intel_ddi.c 40 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457
  1. /*
  2. * Copyright © 2012 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eugeni Dodonov <eugeni.dodonov@intel.com>
  25. *
  26. */
  27. #include "i915_drv.h"
  28. #include "intel_drv.h"
  29. /* HDMI/DVI modes ignore everything but the last 2 items. So we share
  30. * them for both DP and FDI transports, allowing those ports to
  31. * automatically adapt to HDMI connections as well
  32. */
  33. static const u32 hsw_ddi_translations_dp[] = {
  34. 0x00FFFFFF, 0x0006000E, /* DP parameters */
  35. 0x00D75FFF, 0x0005000A,
  36. 0x00C30FFF, 0x00040006,
  37. 0x80AAAFFF, 0x000B0000,
  38. 0x00FFFFFF, 0x0005000A,
  39. 0x00D75FFF, 0x000C0004,
  40. 0x80C30FFF, 0x000B0000,
  41. 0x00FFFFFF, 0x00040006,
  42. 0x80D75FFF, 0x000B0000,
  43. };
  44. static const u32 hsw_ddi_translations_fdi[] = {
  45. 0x00FFFFFF, 0x0007000E, /* FDI parameters */
  46. 0x00D75FFF, 0x000F000A,
  47. 0x00C30FFF, 0x00060006,
  48. 0x00AAAFFF, 0x001E0000,
  49. 0x00FFFFFF, 0x000F000A,
  50. 0x00D75FFF, 0x00160004,
  51. 0x00C30FFF, 0x001E0000,
  52. 0x00FFFFFF, 0x00060006,
  53. 0x00D75FFF, 0x001E0000,
  54. };
  55. static const u32 hsw_ddi_translations_hdmi[] = {
  56. /* Idx NT mV diff T mV diff db */
  57. 0x00FFFFFF, 0x0006000E, /* 0: 400 400 0 */
  58. 0x00E79FFF, 0x000E000C, /* 1: 400 500 2 */
  59. 0x00D75FFF, 0x0005000A, /* 2: 400 600 3.5 */
  60. 0x00FFFFFF, 0x0005000A, /* 3: 600 600 0 */
  61. 0x00E79FFF, 0x001D0007, /* 4: 600 750 2 */
  62. 0x00D75FFF, 0x000C0004, /* 5: 600 900 3.5 */
  63. 0x00FFFFFF, 0x00040006, /* 6: 800 800 0 */
  64. 0x80E79FFF, 0x00030002, /* 7: 800 1000 2 */
  65. 0x00FFFFFF, 0x00140005, /* 8: 850 850 0 */
  66. 0x00FFFFFF, 0x000C0004, /* 9: 900 900 0 */
  67. 0x00FFFFFF, 0x001C0003, /* 10: 950 950 0 */
  68. 0x80FFFFFF, 0x00030002, /* 11: 1000 1000 0 */
  69. };
  70. enum port intel_ddi_get_encoder_port(struct intel_encoder *intel_encoder)
  71. {
  72. struct drm_encoder *encoder = &intel_encoder->base;
  73. int type = intel_encoder->type;
  74. if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP ||
  75. type == INTEL_OUTPUT_HDMI || type == INTEL_OUTPUT_UNKNOWN) {
  76. struct intel_digital_port *intel_dig_port =
  77. enc_to_dig_port(encoder);
  78. return intel_dig_port->port;
  79. } else if (type == INTEL_OUTPUT_ANALOG) {
  80. return PORT_E;
  81. } else {
  82. DRM_ERROR("Invalid DDI encoder type %d\n", type);
  83. BUG();
  84. }
  85. }
  86. /* On Haswell, DDI port buffers must be programmed with correct values
  87. * in advance. The buffer values are different for FDI and DP modes,
  88. * but the HDMI/DVI fields are shared among those. So we program the DDI
  89. * in either FDI or DP modes only, as HDMI connections will work with both
  90. * of those
  91. */
  92. static void intel_prepare_ddi_buffers(struct drm_device *dev, enum port port)
  93. {
  94. struct drm_i915_private *dev_priv = dev->dev_private;
  95. u32 reg;
  96. int i;
  97. const u32 *ddi_translations = (port == PORT_E) ?
  98. hsw_ddi_translations_fdi :
  99. hsw_ddi_translations_dp;
  100. int hdmi_level = dev_priv->vbt.ddi_port_info[port].hdmi_level_shift;
  101. for (i = 0, reg = DDI_BUF_TRANS(port);
  102. i < ARRAY_SIZE(hsw_ddi_translations_fdi); i++) {
  103. I915_WRITE(reg, ddi_translations[i]);
  104. reg += 4;
  105. }
  106. /* Entry 9 is for HDMI: */
  107. for (i = 0; i < 2; i++) {
  108. I915_WRITE(reg, hsw_ddi_translations_hdmi[hdmi_level * 2 + i]);
  109. reg += 4;
  110. }
  111. }
  112. /* Program DDI buffers translations for DP. By default, program ports A-D in DP
  113. * mode and port E for FDI.
  114. */
  115. void intel_prepare_ddi(struct drm_device *dev)
  116. {
  117. int port;
  118. if (!HAS_DDI(dev))
  119. return;
  120. for (port = PORT_A; port <= PORT_E; port++)
  121. intel_prepare_ddi_buffers(dev, port);
  122. }
  123. static const long hsw_ddi_buf_ctl_values[] = {
  124. DDI_BUF_EMP_400MV_0DB_HSW,
  125. DDI_BUF_EMP_400MV_3_5DB_HSW,
  126. DDI_BUF_EMP_400MV_6DB_HSW,
  127. DDI_BUF_EMP_400MV_9_5DB_HSW,
  128. DDI_BUF_EMP_600MV_0DB_HSW,
  129. DDI_BUF_EMP_600MV_3_5DB_HSW,
  130. DDI_BUF_EMP_600MV_6DB_HSW,
  131. DDI_BUF_EMP_800MV_0DB_HSW,
  132. DDI_BUF_EMP_800MV_3_5DB_HSW
  133. };
  134. static void intel_wait_ddi_buf_idle(struct drm_i915_private *dev_priv,
  135. enum port port)
  136. {
  137. uint32_t reg = DDI_BUF_CTL(port);
  138. int i;
  139. for (i = 0; i < 8; i++) {
  140. udelay(1);
  141. if (I915_READ(reg) & DDI_BUF_IS_IDLE)
  142. return;
  143. }
  144. DRM_ERROR("Timeout waiting for DDI BUF %c idle bit\n", port_name(port));
  145. }
  146. /* Starting with Haswell, different DDI ports can work in FDI mode for
  147. * connection to the PCH-located connectors. For this, it is necessary to train
  148. * both the DDI port and PCH receiver for the desired DDI buffer settings.
