tkip.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413
  1. /*
  2. * Copyright 2002-2004, Instant802 Networks, Inc.
  3. * Copyright 2005, Devicescape Software, Inc.
  4. *
  5. * This program is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License version 2 as
  7. * published by the Free Software Foundation.
  8. */
  9. #include <linux/kernel.h>
  10. #include <linux/types.h>
  11. #include <linux/netdevice.h>
  12. #include <net/mac80211.h>
  13. #include "key.h"
  14. #include "tkip.h"
  15. #include "wep.h"
  16. /* TKIP key mixing functions */
  17. #define PHASE1_LOOP_COUNT 8
  18. /* 2-byte by 2-byte subset of the full AES S-box table; second part of this
  19. * table is identical to first part but byte-swapped */
  20. static const u16 tkip_sbox[256] =
  21. {
  22. 0xC6A5, 0xF884, 0xEE99, 0xF68D, 0xFF0D, 0xD6BD, 0xDEB1, 0x9154,
  23. 0x6050, 0x0203, 0xCEA9, 0x567D, 0xE719, 0xB562, 0x4DE6, 0xEC9A,
  24. 0x8F45, 0x1F9D, 0x8940, 0xFA87, 0xEF15, 0xB2EB, 0x8EC9, 0xFB0B,
  25. 0x41EC, 0xB367, 0x5FFD, 0x45EA, 0x23BF, 0x53F7, 0xE496, 0x9B5B,
  26. 0x75C2, 0xE11C, 0x3DAE, 0x4C6A, 0x6C5A, 0x7E41, 0xF502, 0x834F,
  27. 0x685C, 0x51F4, 0xD134, 0xF908, 0xE293, 0xAB73, 0x6253, 0x2A3F,
  28. 0x080C, 0x9552, 0x4665, 0x9D5E, 0x3028, 0x37A1, 0x0A0F, 0x2FB5,
  29. 0x0E09, 0x2436, 0x1B9B, 0xDF3D, 0xCD26, 0x4E69, 0x7FCD, 0xEA9F,
  30. 0x121B, 0x1D9E, 0x5874, 0x342E, 0x362D, 0xDCB2, 0xB4EE, 0x5BFB,
  31. 0xA4F6, 0x764D, 0xB761, 0x7DCE, 0x527B, 0xDD3E, 0x5E71, 0x1397,
  32. 0xA6F5, 0xB968, 0x0000, 0xC12C, 0x4060, 0xE31F, 0x79C8, 0xB6ED,
  33. 0xD4BE, 0x8D46, 0x67D9, 0x724B, 0x94DE, 0x98D4, 0xB0E8, 0x854A,
  34. 0xBB6B, 0xC52A, 0x4FE5, 0xED16, 0x86C5, 0x9AD7, 0x6655, 0x1194,
  35. 0x8ACF, 0xE910, 0x0406, 0xFE81, 0xA0F0, 0x7844, 0x25BA, 0x4BE3,
  36. 0xA2F3, 0x5DFE, 0x80C0, 0x058A, 0x3FAD, 0x21BC, 0x7048, 0xF104,
  37. 0x63DF, 0x77C1, 0xAF75, 0x4263, 0x2030, 0xE51A, 0xFD0E, 0xBF6D,
  38. 0x814C, 0x1814, 0x2635, 0xC32F, 0xBEE1, 0x35A2, 0x88CC, 0x2E39,
  39. 0x9357, 0x55F2, 0xFC82, 0x7A47, 0xC8AC, 0xBAE7, 0x322B, 0xE695,
  40. 0xC0A0, 0x1998, 0x9ED1, 0xA37F, 0x4466, 0x547E, 0x3BAB, 0x0B83,
  41. 0x8CCA, 0xC729, 0x6BD3, 0x283C, 0xA779, 0xBCE2, 0x161D, 0xAD76,
  42. 0xDB3B, 0x6456, 0x744E, 0x141E, 0x92DB, 0x0C0A, 0x486C, 0xB8E4,
  43. 0x9F5D, 0xBD6E, 0x43EF, 0xC4A6, 0x39A8, 0x31A4, 0xD337, 0xF28B,
  44. 0xD532, 0x8B43, 0x6E59, 0xDAB7, 0x018C, 0xB164, 0x9CD2, 0x49E0,
  45. 0xD8B4, 0xACFA, 0xF307, 0xCF25, 0xCAAF, 0xF48E, 0x47E9, 0x1018,
  46. 0x6FD5, 0xF088, 0x4A6F, 0x5C72, 0x3824, 0x57F1, 0x73C7, 0x9751,
  47. 0xCB23, 0xA17C, 0xE89C, 0x3E21, 0x96DD, 0x61DC, 0x0D86, 0x0F85,
  48. 0xE090, 0x7C42, 0x71C4, 0xCCAA, 0x90D8, 0x0605, 0xF701, 0x1C12,
  49. 0xC2A3, 0x6A5F, 0xAEF9, 0x69D0, 0x1791, 0x9958, 0x3A27, 0x27B9,
  50. 0xD938, 0xEB13, 0x2BB3, 0x2233, 0xD2BB, 0xA970, 0x0789, 0x33A7,
