  3959. bool is_cpu_edp = false, is_pch_edp = false;
  3960. for_each_encoder_on_crtc(dev, crtc, encoder) {
  3961. switch (encoder->type) {
  3962. case INTEL_OUTPUT_LVDS:
  3963. is_lvds = true;
  3964. break;
  3965. case INTEL_OUTPUT_SDVO:
  3966. case INTEL_OUTPUT_HDMI:
  3967. is_sdvo = true;
  3968. if (encoder->needs_tv_clock)
  3969. is_tv = true;
  3970. break;
  3971. case INTEL_OUTPUT_TVOUT:
  3972. is_tv = true;
  3973. break;
  3974. case INTEL_OUTPUT_ANALOG:
  3975. is_crt = true;
  3976. break;
  3977. case INTEL_OUTPUT_DISPLAYPORT:
  3978. is_dp = true;
  3979. break;
  3980. case INTEL_OUTPUT_EDP:
  3981. is_dp = true;
  3982. if (intel_encoder_is_pch_edp(&encoder->base))
  3983. is_pch_edp = true;
  3984. else
  3985. is_cpu_edp = true;
  3986. edp_encoder = encoder;
  3987. break;
  3988. }
  3989. num_connectors++;
  3990. }
  3991. refclk = ironlake_get_refclk(crtc);
  3992. /*
  3993. * Returns a set of divisors for the desired target clock with the given
  3994. * refclk, or FALSE. The returned values represent the clock equation:
  3995. * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
  3996. */
  3997. limit = intel_limit(crtc, refclk);
  3998. ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, NULL,
  3999. &clock);
  4000. if (!ok) {
  4001. DRM_ERROR("Couldn't find PLL settings for mode!\n");
  4002. return -EINVAL;
  4003. }
  4004. /* Ensure that the cursor is valid for the new mode before changing... */
  4005. intel_crtc_update_cursor(crtc, true);
  4006. if (is_lvds && dev_priv->lvds_downclock_avail) {
  4007. /*
  4008. * Ensure we match the reduced clock's P to the target clock.
  4009. * If the clocks don't match, we can't switch the display clock
  4010. * by using the FP0/FP1. In such case we will disable the LVDS
  4011. * downclock feature.
  4012. */
  4013. has_reduced_clock = limit->find_pll(limit, crtc,
  4014. dev_priv->lvds_downclock,
  4015. refclk,
  4016. &clock,
  4017. &reduced_clock);
  4018. }
  4019. if (is_sdvo && is_tv)
  4020. i9xx_adjust_sdvo_tv_clock(adjusted_mode, &clock);
  4021. /* FDI link */
  4022. pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
  4023. lane = 0;
  4024. /* CPU eDP doesn't require FDI link, so just set DP M/N
  4025. according to current link config */
  4026. if (is_cpu_edp) {
  4027. intel_edp_link_config(edp_encoder, &lane, &link_bw);
  4028. } else {
  4029. /* FDI is a binary signal running at ~2.7GHz, encoding
  4030. * each output octet as 10 bits. The actual frequency
  4031. * is stored as a divider into a 100MHz clock, and the
  4032. * mode pixel clock is stored in units of 1KHz.
  4033. * Hence the bw of each lane in terms of the mode signal
  4034. * is:
  4035. */
  4036. link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
  4037. }
  4038. /* [e]DP over FDI requires target mode clock instead of link clock. */
  4039. if (edp_encoder)
  4040. target_clock = intel_edp_target_clock(edp_encoder, mode);
  4041. else if (is_dp)
  4042. target_clock = mode->clock;
  4043. else
  4044. target_clock = adjusted_mode->clock;
  4045. /* determine panel color depth */
  4046. temp = I915_READ(PIPECONF(pipe));
  4047. temp &= ~PIPE_BPC_MASK;
  4048. dither = intel_choose_pipe_bpp_dither(crtc, &pipe_bpp, mode);
  4049. switch (pipe_bpp) {
  4050. case 18:
  4051. temp |= PIPE_6BPC;
  4052. break;
  4053. case 24:
  4054. temp |= PIPE_8BPC;
  4055. break;
  4056. case 30:
  4057. temp |= PIPE_10BPC;
  4058. break;
  4059. case 36:
  4060. temp |= PIPE_12BPC;
  4061. break;
  4062. default:
  4063. WARN(1, "intel_choose_pipe_bpp returned invalid value %d\n",
  4064. pipe_bpp);
  4065. temp |= PIPE_8BPC;
  4066. pipe_bpp = 24;
  4067. break;
  4068. }
  4069. intel_crtc->bpp = pipe_bpp;
  4070. I915_WRITE(PIPECONF(pipe), temp);
  4071. if (!lane) {
  4072. /*
  4073. * Account for spread spectrum to avoid
  4074. * oversubscribing the link. Max center spread
  4075. * is 2.5%; use 5% for safety's sake.
  4076. */
  4077. u32 bps = target_clock * intel_crtc->bpp * 21 / 20;
  4078. lane = bps / (link_bw * 8) + 1;
  4079. }
  4080. intel_crtc->fdi_lanes = lane;
  4081. if (pixel_multiplier > 1)
  4082. link_bw *= pixel_multiplier;
  4083. ironlake_compute_m_n(intel_crtc->bpp, lane, target_clock, link_bw,
  4084. &m_n);
  4085. fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
  4086. if (has_reduced_clock)
  4087. fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
  4088. reduced_clock.m2;
  4089. /* Enable autotuning of the PLL clock (if permissible) */
  4090. factor = 21;
  4091. if (is_lvds) {
  4092. if ((intel_panel_use_ssc(dev_priv) &&
  4093. dev_priv->lvds_ssc_freq == 100) ||
  4094. (I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) == LVDS_CLKB_POWER_UP)
  4095. factor = 25;
  4096. } else if (is_sdvo && is_tv)
  4097. factor = 20;
  4098. if (clock.m < factor * clock.n)
  4099. fp |= FP_CB_TUNE;
  4100. dpll = 0;
  4101. if (is_lvds)
  4102. dpll |= DPLLB_MODE_LVDS;
  4103. else
  4104. dpll |= DPLLB_MODE_DAC_SERIAL;
  4105. if (is_sdvo) {
  4106. int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
  4107. if (pixel_multiplier > 1) {
  4108. dpll |= (pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
  4109. }
  4110. dpll |= DPLL_DVO_HIGH_SPEED;
  4111. }
  4112. if (is_dp && !is_cpu_edp)
  4113. dpll |= DPLL_DVO_HIGH_SPEED;
  4114. /* compute bitmask from p1 value */
  4115. dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
  4116. /* also FPA1 */
  4117. dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
  4118. switch (clock.p2) {
  4119. case 5:
  4120. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
  4121. break;
  4122. case 7:
  4123. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
  4124. break;
  4125. case 10:
  4126. dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
  4127. break;
  4128. case 14:
  4129. dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
  4130. break;
  4131. }
  4132. if (is_sdvo && is_tv)
  4133. dpll |= PLL_REF_INPUT_TVCLKINBC;
  4134. else if (is_tv)
  4135. /* XXX: just matching BIOS for now */
  4136. /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
  4137. dpll |= 3;
  4138. else if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
  4139. dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
  4140. else
  4141. dpll |= PLL_REF_INPUT_DREFCLK;
  4142. /* setup pipeconf */
  4143. pipeconf = I915_READ(PIPECONF(pipe));
  4144. /* Set up the display plane register */
  4145. dspcntr = DISPPLANE_GAMMA_ENABLE;
  4146. DRM_DEBUG_KMS("Mode for pipe %d:\n", pipe);
  4147. drm_mode_debug_printmodeline(mode);
  4148. /* CPU eDP is the only output that doesn't need a PCH PLL of its own on
  4149. * pre-Haswell/LPT generation */
  4150. if (HAS_PCH_LPT(dev)) {
  4151. DRM_DEBUG_KMS("LPT detected: no PLL for pipe %d necessary\n",
  4152. pipe);
  4153. } else if (!is_cpu_edp) {
  4154. struct intel_pch_pll *pll;
  4155. pll = intel_get_pch_pll(intel_crtc, dpll, fp);
  4156. if (pll == NULL) {
  4157. DRM_DEBUG_DRIVER("failed to find PLL for pipe %d\n",
  4158. pipe);
  4159. return -EINVAL;
  4160. }
  4161. } else
  4162. intel_put_pch_pll(intel_crtc);
  4163. /* The LVDS pin pair needs to be on before the DPLLs are enabled.
  4164. * This is an exception to the general rule that mode_set doesn't turn
  4165. * things on.
  4166. */
  4167. if (is_lvds) {
  4168. temp = I915_READ(PCH_LVDS);
  4169. temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
  4170. if (HAS_PCH_CPT(dev)) {
  4171. temp &= ~PORT_TRANS_SEL_MASK;
  4172. temp |= PORT_TRANS_SEL_CPT(pipe);
  4173. } else {
  4174. if (pipe == 1)
  4175. temp |= LVDS_PIPEB_SELECT;
  4176. else
  4177. temp &= ~LVDS_PIPEB_SELECT;
  4178. }
  4179. /* set the corresponsding LVDS_BORDER bit */
  4180. temp |= dev_priv->lvds_border_bits;
  4181. /* Set the B0-B3 data pairs corresponding to whether we're going to
  4182. * set the DPLLs for dual-channel mode or not.
  4183. */
  4184. if (clock.p2 == 7)
  4185. temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
  4186. else
  4187. temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
  4188. /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
  4189. * appropriately here, but we need to look more thoroughly into how
  4190. * panels behave in the two modes.
  4191. */
  4192. temp &= ~(LVDS_HSYNC_POLARITY | LVDS_VSYNC_POLARITY);
  4193. if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
  4194. temp |= LVDS_HSYNC_POLARITY;
  4195. if (adjusted_mode->flags & DRM_MODE_FLAG_NVSYNC)
  4196. temp |= LVDS_VSYNC_POLARITY;
  4197. I915_WRITE(PCH_LVDS, temp);
  4198. }
  4199. pipeconf &= ~PIPECONF_DITHER_EN;
  4200. pipeconf &= ~PIPECONF_DITHER_TYPE_MASK;
  4201. if ((is_lvds && dev_priv->lvds_dither) || dither) {
  4202. pipeconf |= PIPECONF_DITHER_EN;
  4203. pipeconf |= PIPECONF_DITHER_TYPE_SP;
  4204. }
  4205. if (is_dp && !is_cpu_edp) {
  4206. intel_dp_set_m_n(crtc, mode, adjusted_mode);
  4207. } else {
  4208. /* For non-DP output, clear any trans DP clock recovery setting.*/
  4209. I915_WRITE(TRANSDATA_M1(pipe), 0);
  4210. I915_WRITE(TRANSDATA_N1(pipe), 0);
  4211. I915_WRITE(TRANSDPLINK_M1(pipe), 0);
  4212. I915_WRITE(TRANSDPLINK_N1(pipe), 0);
  4213. }
  4214. if (intel_crtc->pch_pll) {
  4215. I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
  4216. /* Wait for the clocks to stabilize. */
  4217. POSTING_READ(intel_crtc->pch_pll->pll_reg);
  4218. udelay(150);
  4219. /* The pixel multiplier can only be updated once the
  4220. * DPLL is enabled and the clocks are stable.
  4221. *
  4222. * So write it again.
  4223. */
  4224. I915_WRITE(intel_crtc->pch_pll->pll_reg, dpll);
  4225. }
  4226. intel_crtc->lowfreq_avail = false;
  4227. if (intel_crtc->pch_pll) {
  4228. if (is_lvds && has_reduced_clock && i915_powersave) {
  4229. I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp2);
  4230. intel_crtc->lowfreq_avail = true;
  4231. } else {
  4232. I915_WRITE(intel_crtc->pch_pll->fp1_reg, fp);
  4233. }
  4234. }
  4235. pipeconf &= ~PIPECONF_INTERLACE_MASK;
  4236. if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
  4237. pipeconf |= PIPECONF_INTERLACED_ILK;
  4238. /* the chip adds 2 halflines automatically */
  4239. adjusted_mode->crtc_vtotal -= 1;
  4240. adjusted_mode->crtc_vblank_end -= 1;
  4241. I915_WRITE(VSYNCSHIFT(pipe),
  4242. adjusted_mode->crtc_hsync_start
  4243. - adjusted_mode->crtc_htotal/2);
  4244. } else {
  4245. pipeconf |= PIPECONF_PROGRESSIVE;
  4246. I915_WRITE(VSYNCSHIFT(pipe), 0);
  4247. }
  4248. I915_WRITE(HTOTAL(pipe),
  4249. (adjusted_mode->crtc_hdisplay - 1) |
  4250. ((adjusted_mode->crtc_htotal - 1) << 16));
  4251. I915_WRITE(HBLANK(pipe),
  4252. (adjusted_mode->crtc_hblank_start - 1) |
  4253. ((adjusted_mode->crtc_hblank_end - 1) << 16));
  4254. I915_WRITE(HSYNC(pipe),
  4255. (adjusted_mode->crtc_hsync_start - 1) |
  4256. ((adjusted_mode->crtc_hsync_end - 1) << 16));
  4257. I915_WRITE(VTOTAL(pipe),
  4258. (adjusted_mode->crtc_vdisplay - 1) |
  4259. ((adjusted_mode->crtc_vtotal - 1) << 16));
  4260. I915_WRITE(VBLANK(pipe),
  4261. (adjusted_mode->crtc_vblank_start - 1) |
  4262. ((adjusted_mode->crtc_vblank_end - 1) << 16));
  4263. I915_WRITE(VSYNC(pipe),
  4264. (adjusted_mode->crtc_vsync_start - 1) |
  4265. ((adjusted_mode->crtc_vsync_end - 1) << 16));
  4266. /* pipesrc controls the size that is scaled from, which should
  4267. * always be the user's requested size.
