sched_rt.c 34 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475
  1. /*
  2. * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
  3. * policies)
  4. */
  5. #ifdef CONFIG_SMP
  6. static inline int rt_overloaded(struct rq *rq)
  7. {
  8. return atomic_read(&rq->rd->rto_count);
  9. }
  10. static inline void rt_set_overload(struct rq *rq)
  11. {
  12. if (!rq->online)
  13. return;
  14. cpu_set(rq->cpu, rq->rd->rto_mask);
  15. /*
  16. * Make sure the mask is visible before we set
  17. * the overload count. That is checked to determine
  18. * if we should look at the mask. It would be a shame
  19. * if we looked at the mask, but the mask was not
  20. * updated yet.
  21. */
  22. wmb();
  23. atomic_inc(&rq->rd->rto_count);
  24. }
  25. static inline void rt_clear_overload(struct rq *rq)
  26. {
  27. if (!rq->online)
  28. return;
  29. /* the order here really doesn't matter */
  30. atomic_dec(&rq->rd->rto_count);
  31. cpu_clear(rq->cpu, rq->rd->rto_mask);
  32. }
  33. static void update_rt_migration(struct rq *rq)
  34. {
  35. if (rq->rt.rt_nr_migratory && (rq->rt.rt_nr_running > 1)) {
  36. if (!rq->rt.overloaded) {
  37. rt_set_overload(rq);
  38. rq->rt.overloaded = 1;
  39. }
  40. } else if (rq->rt.overloaded) {
  41. rt_clear_overload(rq);
  42. rq->rt.overloaded = 0;
  43. }
  44. }
  45. #endif /* CONFIG_SMP */
  46. static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
  47. {
  48. return container_of(rt_se, struct task_struct, rt);
  49. }
  50. static inline int on_rt_rq(struct sched_rt_entity *rt_se)
  51. {
  52. return !list_empty(&rt_se->run_list);
  53. }
  54. #ifdef CONFIG_RT_GROUP_SCHED
  55. static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
  56. {
  57. if (!rt_rq->tg)
  58. return RUNTIME_INF;
  59. return rt_rq->rt_runtime;
  60. }
  61. static inline u64 sched_rt_period(struct rt_rq *rt_rq)
  62. {
  63. return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
  64. }
  65. #define for_each_leaf_rt_rq(rt_rq, rq) \
  66. list_for_each_entry(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list)
  67. static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
  68. {
  69. return rt_rq->rq;
  70. }
  71. static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
  72. {
  73. return rt_se->rt_rq;
  74. }
  75. #define for_each_sched_rt_entity(rt_se) \
  76. for (; rt_se; rt_se = rt_se->parent)
  77. static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
  78. {
  79. return rt_se->my_q;
  80. }
  81. static void enqueue_rt_entity(struct sched_rt_entity *rt_se);
  82. static void dequeue_rt_entity(struct sched_rt_entity *rt_se);
  83. static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
  84. {
  85. struct sched_rt_entity *rt_se = rt_rq->rt_se;
  86. if (rt_se && !on_rt_rq(rt_se) && rt_rq->rt_nr_running) {
  87. struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
  88. enqueue_rt_entity(rt_se);
  89. if (rt_rq->highest_prio < curr->prio)
  90. resched_task(curr);
  91. }
  92. }
  93. static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
  94. {
  95. struct sched_rt_entity *rt_se = rt_rq->rt_se;
  96. if (rt_se && on_rt_rq(rt_se))
  97. dequeue_rt_entity(rt_se);
  98. }
  99. static inline int rt_rq_throttled(struct rt_rq *rt_rq)
  100. {
  101. return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
  102. }
  103. static int rt_se_boosted(struct sched_rt_entity *rt_se)
  104. {
  105. struct rt_rq *rt_rq = group_rt_rq(rt_se);
  106. struct task_struct *p;
  107. if (rt_rq)
  108. return !!rt_rq->rt_nr_boosted;
  109. p = rt_task_of(rt_se);
  110. return p->prio != p->normal_prio;
  111. }
  112. #ifdef CONFIG_SMP
  113. static inline cpumask_t sched_rt_period_mask(void)
  114. {
  115. return cpu_rq(smp_processor_id())->rd->span;
  116. }
  117. #else
  118. static inline cpumask_t sched_rt_period_mask(void)
  119. {
  120. return cpu_online_map;
  121. }
  122. #endif
  123. static inline
