wext.c 30 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171
  1. /*
  2. * Copyright 2002-2005, Instant802 Networks, Inc.
  3. * Copyright 2005-2006, Devicescape Software, Inc.
  4. *
  5. * This program is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License version 2 as
  7. * published by the Free Software Foundation.
  8. */
  9. #include <linux/module.h>
  10. #include <linux/init.h>
  11. #include <linux/netdevice.h>
  12. #include <linux/types.h>
  13. #include <linux/slab.h>
  14. #include <linux/skbuff.h>
  15. #include <linux/etherdevice.h>
  16. #include <linux/if_arp.h>
  17. #include <linux/wireless.h>
  18. #include <net/iw_handler.h>
  19. #include <asm/uaccess.h>
  20. #include <net/mac80211.h>
  21. #include "ieee80211_i.h"
  22. #include "led.h"
  23. #include "rate.h"
  24. #include "wpa.h"
  25. #include "aes_ccm.h"
  26. static int ieee80211_set_encryption(struct net_device *dev, u8 *sta_addr,
  27. int idx, int alg, int remove,
  28. int set_tx_key, const u8 *_key,
  29. size_t key_len)
  30. {
  31. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  32. struct sta_info *sta;
  33. struct ieee80211_key *key;
  34. struct ieee80211_sub_if_data *sdata;
  35. int err;
  36. sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  37. if (idx < 0 || idx >= NUM_DEFAULT_KEYS) {
  38. printk(KERN_DEBUG "%s: set_encrypt - invalid idx=%d\n",
  39. dev->name, idx);
  40. return -EINVAL;
  41. }
  42. if (remove) {
  43. rcu_read_lock();
  44. err = 0;
  45. if (is_broadcast_ether_addr(sta_addr)) {
  46. key = sdata->keys[idx];
  47. } else {
  48. sta = sta_info_get(local, sta_addr);
  49. if (!sta) {
  50. err = -ENOENT;
  51. goto out_unlock;
  52. }
  53. key = sta->key;
  54. }
  55. ieee80211_key_free(key);
  56. } else {
  57. key = ieee80211_key_alloc(alg, idx, key_len, _key);
  58. if (!key)
  59. return -ENOMEM;
  60. sta = NULL;
  61. err = 0;
  62. rcu_read_lock();
  63. if (!is_broadcast_ether_addr(sta_addr)) {
  64. set_tx_key = 0;
  65. /*
  66. * According to the standard, the key index of a
  67. * pairwise key must be zero. However, some AP are
  68. * broken when it comes to WEP key indices, so we
  69. * work around this.
  70. */
  71. if (idx != 0 && alg != ALG_WEP) {
  72. ieee80211_key_free(key);
  73. err = -EINVAL;
  74. goto out_unlock;
  75. }
  76. sta = sta_info_get(local, sta_addr);
  77. if (!sta) {
  78. ieee80211_key_free(key);
  79. err = -ENOENT;
  80. goto out_unlock;
  81. }
  82. }
  83. if (alg == ALG_WEP &&
  84. key_len != LEN_WEP40 && key_len != LEN_WEP104) {
  85. ieee80211_key_free(key);
  86. err = -EINVAL;
  87. goto out_unlock;
  88. }
  89. ieee80211_key_link(key, sdata, sta);
  90. if (set_tx_key || (!sta && !sdata->default_key && key))
  91. ieee80211_set_default_key(sdata, idx);
  92. }
  93. out_unlock:
  94. rcu_read_unlock();
  95. return err;
  96. }
  97. static int ieee80211_ioctl_siwgenie(struct net_device *dev,
  98. struct iw_request_info *info,
  99. struct iw_point *data, char *extra)
  100. {
  101. struct ieee80211_sub_if_data *sdata;
  102. sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  103. if (sdata->flags & IEEE80211_SDATA_USERSPACE_MLME)
  104. return -EOPNOTSUPP;
  105. if (sdata->vif.type == IEEE80211_IF_TYPE_STA ||
  106. sdata->vif.type == IEEE80211_IF_TYPE_IBSS) {
  107. int ret = ieee80211_sta_set_extra_ie(dev, extra, data->length);
  108. if (ret)
  109. return ret;
  110. sdata->u.sta.flags &= ~IEEE80211_STA_AUTO_BSSID_SEL;
  111. ieee80211_sta_req_auth(dev, &sdata->u.sta);
  112. return 0;
  113. }
  114. return -EOPNOTSUPP;
  115. }
  116. static int ieee80211_ioctl_giwname(struct net_device *dev,
  117. struct iw_request_info *info,
  118. char *name, char *extra)
  119. {
  120. strcpy(name, "IEEE 802.11");
  121. return 0;
  122. }
  123. static int ieee80211_ioctl_giwrange(struct net_device *dev,
  124. struct iw_request_info *info,
  125. struct iw_point *data, char *extra)
  126. {
  127. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  128. struct iw_range *range = (struct iw_range *) extra;
  129. enum ieee80211_band band;
  130. int c = 0;
  131. data->length = sizeof(struct iw_range);
  132. memset(range, 0, sizeof(struct iw_range));
  133. range->we_version_compiled = WIRELESS_EXT;
  134. range->we_version_source = 21;
  135. range->retry_capa = IW_RETRY_LIMIT;
  136. range->retry_flags = IW_RETRY_LIMIT;
  137. range->min_retry = 0;
  138. range->max_retry = 255;
  139. range->min_rts = 0;
  140. range->max_rts = 2347;
  141. range->min_frag = 256;
  142. range->max_frag = 2346;