  4268. */
  4269. I915_WRITE(PIPESRC(pipe),
  4270. ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
  4271. I915_WRITE(PIPE_DATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
  4272. I915_WRITE(PIPE_DATA_N1(pipe), m_n.gmch_n);
  4273. I915_WRITE(PIPE_LINK_M1(pipe), m_n.link_m);
  4274. I915_WRITE(PIPE_LINK_N1(pipe), m_n.link_n);
  4275. if (is_cpu_edp)
  4276. ironlake_set_pll_edp(crtc, adjusted_mode->clock);
  4277. I915_WRITE(PIPECONF(pipe), pipeconf);
  4278. POSTING_READ(PIPECONF(pipe));
  4279. intel_wait_for_vblank(dev, pipe);
  4280. I915_WRITE(DSPCNTR(plane), dspcntr);
  4281. POSTING_READ(DSPCNTR(plane));
  4282. ret = intel_pipe_set_base(crtc, x, y, old_fb);
  4283. intel_update_watermarks(dev);
  4284. intel_update_linetime_watermarks(dev, pipe, adjusted_mode);
  4285. return ret;
  4286. }
  4287. static int intel_crtc_mode_set(struct drm_crtc *crtc,
  4288. struct drm_display_mode *mode,
  4289. struct drm_display_mode *adjusted_mode,
  4290. int x, int y,
  4291. struct drm_framebuffer *old_fb)
  4292. {
  4293. struct drm_device *dev = crtc->dev;
  4294. struct drm_i915_private *dev_priv = dev->dev_private;
  4295. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4296. int pipe = intel_crtc->pipe;
  4297. int ret;
  4298. drm_vblank_pre_modeset(dev, pipe);
  4299. ret = dev_priv->display.crtc_mode_set(crtc, mode, adjusted_mode,
  4300. x, y, old_fb);
  4301. drm_vblank_post_modeset(dev, pipe);
  4302. if (ret)
  4303. intel_crtc->dpms_mode = DRM_MODE_DPMS_OFF;
  4304. else
  4305. intel_crtc->dpms_mode = DRM_MODE_DPMS_ON;
  4306. return ret;
  4307. }
  4308. static bool intel_eld_uptodate(struct drm_connector *connector,
  4309. int reg_eldv, uint32_t bits_eldv,
  4310. int reg_elda, uint32_t bits_elda,
  4311. int reg_edid)
  4312. {
  4313. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  4314. uint8_t *eld = connector->eld;
  4315. uint32_t i;
  4316. i = I915_READ(reg_eldv);
  4317. i &= bits_eldv;
  4318. if (!eld[0])
  4319. return !i;
  4320. if (!i)
  4321. return false;
  4322. i = I915_READ(reg_elda);
  4323. i &= ~bits_elda;
  4324. I915_WRITE(reg_elda, i);
  4325. for (i = 0; i < eld[2]; i++)
  4326. if (I915_READ(reg_edid) != *((uint32_t *)eld + i))
  4327. return false;
  4328. return true;
  4329. }
  4330. static void g4x_write_eld(struct drm_connector *connector,
  4331. struct drm_crtc *crtc)
  4332. {
  4333. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  4334. uint8_t *eld = connector->eld;
  4335. uint32_t eldv;
  4336. uint32_t len;
  4337. uint32_t i;
  4338. i = I915_READ(G4X_AUD_VID_DID);
  4339. if (i == INTEL_AUDIO_DEVBLC || i == INTEL_AUDIO_DEVCL)
  4340. eldv = G4X_ELDV_DEVCL_DEVBLC;
  4341. else
  4342. eldv = G4X_ELDV_DEVCTG;
  4343. if (intel_eld_uptodate(connector,
  4344. G4X_AUD_CNTL_ST, eldv,
  4345. G4X_AUD_CNTL_ST, G4X_ELD_ADDR,
  4346. G4X_HDMIW_HDMIEDID))
  4347. return;
  4348. i = I915_READ(G4X_AUD_CNTL_ST);
  4349. i &= ~(eldv | G4X_ELD_ADDR);
  4350. len = (i >> 9) & 0x1f; /* ELD buffer size */
  4351. I915_WRITE(G4X_AUD_CNTL_ST, i);
  4352. if (!eld[0])
  4353. return;
  4354. len = min_t(uint8_t, eld[2], len);
  4355. DRM_DEBUG_DRIVER("ELD size %d\n", len);
  4356. for (i = 0; i < len; i++)
  4357. I915_WRITE(G4X_HDMIW_HDMIEDID, *((uint32_t *)eld + i));
  4358. i = I915_READ(G4X_AUD_CNTL_ST);
  4359. i |= eldv;
  4360. I915_WRITE(G4X_AUD_CNTL_ST, i);
  4361. }
  4362. static void haswell_write_eld(struct drm_connector *connector,
  4363. struct drm_crtc *crtc)
  4364. {
  4365. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  4366. uint8_t *eld = connector->eld;
  4367. struct drm_device *dev = crtc->dev;
  4368. uint32_t eldv;
  4369. uint32_t i;
  4370. int len;
  4371. int pipe = to_intel_crtc(crtc)->pipe;
  4372. int tmp;
  4373. int hdmiw_hdmiedid = HSW_AUD_EDID_DATA(pipe);
  4374. int aud_cntl_st = HSW_AUD_DIP_ELD_CTRL(pipe);
  4375. int aud_config = HSW_AUD_CFG(pipe);
  4376. int aud_cntrl_st2 = HSW_AUD_PIN_ELD_CP_VLD;
  4377. DRM_DEBUG_DRIVER("HDMI: Haswell Audio initialize....\n");
  4378. /* Audio output enable */
  4379. DRM_DEBUG_DRIVER("HDMI audio: enable codec\n");
  4380. tmp = I915_READ(aud_cntrl_st2);
  4381. tmp |= (AUDIO_OUTPUT_ENABLE_A << (pipe * 4));
  4382. I915_WRITE(aud_cntrl_st2, tmp);
  4383. /* Wait for 1 vertical blank */
  4384. intel_wait_for_vblank(dev, pipe);
  4385. /* Set ELD valid state */
  4386. tmp = I915_READ(aud_cntrl_st2);
  4387. DRM_DEBUG_DRIVER("HDMI audio: pin eld vld status=0x%8x\n", tmp);
  4388. tmp |= (AUDIO_ELD_VALID_A << (pipe * 4));
  4389. I915_WRITE(aud_cntrl_st2, tmp);
  4390. tmp = I915_READ(aud_cntrl_st2);
  4391. DRM_DEBUG_DRIVER("HDMI audio: eld vld status=0x%8x\n", tmp);
  4392. /* Enable HDMI mode */
  4393. tmp = I915_READ(aud_config);
  4394. DRM_DEBUG_DRIVER("HDMI audio: audio conf: 0x%8x\n", tmp);
  4395. /* clear N_programing_enable and N_value_index */
  4396. tmp &= ~(AUD_CONFIG_N_VALUE_INDEX | AUD_CONFIG_N_PROG_ENABLE);
  4397. I915_WRITE(aud_config, tmp);
  4398. DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
  4399. eldv = AUDIO_ELD_VALID_A << (pipe * 4);
  4400. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
  4401. DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
  4402. eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
  4403. I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
  4404. } else
  4405. I915_WRITE(aud_config, 0);
  4406. if (intel_eld_uptodate(connector,
  4407. aud_cntrl_st2, eldv,
  4408. aud_cntl_st, IBX_ELD_ADDRESS,
  4409. hdmiw_hdmiedid))
  4410. return;
  4411. i = I915_READ(aud_cntrl_st2);
  4412. i &= ~eldv;
  4413. I915_WRITE(aud_cntrl_st2, i);
  4414. if (!eld[0])
  4415. return;
  4416. i = I915_READ(aud_cntl_st);
  4417. i &= ~IBX_ELD_ADDRESS;
  4418. I915_WRITE(aud_cntl_st, i);
  4419. i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
  4420. DRM_DEBUG_DRIVER("port num:%d\n", i);
  4421. len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
  4422. DRM_DEBUG_DRIVER("ELD size %d\n", len);
  4423. for (i = 0; i < len; i++)
  4424. I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
  4425. i = I915_READ(aud_cntrl_st2);
  4426. i |= eldv;
  4427. I915_WRITE(aud_cntrl_st2, i);
  4428. }
  4429. static void ironlake_write_eld(struct drm_connector *connector,
  4430. struct drm_crtc *crtc)
  4431. {
  4432. struct drm_i915_private *dev_priv = connector->dev->dev_private;
  4433. uint8_t *eld = connector->eld;
  4434. uint32_t eldv;
  4435. uint32_t i;
  4436. int len;
  4437. int hdmiw_hdmiedid;
  4438. int aud_config;
  4439. int aud_cntl_st;
  4440. int aud_cntrl_st2;
  4441. int pipe = to_intel_crtc(crtc)->pipe;
  4442. if (HAS_PCH_IBX(connector->dev)) {
  4443. hdmiw_hdmiedid = IBX_HDMIW_HDMIEDID(pipe);
  4444. aud_config = IBX_AUD_CFG(pipe);
  4445. aud_cntl_st = IBX_AUD_CNTL_ST(pipe);
  4446. aud_cntrl_st2 = IBX_AUD_CNTL_ST2;
  4447. } else {
  4448. hdmiw_hdmiedid = CPT_HDMIW_HDMIEDID(pipe);
  4449. aud_config = CPT_AUD_CFG(pipe);
  4450. aud_cntl_st = CPT_AUD_CNTL_ST(pipe);
  4451. aud_cntrl_st2 = CPT_AUD_CNTRL_ST2;
  4452. }
  4453. DRM_DEBUG_DRIVER("ELD on pipe %c\n", pipe_name(pipe));
  4454. i = I915_READ(aud_cntl_st);
  4455. i = (i >> 29) & DIP_PORT_SEL_MASK; /* DIP_Port_Select, 0x1 = PortB */
  4456. if (!i) {
  4457. DRM_DEBUG_DRIVER("Audio directed to unknown port\n");
  4458. /* operate blindly on all ports */
  4459. eldv = IBX_ELD_VALIDB;
  4460. eldv |= IBX_ELD_VALIDB << 4;
  4461. eldv |= IBX_ELD_VALIDB << 8;
  4462. } else {
  4463. DRM_DEBUG_DRIVER("ELD on port %c\n", 'A' + i);
  4464. eldv = IBX_ELD_VALIDB << ((i - 1) * 4);
  4465. }
  4466. if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
  4467. DRM_DEBUG_DRIVER("ELD: DisplayPort detected\n");
  4468. eld[5] |= (1 << 2); /* Conn_Type, 0x1 = DisplayPort */
  4469. I915_WRITE(aud_config, AUD_CONFIG_N_VALUE_INDEX); /* 0x1 = DP */
  4470. } else
  4471. I915_WRITE(aud_config, 0);
  4472. if (intel_eld_uptodate(connector,
  4473. aud_cntrl_st2, eldv,
  4474. aud_cntl_st, IBX_ELD_ADDRESS,
  4475. hdmiw_hdmiedid))
  4476. return;
  4477. i = I915_READ(aud_cntrl_st2);
  4478. i &= ~eldv;
  4479. I915_WRITE(aud_cntrl_st2, i);
  4480. if (!eld[0])
  4481. return;
  4482. i = I915_READ(aud_cntl_st);
  4483. i &= ~IBX_ELD_ADDRESS;
  4484. I915_WRITE(aud_cntl_st, i);
  4485. len = min_t(uint8_t, eld[2], 21); /* 84 bytes of hw ELD buffer */
  4486. DRM_DEBUG_DRIVER("ELD size %d\n", len);
  4487. for (i = 0; i < len; i++)
  4488. I915_WRITE(hdmiw_hdmiedid, *((uint32_t *)eld + i));
  4489. i = I915_READ(aud_cntrl_st2);
  4490. i |= eldv;
  4491. I915_WRITE(aud_cntrl_st2, i);
  4492. }
  4493. void intel_write_eld(struct drm_encoder *encoder,
  4494. struct drm_display_mode *mode)
  4495. {
  4496. struct drm_crtc *crtc = encoder->crtc;
  4497. struct drm_connector *connector;
  4498. struct drm_device *dev = encoder->dev;
  4499. struct drm_i915_private *dev_priv = dev->dev_private;
  4500. connector = drm_select_eld(encoder, mode);
  4501. if (!connector)
  4502. return;
  4503. DRM_DEBUG_DRIVER("ELD on [CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  4504. connector->base.id,
  4505. drm_get_connector_name(connector),
  4506. connector->encoder->base.id,
  4507. drm_get_encoder_name(connector->encoder));
  4508. connector->eld[6] = drm_av_sync_delay(connector, mode) / 2;
  4509. if (dev_priv->display.write_eld)
  4510. dev_priv->display.write_eld(connector, crtc);
  4511. }
  4512. /** Loads the palette/gamma unit for the CRTC with the prepared values */
  4513. void intel_crtc_load_lut(struct drm_crtc *crtc)
  4514. {
  4515. struct drm_device *dev = crtc->dev;
  4516. struct drm_i915_private *dev_priv = dev->dev_private;
  4517. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4518. int palreg = PALETTE(intel_crtc->pipe);
  4519. int i;
  4520. /* The clocks have to be on to load the palette. */
  4521. if (!crtc->enabled || !intel_crtc->active)
  4522. return;
  4523. /* use legacy palette for Ironlake */
  4524. if (HAS_PCH_SPLIT(dev))
  4525. palreg = LGC_PALETTE(intel_crtc->pipe);
  4526. for (i = 0; i < 256; i++) {
  4527. I915_WRITE(palreg + 4 * i,
  4528. (intel_crtc->lut_r[i] << 16) |
  4529. (intel_crtc->lut_g[i] << 8) |
  4530. intel_crtc->lut_b[i]);
  4531. }
  4532. }
  4533. static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
  4534. {
  4535. struct drm_device *dev = crtc->dev;
  4536. struct drm_i915_private *dev_priv = dev->dev_private;
  4537. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4538. bool visible = base != 0;
  4539. u32 cntl;
  4540. if (intel_crtc->cursor_visible == visible)
  4541. return;
  4542. cntl = I915_READ(_CURACNTR);
  4543. if (visible) {
  4544. /* On these chipsets we can only modify the base whilst
  4545. * the cursor is disabled.
