sb8_main.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555
  1. /*
  2. * Copyright (c) by Jaroslav Kysela <perex@perex.cz>
  3. * Uros Bizjak <uros@kss-loka.si>
  4. *
  5. * Routines for control of 8-bit SoundBlaster cards and clones
  6. * Please note: I don't have access to old SB8 soundcards.
  7. *
  8. *
  9. * This program is free software; you can redistribute it and/or modify
  10. * it under the terms of the GNU General Public License as published by
  11. * the Free Software Foundation; either version 2 of the License, or
  12. * (at your option) any later version.
  13. *
  14. * This program is distributed in the hope that it will be useful,
  15. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  17. * GNU General Public License for more details.
  18. *
  19. * You should have received a copy of the GNU General Public License
  20. * along with this program; if not, write to the Free Software
  21. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  22. *
  23. * --
  24. *
  25. * Thu Apr 29 20:36:17 BST 1999 George David Morrison <gdm@gedamo.demon.co.uk>
  26. * DSP can't respond to commands whilst in "high speed" mode. Caused
  27. * glitching during playback. Fixed.
  28. *
  29. * Wed Jul 12 22:02:55 CEST 2000 Uros Bizjak <uros@kss-loka.si>
  30. * Cleaned up and rewrote lowlevel routines.
  31. */
  32. #include <asm/io.h>
  33. #include <asm/dma.h>
  34. #include <linux/init.h>
  35. #include <linux/time.h>
  36. #include <sound/core.h>
  37. #include <sound/sb.h>
  38. MODULE_AUTHOR("Jaroslav Kysela <perex@perex.cz>, Uros Bizjak <uros@kss-loka.si>");
  39. MODULE_DESCRIPTION("Routines for control of 8-bit SoundBlaster cards and clones");
  40. MODULE_LICENSE("GPL");
  41. #define SB8_CLOCK 1000000
  42. #define SB8_DEN(v) ((SB8_CLOCK + (v) / 2) / (v))
  43. #define SB8_RATE(v) (SB8_CLOCK / SB8_DEN(v))
  44. static struct snd_ratnum clock = {
  45. .num = SB8_CLOCK,
  46. .den_min = 1,
  47. .den_max = 256,
  48. .den_step = 1,
  49. };
  50. static struct snd_pcm_hw_constraint_ratnums hw_constraints_clock = {
  51. .nrats = 1,
  52. .rats = &clock,
  53. };
  54. static struct snd_ratnum stereo_clocks[] = {
  55. {
  56. .num = SB8_CLOCK,
  57. .den_min = SB8_DEN(22050),
  58. .den_max = SB8_DEN(22050),
  59. .den_step = 1,
  60. },
  61. {
  62. .num = SB8_CLOCK,
  63. .den_min = SB8_DEN(11025),
  64. .den_max = SB8_DEN(11025),
  65. .den_step = 1,
  66. }
  67. };
  68. static int snd_sb8_hw_constraint_rate_channels(struct snd_pcm_hw_params *params,
  69. struct snd_pcm_hw_rule *rule)
  70. {
  71. struct snd_interval *c = hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS);
  72. if (c->min > 1) {
  73. unsigned int num = 0, den = 0;
  74. int err = snd_interval_ratnum(hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE),
  75. 2, stereo_clocks, &num, &den);
  76. if (err >= 0 && den) {
  77. params->rate_num = num;
  78. params->rate_den = den;
  79. }
  80. return err;
  81. }
  82. return 0;
  83. }
  84. static int snd_sb8_hw_constraint_channels_rate(struct snd_pcm_hw_params *params,
  85. struct snd_pcm_hw_rule *rule)