  143. range->encoding_size[0] = 5;
  144. range->encoding_size[1] = 13;
  145. range->num_encoding_sizes = 2;
  146. range->max_encoding_tokens = NUM_DEFAULT_KEYS;
  147. range->max_qual.qual = local->hw.max_signal;
  148. range->max_qual.level = local->hw.max_rssi;
  149. range->max_qual.noise = local->hw.max_noise;
  150. range->max_qual.updated = local->wstats_flags;
  151. range->avg_qual.qual = local->hw.max_signal/2;
  152. range->avg_qual.level = 0;
  153. range->avg_qual.noise = 0;
  154. range->avg_qual.updated = local->wstats_flags;
  155. range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
  156. IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
  157. for (band = 0; band < IEEE80211_NUM_BANDS; band ++) {
  158. int i;
  159. struct ieee80211_supported_band *sband;
  160. sband = local->hw.wiphy->bands[band];
  161. if (!sband)
  162. continue;
  163. for (i = 0; i < sband->n_channels && c < IW_MAX_FREQUENCIES; i++) {
  164. struct ieee80211_channel *chan = &sband->channels[i];
  165. if (!(chan->flags & IEEE80211_CHAN_DISABLED)) {
  166. range->freq[c].i =
  167. ieee80211_frequency_to_channel(
  168. chan->center_freq);
  169. range->freq[c].m = chan->center_freq;
  170. range->freq[c].e = 6;
  171. c++;
  172. }
  173. }
  174. }
  175. range->num_channels = c;
  176. range->num_frequency = c;
  177. IW_EVENT_CAPA_SET_KERNEL(range->event_capa);
  178. IW_EVENT_CAPA_SET(range->event_capa, SIOCGIWAP);
  179. IW_EVENT_CAPA_SET(range->event_capa, SIOCGIWSCAN);
  180. range->scan_capa |= IW_SCAN_CAPA_ESSID;
  181. return 0;
  182. }
  183. static int ieee80211_ioctl_siwmode(struct net_device *dev,
  184. struct iw_request_info *info,
  185. __u32 *mode, char *extra)
  186. {
  187. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  188. int type;
  189. if (sdata->vif.type == IEEE80211_IF_TYPE_VLAN)
  190. return -EOPNOTSUPP;
  191. switch (*mode) {
  192. case IW_MODE_INFRA:
  193. type = IEEE80211_IF_TYPE_STA;
  194. break;
  195. case IW_MODE_ADHOC:
  196. type = IEEE80211_IF_TYPE_IBSS;
  197. break;
  198. case IW_MODE_REPEAT:
  199. type = IEEE80211_IF_TYPE_WDS;
  200. break;
  201. case IW_MODE_MONITOR:
  202. type = IEEE80211_IF_TYPE_MNTR;
  203. break;
  204. default:
  205. return -EINVAL;
  206. }
  207. if (type == sdata->vif.type)
  208. return 0;
  209. if (netif_running(dev))
  210. return -EBUSY;
  211. ieee80211_if_reinit(dev);
  212. ieee80211_if_set_type(dev, type);
  213. return 0;
  214. }
  215. static int ieee80211_ioctl_giwmode(struct net_device *dev,
  216. struct iw_request_info *info,
  217. __u32 *mode, char *extra)
  218. {
  219. struct ieee80211_sub_if_data *sdata;
  220. sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  221. switch (sdata->vif.type) {
  222. case IEEE80211_IF_TYPE_AP:
  223. *mode = IW_MODE_MASTER;
  224. break;
  225. case IEEE80211_IF_TYPE_STA:
  226. *mode = IW_MODE_INFRA;
  227. break;
  228. case IEEE80211_IF_TYPE_IBSS:
  229. *mode = IW_MODE_ADHOC;
  230. break;
  231. case IEEE80211_IF_TYPE_MNTR:
  232. *mode = IW_MODE_MONITOR;
  233. break;
  234. case IEEE80211_IF_TYPE_WDS:
  235. *mode = IW_MODE_REPEAT;
  236. break;
  237. case IEEE80211_IF_TYPE_VLAN:
  238. *mode = IW_MODE_SECOND; /* FIXME */
  239. break;
  240. default:
  241. *mode = IW_MODE_AUTO;
  242. break;
  243. }
  244. return 0;
  245. }
  246. int ieee80211_set_freq(struct net_device *dev, int freqMHz)
  247. {
  248. int ret = -EINVAL;
  249. struct ieee80211_channel *chan;
  250. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  251. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  252. chan = ieee80211_get_channel(local->hw.wiphy, freqMHz);
  253. if (chan && !(chan->flags & IEEE80211_CHAN_DISABLED)) {
  254. if (sdata->vif.type == IEEE80211_IF_TYPE_IBSS &&
  255. chan->flags & IEEE80211_CHAN_NO_IBSS) {
  256. printk(KERN_DEBUG "%s: IBSS not allowed on frequency "
  257. "%d MHz\n", dev->name, chan->center_freq);
  258. return ret;
  259. }
  260. local->oper_channel = chan;
  261. if (local->sta_sw_scanning || local->sta_hw_scanning)
  262. ret = 0;
  263. else
  264. ret = ieee80211_hw_config(local);
  265. rate_control_clear(local);
  266. }
  267. return ret;
  268. }
  269. static int ieee80211_ioctl_siwfreq(struct net_device *dev,
  270. struct iw_request_info *info,
  271. struct iw_freq *freq, char *extra)
  272. {
  273. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  274. if (sdata->vif.type == IEEE80211_IF_TYPE_STA)
  275. sdata->u.sta.flags &= ~IEEE80211_STA_AUTO_CHANNEL_SEL;