  4546. */
  4547. I915_WRITE(_CURABASE, base);
  4548. cntl &= ~(CURSOR_FORMAT_MASK);
  4549. /* XXX width must be 64, stride 256 => 0x00 << 28 */
  4550. cntl |= CURSOR_ENABLE |
  4551. CURSOR_GAMMA_ENABLE |
  4552. CURSOR_FORMAT_ARGB;
  4553. } else
  4554. cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
  4555. I915_WRITE(_CURACNTR, cntl);
  4556. intel_crtc->cursor_visible = visible;
  4557. }
  4558. static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
  4559. {
  4560. struct drm_device *dev = crtc->dev;
  4561. struct drm_i915_private *dev_priv = dev->dev_private;
  4562. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4563. int pipe = intel_crtc->pipe;
  4564. bool visible = base != 0;
  4565. if (intel_crtc->cursor_visible != visible) {
  4566. uint32_t cntl = I915_READ(CURCNTR(pipe));
  4567. if (base) {
  4568. cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
  4569. cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
  4570. cntl |= pipe << 28; /* Connect to correct pipe */
  4571. } else {
  4572. cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
  4573. cntl |= CURSOR_MODE_DISABLE;
  4574. }
  4575. I915_WRITE(CURCNTR(pipe), cntl);
  4576. intel_crtc->cursor_visible = visible;
  4577. }
  4578. /* and commit changes on next vblank */
  4579. I915_WRITE(CURBASE(pipe), base);
  4580. }
  4581. static void ivb_update_cursor(struct drm_crtc *crtc, u32 base)
  4582. {
  4583. struct drm_device *dev = crtc->dev;
  4584. struct drm_i915_private *dev_priv = dev->dev_private;
  4585. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4586. int pipe = intel_crtc->pipe;
  4587. bool visible = base != 0;
  4588. if (intel_crtc->cursor_visible != visible) {
  4589. uint32_t cntl = I915_READ(CURCNTR_IVB(pipe));
  4590. if (base) {
  4591. cntl &= ~CURSOR_MODE;
  4592. cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
  4593. } else {
  4594. cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
  4595. cntl |= CURSOR_MODE_DISABLE;
  4596. }
  4597. I915_WRITE(CURCNTR_IVB(pipe), cntl);
  4598. intel_crtc->cursor_visible = visible;
  4599. }
  4600. /* and commit changes on next vblank */
  4601. I915_WRITE(CURBASE_IVB(pipe), base);
  4602. }
  4603. /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
  4604. static void intel_crtc_update_cursor(struct drm_crtc *crtc,
  4605. bool on)
  4606. {
  4607. struct drm_device *dev = crtc->dev;
  4608. struct drm_i915_private *dev_priv = dev->dev_private;
  4609. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4610. int pipe = intel_crtc->pipe;
  4611. int x = intel_crtc->cursor_x;
  4612. int y = intel_crtc->cursor_y;
  4613. u32 base, pos;
  4614. bool visible;
  4615. pos = 0;
  4616. if (on && crtc->enabled && crtc->fb) {
  4617. base = intel_crtc->cursor_addr;
  4618. if (x > (int) crtc->fb->width)
  4619. base = 0;
  4620. if (y > (int) crtc->fb->height)
  4621. base = 0;
  4622. } else
  4623. base = 0;
  4624. if (x < 0) {
  4625. if (x + intel_crtc->cursor_width < 0)
  4626. base = 0;
  4627. pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
  4628. x = -x;
  4629. }
  4630. pos |= x << CURSOR_X_SHIFT;
  4631. if (y < 0) {
  4632. if (y + intel_crtc->cursor_height < 0)
  4633. base = 0;
  4634. pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
  4635. y = -y;
  4636. }
  4637. pos |= y << CURSOR_Y_SHIFT;
  4638. visible = base != 0;
  4639. if (!visible && !intel_crtc->cursor_visible)
  4640. return;
  4641. if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
  4642. I915_WRITE(CURPOS_IVB(pipe), pos);
  4643. ivb_update_cursor(crtc, base);
  4644. } else {
  4645. I915_WRITE(CURPOS(pipe), pos);
  4646. if (IS_845G(dev) || IS_I865G(dev))
  4647. i845_update_cursor(crtc, base);
  4648. else
  4649. i9xx_update_cursor(crtc, base);
  4650. }
  4651. }
  4652. static int intel_crtc_cursor_set(struct drm_crtc *crtc,
  4653. struct drm_file *file,
  4654. uint32_t handle,
  4655. uint32_t width, uint32_t height)
  4656. {
  4657. struct drm_device *dev = crtc->dev;
  4658. struct drm_i915_private *dev_priv = dev->dev_private;
  4659. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4660. struct drm_i915_gem_object *obj;
  4661. uint32_t addr;
  4662. int ret;
  4663. DRM_DEBUG_KMS("\n");
  4664. /* if we want to turn off the cursor ignore width and height */
  4665. if (!handle) {
  4666. DRM_DEBUG_KMS("cursor off\n");
  4667. addr = 0;
  4668. obj = NULL;
  4669. mutex_lock(&dev->struct_mutex);
  4670. goto finish;
  4671. }
  4672. /* Currently we only support 64x64 cursors */
  4673. if (width != 64 || height != 64) {
  4674. DRM_ERROR("we currently only support 64x64 cursors\n");
  4675. return -EINVAL;
  4676. }
  4677. obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
  4678. if (&obj->base == NULL)
  4679. return -ENOENT;
  4680. if (obj->base.size < width * height * 4) {
  4681. DRM_ERROR("buffer is to small\n");
  4682. ret = -ENOMEM;
  4683. goto fail;
  4684. }
  4685. /* we only need to pin inside GTT if cursor is non-phy */
  4686. mutex_lock(&dev->struct_mutex);
  4687. if (!dev_priv->info->cursor_needs_physical) {
  4688. if (obj->tiling_mode) {
  4689. DRM_ERROR("cursor cannot be tiled\n");
  4690. ret = -EINVAL;
  4691. goto fail_locked;
  4692. }
  4693. ret = i915_gem_object_pin_to_display_plane(obj, 0, NULL);
  4694. if (ret) {
  4695. DRM_ERROR("failed to move cursor bo into the GTT\n");
  4696. goto fail_locked;
  4697. }
  4698. ret = i915_gem_object_put_fence(obj);
  4699. if (ret) {
  4700. DRM_ERROR("failed to release fence for cursor");
  4701. goto fail_unpin;
  4702. }
  4703. addr = obj->gtt_offset;
  4704. } else {
  4705. int align = IS_I830(dev) ? 16 * 1024 : 256;
  4706. ret = i915_gem_attach_phys_object(dev, obj,
  4707. (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
  4708. align);
  4709. if (ret) {
  4710. DRM_ERROR("failed to attach phys object\n");
  4711. goto fail_locked;
  4712. }
  4713. addr = obj->phys_obj->handle->busaddr;
  4714. }
  4715. if (IS_GEN2(dev))
  4716. I915_WRITE(CURSIZE, (height << 12) | width);
  4717. finish:
  4718. if (intel_crtc->cursor_bo) {
  4719. if (dev_priv->info->cursor_needs_physical) {
  4720. if (intel_crtc->cursor_bo != obj)
  4721. i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
  4722. } else
  4723. i915_gem_object_unpin(intel_crtc->cursor_bo);
  4724. drm_gem_object_unreference(&intel_crtc->cursor_bo->base);
  4725. }
  4726. mutex_unlock(&dev->struct_mutex);
  4727. intel_crtc->cursor_addr = addr;
  4728. intel_crtc->cursor_bo = obj;
  4729. intel_crtc->cursor_width = width;
  4730. intel_crtc->cursor_height = height;
  4731. intel_crtc_update_cursor(crtc, true);
  4732. return 0;
  4733. fail_unpin:
  4734. i915_gem_object_unpin(obj);
  4735. fail_locked:
  4736. mutex_unlock(&dev->struct_mutex);
  4737. fail:
  4738. drm_gem_object_unreference_unlocked(&obj->base);
  4739. return ret;
  4740. }
  4741. static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
  4742. {
  4743. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4744. intel_crtc->cursor_x = x;
  4745. intel_crtc->cursor_y = y;
  4746. intel_crtc_update_cursor(crtc, true);
  4747. return 0;
  4748. }
  4749. /** Sets the color ramps on behalf of RandR */
  4750. void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
  4751. u16 blue, int regno)
  4752. {
  4753. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4754. intel_crtc->lut_r[regno] = red >> 8;
  4755. intel_crtc->lut_g[regno] = green >> 8;
  4756. intel_crtc->lut_b[regno] = blue >> 8;
  4757. }
  4758. void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
  4759. u16 *blue, int regno)
  4760. {
  4761. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4762. *red = intel_crtc->lut_r[regno] << 8;
  4763. *green = intel_crtc->lut_g[regno] << 8;
  4764. *blue = intel_crtc->lut_b[regno] << 8;
  4765. }
  4766. static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
  4767. u16 *blue, uint32_t start, uint32_t size)
  4768. {
  4769. int end = (start + size > 256) ? 256 : start + size, i;
  4770. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4771. for (i = start; i < end; i++) {
  4772. intel_crtc->lut_r[i] = red[i] >> 8;
  4773. intel_crtc->lut_g[i] = green[i] >> 8;
  4774. intel_crtc->lut_b[i] = blue[i] >> 8;
  4775. }
  4776. intel_crtc_load_lut(crtc);
  4777. }
  4778. /**
  4779. * Get a pipe with a simple mode set on it for doing load-based monitor
  4780. * detection.
  4781. *
  4782. * It will be up to the load-detect code to adjust the pipe as appropriate for
  4783. * its requirements. The pipe will be connected to no other encoders.
  4784. *
  4785. * Currently this code will only succeed if there is a pipe with no encoders
  4786. * configured for it. In the future, it could choose to temporarily disable
  4787. * some outputs to free up a pipe for its use.
  4788. *
  4789. * \return crtc, or NULL if no pipes are available.
  4790. */
  4791. /* VESA 640x480x72Hz mode to set on the pipe */
  4792. static struct drm_display_mode load_detect_mode = {
  4793. DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
  4794. 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
  4795. };
  4796. static struct drm_framebuffer *
  4797. intel_framebuffer_create(struct drm_device *dev,
  4798. struct drm_mode_fb_cmd2 *mode_cmd,
  4799. struct drm_i915_gem_object *obj)
  4800. {
  4801. struct intel_framebuffer *intel_fb;
  4802. int ret;
  4803. intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
  4804. if (!intel_fb) {
  4805. drm_gem_object_unreference_unlocked(&obj->base);
  4806. return ERR_PTR(-ENOMEM);
  4807. }
  4808. ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
  4809. if (ret) {
  4810. drm_gem_object_unreference_unlocked(&obj->base);
  4811. kfree(intel_fb);
  4812. return ERR_PTR(ret);
  4813. }
  4814. return &intel_fb->base;
  4815. }
  4816. static u32
  4817. intel_framebuffer_pitch_for_width(int width, int bpp)
  4818. {
  4819. u32 pitch = DIV_ROUND_UP(width * bpp, 8);
  4820. return ALIGN(pitch, 64);
  4821. }
  4822. static u32
  4823. intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
  4824. {
  4825. u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
  4826. return ALIGN(pitch * mode->vdisplay, PAGE_SIZE);
  4827. }
  4828. static struct drm_framebuffer *
  4829. intel_framebuffer_create_for_mode(struct drm_device *dev,
  4830. struct drm_display_mode *mode,
  4831. int depth, int bpp)
  4832. {
  4833. struct drm_i915_gem_object *obj;
  4834. struct drm_mode_fb_cmd2 mode_cmd;
  4835. obj = i915_gem_alloc_object(dev,
  4836. intel_framebuffer_size_for_mode(mode, bpp));
  4837. if (obj == NULL)
  4838. return ERR_PTR(-ENOMEM);
  4839. mode_cmd.width = mode->hdisplay;
  4840. mode_cmd.height = mode->vdisplay;
  4841. mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
  4842. bpp);
  4843. mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
  4844. return intel_framebuffer_create(dev, &mode_cmd, obj);
  4845. }
  4846. static struct drm_framebuffer *
  4847. mode_fits_in_fbdev(struct drm_device *dev,
  4848. struct drm_display_mode *mode)
  4849. {
  4850. struct drm_i915_private *dev_priv = dev->dev_private;
  4851. struct drm_i915_gem_object *obj;
  4852. struct drm_framebuffer *fb;
  4853. if (dev_priv->fbdev == NULL)
  4854. return NULL;
  4855. obj = dev_priv->fbdev->ifb.obj;
  4856. if (obj == NULL)
  4857. return NULL;
  4858. fb = &dev_priv->fbdev->ifb.base;
  4859. if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
  4860. fb->bits_per_pixel))
  4861. return NULL;
  4862. if (obj->base.size < mode->vdisplay * fb->pitches[0])
  4863. return NULL;
  4864. return fb;
  4865. }
  4866. bool intel_get_load_detect_pipe(struct drm_connector *connector,
  4867. struct drm_display_mode *mode,
  4868. struct intel_load_detect_pipe *old)
  4869. {
  4870. struct intel_crtc *intel_crtc;
  4871. struct intel_encoder *intel_encoder =
  4872. intel_attached_encoder(connector);
  4873. struct drm_crtc *possible_crtc;
  4874. struct drm_encoder *encoder = &intel_encoder->base;
  4875. struct drm_crtc *crtc = NULL;
  4876. struct drm_device *dev = encoder->dev;
  4877. struct drm_framebuffer *old_fb;
  4878. int i = -1;
  4879. DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  4880. connector->base.id, drm_get_connector_name(connector),
  4881. encoder->base.id, drm_get_encoder_name(encoder));
  4882. /*
  4883. * Algorithm gets a little messy:
  4884. *
  4885. * - if the connector already has an assigned crtc, use it (but make
  4886. * sure it's on first)
  4887. *
  4888. * - try to find the first unused crtc that can drive this connector,
  4889. * and use that if we find one
  4890. */
  4891. /* See if we already have a CRTC for this connector */
  4892. if (encoder->crtc) {
  4893. crtc = encoder->crtc;
  4894. old->dpms_mode = connector->dpms;
  4895. old->load_detect_temp = false;
  4896. /* Make sure the crtc and connector are running */
  4897. if (connector->dpms != DRM_MODE_DPMS_ON)
  4898. connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
  4899. return true;
  4900. }
  4901. /* Find an unused one (if possible) */
  4902. list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
  4903. i++;
  4904. if (!(encoder->possible_crtcs & (1 << i)))
  4905. continue;
  4906. if (!possible_crtc->enabled) {
  4907. crtc = possible_crtc;
  4908. break;
  4909. }
  4910. }
  4911. /*
  4912. * If we didn't find an unused CRTC, don't use any.