  86. {
  87. struct snd_interval *r = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
  88. if (r->min > SB8_RATE(22050) || r->max <= SB8_RATE(11025)) {
  89. struct snd_interval t = { .min = 1, .max = 1 };
  90. return snd_interval_refine(hw_param_interval(params, SNDRV_PCM_HW_PARAM_CHANNELS), &t);
  91. }
  92. return 0;
  93. }
  94. static int snd_sb8_playback_prepare(struct snd_pcm_substream *substream)
  95. {
  96. unsigned long flags;
  97. struct snd_sb *chip = snd_pcm_substream_chip(substream);
  98. struct snd_pcm_runtime *runtime = substream->runtime;
  99. unsigned int mixreg, rate, size, count;
  100. rate = runtime->rate;
  101. switch (chip->hardware) {
  102. case SB_HW_PRO:
  103. if (runtime->channels > 1) {
  104. snd_assert(rate == SB8_RATE(11025) || rate == SB8_RATE(22050), return -EINVAL);
  105. chip->playback_format = SB_DSP_HI_OUTPUT_AUTO;
  106. break;
  107. }
  108. /* fallthru */
  109. case SB_HW_201:
  110. if (rate > 23000) {
  111. chip->playback_format = SB_DSP_HI_OUTPUT_AUTO;
  112. break;
  113. }
  114. /* fallthru */
  115. case SB_HW_20:
  116. chip->playback_format = SB_DSP_LO_OUTPUT_AUTO;
  117. break;
  118. case SB_HW_10:
  119. chip->playback_format = SB_DSP_OUTPUT;
  120. break;
  121. default:
  122. return -EINVAL;
  123. }
  124. size = chip->p_dma_size = snd_pcm_lib_buffer_bytes(substream);
  125. count = chip->p_period_size = snd_pcm_lib_period_bytes(substream);
  126. spin_lock_irqsave(&chip->reg_lock, flags);
  127. snd_sbdsp_command(chip, SB_DSP_SPEAKER_ON);
  128. if (runtime->channels > 1) {
  129. /* set playback stereo mode */
  130. spin_lock(&chip->mixer_lock);
  131. mixreg = snd_sbmixer_read(chip, SB_DSP_STEREO_SW);
  132. snd_sbmixer_write(chip, SB_DSP_STEREO_SW, mixreg | 0x02);
  133. spin_unlock(&chip->mixer_lock);
  134. /* Soundblaster hardware programming reference guide, 3-23 */
  135. snd_sbdsp_command(chip, SB_DSP_DMA8_EXIT);
  136. runtime->dma_area[0] = 0x80;
  137. snd_dma_program(chip->dma8, runtime->dma_addr, 1, DMA_MODE_WRITE);
  138. /* force interrupt */
  139. chip->mode = SB_MODE_HALT;
  140. snd_sbdsp_command(chip, SB_DSP_OUTPUT);
  141. snd_sbdsp_command(chip, 0);
  142. snd_sbdsp_command(chip, 0);
  143. }
  144. snd_sbdsp_command(chip, SB_DSP_SAMPLE_RATE);
  145. if (runtime->channels > 1) {
  146. snd_sbdsp_command(chip, 256 - runtime->rate_den / 2);
  147. spin_lock(&chip->mixer_lock);
  148. /* save output filter status and turn it off */
  149. mixreg = snd_sbmixer_read(chip, SB_DSP_PLAYBACK_FILT);
  150. snd_sbmixer_write(chip, SB_DSP_PLAYBACK_FILT, mixreg | 0x20);
  151. spin_unlock(&chip->mixer_lock);
  152. /* just use force_mode16 for temporary storate... */
  153. chip->force_mode16 = mixreg;
  154. } else {
  155. snd_sbdsp_command(chip, 256 - runtime->rate_den);
  156. }
  157. if (chip->playback_format != SB_DSP_OUTPUT) {
  158. count--;
  159. snd_sbdsp_command(chip, SB_DSP_BLOCK_SIZE);
  160. snd_sbdsp_command(chip, count & 0xff);
  161. snd_sbdsp_command(chip, count >> 8);
  162. }
  163. spin_unlock_irqrestore(&chip->reg_lock, flags);
