oom_kill.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437
  1. /*
  2. * linux/mm/oom_kill.c
  3. *
  4. * Copyright (C) 1998,2000 Rik van Riel
  5. * Thanks go out to Claus Fischer for some serious inspiration and
  6. * for goading me into coding this file...
  7. *
  8. * The routines in this file are used to kill a process when
  9. * we're seriously out of memory. This gets called from __alloc_pages()
  10. * in mm/page_alloc.c when we really run out of memory.
  11. *
  12. * Since we won't call these routines often (on a well-configured
  13. * machine) this file will double as a 'coding guide' and a signpost
  14. * for newbie kernel hackers. It features several pointers to major
  15. * kernel subsystems and hints as to where to find out what things do.
  16. */
  17. #include <linux/mm.h>
  18. #include <linux/sched.h>
  19. #include <linux/swap.h>
  20. #include <linux/timex.h>
  21. #include <linux/jiffies.h>
  22. #include <linux/cpuset.h>
  23. #include <linux/module.h>
  24. #include <linux/notifier.h>
  25. int sysctl_panic_on_oom;
  26. /* #define DEBUG */
  27. /**
  28. * badness - calculate a numeric value for how bad this task has been
  29. * @p: task struct of which task we should calculate
  30. * @uptime: current uptime in seconds
  31. *
  32. * The formula used is relatively simple and documented inline in the
  33. * function. The main rationale is that we want to select a good task
  34. * to kill when we run out of memory.
  35. *
  36. * Good in this context means that:
  37. * 1) we lose the minimum amount of work done
  38. * 2) we recover a large amount of memory
  39. * 3) we don't kill anything innocent of eating tons of memory
  40. * 4) we want to kill the minimum amount of processes (one)
  41. * 5) we try to kill the process the user expects us to kill, this
  42. * algorithm has been meticulously tuned to meet the principle
  43. * of least surprise ... (be careful when you change it)
  44. */
  45. unsigned long badness(struct task_struct *p, unsigned long uptime)
  46. {
  47. unsigned long points, cpu_time, run_time, s;
  48. struct mm_struct *mm;
  49. struct task_struct *child;
  50. task_lock(p);
  51. mm = p->mm;
  52. if (!mm) {
  53. task_unlock(p);
  54. return 0;
  55. }
  56. /*
  57. * The memory size of the process is the basis for the badness.
  58. */
  59. points = mm->total_vm;
  60. /*
  61. * After this unlock we can no longer dereference local variable `mm'
  62. */
  63. task_unlock(p);
  64. /*
  65. * Processes which fork a lot of child processes are likely
  66. * a good choice. We add half the vmsize of the children if they
  67. * have an own mm. This prevents forking servers to flood the
  68. * machine with an endless amount of children. In case a single
  69. * child is eating the vast majority of memory, adding only half
  70. * to the parents will make the child our kill candidate of choice.
  71. */
  72. list_for_each_entry(child, &p->children, sibling) {
  73. task_lock(child);
  74. if (child->mm != mm && child->mm)
  75. points += child->mm->total_vm/2 + 1;
  76. task_unlock(child);
  77. }
  78. /*
  79. * CPU time is in tens of seconds and run time is in thousands
  80. * of seconds. There is no particular reason for this other than
  81. * that it turned out to work very well in practice.
  82. */
  83. cpu_time = (cputime_to_jiffies(p->utime) + cputime_to_jiffies(p->stime))
  84. >> (SHIFT_HZ + 3);
  85. if (uptime >= p->start_time.tv_sec)
  86. run_time = (uptime - p->start_time.tv_sec) >> 10;
  87. else
  88. run_time = 0;
  89. s = int_sqrt(cpu_time);
  90. if (s)
  91. points /= s;
  92. s = int_sqrt(int_sqrt(run_time));
  93. if (s)
  94. points /= s;
  95. /*
  96. * Niced processes are most likely less important, so double
  97. * their badness points.
  98. */
  99. if (task_nice(p) > 0)
  100. points *= 2;
  101. /*
  102. * Superuser processes are usually more important, so we make it
  103. * less likely that we kill those.
  104. */
  105. if (cap_t(p->cap_effective) & CAP_TO_MASK(CAP_SYS_ADMIN) ||
  106. p->uid == 0 || p->euid == 0)
  107. points /= 4;
  108. /*
  109. * We don't want to kill a process with direct hardware access.
  110. * Not only could that mess up the hardware, but usually users
  111. * tend to only have this flag set on applications they think
  112. * of as important.
  113. */
  114. if (cap_t(p->cap_effective) & CAP_TO_MASK(CAP_SYS_RAWIO))
  115. points /= 4;
  116. /*
  117. * If p's nodes don't overlap ours, it may still help to kill p
  118. * because p may have allocated or otherwise mapped memory on
  119. * this node before. However it will be less likely.
  120. */
  121. if (!cpuset_excl_nodes_overlap(p))
  122. points /= 8;
  123. /*
  124. * Adjust the score by oomkilladj.