  51. 0x2DB6, 0x3C22, 0x1592, 0xC920, 0x8749, 0xAAFF, 0x5078, 0xA57A,
  52. 0x038F, 0x59F8, 0x0980, 0x1A17, 0x65DA, 0xD731, 0x84C6, 0xD0B8,
  53. 0x82C3, 0x29B0, 0x5A77, 0x1E11, 0x7BCB, 0xA8FC, 0x6DD6, 0x2C3A,
  54. };
  55. static inline u16 Mk16(u8 x, u8 y)
  56. {
  57. return ((u16) x << 8) | (u16) y;
  58. }
  59. static inline u8 Hi8(u16 v)
  60. {
  61. return v >> 8;
  62. }
  63. static inline u8 Lo8(u16 v)
  64. {
  65. return v & 0xff;
  66. }
  67. static inline u16 Hi16(u32 v)
  68. {
  69. return v >> 16;
  70. }
  71. static inline u16 Lo16(u32 v)
  72. {
  73. return v & 0xffff;
  74. }
  75. static inline u16 RotR1(u16 v)
  76. {
  77. return (v >> 1) | ((v & 0x0001) << 15);
  78. }
  79. static inline u16 tkip_S(u16 val)
  80. {
  81. u16 a = tkip_sbox[Hi8(val)];
  82. return tkip_sbox[Lo8(val)] ^ Hi8(a) ^ (Lo8(a) << 8);
  83. }
  84. /* P1K := Phase1(TA, TK, TSC)
  85. * TA = transmitter address (48 bits)
  86. * TK = dot11DefaultKeyValue or dot11KeyMappingValue (128 bits)
  87. * TSC = TKIP sequence counter (48 bits, only 32 msb bits used)
  88. * P1K: 80 bits
  89. */
  90. static void tkip_mixing_phase1(const u8 *ta, const u8 *tk, u32 tsc_IV32,
  91. u16 *p1k)
  92. {
  93. int i, j;
  94. p1k[0] = Lo16(tsc_IV32);
  95. p1k[1] = Hi16(tsc_IV32);
  96. p1k[2] = Mk16(ta[1], ta[0]);
  97. p1k[3] = Mk16(ta[3], ta[2]);
  98. p1k[4] = Mk16(ta[5], ta[4]);
  99. for (i = 0; i < PHASE1_LOOP_COUNT; i++) {
  100. j = 2 * (i & 1);
  101. p1k[0] += tkip_S(p1k[4] ^ Mk16(tk[ 1 + j], tk[ 0 + j]));
  102. p1k[1] += tkip_S(p1k[0] ^ Mk16(tk[ 5 + j], tk[ 4 + j]));
  103. p1k[2] += tkip_S(p1k[1] ^ Mk16(tk[ 9 + j], tk[ 8 + j]));
  104. p1k[3] += tkip_S(p1k[2] ^ Mk16(tk[13 + j], tk[12 + j]));
  105. p1k[4] += tkip_S(p1k[3] ^ Mk16(tk[ 1 + j], tk[ 0 + j])) + i;
  106. }
  107. }
  108. static void tkip_mixing_phase2(const u16 *p1k, const u8 *tk, u16 tsc_IV16,
  109. u8 *rc4key)
  110. {
  111. u16 ppk[6];
  112. int i;
  113. ppk[0] = p1k[0];
  114. ppk[1] = p1k[1];
  115. ppk[2] = p1k[2];
  116. ppk[3] = p1k[3];
  117. ppk[4] = p1k[4];
  118. ppk[5] = p1k[4] + tsc_IV16;
  119. ppk[0] += tkip_S(ppk[5] ^ Mk16(tk[ 1], tk[ 0]));
  120. ppk[1] += tkip_S(ppk[0] ^ Mk16(tk[ 3], tk[ 2]));
  121. ppk[2] += tkip_S(ppk[1] ^ Mk16(tk[ 5], tk[ 4]));
  122. ppk[3] += tkip_S(ppk[2] ^ Mk16(tk[ 7], tk[ 6]));
  123. ppk[4] += tkip_S(ppk[3] ^ Mk16(tk[ 9], tk[ 8]));
  124. ppk[5] += tkip_S(ppk[4] ^ Mk16(tk[11], tk[10]));
  125. ppk[0] += RotR1(ppk[5] ^ Mk16(tk[13], tk[12]));
  126. ppk[1] += RotR1(ppk[0] ^ Mk16(tk[15], tk[14]));
  127. ppk[2] += RotR1(ppk[1]);
  128. ppk[3] += RotR1(ppk[2]);
  129. ppk[4] += RotR1(ppk[3]);
  130. ppk[5] += RotR1(ppk[4]);
  131. rc4key[0] = Hi8(tsc_IV16);
  132. rc4key[1] = (Hi8(tsc_IV16) | 0x20) & 0x7f;
  133. rc4key[2] = Lo8(tsc_IV16);