  276. /* freq->e == 0: freq->m = channel; otherwise freq = m * 10^e */
  277. if (freq->e == 0) {
  278. if (freq->m < 0) {
  279. if (sdata->vif.type == IEEE80211_IF_TYPE_STA)
  280. sdata->u.sta.flags |=
  281. IEEE80211_STA_AUTO_CHANNEL_SEL;
  282. return 0;
  283. } else
  284. return ieee80211_set_freq(dev,
  285. ieee80211_channel_to_frequency(freq->m));
  286. } else {
  287. int i, div = 1000000;
  288. for (i = 0; i < freq->e; i++)
  289. div /= 10;
  290. if (div > 0)
  291. return ieee80211_set_freq(dev, freq->m / div);
  292. else
  293. return -EINVAL;
  294. }
  295. }
  296. static int ieee80211_ioctl_giwfreq(struct net_device *dev,
  297. struct iw_request_info *info,
  298. struct iw_freq *freq, char *extra)
  299. {
  300. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  301. freq->m = local->hw.conf.channel->center_freq;
  302. freq->e = 6;
  303. return 0;
  304. }
  305. static int ieee80211_ioctl_siwessid(struct net_device *dev,
  306. struct iw_request_info *info,
  307. struct iw_point *data, char *ssid)
  308. {
  309. struct ieee80211_sub_if_data *sdata;
  310. size_t len = data->length;
  311. /* iwconfig uses nul termination in SSID.. */
  312. if (len > 0 && ssid[len - 1] == '\0')
  313. len--;
  314. sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  315. if (sdata->vif.type == IEEE80211_IF_TYPE_STA ||
  316. sdata->vif.type == IEEE80211_IF_TYPE_IBSS) {
  317. int ret;
  318. if (sdata->flags & IEEE80211_SDATA_USERSPACE_MLME) {
  319. if (len > IEEE80211_MAX_SSID_LEN)
  320. return -EINVAL;
  321. memcpy(sdata->u.sta.ssid, ssid, len);
  322. sdata->u.sta.ssid_len = len;
  323. return 0;
  324. }
  325. if (data->flags)
  326. sdata->u.sta.flags &= ~IEEE80211_STA_AUTO_SSID_SEL;
  327. else
  328. sdata->u.sta.flags |= IEEE80211_STA_AUTO_SSID_SEL;
  329. ret = ieee80211_sta_set_ssid(dev, ssid, len);
  330. if (ret)
  331. return ret;
  332. ieee80211_sta_req_auth(dev, &sdata->u.sta);
  333. return 0;
  334. }
  335. if (sdata->vif.type == IEEE80211_IF_TYPE_AP) {
  336. memcpy(sdata->u.ap.ssid, ssid, len);
  337. memset(sdata->u.ap.ssid + len, 0,
  338. IEEE80211_MAX_SSID_LEN - len);
  339. sdata->u.ap.ssid_len = len;
  340. return ieee80211_if_config(dev);
  341. }
  342. return -EOPNOTSUPP;
  343. }
  344. static int ieee80211_ioctl_giwessid(struct net_device *dev,
  345. struct iw_request_info *info,
  346. struct iw_point *data, char *ssid)
  347. {
  348. size_t len;
  349. struct ieee80211_sub_if_data *sdata;
  350. sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  351. if (sdata->vif.type == IEEE80211_IF_TYPE_STA ||
  352. sdata->vif.type == IEEE80211_IF_TYPE_IBSS) {
  353. int res = ieee80211_sta_get_ssid(dev, ssid, &len);
  354. if (res == 0) {
  355. data->length = len;
  356. data->flags = 1;
  357. } else
  358. data->flags = 0;
  359. return res;
  360. }
  361. if (sdata->vif.type == IEEE80211_IF_TYPE_AP) {
  362. len = sdata->u.ap.ssid_len;
  363. if (len > IW_ESSID_MAX_SIZE)
  364. len = IW_ESSID_MAX_SIZE;
  365. memcpy(ssid, sdata->u.ap.ssid, len);
  366. data->length = len;
  367. data->flags = 1;
  368. return 0;
  369. }
  370. return -EOPNOTSUPP;
  371. }
  372. static int ieee80211_ioctl_siwap(struct net_device *dev,
  373. struct iw_request_info *info,
  374. struct sockaddr *ap_addr, char *extra)
  375. {
  376. struct ieee80211_sub_if_data *sdata;
  377. sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  378. if (sdata->vif.type == IEEE80211_IF_TYPE_STA ||
  379. sdata->vif.type == IEEE80211_IF_TYPE_IBSS) {
  380. int ret;
  381. if (sdata->flags & IEEE80211_SDATA_USERSPACE_MLME) {
  382. memcpy(sdata->u.sta.bssid, (u8 *) &ap_addr->sa_data,
  383. ETH_ALEN);
  384. return 0;
  385. }
  386. if (is_zero_ether_addr((u8 *) &ap_addr->sa_data))
  387. sdata->u.sta.flags |= IEEE80211_STA_AUTO_BSSID_SEL |
  388. IEEE80211_STA_AUTO_CHANNEL_SEL;
  389. else if (is_broadcast_ether_addr((u8 *) &ap_addr->sa_data))
  390. sdata->u.sta.flags |= IEEE80211_STA_AUTO_BSSID_SEL;
  391. else
  392. sdata->u.sta.flags &= ~IEEE80211_STA_AUTO_BSSID_SEL;
  393. ret = ieee80211_sta_set_bssid(dev, (u8 *) &ap_addr->sa_data);
  394. if (ret)
  395. return ret;
  396. ieee80211_sta_req_auth(dev, &sdata->u.sta);
  397. return 0;
  398. } else if (sdata->vif.type == IEEE80211_IF_TYPE_WDS) {
  399. /*
  400. * If it is necessary to update the WDS peer address
  401. * while the interface is running, then we need to do
  402. * more work here, namely if it is running we need to
  403. * add a new and remove the old STA entry, this is
  404. * normally handled by _open() and _stop().