  125. */
  126. if (p->oomkilladj) {
  127. if (p->oomkilladj > 0)
  128. points <<= p->oomkilladj;
  129. else
  130. points >>= -(p->oomkilladj);
  131. }
  132. #ifdef DEBUG
  133. printk(KERN_DEBUG "OOMkill: task %d (%s) got %d points\n",
  134. p->pid, p->comm, points);
  135. #endif
  136. return points;
  137. }
  138. /*
  139. * Types of limitations to the nodes from which allocations may occur
  140. */
  141. #define CONSTRAINT_NONE 1
  142. #define CONSTRAINT_MEMORY_POLICY 2
  143. #define CONSTRAINT_CPUSET 3
  144. /*
  145. * Determine the type of allocation constraint.
  146. */
  147. static inline int constrained_alloc(struct zonelist *zonelist, gfp_t gfp_mask)
  148. {
  149. #ifdef CONFIG_NUMA
  150. struct zone **z;
  151. nodemask_t nodes = node_online_map;
  152. for (z = zonelist->zones; *z; z++)
  153. if (cpuset_zone_allowed(*z, gfp_mask))
  154. node_clear((*z)->zone_pgdat->node_id,
  155. nodes);
  156. else
  157. return CONSTRAINT_CPUSET;
  158. if (!nodes_empty(nodes))
  159. return CONSTRAINT_MEMORY_POLICY;
  160. #endif
  161. return CONSTRAINT_NONE;
  162. }
  163. /*
  164. * Simple selection loop. We chose the process with the highest
  165. * number of 'points'. We expect the caller will lock the tasklist.
  166. *
  167. * (not docbooked, we don't want this one cluttering up the manual)
  168. */
  169. static struct task_struct *select_bad_process(unsigned long *ppoints)
  170. {
  171. struct task_struct *g, *p;
  172. struct task_struct *chosen = NULL;
  173. struct timespec uptime;
  174. *ppoints = 0;
  175. do_posix_clock_monotonic_gettime(&uptime);
  176. do_each_thread(g, p) {
  177. unsigned long points;
  178. int releasing;
  179. /* skip the init task with pid == 1 */
  180. if (p->pid == 1)
  181. continue;
  182. if (p->oomkilladj == OOM_DISABLE)
  183. continue;
  184. /*
  185. * This is in the process of releasing memory so wait for it
  186. * to finish before killing some other task by mistake.
  187. *
  188. * However, if p is the current task, we allow the 'kill' to
  189. * go ahead if it is exiting: this will simply set TIF_MEMDIE,
  190. * which will allow it to gain access to memory reserves in
  191. * the process of exiting and releasing its resources.
  192. * Otherwise we could get an OOM deadlock.
  193. */
  194. releasing = test_tsk_thread_flag(p, TIF_MEMDIE) ||
  195. p->flags & PF_EXITING;
  196. if (releasing) {
  197. /* PF_DEAD tasks have already released their mm */
  198. if (p->flags & PF_DEAD)
  199. continue;
  200. if (p->flags & PF_EXITING && p == current) {
  201. chosen = p;
  202. *ppoints = ULONG_MAX;
  203. break;
  204. }
  205. return ERR_PTR(-1UL);
  206. }
  207. if (p->flags & PF_SWAPOFF)
  208. return p;
  209. points = badness(p, uptime.tv_sec);
  210. if (points > *ppoints || !chosen) {
  211. chosen = p;
  212. *ppoints = points;
  213. }
  214. } while_each_thread(g, p);
  215. return chosen;
  216. }
  217. /**
  218. * We must be careful though to never send SIGKILL a process with
  219. * CAP_SYS_RAW_IO set, send SIGTERM instead (but it's unlikely that
  220. * we select a process with CAP_SYS_RAW_IO set).
  221. */
  222. static void __oom_kill_task(struct task_struct *p, const char *message)
  223. {
  224. if (p->pid == 1) {
  225. WARN_ON(1);
  226. printk(KERN_WARNING "tried to kill init!\n");
  227. return;
  228. }
  229. task_lock(p);
  230. if (!p->mm || p->mm == &init_mm) {
  231. WARN_ON(1);
  232. printk(KERN_WARNING "tried to kill an mm-less task!\n");
  233. task_unlock(p);
  234. return;
  235. }
  236. task_unlock(p);
  237. if (message) {
  238. printk(KERN_ERR "%s: Killed process %d (%s).\n",
  239. message, p->pid, p->comm);
  240. }
  241. /*
  242. * We give our sacrificial lamb high priority and access to
  243. * all the memory it needs. That way it should be able to
  244. * exit() and clear out its resources quickly...
  245. */
  246. p->time_slice = HZ;
  247. set_tsk_thread_flag(p, TIF_MEMDIE);
  248. force_sig(SIGKILL, p);
  249. }
  250. static int oom_kill_task(struct task_struct *p, const char *message)
  251. {
  252. struct mm_struct *mm;
  253. struct task_struct *g, *q;
  254. mm = p->mm;
  255. /* WARNING: mm may not be dereferenced since we did not obtain its
  256. * value from get_task_mm(p). This is OK since all we need to do is
  257. * compare mm to q->mm below.