  164. snd_dma_program(chip->dma8, runtime->dma_addr,
  165. size, DMA_MODE_WRITE | DMA_AUTOINIT);
  166. return 0;
  167. }
  168. static int snd_sb8_playback_trigger(struct snd_pcm_substream *substream,
  169. int cmd)
  170. {
  171. unsigned long flags;
  172. struct snd_sb *chip = snd_pcm_substream_chip(substream);
  173. unsigned int count;
  174. spin_lock_irqsave(&chip->reg_lock, flags);
  175. switch (cmd) {
  176. case SNDRV_PCM_TRIGGER_START:
  177. snd_sbdsp_command(chip, chip->playback_format);
  178. if (chip->playback_format == SB_DSP_OUTPUT) {
  179. count = chip->p_period_size - 1;
  180. snd_sbdsp_command(chip, count & 0xff);
  181. snd_sbdsp_command(chip, count >> 8);
  182. }
  183. break;
  184. case SNDRV_PCM_TRIGGER_STOP:
  185. if (chip->playback_format == SB_DSP_HI_OUTPUT_AUTO) {
  186. struct snd_pcm_runtime *runtime = substream->runtime;
  187. snd_sbdsp_reset(chip);
  188. if (runtime->channels > 1) {
  189. spin_lock(&chip->mixer_lock);
  190. /* restore output filter and set hardware to mono mode */
  191. snd_sbmixer_write(chip, SB_DSP_STEREO_SW, chip->force_mode16 & ~0x02);
  192. spin_unlock(&chip->mixer_lock);
  193. }
  194. } else {
  195. snd_sbdsp_command(chip, SB_DSP_DMA8_OFF);
  196. }
  197. snd_sbdsp_command(chip, SB_DSP_SPEAKER_OFF);
  198. }
  199. spin_unlock_irqrestore(&chip->reg_lock, flags);
  200. chip->mode = (cmd == SNDRV_PCM_TRIGGER_START) ? SB_MODE_PLAYBACK_8 : SB_MODE_HALT;
  201. return 0;
  202. }
  203. static int snd_sb8_hw_params(struct snd_pcm_substream *substream,
  204. struct snd_pcm_hw_params *hw_params)
  205. {
  206. return snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params));
  207. }
  208. static int snd_sb8_hw_free(struct snd_pcm_substream *substream)
  209. {
  210. snd_pcm_lib_free_pages(substream);
  211. return 0;
  212. }
  213. static int snd_sb8_capture_prepare(struct snd_pcm_substream *substream)
  214. {
  215. unsigned long flags;
  216. struct snd_sb *chip = snd_pcm_substream_chip(substream);
  217. struct snd_pcm_runtime *runtime = substream->runtime;
  218. unsigned int mixreg, rate, size, count;
  219. rate = runtime->rate;
  220. switch (chip->hardware) {
  221. case SB_HW_PRO:
  222. if (runtime->channels > 1) {
  223. snd_assert(rate == SB8_RATE(11025) || rate == SB8_RATE(22050), return -EINVAL);
  224. chip->capture_format = SB_DSP_HI_INPUT_AUTO;
  225. break;
  226. }
  227. chip->capture_format = (rate > 23000) ? SB_DSP_HI_INPUT_AUTO : SB_DSP_LO_INPUT_AUTO;
  228. break;
  229. case SB_HW_201:
  230. if (rate > 13000) {
  231. chip->capture_format = SB_DSP_HI_INPUT_AUTO;
  232. break;
  233. }
  234. /* fallthru */
  235. case SB_HW_20:
  236. chip->capture_format = SB_DSP_LO_INPUT_AUTO;
  237. break;
  238. case SB_HW_10:
  239. chip->capture_format = SB_DSP_INPUT;
  240. break;
  241. default:
  242. return -EINVAL;
  243. }
  244. size = chip->c_dma_size = snd_pcm_lib_buffer_bytes(substream);
  245. count = chip->c_period_size = snd_pcm_lib_period_bytes(substream);
  246. spin_lock_irqsave(&chip->reg_lock, flags);
  247. snd_sbdsp_command(chip, SB_DSP_SPEAKER_OFF);