  4913. */
  4914. if (!crtc) {
  4915. DRM_DEBUG_KMS("no pipe available for load-detect\n");
  4916. return false;
  4917. }
  4918. encoder->crtc = crtc;
  4919. connector->encoder = encoder;
  4920. intel_crtc = to_intel_crtc(crtc);
  4921. old->dpms_mode = connector->dpms;
  4922. old->load_detect_temp = true;
  4923. old->release_fb = NULL;
  4924. if (!mode)
  4925. mode = &load_detect_mode;
  4926. old_fb = crtc->fb;
  4927. /* We need a framebuffer large enough to accommodate all accesses
  4928. * that the plane may generate whilst we perform load detection.
  4929. * We can not rely on the fbcon either being present (we get called
  4930. * during its initialisation to detect all boot displays, or it may
  4931. * not even exist) or that it is large enough to satisfy the
  4932. * requested mode.
  4933. */
  4934. crtc->fb = mode_fits_in_fbdev(dev, mode);
  4935. if (crtc->fb == NULL) {
  4936. DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
  4937. crtc->fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
  4938. old->release_fb = crtc->fb;
  4939. } else
  4940. DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
  4941. if (IS_ERR(crtc->fb)) {
  4942. DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
  4943. goto fail;
  4944. }
  4945. if (!drm_crtc_helper_set_mode(crtc, mode, 0, 0, old_fb)) {
  4946. DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
  4947. if (old->release_fb)
  4948. old->release_fb->funcs->destroy(old->release_fb);
  4949. goto fail;
  4950. }
  4951. /* let the connector get through one full cycle before testing */
  4952. intel_wait_for_vblank(dev, intel_crtc->pipe);
  4953. return true;
  4954. fail:
  4955. connector->encoder = NULL;
  4956. encoder->crtc = NULL;
  4957. crtc->fb = old_fb;
  4958. return false;
  4959. }
  4960. void intel_release_load_detect_pipe(struct drm_connector *connector,
  4961. struct intel_load_detect_pipe *old)
  4962. {
  4963. struct intel_encoder *intel_encoder =
  4964. intel_attached_encoder(connector);
  4965. struct drm_encoder *encoder = &intel_encoder->base;
  4966. struct drm_device *dev = encoder->dev;
  4967. DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
  4968. connector->base.id, drm_get_connector_name(connector),
  4969. encoder->base.id, drm_get_encoder_name(encoder));
  4970. if (old->load_detect_temp) {
  4971. connector->encoder = NULL;
  4972. encoder->crtc = NULL;
  4973. drm_helper_disable_unused_functions(dev);
  4974. if (old->release_fb)
  4975. old->release_fb->funcs->destroy(old->release_fb);
  4976. return;
  4977. }
  4978. /* Switch crtc and encoder back off if necessary */
  4979. if (old->dpms_mode != DRM_MODE_DPMS_ON)
  4980. connector->funcs->dpms(connector, old->dpms_mode);
  4981. }
  4982. /* Returns the clock of the currently programmed mode of the given pipe. */
  4983. static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
  4984. {
  4985. struct drm_i915_private *dev_priv = dev->dev_private;
  4986. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  4987. int pipe = intel_crtc->pipe;
  4988. u32 dpll = I915_READ(DPLL(pipe));
  4989. u32 fp;
  4990. intel_clock_t clock;
  4991. if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
  4992. fp = I915_READ(FP0(pipe));
  4993. else
  4994. fp = I915_READ(FP1(pipe));
  4995. clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
  4996. if (IS_PINEVIEW(dev)) {
  4997. clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
  4998. clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
  4999. } else {
  5000. clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
  5001. clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
  5002. }
  5003. if (!IS_GEN2(dev)) {
  5004. if (IS_PINEVIEW(dev))
  5005. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
  5006. DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
  5007. else
  5008. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
  5009. DPLL_FPA01_P1_POST_DIV_SHIFT);
  5010. switch (dpll & DPLL_MODE_MASK) {
  5011. case DPLLB_MODE_DAC_SERIAL:
  5012. clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
  5013. 5 : 10;
  5014. break;
  5015. case DPLLB_MODE_LVDS:
  5016. clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
  5017. 7 : 14;
  5018. break;
  5019. default:
  5020. DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
  5021. "mode\n", (int)(dpll & DPLL_MODE_MASK));
  5022. return 0;
  5023. }
  5024. /* XXX: Handle the 100Mhz refclk */
  5025. intel_clock(dev, 96000, &clock);
  5026. } else {
  5027. bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
  5028. if (is_lvds) {
  5029. clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
  5030. DPLL_FPA01_P1_POST_DIV_SHIFT);
  5031. clock.p2 = 14;
  5032. if ((dpll & PLL_REF_INPUT_MASK) ==
  5033. PLLB_REF_INPUT_SPREADSPECTRUMIN) {
  5034. /* XXX: might not be 66MHz */
  5035. intel_clock(dev, 66000, &clock);
  5036. } else
  5037. intel_clock(dev, 48000, &clock);
  5038. } else {
  5039. if (dpll & PLL_P1_DIVIDE_BY_TWO)
  5040. clock.p1 = 2;
  5041. else {
  5042. clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
  5043. DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
  5044. }
  5045. if (dpll & PLL_P2_DIVIDE_BY_4)
  5046. clock.p2 = 4;
  5047. else
  5048. clock.p2 = 2;
  5049. intel_clock(dev, 48000, &clock);
  5050. }
  5051. }
  5052. /* XXX: It would be nice to validate the clocks, but we can't reuse
  5053. * i830PllIsValid() because it relies on the xf86_config connector
  5054. * configuration being accurate, which it isn't necessarily.
  5055. */
  5056. return clock.dot;
  5057. }
  5058. /** Returns the currently programmed mode of the given pipe. */
  5059. struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
  5060. struct drm_crtc *crtc)
  5061. {
  5062. struct drm_i915_private *dev_priv = dev->dev_private;
  5063. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5064. int pipe = intel_crtc->pipe;
  5065. struct drm_display_mode *mode;
  5066. int htot = I915_READ(HTOTAL(pipe));
  5067. int hsync = I915_READ(HSYNC(pipe));
  5068. int vtot = I915_READ(VTOTAL(pipe));
  5069. int vsync = I915_READ(VSYNC(pipe));
  5070. mode = kzalloc(sizeof(*mode), GFP_KERNEL);
  5071. if (!mode)
  5072. return NULL;
  5073. mode->clock = intel_crtc_clock_get(dev, crtc);
  5074. mode->hdisplay = (htot & 0xffff) + 1;
  5075. mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
  5076. mode->hsync_start = (hsync & 0xffff) + 1;
  5077. mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
  5078. mode->vdisplay = (vtot & 0xffff) + 1;
  5079. mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
  5080. mode->vsync_start = (vsync & 0xffff) + 1;
  5081. mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
  5082. drm_mode_set_name(mode);
  5083. return mode;
  5084. }
  5085. static void intel_increase_pllclock(struct drm_crtc *crtc)
  5086. {
  5087. struct drm_device *dev = crtc->dev;
  5088. drm_i915_private_t *dev_priv = dev->dev_private;
  5089. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5090. int pipe = intel_crtc->pipe;
  5091. int dpll_reg = DPLL(pipe);
  5092. int dpll;
  5093. if (HAS_PCH_SPLIT(dev))
  5094. return;
  5095. if (!dev_priv->lvds_downclock_avail)
  5096. return;
  5097. dpll = I915_READ(dpll_reg);
  5098. if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
  5099. DRM_DEBUG_DRIVER("upclocking LVDS\n");
  5100. assert_panel_unlocked(dev_priv, pipe);
  5101. dpll &= ~DISPLAY_RATE_SELECT_FPA1;
  5102. I915_WRITE(dpll_reg, dpll);
  5103. intel_wait_for_vblank(dev, pipe);
  5104. dpll = I915_READ(dpll_reg);
  5105. if (dpll & DISPLAY_RATE_SELECT_FPA1)
  5106. DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
  5107. }
  5108. }
  5109. static void intel_decrease_pllclock(struct drm_crtc *crtc)
  5110. {
  5111. struct drm_device *dev = crtc->dev;
  5112. drm_i915_private_t *dev_priv = dev->dev_private;
  5113. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5114. if (HAS_PCH_SPLIT(dev))
  5115. return;
  5116. if (!dev_priv->lvds_downclock_avail)
  5117. return;
  5118. /*
  5119. * Since this is called by a timer, we should never get here in
  5120. * the manual case.
  5121. */
  5122. if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
  5123. int pipe = intel_crtc->pipe;
  5124. int dpll_reg = DPLL(pipe);
  5125. int dpll;
  5126. DRM_DEBUG_DRIVER("downclocking LVDS\n");
  5127. assert_panel_unlocked(dev_priv, pipe);
  5128. dpll = I915_READ(dpll_reg);
  5129. dpll |= DISPLAY_RATE_SELECT_FPA1;
  5130. I915_WRITE(dpll_reg, dpll);
  5131. intel_wait_for_vblank(dev, pipe);
  5132. dpll = I915_READ(dpll_reg);
  5133. if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
  5134. DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
  5135. }
  5136. }
  5137. void intel_mark_busy(struct drm_device *dev)
  5138. {
  5139. i915_update_gfx_val(dev->dev_private);
  5140. }
  5141. void intel_mark_idle(struct drm_device *dev)
  5142. {
  5143. }
  5144. void intel_mark_fb_busy(struct drm_i915_gem_object *obj)
  5145. {
  5146. struct drm_device *dev = obj->base.dev;
  5147. struct drm_crtc *crtc;
  5148. if (!i915_powersave)
  5149. return;
  5150. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  5151. if (!crtc->fb)
  5152. continue;
  5153. if (to_intel_framebuffer(crtc->fb)->obj == obj)
  5154. intel_increase_pllclock(crtc);
  5155. }
  5156. }
  5157. void intel_mark_fb_idle(struct drm_i915_gem_object *obj)
  5158. {
  5159. struct drm_device *dev = obj->base.dev;
  5160. struct drm_crtc *crtc;
  5161. if (!i915_powersave)
  5162. return;
  5163. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  5164. if (!crtc->fb)
  5165. continue;
  5166. if (to_intel_framebuffer(crtc->fb)->obj == obj)
  5167. intel_decrease_pllclock(crtc);
  5168. }
  5169. }
  5170. static void intel_crtc_destroy(struct drm_crtc *crtc)
  5171. {
  5172. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5173. struct drm_device *dev = crtc->dev;
  5174. struct intel_unpin_work *work;
  5175. unsigned long flags;
  5176. spin_lock_irqsave(&dev->event_lock, flags);
  5177. work = intel_crtc->unpin_work;
  5178. intel_crtc->unpin_work = NULL;
  5179. spin_unlock_irqrestore(&dev->event_lock, flags);
  5180. if (work) {
  5181. cancel_work_sync(&work->work);
  5182. kfree(work);
  5183. }
  5184. drm_crtc_cleanup(crtc);
  5185. kfree(intel_crtc);
  5186. }
  5187. static void intel_unpin_work_fn(struct work_struct *__work)
  5188. {
  5189. struct intel_unpin_work *work =
  5190. container_of(__work, struct intel_unpin_work, work);
  5191. mutex_lock(&work->dev->struct_mutex);
  5192. intel_unpin_fb_obj(work->old_fb_obj);
  5193. drm_gem_object_unreference(&work->pending_flip_obj->base);
  5194. drm_gem_object_unreference(&work->old_fb_obj->base);
  5195. intel_update_fbc(work->dev);
  5196. mutex_unlock(&work->dev->struct_mutex);
  5197. kfree(work);
  5198. }
  5199. static void do_intel_finish_page_flip(struct drm_device *dev,
  5200. struct drm_crtc *crtc)
  5201. {
  5202. drm_i915_private_t *dev_priv = dev->dev_private;
  5203. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5204. struct intel_unpin_work *work;
  5205. struct drm_i915_gem_object *obj;
  5206. struct drm_pending_vblank_event *e;
  5207. struct timeval tnow, tvbl;
  5208. unsigned long flags;
  5209. /* Ignore early vblank irqs */
  5210. if (intel_crtc == NULL)
  5211. return;
  5212. do_gettimeofday(&tnow);
  5213. spin_lock_irqsave(&dev->event_lock, flags);
  5214. work = intel_crtc->unpin_work;
  5215. if (work == NULL || !work->pending) {
  5216. spin_unlock_irqrestore(&dev->event_lock, flags);
  5217. return;
  5218. }
  5219. intel_crtc->unpin_work = NULL;
  5220. if (work->event) {
  5221. e = work->event;
  5222. e->event.sequence = drm_vblank_count_and_time(dev, intel_crtc->pipe, &tvbl);
  5223. /* Called before vblank count and timestamps have
  5224. * been updated for the vblank interval of flip
  5225. * completion? Need to increment vblank count and
  5226. * add one videorefresh duration to returned timestamp
  5227. * to account for this. We assume this happened if we
  5228. * get called over 0.9 frame durations after the last
  5229. * timestamped vblank.
  5230. *
  5231. * This calculation can not be used with vrefresh rates
  5232. * below 5Hz (10Hz to be on the safe side) without
  5233. * promoting to 64 integers.