  149. *
  150. * The recommended port to work in FDI mode is DDI E, which we use here. Also,
  151. * please note that when FDI mode is active on DDI E, it shares 2 lines with
  152. * DDI A (which is used for eDP)
  153. */
  154. void hsw_fdi_link_train(struct drm_crtc *crtc)
  155. {
  156. struct drm_device *dev = crtc->dev;
  157. struct drm_i915_private *dev_priv = dev->dev_private;
  158. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  159. u32 temp, i, rx_ctl_val;
  160. /* Set the FDI_RX_MISC pwrdn lanes and the 2 workarounds listed at the
  161. * mode set "sequence for CRT port" document:
  162. * - TP1 to TP2 time with the default value
  163. * - FDI delay to 90h
  164. *
  165. * WaFDIAutoLinkSetTimingOverrride:hsw
  166. */
  167. I915_WRITE(_FDI_RXA_MISC, FDI_RX_PWRDN_LANE1_VAL(2) |
  168. FDI_RX_PWRDN_LANE0_VAL(2) |
  169. FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
  170. /* Enable the PCH Receiver FDI PLL */
  171. rx_ctl_val = dev_priv->fdi_rx_config | FDI_RX_ENHANCE_FRAME_ENABLE |
  172. FDI_RX_PLL_ENABLE |
  173. FDI_DP_PORT_WIDTH(intel_crtc->config.fdi_lanes);
  174. I915_WRITE(_FDI_RXA_CTL, rx_ctl_val);
  175. POSTING_READ(_FDI_RXA_CTL);
  176. udelay(220);
  177. /* Switch from Rawclk to PCDclk */
  178. rx_ctl_val |= FDI_PCDCLK;
  179. I915_WRITE(_FDI_RXA_CTL, rx_ctl_val);
  180. /* Configure Port Clock Select */
  181. I915_WRITE(PORT_CLK_SEL(PORT_E), intel_crtc->ddi_pll_sel);
  182. /* Start the training iterating through available voltages and emphasis,
  183. * testing each value twice. */
  184. for (i = 0; i < ARRAY_SIZE(hsw_ddi_buf_ctl_values) * 2; i++) {
  185. /* Configure DP_TP_CTL with auto-training */
  186. I915_WRITE(DP_TP_CTL(PORT_E),
  187. DP_TP_CTL_FDI_AUTOTRAIN |
  188. DP_TP_CTL_ENHANCED_FRAME_ENABLE |
  189. DP_TP_CTL_LINK_TRAIN_PAT1 |
  190. DP_TP_CTL_ENABLE);
  191. /* Configure and enable DDI_BUF_CTL for DDI E with next voltage.
  192. * DDI E does not support port reversal, the functionality is
  193. * achieved on the PCH side in FDI_RX_CTL, so no need to set the
  194. * port reversal bit */
  195. I915_WRITE(DDI_BUF_CTL(PORT_E),
  196. DDI_BUF_CTL_ENABLE |
  197. ((intel_crtc->config.fdi_lanes - 1) << 1) |
  198. hsw_ddi_buf_ctl_values[i / 2]);
  199. POSTING_READ(DDI_BUF_CTL(PORT_E));
  200. udelay(600);
  201. /* Program PCH FDI Receiver TU */
  202. I915_WRITE(_FDI_RXA_TUSIZE1, TU_SIZE(64));
  203. /* Enable PCH FDI Receiver with auto-training */
  204. rx_ctl_val |= FDI_RX_ENABLE | FDI_LINK_TRAIN_AUTO;
  205. I915_WRITE(_FDI_RXA_CTL, rx_ctl_val);
  206. POSTING_READ(_FDI_RXA_CTL);
  207. /* Wait for FDI receiver lane calibration */
  208. udelay(30);
  209. /* Unset FDI_RX_MISC pwrdn lanes */
  210. temp = I915_READ(_FDI_RXA_MISC);
  211. temp &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK);
  212. I915_WRITE(_FDI_RXA_MISC, temp);
  213. POSTING_READ(_FDI_RXA_MISC);
  214. /* Wait for FDI auto training time */
  215. udelay(5);
  216. temp = I915_READ(DP_TP_STATUS(PORT_E));
  217. if (temp & DP_TP_STATUS_AUTOTRAIN_DONE) {
  218. DRM_DEBUG_KMS("FDI link training done on step %d\n", i);
  219. /* Enable normal pixel sending for FDI */
  220. I915_WRITE(DP_TP_CTL(PORT_E),
  221. DP_TP_CTL_FDI_AUTOTRAIN |
  222. DP_TP_CTL_LINK_TRAIN_NORMAL |
  223. DP_TP_CTL_ENHANCED_FRAME_ENABLE |
  224. DP_TP_CTL_ENABLE);
  225. return;
  226. }
  227. temp = I915_READ(DDI_BUF_CTL(PORT_E));
  228. temp &= ~DDI_BUF_CTL_ENABLE;
  229. I915_WRITE(DDI_BUF_CTL(PORT_E), temp);
  230. POSTING_READ(DDI_BUF_CTL(PORT_E));
  231. /* Disable DP_TP_CTL and FDI_RX_CTL and retry */
  232. temp = I915_READ(DP_TP_CTL(PORT_E));
  233. temp &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK);
  234. temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
  235. I915_WRITE(DP_TP_CTL(PORT_E), temp);
  236. POSTING_READ(DP_TP_CTL(PORT_E));
  237. intel_wait_ddi_buf_idle(dev_priv, PORT_E);
  238. rx_ctl_val &= ~FDI_RX_ENABLE;
  239. I915_WRITE(_FDI_RXA_CTL, rx_ctl_val);
  240. POSTING_READ(_FDI_RXA_CTL);
  241. /* Reset FDI_RX_MISC pwrdn lanes */
  242. temp = I915_READ(_FDI_RXA_MISC);
  243. temp &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK);
  244. temp |= FDI_RX_PWRDN_LANE1_VAL(2) | FDI_RX_PWRDN_LANE0_VAL(2);
  245. I915_WRITE(_FDI_RXA_MISC, temp);
  246. POSTING_READ(_FDI_RXA_MISC);
  247. }
  248. DRM_ERROR("FDI link training failed!\n");
  249. }
  250. static void intel_ddi_mode_set(struct intel_encoder *encoder)
  251. {
  252. struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
  253. int port = intel_ddi_get_encoder_port(encoder);
  254. int pipe = crtc->pipe;
  255. int type = encoder->type;
  256. struct drm_display_mode *adjusted_mode = &crtc->config.adjusted_mode;
  257. DRM_DEBUG_KMS("Preparing DDI mode on port %c, pipe %c\n",
  258. port_name(port), pipe_name(pipe));
  259. crtc->eld_vld = false;
  260. if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP) {
  261. struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
  262. struct intel_digital_port *intel_dig_port =
  263. enc_to_dig_port(&encoder->base);
  264. intel_dp->DP = intel_dig_port->saved_port_bits |
  265. DDI_BUF_CTL_ENABLE | DDI_BUF_EMP_400MV_0DB_HSW;
  266. intel_dp->DP |= DDI_PORT_WIDTH(intel_dp->lane_count);
  267. if (intel_dp->has_audio) {
  268. DRM_DEBUG_DRIVER("DP audio on pipe %c on DDI\n",
  269. pipe_name(crtc->pipe));
  270. /* write eld */
  271. DRM_DEBUG_DRIVER("DP audio: write eld information\n");
  272. intel_write_eld(&encoder->base, adjusted_mode);
  273. }
  274. } else if (type == INTEL_OUTPUT_HDMI) {
  275. struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&encoder->base);
  276. if (intel_hdmi->has_audio) {
  277. /* Proper support for digital audio needs a new logic
  278. * and a new set of registers, so we leave it for future
  279. * patch bombing.