  258. *
  259. * Furthermore, even if mm contains a non-NULL value, p->mm may
  260. * change to NULL at any time since we do not hold task_lock(p).
  261. * However, this is of no concern to us.
  262. */
  263. if (mm == NULL || mm == &init_mm)
  264. return 1;
  265. __oom_kill_task(p, message);
  266. /*
  267. * kill all processes that share the ->mm (i.e. all threads),
  268. * but are in a different thread group
  269. */
  270. do_each_thread(g, q)
  271. if (q->mm == mm && q->tgid != p->tgid)
  272. __oom_kill_task(q, message);
  273. while_each_thread(g, q);
  274. return 0;
  275. }
  276. static int oom_kill_process(struct task_struct *p, unsigned long points,
  277. const char *message)
  278. {
  279. struct task_struct *c;
  280. struct list_head *tsk;
  281. /*
  282. * If the task is already exiting, don't alarm the sysadmin or kill
  283. * its children or threads, just set TIF_MEMDIE so it can die quickly
  284. */
  285. if (p->flags & PF_EXITING) {
  286. __oom_kill_task(p, NULL);
  287. return 0;
  288. }
  289. printk(KERN_ERR "Out of Memory: Kill process %d (%s) score %li"
  290. " and children.\n", p->pid, p->comm, points);
  291. /* Try to kill a child first */
  292. list_for_each(tsk, &p->children) {
  293. c = list_entry(tsk, struct task_struct, sibling);
  294. if (c->mm == p->mm)
  295. continue;
  296. if (!oom_kill_task(c, message))
  297. return 0;
  298. }
  299. return oom_kill_task(p, message);
  300. }
  301. static BLOCKING_NOTIFIER_HEAD(oom_notify_list);
  302. int register_oom_notifier(struct notifier_block *nb)
  303. {
  304. return blocking_notifier_chain_register(&oom_notify_list, nb);
  305. }
  306. EXPORT_SYMBOL_GPL(register_oom_notifier);
  307. int unregister_oom_notifier(struct notifier_block *nb)
  308. {
  309. return blocking_notifier_chain_unregister(&oom_notify_list, nb);
  310. }
  311. EXPORT_SYMBOL_GPL(unregister_oom_notifier);
  312. /**
  313. * out_of_memory - kill the "best" process when we run out of memory
  314. *
  315. * If we run out of memory, we have the choice between either
  316. * killing a random task (bad), letting the system crash (worse)
  317. * OR try to be smart about which process to kill. Note that we
  318. * don't have to be perfect here, we just have to be good.
  319. */
  320. void out_of_memory(struct zonelist *zonelist, gfp_t gfp_mask, int order)
  321. {
  322. struct task_struct *p;
  323. unsigned long points = 0;
  324. unsigned long freed = 0;
  325. blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
  326. if (freed > 0)
  327. /* Got some memory back in the last second. */
  328. return;
  329. if (printk_ratelimit()) {
  330. printk("oom-killer: gfp_mask=0x%x, order=%d\n",
  331. gfp_mask, order);
  332. dump_stack();
  333. show_mem();
  334. }
  335. cpuset_lock();
  336. read_lock(&tasklist_lock);
  337. /*
  338. * Check if there were limitations on the allocation (only relevant for
  339. * NUMA) that may require different handling.
  340. */
  341. switch (constrained_alloc(zonelist, gfp_mask)) {
  342. case CONSTRAINT_MEMORY_POLICY:
  343. oom_kill_process(current, points,
  344. "No available memory (MPOL_BIND)");
  345. break;
  346. case CONSTRAINT_CPUSET:
  347. oom_kill_process(current, points,
  348. "No available memory in cpuset");
  349. break;
  350. case CONSTRAINT_NONE:
  351. if (sysctl_panic_on_oom)
  352. panic("out of memory. panic_on_oom is selected\n");
  353. retry:
  354. /*
  355. * Rambo mode: Shoot down a process and hope it solves whatever
  356. * issues we may have.
  357. */
  358. p = select_bad_process(&points);
  359. if (PTR_ERR(p) == -1UL)
  360. goto out;
  361. /* Found nothing?!?! Either we hang forever, or we panic. */
  362. if (!p) {
  363. read_unlock(&tasklist_lock);
  364. cpuset_unlock();
  365. panic("Out of memory and no killable processes...\n");
  366. }
  367. if (oom_kill_process(p, points, "Out of memory"))
  368. goto retry;
  369. break;
  370. }
  371. out:
  372. read_unlock(&tasklist_lock);
  373. cpuset_unlock();
  374. /*
  375. * Give "p" a good chance of killing itself before we
  376. * retry to allocate memory unless "p" is current
  377. */
  378. if (!test_thread_flag(TIF_MEMDIE))
  379. schedule_timeout_uninterruptible(1);
  380. }