af_key.c 103 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967
  1. /*
  2. * net/key/af_key.c An implementation of PF_KEYv2 sockets.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public License
  6. * as published by the Free Software Foundation; either version
  7. * 2 of the License, or (at your option) any later version.
  8. *
  9. * Authors: Maxim Giryaev <gem@asplinux.ru>
  10. * David S. Miller <davem@redhat.com>
  11. * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
  12. * Kunihiro Ishiguro <kunihiro@ipinfusion.com>
  13. * Kazunori MIYAZAWA / USAGI Project <miyazawa@linux-ipv6.org>
  14. * Derek Atkins <derek@ihtfp.com>
  15. */
  16. #include <linux/capability.h>
  17. #include <linux/module.h>
  18. #include <linux/kernel.h>
  19. #include <linux/socket.h>
  20. #include <linux/pfkeyv2.h>
  21. #include <linux/ipsec.h>
  22. #include <linux/skbuff.h>
  23. #include <linux/rtnetlink.h>
  24. #include <linux/in.h>
  25. #include <linux/in6.h>
  26. #include <linux/proc_fs.h>
  27. #include <linux/init.h>
  28. #include <net/net_namespace.h>
  29. #include <net/xfrm.h>
  30. #include <net/sock.h>
  31. #define _X2KEY(x) ((x) == XFRM_INF ? 0 : (x))
  32. #define _KEY2X(x) ((x) == 0 ? XFRM_INF : (x))
  33. /* List of all pfkey sockets. */
  34. static HLIST_HEAD(pfkey_table);
  35. static DECLARE_WAIT_QUEUE_HEAD(pfkey_table_wait);
  36. static DEFINE_RWLOCK(pfkey_table_lock);
  37. static atomic_t pfkey_table_users = ATOMIC_INIT(0);
  38. static atomic_t pfkey_socks_nr = ATOMIC_INIT(0);
  39. struct pfkey_sock {
  40. /* struct sock must be the first member of struct pfkey_sock */
  41. struct sock sk;
  42. int registered;
  43. int promisc;
  44. struct {
  45. uint8_t msg_version;
  46. uint32_t msg_pid;
  47. int (*dump)(struct pfkey_sock *sk);
  48. void (*done)(struct pfkey_sock *sk);
  49. union {
  50. struct xfrm_policy_walk policy;
  51. struct xfrm_state_walk state;
  52. } u;
  53. } dump;
  54. };
  55. static inline struct pfkey_sock *pfkey_sk(struct sock *sk)
  56. {
  57. return (struct pfkey_sock *)sk;
  58. }
  59. static int pfkey_can_dump(struct sock *sk)
  60. {
  61. if (3 * atomic_read(&sk->sk_rmem_alloc) <= 2 * sk->sk_rcvbuf)
  62. return 1;
  63. return 0;
  64. }
  65. static int pfkey_do_dump(struct pfkey_sock *pfk)
  66. {
  67. int rc;
  68. rc = pfk->dump.dump(pfk);
  69. if (rc == -ENOBUFS)
  70. return 0;
  71. pfk->dump.done(pfk);
  72. pfk->dump.dump = NULL;
  73. pfk->dump.done = NULL;
  74. return rc;
  75. }
  76. static void pfkey_sock_destruct(struct sock *sk)
  77. {
  78. skb_queue_purge(&sk->sk_receive_queue);
  79. if (!sock_flag(sk, SOCK_DEAD)) {
  80. printk("Attempt to release alive pfkey socket: %p\n", sk);
  81. return;
  82. }
  83. BUG_TRAP(!atomic_read(&sk->sk_rmem_alloc));
  84. BUG_TRAP(!atomic_read(&sk->sk_wmem_alloc));
  85. atomic_dec(&pfkey_socks_nr);
  86. }
  87. static void pfkey_table_grab(void)
  88. {
  89. write_lock_bh(&pfkey_table_lock);
  90. if (atomic_read(&pfkey_table_users)) {
  91. DECLARE_WAITQUEUE(wait, current);
  92. add_wait_queue_exclusive(&pfkey_table_wait, &wait);
  93. for(;;) {
  94. set_current_state(TASK_UNINTERRUPTIBLE);
  95. if (atomic_read(&pfkey_table_users) == 0)
  96. break;
  97. write_unlock_bh(&pfkey_table_lock);
  98. schedule();
  99. write_lock_bh(&pfkey_table_lock);
  100. }
  101. __set_current_state(TASK_RUNNING);
  102. remove_wait_queue(&pfkey_table_wait, &wait);
  103. }
  104. }
  105. static __inline__ void pfkey_table_ungrab(void)
  106. {
  107. write_unlock_bh(&pfkey_table_lock);
  108. wake_up(&pfkey_table_wait);
  109. }
  110. static __inline__ void pfkey_lock_table(void)
  111. {
  112. /* read_lock() synchronizes us to pfkey_table_grab */
  113. read_lock(&pfkey_table_lock);
  114. atomic_inc(&pfkey_table_users);
  115. read_unlock(&pfkey_table_lock);
  116. }
  117. static __inline__ void pfkey_unlock_table(void)
  118. {
  119. if (atomic_dec_and_test(&pfkey_table_users))
  120. wake_up(&pfkey_table_wait);
  121. }
  122. static const struct proto_ops pfkey_ops;
  123. static void pfkey_insert(struct sock *sk)
  124. {
  125. pfkey_table_grab();
  126. sk_add_node(sk, &pfkey_table);
  127. pfkey_table_ungrab();
  128. }
  129. static void pfkey_remove(struct sock *sk)
  130. {
  131. pfkey_table_grab();
  132. sk_del_node_init(sk);
  133. pfkey_table_ungrab();
  134. }
  135. static struct proto key_proto = {
  136. .name = "KEY",
  137. .owner = THIS_MODULE,
  138. .obj_size = sizeof(struct pfkey_sock),
  139. };
  140. static int pfkey_create(struct net *net, struct socket *sock, int protocol)
  141. {
  142. struct sock *sk;
  143. int err;
  144. if (net != &init_net)
  145. return -EAFNOSUPPORT;
  146. if (!capable(CAP_NET_ADMIN))
  147. return -EPERM;
  148. if (sock->type != SOCK_RAW)
  149. return -ESOCKTNOSUPPORT;
  150. if (protocol != PF_KEY_V2)
  151. return -EPROTONOSUPPORT;
  152. err = -ENOMEM;
  153. sk = sk_alloc(net, PF_KEY, GFP_KERNEL, &key_proto);
  154. if (sk == NULL)
  155. goto out;
  156. sock->ops = &pfkey_ops;
  157. sock_init_data(sock, sk);
  158. sk->sk_family = PF_KEY;
  159. sk->sk_destruct = pfkey_sock_destruct;
  160. atomic_inc(&pfkey_socks_nr);
  161. pfkey_insert(sk);
  162. return 0;
  163. out:
  164. return err;
  165. }
  166. static int pfkey_release(struct socket *sock)
  167. {
  168. struct sock *sk = sock->sk;
  169. if (!sk)
  170. return 0;
  171. pfkey_remove(sk);
  172. sock_orphan(sk);
  173. sock->sk = NULL;
  174. skb_queue_purge(&sk->sk_write_queue);
  175. sock_put(sk);
  176. return 0;
  177. }
  178. static int pfkey_broadcast_one(struct sk_buff *skb, struct sk_buff **skb2,
  179. gfp_t allocation, struct sock *sk)
  180. {
  181. int err = -ENOBUFS;
  182. sock_hold(sk);
  183. if (*skb2 == NULL) {
  184. if (atomic_read(&skb->users) != 1) {
  185. *skb2 = skb_clone(skb, allocation);
  186. } else {
  187. *skb2 = skb;
  188. atomic_inc(&skb->users);
  189. }
  190. }
  191. if (*skb2 != NULL) {
  192. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf) {
  193. skb_orphan(*skb2);
  194. skb_set_owner_r(*skb2, sk);
  195. skb_queue_tail(&sk->sk_receive_queue, *skb2);
  196. sk->sk_data_ready(sk, (*skb2)->len);
  197. *skb2 = NULL;
  198. err = 0;
  199. }
  200. }
  201. sock_put(sk);
  202. return err;
  203. }
  204. /* Send SKB to all pfkey sockets matching selected criteria. */
  205. #define BROADCAST_ALL 0
  206. #define BROADCAST_ONE 1
  207. #define BROADCAST_REGISTERED 2
  208. #define BROADCAST_PROMISC_ONLY 4
  209. static int pfkey_broadcast(struct sk_buff *skb, gfp_t allocation,
  210. int broadcast_flags, struct sock *one_sk)
  211. {
  212. struct sock *sk;
  213. struct hlist_node *node;
  214. struct sk_buff *skb2 = NULL;
  215. int err = -ESRCH;
  216. /* XXX Do we need something like netlink_overrun? I think
  217. * XXX PF_KEY socket apps will not mind current behavior.
  218. */
  219. if (!skb)
  220. return -ENOMEM;
  221. pfkey_lock_table();
  222. sk_for_each(sk, node, &pfkey_table) {
  223. struct pfkey_sock *pfk = pfkey_sk(sk);
  224. int err2;
  225. /* Yes, it means that if you are meant to receive this
  226. * pfkey message you receive it twice as promiscuous
  227. * socket.
  228. */
  229. if (pfk->promisc)
  230. pfkey_broadcast_one(skb, &skb2, allocation, sk);
  231. /* the exact target will be processed later */
  232. if (sk == one_sk)
  233. continue;
  234. if (broadcast_flags != BROADCAST_ALL) {
  235. if (broadcast_flags & BROADCAST_PROMISC_ONLY)
  236. continue;
  237. if ((broadcast_flags & BROADCAST_REGISTERED) &&
  238. !pfk->registered)
  239. continue;
  240. if (broadcast_flags & BROADCAST_ONE)
  241. continue;
  242. }
  243. err2 = pfkey_broadcast_one(skb, &skb2, allocation, sk);
  244. /* Error is cleare after succecful sending to at least one
  245. * registered KM */
  246. if ((broadcast_flags & BROADCAST_REGISTERED) && err)
  247. err = err2;
  248. }
  249. pfkey_unlock_table();
  250. if (one_sk != NULL)
  251. err = pfkey_broadcast_one(skb, &skb2, allocation, one_sk);
  252. if (skb2)
  253. kfree_skb(skb2);
  254. kfree_skb(skb);
  255. return err;
  256. }
  257. static inline void pfkey_hdr_dup(struct sadb_msg *new, struct sadb_msg *orig)
  258. {
  259. *new = *orig;
  260. }
  261. static int pfkey_error(struct sadb_msg *orig, int err, struct sock *sk)
  262. {
  263. struct sk_buff *skb = alloc_skb(sizeof(struct sadb_msg) + 16, GFP_KERNEL);
  264. struct sadb_msg *hdr;
  265. if (!skb)
  266. return -ENOBUFS;
  267. /* Woe be to the platform trying to support PFKEY yet
  268. * having normal errnos outside the 1-255 range, inclusive.
  269. */
  270. err = -err;
  271. if (err == ERESTARTSYS ||
  272. err == ERESTARTNOHAND ||
  273. err == ERESTARTNOINTR)
  274. err = EINTR;
  275. if (err >= 512)
  276. err = EINVAL;
  277. BUG_ON(err <= 0 || err >= 256);
  278. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  279. pfkey_hdr_dup(hdr, orig);
  280. hdr->sadb_msg_errno = (uint8_t) err;
  281. hdr->sadb_msg_len = (sizeof(struct sadb_msg) /
  282. sizeof(uint64_t));
  283. pfkey_broadcast(skb, GFP_KERNEL, BROADCAST_ONE, sk);
  284. return 0;
  285. }
  286. static u8 sadb_ext_min_len[] = {
  287. [SADB_EXT_RESERVED] = (u8) 0,
  288. [SADB_EXT_SA] = (u8) sizeof(struct sadb_sa),
  289. [SADB_EXT_LIFETIME_CURRENT] = (u8) sizeof(struct sadb_lifetime),
  290. [SADB_EXT_LIFETIME_HARD] = (u8) sizeof(struct sadb_lifetime),
  291. [SADB_EXT_LIFETIME_SOFT] = (u8) sizeof(struct sadb_lifetime),
  292. [SADB_EXT_ADDRESS_SRC] = (u8) sizeof(struct sadb_address),
  293. [SADB_EXT_ADDRESS_DST] = (u8) sizeof(struct sadb_address),
  294. [SADB_EXT_ADDRESS_PROXY] = (u8) sizeof(struct sadb_address),
  295. [SADB_EXT_KEY_AUTH] = (u8) sizeof(struct sadb_key),
  296. [SADB_EXT_KEY_ENCRYPT] = (u8) sizeof(struct sadb_key),
  297. [SADB_EXT_IDENTITY_SRC] = (u8) sizeof(struct sadb_ident),
  298. [SADB_EXT_IDENTITY_DST] = (u8) sizeof(struct sadb_ident),
  299. [SADB_EXT_SENSITIVITY] = (u8) sizeof(struct sadb_sens),
  300. [SADB_EXT_PROPOSAL] = (u8) sizeof(struct sadb_prop),
  301. [SADB_EXT_SUPPORTED_AUTH] = (u8) sizeof(struct sadb_supported),
  302. [SADB_EXT_SUPPORTED_ENCRYPT] = (u8) sizeof(struct sadb_supported),
  303. [SADB_EXT_SPIRANGE] = (u8) sizeof(struct sadb_spirange),
  304. [SADB_X_EXT_KMPRIVATE] = (u8) sizeof(struct sadb_x_kmprivate),
  305. [SADB_X_EXT_POLICY] = (u8) sizeof(struct sadb_x_policy),
  306. [SADB_X_EXT_SA2] = (u8) sizeof(struct sadb_x_sa2),
  307. [SADB_X_EXT_NAT_T_TYPE] = (u8) sizeof(struct sadb_x_nat_t_type),
  308. [SADB_X_EXT_NAT_T_SPORT] = (u8) sizeof(struct sadb_x_nat_t_port),
  309. [SADB_X_EXT_NAT_T_DPORT] = (u8) sizeof(struct sadb_x_nat_t_port),
  310. [SADB_X_EXT_NAT_T_OA] = (u8) sizeof(struct sadb_address),
  311. [SADB_X_EXT_SEC_CTX] = (u8) sizeof(struct sadb_x_sec_ctx),
  312. };
  313. /* Verify sadb_address_{len,prefixlen} against sa_family. */
  314. static int verify_address_len(void *p)
  315. {
  316. struct sadb_address *sp = p;
  317. struct sockaddr *addr = (struct sockaddr *)(sp + 1);
  318. struct sockaddr_in *sin;
  319. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  320. struct sockaddr_in6 *sin6;
  321. #endif
  322. int len;
  323. switch (addr->sa_family) {
  324. case AF_INET:
  325. len = DIV_ROUND_UP(sizeof(*sp) + sizeof(*sin), sizeof(uint64_t));
  326. if (sp->sadb_address_len != len ||
  327. sp->sadb_address_prefixlen > 32)
  328. return -EINVAL;
  329. break;
  330. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  331. case AF_INET6:
  332. len = DIV_ROUND_UP(sizeof(*sp) + sizeof(*sin6), sizeof(uint64_t));
  333. if (sp->sadb_address_len != len ||
  334. sp->sadb_address_prefixlen > 128)
  335. return -EINVAL;
  336. break;
  337. #endif
  338. default:
  339. /* It is user using kernel to keep track of security
  340. * associations for another protocol, such as
  341. * OSPF/RSVP/RIPV2/MIP. It is user's job to verify
  342. * lengths.
  343. *
  344. * XXX Actually, association/policy database is not yet
  345. * XXX able to cope with arbitrary sockaddr families.
  346. * XXX When it can, remove this -EINVAL. -DaveM
  347. */
  348. return -EINVAL;
  349. break;
  350. }
  351. return 0;
  352. }
  353. static inline int pfkey_sec_ctx_len(struct sadb_x_sec_ctx *sec_ctx)
  354. {
  355. return DIV_ROUND_UP(sizeof(struct sadb_x_sec_ctx) +
  356. sec_ctx->sadb_x_ctx_len,
  357. sizeof(uint64_t));
  358. }
  359. static inline int verify_sec_ctx_len(void *p)
  360. {
  361. struct sadb_x_sec_ctx *sec_ctx = (struct sadb_x_sec_ctx *)p;
  362. int len = sec_ctx->sadb_x_ctx_len;
  363. if (len > PAGE_SIZE)
  364. return -EINVAL;
  365. len = pfkey_sec_ctx_len(sec_ctx);
  366. if (sec_ctx->sadb_x_sec_len != len)
  367. return -EINVAL;
  368. return 0;
  369. }
  370. static inline struct xfrm_user_sec_ctx *pfkey_sadb2xfrm_user_sec_ctx(struct sadb_x_sec_ctx *sec_ctx)
  371. {
  372. struct xfrm_user_sec_ctx *uctx = NULL;
  373. int ctx_size = sec_ctx->sadb_x_ctx_len;
  374. uctx = kmalloc((sizeof(*uctx)+ctx_size), GFP_KERNEL);
  375. if (!uctx)
  376. return NULL;
  377. uctx->len = pfkey_sec_ctx_len(sec_ctx);
  378. uctx->exttype = sec_ctx->sadb_x_sec_exttype;
  379. uctx->ctx_doi = sec_ctx->sadb_x_ctx_doi;
  380. uctx->ctx_alg = sec_ctx->sadb_x_ctx_alg;
  381. uctx->ctx_len = sec_ctx->sadb_x_ctx_len;
  382. memcpy(uctx + 1, sec_ctx + 1,
  383. uctx->ctx_len);
  384. return uctx;
  385. }
  386. static int present_and_same_family(struct sadb_address *src,
  387. struct sadb_address *dst)
  388. {
  389. struct sockaddr *s_addr, *d_addr;
  390. if (!src || !dst)
  391. return 0;
  392. s_addr = (struct sockaddr *)(src + 1);
  393. d_addr = (struct sockaddr *)(dst + 1);
  394. if (s_addr->sa_family != d_addr->sa_family)
  395. return 0;
  396. if (s_addr->sa_family != AF_INET
  397. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  398. && s_addr->sa_family != AF_INET6
  399. #endif
  400. )
  401. return 0;
  402. return 1;
  403. }
  404. static int parse_exthdrs(struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  405. {
  406. char *p = (char *) hdr;
  407. int len = skb->len;
  408. len -= sizeof(*hdr);
  409. p += sizeof(*hdr);
  410. while (len > 0) {
  411. struct sadb_ext *ehdr = (struct sadb_ext *) p;
  412. uint16_t ext_type;
  413. int ext_len;
  414. ext_len = ehdr->sadb_ext_len;
  415. ext_len *= sizeof(uint64_t);
  416. ext_type = ehdr->sadb_ext_type;
  417. if (ext_len < sizeof(uint64_t) ||
  418. ext_len > len ||
  419. ext_type == SADB_EXT_RESERVED)
  420. return -EINVAL;
  421. if (ext_type <= SADB_EXT_MAX) {
  422. int min = (int) sadb_ext_min_len[ext_type];
  423. if (ext_len < min)
  424. return -EINVAL;
  425. if (ext_hdrs[ext_type-1] != NULL)
  426. return -EINVAL;
  427. if (ext_type == SADB_EXT_ADDRESS_SRC ||
  428. ext_type == SADB_EXT_ADDRESS_DST ||
  429. ext_type == SADB_EXT_ADDRESS_PROXY ||
  430. ext_type == SADB_X_EXT_NAT_T_OA) {
  431. if (verify_address_len(p))
  432. return -EINVAL;
  433. }
  434. if (ext_type == SADB_X_EXT_SEC_CTX) {
  435. if (verify_sec_ctx_len(p))
  436. return -EINVAL;
  437. }
  438. ext_hdrs[ext_type-1] = p;
  439. }
  440. p += ext_len;
  441. len -= ext_len;
  442. }
  443. return 0;
  444. }
  445. static uint16_t
  446. pfkey_satype2proto(uint8_t satype)
  447. {
  448. switch (satype) {
  449. case SADB_SATYPE_UNSPEC:
  450. return IPSEC_PROTO_ANY;
  451. case SADB_SATYPE_AH:
  452. return IPPROTO_AH;
  453. case SADB_SATYPE_ESP:
  454. return IPPROTO_ESP;
  455. case SADB_X_SATYPE_IPCOMP:
  456. return IPPROTO_COMP;
  457. break;
  458. default:
  459. return 0;
  460. }
  461. /* NOTREACHED */
  462. }
  463. static uint8_t
  464. pfkey_proto2satype(uint16_t proto)
  465. {
  466. switch (proto) {
  467. case IPPROTO_AH:
  468. return SADB_SATYPE_AH;
  469. case IPPROTO_ESP:
  470. return SADB_SATYPE_ESP;
  471. case IPPROTO_COMP:
  472. return SADB_X_SATYPE_IPCOMP;
  473. break;
  474. default:
  475. return 0;
  476. }
  477. /* NOTREACHED */
  478. }
  479. /* BTW, this scheme means that there is no way with PFKEY2 sockets to
  480. * say specifically 'just raw sockets' as we encode them as 255.