  280. */
  281. DRM_DEBUG_DRIVER("HDMI audio on pipe %c on DDI\n",
  282. pipe_name(crtc->pipe));
  283. /* write eld */
  284. DRM_DEBUG_DRIVER("HDMI audio: write eld information\n");
  285. intel_write_eld(&encoder->base, adjusted_mode);
  286. }
  287. intel_hdmi->set_infoframes(&encoder->base, adjusted_mode);
  288. }
  289. }
  290. static struct intel_encoder *
  291. intel_ddi_get_crtc_encoder(struct drm_crtc *crtc)
  292. {
  293. struct drm_device *dev = crtc->dev;
  294. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  295. struct intel_encoder *intel_encoder, *ret = NULL;
  296. int num_encoders = 0;
  297. for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
  298. ret = intel_encoder;
  299. num_encoders++;
  300. }
  301. if (num_encoders != 1)
  302. WARN(1, "%d encoders on crtc for pipe %c\n", num_encoders,
  303. pipe_name(intel_crtc->pipe));
  304. BUG_ON(ret == NULL);
  305. return ret;
  306. }
  307. void intel_ddi_put_crtc_pll(struct drm_crtc *crtc)
  308. {
  309. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  310. struct intel_ddi_plls *plls = &dev_priv->ddi_plls;
  311. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  312. uint32_t val;
  313. switch (intel_crtc->ddi_pll_sel) {
  314. case PORT_CLK_SEL_SPLL:
  315. plls->spll_refcount--;
  316. if (plls->spll_refcount == 0) {
  317. DRM_DEBUG_KMS("Disabling SPLL\n");
  318. val = I915_READ(SPLL_CTL);
  319. WARN_ON(!(val & SPLL_PLL_ENABLE));
  320. I915_WRITE(SPLL_CTL, val & ~SPLL_PLL_ENABLE);
  321. POSTING_READ(SPLL_CTL);
  322. }
  323. break;
  324. case PORT_CLK_SEL_WRPLL1:
  325. plls->wrpll1_refcount--;
  326. if (plls->wrpll1_refcount == 0) {
  327. DRM_DEBUG_KMS("Disabling WRPLL 1\n");
  328. val = I915_READ(WRPLL_CTL1);
  329. WARN_ON(!(val & WRPLL_PLL_ENABLE));
  330. I915_WRITE(WRPLL_CTL1, val & ~WRPLL_PLL_ENABLE);
  331. POSTING_READ(WRPLL_CTL1);
  332. }
  333. break;
  334. case PORT_CLK_SEL_WRPLL2:
  335. plls->wrpll2_refcount--;
  336. if (plls->wrpll2_refcount == 0) {
  337. DRM_DEBUG_KMS("Disabling WRPLL 2\n");
  338. val = I915_READ(WRPLL_CTL2);
  339. WARN_ON(!(val & WRPLL_PLL_ENABLE));
  340. I915_WRITE(WRPLL_CTL2, val & ~WRPLL_PLL_ENABLE);
  341. POSTING_READ(WRPLL_CTL2);
  342. }
  343. break;
  344. }
  345. WARN(plls->spll_refcount < 0, "Invalid SPLL refcount\n");
  346. WARN(plls->wrpll1_refcount < 0, "Invalid WRPLL1 refcount\n");
  347. WARN(plls->wrpll2_refcount < 0, "Invalid WRPLL2 refcount\n");
  348. intel_crtc->ddi_pll_sel = PORT_CLK_SEL_NONE;
  349. }
  350. #define LC_FREQ 2700
  351. #define LC_FREQ_2K (LC_FREQ * 2000)
  352. #define P_MIN 2
  353. #define P_MAX 64
  354. #define P_INC 2
  355. /* Constraints for PLL good behavior */
  356. #define REF_MIN 48
  357. #define REF_MAX 400
  358. #define VCO_MIN 2400
  359. #define VCO_MAX 4800
  360. #define ABS_DIFF(a, b) ((a > b) ? (a - b) : (b - a))
  361. struct wrpll_rnp {
  362. unsigned p, n2, r2;
  363. };
  364. static unsigned wrpll_get_budget_for_freq(int clock)
  365. {
  366. unsigned budget;
  367. switch (clock) {
  368. case 25175000:
  369. case 25200000:
  370. case 27000000:
  371. case 27027000:
  372. case 37762500:
  373. case 37800000:
  374. case 40500000:
  375. case 40541000:
  376. case 54000000:
  377. case 54054000:
  378. case 59341000:
  379. case 59400000:
  380. case 72000000:
  381. case 74176000:
  382. case 74250000:
  383. case 81000000:
  384. case 81081000:
  385. case 89012000:
  386. case 89100000:
  387. case 108000000:
  388. case 108108000:
  389. case 111264000:
  390. case 111375000:
  391. case 148352000:
  392. case 148500000:
  393. case 162000000:
  394. case 162162000:
  395. case 222525000:
  396. case 222750000:
  397. case 296703000:
  398. case 297000000:
  399. budget = 0;
  400. break;
  401. case 233500000:
  402. case 245250000:
  403. case 247750000:
  404. case 253250000:
  405. case 298000000:
  406. budget = 1500;
  407. break;
  408. case 169128000:
  409. case 169500000:
  410. case 179500000:
  411. case 202000000:
  412. budget = 2000;
  413. break;
  414. case 256250000:
  415. case 262500000:
  416. case 270000000:
  417. case 272500000:
  418. case 273750000:
  419. case 280750000:
  420. case 281250000:
  421. case 286000000:
  422. case 291750000:
  423. budget = 4000;
  424. break;
  425. case 267250000:
  426. case 268500000:
  427. budget = 5000;
  428. break;
  429. default:
  430. budget = 1000;
  431. break;
  432. }
  433. return budget;
  434. }
  435. static void wrpll_update_rnp(uint64_t freq2k, unsigned budget,
  436. unsigned r2, unsigned n2, unsigned p,
  437. struct wrpll_rnp *best)
  438. {
  439. uint64_t a, b, c, d, diff, diff_best;
  440. /* No best (r,n,p) yet */
  441. if (best->p == 0) {
  442. best->p = p;
  443. best->n2 = n2;
  444. best->r2 = r2;
  445. return;
  446. }
  447. /*
  448. * Output clock is (LC_FREQ_2K / 2000) * N / (P * R), which compares to
  449. * freq2k.
  450. *
  451. * delta = 1e6 *
  452. * abs(freq2k - (LC_FREQ_2K * n2/(p * r2))) /
  453. * freq2k;
  454. *
  455. * and we would like delta <= budget.
  456. *
  457. * If the discrepancy is above the PPM-based budget, always prefer to
  458. * improve upon the previous solution. However, if you're within the
  459. * budget, try to maximize Ref * VCO, that is N / (P * R^2).