  248. if (runtime->channels > 1)
  249. snd_sbdsp_command(chip, SB_DSP_STEREO_8BIT);
  250. snd_sbdsp_command(chip, SB_DSP_SAMPLE_RATE);
  251. if (runtime->channels > 1) {
  252. snd_sbdsp_command(chip, 256 - runtime->rate_den / 2);
  253. spin_lock(&chip->mixer_lock);
  254. /* save input filter status and turn it off */
  255. mixreg = snd_sbmixer_read(chip, SB_DSP_CAPTURE_FILT);
  256. snd_sbmixer_write(chip, SB_DSP_CAPTURE_FILT, mixreg | 0x20);
  257. spin_unlock(&chip->mixer_lock);
  258. /* just use force_mode16 for temporary storate... */
  259. chip->force_mode16 = mixreg;
  260. } else {
  261. snd_sbdsp_command(chip, 256 - runtime->rate_den);
  262. }
  263. if (chip->capture_format != SB_DSP_INPUT) {
  264. count--;
  265. snd_sbdsp_command(chip, SB_DSP_BLOCK_SIZE);
  266. snd_sbdsp_command(chip, count & 0xff);
  267. snd_sbdsp_command(chip, count >> 8);
  268. }
  269. spin_unlock_irqrestore(&chip->reg_lock, flags);
  270. snd_dma_program(chip->dma8, runtime->dma_addr,
  271. size, DMA_MODE_READ | DMA_AUTOINIT);
  272. return 0;
  273. }
  274. static int snd_sb8_capture_trigger(struct snd_pcm_substream *substream,
  275. int cmd)
  276. {
  277. unsigned long flags;
  278. struct snd_sb *chip = snd_pcm_substream_chip(substream);
  279. unsigned int count;
  280. spin_lock_irqsave(&chip->reg_lock, flags);
  281. switch (cmd) {
  282. case SNDRV_PCM_TRIGGER_START:
  283. snd_sbdsp_command(chip, chip->capture_format);
  284. if (chip->capture_format == SB_DSP_INPUT) {
  285. count = chip->c_period_size - 1;
  286. snd_sbdsp_command(chip, count & 0xff);
  287. snd_sbdsp_command(chip, count >> 8);
  288. }
  289. break;
  290. case SNDRV_PCM_TRIGGER_STOP:
  291. if (chip->capture_format == SB_DSP_HI_INPUT_AUTO) {
  292. struct snd_pcm_runtime *runtime = substream->runtime;
  293. snd_sbdsp_reset(chip);
  294. if (runtime->channels > 1) {
  295. /* restore input filter status */
  296. spin_lock(&chip->mixer_lock);
  297. snd_sbmixer_write(chip, SB_DSP_CAPTURE_FILT, chip->force_mode16);
  298. spin_unlock(&chip->mixer_lock);
  299. /* set hardware to mono mode */
  300. snd_sbdsp_command(chip, SB_DSP_MONO_8BIT);
  301. }
  302. } else {
  303. snd_sbdsp_command(chip, SB_DSP_DMA8_OFF);
  304. }
  305. snd_sbdsp_command(chip, SB_DSP_SPEAKER_OFF);
  306. }
  307. spin_unlock_irqrestore(&chip->reg_lock, flags);
  308. chip->mode = (cmd == SNDRV_PCM_TRIGGER_START) ? SB_MODE_CAPTURE_8 : SB_MODE_HALT;
  309. return 0;
  310. }
  311. irqreturn_t snd_sb8dsp_interrupt(struct snd_sb *chip)
  312. {
  313. struct snd_pcm_substream *substream;
  314. struct snd_pcm_runtime *runtime;
  315. snd_sb_ack_8bit(chip);
  316. switch (chip->mode) {
  317. case SB_MODE_PLAYBACK_8: /* ok.. playback is active */
  318. substream = chip->playback_substream;
  319. runtime = substream->runtime;
  320. if (chip->playback_format == SB_DSP_OUTPUT)
  321. snd_sb8_playback_trigger(substream, SNDRV_PCM_TRIGGER_START);
  322. snd_pcm_period_elapsed(substream);
  323. break;
  324. case SB_MODE_CAPTURE_8:
  325. substream = chip->capture_substream;
  326. runtime = substream->runtime;