  481. */
  482. static uint8_t pfkey_proto_to_xfrm(uint8_t proto)
  483. {
  484. return (proto == IPSEC_PROTO_ANY ? 0 : proto);
  485. }
  486. static uint8_t pfkey_proto_from_xfrm(uint8_t proto)
  487. {
  488. return (proto ? proto : IPSEC_PROTO_ANY);
  489. }
  490. static int pfkey_sadb_addr2xfrm_addr(struct sadb_address *addr,
  491. xfrm_address_t *xaddr)
  492. {
  493. switch (((struct sockaddr*)(addr + 1))->sa_family) {
  494. case AF_INET:
  495. xaddr->a4 =
  496. ((struct sockaddr_in *)(addr + 1))->sin_addr.s_addr;
  497. return AF_INET;
  498. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  499. case AF_INET6:
  500. memcpy(xaddr->a6,
  501. &((struct sockaddr_in6 *)(addr + 1))->sin6_addr,
  502. sizeof(struct in6_addr));
  503. return AF_INET6;
  504. #endif
  505. default:
  506. return 0;
  507. }
  508. /* NOTREACHED */
  509. }
  510. static struct xfrm_state *pfkey_xfrm_state_lookup(struct sadb_msg *hdr, void **ext_hdrs)
  511. {
  512. struct sadb_sa *sa;
  513. struct sadb_address *addr;
  514. uint16_t proto;
  515. unsigned short family;
  516. xfrm_address_t *xaddr;
  517. sa = (struct sadb_sa *) ext_hdrs[SADB_EXT_SA-1];
  518. if (sa == NULL)
  519. return NULL;
  520. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  521. if (proto == 0)
  522. return NULL;
  523. /* sadb_address_len should be checked by caller */
  524. addr = (struct sadb_address *) ext_hdrs[SADB_EXT_ADDRESS_DST-1];
  525. if (addr == NULL)
  526. return NULL;
  527. family = ((struct sockaddr *)(addr + 1))->sa_family;
  528. switch (family) {
  529. case AF_INET:
  530. xaddr = (xfrm_address_t *)&((struct sockaddr_in *)(addr + 1))->sin_addr;
  531. break;
  532. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  533. case AF_INET6:
  534. xaddr = (xfrm_address_t *)&((struct sockaddr_in6 *)(addr + 1))->sin6_addr;
  535. break;
  536. #endif
  537. default:
  538. xaddr = NULL;
  539. }
  540. if (!xaddr)
  541. return NULL;
  542. return xfrm_state_lookup(xaddr, sa->sadb_sa_spi, proto, family);
  543. }
  544. #define PFKEY_ALIGN8(a) (1 + (((a) - 1) | (8 - 1)))
  545. static int
  546. pfkey_sockaddr_size(sa_family_t family)
  547. {
  548. switch (family) {
  549. case AF_INET:
  550. return PFKEY_ALIGN8(sizeof(struct sockaddr_in));
  551. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  552. case AF_INET6:
  553. return PFKEY_ALIGN8(sizeof(struct sockaddr_in6));
  554. #endif
  555. default:
  556. return 0;
  557. }
  558. /* NOTREACHED */
  559. }
  560. static inline int pfkey_mode_from_xfrm(int mode)
  561. {
  562. switch(mode) {
  563. case XFRM_MODE_TRANSPORT:
  564. return IPSEC_MODE_TRANSPORT;
  565. case XFRM_MODE_TUNNEL:
  566. return IPSEC_MODE_TUNNEL;
  567. case XFRM_MODE_BEET:
  568. return IPSEC_MODE_BEET;
  569. default:
  570. return -1;
  571. }
  572. }
  573. static inline int pfkey_mode_to_xfrm(int mode)
  574. {
  575. switch(mode) {
  576. case IPSEC_MODE_ANY: /*XXX*/
  577. case IPSEC_MODE_TRANSPORT:
  578. return XFRM_MODE_TRANSPORT;
  579. case IPSEC_MODE_TUNNEL:
  580. return XFRM_MODE_TUNNEL;
  581. case IPSEC_MODE_BEET:
  582. return XFRM_MODE_BEET;
  583. default:
  584. return -1;
  585. }
  586. }
  587. static struct sk_buff *__pfkey_xfrm_state2msg(struct xfrm_state *x,
  588. int add_keys, int hsc)
  589. {
  590. struct sk_buff *skb;
  591. struct sadb_msg *hdr;
  592. struct sadb_sa *sa;
  593. struct sadb_lifetime *lifetime;
  594. struct sadb_address *addr;
  595. struct sadb_key *key;
  596. struct sadb_x_sa2 *sa2;
  597. struct sockaddr_in *sin;
  598. struct sadb_x_sec_ctx *sec_ctx;
  599. struct xfrm_sec_ctx *xfrm_ctx;
  600. int ctx_size = 0;
  601. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  602. struct sockaddr_in6 *sin6;
  603. #endif
  604. int size;
  605. int auth_key_size = 0;
  606. int encrypt_key_size = 0;
  607. int sockaddr_size;
  608. struct xfrm_encap_tmpl *natt = NULL;
  609. int mode;
  610. /* address family check */
  611. sockaddr_size = pfkey_sockaddr_size(x->props.family);
  612. if (!sockaddr_size)
  613. return ERR_PTR(-EINVAL);
  614. /* base, SA, (lifetime (HSC),) address(SD), (address(P),)
  615. key(AE), (identity(SD),) (sensitivity)> */
  616. size = sizeof(struct sadb_msg) +sizeof(struct sadb_sa) +
  617. sizeof(struct sadb_lifetime) +
  618. ((hsc & 1) ? sizeof(struct sadb_lifetime) : 0) +
  619. ((hsc & 2) ? sizeof(struct sadb_lifetime) : 0) +
  620. sizeof(struct sadb_address)*2 +
  621. sockaddr_size*2 +
  622. sizeof(struct sadb_x_sa2);
  623. if ((xfrm_ctx = x->security)) {
  624. ctx_size = PFKEY_ALIGN8(xfrm_ctx->ctx_len);
  625. size += sizeof(struct sadb_x_sec_ctx) + ctx_size;
  626. }
  627. /* identity & sensitivity */
  628. if ((x->props.family == AF_INET &&
  629. x->sel.saddr.a4 != x->props.saddr.a4)
  630. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  631. || (x->props.family == AF_INET6 &&
  632. memcmp (x->sel.saddr.a6, x->props.saddr.a6, sizeof (struct in6_addr)))
  633. #endif
  634. )
  635. size += sizeof(struct sadb_address) + sockaddr_size;
  636. if (add_keys) {
  637. if (x->aalg && x->aalg->alg_key_len) {
  638. auth_key_size =
  639. PFKEY_ALIGN8((x->aalg->alg_key_len + 7) / 8);
  640. size += sizeof(struct sadb_key) + auth_key_size;
  641. }
  642. if (x->ealg && x->ealg->alg_key_len) {
  643. encrypt_key_size =
  644. PFKEY_ALIGN8((x->ealg->alg_key_len+7) / 8);
  645. size += sizeof(struct sadb_key) + encrypt_key_size;
  646. }
  647. }
  648. if (x->encap)
  649. natt = x->encap;
  650. if (natt && natt->encap_type) {
  651. size += sizeof(struct sadb_x_nat_t_type);
  652. size += sizeof(struct sadb_x_nat_t_port);
  653. size += sizeof(struct sadb_x_nat_t_port);
  654. }
  655. skb = alloc_skb(size + 16, GFP_ATOMIC);
  656. if (skb == NULL)
  657. return ERR_PTR(-ENOBUFS);
  658. /* call should fill header later */
  659. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  660. memset(hdr, 0, size); /* XXX do we need this ? */
  661. hdr->sadb_msg_len = size / sizeof(uint64_t);
  662. /* sa */
  663. sa = (struct sadb_sa *) skb_put(skb, sizeof(struct sadb_sa));
  664. sa->sadb_sa_len = sizeof(struct sadb_sa)/sizeof(uint64_t);
  665. sa->sadb_sa_exttype = SADB_EXT_SA;
  666. sa->sadb_sa_spi = x->id.spi;
  667. sa->sadb_sa_replay = x->props.replay_window;
  668. switch (x->km.state) {
  669. case XFRM_STATE_VALID:
  670. sa->sadb_sa_state = x->km.dying ?
  671. SADB_SASTATE_DYING : SADB_SASTATE_MATURE;
  672. break;
  673. case XFRM_STATE_ACQ:
  674. sa->sadb_sa_state = SADB_SASTATE_LARVAL;
  675. break;
  676. default:
  677. sa->sadb_sa_state = SADB_SASTATE_DEAD;
  678. break;
  679. }
  680. sa->sadb_sa_auth = 0;
  681. if (x->aalg) {
  682. struct xfrm_algo_desc *a = xfrm_aalg_get_byname(x->aalg->alg_name, 0);
  683. sa->sadb_sa_auth = a ? a->desc.sadb_alg_id : 0;
  684. }
  685. sa->sadb_sa_encrypt = 0;
  686. BUG_ON(x->ealg && x->calg);
  687. if (x->ealg) {
  688. struct xfrm_algo_desc *a = xfrm_ealg_get_byname(x->ealg->alg_name, 0);
  689. sa->sadb_sa_encrypt = a ? a->desc.sadb_alg_id : 0;
  690. }
  691. /* KAME compatible: sadb_sa_encrypt is overloaded with calg id */
  692. if (x->calg) {
  693. struct xfrm_algo_desc *a = xfrm_calg_get_byname(x->calg->alg_name, 0);
  694. sa->sadb_sa_encrypt = a ? a->desc.sadb_alg_id : 0;
  695. }
  696. sa->sadb_sa_flags = 0;
  697. if (x->props.flags & XFRM_STATE_NOECN)
  698. sa->sadb_sa_flags |= SADB_SAFLAGS_NOECN;
  699. if (x->props.flags & XFRM_STATE_DECAP_DSCP)
  700. sa->sadb_sa_flags |= SADB_SAFLAGS_DECAP_DSCP;
  701. if (x->props.flags & XFRM_STATE_NOPMTUDISC)
  702. sa->sadb_sa_flags |= SADB_SAFLAGS_NOPMTUDISC;
  703. /* hard time */
  704. if (hsc & 2) {
  705. lifetime = (struct sadb_lifetime *) skb_put(skb,
  706. sizeof(struct sadb_lifetime));
  707. lifetime->sadb_lifetime_len =
  708. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  709. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
  710. lifetime->sadb_lifetime_allocations = _X2KEY(x->lft.hard_packet_limit);
  711. lifetime->sadb_lifetime_bytes = _X2KEY(x->lft.hard_byte_limit);
  712. lifetime->sadb_lifetime_addtime = x->lft.hard_add_expires_seconds;
  713. lifetime->sadb_lifetime_usetime = x->lft.hard_use_expires_seconds;
  714. }
  715. /* soft time */
  716. if (hsc & 1) {
  717. lifetime = (struct sadb_lifetime *) skb_put(skb,
  718. sizeof(struct sadb_lifetime));
  719. lifetime->sadb_lifetime_len =
  720. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  721. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_SOFT;
  722. lifetime->sadb_lifetime_allocations = _X2KEY(x->lft.soft_packet_limit);
  723. lifetime->sadb_lifetime_bytes = _X2KEY(x->lft.soft_byte_limit);
  724. lifetime->sadb_lifetime_addtime = x->lft.soft_add_expires_seconds;
  725. lifetime->sadb_lifetime_usetime = x->lft.soft_use_expires_seconds;
  726. }
  727. /* current time */
  728. lifetime = (struct sadb_lifetime *) skb_put(skb,
  729. sizeof(struct sadb_lifetime));
  730. lifetime->sadb_lifetime_len =
  731. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  732. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
  733. lifetime->sadb_lifetime_allocations = x->curlft.packets;
  734. lifetime->sadb_lifetime_bytes = x->curlft.bytes;
  735. lifetime->sadb_lifetime_addtime = x->curlft.add_time;
  736. lifetime->sadb_lifetime_usetime = x->curlft.use_time;
  737. /* src address */
  738. addr = (struct sadb_address*) skb_put(skb,
  739. sizeof(struct sadb_address)+sockaddr_size);
  740. addr->sadb_address_len =
  741. (sizeof(struct sadb_address)+sockaddr_size)/
  742. sizeof(uint64_t);
  743. addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;
  744. /* "if the ports are non-zero, then the sadb_address_proto field,
  745. normally zero, MUST be filled in with the transport
  746. protocol's number." - RFC2367 */
  747. addr->sadb_address_proto = 0;
  748. addr->sadb_address_reserved = 0;
  749. if (x->props.family == AF_INET) {
  750. addr->sadb_address_prefixlen = 32;
  751. sin = (struct sockaddr_in *) (addr + 1);
  752. sin->sin_family = AF_INET;
  753. sin->sin_addr.s_addr = x->props.saddr.a4;
  754. sin->sin_port = 0;
  755. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  756. }
  757. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  758. else if (x->props.family == AF_INET6) {
  759. addr->sadb_address_prefixlen = 128;
  760. sin6 = (struct sockaddr_in6 *) (addr + 1);
  761. sin6->sin6_family = AF_INET6;
  762. sin6->sin6_port = 0;
  763. sin6->sin6_flowinfo = 0;
  764. memcpy(&sin6->sin6_addr, x->props.saddr.a6,
  765. sizeof(struct in6_addr));
  766. sin6->sin6_scope_id = 0;
  767. }
  768. #endif
  769. else
  770. BUG();
  771. /* dst address */
  772. addr = (struct sadb_address*) skb_put(skb,
  773. sizeof(struct sadb_address)+sockaddr_size);
  774. addr->sadb_address_len =
  775. (sizeof(struct sadb_address)+sockaddr_size)/
  776. sizeof(uint64_t);
  777. addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST;
  778. addr->sadb_address_proto = 0;
  779. addr->sadb_address_prefixlen = 32; /* XXX */
  780. addr->sadb_address_reserved = 0;
  781. if (x->props.family == AF_INET) {
  782. sin = (struct sockaddr_in *) (addr + 1);
  783. sin->sin_family = AF_INET;
  784. sin->sin_addr.s_addr = x->id.daddr.a4;
  785. sin->sin_port = 0;
  786. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  787. if (x->sel.saddr.a4 != x->props.saddr.a4) {
  788. addr = (struct sadb_address*) skb_put(skb,
  789. sizeof(struct sadb_address)+sockaddr_size);
  790. addr->sadb_address_len =
  791. (sizeof(struct sadb_address)+sockaddr_size)/
  792. sizeof(uint64_t);
  793. addr->sadb_address_exttype = SADB_EXT_ADDRESS_PROXY;
  794. addr->sadb_address_proto =
  795. pfkey_proto_from_xfrm(x->sel.proto);
  796. addr->sadb_address_prefixlen = x->sel.prefixlen_s;
  797. addr->sadb_address_reserved = 0;
  798. sin = (struct sockaddr_in *) (addr + 1);
  799. sin->sin_family = AF_INET;
  800. sin->sin_addr.s_addr = x->sel.saddr.a4;
  801. sin->sin_port = x->sel.sport;
  802. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  803. }
  804. }
  805. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  806. else if (x->props.family == AF_INET6) {
  807. addr->sadb_address_prefixlen = 128;
  808. sin6 = (struct sockaddr_in6 *) (addr + 1);
  809. sin6->sin6_family = AF_INET6;
  810. sin6->sin6_port = 0;
  811. sin6->sin6_flowinfo = 0;
  812. memcpy(&sin6->sin6_addr, x->id.daddr.a6, sizeof(struct in6_addr));
  813. sin6->sin6_scope_id = 0;
  814. if (memcmp (x->sel.saddr.a6, x->props.saddr.a6,
  815. sizeof(struct in6_addr))) {
  816. addr = (struct sadb_address *) skb_put(skb,
  817. sizeof(struct sadb_address)+sockaddr_size);
  818. addr->sadb_address_len =
  819. (sizeof(struct sadb_address)+sockaddr_size)/
  820. sizeof(uint64_t);
  821. addr->sadb_address_exttype = SADB_EXT_ADDRESS_PROXY;
  822. addr->sadb_address_proto =
  823. pfkey_proto_from_xfrm(x->sel.proto);
  824. addr->sadb_address_prefixlen = x->sel.prefixlen_s;
  825. addr->sadb_address_reserved = 0;
  826. sin6 = (struct sockaddr_in6 *) (addr + 1);
  827. sin6->sin6_family = AF_INET6;
  828. sin6->sin6_port = x->sel.sport;
  829. sin6->sin6_flowinfo = 0;
  830. memcpy(&sin6->sin6_addr, x->sel.saddr.a6,
  831. sizeof(struct in6_addr));
  832. sin6->sin6_scope_id = 0;
  833. }
  834. }
  835. #endif
  836. else
  837. BUG();
  838. /* auth key */
  839. if (add_keys && auth_key_size) {
  840. key = (struct sadb_key *) skb_put(skb,
  841. sizeof(struct sadb_key)+auth_key_size);
  842. key->sadb_key_len = (sizeof(struct sadb_key) + auth_key_size) /
  843. sizeof(uint64_t);
  844. key->sadb_key_exttype = SADB_EXT_KEY_AUTH;
  845. key->sadb_key_bits = x->aalg->alg_key_len;
  846. key->sadb_key_reserved = 0;
  847. memcpy(key + 1, x->aalg->alg_key, (x->aalg->alg_key_len+7)/8);
  848. }
  849. /* encrypt key */
  850. if (add_keys && encrypt_key_size) {
  851. key = (struct sadb_key *) skb_put(skb,
  852. sizeof(struct sadb_key)+encrypt_key_size);
  853. key->sadb_key_len = (sizeof(struct sadb_key) +
  854. encrypt_key_size) / sizeof(uint64_t);
  855. key->sadb_key_exttype = SADB_EXT_KEY_ENCRYPT;
  856. key->sadb_key_bits = x->ealg->alg_key_len;
  857. key->sadb_key_reserved = 0;
  858. memcpy(key + 1, x->ealg->alg_key,
  859. (x->ealg->alg_key_len+7)/8);
  860. }
  861. /* sa */
  862. sa2 = (struct sadb_x_sa2 *) skb_put(skb, sizeof(struct sadb_x_sa2));
  863. sa2->sadb_x_sa2_len = sizeof(struct sadb_x_sa2)/sizeof(uint64_t);
  864. sa2->sadb_x_sa2_exttype = SADB_X_EXT_SA2;
  865. if ((mode = pfkey_mode_from_xfrm(x->props.mode)) < 0) {
  866. kfree_skb(skb);
  867. return ERR_PTR(-EINVAL);
  868. }
  869. sa2->sadb_x_sa2_mode = mode;
  870. sa2->sadb_x_sa2_reserved1 = 0;
  871. sa2->sadb_x_sa2_reserved2 = 0;
  872. sa2->sadb_x_sa2_sequence = 0;
  873. sa2->sadb_x_sa2_reqid = x->props.reqid;
  874. if (natt && natt->encap_type) {
  875. struct sadb_x_nat_t_type *n_type;
  876. struct sadb_x_nat_t_port *n_port;
  877. /* type */
  878. n_type = (struct sadb_x_nat_t_type*) skb_put(skb, sizeof(*n_type));
  879. n_type->sadb_x_nat_t_type_len = sizeof(*n_type)/sizeof(uint64_t);
  880. n_type->sadb_x_nat_t_type_exttype = SADB_X_EXT_NAT_T_TYPE;
  881. n_type->sadb_x_nat_t_type_type = natt->encap_type;
  882. n_type->sadb_x_nat_t_type_reserved[0] = 0;
  883. n_type->sadb_x_nat_t_type_reserved[1] = 0;
  884. n_type->sadb_x_nat_t_type_reserved[2] = 0;
  885. /* source port */
  886. n_port = (struct sadb_x_nat_t_port*) skb_put(skb, sizeof (*n_port));
  887. n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t);
  888. n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_SPORT;
  889. n_port->sadb_x_nat_t_port_port = natt->encap_sport;
  890. n_port->sadb_x_nat_t_port_reserved = 0;
  891. /* dest port */
  892. n_port = (struct sadb_x_nat_t_port*) skb_put(skb, sizeof (*n_port));
  893. n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t);
  894. n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_DPORT;
  895. n_port->sadb_x_nat_t_port_port = natt->encap_dport;
  896. n_port->sadb_x_nat_t_port_reserved = 0;
  897. }
  898. /* security context */
  899. if (xfrm_ctx) {
  900. sec_ctx = (struct sadb_x_sec_ctx *) skb_put(skb,
  901. sizeof(struct sadb_x_sec_ctx) + ctx_size);
  902. sec_ctx->sadb_x_sec_len =
  903. (sizeof(struct sadb_x_sec_ctx) + ctx_size) / sizeof(uint64_t);
  904. sec_ctx->sadb_x_sec_exttype = SADB_X_EXT_SEC_CTX;
  905. sec_ctx->sadb_x_ctx_doi = xfrm_ctx->ctx_doi;
  906. sec_ctx->sadb_x_ctx_alg = xfrm_ctx->ctx_alg;
  907. sec_ctx->sadb_x_ctx_len = xfrm_ctx->ctx_len;
  908. memcpy(sec_ctx + 1, xfrm_ctx->ctx_str,
  909. xfrm_ctx->ctx_len);
  910. }
  911. return skb;
  912. }
  913. static inline struct sk_buff *pfkey_xfrm_state2msg(struct xfrm_state *x)
  914. {
  915. struct sk_buff *skb;
  916. skb = __pfkey_xfrm_state2msg(x, 1, 3);
  917. return skb;
  918. }
  919. static inline struct sk_buff *pfkey_xfrm_state2msg_expire(struct xfrm_state *x,
  920. int hsc)
  921. {
  922. return __pfkey_xfrm_state2msg(x, 0, hsc);
  923. }
  924. static struct xfrm_state * pfkey_msg2xfrm_state(struct sadb_msg *hdr,
  925. void **ext_hdrs)
  926. {
  927. struct xfrm_state *x;
  928. struct sadb_lifetime *lifetime;
  929. struct sadb_sa *sa;
  930. struct sadb_key *key;
  931. struct sadb_x_sec_ctx *sec_ctx;
  932. uint16_t proto;
  933. int err;
  934. sa = (struct sadb_sa *) ext_hdrs[SADB_EXT_SA-1];
  935. if (!sa ||
  936. !present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  937. ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
  938. return ERR_PTR(-EINVAL);
  939. if (hdr->sadb_msg_satype == SADB_SATYPE_ESP &&
  940. !ext_hdrs[SADB_EXT_KEY_ENCRYPT-1])
  941. return ERR_PTR(-EINVAL);
  942. if (hdr->sadb_msg_satype == SADB_SATYPE_AH &&
  943. !ext_hdrs[SADB_EXT_KEY_AUTH-1])
  944. return ERR_PTR(-EINVAL);
  945. if (!!ext_hdrs[SADB_EXT_LIFETIME_HARD-1] !=
  946. !!ext_hdrs[SADB_EXT_LIFETIME_SOFT-1])
  947. return ERR_PTR(-EINVAL);
  948. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  949. if (proto == 0)
  950. return ERR_PTR(-EINVAL);
  951. /* default error is no buffer space */
  952. err = -ENOBUFS;
  953. /* RFC2367:
  954. Only SADB_SASTATE_MATURE SAs may be submitted in an SADB_ADD message.
  955. SADB_SASTATE_LARVAL SAs are created by SADB_GETSPI and it is not
  956. sensible to add a new SA in the DYING or SADB_SASTATE_DEAD state.