  460. */
  461. a = freq2k * budget * p * r2;
  462. b = freq2k * budget * best->p * best->r2;
  463. diff = ABS_DIFF((freq2k * p * r2), (LC_FREQ_2K * n2));
  464. diff_best = ABS_DIFF((freq2k * best->p * best->r2),
  465. (LC_FREQ_2K * best->n2));
  466. c = 1000000 * diff;
  467. d = 1000000 * diff_best;
  468. if (a < c && b < d) {
  469. /* If both are above the budget, pick the closer */
  470. if (best->p * best->r2 * diff < p * r2 * diff_best) {
  471. best->p = p;
  472. best->n2 = n2;
  473. best->r2 = r2;
  474. }
  475. } else if (a >= c && b < d) {
  476. /* If A is below the threshold but B is above it? Update. */
  477. best->p = p;
  478. best->n2 = n2;
  479. best->r2 = r2;
  480. } else if (a >= c && b >= d) {
  481. /* Both are below the limit, so pick the higher n2/(r2*r2) */
  482. if (n2 * best->r2 * best->r2 > best->n2 * r2 * r2) {
  483. best->p = p;
  484. best->n2 = n2;
  485. best->r2 = r2;
  486. }
  487. }
  488. /* Otherwise a < c && b >= d, do nothing */
  489. }
  490. static void
  491. intel_ddi_calculate_wrpll(int clock /* in Hz */,
  492. unsigned *r2_out, unsigned *n2_out, unsigned *p_out)
  493. {
  494. uint64_t freq2k;
  495. unsigned p, n2, r2;
  496. struct wrpll_rnp best = { 0, 0, 0 };
  497. unsigned budget;
  498. freq2k = clock / 100;
  499. budget = wrpll_get_budget_for_freq(clock);
  500. /* Special case handling for 540 pixel clock: bypass WR PLL entirely
  501. * and directly pass the LC PLL to it. */
  502. if (freq2k == 5400000) {
  503. *n2_out = 2;
  504. *p_out = 1;
  505. *r2_out = 2;
  506. return;
  507. }
  508. /*
  509. * Ref = LC_FREQ / R, where Ref is the actual reference input seen by
  510. * the WR PLL.
  511. *
  512. * We want R so that REF_MIN <= Ref <= REF_MAX.
  513. * Injecting R2 = 2 * R gives:
  514. * REF_MAX * r2 > LC_FREQ * 2 and
  515. * REF_MIN * r2 < LC_FREQ * 2
  516. *
  517. * Which means the desired boundaries for r2 are:
  518. * LC_FREQ * 2 / REF_MAX < r2 < LC_FREQ * 2 / REF_MIN
  519. *
  520. */
  521. for (r2 = LC_FREQ * 2 / REF_MAX + 1;
  522. r2 <= LC_FREQ * 2 / REF_MIN;
  523. r2++) {
  524. /*
  525. * VCO = N * Ref, that is: VCO = N * LC_FREQ / R
  526. *
  527. * Once again we want VCO_MIN <= VCO <= VCO_MAX.
  528. * Injecting R2 = 2 * R and N2 = 2 * N, we get:
  529. * VCO_MAX * r2 > n2 * LC_FREQ and
  530. * VCO_MIN * r2 < n2 * LC_FREQ)
  531. *
  532. * Which means the desired boundaries for n2 are:
  533. * VCO_MIN * r2 / LC_FREQ < n2 < VCO_MAX * r2 / LC_FREQ
  534. */
  535. for (n2 = VCO_MIN * r2 / LC_FREQ + 1;
  536. n2 <= VCO_MAX * r2 / LC_FREQ;
  537. n2++) {
  538. for (p = P_MIN; p <= P_MAX; p += P_INC)
  539. wrpll_update_rnp(freq2k, budget,
  540. r2, n2, p, &best);
  541. }
  542. }
  543. *n2_out = best.n2;
  544. *p_out = best.p;
  545. *r2_out = best.r2;
  546. DRM_DEBUG_KMS("WRPLL: %dHz refresh rate with p=%d, n2=%d r2=%d\n",
  547. clock, *p_out, *n2_out, *r2_out);
  548. }
  549. bool intel_ddi_pll_mode_set(struct drm_crtc *crtc)
  550. {
  551. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  552. struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
  553. struct drm_encoder *encoder = &intel_encoder->base;
  554. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  555. struct intel_ddi_plls *plls = &dev_priv->ddi_plls;
  556. int type = intel_encoder->type;
  557. enum pipe pipe = intel_crtc->pipe;
  558. uint32_t reg, val;
  559. int clock = intel_crtc->config.port_clock;
  560. /* TODO: reuse PLLs when possible (compare values) */
  561. intel_ddi_put_crtc_pll(crtc);
  562. if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP) {
  563. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  564. switch (intel_dp->link_bw) {
  565. case DP_LINK_BW_1_62:
  566. intel_crtc->ddi_pll_sel = PORT_CLK_SEL_LCPLL_810;
  567. break;
  568. case DP_LINK_BW_2_7:
  569. intel_crtc->ddi_pll_sel = PORT_CLK_SEL_LCPLL_1350;
  570. break;
  571. case DP_LINK_BW_5_4:
  572. intel_crtc->ddi_pll_sel = PORT_CLK_SEL_LCPLL_2700;
  573. break;
  574. default:
  575. DRM_ERROR("Link bandwidth %d unsupported\n",
  576. intel_dp->link_bw);
  577. return false;
  578. }
  579. /* We don't need to turn any PLL on because we'll use LCPLL. */
  580. return true;
  581. } else if (type == INTEL_OUTPUT_HDMI) {
  582. unsigned p, n2, r2;
  583. if (plls->wrpll1_refcount == 0) {
  584. DRM_DEBUG_KMS("Using WRPLL 1 on pipe %c\n",
  585. pipe_name(pipe));
  586. plls->wrpll1_refcount++;
  587. reg = WRPLL_CTL1;
  588. intel_crtc->ddi_pll_sel = PORT_CLK_SEL_WRPLL1;
  589. } else if (plls->wrpll2_refcount == 0) {
  590. DRM_DEBUG_KMS("Using WRPLL 2 on pipe %c\n",
  591. pipe_name(pipe));
  592. plls->wrpll2_refcount++;
  593. reg = WRPLL_CTL2;
  594. intel_crtc->ddi_pll_sel = PORT_CLK_SEL_WRPLL2;
  595. } else {
  596. DRM_ERROR("No WRPLLs available!\n");
  597. return false;
  598. }
  599. WARN(I915_READ(reg) & WRPLL_PLL_ENABLE,
  600. "WRPLL already enabled\n");
  601. intel_ddi_calculate_wrpll(clock * 1000, &r2, &n2, &p);
  602. val = WRPLL_PLL_ENABLE | WRPLL_PLL_SELECT_LCPLL_2700 |
  603. WRPLL_DIVIDER_REFERENCE(r2) | WRPLL_DIVIDER_FEEDBACK(n2) |
  604. WRPLL_DIVIDER_POST(p);
  605. } else if (type == INTEL_OUTPUT_ANALOG) {
  606. if (plls->spll_refcount == 0) {
  607. DRM_DEBUG_KMS("Using SPLL on pipe %c\n",
  608. pipe_name(pipe));
  609. plls->spll_refcount++;
  610. reg = SPLL_CTL;
  611. intel_crtc->ddi_pll_sel = PORT_CLK_SEL_SPLL;
  612. } else {
  613. DRM_ERROR("SPLL already in use\n");
  614. return false;
  615. }
  616. WARN(I915_READ(reg) & SPLL_PLL_ENABLE,
  617. "SPLL already enabled\n");
  618. val = SPLL_PLL_ENABLE | SPLL_PLL_FREQ_1350MHz | SPLL_PLL_SSC;
  619. } else {
  620. WARN(1, "Invalid DDI encoder type %d\n", type);
  621. return false;
  622. }
  623. I915_WRITE(reg, val);
  624. udelay(20);
  625. return true;
  626. }
  627. void intel_ddi_set_pipe_settings(struct drm_crtc *crtc)
  628. {
  629. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  630. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  631. struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