  124. struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
  125. {
  126. return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
  127. }
  128. static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
  129. {
  130. return &rt_rq->tg->rt_bandwidth;
  131. }
  132. #else /* !CONFIG_RT_GROUP_SCHED */
  133. static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
  134. {
  135. return rt_rq->rt_runtime;
  136. }
  137. static inline u64 sched_rt_period(struct rt_rq *rt_rq)
  138. {
  139. return ktime_to_ns(def_rt_bandwidth.rt_period);
  140. }
  141. #define for_each_leaf_rt_rq(rt_rq, rq) \
  142. for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
  143. static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
  144. {
  145. return container_of(rt_rq, struct rq, rt);
  146. }
  147. static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
  148. {
  149. struct task_struct *p = rt_task_of(rt_se);
  150. struct rq *rq = task_rq(p);
  151. return &rq->rt;
  152. }
  153. #define for_each_sched_rt_entity(rt_se) \
  154. for (; rt_se; rt_se = NULL)
  155. static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
  156. {
  157. return NULL;
  158. }
  159. static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
  160. {
  161. }
  162. static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
  163. {
  164. }
  165. static inline int rt_rq_throttled(struct rt_rq *rt_rq)
  166. {
  167. return rt_rq->rt_throttled;
  168. }
  169. static inline cpumask_t sched_rt_period_mask(void)
  170. {
  171. return cpu_online_map;
  172. }
  173. static inline
  174. struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
  175. {
  176. return &cpu_rq(cpu)->rt;
  177. }
  178. static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
  179. {
  180. return &def_rt_bandwidth;
  181. }
  182. #endif /* CONFIG_RT_GROUP_SCHED */
  183. #ifdef CONFIG_SMP
  184. static int do_balance_runtime(struct rt_rq *rt_rq)
  185. {
  186. struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
  187. struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
  188. int i, weight, more = 0;
  189. u64 rt_period;
  190. weight = cpus_weight(rd->span);
  191. spin_lock(&rt_b->rt_runtime_lock);
  192. rt_period = ktime_to_ns(rt_b->rt_period);
  193. for_each_cpu_mask(i, rd->span) {
  194. struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
  195. s64 diff;
  196. if (iter == rt_rq)
  197. continue;
  198. spin_lock(&iter->rt_runtime_lock);
  199. if (iter->rt_runtime == RUNTIME_INF)
  200. goto next;
  201. diff = iter->rt_runtime - iter->rt_time;
  202. if (diff > 0) {
  203. do_div(diff, weight);
  204. if (rt_rq->rt_runtime + diff > rt_period)
  205. diff = rt_period - rt_rq->rt_runtime;
  206. iter->rt_runtime -= diff;
  207. rt_rq->rt_runtime += diff;
  208. more = 1;
  209. if (rt_rq->rt_runtime == rt_period) {
  210. spin_unlock(&iter->rt_runtime_lock);
  211. break;
  212. }
  213. }
  214. next:
  215. spin_unlock(&iter->rt_runtime_lock);
  216. }
  217. spin_unlock(&rt_b->rt_runtime_lock);
  218. return more;
  219. }
  220. static void __disable_runtime(struct rq *rq)
  221. {
  222. struct root_domain *rd = rq->rd;
  223. struct rt_rq *rt_rq;
  224. if (unlikely(!scheduler_running))
  225. return;
  226. for_each_leaf_rt_rq(rt_rq, rq) {
  227. struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
  228. s64 want;
  229. int i;
  230. spin_lock(&rt_b->rt_runtime_lock);
  231. spin_lock(&rt_rq->rt_runtime_lock);
  232. if (rt_rq->rt_runtime == RUNTIME_INF ||
  233. rt_rq->rt_runtime == rt_b->rt_runtime)
  234. goto balanced;
  235. spin_unlock(&rt_rq->rt_runtime_lock);
  236. want = rt_b->rt_runtime - rt_rq->rt_runtime;
  237. for_each_cpu_mask(i, rd->span) {
  238. struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
  239. s64 diff;
  240. if (iter == rt_rq)
  241. continue;
  242. spin_lock(&iter->rt_runtime_lock);
  243. if (want > 0) {
  244. diff = min_t(s64, iter->rt_runtime, want);