  405. */
  406. if (netif_running(dev))
  407. return -EBUSY;
  408. memcpy(&sdata->u.wds.remote_addr, (u8 *) &ap_addr->sa_data,
  409. ETH_ALEN);
  410. return 0;
  411. }
  412. return -EOPNOTSUPP;
  413. }
  414. static int ieee80211_ioctl_giwap(struct net_device *dev,
  415. struct iw_request_info *info,
  416. struct sockaddr *ap_addr, char *extra)
  417. {
  418. struct ieee80211_sub_if_data *sdata;
  419. sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  420. if (sdata->vif.type == IEEE80211_IF_TYPE_STA ||
  421. sdata->vif.type == IEEE80211_IF_TYPE_IBSS) {
  422. if (sdata->u.sta.state == IEEE80211_ASSOCIATED ||
  423. sdata->u.sta.state == IEEE80211_IBSS_JOINED) {
  424. ap_addr->sa_family = ARPHRD_ETHER;
  425. memcpy(&ap_addr->sa_data, sdata->u.sta.bssid, ETH_ALEN);
  426. return 0;
  427. } else {
  428. memset(&ap_addr->sa_data, 0, ETH_ALEN);
  429. return 0;
  430. }
  431. } else if (sdata->vif.type == IEEE80211_IF_TYPE_WDS) {
  432. ap_addr->sa_family = ARPHRD_ETHER;
  433. memcpy(&ap_addr->sa_data, sdata->u.wds.remote_addr, ETH_ALEN);
  434. return 0;
  435. }
  436. return -EOPNOTSUPP;
  437. }
  438. static int ieee80211_ioctl_siwscan(struct net_device *dev,
  439. struct iw_request_info *info,
  440. union iwreq_data *wrqu, char *extra)
  441. {
  442. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  443. struct iw_scan_req *req = NULL;
  444. u8 *ssid = NULL;
  445. size_t ssid_len = 0;
  446. if (!netif_running(dev))
  447. return -ENETDOWN;
  448. if (sdata->vif.type != IEEE80211_IF_TYPE_STA &&
  449. sdata->vif.type != IEEE80211_IF_TYPE_IBSS &&
  450. sdata->vif.type != IEEE80211_IF_TYPE_MESH_POINT &&
  451. sdata->vif.type != IEEE80211_IF_TYPE_AP)
  452. return -EOPNOTSUPP;
  453. /* if SSID was specified explicitly then use that */
  454. if (wrqu->data.length == sizeof(struct iw_scan_req) &&
  455. wrqu->data.flags & IW_SCAN_THIS_ESSID) {
  456. req = (struct iw_scan_req *)extra;
  457. ssid = req->essid;
  458. ssid_len = req->essid_len;
  459. }
  460. return ieee80211_sta_req_scan(dev, ssid, ssid_len);
  461. }
  462. static int ieee80211_ioctl_giwscan(struct net_device *dev,
  463. struct iw_request_info *info,
  464. struct iw_point *data, char *extra)
  465. {
  466. int res;
  467. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  468. if (local->sta_sw_scanning || local->sta_hw_scanning)
  469. return -EAGAIN;
  470. res = ieee80211_sta_scan_results(dev, extra, data->length);
  471. if (res >= 0) {
  472. data->length = res;
  473. return 0;
  474. }
  475. data->length = 0;
  476. return res;
  477. }
  478. static int ieee80211_ioctl_siwrate(struct net_device *dev,
  479. struct iw_request_info *info,
  480. struct iw_param *rate, char *extra)
  481. {
  482. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  483. int i, err = -EINVAL;
  484. u32 target_rate = rate->value / 100000;
  485. struct ieee80211_sub_if_data *sdata;
  486. struct ieee80211_supported_band *sband;
  487. sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  488. if (!sdata->bss)
  489. return -ENODEV;
  490. sband = local->hw.wiphy->bands[local->hw.conf.channel->band];
  491. /* target_rate = -1, rate->fixed = 0 means auto only, so use all rates
  492. * target_rate = X, rate->fixed = 1 means only rate X
  493. * target_rate = X, rate->fixed = 0 means all rates <= X */
  494. sdata->bss->max_ratectrl_rateidx = -1;
  495. sdata->bss->force_unicast_rateidx = -1;
  496. if (rate->value < 0)
  497. return 0;
  498. for (i=0; i< sband->n_bitrates; i++) {
  499. struct ieee80211_rate *brate = &sband->bitrates[i];
  500. int this_rate = brate->bitrate;
  501. if (target_rate == this_rate) {
  502. sdata->bss->max_ratectrl_rateidx = i;
  503. if (rate->fixed)
  504. sdata->bss->force_unicast_rateidx = i;
  505. err = 0;
  506. break;
  507. }
  508. }
  509. return err;
  510. }
  511. static int ieee80211_ioctl_giwrate(struct net_device *dev,
  512. struct iw_request_info *info,
  513. struct iw_param *rate, char *extra)
  514. {
  515. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  516. struct sta_info *sta;
  517. struct ieee80211_sub_if_data *sdata;
  518. struct ieee80211_supported_band *sband;
  519. sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  520. if (sdata->vif.type != IEEE80211_IF_TYPE_STA)
  521. return -EOPNOTSUPP;
  522. sband = local->hw.wiphy->bands[local->hw.conf.channel->band];
  523. rcu_read_lock();
  524. sta = sta_info_get(local, sdata->u.sta.bssid);
  525. if (sta && sta->txrate_idx < sband->n_bitrates)
  526. rate->value = sband->bitrates[sta->txrate_idx].bitrate;
  527. else
  528. rate->value = 0;
  529. rcu_read_unlock();
  530. if (!sta)
  531. return -ENODEV;
  532. rate->value *= 100000;
  533. return 0;
  534. }
  535. static int ieee80211_ioctl_siwtxpower(struct net_device *dev,