  5234. */
  5235. if (10 * (timeval_to_ns(&tnow) - timeval_to_ns(&tvbl)) >
  5236. 9 * crtc->framedur_ns) {
  5237. e->event.sequence++;
  5238. tvbl = ns_to_timeval(timeval_to_ns(&tvbl) +
  5239. crtc->framedur_ns);
  5240. }
  5241. e->event.tv_sec = tvbl.tv_sec;
  5242. e->event.tv_usec = tvbl.tv_usec;
  5243. list_add_tail(&e->base.link,
  5244. &e->base.file_priv->event_list);
  5245. wake_up_interruptible(&e->base.file_priv->event_wait);
  5246. }
  5247. drm_vblank_put(dev, intel_crtc->pipe);
  5248. spin_unlock_irqrestore(&dev->event_lock, flags);
  5249. obj = work->old_fb_obj;
  5250. atomic_clear_mask(1 << intel_crtc->plane,
  5251. &obj->pending_flip.counter);
  5252. if (atomic_read(&obj->pending_flip) == 0)
  5253. wake_up(&dev_priv->pending_flip_queue);
  5254. schedule_work(&work->work);
  5255. trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
  5256. }
  5257. void intel_finish_page_flip(struct drm_device *dev, int pipe)
  5258. {
  5259. drm_i915_private_t *dev_priv = dev->dev_private;
  5260. struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
  5261. do_intel_finish_page_flip(dev, crtc);
  5262. }
  5263. void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
  5264. {
  5265. drm_i915_private_t *dev_priv = dev->dev_private;
  5266. struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
  5267. do_intel_finish_page_flip(dev, crtc);
  5268. }
  5269. void intel_prepare_page_flip(struct drm_device *dev, int plane)
  5270. {
  5271. drm_i915_private_t *dev_priv = dev->dev_private;
  5272. struct intel_crtc *intel_crtc =
  5273. to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
  5274. unsigned long flags;
  5275. spin_lock_irqsave(&dev->event_lock, flags);
  5276. if (intel_crtc->unpin_work) {
  5277. if ((++intel_crtc->unpin_work->pending) > 1)
  5278. DRM_ERROR("Prepared flip multiple times\n");
  5279. } else {
  5280. DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
  5281. }
  5282. spin_unlock_irqrestore(&dev->event_lock, flags);
  5283. }
  5284. static int intel_gen2_queue_flip(struct drm_device *dev,
  5285. struct drm_crtc *crtc,
  5286. struct drm_framebuffer *fb,
  5287. struct drm_i915_gem_object *obj)
  5288. {
  5289. struct drm_i915_private *dev_priv = dev->dev_private;
  5290. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5291. u32 flip_mask;
  5292. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  5293. int ret;
  5294. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  5295. if (ret)
  5296. goto err;
  5297. ret = intel_ring_begin(ring, 6);
  5298. if (ret)
  5299. goto err_unpin;
  5300. /* Can't queue multiple flips, so wait for the previous
  5301. * one to finish before executing the next.
  5302. */
  5303. if (intel_crtc->plane)
  5304. flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
  5305. else
  5306. flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
  5307. intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
  5308. intel_ring_emit(ring, MI_NOOP);
  5309. intel_ring_emit(ring, MI_DISPLAY_FLIP |
  5310. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  5311. intel_ring_emit(ring, fb->pitches[0]);
  5312. intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
  5313. intel_ring_emit(ring, 0); /* aux display base address, unused */
  5314. intel_ring_advance(ring);
  5315. return 0;
  5316. err_unpin:
  5317. intel_unpin_fb_obj(obj);
  5318. err:
  5319. return ret;
  5320. }
  5321. static int intel_gen3_queue_flip(struct drm_device *dev,
  5322. struct drm_crtc *crtc,
  5323. struct drm_framebuffer *fb,
  5324. struct drm_i915_gem_object *obj)
  5325. {
  5326. struct drm_i915_private *dev_priv = dev->dev_private;
  5327. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5328. u32 flip_mask;
  5329. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  5330. int ret;
  5331. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  5332. if (ret)
  5333. goto err;
  5334. ret = intel_ring_begin(ring, 6);
  5335. if (ret)
  5336. goto err_unpin;
  5337. if (intel_crtc->plane)
  5338. flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
  5339. else
  5340. flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
  5341. intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
  5342. intel_ring_emit(ring, MI_NOOP);
  5343. intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
  5344. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  5345. intel_ring_emit(ring, fb->pitches[0]);
  5346. intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
  5347. intel_ring_emit(ring, MI_NOOP);
  5348. intel_ring_advance(ring);
  5349. return 0;
  5350. err_unpin:
  5351. intel_unpin_fb_obj(obj);
  5352. err:
  5353. return ret;
  5354. }
  5355. static int intel_gen4_queue_flip(struct drm_device *dev,
  5356. struct drm_crtc *crtc,
  5357. struct drm_framebuffer *fb,
  5358. struct drm_i915_gem_object *obj)
  5359. {
  5360. struct drm_i915_private *dev_priv = dev->dev_private;
  5361. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5362. uint32_t pf, pipesrc;
  5363. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  5364. int ret;
  5365. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  5366. if (ret)
  5367. goto err;
  5368. ret = intel_ring_begin(ring, 4);
  5369. if (ret)
  5370. goto err_unpin;
  5371. /* i965+ uses the linear or tiled offsets from the
  5372. * Display Registers (which do not change across a page-flip)
  5373. * so we need only reprogram the base address.
  5374. */
  5375. intel_ring_emit(ring, MI_DISPLAY_FLIP |
  5376. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  5377. intel_ring_emit(ring, fb->pitches[0]);
  5378. intel_ring_emit(ring,
  5379. (obj->gtt_offset + intel_crtc->dspaddr_offset) |
  5380. obj->tiling_mode);
  5381. /* XXX Enabling the panel-fitter across page-flip is so far
  5382. * untested on non-native modes, so ignore it for now.
  5383. * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
  5384. */
  5385. pf = 0;
  5386. pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
  5387. intel_ring_emit(ring, pf | pipesrc);
  5388. intel_ring_advance(ring);
  5389. return 0;
  5390. err_unpin:
  5391. intel_unpin_fb_obj(obj);
  5392. err:
  5393. return ret;
  5394. }
  5395. static int intel_gen6_queue_flip(struct drm_device *dev,
  5396. struct drm_crtc *crtc,
  5397. struct drm_framebuffer *fb,
  5398. struct drm_i915_gem_object *obj)
  5399. {
  5400. struct drm_i915_private *dev_priv = dev->dev_private;
  5401. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5402. struct intel_ring_buffer *ring = &dev_priv->ring[RCS];
  5403. uint32_t pf, pipesrc;
  5404. int ret;
  5405. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  5406. if (ret)
  5407. goto err;
  5408. ret = intel_ring_begin(ring, 4);
  5409. if (ret)
  5410. goto err_unpin;
  5411. intel_ring_emit(ring, MI_DISPLAY_FLIP |
  5412. MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
  5413. intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
  5414. intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
  5415. /* Contrary to the suggestions in the documentation,
  5416. * "Enable Panel Fitter" does not seem to be required when page
  5417. * flipping with a non-native mode, and worse causes a normal
  5418. * modeset to fail.
  5419. * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
  5420. */
  5421. pf = 0;
  5422. pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
  5423. intel_ring_emit(ring, pf | pipesrc);
  5424. intel_ring_advance(ring);
  5425. return 0;
  5426. err_unpin:
  5427. intel_unpin_fb_obj(obj);
  5428. err:
  5429. return ret;
  5430. }
  5431. /*
  5432. * On gen7 we currently use the blit ring because (in early silicon at least)
  5433. * the render ring doesn't give us interrpts for page flip completion, which
  5434. * means clients will hang after the first flip is queued. Fortunately the
  5435. * blit ring generates interrupts properly, so use it instead.
  5436. */
  5437. static int intel_gen7_queue_flip(struct drm_device *dev,
  5438. struct drm_crtc *crtc,
  5439. struct drm_framebuffer *fb,
  5440. struct drm_i915_gem_object *obj)
  5441. {
  5442. struct drm_i915_private *dev_priv = dev->dev_private;
  5443. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5444. struct intel_ring_buffer *ring = &dev_priv->ring[BCS];
  5445. uint32_t plane_bit = 0;
  5446. int ret;
  5447. ret = intel_pin_and_fence_fb_obj(dev, obj, ring);
  5448. if (ret)
  5449. goto err;
  5450. switch(intel_crtc->plane) {
  5451. case PLANE_A:
  5452. plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
  5453. break;
  5454. case PLANE_B:
  5455. plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
  5456. break;
  5457. case PLANE_C:
  5458. plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
  5459. break;
  5460. default:
  5461. WARN_ONCE(1, "unknown plane in flip command\n");
  5462. ret = -ENODEV;
  5463. goto err_unpin;
  5464. }
  5465. ret = intel_ring_begin(ring, 4);
  5466. if (ret)
  5467. goto err_unpin;
  5468. intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
  5469. intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
  5470. intel_ring_emit(ring, obj->gtt_offset + intel_crtc->dspaddr_offset);
  5471. intel_ring_emit(ring, (MI_NOOP));
  5472. intel_ring_advance(ring);
  5473. return 0;
  5474. err_unpin:
  5475. intel_unpin_fb_obj(obj);
  5476. err:
  5477. return ret;
  5478. }
  5479. static int intel_default_queue_flip(struct drm_device *dev,
  5480. struct drm_crtc *crtc,
  5481. struct drm_framebuffer *fb,
  5482. struct drm_i915_gem_object *obj)
  5483. {
  5484. return -ENODEV;
  5485. }
  5486. static int intel_crtc_page_flip(struct drm_crtc *crtc,
  5487. struct drm_framebuffer *fb,
  5488. struct drm_pending_vblank_event *event)
  5489. {
  5490. struct drm_device *dev = crtc->dev;
  5491. struct drm_i915_private *dev_priv = dev->dev_private;
  5492. struct intel_framebuffer *intel_fb;
  5493. struct drm_i915_gem_object *obj;
  5494. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5495. struct intel_unpin_work *work;
  5496. unsigned long flags;
  5497. int ret;
  5498. /* Can't change pixel format via MI display flips. */
  5499. if (fb->pixel_format != crtc->fb->pixel_format)
  5500. return -EINVAL;
  5501. /*
  5502. * TILEOFF/LINOFF registers can't be changed via MI display flips.
  5503. * Note that pitch changes could also affect these register.
  5504. */
  5505. if (INTEL_INFO(dev)->gen > 3 &&
  5506. (fb->offsets[0] != crtc->fb->offsets[0] ||
  5507. fb->pitches[0] != crtc->fb->pitches[0]))
  5508. return -EINVAL;
  5509. work = kzalloc(sizeof *work, GFP_KERNEL);
  5510. if (work == NULL)
  5511. return -ENOMEM;
  5512. work->event = event;
  5513. work->dev = crtc->dev;
  5514. intel_fb = to_intel_framebuffer(crtc->fb);
  5515. work->old_fb_obj = intel_fb->obj;
  5516. INIT_WORK(&work->work, intel_unpin_work_fn);
  5517. ret = drm_vblank_get(dev, intel_crtc->pipe);
  5518. if (ret)
  5519. goto free_work;
  5520. /* We borrow the event spin lock for protecting unpin_work */
  5521. spin_lock_irqsave(&dev->event_lock, flags);
  5522. if (intel_crtc->unpin_work) {
  5523. spin_unlock_irqrestore(&dev->event_lock, flags);
  5524. kfree(work);
  5525. drm_vblank_put(dev, intel_crtc->pipe);
  5526. DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
  5527. return -EBUSY;
  5528. }
  5529. intel_crtc->unpin_work = work;
  5530. spin_unlock_irqrestore(&dev->event_lock, flags);
  5531. intel_fb = to_intel_framebuffer(fb);
  5532. obj = intel_fb->obj;
  5533. ret = i915_mutex_lock_interruptible(dev);
  5534. if (ret)
  5535. goto cleanup;
  5536. /* Reference the objects for the scheduled work. */
  5537. drm_gem_object_reference(&work->old_fb_obj->base);
  5538. drm_gem_object_reference(&obj->base);
  5539. crtc->fb = fb;
  5540. work->pending_flip_obj = obj;
  5541. work->enable_stall_check = true;
  5542. /* Block clients from rendering to the new back buffer until
  5543. * the flip occurs and the object is no longer visible.
  5544. */
  5545. atomic_add(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
  5546. ret = dev_priv->display.queue_flip(dev, crtc, fb, obj);
  5547. if (ret)
  5548. goto cleanup_pending;
  5549. intel_disable_fbc(dev);
  5550. intel_mark_fb_busy(obj);
  5551. mutex_unlock(&dev->struct_mutex);
  5552. trace_i915_flip_request(intel_crtc->plane, obj);
  5553. return 0;
  5554. cleanup_pending:
  5555. atomic_sub(1 << intel_crtc->plane, &work->old_fb_obj->pending_flip);
  5556. drm_gem_object_unreference(&work->old_fb_obj->base);
  5557. drm_gem_object_unreference(&obj->base);
  5558. mutex_unlock(&dev->struct_mutex);
  5559. cleanup:
  5560. spin_lock_irqsave(&dev->event_lock, flags);
  5561. intel_crtc->unpin_work = NULL;
  5562. spin_unlock_irqrestore(&dev->event_lock, flags);
  5563. drm_vblank_put(dev, intel_crtc->pipe);
  5564. free_work:
  5565. kfree(work);
  5566. return ret;
  5567. }
  5568. static void intel_sanitize_modesetting(struct drm_device *dev,
  5569. int pipe, int plane)
  5570. {
  5571. struct drm_i915_private *dev_priv = dev->dev_private;
  5572. u32 reg, val;
  5573. int i;
  5574. /* Clear any frame start delays used for debugging left by the BIOS */
  5575. for_each_pipe(i) {
  5576. reg = PIPECONF(i);
  5577. I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
  5578. }
  5579. if (HAS_PCH_SPLIT(dev))
  5580. return;
  5581. /* Who knows what state these registers were left in by the BIOS or
  5582. * grub?
  5583. *
  5584. * If we leave the registers in a conflicting state (e.g. with the
  5585. * display plane reading from the other pipe than the one we intend
  5586. * to use) then when we attempt to teardown the active mode, we will
  5587. * not disable the pipes and planes in the correct order -- leaving
  5588. * a plane reading from a disabled pipe and possibly leading to
  5589. * undefined behaviour.
  5590. */
  5591. reg = DSPCNTR(plane);
  5592. val = I915_READ(reg);
  5593. if ((val & DISPLAY_PLANE_ENABLE) == 0)
  5594. return;
  5595. if (!!(val & DISPPLANE_SEL_PIPE_MASK) == pipe)
  5596. return;
  5597. /* This display plane is active and attached to the other CPU pipe. */
  5598. pipe = !pipe;
  5599. /* Disable the plane and wait for it to stop reading from the pipe. */
  5600. intel_disable_plane(dev_priv, plane, pipe);
  5601. intel_disable_pipe(dev_priv, pipe);
  5602. }
  5603. static void intel_crtc_reset(struct drm_crtc *crtc)
  5604. {
  5605. struct drm_device *dev = crtc->dev;
  5606. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  5607. /* Reset flags back to the 'unknown' status so that they
  5608. * will be correctly set on the initial modeset.
