sched_stats.h 8.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272
  1. #ifdef CONFIG_SCHEDSTATS
  2. /*
  3. * bump this up when changing the output format or the meaning of an existing
  4. * format, so that tools can adapt (or abort)
  5. */
  6. #define SCHEDSTAT_VERSION 14
  7. static int show_schedstat(struct seq_file *seq, void *v)
  8. {
  9. int cpu;
  10. int mask_len = NR_CPUS/32 * 9;
  11. char *mask_str = kmalloc(mask_len, GFP_KERNEL);
  12. if (mask_str == NULL)
  13. return -ENOMEM;
  14. seq_printf(seq, "version %d\n", SCHEDSTAT_VERSION);
  15. seq_printf(seq, "timestamp %lu\n", jiffies);
  16. for_each_online_cpu(cpu) {
  17. struct rq *rq = cpu_rq(cpu);
  18. #ifdef CONFIG_SMP
  19. struct sched_domain *sd;
  20. int dcount = 0;
  21. #endif
  22. /* runqueue-specific stats */
  23. seq_printf(seq,
  24. "cpu%d %u %u %u %u %u %u %u %u %u %llu %llu %lu",
  25. cpu, rq->yld_both_empty,
  26. rq->yld_act_empty, rq->yld_exp_empty, rq->yld_count,
  27. rq->sched_switch, rq->sched_count, rq->sched_goidle,
  28. rq->ttwu_count, rq->ttwu_local,
  29. rq->rq_sched_info.cpu_time,
  30. rq->rq_sched_info.run_delay, rq->rq_sched_info.pcount);
  31. seq_printf(seq, "\n");
  32. #ifdef CONFIG_SMP
  33. /* domain-specific stats */
  34. preempt_disable();
  35. for_each_domain(cpu, sd) {
  36. enum cpu_idle_type itype;
  37. cpumask_scnprintf(mask_str, mask_len, sd->span);
  38. seq_printf(seq, "domain%d %s", dcount++, mask_str);
  39. for (itype = CPU_IDLE; itype < CPU_MAX_IDLE_TYPES;
  40. itype++) {
  41. seq_printf(seq, " %u %u %u %u %u %u %u %u",
  42. sd->lb_count[itype],
  43. sd->lb_balanced[itype],
  44. sd->lb_failed[itype],
  45. sd->lb_imbalance[itype],
  46. sd->lb_gained[itype],
  47. sd->lb_hot_gained[itype],
  48. sd->lb_nobusyq[itype],
  49. sd->lb_nobusyg[itype]);
  50. }
  51. seq_printf(seq,
  52. " %u %u %u %u %u %u %u %u %u %u %u %u\n",
  53. sd->alb_count, sd->alb_failed, sd->alb_pushed,
  54. sd->sbe_count, sd->sbe_balanced, sd->sbe_pushed,
  55. sd->sbf_count, sd->sbf_balanced, sd->sbf_pushed,
  56. sd->ttwu_wake_remote, sd->ttwu_move_affine,
  57. sd->ttwu_move_balance);
  58. }
  59. preempt_enable();
  60. #endif
  61. }
  62. kfree(mask_str);
  63. return 0;
  64. }
  65. static int schedstat_open(struct inode *inode, struct file *file)
  66. {
  67. unsigned int size = PAGE_SIZE * (1 + num_online_cpus() / 32);
  68. char *buf = kmalloc(size, GFP_KERNEL);
  69. struct seq_file *m;
  70. int res;
  71. if (!buf)
  72. return -ENOMEM;
  73. res = single_open(file, show_schedstat, NULL);
  74. if (!res) {
  75. m = file->private_data;
  76. m->buf = buf;
  77. m->size = size;
  78. } else
  79. kfree(buf);
  80. return res;
  81. }
  82. const struct file_operations proc_schedstat_operations = {
  83. .open = schedstat_open,
  84. .read = seq_read,
  85. .llseek = seq_lseek,
  86. .release = single_release,
  87. };
  88. /*
  89. * Expects runqueue lock to be held for atomicity of update
  90. */
  91. static inline void
  92. rq_sched_info_arrive(struct rq *rq, unsigned long long delta)
  93. {
  94. if (rq) {
  95. rq->rq_sched_info.run_delay += delta;
  96. rq->rq_sched_info.pcount++;
  97. }
  98. }
  99. /*
  100. * Expects runqueue lock to be held for atomicity of update
  101. */
  102. static inline void
  103. rq_sched_info_depart(struct rq *rq, unsigned long long delta)
  104. {
  105. if (rq)
  106. rq->rq_sched_info.cpu_time += delta;
  107. }
  108. static inline void
  109. rq_sched_info_dequeued(struct rq *rq, unsigned long long delta)
  110. {
  111. if (rq)
  112. rq->rq_sched_info.run_delay += delta;
  113. }
  114. # define schedstat_inc(rq, field) do { (rq)->field++; } while (0)
  115. # define schedstat_add(rq, field, amt) do { (rq)->field += (amt); } while (0)
  116. # define schedstat_set(var, val) do { var = (val); } while (0)
  117. #else /* !CONFIG_SCHEDSTATS */
  118. static inline void
  119. rq_sched_info_arrive(struct rq *rq, unsigned long long delta)
  120. {}
  121. static inline void
  122. rq_sched_info_dequeued(struct rq *rq, unsigned long long delta)
  123. {}
  124. static inline void
  125. rq_sched_info_depart(struct rq *rq, unsigned long long delta)
  126. {}
  127. # define schedstat_inc(rq, field) do { } while (0)
  128. # define schedstat_add(rq, field, amt) do { } while (0)
  129. # define schedstat_set(var, val) do { } while (0)
  130. #endif
  131. #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
  132. static inline void sched_info_reset_dequeued(struct task_struct *t)
  133. {
  134. t->sched_info.last_queued = 0;
  135. }
  136. /*
  137. * Called when a process is dequeued from the active array and given
  138. * the cpu. We should note that with the exception of interactive
  139. * tasks, the expired queue will become the active queue after the active
  140. * queue is empty, without explicitly dequeuing and requeuing tasks in the
  141. * expired queue. (Interactive tasks may be requeued directly to the
  142. * active queue, thus delaying tasks in the expired queue from running;
  143. * see scheduler_tick()).