  536. struct iw_request_info *info,
  537. union iwreq_data *data, char *extra)
  538. {
  539. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  540. bool need_reconfig = 0;
  541. int new_power_level;
  542. if ((data->txpower.flags & IW_TXPOW_TYPE) != IW_TXPOW_DBM)
  543. return -EINVAL;
  544. if (data->txpower.flags & IW_TXPOW_RANGE)
  545. return -EINVAL;
  546. if (data->txpower.fixed) {
  547. new_power_level = data->txpower.value;
  548. } else {
  549. /*
  550. * Automatic power level. Use maximum power for the current
  551. * channel. Should be part of rate control.
  552. */
  553. struct ieee80211_channel* chan = local->hw.conf.channel;
  554. if (!chan)
  555. return -EINVAL;
  556. new_power_level = chan->max_power;
  557. }
  558. if (local->hw.conf.power_level != new_power_level) {
  559. local->hw.conf.power_level = new_power_level;
  560. need_reconfig = 1;
  561. }
  562. if (local->hw.conf.radio_enabled != !(data->txpower.disabled)) {
  563. local->hw.conf.radio_enabled = !(data->txpower.disabled);
  564. need_reconfig = 1;
  565. ieee80211_led_radio(local, local->hw.conf.radio_enabled);
  566. }
  567. if (need_reconfig) {
  568. ieee80211_hw_config(local);
  569. /* The return value of hw_config is not of big interest here,
  570. * as it doesn't say that it failed because of _this_ config
  571. * change or something else. Ignore it. */
  572. }
  573. return 0;
  574. }
  575. static int ieee80211_ioctl_giwtxpower(struct net_device *dev,
  576. struct iw_request_info *info,
  577. union iwreq_data *data, char *extra)
  578. {
  579. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  580. data->txpower.fixed = 1;
  581. data->txpower.disabled = !(local->hw.conf.radio_enabled);
  582. data->txpower.value = local->hw.conf.power_level;
  583. data->txpower.flags = IW_TXPOW_DBM;
  584. return 0;
  585. }
  586. static int ieee80211_ioctl_siwrts(struct net_device *dev,
  587. struct iw_request_info *info,
  588. struct iw_param *rts, char *extra)
  589. {
  590. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  591. if (rts->disabled)
  592. local->rts_threshold = IEEE80211_MAX_RTS_THRESHOLD;
  593. else if (rts->value < 0 || rts->value > IEEE80211_MAX_RTS_THRESHOLD)
  594. return -EINVAL;
  595. else
  596. local->rts_threshold = rts->value;
  597. /* If the wlan card performs RTS/CTS in hardware/firmware,
  598. * configure it here */
  599. if (local->ops->set_rts_threshold)
  600. local->ops->set_rts_threshold(local_to_hw(local),
  601. local->rts_threshold);
  602. return 0;
  603. }
  604. static int ieee80211_ioctl_giwrts(struct net_device *dev,
  605. struct iw_request_info *info,
  606. struct iw_param *rts, char *extra)
  607. {
  608. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  609. rts->value = local->rts_threshold;
  610. rts->disabled = (rts->value >= IEEE80211_MAX_RTS_THRESHOLD);
  611. rts->fixed = 1;
  612. return 0;
  613. }
  614. static int ieee80211_ioctl_siwfrag(struct net_device *dev,
  615. struct iw_request_info *info,
  616. struct iw_param *frag, char *extra)
  617. {
  618. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  619. if (frag->disabled)
  620. local->fragmentation_threshold = IEEE80211_MAX_FRAG_THRESHOLD;
  621. else if (frag->value < 256 ||
  622. frag->value > IEEE80211_MAX_FRAG_THRESHOLD)
  623. return -EINVAL;
  624. else {
  625. /* Fragment length must be even, so strip LSB. */
  626. local->fragmentation_threshold = frag->value & ~0x1;
  627. }
  628. /* If the wlan card performs fragmentation in hardware/firmware,
  629. * configure it here */
  630. if (local->ops->set_frag_threshold)
  631. local->ops->set_frag_threshold(
  632. local_to_hw(local),
  633. local->fragmentation_threshold);
  634. return 0;
  635. }
  636. static int ieee80211_ioctl_giwfrag(struct net_device *dev,
  637. struct iw_request_info *info,
  638. struct iw_param *frag, char *extra)
  639. {
  640. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  641. frag->value = local->fragmentation_threshold;
  642. frag->disabled = (frag->value >= IEEE80211_MAX_RTS_THRESHOLD);
  643. frag->fixed = 1;
  644. return 0;
  645. }
  646. static int ieee80211_ioctl_siwretry(struct net_device *dev,
  647. struct iw_request_info *info,
  648. struct iw_param *retry, char *extra)
  649. {
  650. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  651. if (retry->disabled ||
  652. (retry->flags & IW_RETRY_TYPE) != IW_RETRY_LIMIT)
  653. return -EINVAL;
  654. if (retry->flags & IW_RETRY_MAX)
  655. local->long_retry_limit = retry->value;
  656. else if (retry->flags & IW_RETRY_MIN)
  657. local->short_retry_limit = retry->value;
  658. else {
  659. local->long_retry_limit = retry->value;
  660. local->short_retry_limit = retry->value;
  661. }
  662. if (local->ops->set_retry_limit) {
  663. return local->ops->set_retry_limit(