  327. if (chip->capture_format == SB_DSP_INPUT)
  328. snd_sb8_capture_trigger(substream, SNDRV_PCM_TRIGGER_START);
  329. snd_pcm_period_elapsed(substream);
  330. break;
  331. }
  332. return IRQ_HANDLED;
  333. }
  334. static snd_pcm_uframes_t snd_sb8_playback_pointer(struct snd_pcm_substream *substream)
  335. {
  336. struct snd_sb *chip = snd_pcm_substream_chip(substream);
  337. size_t ptr;
  338. if (chip->mode != SB_MODE_PLAYBACK_8)
  339. return 0;
  340. ptr = snd_dma_pointer(chip->dma8, chip->p_dma_size);
  341. return bytes_to_frames(substream->runtime, ptr);
  342. }
  343. static snd_pcm_uframes_t snd_sb8_capture_pointer(struct snd_pcm_substream *substream)
  344. {
  345. struct snd_sb *chip = snd_pcm_substream_chip(substream);
  346. size_t ptr;
  347. if (chip->mode != SB_MODE_CAPTURE_8)
  348. return 0;
  349. ptr = snd_dma_pointer(chip->dma8, chip->c_dma_size);
  350. return bytes_to_frames(substream->runtime, ptr);
  351. }
  352. /*
  353. */
  354. static struct snd_pcm_hardware snd_sb8_playback =
  355. {
  356. .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
  357. SNDRV_PCM_INFO_MMAP_VALID),
  358. .formats = SNDRV_PCM_FMTBIT_U8,
  359. .rates = (SNDRV_PCM_RATE_CONTINUOUS | SNDRV_PCM_RATE_8000 |
  360. SNDRV_PCM_RATE_11025 | SNDRV_PCM_RATE_22050),
  361. .rate_min = 4000,
  362. .rate_max = 23000,
  363. .channels_min = 1,
  364. .channels_max = 1,
  365. .buffer_bytes_max = 65536,
  366. .period_bytes_min = 64,
  367. .period_bytes_max = 65536,
  368. .periods_min = 1,
  369. .periods_max = 1024,
  370. .fifo_size = 0,
  371. };
  372. static struct snd_pcm_hardware snd_sb8_capture =
  373. {
  374. .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
  375. SNDRV_PCM_INFO_MMAP_VALID),
  376. .formats = SNDRV_PCM_FMTBIT_U8,
  377. .rates = (SNDRV_PCM_RATE_CONTINUOUS | SNDRV_PCM_RATE_8000 |
  378. SNDRV_PCM_RATE_11025),
  379. .rate_min = 4000,
  380. .rate_max = 13000,
  381. .channels_min = 1,
  382. .channels_max = 1,
  383. .buffer_bytes_max = 65536,
  384. .period_bytes_min = 64,
  385. .period_bytes_max = 65536,
  386. .periods_min = 1,
  387. .periods_max = 1024,
  388. .fifo_size = 0,
  389. };
  390. /*
  391. *
  392. */
  393. static int snd_sb8_open(struct snd_pcm_substream *substream)
  394. {
  395. struct snd_sb *chip = snd_pcm_substream_chip(substream);
  396. struct snd_pcm_runtime *runtime = substream->runtime;
  397. unsigned long flags;
  398. spin_lock_irqsave(&chip->open_lock, flags);
  399. if (chip->open) {
  400. spin_unlock_irqrestore(&chip->open_lock, flags);
  401. return -EAGAIN;
  402. }
  403. chip->open |= SB_OPEN_PCM;
  404. spin_unlock_irqrestore(&chip->open_lock, flags);
  405. if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
  406. chip->playback_substream = substream;
  407. runtime->hw = snd_sb8_playback;
  408. } else {
  409. chip->capture_substream = substream;
  410. runtime->hw = snd_sb8_capture;
  411. }
  412. switch (chip->hardware) {
  413. case SB_HW_PRO:
  414. runtime->hw.rate_max = 44100;
  415. runtime->hw.channels_max = 2;
  416. snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_RATE,