  632. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  633. int type = intel_encoder->type;
  634. uint32_t temp;
  635. if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP) {
  636. temp = TRANS_MSA_SYNC_CLK;
  637. switch (intel_crtc->config.pipe_bpp) {
  638. case 18:
  639. temp |= TRANS_MSA_6_BPC;
  640. break;
  641. case 24:
  642. temp |= TRANS_MSA_8_BPC;
  643. break;
  644. case 30:
  645. temp |= TRANS_MSA_10_BPC;
  646. break;
  647. case 36:
  648. temp |= TRANS_MSA_12_BPC;
  649. break;
  650. default:
  651. BUG();
  652. }
  653. I915_WRITE(TRANS_MSA_MISC(cpu_transcoder), temp);
  654. }
  655. }
  656. void intel_ddi_enable_transcoder_func(struct drm_crtc *crtc)
  657. {
  658. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  659. struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
  660. struct drm_encoder *encoder = &intel_encoder->base;
  661. struct drm_device *dev = crtc->dev;
  662. struct drm_i915_private *dev_priv = dev->dev_private;
  663. enum pipe pipe = intel_crtc->pipe;
  664. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  665. enum port port = intel_ddi_get_encoder_port(intel_encoder);
  666. int type = intel_encoder->type;
  667. uint32_t temp;
  668. /* Enable TRANS_DDI_FUNC_CTL for the pipe to work in HDMI mode */
  669. temp = TRANS_DDI_FUNC_ENABLE;
  670. temp |= TRANS_DDI_SELECT_PORT(port);
  671. switch (intel_crtc->config.pipe_bpp) {
  672. case 18:
  673. temp |= TRANS_DDI_BPC_6;
  674. break;
  675. case 24:
  676. temp |= TRANS_DDI_BPC_8;
  677. break;
  678. case 30:
  679. temp |= TRANS_DDI_BPC_10;
  680. break;
  681. case 36:
  682. temp |= TRANS_DDI_BPC_12;
  683. break;
  684. default:
  685. BUG();
  686. }
  687. if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_PVSYNC)
  688. temp |= TRANS_DDI_PVSYNC;
  689. if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_PHSYNC)
  690. temp |= TRANS_DDI_PHSYNC;
  691. if (cpu_transcoder == TRANSCODER_EDP) {
  692. switch (pipe) {
  693. case PIPE_A:
  694. /* On Haswell, can only use the always-on power well for
  695. * eDP when not using the panel fitter, and when not
  696. * using motion blur mitigation (which we don't
  697. * support). */
  698. if (IS_HASWELL(dev) && intel_crtc->config.pch_pfit.enabled)
  699. temp |= TRANS_DDI_EDP_INPUT_A_ONOFF;
  700. else
  701. temp |= TRANS_DDI_EDP_INPUT_A_ON;
  702. break;
  703. case PIPE_B:
  704. temp |= TRANS_DDI_EDP_INPUT_B_ONOFF;
  705. break;
  706. case PIPE_C:
  707. temp |= TRANS_DDI_EDP_INPUT_C_ONOFF;
  708. break;
  709. default:
  710. BUG();
  711. break;
  712. }
  713. }
  714. if (type == INTEL_OUTPUT_HDMI) {
  715. struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
  716. if (intel_hdmi->has_hdmi_sink)
  717. temp |= TRANS_DDI_MODE_SELECT_HDMI;
  718. else
  719. temp |= TRANS_DDI_MODE_SELECT_DVI;
  720. } else if (type == INTEL_OUTPUT_ANALOG) {
  721. temp |= TRANS_DDI_MODE_SELECT_FDI;
  722. temp |= (intel_crtc->config.fdi_lanes - 1) << 1;
  723. } else if (type == INTEL_OUTPUT_DISPLAYPORT ||
  724. type == INTEL_OUTPUT_EDP) {
  725. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  726. temp |= TRANS_DDI_MODE_SELECT_DP_SST;
  727. temp |= DDI_PORT_WIDTH(intel_dp->lane_count);
  728. } else {
  729. WARN(1, "Invalid encoder type %d for pipe %c\n",
  730. intel_encoder->type, pipe_name(pipe));
  731. }
  732. I915_WRITE(TRANS_DDI_FUNC_CTL(cpu_transcoder), temp);
  733. }
  734. void intel_ddi_disable_transcoder_func(struct drm_i915_private *dev_priv,
  735. enum transcoder cpu_transcoder)
  736. {
  737. uint32_t reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
  738. uint32_t val = I915_READ(reg);
  739. val &= ~(TRANS_DDI_FUNC_ENABLE | TRANS_DDI_PORT_MASK);
  740. val |= TRANS_DDI_PORT_NONE;
  741. I915_WRITE(reg, val);
  742. }
  743. bool intel_ddi_connector_get_hw_state(struct intel_connector *intel_connector)
  744. {
  745. struct drm_device *dev = intel_connector->base.dev;
  746. struct drm_i915_private *dev_priv = dev->dev_private;
  747. struct intel_encoder *intel_encoder = intel_connector->encoder;
  748. int type = intel_connector->base.connector_type;
  749. enum port port = intel_ddi_get_encoder_port(intel_encoder);
  750. enum pipe pipe = 0;
  751. enum transcoder cpu_transcoder;
  752. uint32_t tmp;
  753. if (!intel_encoder->get_hw_state(intel_encoder, &pipe))
  754. return false;
  755. if (port == PORT_A)
  756. cpu_transcoder = TRANSCODER_EDP;
  757. else
  758. cpu_transcoder = (enum transcoder) pipe;
  759. tmp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
  760. switch (tmp & TRANS_DDI_MODE_SELECT_MASK) {
  761. case TRANS_DDI_MODE_SELECT_HDMI:
  762. case TRANS_DDI_MODE_SELECT_DVI:
  763. return (type == DRM_MODE_CONNECTOR_HDMIA);
  764. case TRANS_DDI_MODE_SELECT_DP_SST:
  765. if (type == DRM_MODE_CONNECTOR_eDP)
  766. return true;
  767. case TRANS_DDI_MODE_SELECT_DP_MST:
  768. return (type == DRM_MODE_CONNECTOR_DisplayPort);
  769. case TRANS_DDI_MODE_SELECT_FDI:
  770. return (type == DRM_MODE_CONNECTOR_VGA);
  771. default:
  772. return false;
  773. }
  774. }
  775. bool intel_ddi_get_hw_state(struct intel_encoder *encoder,
  776. enum pipe *pipe)
  777. {
  778. struct drm_device *dev = encoder->base.dev;
  779. struct drm_i915_private *dev_priv = dev->dev_private;
  780. enum port port = intel_ddi_get_encoder_port(encoder);
  781. u32 tmp;
  782. int i;
  783. tmp = I915_READ(DDI_BUF_CTL(port));
  784. if (!(tmp & DDI_BUF_CTL_ENABLE))
  785. return false;
  786. if (port == PORT_A) {
  787. tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
  788. switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
  789. case TRANS_DDI_EDP_INPUT_A_ON:
  790. case TRANS_DDI_EDP_INPUT_A_ONOFF:
  791. *pipe = PIPE_A;
  792. break;
  793. case TRANS_DDI_EDP_INPUT_B_ONOFF:
  794. *pipe = PIPE_B;
  795. break;
  796. case TRANS_DDI_EDP_INPUT_C_ONOFF:
  797. *pipe = PIPE_C;
  798. break;
  799. }