  957. Therefore, the sadb_sa_state field of all submitted SAs MUST be
  958. SADB_SASTATE_MATURE and the kernel MUST return an error if this is
  959. not true.
  960. However, KAME setkey always uses SADB_SASTATE_LARVAL.
  961. Hence, we have to _ignore_ sadb_sa_state, which is also reasonable.
  962. */
  963. if (sa->sadb_sa_auth > SADB_AALG_MAX ||
  964. (hdr->sadb_msg_satype == SADB_X_SATYPE_IPCOMP &&
  965. sa->sadb_sa_encrypt > SADB_X_CALG_MAX) ||
  966. sa->sadb_sa_encrypt > SADB_EALG_MAX)
  967. return ERR_PTR(-EINVAL);
  968. key = (struct sadb_key*) ext_hdrs[SADB_EXT_KEY_AUTH-1];
  969. if (key != NULL &&
  970. sa->sadb_sa_auth != SADB_X_AALG_NULL &&
  971. ((key->sadb_key_bits+7) / 8 == 0 ||
  972. (key->sadb_key_bits+7) / 8 > key->sadb_key_len * sizeof(uint64_t)))
  973. return ERR_PTR(-EINVAL);
  974. key = ext_hdrs[SADB_EXT_KEY_ENCRYPT-1];
  975. if (key != NULL &&
  976. sa->sadb_sa_encrypt != SADB_EALG_NULL &&
  977. ((key->sadb_key_bits+7) / 8 == 0 ||
  978. (key->sadb_key_bits+7) / 8 > key->sadb_key_len * sizeof(uint64_t)))
  979. return ERR_PTR(-EINVAL);
  980. x = xfrm_state_alloc();
  981. if (x == NULL)
  982. return ERR_PTR(-ENOBUFS);
  983. x->id.proto = proto;
  984. x->id.spi = sa->sadb_sa_spi;
  985. x->props.replay_window = sa->sadb_sa_replay;
  986. if (sa->sadb_sa_flags & SADB_SAFLAGS_NOECN)
  987. x->props.flags |= XFRM_STATE_NOECN;
  988. if (sa->sadb_sa_flags & SADB_SAFLAGS_DECAP_DSCP)
  989. x->props.flags |= XFRM_STATE_DECAP_DSCP;
  990. if (sa->sadb_sa_flags & SADB_SAFLAGS_NOPMTUDISC)
  991. x->props.flags |= XFRM_STATE_NOPMTUDISC;
  992. lifetime = (struct sadb_lifetime*) ext_hdrs[SADB_EXT_LIFETIME_HARD-1];
  993. if (lifetime != NULL) {
  994. x->lft.hard_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
  995. x->lft.hard_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
  996. x->lft.hard_add_expires_seconds = lifetime->sadb_lifetime_addtime;
  997. x->lft.hard_use_expires_seconds = lifetime->sadb_lifetime_usetime;
  998. }
  999. lifetime = (struct sadb_lifetime*) ext_hdrs[SADB_EXT_LIFETIME_SOFT-1];
  1000. if (lifetime != NULL) {
  1001. x->lft.soft_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
  1002. x->lft.soft_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
  1003. x->lft.soft_add_expires_seconds = lifetime->sadb_lifetime_addtime;
  1004. x->lft.soft_use_expires_seconds = lifetime->sadb_lifetime_usetime;
  1005. }
  1006. sec_ctx = (struct sadb_x_sec_ctx *) ext_hdrs[SADB_X_EXT_SEC_CTX-1];
  1007. if (sec_ctx != NULL) {
  1008. struct xfrm_user_sec_ctx *uctx = pfkey_sadb2xfrm_user_sec_ctx(sec_ctx);
  1009. if (!uctx)
  1010. goto out;
  1011. err = security_xfrm_state_alloc(x, uctx);
  1012. kfree(uctx);
  1013. if (err)
  1014. goto out;
  1015. }
  1016. key = (struct sadb_key*) ext_hdrs[SADB_EXT_KEY_AUTH-1];
  1017. if (sa->sadb_sa_auth) {
  1018. int keysize = 0;
  1019. struct xfrm_algo_desc *a = xfrm_aalg_get_byid(sa->sadb_sa_auth);
  1020. if (!a) {
  1021. err = -ENOSYS;
  1022. goto out;
  1023. }
  1024. if (key)
  1025. keysize = (key->sadb_key_bits + 7) / 8;
  1026. x->aalg = kmalloc(sizeof(*x->aalg) + keysize, GFP_KERNEL);
  1027. if (!x->aalg)
  1028. goto out;
  1029. strcpy(x->aalg->alg_name, a->name);
  1030. x->aalg->alg_key_len = 0;
  1031. if (key) {
  1032. x->aalg->alg_key_len = key->sadb_key_bits;
  1033. memcpy(x->aalg->alg_key, key+1, keysize);
  1034. }
  1035. x->props.aalgo = sa->sadb_sa_auth;
  1036. /* x->algo.flags = sa->sadb_sa_flags; */
  1037. }
  1038. if (sa->sadb_sa_encrypt) {
  1039. if (hdr->sadb_msg_satype == SADB_X_SATYPE_IPCOMP) {
  1040. struct xfrm_algo_desc *a = xfrm_calg_get_byid(sa->sadb_sa_encrypt);
  1041. if (!a) {
  1042. err = -ENOSYS;
  1043. goto out;
  1044. }
  1045. x->calg = kmalloc(sizeof(*x->calg), GFP_KERNEL);
  1046. if (!x->calg)
  1047. goto out;
  1048. strcpy(x->calg->alg_name, a->name);
  1049. x->props.calgo = sa->sadb_sa_encrypt;
  1050. } else {
  1051. int keysize = 0;
  1052. struct xfrm_algo_desc *a = xfrm_ealg_get_byid(sa->sadb_sa_encrypt);
  1053. if (!a) {
  1054. err = -ENOSYS;
  1055. goto out;
  1056. }
  1057. key = (struct sadb_key*) ext_hdrs[SADB_EXT_KEY_ENCRYPT-1];
  1058. if (key)
  1059. keysize = (key->sadb_key_bits + 7) / 8;
  1060. x->ealg = kmalloc(sizeof(*x->ealg) + keysize, GFP_KERNEL);
  1061. if (!x->ealg)
  1062. goto out;
  1063. strcpy(x->ealg->alg_name, a->name);
  1064. x->ealg->alg_key_len = 0;
  1065. if (key) {
  1066. x->ealg->alg_key_len = key->sadb_key_bits;
  1067. memcpy(x->ealg->alg_key, key+1, keysize);
  1068. }
  1069. x->props.ealgo = sa->sadb_sa_encrypt;
  1070. }
  1071. }
  1072. /* x->algo.flags = sa->sadb_sa_flags; */
  1073. x->props.family = pfkey_sadb_addr2xfrm_addr((struct sadb_address *) ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1074. &x->props.saddr);
  1075. if (!x->props.family) {
  1076. err = -EAFNOSUPPORT;
  1077. goto out;
  1078. }
  1079. pfkey_sadb_addr2xfrm_addr((struct sadb_address *) ext_hdrs[SADB_EXT_ADDRESS_DST-1],
  1080. &x->id.daddr);
  1081. if (ext_hdrs[SADB_X_EXT_SA2-1]) {
  1082. struct sadb_x_sa2 *sa2 = (void*)ext_hdrs[SADB_X_EXT_SA2-1];
  1083. int mode = pfkey_mode_to_xfrm(sa2->sadb_x_sa2_mode);
  1084. if (mode < 0) {
  1085. err = -EINVAL;
  1086. goto out;
  1087. }
  1088. x->props.mode = mode;
  1089. x->props.reqid = sa2->sadb_x_sa2_reqid;
  1090. }
  1091. if (ext_hdrs[SADB_EXT_ADDRESS_PROXY-1]) {
  1092. struct sadb_address *addr = ext_hdrs[SADB_EXT_ADDRESS_PROXY-1];
  1093. /* Nobody uses this, but we try. */
  1094. x->sel.family = pfkey_sadb_addr2xfrm_addr(addr, &x->sel.saddr);
  1095. x->sel.prefixlen_s = addr->sadb_address_prefixlen;
  1096. }
  1097. if (!x->sel.family)
  1098. x->sel.family = x->props.family;
  1099. if (ext_hdrs[SADB_X_EXT_NAT_T_TYPE-1]) {
  1100. struct sadb_x_nat_t_type* n_type;
  1101. struct xfrm_encap_tmpl *natt;
  1102. x->encap = kmalloc(sizeof(*x->encap), GFP_KERNEL);
  1103. if (!x->encap)
  1104. goto out;
  1105. natt = x->encap;
  1106. n_type = ext_hdrs[SADB_X_EXT_NAT_T_TYPE-1];
  1107. natt->encap_type = n_type->sadb_x_nat_t_type_type;
  1108. if (ext_hdrs[SADB_X_EXT_NAT_T_SPORT-1]) {
  1109. struct sadb_x_nat_t_port* n_port =
  1110. ext_hdrs[SADB_X_EXT_NAT_T_SPORT-1];
  1111. natt->encap_sport = n_port->sadb_x_nat_t_port_port;
  1112. }
  1113. if (ext_hdrs[SADB_X_EXT_NAT_T_DPORT-1]) {
  1114. struct sadb_x_nat_t_port* n_port =
  1115. ext_hdrs[SADB_X_EXT_NAT_T_DPORT-1];
  1116. natt->encap_dport = n_port->sadb_x_nat_t_port_port;
  1117. }
  1118. }
  1119. err = xfrm_init_state(x);
  1120. if (err)
  1121. goto out;
  1122. x->km.seq = hdr->sadb_msg_seq;
  1123. return x;
  1124. out:
  1125. x->km.state = XFRM_STATE_DEAD;
  1126. xfrm_state_put(x);
  1127. return ERR_PTR(err);
  1128. }
  1129. static int pfkey_reserved(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1130. {
  1131. return -EOPNOTSUPP;
  1132. }
  1133. static int pfkey_getspi(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1134. {
  1135. struct sk_buff *resp_skb;
  1136. struct sadb_x_sa2 *sa2;
  1137. struct sadb_address *saddr, *daddr;
  1138. struct sadb_msg *out_hdr;
  1139. struct sadb_spirange *range;
  1140. struct xfrm_state *x = NULL;
  1141. int mode;
  1142. int err;
  1143. u32 min_spi, max_spi;
  1144. u32 reqid;
  1145. u8 proto;
  1146. unsigned short family;
  1147. xfrm_address_t *xsaddr = NULL, *xdaddr = NULL;
  1148. if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1149. ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
  1150. return -EINVAL;
  1151. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  1152. if (proto == 0)
  1153. return -EINVAL;
  1154. if ((sa2 = ext_hdrs[SADB_X_EXT_SA2-1]) != NULL) {
  1155. mode = pfkey_mode_to_xfrm(sa2->sadb_x_sa2_mode);
  1156. if (mode < 0)
  1157. return -EINVAL;
  1158. reqid = sa2->sadb_x_sa2_reqid;
  1159. } else {
  1160. mode = 0;
  1161. reqid = 0;
  1162. }
  1163. saddr = ext_hdrs[SADB_EXT_ADDRESS_SRC-1];
  1164. daddr = ext_hdrs[SADB_EXT_ADDRESS_DST-1];
  1165. family = ((struct sockaddr *)(saddr + 1))->sa_family;
  1166. switch (family) {
  1167. case AF_INET:
  1168. xdaddr = (xfrm_address_t *)&((struct sockaddr_in *)(daddr + 1))->sin_addr.s_addr;
  1169. xsaddr = (xfrm_address_t *)&((struct sockaddr_in *)(saddr + 1))->sin_addr.s_addr;
  1170. break;
  1171. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  1172. case AF_INET6:
  1173. xdaddr = (xfrm_address_t *)&((struct sockaddr_in6 *)(daddr + 1))->sin6_addr;
  1174. xsaddr = (xfrm_address_t *)&((struct sockaddr_in6 *)(saddr + 1))->sin6_addr;
  1175. break;
  1176. #endif
  1177. }
  1178. if (hdr->sadb_msg_seq) {
  1179. x = xfrm_find_acq_byseq(hdr->sadb_msg_seq);
  1180. if (x && xfrm_addr_cmp(&x->id.daddr, xdaddr, family)) {
  1181. xfrm_state_put(x);
  1182. x = NULL;
  1183. }
  1184. }
  1185. if (!x)
  1186. x = xfrm_find_acq(mode, reqid, proto, xdaddr, xsaddr, 1, family);
  1187. if (x == NULL)
  1188. return -ENOENT;
  1189. min_spi = 0x100;
  1190. max_spi = 0x0fffffff;
  1191. range = ext_hdrs[SADB_EXT_SPIRANGE-1];
  1192. if (range) {
  1193. min_spi = range->sadb_spirange_min;
  1194. max_spi = range->sadb_spirange_max;
  1195. }
  1196. err = xfrm_alloc_spi(x, min_spi, max_spi);
  1197. resp_skb = err ? ERR_PTR(err) : pfkey_xfrm_state2msg(x);
  1198. if (IS_ERR(resp_skb)) {
  1199. xfrm_state_put(x);
  1200. return PTR_ERR(resp_skb);
  1201. }
  1202. out_hdr = (struct sadb_msg *) resp_skb->data;
  1203. out_hdr->sadb_msg_version = hdr->sadb_msg_version;
  1204. out_hdr->sadb_msg_type = SADB_GETSPI;
  1205. out_hdr->sadb_msg_satype = pfkey_proto2satype(proto);
  1206. out_hdr->sadb_msg_errno = 0;
  1207. out_hdr->sadb_msg_reserved = 0;
  1208. out_hdr->sadb_msg_seq = hdr->sadb_msg_seq;
  1209. out_hdr->sadb_msg_pid = hdr->sadb_msg_pid;
  1210. xfrm_state_put(x);
  1211. pfkey_broadcast(resp_skb, GFP_KERNEL, BROADCAST_ONE, sk);
  1212. return 0;
  1213. }
  1214. static int pfkey_acquire(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1215. {
  1216. struct xfrm_state *x;
  1217. if (hdr->sadb_msg_len != sizeof(struct sadb_msg)/8)
  1218. return -EOPNOTSUPP;
  1219. if (hdr->sadb_msg_seq == 0 || hdr->sadb_msg_errno == 0)
  1220. return 0;
  1221. x = xfrm_find_acq_byseq(hdr->sadb_msg_seq);
  1222. if (x == NULL)
  1223. return 0;
  1224. spin_lock_bh(&x->lock);
  1225. if (x->km.state == XFRM_STATE_ACQ) {
  1226. x->km.state = XFRM_STATE_ERROR;
  1227. wake_up(&km_waitq);
  1228. }
  1229. spin_unlock_bh(&x->lock);
  1230. xfrm_state_put(x);
  1231. return 0;
  1232. }
  1233. static inline int event2poltype(int event)
  1234. {
  1235. switch (event) {
  1236. case XFRM_MSG_DELPOLICY:
  1237. return SADB_X_SPDDELETE;
  1238. case XFRM_MSG_NEWPOLICY:
  1239. return SADB_X_SPDADD;
  1240. case XFRM_MSG_UPDPOLICY:
  1241. return SADB_X_SPDUPDATE;
  1242. case XFRM_MSG_POLEXPIRE:
  1243. // return SADB_X_SPDEXPIRE;
  1244. default:
  1245. printk("pfkey: Unknown policy event %d\n", event);
  1246. break;
  1247. }
  1248. return 0;
  1249. }
  1250. static inline int event2keytype(int event)
  1251. {
  1252. switch (event) {
  1253. case XFRM_MSG_DELSA:
  1254. return SADB_DELETE;
  1255. case XFRM_MSG_NEWSA:
  1256. return SADB_ADD;
  1257. case XFRM_MSG_UPDSA:
  1258. return SADB_UPDATE;
  1259. case XFRM_MSG_EXPIRE:
  1260. return SADB_EXPIRE;
  1261. default:
  1262. printk("pfkey: Unknown SA event %d\n", event);
  1263. break;
  1264. }
  1265. return 0;
  1266. }
  1267. /* ADD/UPD/DEL */
  1268. static int key_notify_sa(struct xfrm_state *x, struct km_event *c)
  1269. {
  1270. struct sk_buff *skb;
  1271. struct sadb_msg *hdr;
  1272. skb = pfkey_xfrm_state2msg(x);
  1273. if (IS_ERR(skb))
  1274. return PTR_ERR(skb);
  1275. hdr = (struct sadb_msg *) skb->data;
  1276. hdr->sadb_msg_version = PF_KEY_V2;
  1277. hdr->sadb_msg_type = event2keytype(c->event);
  1278. hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto);
  1279. hdr->sadb_msg_errno = 0;
  1280. hdr->sadb_msg_reserved = 0;
  1281. hdr->sadb_msg_seq = c->seq;
  1282. hdr->sadb_msg_pid = c->pid;
  1283. pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_ALL, NULL);
  1284. return 0;
  1285. }
  1286. static int pfkey_add(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1287. {
  1288. struct xfrm_state *x;
  1289. int err;
  1290. struct km_event c;
  1291. x = pfkey_msg2xfrm_state(hdr, ext_hdrs);
  1292. if (IS_ERR(x))
  1293. return PTR_ERR(x);
  1294. xfrm_state_hold(x);
  1295. if (hdr->sadb_msg_type == SADB_ADD)
  1296. err = xfrm_state_add(x);
  1297. else
  1298. err = xfrm_state_update(x);
  1299. xfrm_audit_state_add(x, err ? 0 : 1,
  1300. audit_get_loginuid(current),
  1301. audit_get_sessionid(current), 0);
  1302. if (err < 0) {
  1303. x->km.state = XFRM_STATE_DEAD;
  1304. __xfrm_state_put(x);
  1305. goto out;
  1306. }
  1307. if (hdr->sadb_msg_type == SADB_ADD)
  1308. c.event = XFRM_MSG_NEWSA;
  1309. else
  1310. c.event = XFRM_MSG_UPDSA;
  1311. c.seq = hdr->sadb_msg_seq;
  1312. c.pid = hdr->sadb_msg_pid;
  1313. km_state_notify(x, &c);
  1314. out:
  1315. xfrm_state_put(x);
  1316. return err;
  1317. }
  1318. static int pfkey_delete(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1319. {
  1320. struct xfrm_state *x;
  1321. struct km_event c;
  1322. int err;
  1323. if (!ext_hdrs[SADB_EXT_SA-1] ||
  1324. !present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1325. ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
  1326. return -EINVAL;
  1327. x = pfkey_xfrm_state_lookup(hdr, ext_hdrs);
  1328. if (x == NULL)
  1329. return -ESRCH;
  1330. if ((err = security_xfrm_state_delete(x)))
  1331. goto out;
  1332. if (xfrm_state_kern(x)) {