  134. rc4key[3] = Lo8((ppk[5] ^ Mk16(tk[1], tk[0])) >> 1);
  135. for (i = 0; i < 6; i++) {
  136. rc4key[4 + 2 * i] = Lo8(ppk[i]);
  137. rc4key[5 + 2 * i] = Hi8(ppk[i]);
  138. }
  139. }
  140. /* Add TKIP IV and Ext. IV at @pos. @iv0, @iv1, and @iv2 are the first octets
  141. * of the IV. Returns pointer to the octet following IVs (i.e., beginning of
  142. * the packet payload). */
  143. u8 * ieee80211_tkip_add_iv(u8 *pos, struct ieee80211_key *key,
  144. u8 iv0, u8 iv1, u8 iv2)
  145. {
  146. *pos++ = iv0;
  147. *pos++ = iv1;
  148. *pos++ = iv2;
  149. *pos++ = (key->conf.keyidx << 6) | (1 << 5) /* Ext IV */;
  150. *pos++ = key->u.tkip.iv32 & 0xff;
  151. *pos++ = (key->u.tkip.iv32 >> 8) & 0xff;
  152. *pos++ = (key->u.tkip.iv32 >> 16) & 0xff;
  153. *pos++ = (key->u.tkip.iv32 >> 24) & 0xff;
  154. return pos;
  155. }
  156. void ieee80211_tkip_gen_phase1key(struct ieee80211_key *key, u8 *ta,
  157. u16 *phase1key)
  158. {
  159. tkip_mixing_phase1(ta, &key->conf.key[ALG_TKIP_TEMP_ENCR_KEY],
  160. key->u.tkip.iv32, phase1key);
  161. }
  162. void ieee80211_tkip_gen_rc4key(struct ieee80211_key *key, u8 *ta,
  163. u8 *rc4key)
  164. {
  165. /* Calculate per-packet key */
  166. if (key->u.tkip.iv16 == 0 || !key->u.tkip.tx_initialized) {
  167. /* IV16 wrapped around - perform TKIP phase 1 */
  168. tkip_mixing_phase1(ta, &key->conf.key[ALG_TKIP_TEMP_ENCR_KEY],
  169. key->u.tkip.iv32, key->u.tkip.p1k);
  170. key->u.tkip.tx_initialized = 1;
  171. }
  172. tkip_mixing_phase2(key->u.tkip.p1k,
  173. &key->conf.key[ALG_TKIP_TEMP_ENCR_KEY],
  174. key->u.tkip.iv16, rc4key);
  175. }
  176. void ieee80211_get_tkip_key(struct ieee80211_key_conf *keyconf,
  177. struct sk_buff *skb, enum ieee80211_tkip_key_type type,
  178. u8 *outkey)
  179. {
  180. struct ieee80211_key *key = (struct ieee80211_key *)
  181. container_of(keyconf, struct ieee80211_key, conf);
  182. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
  183. u8 *data = (u8 *) hdr;
  184. u16 fc = le16_to_cpu(hdr->frame_control);
  185. int hdr_len = ieee80211_get_hdrlen(fc);
  186. u8 *ta = hdr->addr2;
  187. u16 iv16;
  188. u32 iv32;
  189. iv16 = data[hdr_len] << 8;
  190. iv16 += data[hdr_len + 2];
  191. iv32 = data[hdr_len + 4] | (data[hdr_len + 5] << 8) |
  192. (data[hdr_len + 6] << 16) | (data[hdr_len + 7] << 24);
  193. #ifdef CONFIG_TKIP_DEBUG
  194. printk(KERN_DEBUG "TKIP encrypt: iv16 = 0x%04x, iv32 = 0x%08x\n",
  195. iv16, iv32);
  196. if (iv32 != key->u.tkip.iv32) {
  197. printk(KERN_DEBUG "skb: iv32 = 0x%08x key: iv32 = 0x%08x\n",
  198. iv32, key->u.tkip.iv32);
  199. printk(KERN_DEBUG "Wrap around of iv16 in the middle of a "
  200. "fragmented packet\n");
  201. }
  202. #endif /* CONFIG_TKIP_DEBUG */