  245. iter->rt_runtime -= diff;
  246. want -= diff;
  247. } else {
  248. iter->rt_runtime -= want;
  249. want -= want;
  250. }
  251. spin_unlock(&iter->rt_runtime_lock);
  252. if (!want)
  253. break;
  254. }
  255. spin_lock(&rt_rq->rt_runtime_lock);
  256. BUG_ON(want);
  257. balanced:
  258. rt_rq->rt_runtime = RUNTIME_INF;
  259. spin_unlock(&rt_rq->rt_runtime_lock);
  260. spin_unlock(&rt_b->rt_runtime_lock);
  261. }
  262. }
  263. static void disable_runtime(struct rq *rq)
  264. {
  265. unsigned long flags;
  266. spin_lock_irqsave(&rq->lock, flags);
  267. __disable_runtime(rq);
  268. spin_unlock_irqrestore(&rq->lock, flags);
  269. }
  270. static void __enable_runtime(struct rq *rq)
  271. {
  272. struct rt_rq *rt_rq;
  273. if (unlikely(!scheduler_running))
  274. return;
  275. for_each_leaf_rt_rq(rt_rq, rq) {
  276. struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
  277. spin_lock(&rt_b->rt_runtime_lock);
  278. spin_lock(&rt_rq->rt_runtime_lock);
  279. rt_rq->rt_runtime = rt_b->rt_runtime;
  280. rt_rq->rt_time = 0;
  281. spin_unlock(&rt_rq->rt_runtime_lock);
  282. spin_unlock(&rt_b->rt_runtime_lock);
  283. }
  284. }
  285. static void enable_runtime(struct rq *rq)
  286. {
  287. unsigned long flags;
  288. spin_lock_irqsave(&rq->lock, flags);
  289. __enable_runtime(rq);
  290. spin_unlock_irqrestore(&rq->lock, flags);
  291. }
  292. static int balance_runtime(struct rt_rq *rt_rq)
  293. {
  294. int more = 0;
  295. if (rt_rq->rt_time > rt_rq->rt_runtime) {
  296. spin_unlock(&rt_rq->rt_runtime_lock);
  297. more = do_balance_runtime(rt_rq);
  298. spin_lock(&rt_rq->rt_runtime_lock);
  299. }
  300. return more;
  301. }
  302. #else /* !CONFIG_SMP */
  303. static inline int balance_runtime(struct rt_rq *rt_rq)
  304. {
  305. return 0;
  306. }
  307. #endif /* CONFIG_SMP */
  308. static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
  309. {
  310. int i, idle = 1;
  311. cpumask_t span;
  312. if (rt_b->rt_runtime == RUNTIME_INF)
  313. return 1;
  314. span = sched_rt_period_mask();
  315. for_each_cpu_mask(i, span) {
  316. int enqueue = 0;
  317. struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
  318. struct rq *rq = rq_of_rt_rq(rt_rq);
  319. spin_lock(&rq->lock);
  320. if (rt_rq->rt_time) {
  321. u64 runtime;
  322. spin_lock(&rt_rq->rt_runtime_lock);
  323. if (rt_rq->rt_throttled)
  324. balance_runtime(rt_rq);
  325. runtime = rt_rq->rt_runtime;
  326. rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
  327. if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
  328. rt_rq->rt_throttled = 0;
  329. enqueue = 1;
  330. }
  331. if (rt_rq->rt_time || rt_rq->rt_nr_running)
  332. idle = 0;
  333. spin_unlock(&rt_rq->rt_runtime_lock);
  334. } else if (rt_rq->rt_nr_running)
  335. idle = 0;
  336. if (enqueue)
  337. sched_rt_rq_enqueue(rt_rq);
  338. spin_unlock(&rq->lock);
  339. }
  340. return idle;
  341. }
  342. static inline int rt_se_prio(struct sched_rt_entity *rt_se)
  343. {
  344. #ifdef CONFIG_RT_GROUP_SCHED
  345. struct rt_rq *rt_rq = group_rt_rq(rt_se);
  346. if (rt_rq)
  347. return rt_rq->highest_prio;
  348. #endif
  349. return rt_task_of(rt_se)->prio;
  350. }
  351. static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
  352. {
  353. u64 runtime = sched_rt_runtime(rt_rq);
  354. if (runtime == RUNTIME_INF)
  355. return 0;
  356. if (rt_rq->rt_throttled)
  357. return rt_rq_throttled(rt_rq);
  358. if (sched_rt_runtime(rt_rq) >= sched_rt_period(rt_rq))
  359. return 0;
  360. balance_runtime(rt_rq);
  361. runtime = sched_rt_runtime(rt_rq);
  362. if (runtime == RUNTIME_INF)
  363. return 0;
  364. if (rt_rq->rt_time > runtime) {
  365. rt_rq->rt_throttled = 1;
  366. if (rt_rq_throttled(rt_rq)) {
  367. sched_rt_rq_dequeue(rt_rq);
  368. return 1;
  369. }
  370. }
  371. return 0;
  372. }
  373. /*
  374. * Update the current task's runtime statistics. Skip current tasks that
  375. * are not in our scheduling class.