  1333. err = -EPERM;
  1334. goto out;
  1335. }
  1336. err = xfrm_state_delete(x);
  1337. if (err < 0)
  1338. goto out;
  1339. c.seq = hdr->sadb_msg_seq;
  1340. c.pid = hdr->sadb_msg_pid;
  1341. c.event = XFRM_MSG_DELSA;
  1342. km_state_notify(x, &c);
  1343. out:
  1344. xfrm_audit_state_delete(x, err ? 0 : 1,
  1345. audit_get_loginuid(current),
  1346. audit_get_sessionid(current), 0);
  1347. xfrm_state_put(x);
  1348. return err;
  1349. }
  1350. static int pfkey_get(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1351. {
  1352. __u8 proto;
  1353. struct sk_buff *out_skb;
  1354. struct sadb_msg *out_hdr;
  1355. struct xfrm_state *x;
  1356. if (!ext_hdrs[SADB_EXT_SA-1] ||
  1357. !present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1358. ext_hdrs[SADB_EXT_ADDRESS_DST-1]))
  1359. return -EINVAL;
  1360. x = pfkey_xfrm_state_lookup(hdr, ext_hdrs);
  1361. if (x == NULL)
  1362. return -ESRCH;
  1363. out_skb = pfkey_xfrm_state2msg(x);
  1364. proto = x->id.proto;
  1365. xfrm_state_put(x);
  1366. if (IS_ERR(out_skb))
  1367. return PTR_ERR(out_skb);
  1368. out_hdr = (struct sadb_msg *) out_skb->data;
  1369. out_hdr->sadb_msg_version = hdr->sadb_msg_version;
  1370. out_hdr->sadb_msg_type = SADB_GET;
  1371. out_hdr->sadb_msg_satype = pfkey_proto2satype(proto);
  1372. out_hdr->sadb_msg_errno = 0;
  1373. out_hdr->sadb_msg_reserved = 0;
  1374. out_hdr->sadb_msg_seq = hdr->sadb_msg_seq;
  1375. out_hdr->sadb_msg_pid = hdr->sadb_msg_pid;
  1376. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ONE, sk);
  1377. return 0;
  1378. }
  1379. static struct sk_buff *compose_sadb_supported(struct sadb_msg *orig,
  1380. gfp_t allocation)
  1381. {
  1382. struct sk_buff *skb;
  1383. struct sadb_msg *hdr;
  1384. int len, auth_len, enc_len, i;
  1385. auth_len = xfrm_count_auth_supported();
  1386. if (auth_len) {
  1387. auth_len *= sizeof(struct sadb_alg);
  1388. auth_len += sizeof(struct sadb_supported);
  1389. }
  1390. enc_len = xfrm_count_enc_supported();
  1391. if (enc_len) {
  1392. enc_len *= sizeof(struct sadb_alg);
  1393. enc_len += sizeof(struct sadb_supported);
  1394. }
  1395. len = enc_len + auth_len + sizeof(struct sadb_msg);
  1396. skb = alloc_skb(len + 16, allocation);
  1397. if (!skb)
  1398. goto out_put_algs;
  1399. hdr = (struct sadb_msg *) skb_put(skb, sizeof(*hdr));
  1400. pfkey_hdr_dup(hdr, orig);
  1401. hdr->sadb_msg_errno = 0;
  1402. hdr->sadb_msg_len = len / sizeof(uint64_t);
  1403. if (auth_len) {
  1404. struct sadb_supported *sp;
  1405. struct sadb_alg *ap;
  1406. sp = (struct sadb_supported *) skb_put(skb, auth_len);
  1407. ap = (struct sadb_alg *) (sp + 1);
  1408. sp->sadb_supported_len = auth_len / sizeof(uint64_t);
  1409. sp->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH;
  1410. for (i = 0; ; i++) {
  1411. struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(i);
  1412. if (!aalg)
  1413. break;
  1414. if (aalg->available)
  1415. *ap++ = aalg->desc;
  1416. }
  1417. }
  1418. if (enc_len) {
  1419. struct sadb_supported *sp;
  1420. struct sadb_alg *ap;
  1421. sp = (struct sadb_supported *) skb_put(skb, enc_len);
  1422. ap = (struct sadb_alg *) (sp + 1);
  1423. sp->sadb_supported_len = enc_len / sizeof(uint64_t);
  1424. sp->sadb_supported_exttype = SADB_EXT_SUPPORTED_ENCRYPT;
  1425. for (i = 0; ; i++) {
  1426. struct xfrm_algo_desc *ealg = xfrm_ealg_get_byidx(i);
  1427. if (!ealg)
  1428. break;
  1429. if (ealg->available)
  1430. *ap++ = ealg->desc;
  1431. }
  1432. }
  1433. out_put_algs:
  1434. return skb;
  1435. }
  1436. static int pfkey_register(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1437. {
  1438. struct pfkey_sock *pfk = pfkey_sk(sk);
  1439. struct sk_buff *supp_skb;
  1440. if (hdr->sadb_msg_satype > SADB_SATYPE_MAX)
  1441. return -EINVAL;
  1442. if (hdr->sadb_msg_satype != SADB_SATYPE_UNSPEC) {
  1443. if (pfk->registered&(1<<hdr->sadb_msg_satype))
  1444. return -EEXIST;
  1445. pfk->registered |= (1<<hdr->sadb_msg_satype);
  1446. }
  1447. xfrm_probe_algs();
  1448. supp_skb = compose_sadb_supported(hdr, GFP_KERNEL);
  1449. if (!supp_skb) {
  1450. if (hdr->sadb_msg_satype != SADB_SATYPE_UNSPEC)
  1451. pfk->registered &= ~(1<<hdr->sadb_msg_satype);
  1452. return -ENOBUFS;
  1453. }
  1454. pfkey_broadcast(supp_skb, GFP_KERNEL, BROADCAST_REGISTERED, sk);
  1455. return 0;
  1456. }
  1457. static int key_notify_sa_flush(struct km_event *c)
  1458. {
  1459. struct sk_buff *skb;
  1460. struct sadb_msg *hdr;
  1461. skb = alloc_skb(sizeof(struct sadb_msg) + 16, GFP_ATOMIC);
  1462. if (!skb)
  1463. return -ENOBUFS;
  1464. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  1465. hdr->sadb_msg_satype = pfkey_proto2satype(c->data.proto);
  1466. hdr->sadb_msg_type = SADB_FLUSH;
  1467. hdr->sadb_msg_seq = c->seq;
  1468. hdr->sadb_msg_pid = c->pid;
  1469. hdr->sadb_msg_version = PF_KEY_V2;
  1470. hdr->sadb_msg_errno = (uint8_t) 0;
  1471. hdr->sadb_msg_len = (sizeof(struct sadb_msg) / sizeof(uint64_t));
  1472. pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_ALL, NULL);
  1473. return 0;
  1474. }
  1475. static int pfkey_flush(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1476. {
  1477. unsigned proto;
  1478. struct km_event c;
  1479. struct xfrm_audit audit_info;
  1480. int err;
  1481. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  1482. if (proto == 0)
  1483. return -EINVAL;
  1484. audit_info.loginuid = audit_get_loginuid(current);
  1485. audit_info.sessionid = audit_get_sessionid(current);
  1486. audit_info.secid = 0;
  1487. err = xfrm_state_flush(proto, &audit_info);
  1488. if (err)
  1489. return err;
  1490. c.data.proto = proto;
  1491. c.seq = hdr->sadb_msg_seq;
  1492. c.pid = hdr->sadb_msg_pid;
  1493. c.event = XFRM_MSG_FLUSHSA;
  1494. km_state_notify(NULL, &c);
  1495. return 0;
  1496. }
  1497. static int dump_sa(struct xfrm_state *x, int count, void *ptr)
  1498. {
  1499. struct pfkey_sock *pfk = ptr;
  1500. struct sk_buff *out_skb;
  1501. struct sadb_msg *out_hdr;
  1502. if (!pfkey_can_dump(&pfk->sk))
  1503. return -ENOBUFS;
  1504. out_skb = pfkey_xfrm_state2msg(x);
  1505. if (IS_ERR(out_skb))
  1506. return PTR_ERR(out_skb);
  1507. out_hdr = (struct sadb_msg *) out_skb->data;
  1508. out_hdr->sadb_msg_version = pfk->dump.msg_version;
  1509. out_hdr->sadb_msg_type = SADB_DUMP;
  1510. out_hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto);
  1511. out_hdr->sadb_msg_errno = 0;
  1512. out_hdr->sadb_msg_reserved = 0;
  1513. out_hdr->sadb_msg_seq = count;
  1514. out_hdr->sadb_msg_pid = pfk->dump.msg_pid;
  1515. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ONE, &pfk->sk);
  1516. return 0;
  1517. }
  1518. static int pfkey_dump_sa(struct pfkey_sock *pfk)
  1519. {
  1520. return xfrm_state_walk(&pfk->dump.u.state, dump_sa, (void *) pfk);
  1521. }
  1522. static void pfkey_dump_sa_done(struct pfkey_sock *pfk)
  1523. {
  1524. xfrm_state_walk_done(&pfk->dump.u.state);
  1525. }
  1526. static int pfkey_dump(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1527. {
  1528. u8 proto;
  1529. struct pfkey_sock *pfk = pfkey_sk(sk);
  1530. if (pfk->dump.dump != NULL)
  1531. return -EBUSY;
  1532. proto = pfkey_satype2proto(hdr->sadb_msg_satype);
  1533. if (proto == 0)
  1534. return -EINVAL;
  1535. pfk->dump.msg_version = hdr->sadb_msg_version;
  1536. pfk->dump.msg_pid = hdr->sadb_msg_pid;
  1537. pfk->dump.dump = pfkey_dump_sa;
  1538. pfk->dump.done = pfkey_dump_sa_done;
  1539. xfrm_state_walk_init(&pfk->dump.u.state, proto);
  1540. return pfkey_do_dump(pfk);
  1541. }
  1542. static int pfkey_promisc(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1543. {
  1544. struct pfkey_sock *pfk = pfkey_sk(sk);
  1545. int satype = hdr->sadb_msg_satype;
  1546. if (hdr->sadb_msg_len == (sizeof(*hdr) / sizeof(uint64_t))) {
  1547. /* XXX we mangle packet... */
  1548. hdr->sadb_msg_errno = 0;
  1549. if (satype != 0 && satype != 1)
  1550. return -EINVAL;
  1551. pfk->promisc = satype;
  1552. }
  1553. pfkey_broadcast(skb_clone(skb, GFP_KERNEL), GFP_KERNEL, BROADCAST_ALL, NULL);
  1554. return 0;
  1555. }
  1556. static int check_reqid(struct xfrm_policy *xp, int dir, int count, void *ptr)
  1557. {
  1558. int i;
  1559. u32 reqid = *(u32*)ptr;
  1560. for (i=0; i<xp->xfrm_nr; i++) {
  1561. if (xp->xfrm_vec[i].reqid == reqid)
  1562. return -EEXIST;
  1563. }
  1564. return 0;
  1565. }
  1566. static u32 gen_reqid(void)
  1567. {
  1568. struct xfrm_policy_walk walk;
  1569. u32 start;
  1570. int rc;
  1571. static u32 reqid = IPSEC_MANUAL_REQID_MAX;
  1572. start = reqid;
  1573. do {
  1574. ++reqid;
  1575. if (reqid == 0)
  1576. reqid = IPSEC_MANUAL_REQID_MAX+1;
  1577. xfrm_policy_walk_init(&walk, XFRM_POLICY_TYPE_MAIN);
  1578. rc = xfrm_policy_walk(&walk, check_reqid, (void*)&reqid);
  1579. xfrm_policy_walk_done(&walk);
  1580. if (rc != -EEXIST)
  1581. return reqid;
  1582. } while (reqid != start);
  1583. return 0;
  1584. }
  1585. static int
  1586. parse_ipsecrequest(struct xfrm_policy *xp, struct sadb_x_ipsecrequest *rq)
  1587. {
  1588. struct xfrm_tmpl *t = xp->xfrm_vec + xp->xfrm_nr;
  1589. struct sockaddr_in *sin;
  1590. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  1591. struct sockaddr_in6 *sin6;
  1592. #endif
  1593. int mode;
  1594. if (xp->xfrm_nr >= XFRM_MAX_DEPTH)
  1595. return -ELOOP;
  1596. if (rq->sadb_x_ipsecrequest_mode == 0)
  1597. return -EINVAL;
  1598. t->id.proto = rq->sadb_x_ipsecrequest_proto; /* XXX check proto */
  1599. if ((mode = pfkey_mode_to_xfrm(rq->sadb_x_ipsecrequest_mode)) < 0)
  1600. return -EINVAL;
  1601. t->mode = mode;
  1602. if (rq->sadb_x_ipsecrequest_level == IPSEC_LEVEL_USE)
  1603. t->optional = 1;
  1604. else if (rq->sadb_x_ipsecrequest_level == IPSEC_LEVEL_UNIQUE) {
  1605. t->reqid = rq->sadb_x_ipsecrequest_reqid;
  1606. if (t->reqid > IPSEC_MANUAL_REQID_MAX)
  1607. t->reqid = 0;
  1608. if (!t->reqid && !(t->reqid = gen_reqid()))
  1609. return -ENOBUFS;
  1610. }
  1611. /* addresses present only in tunnel mode */
  1612. if (t->mode == XFRM_MODE_TUNNEL) {
  1613. struct sockaddr *sa;
  1614. sa = (struct sockaddr *)(rq+1);
  1615. switch(sa->sa_family) {
  1616. case AF_INET:
  1617. sin = (struct sockaddr_in*)sa;
  1618. t->saddr.a4 = sin->sin_addr.s_addr;
  1619. sin++;
  1620. if (sin->sin_family != AF_INET)
  1621. return -EINVAL;
  1622. t->id.daddr.a4 = sin->sin_addr.s_addr;
  1623. break;
  1624. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  1625. case AF_INET6:
  1626. sin6 = (struct sockaddr_in6*)sa;
  1627. memcpy(t->saddr.a6, &sin6->sin6_addr, sizeof(struct in6_addr));
  1628. sin6++;
  1629. if (sin6->sin6_family != AF_INET6)
  1630. return -EINVAL;
  1631. memcpy(t->id.daddr.a6, &sin6->sin6_addr, sizeof(struct in6_addr));
  1632. break;
  1633. #endif
  1634. default:
  1635. return -EINVAL;
  1636. }
  1637. t->encap_family = sa->sa_family;
  1638. } else
  1639. t->encap_family = xp->family;
  1640. /* No way to set this via kame pfkey */
  1641. t->allalgs = 1;
  1642. xp->xfrm_nr++;
  1643. return 0;
  1644. }
  1645. static int
  1646. parse_ipsecrequests(struct xfrm_policy *xp, struct sadb_x_policy *pol)
  1647. {
  1648. int err;
  1649. int len = pol->sadb_x_policy_len*8 - sizeof(struct sadb_x_policy);
  1650. struct sadb_x_ipsecrequest *rq = (void*)(pol+1);
  1651. while (len >= sizeof(struct sadb_x_ipsecrequest)) {
  1652. if ((err = parse_ipsecrequest(xp, rq)) < 0)
  1653. return err;
  1654. len -= rq->sadb_x_ipsecrequest_len;
  1655. rq = (void*)((u8*)rq + rq->sadb_x_ipsecrequest_len);
  1656. }
  1657. return 0;
  1658. }
  1659. static inline int pfkey_xfrm_policy2sec_ctx_size(struct xfrm_policy *xp)
  1660. {
  1661. struct xfrm_sec_ctx *xfrm_ctx = xp->security;
  1662. if (xfrm_ctx) {
  1663. int len = sizeof(struct sadb_x_sec_ctx);
  1664. len += xfrm_ctx->ctx_len;
  1665. return PFKEY_ALIGN8(len);
  1666. }
  1667. return 0;
  1668. }
  1669. static int pfkey_xfrm_policy2msg_size(struct xfrm_policy *xp)
  1670. {
  1671. struct xfrm_tmpl *t;
  1672. int sockaddr_size = pfkey_sockaddr_size(xp->family);
  1673. int socklen = 0;
  1674. int i;
  1675. for (i=0; i<xp->xfrm_nr; i++) {
  1676. t = xp->xfrm_vec + i;
  1677. socklen += (t->encap_family == AF_INET ?
  1678. sizeof(struct sockaddr_in) :
  1679. sizeof(struct sockaddr_in6));
  1680. }
  1681. return sizeof(struct sadb_msg) +
  1682. (sizeof(struct sadb_lifetime) * 3) +
  1683. (sizeof(struct sadb_address) * 2) +
  1684. (sockaddr_size * 2) +
  1685. sizeof(struct sadb_x_policy) +
  1686. (xp->xfrm_nr * sizeof(struct sadb_x_ipsecrequest)) +
  1687. (socklen * 2) +
  1688. pfkey_xfrm_policy2sec_ctx_size(xp);
  1689. }
  1690. static struct sk_buff * pfkey_xfrm_policy2msg_prep(struct xfrm_policy *xp)
  1691. {
  1692. struct sk_buff *skb;
  1693. int size;
  1694. size = pfkey_xfrm_policy2msg_size(xp);
  1695. skb = alloc_skb(size + 16, GFP_ATOMIC);
  1696. if (skb == NULL)
  1697. return ERR_PTR(-ENOBUFS);
  1698. return skb;
  1699. }
  1700. static int pfkey_xfrm_policy2msg(struct sk_buff *skb, struct xfrm_policy *xp, int dir)
  1701. {
  1702. struct sadb_msg *hdr;
  1703. struct sadb_address *addr;
  1704. struct sadb_lifetime *lifetime;
  1705. struct sadb_x_policy *pol;
  1706. struct sockaddr_in *sin;
  1707. struct sadb_x_sec_ctx *sec_ctx;
  1708. struct xfrm_sec_ctx *xfrm_ctx;
  1709. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  1710. struct sockaddr_in6 *sin6;
  1711. #endif
  1712. int i;
  1713. int size;
  1714. int sockaddr_size = pfkey_sockaddr_size(xp->family);
  1715. int socklen = (xp->family == AF_INET ?