  800. return true;
  801. } else {
  802. for (i = TRANSCODER_A; i <= TRANSCODER_C; i++) {
  803. tmp = I915_READ(TRANS_DDI_FUNC_CTL(i));
  804. if ((tmp & TRANS_DDI_PORT_MASK)
  805. == TRANS_DDI_SELECT_PORT(port)) {
  806. *pipe = i;
  807. return true;
  808. }
  809. }
  810. }
  811. DRM_DEBUG_KMS("No pipe for ddi port %c found\n", port_name(port));
  812. return false;
  813. }
  814. static uint32_t intel_ddi_get_crtc_pll(struct drm_i915_private *dev_priv,
  815. enum pipe pipe)
  816. {
  817. uint32_t temp, ret;
  818. enum port port = I915_MAX_PORTS;
  819. enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
  820. pipe);
  821. int i;
  822. if (cpu_transcoder == TRANSCODER_EDP) {
  823. port = PORT_A;
  824. } else {
  825. temp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
  826. temp &= TRANS_DDI_PORT_MASK;
  827. for (i = PORT_B; i <= PORT_E; i++)
  828. if (temp == TRANS_DDI_SELECT_PORT(i))
  829. port = i;
  830. }
  831. if (port == I915_MAX_PORTS) {
  832. WARN(1, "Pipe %c enabled on an unknown port\n",
  833. pipe_name(pipe));
  834. ret = PORT_CLK_SEL_NONE;
  835. } else {
  836. ret = I915_READ(PORT_CLK_SEL(port));
  837. DRM_DEBUG_KMS("Pipe %c connected to port %c using clock "
  838. "0x%08x\n", pipe_name(pipe), port_name(port),
  839. ret);
  840. }
  841. return ret;
  842. }
  843. void intel_ddi_setup_hw_pll_state(struct drm_device *dev)
  844. {
  845. struct drm_i915_private *dev_priv = dev->dev_private;
  846. enum pipe pipe;
  847. struct intel_crtc *intel_crtc;
  848. for_each_pipe(pipe) {
  849. intel_crtc =
  850. to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
  851. if (!intel_crtc->active)
  852. continue;
  853. intel_crtc->ddi_pll_sel = intel_ddi_get_crtc_pll(dev_priv,
  854. pipe);
  855. switch (intel_crtc->ddi_pll_sel) {
  856. case PORT_CLK_SEL_SPLL:
  857. dev_priv->ddi_plls.spll_refcount++;
  858. break;
  859. case PORT_CLK_SEL_WRPLL1:
  860. dev_priv->ddi_plls.wrpll1_refcount++;
  861. break;
  862. case PORT_CLK_SEL_WRPLL2:
  863. dev_priv->ddi_plls.wrpll2_refcount++;
  864. break;
  865. }
  866. }
  867. }
  868. void intel_ddi_enable_pipe_clock(struct intel_crtc *intel_crtc)
  869. {
  870. struct drm_crtc *crtc = &intel_crtc->base;
  871. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  872. struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
  873. enum port port = intel_ddi_get_encoder_port(intel_encoder);
  874. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  875. if (cpu_transcoder != TRANSCODER_EDP)
  876. I915_WRITE(TRANS_CLK_SEL(cpu_transcoder),
  877. TRANS_CLK_SEL_PORT(port));
  878. }
  879. void intel_ddi_disable_pipe_clock(struct intel_crtc *intel_crtc)
  880. {
  881. struct drm_i915_private *dev_priv = intel_crtc->base.dev->dev_private;
  882. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  883. if (cpu_transcoder != TRANSCODER_EDP)
  884. I915_WRITE(TRANS_CLK_SEL(cpu_transcoder),
  885. TRANS_CLK_SEL_DISABLED);
  886. }
  887. static void intel_ddi_pre_enable(struct intel_encoder *intel_encoder)
  888. {
  889. struct drm_encoder *encoder = &intel_encoder->base;
  890. struct drm_crtc *crtc = encoder->crtc;
  891. struct drm_i915_private *dev_priv = encoder->dev->dev_private;
  892. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  893. enum port port = intel_ddi_get_encoder_port(intel_encoder);
  894. int type = intel_encoder->type;
  895. if (type == INTEL_OUTPUT_EDP) {
  896. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  897. ironlake_edp_panel_vdd_on(intel_dp);
  898. ironlake_edp_panel_on(intel_dp);
  899. ironlake_edp_panel_vdd_off(intel_dp, true);
  900. }
  901. WARN_ON(intel_crtc->ddi_pll_sel == PORT_CLK_SEL_NONE);
  902. I915_WRITE(PORT_CLK_SEL(port), intel_crtc->ddi_pll_sel);
  903. if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP) {
  904. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  905. intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
  906. intel_dp_start_link_train(intel_dp);
  907. intel_dp_complete_link_train(intel_dp);
  908. if (port != PORT_A)
  909. intel_dp_stop_link_train(intel_dp);
  910. }
  911. }
  912. static void intel_ddi_post_disable(struct intel_encoder *intel_encoder)
  913. {
  914. struct drm_encoder *encoder = &intel_encoder->base;
  915. struct drm_i915_private *dev_priv = encoder->dev->dev_private;
  916. enum port port = intel_ddi_get_encoder_port(intel_encoder);
  917. int type = intel_encoder->type;
  918. uint32_t val;
  919. bool wait = false;
  920. val = I915_READ(DDI_BUF_CTL(port));
  921. if (val & DDI_BUF_CTL_ENABLE) {
  922. val &= ~DDI_BUF_CTL_ENABLE;
  923. I915_WRITE(DDI_BUF_CTL(port), val);
  924. wait = true;
  925. }
  926. val = I915_READ(DP_TP_CTL(port));
  927. val &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK);
  928. val |= DP_TP_CTL_LINK_TRAIN_PAT1;
  929. I915_WRITE(DP_TP_CTL(port), val);
  930. if (wait)
  931. intel_wait_ddi_buf_idle(dev_priv, port);
  932. if (type == INTEL_OUTPUT_EDP) {
  933. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  934. ironlake_edp_panel_vdd_on(intel_dp);
  935. ironlake_edp_panel_off(intel_dp);
  936. }
  937. I915_WRITE(PORT_CLK_SEL(port), PORT_CLK_SEL_NONE);
  938. }
  939. static void intel_enable_ddi(struct intel_encoder *intel_encoder)
  940. {
  941. struct drm_encoder *encoder = &intel_encoder->base;
  942. struct drm_crtc *crtc = encoder->crtc;
  943. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  944. int pipe = intel_crtc->pipe;
  945. struct drm_device *dev = encoder->dev;
  946. struct drm_i915_private *dev_priv = dev->dev_private;
  947. enum port port = intel_ddi_get_encoder_port(intel_encoder);
  948. int type = intel_encoder->type;
  949. uint32_t tmp;
  950. if (type == INTEL_OUTPUT_HDMI) {
  951. struct intel_digital_port *intel_dig_port =
  952. enc_to_dig_port(encoder);
  953. /* In HDMI/DVI mode, the port width, and swing/emphasis values
  954. * are ignored so nothing special needs to be done besides
  955. * enabling the port.