  664. local_to_hw(local),
  665. local->short_retry_limit,
  666. local->long_retry_limit);
  667. }
  668. return 0;
  669. }
  670. static int ieee80211_ioctl_giwretry(struct net_device *dev,
  671. struct iw_request_info *info,
  672. struct iw_param *retry, char *extra)
  673. {
  674. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  675. retry->disabled = 0;
  676. if (retry->flags == 0 || retry->flags & IW_RETRY_MIN) {
  677. /* first return min value, iwconfig will ask max value
  678. * later if needed */
  679. retry->flags |= IW_RETRY_LIMIT;
  680. retry->value = local->short_retry_limit;
  681. if (local->long_retry_limit != local->short_retry_limit)
  682. retry->flags |= IW_RETRY_MIN;
  683. return 0;
  684. }
  685. if (retry->flags & IW_RETRY_MAX) {
  686. retry->flags = IW_RETRY_LIMIT | IW_RETRY_MAX;
  687. retry->value = local->long_retry_limit;
  688. }
  689. return 0;
  690. }
  691. static int ieee80211_ioctl_siwmlme(struct net_device *dev,
  692. struct iw_request_info *info,
  693. struct iw_point *data, char *extra)
  694. {
  695. struct ieee80211_sub_if_data *sdata;
  696. struct iw_mlme *mlme = (struct iw_mlme *) extra;
  697. sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  698. if (sdata->vif.type != IEEE80211_IF_TYPE_STA &&
  699. sdata->vif.type != IEEE80211_IF_TYPE_IBSS)
  700. return -EINVAL;
  701. switch (mlme->cmd) {
  702. case IW_MLME_DEAUTH:
  703. /* TODO: mlme->addr.sa_data */
  704. return ieee80211_sta_deauthenticate(dev, mlme->reason_code);
  705. case IW_MLME_DISASSOC:
  706. /* TODO: mlme->addr.sa_data */
  707. return ieee80211_sta_disassociate(dev, mlme->reason_code);
  708. default:
  709. return -EOPNOTSUPP;
  710. }
  711. }
  712. static int ieee80211_ioctl_siwencode(struct net_device *dev,
  713. struct iw_request_info *info,
  714. struct iw_point *erq, char *keybuf)
  715. {
  716. struct ieee80211_sub_if_data *sdata;
  717. int idx, i, alg = ALG_WEP;
  718. u8 bcaddr[ETH_ALEN] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
  719. int remove = 0;
  720. sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  721. idx = erq->flags & IW_ENCODE_INDEX;
  722. if (idx == 0) {
  723. if (sdata->default_key)
  724. for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
  725. if (sdata->default_key == sdata->keys[i]) {
  726. idx = i;
  727. break;
  728. }
  729. }
  730. } else if (idx < 1 || idx > 4)
  731. return -EINVAL;
  732. else
  733. idx--;
  734. if (erq->flags & IW_ENCODE_DISABLED)
  735. remove = 1;
  736. else if (erq->length == 0) {
  737. /* No key data - just set the default TX key index */
  738. ieee80211_set_default_key(sdata, idx);
  739. return 0;
  740. }
  741. return ieee80211_set_encryption(
  742. dev, bcaddr,
  743. idx, alg, remove,
  744. !sdata->default_key,
  745. keybuf, erq->length);
  746. }
  747. static int ieee80211_ioctl_giwencode(struct net_device *dev,
  748. struct iw_request_info *info,
  749. struct iw_point *erq, char *key)
  750. {
  751. struct ieee80211_sub_if_data *sdata;
  752. int idx, i;
  753. sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  754. idx = erq->flags & IW_ENCODE_INDEX;
  755. if (idx < 1 || idx > 4) {
  756. idx = -1;
  757. if (!sdata->default_key)
  758. idx = 0;
  759. else for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
  760. if (sdata->default_key == sdata->keys[i]) {
  761. idx = i;
  762. break;
  763. }
  764. }
  765. if (idx < 0)
  766. return -EINVAL;
  767. } else
  768. idx--;
  769. erq->flags = idx + 1;
  770. if (!sdata->keys[idx]) {
  771. erq->length = 0;
  772. erq->flags |= IW_ENCODE_DISABLED;
  773. return 0;
  774. }
  775. memcpy(key, sdata->keys[idx]->conf.key,
  776. min_t(int, erq->length, sdata->keys[idx]->conf.keylen));
  777. erq->length = sdata->keys[idx]->conf.keylen;
  778. erq->flags |= IW_ENCODE_ENABLED;
  779. return 0;
  780. }
  781. static int ieee80211_ioctl_siwauth(struct net_device *dev,
  782. struct iw_request_info *info,
  783. struct iw_param *data, char *extra)
  784. {
  785. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  786. int ret = 0;
  787. switch (data->flags & IW_AUTH_INDEX) {
  788. case IW_AUTH_WPA_VERSION:
  789. case IW_AUTH_CIPHER_PAIRWISE:
  790. case IW_AUTH_CIPHER_GROUP:
  791. case IW_AUTH_WPA_ENABLED:
  792. case IW_AUTH_RX_UNENCRYPTED_EAPOL:
  793. case IW_AUTH_KEY_MGMT:
  794. break;
  795. case IW_AUTH_DROP_UNENCRYPTED:
  796. sdata->drop_unencrypted = !!data->value;
  797. break;
  798. case IW_AUTH_PRIVACY_INVOKED:
  799. if (sdata->vif.type != IEEE80211_IF_TYPE_STA)
  800. ret = -EINVAL;
  801. else {
  802. sdata->u.sta.flags &= ~IEEE80211_STA_PRIVACY_INVOKED;
  803. /*
  804. * Privacy invoked by wpa_supplicant, store the
  805. * value and allow associating to a protected
  806. * network without having a key up front.