  1716. sizeof(struct sockaddr_in) :
  1717. sizeof(struct sockaddr_in6));
  1718. size = pfkey_xfrm_policy2msg_size(xp);
  1719. /* call should fill header later */
  1720. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  1721. memset(hdr, 0, size); /* XXX do we need this ? */
  1722. /* src address */
  1723. addr = (struct sadb_address*) skb_put(skb,
  1724. sizeof(struct sadb_address)+sockaddr_size);
  1725. addr->sadb_address_len =
  1726. (sizeof(struct sadb_address)+sockaddr_size)/
  1727. sizeof(uint64_t);
  1728. addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;
  1729. addr->sadb_address_proto = pfkey_proto_from_xfrm(xp->selector.proto);
  1730. addr->sadb_address_prefixlen = xp->selector.prefixlen_s;
  1731. addr->sadb_address_reserved = 0;
  1732. /* src address */
  1733. if (xp->family == AF_INET) {
  1734. sin = (struct sockaddr_in *) (addr + 1);
  1735. sin->sin_family = AF_INET;
  1736. sin->sin_addr.s_addr = xp->selector.saddr.a4;
  1737. sin->sin_port = xp->selector.sport;
  1738. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  1739. }
  1740. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  1741. else if (xp->family == AF_INET6) {
  1742. sin6 = (struct sockaddr_in6 *) (addr + 1);
  1743. sin6->sin6_family = AF_INET6;
  1744. sin6->sin6_port = xp->selector.sport;
  1745. sin6->sin6_flowinfo = 0;
  1746. memcpy(&sin6->sin6_addr, xp->selector.saddr.a6,
  1747. sizeof(struct in6_addr));
  1748. sin6->sin6_scope_id = 0;
  1749. }
  1750. #endif
  1751. else
  1752. BUG();
  1753. /* dst address */
  1754. addr = (struct sadb_address*) skb_put(skb,
  1755. sizeof(struct sadb_address)+sockaddr_size);
  1756. addr->sadb_address_len =
  1757. (sizeof(struct sadb_address)+sockaddr_size)/
  1758. sizeof(uint64_t);
  1759. addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST;
  1760. addr->sadb_address_proto = pfkey_proto_from_xfrm(xp->selector.proto);
  1761. addr->sadb_address_prefixlen = xp->selector.prefixlen_d;
  1762. addr->sadb_address_reserved = 0;
  1763. if (xp->family == AF_INET) {
  1764. sin = (struct sockaddr_in *) (addr + 1);
  1765. sin->sin_family = AF_INET;
  1766. sin->sin_addr.s_addr = xp->selector.daddr.a4;
  1767. sin->sin_port = xp->selector.dport;
  1768. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  1769. }
  1770. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  1771. else if (xp->family == AF_INET6) {
  1772. sin6 = (struct sockaddr_in6 *) (addr + 1);
  1773. sin6->sin6_family = AF_INET6;
  1774. sin6->sin6_port = xp->selector.dport;
  1775. sin6->sin6_flowinfo = 0;
  1776. memcpy(&sin6->sin6_addr, xp->selector.daddr.a6,
  1777. sizeof(struct in6_addr));
  1778. sin6->sin6_scope_id = 0;
  1779. }
  1780. #endif
  1781. else
  1782. BUG();
  1783. /* hard time */
  1784. lifetime = (struct sadb_lifetime *) skb_put(skb,
  1785. sizeof(struct sadb_lifetime));
  1786. lifetime->sadb_lifetime_len =
  1787. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  1788. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
  1789. lifetime->sadb_lifetime_allocations = _X2KEY(xp->lft.hard_packet_limit);
  1790. lifetime->sadb_lifetime_bytes = _X2KEY(xp->lft.hard_byte_limit);
  1791. lifetime->sadb_lifetime_addtime = xp->lft.hard_add_expires_seconds;
  1792. lifetime->sadb_lifetime_usetime = xp->lft.hard_use_expires_seconds;
  1793. /* soft time */
  1794. lifetime = (struct sadb_lifetime *) skb_put(skb,
  1795. sizeof(struct sadb_lifetime));
  1796. lifetime->sadb_lifetime_len =
  1797. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  1798. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_SOFT;
  1799. lifetime->sadb_lifetime_allocations = _X2KEY(xp->lft.soft_packet_limit);
  1800. lifetime->sadb_lifetime_bytes = _X2KEY(xp->lft.soft_byte_limit);
  1801. lifetime->sadb_lifetime_addtime = xp->lft.soft_add_expires_seconds;
  1802. lifetime->sadb_lifetime_usetime = xp->lft.soft_use_expires_seconds;
  1803. /* current time */
  1804. lifetime = (struct sadb_lifetime *) skb_put(skb,
  1805. sizeof(struct sadb_lifetime));
  1806. lifetime->sadb_lifetime_len =
  1807. sizeof(struct sadb_lifetime)/sizeof(uint64_t);
  1808. lifetime->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
  1809. lifetime->sadb_lifetime_allocations = xp->curlft.packets;
  1810. lifetime->sadb_lifetime_bytes = xp->curlft.bytes;
  1811. lifetime->sadb_lifetime_addtime = xp->curlft.add_time;
  1812. lifetime->sadb_lifetime_usetime = xp->curlft.use_time;
  1813. pol = (struct sadb_x_policy *) skb_put(skb, sizeof(struct sadb_x_policy));
  1814. pol->sadb_x_policy_len = sizeof(struct sadb_x_policy)/sizeof(uint64_t);
  1815. pol->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
  1816. pol->sadb_x_policy_type = IPSEC_POLICY_DISCARD;
  1817. if (xp->action == XFRM_POLICY_ALLOW) {
  1818. if (xp->xfrm_nr)
  1819. pol->sadb_x_policy_type = IPSEC_POLICY_IPSEC;
  1820. else
  1821. pol->sadb_x_policy_type = IPSEC_POLICY_NONE;
  1822. }
  1823. pol->sadb_x_policy_dir = dir+1;
  1824. pol->sadb_x_policy_id = xp->index;
  1825. pol->sadb_x_policy_priority = xp->priority;
  1826. for (i=0; i<xp->xfrm_nr; i++) {
  1827. struct sadb_x_ipsecrequest *rq;
  1828. struct xfrm_tmpl *t = xp->xfrm_vec + i;
  1829. int req_size;
  1830. int mode;
  1831. req_size = sizeof(struct sadb_x_ipsecrequest);
  1832. if (t->mode == XFRM_MODE_TUNNEL)
  1833. req_size += ((t->encap_family == AF_INET ?
  1834. sizeof(struct sockaddr_in) :
  1835. sizeof(struct sockaddr_in6)) * 2);
  1836. else
  1837. size -= 2*socklen;
  1838. rq = (void*)skb_put(skb, req_size);
  1839. pol->sadb_x_policy_len += req_size/8;
  1840. memset(rq, 0, sizeof(*rq));
  1841. rq->sadb_x_ipsecrequest_len = req_size;
  1842. rq->sadb_x_ipsecrequest_proto = t->id.proto;
  1843. if ((mode = pfkey_mode_from_xfrm(t->mode)) < 0)
  1844. return -EINVAL;
  1845. rq->sadb_x_ipsecrequest_mode = mode;
  1846. rq->sadb_x_ipsecrequest_level = IPSEC_LEVEL_REQUIRE;
  1847. if (t->reqid)
  1848. rq->sadb_x_ipsecrequest_level = IPSEC_LEVEL_UNIQUE;
  1849. if (t->optional)
  1850. rq->sadb_x_ipsecrequest_level = IPSEC_LEVEL_USE;
  1851. rq->sadb_x_ipsecrequest_reqid = t->reqid;
  1852. if (t->mode == XFRM_MODE_TUNNEL) {
  1853. switch (t->encap_family) {
  1854. case AF_INET:
  1855. sin = (void*)(rq+1);
  1856. sin->sin_family = AF_INET;
  1857. sin->sin_addr.s_addr = t->saddr.a4;
  1858. sin->sin_port = 0;
  1859. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  1860. sin++;
  1861. sin->sin_family = AF_INET;
  1862. sin->sin_addr.s_addr = t->id.daddr.a4;
  1863. sin->sin_port = 0;
  1864. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  1865. break;
  1866. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  1867. case AF_INET6:
  1868. sin6 = (void*)(rq+1);
  1869. sin6->sin6_family = AF_INET6;
  1870. sin6->sin6_port = 0;
  1871. sin6->sin6_flowinfo = 0;
  1872. memcpy(&sin6->sin6_addr, t->saddr.a6,
  1873. sizeof(struct in6_addr));
  1874. sin6->sin6_scope_id = 0;
  1875. sin6++;
  1876. sin6->sin6_family = AF_INET6;
  1877. sin6->sin6_port = 0;
  1878. sin6->sin6_flowinfo = 0;
  1879. memcpy(&sin6->sin6_addr, t->id.daddr.a6,
  1880. sizeof(struct in6_addr));
  1881. sin6->sin6_scope_id = 0;
  1882. break;
  1883. #endif
  1884. default:
  1885. break;
  1886. }
  1887. }
  1888. }
  1889. /* security context */
  1890. if ((xfrm_ctx = xp->security)) {
  1891. int ctx_size = pfkey_xfrm_policy2sec_ctx_size(xp);
  1892. sec_ctx = (struct sadb_x_sec_ctx *) skb_put(skb, ctx_size);
  1893. sec_ctx->sadb_x_sec_len = ctx_size / sizeof(uint64_t);
  1894. sec_ctx->sadb_x_sec_exttype = SADB_X_EXT_SEC_CTX;
  1895. sec_ctx->sadb_x_ctx_doi = xfrm_ctx->ctx_doi;
  1896. sec_ctx->sadb_x_ctx_alg = xfrm_ctx->ctx_alg;
  1897. sec_ctx->sadb_x_ctx_len = xfrm_ctx->ctx_len;
  1898. memcpy(sec_ctx + 1, xfrm_ctx->ctx_str,
  1899. xfrm_ctx->ctx_len);
  1900. }
  1901. hdr->sadb_msg_len = size / sizeof(uint64_t);
  1902. hdr->sadb_msg_reserved = atomic_read(&xp->refcnt);
  1903. return 0;
  1904. }
  1905. static int key_notify_policy(struct xfrm_policy *xp, int dir, struct km_event *c)
  1906. {
  1907. struct sk_buff *out_skb;
  1908. struct sadb_msg *out_hdr;
  1909. int err;
  1910. out_skb = pfkey_xfrm_policy2msg_prep(xp);
  1911. if (IS_ERR(out_skb)) {
  1912. err = PTR_ERR(out_skb);
  1913. goto out;
  1914. }
  1915. err = pfkey_xfrm_policy2msg(out_skb, xp, dir);
  1916. if (err < 0)
  1917. return err;
  1918. out_hdr = (struct sadb_msg *) out_skb->data;
  1919. out_hdr->sadb_msg_version = PF_KEY_V2;
  1920. if (c->data.byid && c->event == XFRM_MSG_DELPOLICY)
  1921. out_hdr->sadb_msg_type = SADB_X_SPDDELETE2;
  1922. else
  1923. out_hdr->sadb_msg_type = event2poltype(c->event);
  1924. out_hdr->sadb_msg_errno = 0;
  1925. out_hdr->sadb_msg_seq = c->seq;
  1926. out_hdr->sadb_msg_pid = c->pid;
  1927. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ALL, NULL);
  1928. out:
  1929. return 0;
  1930. }
  1931. static int pfkey_spdadd(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  1932. {
  1933. int err = 0;
  1934. struct sadb_lifetime *lifetime;
  1935. struct sadb_address *sa;
  1936. struct sadb_x_policy *pol;
  1937. struct xfrm_policy *xp;
  1938. struct km_event c;
  1939. struct sadb_x_sec_ctx *sec_ctx;
  1940. if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1941. ext_hdrs[SADB_EXT_ADDRESS_DST-1]) ||
  1942. !ext_hdrs[SADB_X_EXT_POLICY-1])
  1943. return -EINVAL;
  1944. pol = ext_hdrs[SADB_X_EXT_POLICY-1];
  1945. if (pol->sadb_x_policy_type > IPSEC_POLICY_IPSEC)
  1946. return -EINVAL;
  1947. if (!pol->sadb_x_policy_dir || pol->sadb_x_policy_dir >= IPSEC_DIR_MAX)
  1948. return -EINVAL;
  1949. xp = xfrm_policy_alloc(GFP_KERNEL);
  1950. if (xp == NULL)
  1951. return -ENOBUFS;
  1952. xp->action = (pol->sadb_x_policy_type == IPSEC_POLICY_DISCARD ?
  1953. XFRM_POLICY_BLOCK : XFRM_POLICY_ALLOW);
  1954. xp->priority = pol->sadb_x_policy_priority;
  1955. sa = ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  1956. xp->family = pfkey_sadb_addr2xfrm_addr(sa, &xp->selector.saddr);
  1957. if (!xp->family) {
  1958. err = -EINVAL;
  1959. goto out;
  1960. }
  1961. xp->selector.family = xp->family;
  1962. xp->selector.prefixlen_s = sa->sadb_address_prefixlen;
  1963. xp->selector.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  1964. xp->selector.sport = ((struct sockaddr_in *)(sa+1))->sin_port;
  1965. if (xp->selector.sport)
  1966. xp->selector.sport_mask = htons(0xffff);
  1967. sa = ext_hdrs[SADB_EXT_ADDRESS_DST-1],
  1968. pfkey_sadb_addr2xfrm_addr(sa, &xp->selector.daddr);
  1969. xp->selector.prefixlen_d = sa->sadb_address_prefixlen;
  1970. /* Amusing, we set this twice. KAME apps appear to set same value
  1971. * in both addresses.
  1972. */
  1973. xp->selector.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  1974. xp->selector.dport = ((struct sockaddr_in *)(sa+1))->sin_port;
  1975. if (xp->selector.dport)
  1976. xp->selector.dport_mask = htons(0xffff);
  1977. sec_ctx = (struct sadb_x_sec_ctx *) ext_hdrs[SADB_X_EXT_SEC_CTX-1];
  1978. if (sec_ctx != NULL) {
  1979. struct xfrm_user_sec_ctx *uctx = pfkey_sadb2xfrm_user_sec_ctx(sec_ctx);
  1980. if (!uctx) {
  1981. err = -ENOBUFS;
  1982. goto out;
  1983. }
  1984. err = security_xfrm_policy_alloc(&xp->security, uctx);
  1985. kfree(uctx);
  1986. if (err)
  1987. goto out;
  1988. }
  1989. xp->lft.soft_byte_limit = XFRM_INF;
  1990. xp->lft.hard_byte_limit = XFRM_INF;
  1991. xp->lft.soft_packet_limit = XFRM_INF;
  1992. xp->lft.hard_packet_limit = XFRM_INF;
  1993. if ((lifetime = ext_hdrs[SADB_EXT_LIFETIME_HARD-1]) != NULL) {
  1994. xp->lft.hard_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
  1995. xp->lft.hard_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
  1996. xp->lft.hard_add_expires_seconds = lifetime->sadb_lifetime_addtime;
  1997. xp->lft.hard_use_expires_seconds = lifetime->sadb_lifetime_usetime;
  1998. }
  1999. if ((lifetime = ext_hdrs[SADB_EXT_LIFETIME_SOFT-1]) != NULL) {
  2000. xp->lft.soft_packet_limit = _KEY2X(lifetime->sadb_lifetime_allocations);
  2001. xp->lft.soft_byte_limit = _KEY2X(lifetime->sadb_lifetime_bytes);
  2002. xp->lft.soft_add_expires_seconds = lifetime->sadb_lifetime_addtime;
  2003. xp->lft.soft_use_expires_seconds = lifetime->sadb_lifetime_usetime;
  2004. }
  2005. xp->xfrm_nr = 0;
  2006. if (pol->sadb_x_policy_type == IPSEC_POLICY_IPSEC &&
  2007. (err = parse_ipsecrequests(xp, pol)) < 0)
  2008. goto out;
  2009. err = xfrm_policy_insert(pol->sadb_x_policy_dir-1, xp,
  2010. hdr->sadb_msg_type != SADB_X_SPDUPDATE);
  2011. xfrm_audit_policy_add(xp, err ? 0 : 1,
  2012. audit_get_loginuid(current),
  2013. audit_get_sessionid(current), 0);
  2014. if (err)
  2015. goto out;
  2016. if (hdr->sadb_msg_type == SADB_X_SPDUPDATE)
  2017. c.event = XFRM_MSG_UPDPOLICY;
  2018. else
  2019. c.event = XFRM_MSG_NEWPOLICY;
  2020. c.seq = hdr->sadb_msg_seq;
  2021. c.pid = hdr->sadb_msg_pid;
  2022. km_policy_notify(xp, pol->sadb_x_policy_dir-1, &c);
  2023. xfrm_pol_put(xp);
  2024. return 0;
  2025. out:
  2026. xp->dead = 1;
  2027. xfrm_policy_destroy(xp);
  2028. return err;
  2029. }
  2030. static int pfkey_spddelete(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  2031. {
  2032. int err;
  2033. struct sadb_address *sa;
  2034. struct sadb_x_policy *pol;
  2035. struct xfrm_policy *xp;
  2036. struct xfrm_selector sel;
  2037. struct km_event c;
  2038. struct sadb_x_sec_ctx *sec_ctx;
  2039. struct xfrm_sec_ctx *pol_ctx = NULL;
  2040. if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  2041. ext_hdrs[SADB_EXT_ADDRESS_DST-1]) ||
  2042. !ext_hdrs[SADB_X_EXT_POLICY-1])
  2043. return -EINVAL;
  2044. pol = ext_hdrs[SADB_X_EXT_POLICY-1];
  2045. if (!pol->sadb_x_policy_dir || pol->sadb_x_policy_dir >= IPSEC_DIR_MAX)
  2046. return -EINVAL;
  2047. memset(&sel, 0, sizeof(sel));
  2048. sa = ext_hdrs[SADB_EXT_ADDRESS_SRC-1],
  2049. sel.family = pfkey_sadb_addr2xfrm_addr(sa, &sel.saddr);
  2050. sel.prefixlen_s = sa->sadb_address_prefixlen;
  2051. sel.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  2052. sel.sport = ((struct sockaddr_in *)(sa+1))->sin_port;
  2053. if (sel.sport)
  2054. sel.sport_mask = htons(0xffff);
  2055. sa = ext_hdrs[SADB_EXT_ADDRESS_DST-1],
  2056. pfkey_sadb_addr2xfrm_addr(sa, &sel.daddr);
  2057. sel.prefixlen_d = sa->sadb_address_prefixlen;
  2058. sel.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  2059. sel.dport = ((struct sockaddr_in *)(sa+1))->sin_port;
  2060. if (sel.dport)
  2061. sel.dport_mask = htons(0xffff);
  2062. sec_ctx = (struct sadb_x_sec_ctx *) ext_hdrs[SADB_X_EXT_SEC_CTX-1];
  2063. if (sec_ctx != NULL) {
  2064. struct xfrm_user_sec_ctx *uctx = pfkey_sadb2xfrm_user_sec_ctx(sec_ctx);
  2065. if (!uctx)
  2066. return -ENOMEM;
  2067. err = security_xfrm_policy_alloc(&pol_ctx, uctx);
  2068. kfree(uctx);
  2069. if (err)
  2070. return err;
  2071. }
  2072. xp = xfrm_policy_bysel_ctx(XFRM_POLICY_TYPE_MAIN,
  2073. pol->sadb_x_policy_dir - 1, &sel, pol_ctx,
  2074. 1, &err);
  2075. security_xfrm_policy_free(pol_ctx);
  2076. if (xp == NULL)
  2077. return -ENOENT;
  2078. xfrm_audit_policy_delete(xp, err ? 0 : 1,
  2079. audit_get_loginuid(current),
  2080. audit_get_sessionid(current), 0);
  2081. if (err)
  2082. goto out;
  2083. c.seq = hdr->sadb_msg_seq;
  2084. c.pid = hdr->sadb_msg_pid;
  2085. c.event = XFRM_MSG_DELPOLICY;
  2086. km_policy_notify(xp, pol->sadb_x_policy_dir-1, &c);
  2087. out:
  2088. xfrm_pol_put(xp);
  2089. return err;
  2090. }
  2091. static int key_pol_get_resp(struct sock *sk, struct xfrm_policy *xp, struct sadb_msg *hdr, int dir)
  2092. {
  2093. int err;
  2094. struct sk_buff *out_skb;
  2095. struct sadb_msg *out_hdr;
  2096. err = 0;
  2097. out_skb = pfkey_xfrm_policy2msg_prep(xp);