  5609. */
  5610. intel_crtc->dpms_mode = -1;
  5611. /* We need to fix up any BIOS configuration that conflicts with
  5612. * our expectations.
  5613. */
  5614. intel_sanitize_modesetting(dev, intel_crtc->pipe, intel_crtc->plane);
  5615. }
  5616. static struct drm_crtc_helper_funcs intel_helper_funcs = {
  5617. .mode_fixup = intel_crtc_mode_fixup,
  5618. .mode_set = intel_crtc_mode_set,
  5619. .mode_set_base = intel_pipe_set_base,
  5620. .mode_set_base_atomic = intel_pipe_set_base_atomic,
  5621. .load_lut = intel_crtc_load_lut,
  5622. .disable = intel_crtc_disable,
  5623. };
  5624. static bool intel_encoder_crtc_ok(struct drm_encoder *encoder,
  5625. struct drm_crtc *crtc)
  5626. {
  5627. struct drm_device *dev;
  5628. struct drm_crtc *tmp;
  5629. int crtc_mask = 1;
  5630. WARN(!crtc, "checking null crtc?\n");
  5631. dev = crtc->dev;
  5632. list_for_each_entry(tmp, &dev->mode_config.crtc_list, head) {
  5633. if (tmp == crtc)
  5634. break;
  5635. crtc_mask <<= 1;
  5636. }
  5637. if (encoder->possible_crtcs & crtc_mask)
  5638. return true;
  5639. return false;
  5640. }
  5641. static int
  5642. intel_crtc_helper_disable(struct drm_crtc *crtc)
  5643. {
  5644. struct drm_device *dev = crtc->dev;
  5645. struct drm_connector *connector;
  5646. struct drm_encoder *encoder;
  5647. /* Decouple all encoders and their attached connectors from this crtc */
  5648. list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
  5649. if (encoder->crtc != crtc)
  5650. continue;
  5651. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  5652. if (connector->encoder != encoder)
  5653. continue;
  5654. connector->encoder = NULL;
  5655. }
  5656. }
  5657. drm_helper_disable_unused_functions(dev);
  5658. return 0;
  5659. }
  5660. static int intel_crtc_set_config(struct drm_mode_set *set)
  5661. {
  5662. struct drm_device *dev;
  5663. struct drm_crtc *save_crtcs, *new_crtc, *crtc;
  5664. struct drm_encoder *save_encoders, *new_encoder, *encoder;
  5665. struct drm_framebuffer *old_fb = NULL;
  5666. bool mode_changed = false; /* if true do a full mode set */
  5667. bool fb_changed = false; /* if true and !mode_changed just do a flip */
  5668. struct drm_connector *save_connectors, *connector;
  5669. int count = 0, ro, fail = 0;
  5670. struct drm_crtc_helper_funcs *crtc_funcs;
  5671. struct drm_mode_set save_set;
  5672. int ret;
  5673. int i;
  5674. DRM_DEBUG_KMS("\n");
  5675. if (!set)
  5676. return -EINVAL;
  5677. if (!set->crtc)
  5678. return -EINVAL;
  5679. if (!set->crtc->helper_private)
  5680. return -EINVAL;
  5681. crtc_funcs = set->crtc->helper_private;
  5682. if (!set->mode)
  5683. set->fb = NULL;
  5684. if (set->fb) {
  5685. DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
  5686. set->crtc->base.id, set->fb->base.id,
  5687. (int)set->num_connectors, set->x, set->y);
  5688. } else {
  5689. DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
  5690. return intel_crtc_helper_disable(set->crtc);
  5691. }
  5692. dev = set->crtc->dev;
  5693. /* Allocate space for the backup of all (non-pointer) crtc, encoder and
  5694. * connector data. */
  5695. save_crtcs = kzalloc(dev->mode_config.num_crtc *
  5696. sizeof(struct drm_crtc), GFP_KERNEL);
  5697. if (!save_crtcs)
  5698. return -ENOMEM;
  5699. save_encoders = kzalloc(dev->mode_config.num_encoder *
  5700. sizeof(struct drm_encoder), GFP_KERNEL);
  5701. if (!save_encoders) {
  5702. kfree(save_crtcs);
  5703. return -ENOMEM;
  5704. }
  5705. save_connectors = kzalloc(dev->mode_config.num_connector *
  5706. sizeof(struct drm_connector), GFP_KERNEL);
  5707. if (!save_connectors) {
  5708. kfree(save_crtcs);
  5709. kfree(save_encoders);
  5710. return -ENOMEM;
  5711. }
  5712. /* Copy data. Note that driver private data is not affected.
  5713. * Should anything bad happen only the expected state is
  5714. * restored, not the drivers personal bookkeeping.
  5715. */
  5716. count = 0;
  5717. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  5718. save_crtcs[count++] = *crtc;
  5719. }
  5720. count = 0;
  5721. list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
  5722. save_encoders[count++] = *encoder;
  5723. }
  5724. count = 0;
  5725. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  5726. save_connectors[count++] = *connector;
  5727. }
  5728. save_set.crtc = set->crtc;
  5729. save_set.mode = &set->crtc->mode;
  5730. save_set.x = set->crtc->x;
  5731. save_set.y = set->crtc->y;
  5732. save_set.fb = set->crtc->fb;
  5733. /* We should be able to check here if the fb has the same properties
  5734. * and then just flip_or_move it */
  5735. if (set->crtc->fb != set->fb) {
  5736. /* If we have no fb then treat it as a full mode set */
  5737. if (set->crtc->fb == NULL) {
  5738. DRM_DEBUG_KMS("crtc has no fb, full mode set\n");
  5739. mode_changed = true;
  5740. } else if (set->fb == NULL) {
  5741. mode_changed = true;
  5742. } else if (set->fb->depth != set->crtc->fb->depth) {
  5743. mode_changed = true;
  5744. } else if (set->fb->bits_per_pixel !=
  5745. set->crtc->fb->bits_per_pixel) {
  5746. mode_changed = true;
  5747. } else
  5748. fb_changed = true;
  5749. }
  5750. if (set->x != set->crtc->x || set->y != set->crtc->y)
  5751. fb_changed = true;
  5752. if (set->mode && !drm_mode_equal(set->mode, &set->crtc->mode)) {
  5753. DRM_DEBUG_KMS("modes are different, full mode set\n");
  5754. drm_mode_debug_printmodeline(&set->crtc->mode);
  5755. drm_mode_debug_printmodeline(set->mode);
  5756. mode_changed = true;
  5757. }
  5758. /* a) traverse passed in connector list and get encoders for them */
  5759. count = 0;
  5760. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  5761. struct drm_connector_helper_funcs *connector_funcs =
  5762. connector->helper_private;
  5763. new_encoder = connector->encoder;
  5764. for (ro = 0; ro < set->num_connectors; ro++) {
  5765. if (set->connectors[ro] == connector) {
  5766. new_encoder = connector_funcs->best_encoder(connector);
  5767. /* if we can't get an encoder for a connector
  5768. we are setting now - then fail */
  5769. if (new_encoder == NULL)
  5770. /* don't break so fail path works correct */
  5771. fail = 1;
  5772. break;
  5773. }
  5774. }
  5775. if (new_encoder != connector->encoder) {
  5776. DRM_DEBUG_KMS("encoder changed, full mode switch\n");
  5777. mode_changed = true;
  5778. /* If the encoder is reused for another connector, then
  5779. * the appropriate crtc will be set later.
  5780. */
  5781. if (connector->encoder)
  5782. connector->encoder->crtc = NULL;
  5783. connector->encoder = new_encoder;
  5784. }
  5785. }
  5786. if (fail) {
  5787. ret = -EINVAL;
  5788. goto fail;
  5789. }
  5790. count = 0;
  5791. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  5792. if (!connector->encoder)
  5793. continue;
  5794. if (connector->encoder->crtc == set->crtc)
  5795. new_crtc = NULL;
  5796. else
  5797. new_crtc = connector->encoder->crtc;
  5798. for (ro = 0; ro < set->num_connectors; ro++) {
  5799. if (set->connectors[ro] == connector)
  5800. new_crtc = set->crtc;
  5801. }
  5802. /* Make sure the new CRTC will work with the encoder */
  5803. if (new_crtc &&
  5804. !intel_encoder_crtc_ok(connector->encoder, new_crtc)) {
  5805. ret = -EINVAL;
  5806. goto fail;
  5807. }
  5808. if (new_crtc != connector->encoder->crtc) {
  5809. DRM_DEBUG_KMS("crtc changed, full mode switch\n");
  5810. mode_changed = true;
  5811. connector->encoder->crtc = new_crtc;
  5812. }
  5813. if (new_crtc) {
  5814. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
  5815. connector->base.id, drm_get_connector_name(connector),
  5816. new_crtc->base.id);
  5817. } else {
  5818. DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
  5819. connector->base.id, drm_get_connector_name(connector));
  5820. }
  5821. }
  5822. /* mode_set_base is not a required function */
  5823. if (fb_changed && !crtc_funcs->mode_set_base)
  5824. mode_changed = true;
  5825. if (mode_changed) {
  5826. set->crtc->enabled = drm_helper_crtc_in_use(set->crtc);
  5827. if (set->crtc->enabled) {
  5828. DRM_DEBUG_KMS("attempting to set mode from"
  5829. " userspace\n");
  5830. drm_mode_debug_printmodeline(set->mode);
  5831. old_fb = set->crtc->fb;
  5832. set->crtc->fb = set->fb;
  5833. if (!drm_crtc_helper_set_mode(set->crtc, set->mode,
  5834. set->x, set->y,
  5835. old_fb)) {
  5836. DRM_ERROR("failed to set mode on [CRTC:%d]\n",
  5837. set->crtc->base.id);
  5838. set->crtc->fb = old_fb;
  5839. ret = -EINVAL;
  5840. goto fail;
  5841. }
  5842. DRM_DEBUG_KMS("Setting connector DPMS state to on\n");
  5843. for (i = 0; i < set->num_connectors; i++) {
  5844. DRM_DEBUG_KMS("\t[CONNECTOR:%d:%s] set DPMS on\n", set->connectors[i]->base.id,
  5845. drm_get_connector_name(set->connectors[i]));
  5846. set->connectors[i]->funcs->dpms(set->connectors[i], DRM_MODE_DPMS_ON);
  5847. }
  5848. }
  5849. drm_helper_disable_unused_functions(dev);
  5850. } else if (fb_changed) {
  5851. set->crtc->x = set->x;
  5852. set->crtc->y = set->y;
  5853. old_fb = set->crtc->fb;
  5854. if (set->crtc->fb != set->fb)
  5855. set->crtc->fb = set->fb;
  5856. ret = crtc_funcs->mode_set_base(set->crtc,
  5857. set->x, set->y, old_fb);
  5858. if (ret != 0) {
  5859. set->crtc->fb = old_fb;
  5860. goto fail;
  5861. }
  5862. }
  5863. kfree(save_connectors);
  5864. kfree(save_encoders);
  5865. kfree(save_crtcs);
  5866. return 0;
  5867. fail:
  5868. /* Restore all previous data. */
  5869. count = 0;
  5870. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  5871. *crtc = save_crtcs[count++];
  5872. }
  5873. count = 0;
  5874. list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
  5875. *encoder = save_encoders[count++];
  5876. }
  5877. count = 0;
  5878. list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
  5879. *connector = save_connectors[count++];
  5880. }
  5881. /* Try to restore the config */
  5882. if (mode_changed &&
  5883. !drm_crtc_helper_set_mode(save_set.crtc, save_set.mode, save_set.x,
  5884. save_set.y, save_set.fb))
  5885. DRM_ERROR("failed to restore config after modeset failure\n");
  5886. kfree(save_connectors);
  5887. kfree(save_encoders);
  5888. kfree(save_crtcs);
  5889. return ret;
  5890. }
  5891. static const struct drm_crtc_funcs intel_crtc_funcs = {
  5892. .reset = intel_crtc_reset,
  5893. .cursor_set = intel_crtc_cursor_set,
  5894. .cursor_move = intel_crtc_cursor_move,
  5895. .gamma_set = intel_crtc_gamma_set,
  5896. .set_config = intel_crtc_set_config,
  5897. .destroy = intel_crtc_destroy,
  5898. .page_flip = intel_crtc_page_flip,
  5899. };
  5900. static void intel_pch_pll_init(struct drm_device *dev)
  5901. {
  5902. drm_i915_private_t *dev_priv = dev->dev_private;
  5903. int i;
  5904. if (dev_priv->num_pch_pll == 0) {
  5905. DRM_DEBUG_KMS("No PCH PLLs on this hardware, skipping initialisation\n");
  5906. return;
  5907. }
  5908. for (i = 0; i < dev_priv->num_pch_pll; i++) {
  5909. dev_priv->pch_plls[i].pll_reg = _PCH_DPLL(i);
  5910. dev_priv->pch_plls[i].fp0_reg = _PCH_FP0(i);
  5911. dev_priv->pch_plls[i].fp1_reg = _PCH_FP1(i);
  5912. }
  5913. }
  5914. static void intel_crtc_init(struct drm_device *dev, int pipe)
  5915. {
  5916. drm_i915_private_t *dev_priv = dev->dev_private;
  5917. struct intel_crtc *intel_crtc;
  5918. int i;
  5919. intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
  5920. if (intel_crtc == NULL)
  5921. return;
  5922. drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
  5923. drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
  5924. for (i = 0; i < 256; i++) {
  5925. intel_crtc->lut_r[i] = i;
  5926. intel_crtc->lut_g[i] = i;
  5927. intel_crtc->lut_b[i] = i;
  5928. }
  5929. /* Swap pipes & planes for FBC on pre-965 */
  5930. intel_crtc->pipe = pipe;
  5931. intel_crtc->plane = pipe;
  5932. if (IS_MOBILE(dev) && IS_GEN3(dev)) {
  5933. DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
  5934. intel_crtc->plane = !pipe;
  5935. }
  5936. BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
  5937. dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
  5938. dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
  5939. dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
  5940. intel_crtc_reset(&intel_crtc->base);
  5941. intel_crtc->active = true; /* force the pipe off on setup_init_config */
  5942. intel_crtc->bpp = 24; /* default for pre-Ironlake */
  5943. intel_helper_funcs.prepare = dev_priv->display.crtc_disable;
  5944. intel_helper_funcs.commit = dev_priv->display.crtc_enable;
  5945. drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
  5946. }
  5947. int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