  203. /* Update the p1k only when the iv16 in the packet wraps around, this
  204. * might occur after the wrap around of iv16 in the key in case of
  205. * fragmented packets. */
  206. if (iv16 == 0 || !key->u.tkip.tx_initialized) {
  207. /* IV16 wrapped around - perform TKIP phase 1 */
  208. tkip_mixing_phase1(ta, &key->conf.key[ALG_TKIP_TEMP_ENCR_KEY],
  209. iv32, key->u.tkip.p1k);
  210. key->u.tkip.tx_initialized = 1;
  211. }
  212. if (type == IEEE80211_TKIP_P1_KEY) {
  213. memcpy(outkey, key->u.tkip.p1k, sizeof(u16) * 5);
  214. return;
  215. }
  216. tkip_mixing_phase2(key->u.tkip.p1k,
  217. &key->conf.key[ALG_TKIP_TEMP_ENCR_KEY], iv16, outkey);
  218. }
  219. EXPORT_SYMBOL(ieee80211_get_tkip_key);
  220. /* Encrypt packet payload with TKIP using @key. @pos is a pointer to the
  221. * beginning of the buffer containing payload. This payload must include
  222. * headroom of eight octets for IV and Ext. IV and taildroom of four octets
  223. * for ICV. @payload_len is the length of payload (_not_ including extra
  224. * headroom and tailroom). @ta is the transmitter addresses. */
  225. void ieee80211_tkip_encrypt_data(struct crypto_blkcipher *tfm,
  226. struct ieee80211_key *key,
  227. u8 *pos, size_t payload_len, u8 *ta)
  228. {
  229. u8 rc4key[16];
  230. ieee80211_tkip_gen_rc4key(key, ta, rc4key);
  231. pos = ieee80211_tkip_add_iv(pos, key, rc4key[0], rc4key[1], rc4key[2]);
  232. ieee80211_wep_encrypt_data(tfm, rc4key, 16, pos, payload_len);
  233. }
  234. /* Decrypt packet payload with TKIP using @key. @pos is a pointer to the
  235. * beginning of the buffer containing IEEE 802.11 header payload, i.e.,
  236. * including IV, Ext. IV, real data, Michael MIC, ICV. @payload_len is the
  237. * length of payload, including IV, Ext. IV, MIC, ICV. */
  238. int ieee80211_tkip_decrypt_data(struct crypto_blkcipher *tfm,
  239. struct ieee80211_key *key,
  240. u8 *payload, size_t payload_len, u8 *ta,
  241. u8 *ra, int only_iv, int queue,
  242. u32 *out_iv32, u16 *out_iv16)
  243. {
  244. u32 iv32;
  245. u32 iv16;
  246. u8 rc4key[16], keyid, *pos = payload;
  247. int res;
  248. if (payload_len < 12)
  249. return -1;
  250. iv16 = (pos[0] << 8) | pos[2];
  251. keyid = pos[3];
  252. iv32 = pos[4] | (pos[5] << 8) | (pos[6] << 16) | (pos[7] << 24);
  253. pos += 8;
  254. #ifdef CONFIG_TKIP_DEBUG
  255. {
  256. int i;
  257. printk(KERN_DEBUG "TKIP decrypt: data(len=%zd)", payload_len);
  258. for (i = 0; i < payload_len; i++)
  259. printk(" %02x", payload[i]);
  260. printk("\n");
  261. printk(KERN_DEBUG "TKIP decrypt: iv16=%04x iv32=%08x\n",
  262. iv16, iv32);
  263. }
  264. #endif /* CONFIG_TKIP_DEBUG */
  265. if (!(keyid & (1 << 5)))
  266. return TKIP_DECRYPT_NO_EXT_IV;
  267. if ((keyid >> 6) != key->conf.keyidx)
  268. return TKIP_DECRYPT_INVALID_KEYIDX;