  2098. if (IS_ERR(out_skb)) {
  2099. err = PTR_ERR(out_skb);
  2100. goto out;
  2101. }
  2102. err = pfkey_xfrm_policy2msg(out_skb, xp, dir);
  2103. if (err < 0)
  2104. goto out;
  2105. out_hdr = (struct sadb_msg *) out_skb->data;
  2106. out_hdr->sadb_msg_version = hdr->sadb_msg_version;
  2107. out_hdr->sadb_msg_type = hdr->sadb_msg_type;
  2108. out_hdr->sadb_msg_satype = 0;
  2109. out_hdr->sadb_msg_errno = 0;
  2110. out_hdr->sadb_msg_seq = hdr->sadb_msg_seq;
  2111. out_hdr->sadb_msg_pid = hdr->sadb_msg_pid;
  2112. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ONE, sk);
  2113. err = 0;
  2114. out:
  2115. return err;
  2116. }
  2117. #ifdef CONFIG_NET_KEY_MIGRATE
  2118. static int pfkey_sockaddr_pair_size(sa_family_t family)
  2119. {
  2120. switch (family) {
  2121. case AF_INET:
  2122. return PFKEY_ALIGN8(sizeof(struct sockaddr_in) * 2);
  2123. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2124. case AF_INET6:
  2125. return PFKEY_ALIGN8(sizeof(struct sockaddr_in6) * 2);
  2126. #endif
  2127. default:
  2128. return 0;
  2129. }
  2130. /* NOTREACHED */
  2131. }
  2132. static int parse_sockaddr_pair(struct sadb_x_ipsecrequest *rq,
  2133. xfrm_address_t *saddr, xfrm_address_t *daddr,
  2134. u16 *family)
  2135. {
  2136. struct sockaddr *sa = (struct sockaddr *)(rq + 1);
  2137. if (rq->sadb_x_ipsecrequest_len <
  2138. pfkey_sockaddr_pair_size(sa->sa_family))
  2139. return -EINVAL;
  2140. switch (sa->sa_family) {
  2141. case AF_INET:
  2142. {
  2143. struct sockaddr_in *sin;
  2144. sin = (struct sockaddr_in *)sa;
  2145. if ((sin+1)->sin_family != AF_INET)
  2146. return -EINVAL;
  2147. memcpy(&saddr->a4, &sin->sin_addr, sizeof(saddr->a4));
  2148. sin++;
  2149. memcpy(&daddr->a4, &sin->sin_addr, sizeof(daddr->a4));
  2150. *family = AF_INET;
  2151. break;
  2152. }
  2153. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2154. case AF_INET6:
  2155. {
  2156. struct sockaddr_in6 *sin6;
  2157. sin6 = (struct sockaddr_in6 *)sa;
  2158. if ((sin6+1)->sin6_family != AF_INET6)
  2159. return -EINVAL;
  2160. memcpy(&saddr->a6, &sin6->sin6_addr,
  2161. sizeof(saddr->a6));
  2162. sin6++;
  2163. memcpy(&daddr->a6, &sin6->sin6_addr,
  2164. sizeof(daddr->a6));
  2165. *family = AF_INET6;
  2166. break;
  2167. }
  2168. #endif
  2169. default:
  2170. return -EINVAL;
  2171. }
  2172. return 0;
  2173. }
  2174. static int ipsecrequests_to_migrate(struct sadb_x_ipsecrequest *rq1, int len,
  2175. struct xfrm_migrate *m)
  2176. {
  2177. int err;
  2178. struct sadb_x_ipsecrequest *rq2;
  2179. int mode;
  2180. if (len <= sizeof(struct sadb_x_ipsecrequest) ||
  2181. len < rq1->sadb_x_ipsecrequest_len)
  2182. return -EINVAL;
  2183. /* old endoints */
  2184. err = parse_sockaddr_pair(rq1, &m->old_saddr, &m->old_daddr,
  2185. &m->old_family);
  2186. if (err)
  2187. return err;
  2188. rq2 = (struct sadb_x_ipsecrequest *)((u8 *)rq1 + rq1->sadb_x_ipsecrequest_len);
  2189. len -= rq1->sadb_x_ipsecrequest_len;
  2190. if (len <= sizeof(struct sadb_x_ipsecrequest) ||
  2191. len < rq2->sadb_x_ipsecrequest_len)
  2192. return -EINVAL;
  2193. /* new endpoints */
  2194. err = parse_sockaddr_pair(rq2, &m->new_saddr, &m->new_daddr,
  2195. &m->new_family);
  2196. if (err)
  2197. return err;
  2198. if (rq1->sadb_x_ipsecrequest_proto != rq2->sadb_x_ipsecrequest_proto ||
  2199. rq1->sadb_x_ipsecrequest_mode != rq2->sadb_x_ipsecrequest_mode ||
  2200. rq1->sadb_x_ipsecrequest_reqid != rq2->sadb_x_ipsecrequest_reqid)
  2201. return -EINVAL;
  2202. m->proto = rq1->sadb_x_ipsecrequest_proto;
  2203. if ((mode = pfkey_mode_to_xfrm(rq1->sadb_x_ipsecrequest_mode)) < 0)
  2204. return -EINVAL;
  2205. m->mode = mode;
  2206. m->reqid = rq1->sadb_x_ipsecrequest_reqid;
  2207. return ((int)(rq1->sadb_x_ipsecrequest_len +
  2208. rq2->sadb_x_ipsecrequest_len));
  2209. }
  2210. static int pfkey_migrate(struct sock *sk, struct sk_buff *skb,
  2211. struct sadb_msg *hdr, void **ext_hdrs)
  2212. {
  2213. int i, len, ret, err = -EINVAL;
  2214. u8 dir;
  2215. struct sadb_address *sa;
  2216. struct sadb_x_policy *pol;
  2217. struct sadb_x_ipsecrequest *rq;
  2218. struct xfrm_selector sel;
  2219. struct xfrm_migrate m[XFRM_MAX_DEPTH];
  2220. if (!present_and_same_family(ext_hdrs[SADB_EXT_ADDRESS_SRC - 1],
  2221. ext_hdrs[SADB_EXT_ADDRESS_DST - 1]) ||
  2222. !ext_hdrs[SADB_X_EXT_POLICY - 1]) {
  2223. err = -EINVAL;
  2224. goto out;
  2225. }
  2226. pol = ext_hdrs[SADB_X_EXT_POLICY - 1];
  2227. if (!pol) {
  2228. err = -EINVAL;
  2229. goto out;
  2230. }
  2231. if (pol->sadb_x_policy_dir >= IPSEC_DIR_MAX) {
  2232. err = -EINVAL;
  2233. goto out;
  2234. }
  2235. dir = pol->sadb_x_policy_dir - 1;
  2236. memset(&sel, 0, sizeof(sel));
  2237. /* set source address info of selector */
  2238. sa = ext_hdrs[SADB_EXT_ADDRESS_SRC - 1];
  2239. sel.family = pfkey_sadb_addr2xfrm_addr(sa, &sel.saddr);
  2240. sel.prefixlen_s = sa->sadb_address_prefixlen;
  2241. sel.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  2242. sel.sport = ((struct sockaddr_in *)(sa + 1))->sin_port;
  2243. if (sel.sport)
  2244. sel.sport_mask = htons(0xffff);
  2245. /* set destination address info of selector */
  2246. sa = ext_hdrs[SADB_EXT_ADDRESS_DST - 1],
  2247. pfkey_sadb_addr2xfrm_addr(sa, &sel.daddr);
  2248. sel.prefixlen_d = sa->sadb_address_prefixlen;
  2249. sel.proto = pfkey_proto_to_xfrm(sa->sadb_address_proto);
  2250. sel.dport = ((struct sockaddr_in *)(sa + 1))->sin_port;
  2251. if (sel.dport)
  2252. sel.dport_mask = htons(0xffff);
  2253. rq = (struct sadb_x_ipsecrequest *)(pol + 1);
  2254. /* extract ipsecrequests */
  2255. i = 0;
  2256. len = pol->sadb_x_policy_len * 8 - sizeof(struct sadb_x_policy);
  2257. while (len > 0 && i < XFRM_MAX_DEPTH) {
  2258. ret = ipsecrequests_to_migrate(rq, len, &m[i]);
  2259. if (ret < 0) {
  2260. err = ret;
  2261. goto out;
  2262. } else {
  2263. rq = (struct sadb_x_ipsecrequest *)((u8 *)rq + ret);
  2264. len -= ret;
  2265. i++;
  2266. }
  2267. }
  2268. if (!i || len > 0) {
  2269. err = -EINVAL;
  2270. goto out;
  2271. }
  2272. return xfrm_migrate(&sel, dir, XFRM_POLICY_TYPE_MAIN, m, i);
  2273. out:
  2274. return err;
  2275. }
  2276. #else
  2277. static int pfkey_migrate(struct sock *sk, struct sk_buff *skb,
  2278. struct sadb_msg *hdr, void **ext_hdrs)
  2279. {
  2280. return -ENOPROTOOPT;
  2281. }
  2282. #endif
  2283. static int pfkey_spdget(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  2284. {
  2285. unsigned int dir;
  2286. int err = 0, delete;
  2287. struct sadb_x_policy *pol;
  2288. struct xfrm_policy *xp;
  2289. struct km_event c;
  2290. if ((pol = ext_hdrs[SADB_X_EXT_POLICY-1]) == NULL)
  2291. return -EINVAL;
  2292. dir = xfrm_policy_id2dir(pol->sadb_x_policy_id);
  2293. if (dir >= XFRM_POLICY_MAX)
  2294. return -EINVAL;
  2295. delete = (hdr->sadb_msg_type == SADB_X_SPDDELETE2);
  2296. xp = xfrm_policy_byid(XFRM_POLICY_TYPE_MAIN, dir, pol->sadb_x_policy_id,
  2297. delete, &err);
  2298. if (xp == NULL)
  2299. return -ENOENT;
  2300. if (delete) {
  2301. xfrm_audit_policy_delete(xp, err ? 0 : 1,
  2302. audit_get_loginuid(current),
  2303. audit_get_sessionid(current), 0);
  2304. if (err)
  2305. goto out;
  2306. c.seq = hdr->sadb_msg_seq;
  2307. c.pid = hdr->sadb_msg_pid;
  2308. c.data.byid = 1;
  2309. c.event = XFRM_MSG_DELPOLICY;
  2310. km_policy_notify(xp, dir, &c);
  2311. } else {
  2312. err = key_pol_get_resp(sk, xp, hdr, dir);
  2313. }
  2314. out:
  2315. xfrm_pol_put(xp);
  2316. return err;
  2317. }
  2318. static int dump_sp(struct xfrm_policy *xp, int dir, int count, void *ptr)
  2319. {
  2320. struct pfkey_sock *pfk = ptr;
  2321. struct sk_buff *out_skb;
  2322. struct sadb_msg *out_hdr;
  2323. int err;
  2324. if (!pfkey_can_dump(&pfk->sk))
  2325. return -ENOBUFS;
  2326. out_skb = pfkey_xfrm_policy2msg_prep(xp);
  2327. if (IS_ERR(out_skb))
  2328. return PTR_ERR(out_skb);
  2329. err = pfkey_xfrm_policy2msg(out_skb, xp, dir);
  2330. if (err < 0)
  2331. return err;
  2332. out_hdr = (struct sadb_msg *) out_skb->data;
  2333. out_hdr->sadb_msg_version = pfk->dump.msg_version;
  2334. out_hdr->sadb_msg_type = SADB_X_SPDDUMP;
  2335. out_hdr->sadb_msg_satype = SADB_SATYPE_UNSPEC;
  2336. out_hdr->sadb_msg_errno = 0;
  2337. out_hdr->sadb_msg_seq = count;
  2338. out_hdr->sadb_msg_pid = pfk->dump.msg_pid;
  2339. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_ONE, &pfk->sk);
  2340. return 0;
  2341. }
  2342. static int pfkey_dump_sp(struct pfkey_sock *pfk)
  2343. {
  2344. return xfrm_policy_walk(&pfk->dump.u.policy, dump_sp, (void *) pfk);
  2345. }
  2346. static void pfkey_dump_sp_done(struct pfkey_sock *pfk)
  2347. {
  2348. xfrm_policy_walk_done(&pfk->dump.u.policy);
  2349. }
  2350. static int pfkey_spddump(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  2351. {
  2352. struct pfkey_sock *pfk = pfkey_sk(sk);
  2353. if (pfk->dump.dump != NULL)
  2354. return -EBUSY;
  2355. pfk->dump.msg_version = hdr->sadb_msg_version;
  2356. pfk->dump.msg_pid = hdr->sadb_msg_pid;
  2357. pfk->dump.dump = pfkey_dump_sp;
  2358. pfk->dump.done = pfkey_dump_sp_done;
  2359. xfrm_policy_walk_init(&pfk->dump.u.policy, XFRM_POLICY_TYPE_MAIN);
  2360. return pfkey_do_dump(pfk);
  2361. }
  2362. static int key_notify_policy_flush(struct km_event *c)
  2363. {
  2364. struct sk_buff *skb_out;
  2365. struct sadb_msg *hdr;
  2366. skb_out = alloc_skb(sizeof(struct sadb_msg) + 16, GFP_ATOMIC);
  2367. if (!skb_out)
  2368. return -ENOBUFS;
  2369. hdr = (struct sadb_msg *) skb_put(skb_out, sizeof(struct sadb_msg));
  2370. hdr->sadb_msg_type = SADB_X_SPDFLUSH;
  2371. hdr->sadb_msg_seq = c->seq;
  2372. hdr->sadb_msg_pid = c->pid;
  2373. hdr->sadb_msg_version = PF_KEY_V2;
  2374. hdr->sadb_msg_errno = (uint8_t) 0;
  2375. hdr->sadb_msg_len = (sizeof(struct sadb_msg) / sizeof(uint64_t));
  2376. pfkey_broadcast(skb_out, GFP_ATOMIC, BROADCAST_ALL, NULL);
  2377. return 0;
  2378. }
  2379. static int pfkey_spdflush(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr, void **ext_hdrs)
  2380. {
  2381. struct km_event c;
  2382. struct xfrm_audit audit_info;
  2383. int err;
  2384. audit_info.loginuid = audit_get_loginuid(current);
  2385. audit_info.sessionid = audit_get_sessionid(current);
  2386. audit_info.secid = 0;
  2387. err = xfrm_policy_flush(XFRM_POLICY_TYPE_MAIN, &audit_info);
  2388. if (err)
  2389. return err;
  2390. c.data.type = XFRM_POLICY_TYPE_MAIN;
  2391. c.event = XFRM_MSG_FLUSHPOLICY;
  2392. c.pid = hdr->sadb_msg_pid;
  2393. c.seq = hdr->sadb_msg_seq;
  2394. km_policy_notify(NULL, 0, &c);
  2395. return 0;
  2396. }
  2397. typedef int (*pfkey_handler)(struct sock *sk, struct sk_buff *skb,
  2398. struct sadb_msg *hdr, void **ext_hdrs);
  2399. static pfkey_handler pfkey_funcs[SADB_MAX + 1] = {
  2400. [SADB_RESERVED] = pfkey_reserved,
  2401. [SADB_GETSPI] = pfkey_getspi,
  2402. [SADB_UPDATE] = pfkey_add,
  2403. [SADB_ADD] = pfkey_add,
  2404. [SADB_DELETE] = pfkey_delete,
  2405. [SADB_GET] = pfkey_get,
  2406. [SADB_ACQUIRE] = pfkey_acquire,
  2407. [SADB_REGISTER] = pfkey_register,
  2408. [SADB_EXPIRE] = NULL,
  2409. [SADB_FLUSH] = pfkey_flush,
  2410. [SADB_DUMP] = pfkey_dump,
  2411. [SADB_X_PROMISC] = pfkey_promisc,
  2412. [SADB_X_PCHANGE] = NULL,
  2413. [SADB_X_SPDUPDATE] = pfkey_spdadd,
  2414. [SADB_X_SPDADD] = pfkey_spdadd,
  2415. [SADB_X_SPDDELETE] = pfkey_spddelete,
  2416. [SADB_X_SPDGET] = pfkey_spdget,
  2417. [SADB_X_SPDACQUIRE] = NULL,
  2418. [SADB_X_SPDDUMP] = pfkey_spddump,
  2419. [SADB_X_SPDFLUSH] = pfkey_spdflush,
  2420. [SADB_X_SPDSETIDX] = pfkey_spdadd,
  2421. [SADB_X_SPDDELETE2] = pfkey_spdget,
  2422. [SADB_X_MIGRATE] = pfkey_migrate,
  2423. };
  2424. static int pfkey_process(struct sock *sk, struct sk_buff *skb, struct sadb_msg *hdr)
  2425. {
  2426. void *ext_hdrs[SADB_EXT_MAX];
  2427. int err;
  2428. pfkey_broadcast(skb_clone(skb, GFP_KERNEL), GFP_KERNEL,
  2429. BROADCAST_PROMISC_ONLY, NULL);
  2430. memset(ext_hdrs, 0, sizeof(ext_hdrs));
  2431. err = parse_exthdrs(skb, hdr, ext_hdrs);
  2432. if (!err) {
  2433. err = -EOPNOTSUPP;
  2434. if (pfkey_funcs[hdr->sadb_msg_type])
  2435. err = pfkey_funcs[hdr->sadb_msg_type](sk, skb, hdr, ext_hdrs);
  2436. }
  2437. return err;
  2438. }
  2439. static struct sadb_msg *pfkey_get_base_msg(struct sk_buff *skb, int *errp)
  2440. {
  2441. struct sadb_msg *hdr = NULL;
  2442. if (skb->len < sizeof(*hdr)) {
  2443. *errp = -EMSGSIZE;
  2444. } else {
  2445. hdr = (struct sadb_msg *) skb->data;
  2446. if (hdr->sadb_msg_version != PF_KEY_V2 ||
  2447. hdr->sadb_msg_reserved != 0 ||
  2448. (hdr->sadb_msg_type <= SADB_RESERVED ||
  2449. hdr->sadb_msg_type > SADB_MAX)) {
  2450. hdr = NULL;
  2451. *errp = -EINVAL;
  2452. } else if (hdr->sadb_msg_len != (skb->len /
  2453. sizeof(uint64_t)) ||
  2454. hdr->sadb_msg_len < (sizeof(struct sadb_msg) /
  2455. sizeof(uint64_t))) {
  2456. hdr = NULL;
  2457. *errp = -EMSGSIZE;
  2458. } else {
  2459. *errp = 0;
  2460. }
  2461. }
  2462. return hdr;
  2463. }
  2464. static inline int aalg_tmpl_set(struct xfrm_tmpl *t, struct xfrm_algo_desc *d)
  2465. {
  2466. unsigned int id = d->desc.sadb_alg_id;
  2467. if (id >= sizeof(t->aalgos) * 8)
  2468. return 0;
  2469. return (t->aalgos >> id) & 1;
  2470. }
  2471. static inline int ealg_tmpl_set(struct xfrm_tmpl *t, struct xfrm_algo_desc *d)
  2472. {
  2473. unsigned int id = d->desc.sadb_alg_id;
  2474. if (id >= sizeof(t->ealgos) * 8)
  2475. return 0;
  2476. return (t->ealgos >> id) & 1;
  2477. }
  2478. static int count_ah_combs(struct xfrm_tmpl *t)
  2479. {
  2480. int i, sz = 0;
  2481. for (i = 0; ; i++) {
  2482. struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(i);
  2483. if (!aalg)
  2484. break;
  2485. if (aalg_tmpl_set(t, aalg) && aalg->available)
  2486. sz += sizeof(struct sadb_comb);
  2487. }
  2488. return sz + sizeof(struct sadb_prop);
  2489. }
  2490. static int count_esp_combs(struct xfrm_tmpl *t)
  2491. {
  2492. int i, k, sz = 0;
  2493. for (i = 0; ; i++) {
  2494. struct xfrm_algo_desc *ealg = xfrm_ealg_get_byidx(i);
  2495. if (!ealg)
  2496. break;
  2497. if (!(ealg_tmpl_set(t, ealg) && ealg->available))
  2498. continue;
  2499. for (k = 1; ; k++) {
  2500. struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(k);
  2501. if (!aalg)
  2502. break;
  2503. if (aalg_tmpl_set(t, aalg) && aalg->available)
  2504. sz += sizeof(struct sadb_comb);
  2505. }
  2506. }
  2507. return sz + sizeof(struct sadb_prop);
  2508. }
  2509. static void dump_ah_combs(struct sk_buff *skb, struct xfrm_tmpl *t)
  2510. {
  2511. struct sadb_prop *p;
  2512. int i;
  2513. p = (struct sadb_prop*)skb_put(skb, sizeof(struct sadb_prop));
  2514. p->sadb_prop_len = sizeof(struct sadb_prop)/8;
  2515. p->sadb_prop_exttype = SADB_EXT_PROPOSAL;
  2516. p->sadb_prop_replay = 32;
  2517. memset(p->sadb_prop_reserved, 0, sizeof(p->sadb_prop_reserved));
  2518. for (i = 0; ; i++) {
  2519. struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(i);
  2520. if (!aalg)
  2521. break;
  2522. if (aalg_tmpl_set(t, aalg) && aalg->available) {
  2523. struct sadb_comb *c;
  2524. c = (struct sadb_comb*)skb_put(skb, sizeof(struct sadb_comb));
  2525. memset(c, 0, sizeof(*c));
  2526. p->sadb_prop_len += sizeof(struct sadb_comb)/8;
  2527. c->sadb_comb_auth = aalg->desc.sadb_alg_id;
  2528. c->sadb_comb_auth_minbits = aalg->desc.sadb_alg_minbits;
  2529. c->sadb_comb_auth_maxbits = aalg->desc.sadb_alg_maxbits;
  2530. c->sadb_comb_hard_addtime = 24*60*60;
  2531. c->sadb_comb_soft_addtime = 20*60*60;
  2532. c->sadb_comb_hard_usetime = 8*60*60;
  2533. c->sadb_comb_soft_usetime = 7*60*60;
  2534. }
  2535. }
  2536. }