  5948. struct drm_file *file)
  5949. {
  5950. struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
  5951. struct drm_mode_object *drmmode_obj;
  5952. struct intel_crtc *crtc;
  5953. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  5954. return -ENODEV;
  5955. drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
  5956. DRM_MODE_OBJECT_CRTC);
  5957. if (!drmmode_obj) {
  5958. DRM_ERROR("no such CRTC id\n");
  5959. return -EINVAL;
  5960. }
  5961. crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
  5962. pipe_from_crtc_id->pipe = crtc->pipe;
  5963. return 0;
  5964. }
  5965. static int intel_encoder_clones(struct intel_encoder *encoder)
  5966. {
  5967. struct drm_device *dev = encoder->base.dev;
  5968. struct intel_encoder *source_encoder;
  5969. int index_mask = 0;
  5970. int entry = 0;
  5971. list_for_each_entry(source_encoder,
  5972. &dev->mode_config.encoder_list, base.head) {
  5973. if (encoder == source_encoder)
  5974. index_mask |= (1 << entry);
  5975. /* Intel hw has only one MUX where enocoders could be cloned. */
  5976. if (encoder->cloneable && source_encoder->cloneable)
  5977. index_mask |= (1 << entry);
  5978. entry++;
  5979. }
  5980. return index_mask;
  5981. }
  5982. static bool has_edp_a(struct drm_device *dev)
  5983. {
  5984. struct drm_i915_private *dev_priv = dev->dev_private;
  5985. if (!IS_MOBILE(dev))
  5986. return false;
  5987. if ((I915_READ(DP_A) & DP_DETECTED) == 0)
  5988. return false;
  5989. if (IS_GEN5(dev) &&
  5990. (I915_READ(ILK_DISPLAY_CHICKEN_FUSES) & ILK_eDP_A_DISABLE))
  5991. return false;
  5992. return true;
  5993. }
  5994. static void intel_setup_outputs(struct drm_device *dev)
  5995. {
  5996. struct drm_i915_private *dev_priv = dev->dev_private;
  5997. struct intel_encoder *encoder;
  5998. bool dpd_is_edp = false;
  5999. bool has_lvds;
  6000. has_lvds = intel_lvds_init(dev);
  6001. if (!has_lvds && !HAS_PCH_SPLIT(dev)) {
  6002. /* disable the panel fitter on everything but LVDS */
  6003. I915_WRITE(PFIT_CONTROL, 0);
  6004. }
  6005. if (HAS_PCH_SPLIT(dev)) {
  6006. dpd_is_edp = intel_dpd_is_edp(dev);
  6007. if (has_edp_a(dev))
  6008. intel_dp_init(dev, DP_A, PORT_A);
  6009. if (dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
  6010. intel_dp_init(dev, PCH_DP_D, PORT_D);
  6011. }
  6012. intel_crt_init(dev);
  6013. if (IS_HASWELL(dev)) {
  6014. int found;
  6015. /* Haswell uses DDI functions to detect digital outputs */
  6016. found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
  6017. /* DDI A only supports eDP */
  6018. if (found)
  6019. intel_ddi_init(dev, PORT_A);
  6020. /* DDI B, C and D detection is indicated by the SFUSE_STRAP
  6021. * register */
  6022. found = I915_READ(SFUSE_STRAP);
  6023. if (found & SFUSE_STRAP_DDIB_DETECTED)
  6024. intel_ddi_init(dev, PORT_B);
  6025. if (found & SFUSE_STRAP_DDIC_DETECTED)
  6026. intel_ddi_init(dev, PORT_C);
  6027. if (found & SFUSE_STRAP_DDID_DETECTED)
  6028. intel_ddi_init(dev, PORT_D);
  6029. } else if (HAS_PCH_SPLIT(dev)) {
  6030. int found;
  6031. if (I915_READ(HDMIB) & PORT_DETECTED) {
  6032. /* PCH SDVOB multiplex with HDMIB */
  6033. found = intel_sdvo_init(dev, PCH_SDVOB, true);
  6034. if (!found)
  6035. intel_hdmi_init(dev, HDMIB, PORT_B);
  6036. if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
  6037. intel_dp_init(dev, PCH_DP_B, PORT_B);
  6038. }
  6039. if (I915_READ(HDMIC) & PORT_DETECTED)
  6040. intel_hdmi_init(dev, HDMIC, PORT_C);
  6041. if (!dpd_is_edp && I915_READ(HDMID) & PORT_DETECTED)
  6042. intel_hdmi_init(dev, HDMID, PORT_D);
  6043. if (I915_READ(PCH_DP_C) & DP_DETECTED)
  6044. intel_dp_init(dev, PCH_DP_C, PORT_C);
  6045. if (!dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
  6046. intel_dp_init(dev, PCH_DP_D, PORT_D);
  6047. } else if (IS_VALLEYVIEW(dev)) {
  6048. int found;
  6049. if (I915_READ(SDVOB) & PORT_DETECTED) {
  6050. /* SDVOB multiplex with HDMIB */
  6051. found = intel_sdvo_init(dev, SDVOB, true);
  6052. if (!found)
  6053. intel_hdmi_init(dev, SDVOB, PORT_B);
  6054. if (!found && (I915_READ(DP_B) & DP_DETECTED))
  6055. intel_dp_init(dev, DP_B, PORT_B);
  6056. }
  6057. if (I915_READ(SDVOC) & PORT_DETECTED)
  6058. intel_hdmi_init(dev, SDVOC, PORT_C);
  6059. /* Shares lanes with HDMI on SDVOC */
  6060. if (I915_READ(DP_C) & DP_DETECTED)
  6061. intel_dp_init(dev, DP_C, PORT_C);
  6062. } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
  6063. bool found = false;
  6064. if (I915_READ(SDVOB) & SDVO_DETECTED) {
  6065. DRM_DEBUG_KMS("probing SDVOB\n");
  6066. found = intel_sdvo_init(dev, SDVOB, true);
  6067. if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
  6068. DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
  6069. intel_hdmi_init(dev, SDVOB, PORT_B);
  6070. }
  6071. if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
  6072. DRM_DEBUG_KMS("probing DP_B\n");
  6073. intel_dp_init(dev, DP_B, PORT_B);
  6074. }
  6075. }
  6076. /* Before G4X SDVOC doesn't have its own detect register */
  6077. if (I915_READ(SDVOB) & SDVO_DETECTED) {
  6078. DRM_DEBUG_KMS("probing SDVOC\n");
  6079. found = intel_sdvo_init(dev, SDVOC, false);
  6080. }
  6081. if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
  6082. if (SUPPORTS_INTEGRATED_HDMI(dev)) {
  6083. DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
  6084. intel_hdmi_init(dev, SDVOC, PORT_C);
  6085. }
  6086. if (SUPPORTS_INTEGRATED_DP(dev)) {
  6087. DRM_DEBUG_KMS("probing DP_C\n");
  6088. intel_dp_init(dev, DP_C, PORT_C);
  6089. }
  6090. }
  6091. if (SUPPORTS_INTEGRATED_DP(dev) &&
  6092. (I915_READ(DP_D) & DP_DETECTED)) {
  6093. DRM_DEBUG_KMS("probing DP_D\n");
  6094. intel_dp_init(dev, DP_D, PORT_D);
  6095. }
  6096. } else if (IS_GEN2(dev))
  6097. intel_dvo_init(dev);
  6098. if (SUPPORTS_TV(dev))
  6099. intel_tv_init(dev);
  6100. list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
  6101. encoder->base.possible_crtcs = encoder->crtc_mask;
  6102. encoder->base.possible_clones =
  6103. intel_encoder_clones(encoder);
  6104. }
  6105. /* disable all the possible outputs/crtcs before entering KMS mode */
  6106. drm_helper_disable_unused_functions(dev);
  6107. if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
  6108. ironlake_init_pch_refclk(dev);
  6109. }
  6110. static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
  6111. {
  6112. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  6113. drm_framebuffer_cleanup(fb);
  6114. drm_gem_object_unreference_unlocked(&intel_fb->obj->base);
  6115. kfree(intel_fb);
  6116. }
  6117. static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
  6118. struct drm_file *file,
  6119. unsigned int *handle)
  6120. {
  6121. struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
  6122. struct drm_i915_gem_object *obj = intel_fb->obj;
  6123. return drm_gem_handle_create(file, &obj->base, handle);
  6124. }
  6125. static const struct drm_framebuffer_funcs intel_fb_funcs = {
  6126. .destroy = intel_user_framebuffer_destroy,
  6127. .create_handle = intel_user_framebuffer_create_handle,
  6128. };
  6129. int intel_framebuffer_init(struct drm_device *dev,
  6130. struct intel_framebuffer *intel_fb,
  6131. struct drm_mode_fb_cmd2 *mode_cmd,
  6132. struct drm_i915_gem_object *obj)
  6133. {
  6134. int ret;
  6135. if (obj->tiling_mode == I915_TILING_Y)
  6136. return -EINVAL;
  6137. if (mode_cmd->pitches[0] & 63)
  6138. return -EINVAL;
  6139. switch (mode_cmd->pixel_format) {
  6140. case DRM_FORMAT_RGB332:
  6141. case DRM_FORMAT_RGB565:
  6142. case DRM_FORMAT_XRGB8888:
  6143. case DRM_FORMAT_XBGR8888:
  6144. case DRM_FORMAT_ARGB8888:
  6145. case DRM_FORMAT_XRGB2101010:
  6146. case DRM_FORMAT_ARGB2101010:
  6147. /* RGB formats are common across chipsets */
  6148. break;
  6149. case DRM_FORMAT_YUYV:
  6150. case DRM_FORMAT_UYVY:
  6151. case DRM_FORMAT_YVYU:
  6152. case DRM_FORMAT_VYUY:
  6153. break;
  6154. default:
  6155. DRM_DEBUG_KMS("unsupported pixel format %u\n",
  6156. mode_cmd->pixel_format);
  6157. return -EINVAL;
  6158. }
  6159. ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
  6160. if (ret) {
  6161. DRM_ERROR("framebuffer init failed %d\n", ret);
  6162. return ret;
  6163. }
  6164. drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
  6165. intel_fb->obj = obj;
  6166. return 0;
  6167. }
  6168. static struct drm_framebuffer *
  6169. intel_user_framebuffer_create(struct drm_device *dev,
  6170. struct drm_file *filp,
  6171. struct drm_mode_fb_cmd2 *mode_cmd)
  6172. {
  6173. struct drm_i915_gem_object *obj;
  6174. obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
  6175. mode_cmd->handles[0]));
  6176. if (&obj->base == NULL)
  6177. return ERR_PTR(-ENOENT);
  6178. return intel_framebuffer_create(dev, mode_cmd, obj);
  6179. }
  6180. static const struct drm_mode_config_funcs intel_mode_funcs = {
  6181. .fb_create = intel_user_framebuffer_create,
  6182. .output_poll_changed = intel_fb_output_poll_changed,
  6183. };
  6184. /* Set up chip specific display functions */
  6185. static void intel_init_display(struct drm_device *dev)
  6186. {
  6187. struct drm_i915_private *dev_priv = dev->dev_private;
  6188. /* We always want a DPMS function */
  6189. if (HAS_PCH_SPLIT(dev)) {
  6190. dev_priv->display.crtc_mode_set = ironlake_crtc_mode_set;
  6191. dev_priv->display.crtc_enable = ironlake_crtc_enable;
  6192. dev_priv->display.crtc_disable = ironlake_crtc_disable;
  6193. dev_priv->display.off = ironlake_crtc_off;
  6194. dev_priv->display.update_plane = ironlake_update_plane;
  6195. } else {
  6196. dev_priv->display.crtc_mode_set = i9xx_crtc_mode_set;
  6197. dev_priv->display.crtc_enable = i9xx_crtc_enable;
  6198. dev_priv->display.crtc_disable = i9xx_crtc_disable;
  6199. dev_priv->display.off = i9xx_crtc_off;
  6200. dev_priv->display.update_plane = i9xx_update_plane;
  6201. }
  6202. /* Returns the core display clock speed */
  6203. if (IS_VALLEYVIEW(dev))
  6204. dev_priv->display.get_display_clock_speed =
  6205. valleyview_get_display_clock_speed;
  6206. else if (IS_I945G(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
  6207. dev_priv->display.get_display_clock_speed =
  6208. i945_get_display_clock_speed;
  6209. else if (IS_I915G(dev))
  6210. dev_priv->display.get_display_clock_speed =
  6211. i915_get_display_clock_speed;
  6212. else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
  6213. dev_priv->display.get_display_clock_speed =
  6214. i9xx_misc_get_display_clock_speed;
  6215. else if (IS_I915GM(dev))
  6216. dev_priv->display.get_display_clock_speed =
  6217. i915gm_get_display_clock_speed;
  6218. else if (IS_I865G(dev))
  6219. dev_priv->display.get_display_clock_speed =
  6220. i865_get_display_clock_speed;
  6221. else if (IS_I85X(dev))
  6222. dev_priv->display.get_display_clock_speed =
  6223. i855_get_display_clock_speed;
  6224. else /* 852, 830 */
  6225. dev_priv->display.get_display_clock_speed =
  6226. i830_get_display_clock_speed;
  6227. if (HAS_PCH_SPLIT(dev)) {
  6228. if (IS_GEN5(dev)) {
  6229. dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
  6230. dev_priv->display.write_eld = ironlake_write_eld;
  6231. } else if (IS_GEN6(dev)) {
  6232. dev_priv->display.fdi_link_train = gen6_fdi_link_train;
  6233. dev_priv->display.write_eld = ironlake_write_eld;
  6234. } else if (IS_IVYBRIDGE(dev)) {
  6235. /* FIXME: detect B0+ stepping and use auto training */
  6236. dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
  6237. dev_priv->display.write_eld = ironlake_write_eld;
  6238. } else if (IS_HASWELL(dev)) {
  6239. dev_priv->display.fdi_link_train = hsw_fdi_link_train;
  6240. dev_priv->display.write_eld = haswell_write_eld;
  6241. } else
  6242. dev_priv->display.update_wm = NULL;
  6243. } else if (IS_G4X(dev)) {
  6244. dev_priv->display.write_eld = g4x_write_eld;
  6245. }
  6246. /* Default just returns -ENODEV to indicate unsupported */
  6247. dev_priv->display.queue_flip = intel_default_queue_flip;
  6248. switch (INTEL_INFO(dev)->gen) {
  6249. case 2:
  6250. dev_priv->display.queue_flip = intel_gen2_queue_flip;
  6251. break;
  6252. case 3:
  6253. dev_priv->display.queue_flip = intel_gen3_queue_flip;
  6254. break;
  6255. case 4:
  6256. case 5:
  6257. dev_priv->display.queue_flip = intel_gen4_queue_flip;
  6258. break;
  6259. case 6:
  6260. dev_priv->display.queue_flip = intel_gen6_queue_flip;
  6261. break;
  6262. case 7:
  6263. dev_priv->display.queue_flip = intel_gen7_queue_flip;
  6264. break;
  6265. }
  6266. }
  6267. /*
  6268. * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
  6269. * resume, or other times. This quirk makes sure that's the case for
  6270. * affected systems.