  269. if (key->u.tkip.rx_initialized[queue] &&
  270. (iv32 < key->u.tkip.iv32_rx[queue] ||
  271. (iv32 == key->u.tkip.iv32_rx[queue] &&
  272. iv16 <= key->u.tkip.iv16_rx[queue]))) {
  273. #ifdef CONFIG_TKIP_DEBUG
  274. DECLARE_MAC_BUF(mac);
  275. printk(KERN_DEBUG "TKIP replay detected for RX frame from "
  276. "%s (RX IV (%04x,%02x) <= prev. IV (%04x,%02x)\n",
  277. print_mac(mac, ta),
  278. iv32, iv16, key->u.tkip.iv32_rx[queue],
  279. key->u.tkip.iv16_rx[queue]);
  280. #endif /* CONFIG_TKIP_DEBUG */
  281. return TKIP_DECRYPT_REPLAY;
  282. }
  283. if (only_iv) {
  284. res = TKIP_DECRYPT_OK;
  285. key->u.tkip.rx_initialized[queue] = 1;
  286. goto done;
  287. }
  288. if (!key->u.tkip.rx_initialized[queue] ||
  289. key->u.tkip.iv32_rx[queue] != iv32) {
  290. key->u.tkip.rx_initialized[queue] = 1;
  291. /* IV16 wrapped around - perform TKIP phase 1 */
  292. tkip_mixing_phase1(ta, &key->conf.key[ALG_TKIP_TEMP_ENCR_KEY],
  293. iv32, key->u.tkip.p1k_rx[queue]);
  294. #ifdef CONFIG_TKIP_DEBUG
  295. {
  296. int i;
  297. DECLARE_MAC_BUF(mac);
  298. printk(KERN_DEBUG "TKIP decrypt: Phase1 TA=%s"
  299. " TK=", print_mac(mac, ta));
  300. for (i = 0; i < 16; i++)
  301. printk("%02x ",
  302. key->conf.key[
  303. ALG_TKIP_TEMP_ENCR_KEY + i]);
  304. printk("\n");
  305. printk(KERN_DEBUG "TKIP decrypt: P1K=");
  306. for (i = 0; i < 5; i++)
  307. printk("%04x ", key->u.tkip.p1k_rx[queue][i]);
  308. printk("\n");
  309. }
  310. #endif /* CONFIG_TKIP_DEBUG */
  311. if (key->local->ops->update_tkip_key &&
  312. key->flags & KEY_FLAG_UPLOADED_TO_HARDWARE) {
  313. u8 bcast[ETH_ALEN] =
  314. {0xff, 0xff, 0xff, 0xff, 0xff, 0xff};
  315. u8 *sta_addr = key->sta->addr;
  316. if (is_multicast_ether_addr(ra))
  317. sta_addr = bcast;
  318. key->local->ops->update_tkip_key(
  319. local_to_hw(key->local), &key->conf,
  320. sta_addr, iv32, key->u.tkip.p1k_rx[queue]);
  321. }
  322. }
  323. tkip_mixing_phase2(key->u.tkip.p1k_rx[queue],
  324. &key->conf.key[ALG_TKIP_TEMP_ENCR_KEY],
  325. iv16, rc4key);
  326. #ifdef CONFIG_TKIP_DEBUG
  327. {
  328. int i;
  329. printk(KERN_DEBUG "TKIP decrypt: Phase2 rc4key=");
  330. for (i = 0; i < 16; i++)
  331. printk("%02x ", rc4key[i]);
  332. printk("\n");
  333. }
  334. #endif /* CONFIG_TKIP_DEBUG */
  335. res = ieee80211_wep_decrypt_data(tfm, rc4key, 16, pos, payload_len - 12);
  336. done:
  337. if (res == TKIP_DECRYPT_OK) {
  338. /*
  339. * Record previously received IV, will be copied into the
  340. * key information after MIC verification. It is possible
  341. * that we don't catch replays of fragments but that's ok
  342. * because the Michael MIC verication will then fail.
  343. */
  344. *out_iv32 = iv32;
  345. *out_iv16 = iv16;
  346. }
  347. return res;
  348. }