  956. */
  957. I915_WRITE(DDI_BUF_CTL(port),
  958. intel_dig_port->saved_port_bits |
  959. DDI_BUF_CTL_ENABLE);
  960. } else if (type == INTEL_OUTPUT_EDP) {
  961. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  962. if (port == PORT_A)
  963. intel_dp_stop_link_train(intel_dp);
  964. ironlake_edp_backlight_on(intel_dp);
  965. intel_edp_psr_enable(intel_dp);
  966. }
  967. if (intel_crtc->eld_vld && type != INTEL_OUTPUT_EDP) {
  968. tmp = I915_READ(HSW_AUD_PIN_ELD_CP_VLD);
  969. tmp |= ((AUDIO_OUTPUT_ENABLE_A | AUDIO_ELD_VALID_A) << (pipe * 4));
  970. I915_WRITE(HSW_AUD_PIN_ELD_CP_VLD, tmp);
  971. }
  972. }
  973. static void intel_disable_ddi(struct intel_encoder *intel_encoder)
  974. {
  975. struct drm_encoder *encoder = &intel_encoder->base;
  976. struct drm_crtc *crtc = encoder->crtc;
  977. struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
  978. int pipe = intel_crtc->pipe;
  979. int type = intel_encoder->type;
  980. struct drm_device *dev = encoder->dev;
  981. struct drm_i915_private *dev_priv = dev->dev_private;
  982. uint32_t tmp;
  983. if (intel_crtc->eld_vld && type != INTEL_OUTPUT_EDP) {
  984. tmp = I915_READ(HSW_AUD_PIN_ELD_CP_VLD);
  985. tmp &= ~((AUDIO_OUTPUT_ENABLE_A | AUDIO_ELD_VALID_A) <<
  986. (pipe * 4));
  987. I915_WRITE(HSW_AUD_PIN_ELD_CP_VLD, tmp);
  988. }
  989. if (type == INTEL_OUTPUT_EDP) {
  990. struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
  991. intel_edp_psr_disable(intel_dp);
  992. ironlake_edp_backlight_off(intel_dp);
  993. }
  994. }
  995. int intel_ddi_get_cdclk_freq(struct drm_i915_private *dev_priv)
  996. {
  997. struct drm_device *dev = dev_priv->dev;
  998. uint32_t lcpll = I915_READ(LCPLL_CTL);
  999. uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
  1000. if (lcpll & LCPLL_CD_SOURCE_FCLK) {
  1001. return 800000;
  1002. } else if (I915_READ(HSW_FUSE_STRAP) & HSW_CDCLK_LIMIT) {
  1003. return 450000;
  1004. } else if (freq == LCPLL_CLK_FREQ_450) {
  1005. return 450000;
  1006. } else if (IS_HASWELL(dev)) {
  1007. if (IS_ULT(dev))
  1008. return 337500;
  1009. else
  1010. return 540000;
  1011. } else {
  1012. if (freq == LCPLL_CLK_FREQ_54O_BDW)
  1013. return 540000;
  1014. else if (freq == LCPLL_CLK_FREQ_337_5_BDW)
  1015. return 337500;
  1016. else
  1017. return 675000;
  1018. }
  1019. }
  1020. void intel_ddi_pll_init(struct drm_device *dev)
  1021. {
  1022. struct drm_i915_private *dev_priv = dev->dev_private;
  1023. uint32_t val = I915_READ(LCPLL_CTL);
  1024. /* The LCPLL register should be turned on by the BIOS. For now let's
  1025. * just check its state and print errors in case something is wrong.
  1026. * Don't even try to turn it on.
  1027. */
  1028. DRM_DEBUG_KMS("CDCLK running at %dKHz\n",
  1029. intel_ddi_get_cdclk_freq(dev_priv));
  1030. if (val & LCPLL_CD_SOURCE_FCLK)
  1031. DRM_ERROR("CDCLK source is not LCPLL\n");
  1032. if (val & LCPLL_PLL_DISABLE)
  1033. DRM_ERROR("LCPLL is disabled\n");
  1034. }
  1035. void intel_ddi_prepare_link_retrain(struct drm_encoder *encoder)
  1036. {
  1037. struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
  1038. struct intel_dp *intel_dp = &intel_dig_port->dp;
  1039. struct drm_i915_private *dev_priv = encoder->dev->dev_private;
  1040. enum port port = intel_dig_port->port;
  1041. uint32_t val;
  1042. bool wait = false;
  1043. if (I915_READ(DP_TP_CTL(port)) & DP_TP_CTL_ENABLE) {
  1044. val = I915_READ(DDI_BUF_CTL(port));
  1045. if (val & DDI_BUF_CTL_ENABLE) {
  1046. val &= ~DDI_BUF_CTL_ENABLE;
  1047. I915_WRITE(DDI_BUF_CTL(port), val);
  1048. wait = true;
  1049. }
  1050. val = I915_READ(DP_TP_CTL(port));
  1051. val &= ~(DP_TP_CTL_ENABLE | DP_TP_CTL_LINK_TRAIN_MASK);
  1052. val |= DP_TP_CTL_LINK_TRAIN_PAT1;
  1053. I915_WRITE(DP_TP_CTL(port), val);
  1054. POSTING_READ(DP_TP_CTL(port));
  1055. if (wait)
  1056. intel_wait_ddi_buf_idle(dev_priv, port);
  1057. }
  1058. val = DP_TP_CTL_ENABLE | DP_TP_CTL_MODE_SST |
  1059. DP_TP_CTL_LINK_TRAIN_PAT1 | DP_TP_CTL_SCRAMBLE_DISABLE;
  1060. if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
  1061. val |= DP_TP_CTL_ENHANCED_FRAME_ENABLE;
  1062. I915_WRITE(DP_TP_CTL(port), val);
  1063. POSTING_READ(DP_TP_CTL(port));
  1064. intel_dp->DP |= DDI_BUF_CTL_ENABLE;
  1065. I915_WRITE(DDI_BUF_CTL(port), intel_dp->DP);
  1066. POSTING_READ(DDI_BUF_CTL(port));
  1067. udelay(600);
  1068. }
  1069. void intel_ddi_fdi_disable(struct drm_crtc *crtc)
  1070. {
  1071. struct drm_i915_private *dev_priv = crtc->dev->dev_private;
  1072. struct intel_encoder *intel_encoder = intel_ddi_get_crtc_encoder(crtc);
  1073. uint32_t val;
  1074. intel_ddi_post_disable(intel_encoder);
  1075. val = I915_READ(_FDI_RXA_CTL);
  1076. val &= ~FDI_RX_ENABLE;
  1077. I915_WRITE(_FDI_RXA_CTL, val);
  1078. val = I915_READ(_FDI_RXA_MISC);
  1079. val &= ~(FDI_RX_PWRDN_LANE1_MASK | FDI_RX_PWRDN_LANE0_MASK);
  1080. val |= FDI_RX_PWRDN_LANE1_VAL(2) | FDI_RX_PWRDN_LANE0_VAL(2);
  1081. I915_WRITE(_FDI_RXA_MISC, val);
  1082. val = I915_READ(_FDI_RXA_CTL);
  1083. val &= ~FDI_PCDCLK;
  1084. I915_WRITE(_FDI_RXA_CTL, val);
  1085. val = I915_READ(_FDI_RXA_CTL);
  1086. val &= ~FDI_RX_PLL_ENABLE;
  1087. I915_WRITE(_FDI_RXA_CTL, val);
  1088. }
  1089. static void intel_ddi_hot_plug(struct intel_encoder *intel_encoder)
  1090. {
  1091. struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
  1092. int type = intel_encoder->type;
  1093. if (type == INTEL_OUTPUT_DISPLAYPORT || type == INTEL_OUTPUT_EDP)
  1094. intel_dp_check_link_status(intel_dp);
  1095. }
  1096. void intel_ddi_get_config(struct intel_encoder *encoder,
  1097. struct intel_crtc_config *pipe_config)
  1098. {
  1099. struct drm_i915_private *dev_priv = encoder->base.dev->dev_private;