  6271. */
  6272. static void quirk_pipea_force(struct drm_device *dev)
  6273. {
  6274. struct drm_i915_private *dev_priv = dev->dev_private;
  6275. dev_priv->quirks |= QUIRK_PIPEA_FORCE;
  6276. DRM_INFO("applying pipe a force quirk\n");
  6277. }
  6278. /*
  6279. * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
  6280. */
  6281. static void quirk_ssc_force_disable(struct drm_device *dev)
  6282. {
  6283. struct drm_i915_private *dev_priv = dev->dev_private;
  6284. dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
  6285. DRM_INFO("applying lvds SSC disable quirk\n");
  6286. }
  6287. /*
  6288. * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
  6289. * brightness value
  6290. */
  6291. static void quirk_invert_brightness(struct drm_device *dev)
  6292. {
  6293. struct drm_i915_private *dev_priv = dev->dev_private;
  6294. dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
  6295. DRM_INFO("applying inverted panel brightness quirk\n");
  6296. }
  6297. struct intel_quirk {
  6298. int device;
  6299. int subsystem_vendor;
  6300. int subsystem_device;
  6301. void (*hook)(struct drm_device *dev);
  6302. };
  6303. static struct intel_quirk intel_quirks[] = {
  6304. /* HP Mini needs pipe A force quirk (LP: #322104) */
  6305. { 0x27ae, 0x103c, 0x361a, quirk_pipea_force },
  6306. /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
  6307. { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
  6308. /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
  6309. { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
  6310. /* 855 & before need to leave pipe A & dpll A up */
  6311. { 0x3582, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
  6312. { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
  6313. { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
  6314. /* Lenovo U160 cannot use SSC on LVDS */
  6315. { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
  6316. /* Sony Vaio Y cannot use SSC on LVDS */
  6317. { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
  6318. /* Acer Aspire 5734Z must invert backlight brightness */
  6319. { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
  6320. };
  6321. static void intel_init_quirks(struct drm_device *dev)
  6322. {
  6323. struct pci_dev *d = dev->pdev;
  6324. int i;
  6325. for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
  6326. struct intel_quirk *q = &intel_quirks[i];
  6327. if (d->device == q->device &&
  6328. (d->subsystem_vendor == q->subsystem_vendor ||
  6329. q->subsystem_vendor == PCI_ANY_ID) &&
  6330. (d->subsystem_device == q->subsystem_device ||
  6331. q->subsystem_device == PCI_ANY_ID))
  6332. q->hook(dev);
  6333. }
  6334. }
  6335. /* Disable the VGA plane that we never use */
  6336. static void i915_disable_vga(struct drm_device *dev)
  6337. {
  6338. struct drm_i915_private *dev_priv = dev->dev_private;
  6339. u8 sr1;
  6340. u32 vga_reg;
  6341. if (HAS_PCH_SPLIT(dev))
  6342. vga_reg = CPU_VGACNTRL;
  6343. else
  6344. vga_reg = VGACNTRL;
  6345. vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
  6346. outb(SR01, VGA_SR_INDEX);
  6347. sr1 = inb(VGA_SR_DATA);
  6348. outb(sr1 | 1<<5, VGA_SR_DATA);
  6349. vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
  6350. udelay(300);
  6351. I915_WRITE(vga_reg, VGA_DISP_DISABLE);
  6352. POSTING_READ(vga_reg);
  6353. }
  6354. void intel_modeset_init_hw(struct drm_device *dev)
  6355. {
  6356. /* We attempt to init the necessary power wells early in the initialization
  6357. * time, so the subsystems that expect power to be enabled can work.
  6358. */
  6359. intel_init_power_wells(dev);
  6360. intel_prepare_ddi(dev);
  6361. intel_init_clock_gating(dev);
  6362. mutex_lock(&dev->struct_mutex);
  6363. intel_enable_gt_powersave(dev);
  6364. mutex_unlock(&dev->struct_mutex);
  6365. }
  6366. void intel_modeset_init(struct drm_device *dev)
  6367. {
  6368. struct drm_i915_private *dev_priv = dev->dev_private;
  6369. int i, ret;
  6370. drm_mode_config_init(dev);
  6371. dev->mode_config.min_width = 0;
  6372. dev->mode_config.min_height = 0;
  6373. dev->mode_config.preferred_depth = 24;
  6374. dev->mode_config.prefer_shadow = 1;
  6375. dev->mode_config.funcs = &intel_mode_funcs;
  6376. intel_init_quirks(dev);
  6377. intel_init_pm(dev);
  6378. intel_init_display(dev);
  6379. if (IS_GEN2(dev)) {
  6380. dev->mode_config.max_width = 2048;
  6381. dev->mode_config.max_height = 2048;
  6382. } else if (IS_GEN3(dev)) {
  6383. dev->mode_config.max_width = 4096;
  6384. dev->mode_config.max_height = 4096;
  6385. } else {
  6386. dev->mode_config.max_width = 8192;
  6387. dev->mode_config.max_height = 8192;
  6388. }
  6389. dev->mode_config.fb_base = dev_priv->mm.gtt_base_addr;
  6390. DRM_DEBUG_KMS("%d display pipe%s available.\n",
  6391. dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
  6392. for (i = 0; i < dev_priv->num_pipe; i++) {
  6393. intel_crtc_init(dev, i);
  6394. ret = intel_plane_init(dev, i);
  6395. if (ret)
  6396. DRM_DEBUG_KMS("plane %d init failed: %d\n", i, ret);
  6397. }
  6398. intel_pch_pll_init(dev);
  6399. /* Just disable it once at startup */
  6400. i915_disable_vga(dev);
  6401. intel_setup_outputs(dev);
  6402. }
  6403. void intel_modeset_gem_init(struct drm_device *dev)
  6404. {
  6405. intel_modeset_init_hw(dev);
  6406. intel_setup_overlay(dev);
  6407. }
  6408. void intel_modeset_cleanup(struct drm_device *dev)
  6409. {
  6410. struct drm_i915_private *dev_priv = dev->dev_private;
  6411. struct drm_crtc *crtc;
  6412. struct intel_crtc *intel_crtc;
  6413. drm_kms_helper_poll_fini(dev);
  6414. mutex_lock(&dev->struct_mutex);
  6415. intel_unregister_dsm_handler();
  6416. list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
  6417. /* Skip inactive CRTCs */
  6418. if (!crtc->fb)
  6419. continue;
  6420. intel_crtc = to_intel_crtc(crtc);
  6421. intel_increase_pllclock(crtc);
  6422. }
  6423. intel_disable_fbc(dev);
  6424. intel_disable_gt_powersave(dev);
  6425. ironlake_teardown_rc6(dev);
  6426. if (IS_VALLEYVIEW(dev))
  6427. vlv_init_dpio(dev);
  6428. mutex_unlock(&dev->struct_mutex);
  6429. /* Disable the irq before mode object teardown, for the irq might
  6430. * enqueue unpin/hotplug work. */
  6431. drm_irq_uninstall(dev);
  6432. cancel_work_sync(&dev_priv->hotplug_work);
  6433. cancel_work_sync(&dev_priv->rps.work);
  6434. /* flush any delayed tasks or pending work */
  6435. flush_scheduled_work();
  6436. drm_mode_config_cleanup(dev);
  6437. }
  6438. /*
  6439. * Return which encoder is currently attached for connector.
  6440. */
  6441. struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
  6442. {
  6443. return &intel_attached_encoder(connector)->base;
  6444. }
  6445. void intel_connector_attach_encoder(struct intel_connector *connector,
  6446. struct intel_encoder *encoder)
  6447. {
  6448. connector->encoder = encoder;
  6449. drm_mode_connector_attach_encoder(&connector->base,
  6450. &encoder->base);
  6451. }
  6452. /*
  6453. * set vga decode state - true == enable VGA decode
  6454. */
  6455. int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
  6456. {
  6457. struct drm_i915_private *dev_priv = dev->dev_private;
  6458. u16 gmch_ctrl;
  6459. pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
  6460. if (state)
  6461. gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
  6462. else
  6463. gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
  6464. pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
  6465. return 0;
  6466. }
  6467. #ifdef CONFIG_DEBUG_FS
  6468. #include <linux/seq_file.h>
  6469. struct intel_display_error_state {
  6470. struct intel_cursor_error_state {
  6471. u32 control;
  6472. u32 position;
  6473. u32 base;
  6474. u32 size;
  6475. } cursor[I915_MAX_PIPES];
  6476. struct intel_pipe_error_state {
  6477. u32 conf;
  6478. u32 source;
  6479. u32 htotal;
  6480. u32 hblank;
  6481. u32 hsync;
  6482. u32 vtotal;
  6483. u32 vblank;
  6484. u32 vsync;
  6485. } pipe[I915_MAX_PIPES];
  6486. struct intel_plane_error_state {
  6487. u32 control;
  6488. u32 stride;
  6489. u32 size;
  6490. u32 pos;
  6491. u32 addr;
  6492. u32 surface;
  6493. u32 tile_offset;
  6494. } plane[I915_MAX_PIPES];
  6495. };
  6496. struct intel_display_error_state *
  6497. intel_display_capture_error_state(struct drm_device *dev)
  6498. {
  6499. drm_i915_private_t *dev_priv = dev->dev_private;
  6500. struct intel_display_error_state *error;
  6501. int i;
  6502. error = kmalloc(sizeof(*error), GFP_ATOMIC);
  6503. if (error == NULL)
  6504. return NULL;
  6505. for_each_pipe(i) {
  6506. error->cursor[i].control = I915_READ(CURCNTR(i));
  6507. error->cursor[i].position = I915_READ(CURPOS(i));
  6508. error->cursor[i].base = I915_READ(CURBASE(i));
  6509. error->plane[i].control = I915_READ(DSPCNTR(i));
  6510. error->plane[i].stride = I915_READ(DSPSTRIDE(i));
  6511. error->plane[i].size = I915_READ(DSPSIZE(i));
  6512. error->plane[i].pos = I915_READ(DSPPOS(i));
  6513. error->plane[i].addr = I915_READ(DSPADDR(i));
  6514. if (INTEL_INFO(dev)->gen >= 4) {
  6515. error->plane[i].surface = I915_READ(DSPSURF(i));
  6516. error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
  6517. }
  6518. error->pipe[i].conf = I915_READ(PIPECONF(i));
  6519. error->pipe[i].source = I915_READ(PIPESRC(i));
  6520. error->pipe[i].htotal = I915_READ(HTOTAL(i));
  6521. error->pipe[i].hblank = I915_READ(HBLANK(i));
  6522. error->pipe[i].hsync = I915_READ(HSYNC(i));
  6523. error->pipe[i].vtotal = I915_READ(VTOTAL(i));
  6524. error->pipe[i].vblank = I915_READ(VBLANK(i));
  6525. error->pipe[i].vsync = I915_READ(VSYNC(i));
  6526. }
  6527. return error;
  6528. }
  6529. void
  6530. intel_display_print_error_state(struct seq_file *m,
  6531. struct drm_device *dev,
  6532. struct intel_display_error_state *error)
  6533. {
  6534. drm_i915_private_t *dev_priv = dev->dev_private;
  6535. int i;
  6536. seq_printf(m, "Num Pipes: %d\n", dev_priv->num_pipe);
  6537. for_each_pipe(i) {
  6538. seq_printf(m, "Pipe [%d]:\n", i);
  6539. seq_printf(m, " CONF: %08x\n", error->pipe[i].conf);
  6540. seq_printf(m, " SRC: %08x\n", error->pipe[i].source);
  6541. seq_printf(m, " HTOTAL: %08x\n", error->pipe[i].htotal);
  6542. seq_printf(m, " HBLANK: %08x\n", error->pipe[i].hblank);
  6543. seq_printf(m, " HSYNC: %08x\n", error->pipe[i].hsync);
  6544. seq_printf(m, " VTOTAL: %08x\n", error->pipe[i].vtotal);
  6545. seq_printf(m, " VBLANK: %08x\n", error->pipe[i].vblank);
  6546. seq_printf(m, " VSYNC: %08x\n", error->pipe[i].vsync);
  6547. seq_printf(m, "Plane [%d]:\n", i);
  6548. seq_printf(m, " CNTR: %08x\n", error->plane[i].control);
  6549. seq_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
  6550. seq_printf(m, " SIZE: %08x\n", error->plane[i].size);
  6551. seq_printf(m, " POS: %08x\n", error->plane[i].pos);
  6552. seq_printf(m, " ADDR: %08x\n", error->plane[i].addr);
  6553. if (INTEL_INFO(dev)->gen >= 4) {
  6554. seq_printf(m, " SURF: %08x\n", error->plane[i].surface);
  6555. seq_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
  6556. }
  6557. seq_printf(m, "Cursor [%d]:\n", i);
  6558. seq_printf(m, " CNTR: %08x\n", error->cursor[i].control);
  6559. seq_printf(m, " POS: %08x\n", error->cursor[i].position);
  6560. seq_printf(m, " BASE: %08x\n", error->cursor[i].base);
  6561. }
  6562. }
  6563. #endif