  807. */
  808. if (data->value)
  809. sdata->u.sta.flags |=
  810. IEEE80211_STA_PRIVACY_INVOKED;
  811. }
  812. break;
  813. case IW_AUTH_80211_AUTH_ALG:
  814. if (sdata->vif.type == IEEE80211_IF_TYPE_STA ||
  815. sdata->vif.type == IEEE80211_IF_TYPE_IBSS)
  816. sdata->u.sta.auth_algs = data->value;
  817. else
  818. ret = -EOPNOTSUPP;
  819. break;
  820. default:
  821. ret = -EOPNOTSUPP;
  822. break;
  823. }
  824. return ret;
  825. }
  826. /* Get wireless statistics. Called by /proc/net/wireless and by SIOCGIWSTATS */
  827. static struct iw_statistics *ieee80211_get_wireless_stats(struct net_device *dev)
  828. {
  829. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  830. struct iw_statistics *wstats = &local->wstats;
  831. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  832. struct sta_info *sta = NULL;
  833. rcu_read_lock();
  834. if (sdata->vif.type == IEEE80211_IF_TYPE_STA ||
  835. sdata->vif.type == IEEE80211_IF_TYPE_IBSS)
  836. sta = sta_info_get(local, sdata->u.sta.bssid);
  837. if (!sta) {
  838. wstats->discard.fragment = 0;
  839. wstats->discard.misc = 0;
  840. wstats->qual.qual = 0;
  841. wstats->qual.level = 0;
  842. wstats->qual.noise = 0;
  843. wstats->qual.updated = IW_QUAL_ALL_INVALID;
  844. } else {
  845. wstats->qual.level = sta->last_rssi;
  846. wstats->qual.qual = sta->last_signal;
  847. wstats->qual.noise = sta->last_noise;
  848. wstats->qual.updated = local->wstats_flags;
  849. }
  850. rcu_read_unlock();
  851. return wstats;
  852. }
  853. static int ieee80211_ioctl_giwauth(struct net_device *dev,
  854. struct iw_request_info *info,
  855. struct iw_param *data, char *extra)
  856. {
  857. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  858. int ret = 0;
  859. switch (data->flags & IW_AUTH_INDEX) {
  860. case IW_AUTH_80211_AUTH_ALG:
  861. if (sdata->vif.type == IEEE80211_IF_TYPE_STA ||
  862. sdata->vif.type == IEEE80211_IF_TYPE_IBSS)
  863. data->value = sdata->u.sta.auth_algs;
  864. else
  865. ret = -EOPNOTSUPP;
  866. break;
  867. default:
  868. ret = -EOPNOTSUPP;
  869. break;
  870. }
  871. return ret;
  872. }
  873. static int ieee80211_ioctl_siwencodeext(struct net_device *dev,
  874. struct iw_request_info *info,
  875. struct iw_point *erq, char *extra)
  876. {
  877. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  878. struct iw_encode_ext *ext = (struct iw_encode_ext *) extra;
  879. int uninitialized_var(alg), idx, i, remove = 0;
  880. switch (ext->alg) {
  881. case IW_ENCODE_ALG_NONE:
  882. remove = 1;
  883. break;
  884. case IW_ENCODE_ALG_WEP:
  885. alg = ALG_WEP;
  886. break;
  887. case IW_ENCODE_ALG_TKIP:
  888. alg = ALG_TKIP;
  889. break;
  890. case IW_ENCODE_ALG_CCMP:
  891. alg = ALG_CCMP;
  892. break;
  893. default:
  894. return -EOPNOTSUPP;
  895. }
  896. if (erq->flags & IW_ENCODE_DISABLED)
  897. remove = 1;
  898. idx = erq->flags & IW_ENCODE_INDEX;
  899. if (idx < 1 || idx > 4) {
  900. idx = -1;
  901. if (!sdata->default_key)
  902. idx = 0;
  903. else for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
  904. if (sdata->default_key == sdata->keys[i]) {
  905. idx = i;
  906. break;
  907. }
  908. }
  909. if (idx < 0)
  910. return -EINVAL;
  911. } else
  912. idx--;
  913. return ieee80211_set_encryption(dev, ext->addr.sa_data, idx, alg,
  914. remove,
  915. ext->ext_flags &
  916. IW_ENCODE_EXT_SET_TX_KEY,
  917. ext->key, ext->key_len);
  918. }