  2537. static void dump_esp_combs(struct sk_buff *skb, struct xfrm_tmpl *t)
  2538. {
  2539. struct sadb_prop *p;
  2540. int i, k;
  2541. p = (struct sadb_prop*)skb_put(skb, sizeof(struct sadb_prop));
  2542. p->sadb_prop_len = sizeof(struct sadb_prop)/8;
  2543. p->sadb_prop_exttype = SADB_EXT_PROPOSAL;
  2544. p->sadb_prop_replay = 32;
  2545. memset(p->sadb_prop_reserved, 0, sizeof(p->sadb_prop_reserved));
  2546. for (i=0; ; i++) {
  2547. struct xfrm_algo_desc *ealg = xfrm_ealg_get_byidx(i);
  2548. if (!ealg)
  2549. break;
  2550. if (!(ealg_tmpl_set(t, ealg) && ealg->available))
  2551. continue;
  2552. for (k = 1; ; k++) {
  2553. struct sadb_comb *c;
  2554. struct xfrm_algo_desc *aalg = xfrm_aalg_get_byidx(k);
  2555. if (!aalg)
  2556. break;
  2557. if (!(aalg_tmpl_set(t, aalg) && aalg->available))
  2558. continue;
  2559. c = (struct sadb_comb*)skb_put(skb, sizeof(struct sadb_comb));
  2560. memset(c, 0, sizeof(*c));
  2561. p->sadb_prop_len += sizeof(struct sadb_comb)/8;
  2562. c->sadb_comb_auth = aalg->desc.sadb_alg_id;
  2563. c->sadb_comb_auth_minbits = aalg->desc.sadb_alg_minbits;
  2564. c->sadb_comb_auth_maxbits = aalg->desc.sadb_alg_maxbits;
  2565. c->sadb_comb_encrypt = ealg->desc.sadb_alg_id;
  2566. c->sadb_comb_encrypt_minbits = ealg->desc.sadb_alg_minbits;
  2567. c->sadb_comb_encrypt_maxbits = ealg->desc.sadb_alg_maxbits;
  2568. c->sadb_comb_hard_addtime = 24*60*60;
  2569. c->sadb_comb_soft_addtime = 20*60*60;
  2570. c->sadb_comb_hard_usetime = 8*60*60;
  2571. c->sadb_comb_soft_usetime = 7*60*60;
  2572. }
  2573. }
  2574. }
  2575. static int key_notify_policy_expire(struct xfrm_policy *xp, struct km_event *c)
  2576. {
  2577. return 0;
  2578. }
  2579. static int key_notify_sa_expire(struct xfrm_state *x, struct km_event *c)
  2580. {
  2581. struct sk_buff *out_skb;
  2582. struct sadb_msg *out_hdr;
  2583. int hard;
  2584. int hsc;
  2585. hard = c->data.hard;
  2586. if (hard)
  2587. hsc = 2;
  2588. else
  2589. hsc = 1;
  2590. out_skb = pfkey_xfrm_state2msg_expire(x, hsc);
  2591. if (IS_ERR(out_skb))
  2592. return PTR_ERR(out_skb);
  2593. out_hdr = (struct sadb_msg *) out_skb->data;
  2594. out_hdr->sadb_msg_version = PF_KEY_V2;
  2595. out_hdr->sadb_msg_type = SADB_EXPIRE;
  2596. out_hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto);
  2597. out_hdr->sadb_msg_errno = 0;
  2598. out_hdr->sadb_msg_reserved = 0;
  2599. out_hdr->sadb_msg_seq = 0;
  2600. out_hdr->sadb_msg_pid = 0;
  2601. pfkey_broadcast(out_skb, GFP_ATOMIC, BROADCAST_REGISTERED, NULL);
  2602. return 0;
  2603. }
  2604. static int pfkey_send_notify(struct xfrm_state *x, struct km_event *c)
  2605. {
  2606. if (atomic_read(&pfkey_socks_nr) == 0)
  2607. return 0;
  2608. switch (c->event) {
  2609. case XFRM_MSG_EXPIRE:
  2610. return key_notify_sa_expire(x, c);
  2611. case XFRM_MSG_DELSA:
  2612. case XFRM_MSG_NEWSA:
  2613. case XFRM_MSG_UPDSA:
  2614. return key_notify_sa(x, c);
  2615. case XFRM_MSG_FLUSHSA:
  2616. return key_notify_sa_flush(c);
  2617. case XFRM_MSG_NEWAE: /* not yet supported */
  2618. break;
  2619. default:
  2620. printk("pfkey: Unknown SA event %d\n", c->event);
  2621. break;
  2622. }
  2623. return 0;
  2624. }
  2625. static int pfkey_send_policy_notify(struct xfrm_policy *xp, int dir, struct km_event *c)
  2626. {
  2627. if (xp && xp->type != XFRM_POLICY_TYPE_MAIN)
  2628. return 0;
  2629. switch (c->event) {
  2630. case XFRM_MSG_POLEXPIRE:
  2631. return key_notify_policy_expire(xp, c);
  2632. case XFRM_MSG_DELPOLICY:
  2633. case XFRM_MSG_NEWPOLICY:
  2634. case XFRM_MSG_UPDPOLICY:
  2635. return key_notify_policy(xp, dir, c);
  2636. case XFRM_MSG_FLUSHPOLICY:
  2637. if (c->data.type != XFRM_POLICY_TYPE_MAIN)
  2638. break;
  2639. return key_notify_policy_flush(c);
  2640. default:
  2641. printk("pfkey: Unknown policy event %d\n", c->event);
  2642. break;
  2643. }
  2644. return 0;
  2645. }
  2646. static u32 get_acqseq(void)
  2647. {
  2648. u32 res;
  2649. static u32 acqseq;
  2650. static DEFINE_SPINLOCK(acqseq_lock);
  2651. spin_lock_bh(&acqseq_lock);
  2652. res = (++acqseq ? : ++acqseq);
  2653. spin_unlock_bh(&acqseq_lock);
  2654. return res;
  2655. }
  2656. static int pfkey_send_acquire(struct xfrm_state *x, struct xfrm_tmpl *t, struct xfrm_policy *xp, int dir)
  2657. {
  2658. struct sk_buff *skb;
  2659. struct sadb_msg *hdr;
  2660. struct sadb_address *addr;
  2661. struct sadb_x_policy *pol;
  2662. struct sockaddr_in *sin;
  2663. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2664. struct sockaddr_in6 *sin6;
  2665. #endif
  2666. int sockaddr_size;
  2667. int size;
  2668. struct sadb_x_sec_ctx *sec_ctx;
  2669. struct xfrm_sec_ctx *xfrm_ctx;
  2670. int ctx_size = 0;
  2671. sockaddr_size = pfkey_sockaddr_size(x->props.family);
  2672. if (!sockaddr_size)
  2673. return -EINVAL;
  2674. size = sizeof(struct sadb_msg) +
  2675. (sizeof(struct sadb_address) * 2) +
  2676. (sockaddr_size * 2) +
  2677. sizeof(struct sadb_x_policy);
  2678. if (x->id.proto == IPPROTO_AH)
  2679. size += count_ah_combs(t);
  2680. else if (x->id.proto == IPPROTO_ESP)
  2681. size += count_esp_combs(t);
  2682. if ((xfrm_ctx = x->security)) {
  2683. ctx_size = PFKEY_ALIGN8(xfrm_ctx->ctx_len);
  2684. size += sizeof(struct sadb_x_sec_ctx) + ctx_size;
  2685. }
  2686. skb = alloc_skb(size + 16, GFP_ATOMIC);
  2687. if (skb == NULL)
  2688. return -ENOMEM;
  2689. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  2690. hdr->sadb_msg_version = PF_KEY_V2;
  2691. hdr->sadb_msg_type = SADB_ACQUIRE;
  2692. hdr->sadb_msg_satype = pfkey_proto2satype(x->id.proto);
  2693. hdr->sadb_msg_len = size / sizeof(uint64_t);
  2694. hdr->sadb_msg_errno = 0;
  2695. hdr->sadb_msg_reserved = 0;
  2696. hdr->sadb_msg_seq = x->km.seq = get_acqseq();
  2697. hdr->sadb_msg_pid = 0;
  2698. /* src address */
  2699. addr = (struct sadb_address*) skb_put(skb,
  2700. sizeof(struct sadb_address)+sockaddr_size);
  2701. addr->sadb_address_len =
  2702. (sizeof(struct sadb_address)+sockaddr_size)/
  2703. sizeof(uint64_t);
  2704. addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;
  2705. addr->sadb_address_proto = 0;
  2706. addr->sadb_address_reserved = 0;
  2707. if (x->props.family == AF_INET) {
  2708. addr->sadb_address_prefixlen = 32;
  2709. sin = (struct sockaddr_in *) (addr + 1);
  2710. sin->sin_family = AF_INET;
  2711. sin->sin_addr.s_addr = x->props.saddr.a4;
  2712. sin->sin_port = 0;
  2713. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  2714. }
  2715. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2716. else if (x->props.family == AF_INET6) {
  2717. addr->sadb_address_prefixlen = 128;
  2718. sin6 = (struct sockaddr_in6 *) (addr + 1);
  2719. sin6->sin6_family = AF_INET6;
  2720. sin6->sin6_port = 0;
  2721. sin6->sin6_flowinfo = 0;
  2722. memcpy(&sin6->sin6_addr,
  2723. x->props.saddr.a6, sizeof(struct in6_addr));
  2724. sin6->sin6_scope_id = 0;
  2725. }
  2726. #endif
  2727. else
  2728. BUG();
  2729. /* dst address */
  2730. addr = (struct sadb_address*) skb_put(skb,
  2731. sizeof(struct sadb_address)+sockaddr_size);
  2732. addr->sadb_address_len =
  2733. (sizeof(struct sadb_address)+sockaddr_size)/
  2734. sizeof(uint64_t);
  2735. addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST;
  2736. addr->sadb_address_proto = 0;
  2737. addr->sadb_address_reserved = 0;
  2738. if (x->props.family == AF_INET) {
  2739. addr->sadb_address_prefixlen = 32;
  2740. sin = (struct sockaddr_in *) (addr + 1);
  2741. sin->sin_family = AF_INET;
  2742. sin->sin_addr.s_addr = x->id.daddr.a4;
  2743. sin->sin_port = 0;
  2744. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  2745. }
  2746. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2747. else if (x->props.family == AF_INET6) {
  2748. addr->sadb_address_prefixlen = 128;
  2749. sin6 = (struct sockaddr_in6 *) (addr + 1);
  2750. sin6->sin6_family = AF_INET6;
  2751. sin6->sin6_port = 0;
  2752. sin6->sin6_flowinfo = 0;
  2753. memcpy(&sin6->sin6_addr,
  2754. x->id.daddr.a6, sizeof(struct in6_addr));
  2755. sin6->sin6_scope_id = 0;
  2756. }
  2757. #endif
  2758. else
  2759. BUG();
  2760. pol = (struct sadb_x_policy *) skb_put(skb, sizeof(struct sadb_x_policy));
  2761. pol->sadb_x_policy_len = sizeof(struct sadb_x_policy)/sizeof(uint64_t);
  2762. pol->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
  2763. pol->sadb_x_policy_type = IPSEC_POLICY_IPSEC;
  2764. pol->sadb_x_policy_dir = dir+1;
  2765. pol->sadb_x_policy_id = xp->index;
  2766. /* Set sadb_comb's. */
  2767. if (x->id.proto == IPPROTO_AH)
  2768. dump_ah_combs(skb, t);
  2769. else if (x->id.proto == IPPROTO_ESP)
  2770. dump_esp_combs(skb, t);
  2771. /* security context */
  2772. if (xfrm_ctx) {
  2773. sec_ctx = (struct sadb_x_sec_ctx *) skb_put(skb,
  2774. sizeof(struct sadb_x_sec_ctx) + ctx_size);
  2775. sec_ctx->sadb_x_sec_len =
  2776. (sizeof(struct sadb_x_sec_ctx) + ctx_size) / sizeof(uint64_t);
  2777. sec_ctx->sadb_x_sec_exttype = SADB_X_EXT_SEC_CTX;
  2778. sec_ctx->sadb_x_ctx_doi = xfrm_ctx->ctx_doi;
  2779. sec_ctx->sadb_x_ctx_alg = xfrm_ctx->ctx_alg;
  2780. sec_ctx->sadb_x_ctx_len = xfrm_ctx->ctx_len;
  2781. memcpy(sec_ctx + 1, xfrm_ctx->ctx_str,
  2782. xfrm_ctx->ctx_len);
  2783. }
  2784. return pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_REGISTERED, NULL);
  2785. }
  2786. static struct xfrm_policy *pfkey_compile_policy(struct sock *sk, int opt,
  2787. u8 *data, int len, int *dir)
  2788. {
  2789. struct xfrm_policy *xp;
  2790. struct sadb_x_policy *pol = (struct sadb_x_policy*)data;
  2791. struct sadb_x_sec_ctx *sec_ctx;
  2792. switch (sk->sk_family) {
  2793. case AF_INET:
  2794. if (opt != IP_IPSEC_POLICY) {
  2795. *dir = -EOPNOTSUPP;
  2796. return NULL;
  2797. }
  2798. break;
  2799. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2800. case AF_INET6:
  2801. if (opt != IPV6_IPSEC_POLICY) {
  2802. *dir = -EOPNOTSUPP;
  2803. return NULL;
  2804. }
  2805. break;
  2806. #endif
  2807. default:
  2808. *dir = -EINVAL;
  2809. return NULL;
  2810. }
  2811. *dir = -EINVAL;
  2812. if (len < sizeof(struct sadb_x_policy) ||
  2813. pol->sadb_x_policy_len*8 > len ||
  2814. pol->sadb_x_policy_type > IPSEC_POLICY_BYPASS ||
  2815. (!pol->sadb_x_policy_dir || pol->sadb_x_policy_dir > IPSEC_DIR_OUTBOUND))
  2816. return NULL;
  2817. xp = xfrm_policy_alloc(GFP_ATOMIC);
  2818. if (xp == NULL) {
  2819. *dir = -ENOBUFS;
  2820. return NULL;
  2821. }
  2822. xp->action = (pol->sadb_x_policy_type == IPSEC_POLICY_DISCARD ?
  2823. XFRM_POLICY_BLOCK : XFRM_POLICY_ALLOW);
  2824. xp->lft.soft_byte_limit = XFRM_INF;
  2825. xp->lft.hard_byte_limit = XFRM_INF;
  2826. xp->lft.soft_packet_limit = XFRM_INF;
  2827. xp->lft.hard_packet_limit = XFRM_INF;
  2828. xp->family = sk->sk_family;
  2829. xp->xfrm_nr = 0;
  2830. if (pol->sadb_x_policy_type == IPSEC_POLICY_IPSEC &&
  2831. (*dir = parse_ipsecrequests(xp, pol)) < 0)
  2832. goto out;
  2833. /* security context too */
  2834. if (len >= (pol->sadb_x_policy_len*8 +
  2835. sizeof(struct sadb_x_sec_ctx))) {
  2836. char *p = (char *)pol;
  2837. struct xfrm_user_sec_ctx *uctx;
  2838. p += pol->sadb_x_policy_len*8;
  2839. sec_ctx = (struct sadb_x_sec_ctx *)p;
  2840. if (len < pol->sadb_x_policy_len*8 +
  2841. sec_ctx->sadb_x_sec_len) {
  2842. *dir = -EINVAL;
  2843. goto out;
  2844. }
  2845. if ((*dir = verify_sec_ctx_len(p)))
  2846. goto out;
  2847. uctx = pfkey_sadb2xfrm_user_sec_ctx(sec_ctx);
  2848. *dir = security_xfrm_policy_alloc(&xp->security, uctx);
  2849. kfree(uctx);
  2850. if (*dir)
  2851. goto out;
  2852. }
  2853. *dir = pol->sadb_x_policy_dir-1;
  2854. return xp;
  2855. out:
  2856. xfrm_policy_destroy(xp);
  2857. return NULL;
  2858. }
  2859. static int pfkey_send_new_mapping(struct xfrm_state *x, xfrm_address_t *ipaddr, __be16 sport)
  2860. {
  2861. struct sk_buff *skb;
  2862. struct sadb_msg *hdr;
  2863. struct sadb_sa *sa;
  2864. struct sadb_address *addr;
  2865. struct sadb_x_nat_t_port *n_port;
  2866. struct sockaddr_in *sin;
  2867. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2868. struct sockaddr_in6 *sin6;
  2869. #endif
  2870. int sockaddr_size;
  2871. int size;
  2872. __u8 satype = (x->id.proto == IPPROTO_ESP ? SADB_SATYPE_ESP : 0);
  2873. struct xfrm_encap_tmpl *natt = NULL;
  2874. sockaddr_size = pfkey_sockaddr_size(x->props.family);
  2875. if (!sockaddr_size)
  2876. return -EINVAL;
  2877. if (!satype)
  2878. return -EINVAL;
  2879. if (!x->encap)
  2880. return -EINVAL;
  2881. natt = x->encap;
  2882. /* Build an SADB_X_NAT_T_NEW_MAPPING message:
  2883. *
  2884. * HDR | SA | ADDRESS_SRC (old addr) | NAT_T_SPORT (old port) |
  2885. * ADDRESS_DST (new addr) | NAT_T_DPORT (new port)
  2886. */
  2887. size = sizeof(struct sadb_msg) +
  2888. sizeof(struct sadb_sa) +
  2889. (sizeof(struct sadb_address) * 2) +
  2890. (sockaddr_size * 2) +
  2891. (sizeof(struct sadb_x_nat_t_port) * 2);
  2892. skb = alloc_skb(size + 16, GFP_ATOMIC);
  2893. if (skb == NULL)
  2894. return -ENOMEM;
  2895. hdr = (struct sadb_msg *) skb_put(skb, sizeof(struct sadb_msg));
  2896. hdr->sadb_msg_version = PF_KEY_V2;
  2897. hdr->sadb_msg_type = SADB_X_NAT_T_NEW_MAPPING;
  2898. hdr->sadb_msg_satype = satype;
  2899. hdr->sadb_msg_len = size / sizeof(uint64_t);
  2900. hdr->sadb_msg_errno = 0;
  2901. hdr->sadb_msg_reserved = 0;
  2902. hdr->sadb_msg_seq = x->km.seq = get_acqseq();
  2903. hdr->sadb_msg_pid = 0;
  2904. /* SA */
  2905. sa = (struct sadb_sa *) skb_put(skb, sizeof(struct sadb_sa));
  2906. sa->sadb_sa_len = sizeof(struct sadb_sa)/sizeof(uint64_t);
  2907. sa->sadb_sa_exttype = SADB_EXT_SA;
  2908. sa->sadb_sa_spi = x->id.spi;
  2909. sa->sadb_sa_replay = 0;
  2910. sa->sadb_sa_state = 0;
  2911. sa->sadb_sa_auth = 0;
  2912. sa->sadb_sa_encrypt = 0;
  2913. sa->sadb_sa_flags = 0;
  2914. /* ADDRESS_SRC (old addr) */
  2915. addr = (struct sadb_address*)
  2916. skb_put(skb, sizeof(struct sadb_address)+sockaddr_size);
  2917. addr->sadb_address_len =
  2918. (sizeof(struct sadb_address)+sockaddr_size)/
  2919. sizeof(uint64_t);
  2920. addr->sadb_address_exttype = SADB_EXT_ADDRESS_SRC;
  2921. addr->sadb_address_proto = 0;
  2922. addr->sadb_address_reserved = 0;
  2923. if (x->props.family == AF_INET) {
  2924. addr->sadb_address_prefixlen = 32;
  2925. sin = (struct sockaddr_in *) (addr + 1);
  2926. sin->sin_family = AF_INET;
  2927. sin->sin_addr.s_addr = x->props.saddr.a4;
  2928. sin->sin_port = 0;
  2929. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  2930. }
  2931. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2932. else if (x->props.family == AF_INET6) {
  2933. addr->sadb_address_prefixlen = 128;
  2934. sin6 = (struct sockaddr_in6 *) (addr + 1);
  2935. sin6->sin6_family = AF_INET6;
  2936. sin6->sin6_port = 0;
  2937. sin6->sin6_flowinfo = 0;
  2938. memcpy(&sin6->sin6_addr,
  2939. x->props.saddr.a6, sizeof(struct in6_addr));
  2940. sin6->sin6_scope_id = 0;
  2941. }
  2942. #endif
  2943. else
  2944. BUG();
  2945. /* NAT_T_SPORT (old port) */
  2946. n_port = (struct sadb_x_nat_t_port*) skb_put(skb, sizeof (*n_port));
  2947. n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t);
  2948. n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_SPORT;
  2949. n_port->sadb_x_nat_t_port_port = natt->encap_sport;
  2950. n_port->sadb_x_nat_t_port_reserved = 0;
  2951. /* ADDRESS_DST (new addr) */
  2952. addr = (struct sadb_address*)
  2953. skb_put(skb, sizeof(struct sadb_address)+sockaddr_size);
  2954. addr->sadb_address_len =
  2955. (sizeof(struct sadb_address)+sockaddr_size)/
  2956. sizeof(uint64_t);
  2957. addr->sadb_address_exttype = SADB_EXT_ADDRESS_DST;
  2958. addr->sadb_address_proto = 0;
  2959. addr->sadb_address_reserved = 0;