  417. snd_sb8_hw_constraint_rate_channels, NULL,
  418. SNDRV_PCM_HW_PARAM_CHANNELS,
  419. SNDRV_PCM_HW_PARAM_RATE, -1);
  420. snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS,
  421. snd_sb8_hw_constraint_channels_rate, NULL,
  422. SNDRV_PCM_HW_PARAM_RATE, -1);
  423. break;
  424. case SB_HW_201:
  425. if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
  426. runtime->hw.rate_max = 44100;
  427. } else {
  428. runtime->hw.rate_max = 15000;
  429. }
  430. default:
  431. break;
  432. }
  433. snd_pcm_hw_constraint_ratnums(runtime, 0, SNDRV_PCM_HW_PARAM_RATE,
  434. &hw_constraints_clock);
  435. return 0;
  436. }
  437. static int snd_sb8_close(struct snd_pcm_substream *substream)
  438. {
  439. unsigned long flags;
  440. struct snd_sb *chip = snd_pcm_substream_chip(substream);
  441. chip->playback_substream = NULL;
  442. chip->capture_substream = NULL;
  443. spin_lock_irqsave(&chip->open_lock, flags);
  444. chip->open &= ~SB_OPEN_PCM;
  445. spin_unlock_irqrestore(&chip->open_lock, flags);
  446. return 0;
  447. }
  448. /*
  449. * Initialization part
  450. */
  451. static struct snd_pcm_ops snd_sb8_playback_ops = {
  452. .open = snd_sb8_open,
  453. .close = snd_sb8_close,
  454. .ioctl = snd_pcm_lib_ioctl,
  455. .hw_params = snd_sb8_hw_params,
  456. .hw_free = snd_sb8_hw_free,
  457. .prepare = snd_sb8_playback_prepare,
  458. .trigger = snd_sb8_playback_trigger,
  459. .pointer = snd_sb8_playback_pointer,
  460. };
  461. static struct snd_pcm_ops snd_sb8_capture_ops = {
  462. .open = snd_sb8_open,
  463. .close = snd_sb8_close,
  464. .ioctl = snd_pcm_lib_ioctl,
  465. .hw_params = snd_sb8_hw_params,
  466. .hw_free = snd_sb8_hw_free,
  467. .prepare = snd_sb8_capture_prepare,
  468. .trigger = snd_sb8_capture_trigger,
  469. .pointer = snd_sb8_capture_pointer,
  470. };
  471. int snd_sb8dsp_pcm(struct snd_sb *chip, int device, struct snd_pcm ** rpcm)
  472. {
  473. struct snd_card *card = chip->card;
  474. struct snd_pcm *pcm;
  475. int err;
  476. if (rpcm)
  477. *rpcm = NULL;
  478. if ((err = snd_pcm_new(card, "SB8 DSP", device, 1, 1, &pcm)) < 0)
  479. return err;
  480. sprintf(pcm->name, "DSP v%i.%i", chip->version >> 8, chip->version & 0xff);
  481. pcm->info_flags = SNDRV_PCM_INFO_HALF_DUPLEX;
  482. pcm->private_data = chip;
  483. snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_sb8_playback_ops);
  484. snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_sb8_capture_ops);
  485. snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV,
  486. snd_dma_isa_data(),
  487. 64*1024, 64*1024);
  488. if (rpcm)
  489. *rpcm = pcm;
  490. return 0;
  491. }
  492. EXPORT_SYMBOL(snd_sb8dsp_pcm);
  493. EXPORT_SYMBOL(snd_sb8dsp_interrupt);
  494. /* sb8_midi.c */
  495. EXPORT_SYMBOL(snd_sb8dsp_midi_interrupt);
  496. EXPORT_SYMBOL(snd_sb8dsp_midi);
  497. /*
  498. * INIT part
  499. */
  500. static int __init alsa_sb8_init(void)
  501. {
  502. return 0;
  503. }
  504. static void __exit alsa_sb8_exit(void)
  505. {
  506. }
  507. module_init(alsa_sb8_init)
  508. module_exit(alsa_sb8_exit)