  144. *
  145. * Though we are interested in knowing how long it was from the *first* time a
  146. * task was queued to the time that it finally hit a cpu, we call this routine
  147. * from dequeue_task() to account for possible rq->clock skew across cpus. The
  148. * delta taken on each cpu would annul the skew.
  149. */
  150. static inline void sched_info_dequeued(struct task_struct *t)
  151. {
  152. unsigned long long now = task_rq(t)->clock, delta = 0;
  153. if (unlikely(sched_info_on()))
  154. if (t->sched_info.last_queued)
  155. delta = now - t->sched_info.last_queued;
  156. sched_info_reset_dequeued(t);
  157. t->sched_info.run_delay += delta;
  158. rq_sched_info_dequeued(task_rq(t), delta);
  159. }
  160. /*
  161. * Called when a task finally hits the cpu. We can now calculate how
  162. * long it was waiting to run. We also note when it began so that we
  163. * can keep stats on how long its timeslice is.
  164. */
  165. static void sched_info_arrive(struct task_struct *t)
  166. {
  167. unsigned long long now = task_rq(t)->clock, delta = 0;
  168. if (t->sched_info.last_queued)
  169. delta = now - t->sched_info.last_queued;
  170. sched_info_reset_dequeued(t);
  171. t->sched_info.run_delay += delta;
  172. t->sched_info.last_arrival = now;
  173. t->sched_info.pcount++;
  174. rq_sched_info_arrive(task_rq(t), delta);
  175. }
  176. /*
  177. * Called when a process is queued into either the active or expired
  178. * array. The time is noted and later used to determine how long we
  179. * had to wait for us to reach the cpu. Since the expired queue will
  180. * become the active queue after active queue is empty, without dequeuing
  181. * and requeuing any tasks, we are interested in queuing to either. It
  182. * is unusual but not impossible for tasks to be dequeued and immediately
  183. * requeued in the same or another array: this can happen in sched_yield(),
  184. * set_user_nice(), and even load_balance() as it moves tasks from runqueue
  185. * to runqueue.
  186. *
  187. * This function is only called from enqueue_task(), but also only updates
  188. * the timestamp if it is already not set. It's assumed that
  189. * sched_info_dequeued() will clear that stamp when appropriate.
  190. */
  191. static inline void sched_info_queued(struct task_struct *t)
  192. {
  193. if (unlikely(sched_info_on()))
  194. if (!t->sched_info.last_queued)
  195. t->sched_info.last_queued = task_rq(t)->clock;
  196. }
  197. /*
  198. * Called when a process ceases being the active-running process, either
  199. * voluntarily or involuntarily. Now we can calculate how long we ran.
  200. * Also, if the process is still in the TASK_RUNNING state, call
  201. * sched_info_queued() to mark that it has now again started waiting on
  202. * the runqueue.
  203. */
  204. static inline void sched_info_depart(struct task_struct *t)
  205. {
  206. unsigned long long delta = task_rq(t)->clock -
  207. t->sched_info.last_arrival;
  208. t->sched_info.cpu_time += delta;
  209. rq_sched_info_depart(task_rq(t), delta);
  210. if (t->state == TASK_RUNNING)
  211. sched_info_queued(t);
  212. }
  213. /*
  214. * Called when tasks are switched involuntarily due, typically, to expiring
  215. * their time slice. (This may also be called when switching to or from
  216. * the idle task.) We are only called when prev != next.
  217. */
  218. static inline void
  219. __sched_info_switch(struct task_struct *prev, struct task_struct *next)
  220. {
  221. struct rq *rq = task_rq(prev);
  222. /*
  223. * prev now departs the cpu. It's not interesting to record
  224. * stats about how efficient we were at scheduling the idle
  225. * process, however.
  226. */
  227. if (prev != rq->idle)
  228. sched_info_depart(prev);
  229. if (next != rq->idle)
  230. sched_info_arrive(next);
  231. }
  232. static inline void
  233. sched_info_switch(struct task_struct *prev, struct task_struct *next)
  234. {
  235. if (unlikely(sched_info_on()))
  236. __sched_info_switch(prev, next);
  237. }
  238. #else
  239. #define sched_info_queued(t) do { } while (0)
  240. #define sched_info_reset_dequeued(t) do { } while (0)
  241. #define sched_info_dequeued(t) do { } while (0)
  242. #define sched_info_switch(t, next) do { } while (0)
  243. #endif /* CONFIG_SCHEDSTATS || CONFIG_TASK_DELAY_ACCT */