  2960. if (x->props.family == AF_INET) {
  2961. addr->sadb_address_prefixlen = 32;
  2962. sin = (struct sockaddr_in *) (addr + 1);
  2963. sin->sin_family = AF_INET;
  2964. sin->sin_addr.s_addr = ipaddr->a4;
  2965. sin->sin_port = 0;
  2966. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  2967. }
  2968. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2969. else if (x->props.family == AF_INET6) {
  2970. addr->sadb_address_prefixlen = 128;
  2971. sin6 = (struct sockaddr_in6 *) (addr + 1);
  2972. sin6->sin6_family = AF_INET6;
  2973. sin6->sin6_port = 0;
  2974. sin6->sin6_flowinfo = 0;
  2975. memcpy(&sin6->sin6_addr, &ipaddr->a6, sizeof(struct in6_addr));
  2976. sin6->sin6_scope_id = 0;
  2977. }
  2978. #endif
  2979. else
  2980. BUG();
  2981. /* NAT_T_DPORT (new port) */
  2982. n_port = (struct sadb_x_nat_t_port*) skb_put(skb, sizeof (*n_port));
  2983. n_port->sadb_x_nat_t_port_len = sizeof(*n_port)/sizeof(uint64_t);
  2984. n_port->sadb_x_nat_t_port_exttype = SADB_X_EXT_NAT_T_DPORT;
  2985. n_port->sadb_x_nat_t_port_port = sport;
  2986. n_port->sadb_x_nat_t_port_reserved = 0;
  2987. return pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_REGISTERED, NULL);
  2988. }
  2989. #ifdef CONFIG_NET_KEY_MIGRATE
  2990. static int set_sadb_address(struct sk_buff *skb, int sasize, int type,
  2991. struct xfrm_selector *sel)
  2992. {
  2993. struct sadb_address *addr;
  2994. struct sockaddr_in *sin;
  2995. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2996. struct sockaddr_in6 *sin6;
  2997. #endif
  2998. addr = (struct sadb_address *)skb_put(skb, sizeof(struct sadb_address) + sasize);
  2999. addr->sadb_address_len = (sizeof(struct sadb_address) + sasize)/8;
  3000. addr->sadb_address_exttype = type;
  3001. addr->sadb_address_proto = sel->proto;
  3002. addr->sadb_address_reserved = 0;
  3003. switch (type) {
  3004. case SADB_EXT_ADDRESS_SRC:
  3005. if (sel->family == AF_INET) {
  3006. addr->sadb_address_prefixlen = sel->prefixlen_s;
  3007. sin = (struct sockaddr_in *)(addr + 1);
  3008. sin->sin_family = AF_INET;
  3009. memcpy(&sin->sin_addr.s_addr, &sel->saddr,
  3010. sizeof(sin->sin_addr.s_addr));
  3011. sin->sin_port = 0;
  3012. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  3013. }
  3014. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  3015. else if (sel->family == AF_INET6) {
  3016. addr->sadb_address_prefixlen = sel->prefixlen_s;
  3017. sin6 = (struct sockaddr_in6 *)(addr + 1);
  3018. sin6->sin6_family = AF_INET6;
  3019. sin6->sin6_port = 0;
  3020. sin6->sin6_flowinfo = 0;
  3021. sin6->sin6_scope_id = 0;
  3022. memcpy(&sin6->sin6_addr.s6_addr, &sel->saddr,
  3023. sizeof(sin6->sin6_addr.s6_addr));
  3024. }
  3025. #endif
  3026. break;
  3027. case SADB_EXT_ADDRESS_DST:
  3028. if (sel->family == AF_INET) {
  3029. addr->sadb_address_prefixlen = sel->prefixlen_d;
  3030. sin = (struct sockaddr_in *)(addr + 1);
  3031. sin->sin_family = AF_INET;
  3032. memcpy(&sin->sin_addr.s_addr, &sel->daddr,
  3033. sizeof(sin->sin_addr.s_addr));
  3034. sin->sin_port = 0;
  3035. memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
  3036. }
  3037. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  3038. else if (sel->family == AF_INET6) {
  3039. addr->sadb_address_prefixlen = sel->prefixlen_d;
  3040. sin6 = (struct sockaddr_in6 *)(addr + 1);
  3041. sin6->sin6_family = AF_INET6;
  3042. sin6->sin6_port = 0;
  3043. sin6->sin6_flowinfo = 0;
  3044. sin6->sin6_scope_id = 0;
  3045. memcpy(&sin6->sin6_addr.s6_addr, &sel->daddr,
  3046. sizeof(sin6->sin6_addr.s6_addr));
  3047. }
  3048. #endif
  3049. break;
  3050. default:
  3051. return -EINVAL;
  3052. }
  3053. return 0;
  3054. }
  3055. static int set_ipsecrequest(struct sk_buff *skb,
  3056. uint8_t proto, uint8_t mode, int level,
  3057. uint32_t reqid, uint8_t family,
  3058. xfrm_address_t *src, xfrm_address_t *dst)
  3059. {
  3060. struct sadb_x_ipsecrequest *rq;
  3061. struct sockaddr_in *sin;
  3062. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  3063. struct sockaddr_in6 *sin6;
  3064. #endif
  3065. int size_req;
  3066. size_req = sizeof(struct sadb_x_ipsecrequest) +
  3067. pfkey_sockaddr_pair_size(family);
  3068. rq = (struct sadb_x_ipsecrequest *)skb_put(skb, size_req);
  3069. memset(rq, 0, size_req);
  3070. rq->sadb_x_ipsecrequest_len = size_req;
  3071. rq->sadb_x_ipsecrequest_proto = proto;
  3072. rq->sadb_x_ipsecrequest_mode = mode;
  3073. rq->sadb_x_ipsecrequest_level = level;
  3074. rq->sadb_x_ipsecrequest_reqid = reqid;
  3075. switch (family) {
  3076. case AF_INET:
  3077. sin = (struct sockaddr_in *)(rq + 1);
  3078. sin->sin_family = AF_INET;
  3079. memcpy(&sin->sin_addr.s_addr, src,
  3080. sizeof(sin->sin_addr.s_addr));
  3081. sin++;
  3082. sin->sin_family = AF_INET;
  3083. memcpy(&sin->sin_addr.s_addr, dst,
  3084. sizeof(sin->sin_addr.s_addr));
  3085. break;
  3086. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  3087. case AF_INET6:
  3088. sin6 = (struct sockaddr_in6 *)(rq + 1);
  3089. sin6->sin6_family = AF_INET6;
  3090. sin6->sin6_port = 0;
  3091. sin6->sin6_flowinfo = 0;
  3092. sin6->sin6_scope_id = 0;
  3093. memcpy(&sin6->sin6_addr.s6_addr, src,
  3094. sizeof(sin6->sin6_addr.s6_addr));
  3095. sin6++;
  3096. sin6->sin6_family = AF_INET6;
  3097. sin6->sin6_port = 0;
  3098. sin6->sin6_flowinfo = 0;
  3099. sin6->sin6_scope_id = 0;
  3100. memcpy(&sin6->sin6_addr.s6_addr, dst,
  3101. sizeof(sin6->sin6_addr.s6_addr));
  3102. break;
  3103. #endif
  3104. default:
  3105. return -EINVAL;
  3106. }
  3107. return 0;
  3108. }
  3109. #endif
  3110. #ifdef CONFIG_NET_KEY_MIGRATE
  3111. static int pfkey_send_migrate(struct xfrm_selector *sel, u8 dir, u8 type,
  3112. struct xfrm_migrate *m, int num_bundles)
  3113. {
  3114. int i;
  3115. int sasize_sel;
  3116. int size = 0;
  3117. int size_pol = 0;
  3118. struct sk_buff *skb;
  3119. struct sadb_msg *hdr;
  3120. struct sadb_x_policy *pol;
  3121. struct xfrm_migrate *mp;
  3122. if (type != XFRM_POLICY_TYPE_MAIN)
  3123. return 0;
  3124. if (num_bundles <= 0 || num_bundles > XFRM_MAX_DEPTH)
  3125. return -EINVAL;
  3126. /* selector */
  3127. sasize_sel = pfkey_sockaddr_size(sel->family);
  3128. if (!sasize_sel)
  3129. return -EINVAL;
  3130. size += (sizeof(struct sadb_address) + sasize_sel) * 2;
  3131. /* policy info */
  3132. size_pol += sizeof(struct sadb_x_policy);
  3133. /* ipsecrequests */
  3134. for (i = 0, mp = m; i < num_bundles; i++, mp++) {
  3135. /* old locator pair */
  3136. size_pol += sizeof(struct sadb_x_ipsecrequest) +
  3137. pfkey_sockaddr_pair_size(mp->old_family);
  3138. /* new locator pair */
  3139. size_pol += sizeof(struct sadb_x_ipsecrequest) +
  3140. pfkey_sockaddr_pair_size(mp->new_family);
  3141. }
  3142. size += sizeof(struct sadb_msg) + size_pol;
  3143. /* alloc buffer */
  3144. skb = alloc_skb(size, GFP_ATOMIC);
  3145. if (skb == NULL)
  3146. return -ENOMEM;
  3147. hdr = (struct sadb_msg *)skb_put(skb, sizeof(struct sadb_msg));
  3148. hdr->sadb_msg_version = PF_KEY_V2;
  3149. hdr->sadb_msg_type = SADB_X_MIGRATE;
  3150. hdr->sadb_msg_satype = pfkey_proto2satype(m->proto);
  3151. hdr->sadb_msg_len = size / 8;
  3152. hdr->sadb_msg_errno = 0;
  3153. hdr->sadb_msg_reserved = 0;
  3154. hdr->sadb_msg_seq = 0;
  3155. hdr->sadb_msg_pid = 0;
  3156. /* selector src */
  3157. set_sadb_address(skb, sasize_sel, SADB_EXT_ADDRESS_SRC, sel);
  3158. /* selector dst */
  3159. set_sadb_address(skb, sasize_sel, SADB_EXT_ADDRESS_DST, sel);
  3160. /* policy information */
  3161. pol = (struct sadb_x_policy *)skb_put(skb, sizeof(struct sadb_x_policy));
  3162. pol->sadb_x_policy_len = size_pol / 8;
  3163. pol->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
  3164. pol->sadb_x_policy_type = IPSEC_POLICY_IPSEC;
  3165. pol->sadb_x_policy_dir = dir + 1;
  3166. pol->sadb_x_policy_id = 0;
  3167. pol->sadb_x_policy_priority = 0;
  3168. for (i = 0, mp = m; i < num_bundles; i++, mp++) {
  3169. /* old ipsecrequest */
  3170. int mode = pfkey_mode_from_xfrm(mp->mode);
  3171. if (mode < 0)
  3172. goto err;
  3173. if (set_ipsecrequest(skb, mp->proto, mode,
  3174. (mp->reqid ? IPSEC_LEVEL_UNIQUE : IPSEC_LEVEL_REQUIRE),
  3175. mp->reqid, mp->old_family,
  3176. &mp->old_saddr, &mp->old_daddr) < 0)
  3177. goto err;
  3178. /* new ipsecrequest */
  3179. if (set_ipsecrequest(skb, mp->proto, mode,
  3180. (mp->reqid ? IPSEC_LEVEL_UNIQUE : IPSEC_LEVEL_REQUIRE),
  3181. mp->reqid, mp->new_family,
  3182. &mp->new_saddr, &mp->new_daddr) < 0)
  3183. goto err;
  3184. }
  3185. /* broadcast migrate message to sockets */
  3186. pfkey_broadcast(skb, GFP_ATOMIC, BROADCAST_ALL, NULL);
  3187. return 0;
  3188. err:
  3189. kfree_skb(skb);
  3190. return -EINVAL;
  3191. }
  3192. #else
  3193. static int pfkey_send_migrate(struct xfrm_selector *sel, u8 dir, u8 type,
  3194. struct xfrm_migrate *m, int num_bundles)
  3195. {
  3196. return -ENOPROTOOPT;
  3197. }
  3198. #endif
  3199. static int pfkey_sendmsg(struct kiocb *kiocb,
  3200. struct socket *sock, struct msghdr *msg, size_t len)
  3201. {
  3202. struct sock *sk = sock->sk;
  3203. struct sk_buff *skb = NULL;
  3204. struct sadb_msg *hdr = NULL;
  3205. int err;
  3206. err = -EOPNOTSUPP;
  3207. if (msg->msg_flags & MSG_OOB)
  3208. goto out;
  3209. err = -EMSGSIZE;
  3210. if ((unsigned)len > sk->sk_sndbuf - 32)
  3211. goto out;
  3212. err = -ENOBUFS;
  3213. skb = alloc_skb(len, GFP_KERNEL);
  3214. if (skb == NULL)
  3215. goto out;
  3216. err = -EFAULT;
  3217. if (memcpy_fromiovec(skb_put(skb,len), msg->msg_iov, len))
  3218. goto out;
  3219. hdr = pfkey_get_base_msg(skb, &err);
  3220. if (!hdr)
  3221. goto out;
  3222. mutex_lock(&xfrm_cfg_mutex);
  3223. err = pfkey_process(sk, skb, hdr);
  3224. mutex_unlock(&xfrm_cfg_mutex);
  3225. out:
  3226. if (err && hdr && pfkey_error(hdr, err, sk) == 0)
  3227. err = 0;
  3228. if (skb)
  3229. kfree_skb(skb);
  3230. return err ? : len;
  3231. }
  3232. static int pfkey_recvmsg(struct kiocb *kiocb,
  3233. struct socket *sock, struct msghdr *msg, size_t len,
  3234. int flags)
  3235. {
  3236. struct sock *sk = sock->sk;
  3237. struct pfkey_sock *pfk = pfkey_sk(sk);
  3238. struct sk_buff *skb;
  3239. int copied, err;
  3240. err = -EINVAL;
  3241. if (flags & ~(MSG_PEEK|MSG_DONTWAIT|MSG_TRUNC|MSG_CMSG_COMPAT))
  3242. goto out;
  3243. msg->msg_namelen = 0;
  3244. skb = skb_recv_datagram(sk, flags, flags & MSG_DONTWAIT, &err);
  3245. if (skb == NULL)
  3246. goto out;
  3247. copied = skb->len;
  3248. if (copied > len) {
  3249. msg->msg_flags |= MSG_TRUNC;
  3250. copied = len;
  3251. }
  3252. skb_reset_transport_header(skb);
  3253. err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
  3254. if (err)
  3255. goto out_free;
  3256. sock_recv_timestamp(msg, sk, skb);
  3257. err = (flags & MSG_TRUNC) ? skb->len : copied;
  3258. if (pfk->dump.dump != NULL &&
  3259. 3 * atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
  3260. pfkey_do_dump(pfk);
  3261. out_free:
  3262. skb_free_datagram(sk, skb);
  3263. out:
  3264. return err;
  3265. }
  3266. static const struct proto_ops pfkey_ops = {
  3267. .family = PF_KEY,
  3268. .owner = THIS_MODULE,
  3269. /* Operations that make no sense on pfkey sockets. */
  3270. .bind = sock_no_bind,
  3271. .connect = sock_no_connect,
  3272. .socketpair = sock_no_socketpair,
  3273. .accept = sock_no_accept,
  3274. .getname = sock_no_getname,
  3275. .ioctl = sock_no_ioctl,
  3276. .listen = sock_no_listen,
  3277. .shutdown = sock_no_shutdown,
  3278. .setsockopt = sock_no_setsockopt,
  3279. .getsockopt = sock_no_getsockopt,
  3280. .mmap = sock_no_mmap,
  3281. .sendpage = sock_no_sendpage,
  3282. /* Now the operations that really occur. */
  3283. .release = pfkey_release,
  3284. .poll = datagram_poll,
  3285. .sendmsg = pfkey_sendmsg,
  3286. .recvmsg = pfkey_recvmsg,
  3287. };
  3288. static struct net_proto_family pfkey_family_ops = {
  3289. .family = PF_KEY,
  3290. .create = pfkey_create,
  3291. .owner = THIS_MODULE,
  3292. };
  3293. #ifdef CONFIG_PROC_FS
  3294. static int pfkey_seq_show(struct seq_file *f, void *v)
  3295. {
  3296. struct sock *s;
  3297. s = (struct sock *)v;
  3298. if (v == SEQ_START_TOKEN)
  3299. seq_printf(f ,"sk RefCnt Rmem Wmem User Inode\n");
  3300. else
  3301. seq_printf(f ,"%p %-6d %-6u %-6u %-6u %-6lu\n",
  3302. s,
  3303. atomic_read(&s->sk_refcnt),
  3304. atomic_read(&s->sk_rmem_alloc),
  3305. atomic_read(&s->sk_wmem_alloc),
  3306. sock_i_uid(s),
  3307. sock_i_ino(s)
  3308. );
  3309. return 0;
  3310. }
  3311. static void *pfkey_seq_start(struct seq_file *f, loff_t *ppos)
  3312. {
  3313. struct sock *s;
  3314. struct hlist_node *node;
  3315. loff_t pos = *ppos;
  3316. read_lock(&pfkey_table_lock);
  3317. if (pos == 0)
  3318. return SEQ_START_TOKEN;
  3319. sk_for_each(s, node, &pfkey_table)
  3320. if (pos-- == 1)
  3321. return s;
  3322. return NULL;
  3323. }
  3324. static void *pfkey_seq_next(struct seq_file *f, void *v, loff_t *ppos)
  3325. {
  3326. ++*ppos;
  3327. return (v == SEQ_START_TOKEN) ?
  3328. sk_head(&pfkey_table) :
  3329. sk_next((struct sock *)v);
  3330. }
  3331. static void pfkey_seq_stop(struct seq_file *f, void *v)
  3332. {
  3333. read_unlock(&pfkey_table_lock);
  3334. }
  3335. static struct seq_operations pfkey_seq_ops = {
  3336. .start = pfkey_seq_start,
  3337. .next = pfkey_seq_next,
  3338. .stop = pfkey_seq_stop,
  3339. .show = pfkey_seq_show,
  3340. };
  3341. static int pfkey_seq_open(struct inode *inode, struct file *file)
  3342. {
  3343. return seq_open(file, &pfkey_seq_ops);
  3344. }
  3345. static struct file_operations pfkey_proc_ops = {
  3346. .open = pfkey_seq_open,
  3347. .read = seq_read,
  3348. .llseek = seq_lseek,
  3349. .release = seq_release,
  3350. };
  3351. static int pfkey_init_proc(void)
  3352. {
  3353. struct proc_dir_entry *e;
  3354. e = proc_net_fops_create(&init_net, "pfkey", 0, &pfkey_proc_ops);
  3355. if (e == NULL)
  3356. return -ENOMEM;
  3357. return 0;
  3358. }
  3359. static void pfkey_exit_proc(void)
  3360. {
  3361. proc_net_remove(&init_net, "pfkey");
  3362. }
  3363. #else
  3364. static inline int pfkey_init_proc(void)
  3365. {
  3366. return 0;
  3367. }
  3368. static inline void pfkey_exit_proc(void)
  3369. {
  3370. }
  3371. #endif
  3372. static struct xfrm_mgr pfkeyv2_mgr =
  3373. {
  3374. .id = "pfkeyv2",
  3375. .notify = pfkey_send_notify,
  3376. .acquire = pfkey_send_acquire,
  3377. .compile_policy = pfkey_compile_policy,
  3378. .new_mapping = pfkey_send_new_mapping,
  3379. .notify_policy = pfkey_send_policy_notify,
  3380. .migrate = pfkey_send_migrate,
  3381. };
  3382. static void __exit ipsec_pfkey_exit(void)
  3383. {
  3384. xfrm_unregister_km(&pfkeyv2_mgr);
  3385. pfkey_exit_proc();
  3386. sock_unregister(PF_KEY);
  3387. proto_unregister(&key_proto);
  3388. }
  3389. static int __init ipsec_pfkey_init(void)
  3390. {
  3391. int err = proto_register(&key_proto, 0);
  3392. if (err != 0)
  3393. goto out;
  3394. err = sock_register(&pfkey_family_ops);
  3395. if (err != 0)
  3396. goto out_unregister_key_proto;
  3397. err = pfkey_init_proc();
  3398. if (err != 0)
  3399. goto out_sock_unregister;
  3400. err = xfrm_register_km(&pfkeyv2_mgr);
  3401. if (err != 0)
  3402. goto out_remove_proc_entry;
  3403. out:
  3404. return err;
  3405. out_remove_proc_entry:
  3406. pfkey_exit_proc();
  3407. out_sock_unregister:
  3408. sock_unregister(PF_KEY);
  3409. out_unregister_key_proto:
  3410. proto_unregister(&key_proto);
  3411. goto out;
  3412. }
  3413. module_init(ipsec_pfkey_init);
  3414. module_exit(ipsec_pfkey_exit);
  3415. MODULE_LICENSE("GPL");
  3416. MODULE_ALIAS_NETPROTO(PF_KEY);