  1100. struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
  1101. enum transcoder cpu_transcoder = intel_crtc->config.cpu_transcoder;
  1102. u32 temp, flags = 0;
  1103. temp = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
  1104. if (temp & TRANS_DDI_PHSYNC)
  1105. flags |= DRM_MODE_FLAG_PHSYNC;
  1106. else
  1107. flags |= DRM_MODE_FLAG_NHSYNC;
  1108. if (temp & TRANS_DDI_PVSYNC)
  1109. flags |= DRM_MODE_FLAG_PVSYNC;
  1110. else
  1111. flags |= DRM_MODE_FLAG_NVSYNC;
  1112. pipe_config->adjusted_mode.flags |= flags;
  1113. switch (temp & TRANS_DDI_BPC_MASK) {
  1114. case TRANS_DDI_BPC_6:
  1115. pipe_config->pipe_bpp = 18;
  1116. break;
  1117. case TRANS_DDI_BPC_8:
  1118. pipe_config->pipe_bpp = 24;
  1119. break;
  1120. case TRANS_DDI_BPC_10:
  1121. pipe_config->pipe_bpp = 30;
  1122. break;
  1123. case TRANS_DDI_BPC_12:
  1124. pipe_config->pipe_bpp = 36;
  1125. break;
  1126. default:
  1127. break;
  1128. }
  1129. switch (temp & TRANS_DDI_MODE_SELECT_MASK) {
  1130. case TRANS_DDI_MODE_SELECT_HDMI:
  1131. case TRANS_DDI_MODE_SELECT_DVI:
  1132. case TRANS_DDI_MODE_SELECT_FDI:
  1133. break;
  1134. case TRANS_DDI_MODE_SELECT_DP_SST:
  1135. case TRANS_DDI_MODE_SELECT_DP_MST:
  1136. pipe_config->has_dp_encoder = true;
  1137. intel_dp_get_m_n(intel_crtc, pipe_config);
  1138. break;
  1139. default:
  1140. break;
  1141. }
  1142. }
  1143. static void intel_ddi_destroy(struct drm_encoder *encoder)
  1144. {
  1145. /* HDMI has nothing special to destroy, so we can go with this. */
  1146. intel_dp_encoder_destroy(encoder);
  1147. }
  1148. static bool intel_ddi_compute_config(struct intel_encoder *encoder,
  1149. struct intel_crtc_config *pipe_config)
  1150. {
  1151. int type = encoder->type;
  1152. int port = intel_ddi_get_encoder_port(encoder);
  1153. WARN(type == INTEL_OUTPUT_UNKNOWN, "compute_config() on unknown output!\n");
  1154. if (port == PORT_A)
  1155. pipe_config->cpu_transcoder = TRANSCODER_EDP;
  1156. if (type == INTEL_OUTPUT_HDMI)
  1157. return intel_hdmi_compute_config(encoder, pipe_config);
  1158. else
  1159. return intel_dp_compute_config(encoder, pipe_config);
  1160. }
  1161. static const struct drm_encoder_funcs intel_ddi_funcs = {
  1162. .destroy = intel_ddi_destroy,
  1163. };
  1164. static struct intel_connector *
  1165. intel_ddi_init_dp_connector(struct intel_digital_port *intel_dig_port)
  1166. {
  1167. struct intel_connector *connector;
  1168. enum port port = intel_dig_port->port;
  1169. connector = kzalloc(sizeof(*connector), GFP_KERNEL);
  1170. if (!connector)
  1171. return NULL;
  1172. intel_dig_port->dp.output_reg = DDI_BUF_CTL(port);
  1173. if (!intel_dp_init_connector(intel_dig_port, connector)) {
  1174. kfree(connector);
  1175. return NULL;
  1176. }
  1177. return connector;
  1178. }
  1179. static struct intel_connector *
  1180. intel_ddi_init_hdmi_connector(struct intel_digital_port *intel_dig_port)
  1181. {
  1182. struct intel_connector *connector;
  1183. enum port port = intel_dig_port->port;
  1184. connector = kzalloc(sizeof(*connector), GFP_KERNEL);
  1185. if (!connector)
  1186. return NULL;
  1187. intel_dig_port->hdmi.hdmi_reg = DDI_BUF_CTL(port);
  1188. intel_hdmi_init_connector(intel_dig_port, connector);
  1189. return connector;
  1190. }
  1191. void intel_ddi_init(struct drm_device *dev, enum port port)
  1192. {
  1193. struct drm_i915_private *dev_priv = dev->dev_private;
  1194. struct intel_digital_port *intel_dig_port;
  1195. struct intel_encoder *intel_encoder;
  1196. struct drm_encoder *encoder;
  1197. struct intel_connector *hdmi_connector = NULL;
  1198. struct intel_connector *dp_connector = NULL;
  1199. bool init_hdmi, init_dp;
  1200. init_hdmi = (dev_priv->vbt.ddi_port_info[port].supports_dvi ||
  1201. dev_priv->vbt.ddi_port_info[port].supports_hdmi);
  1202. init_dp = dev_priv->vbt.ddi_port_info[port].supports_dp;
  1203. if (!init_dp && !init_hdmi) {
  1204. DRM_DEBUG_KMS("VBT says port %c is not DVI/HDMI/DP compatible\n",
  1205. port_name(port));
  1206. init_hdmi = true;
  1207. init_dp = true;
  1208. }
  1209. intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
  1210. if (!intel_dig_port)
  1211. return;
  1212. intel_encoder = &intel_dig_port->base;
  1213. encoder = &intel_encoder->base;
  1214. drm_encoder_init(dev, encoder, &intel_ddi_funcs,
  1215. DRM_MODE_ENCODER_TMDS);
  1216. intel_encoder->compute_config = intel_ddi_compute_config;
  1217. intel_encoder->mode_set = intel_ddi_mode_set;
  1218. intel_encoder->enable = intel_enable_ddi;
  1219. intel_encoder->pre_enable = intel_ddi_pre_enable;
  1220. intel_encoder->disable = intel_disable_ddi;
  1221. intel_encoder->post_disable = intel_ddi_post_disable;
  1222. intel_encoder->get_hw_state = intel_ddi_get_hw_state;
  1223. intel_encoder->get_config = intel_ddi_get_config;
  1224. intel_dig_port->port = port;
  1225. intel_dig_port->saved_port_bits = I915_READ(DDI_BUF_CTL(port)) &
  1226. (DDI_BUF_PORT_REVERSAL |
  1227. DDI_A_4_LANES);
  1228. intel_encoder->type = INTEL_OUTPUT_UNKNOWN;
  1229. intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
  1230. intel_encoder->cloneable = false;
  1231. intel_encoder->hot_plug = intel_ddi_hot_plug;
  1232. if (init_dp)
  1233. dp_connector = intel_ddi_init_dp_connector(intel_dig_port);
  1234. /* In theory we don't need the encoder->type check, but leave it just in
  1235. * case we have some really bad VBTs... */
  1236. if (intel_encoder->type != INTEL_OUTPUT_EDP && init_hdmi)
  1237. hdmi_connector = intel_ddi_init_hdmi_connector(intel_dig_port);
  1238. if (!dp_connector && !hdmi_connector) {
  1239. drm_encoder_cleanup(encoder);
  1240. kfree(intel_dig_port);
  1241. }
  1242. }