  919. /* Structures to export the Wireless Handlers */
  920. static const iw_handler ieee80211_handler[] =
  921. {
  922. (iw_handler) NULL, /* SIOCSIWCOMMIT */
  923. (iw_handler) ieee80211_ioctl_giwname, /* SIOCGIWNAME */
  924. (iw_handler) NULL, /* SIOCSIWNWID */
  925. (iw_handler) NULL, /* SIOCGIWNWID */
  926. (iw_handler) ieee80211_ioctl_siwfreq, /* SIOCSIWFREQ */
  927. (iw_handler) ieee80211_ioctl_giwfreq, /* SIOCGIWFREQ */
  928. (iw_handler) ieee80211_ioctl_siwmode, /* SIOCSIWMODE */
  929. (iw_handler) ieee80211_ioctl_giwmode, /* SIOCGIWMODE */
  930. (iw_handler) NULL, /* SIOCSIWSENS */
  931. (iw_handler) NULL, /* SIOCGIWSENS */
  932. (iw_handler) NULL /* not used */, /* SIOCSIWRANGE */
  933. (iw_handler) ieee80211_ioctl_giwrange, /* SIOCGIWRANGE */
  934. (iw_handler) NULL /* not used */, /* SIOCSIWPRIV */
  935. (iw_handler) NULL /* kernel code */, /* SIOCGIWPRIV */
  936. (iw_handler) NULL /* not used */, /* SIOCSIWSTATS */
  937. (iw_handler) NULL /* kernel code */, /* SIOCGIWSTATS */
  938. (iw_handler) NULL, /* SIOCSIWSPY */
  939. (iw_handler) NULL, /* SIOCGIWSPY */
  940. (iw_handler) NULL, /* SIOCSIWTHRSPY */
  941. (iw_handler) NULL, /* SIOCGIWTHRSPY */
  942. (iw_handler) ieee80211_ioctl_siwap, /* SIOCSIWAP */
  943. (iw_handler) ieee80211_ioctl_giwap, /* SIOCGIWAP */
  944. (iw_handler) ieee80211_ioctl_siwmlme, /* SIOCSIWMLME */
  945. (iw_handler) NULL, /* SIOCGIWAPLIST */
  946. (iw_handler) ieee80211_ioctl_siwscan, /* SIOCSIWSCAN */
  947. (iw_handler) ieee80211_ioctl_giwscan, /* SIOCGIWSCAN */
  948. (iw_handler) ieee80211_ioctl_siwessid, /* SIOCSIWESSID */
  949. (iw_handler) ieee80211_ioctl_giwessid, /* SIOCGIWESSID */
  950. (iw_handler) NULL, /* SIOCSIWNICKN */
  951. (iw_handler) NULL, /* SIOCGIWNICKN */
  952. (iw_handler) NULL, /* -- hole -- */
  953. (iw_handler) NULL, /* -- hole -- */
  954. (iw_handler) ieee80211_ioctl_siwrate, /* SIOCSIWRATE */
  955. (iw_handler) ieee80211_ioctl_giwrate, /* SIOCGIWRATE */
  956. (iw_handler) ieee80211_ioctl_siwrts, /* SIOCSIWRTS */
  957. (iw_handler) ieee80211_ioctl_giwrts, /* SIOCGIWRTS */
  958. (iw_handler) ieee80211_ioctl_siwfrag, /* SIOCSIWFRAG */
  959. (iw_handler) ieee80211_ioctl_giwfrag, /* SIOCGIWFRAG */
  960. (iw_handler) ieee80211_ioctl_siwtxpower, /* SIOCSIWTXPOW */
  961. (iw_handler) ieee80211_ioctl_giwtxpower, /* SIOCGIWTXPOW */
  962. (iw_handler) ieee80211_ioctl_siwretry, /* SIOCSIWRETRY */
  963. (iw_handler) ieee80211_ioctl_giwretry, /* SIOCGIWRETRY */
  964. (iw_handler) ieee80211_ioctl_siwencode, /* SIOCSIWENCODE */
  965. (iw_handler) ieee80211_ioctl_giwencode, /* SIOCGIWENCODE */
  966. (iw_handler) NULL, /* SIOCSIWPOWER */
  967. (iw_handler) NULL, /* SIOCGIWPOWER */
  968. (iw_handler) NULL, /* -- hole -- */
  969. (iw_handler) NULL, /* -- hole -- */
  970. (iw_handler) ieee80211_ioctl_siwgenie, /* SIOCSIWGENIE */
  971. (iw_handler) NULL, /* SIOCGIWGENIE */
  972. (iw_handler) ieee80211_ioctl_siwauth, /* SIOCSIWAUTH */
  973. (iw_handler) ieee80211_ioctl_giwauth, /* SIOCGIWAUTH */
  974. (iw_handler) ieee80211_ioctl_siwencodeext, /* SIOCSIWENCODEEXT */
  975. (iw_handler) NULL, /* SIOCGIWENCODEEXT */
  976. (iw_handler) NULL, /* SIOCSIWPMKSA */
  977. (iw_handler) NULL, /* -- hole -- */
  978. };
  979. const struct iw_handler_def ieee80211_iw_handler_def =
  980. {
  981. .num_standard = ARRAY_SIZE(ieee80211_handler),
  982. .standard = (iw_handler *) ieee80211_handler,
  983. .get_wireless_stats = ieee80211_get_wireless_stats,
  984. };