  376. */
  377. static void update_curr_rt(struct rq *rq)
  378. {
  379. struct task_struct *curr = rq->curr;
  380. struct sched_rt_entity *rt_se = &curr->rt;
  381. struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
  382. u64 delta_exec;
  383. if (!task_has_rt_policy(curr))
  384. return;
  385. delta_exec = rq->clock - curr->se.exec_start;
  386. if (unlikely((s64)delta_exec < 0))
  387. delta_exec = 0;
  388. schedstat_set(curr->se.exec_max, max(curr->se.exec_max, delta_exec));
  389. curr->se.sum_exec_runtime += delta_exec;
  390. curr->se.exec_start = rq->clock;
  391. cpuacct_charge(curr, delta_exec);
  392. for_each_sched_rt_entity(rt_se) {
  393. rt_rq = rt_rq_of_se(rt_se);
  394. spin_lock(&rt_rq->rt_runtime_lock);
  395. rt_rq->rt_time += delta_exec;
  396. if (sched_rt_runtime_exceeded(rt_rq))
  397. resched_task(curr);
  398. spin_unlock(&rt_rq->rt_runtime_lock);
  399. }
  400. }
  401. static inline
  402. void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
  403. {
  404. WARN_ON(!rt_prio(rt_se_prio(rt_se)));
  405. rt_rq->rt_nr_running++;
  406. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  407. if (rt_se_prio(rt_se) < rt_rq->highest_prio) {
  408. struct rq *rq = rq_of_rt_rq(rt_rq);
  409. rt_rq->highest_prio = rt_se_prio(rt_se);
  410. #ifdef CONFIG_SMP
  411. if (rq->online)
  412. cpupri_set(&rq->rd->cpupri, rq->cpu,
  413. rt_se_prio(rt_se));
  414. #endif
  415. }
  416. #endif
  417. #ifdef CONFIG_SMP
  418. if (rt_se->nr_cpus_allowed > 1) {
  419. struct rq *rq = rq_of_rt_rq(rt_rq);
  420. rq->rt.rt_nr_migratory++;
  421. }
  422. update_rt_migration(rq_of_rt_rq(rt_rq));
  423. #endif
  424. #ifdef CONFIG_RT_GROUP_SCHED
  425. if (rt_se_boosted(rt_se))
  426. rt_rq->rt_nr_boosted++;
  427. if (rt_rq->tg)
  428. start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
  429. #else
  430. start_rt_bandwidth(&def_rt_bandwidth);
  431. #endif
  432. }
  433. static inline
  434. void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
  435. {
  436. #ifdef CONFIG_SMP
  437. int highest_prio = rt_rq->highest_prio;
  438. #endif
  439. WARN_ON(!rt_prio(rt_se_prio(rt_se)));
  440. WARN_ON(!rt_rq->rt_nr_running);
  441. rt_rq->rt_nr_running--;
  442. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  443. if (rt_rq->rt_nr_running) {
  444. struct rt_prio_array *array;
  445. WARN_ON(rt_se_prio(rt_se) < rt_rq->highest_prio);
  446. if (rt_se_prio(rt_se) == rt_rq->highest_prio) {
  447. /* recalculate */
  448. array = &rt_rq->active;
  449. rt_rq->highest_prio =
  450. sched_find_first_bit(array->bitmap);
  451. } /* otherwise leave rq->highest prio alone */
  452. } else
  453. rt_rq->highest_prio = MAX_RT_PRIO;
  454. #endif
  455. #ifdef CONFIG_SMP
  456. if (rt_se->nr_cpus_allowed > 1) {
  457. struct rq *rq = rq_of_rt_rq(rt_rq);
  458. rq->rt.rt_nr_migratory--;
  459. }
  460. if (rt_rq->highest_prio != highest_prio) {
  461. struct rq *rq = rq_of_rt_rq(rt_rq);
  462. if (rq->online)
  463. cpupri_set(&rq->rd->cpupri, rq->cpu,
  464. rt_rq->highest_prio);
  465. }
  466. update_rt_migration(rq_of_rt_rq(rt_rq));
  467. #endif /* CONFIG_SMP */
  468. #ifdef CONFIG_RT_GROUP_SCHED
  469. if (rt_se_boosted(rt_se))
  470. rt_rq->rt_nr_boosted--;
  471. WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
  472. #endif
  473. }
  474. static void __enqueue_rt_entity(struct sched_rt_entity *rt_se)
  475. {
  476. struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
  477. struct rt_prio_array *array = &rt_rq->active;
  478. struct rt_rq *group_rq = group_rt_rq(rt_se);
  479. struct list_head *queue = array->queue + rt_se_prio(rt_se);
  480. /*
  481. * Don't enqueue the group if its throttled, or when empty.
  482. * The latter is a consequence of the former when a child group
  483. * get throttled and the current group doesn't have any other
  484. * active members.
  485. */
  486. if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
  487. return;
  488. if (rt_se->nr_cpus_allowed == 1)
  489. list_add(&rt_se->run_list, queue);
  490. else
  491. list_add_tail(&rt_se->run_list, queue);
  492. __set_bit(rt_se_prio(rt_se), array->bitmap);
  493. inc_rt_tasks(rt_se, rt_rq);
  494. }
  495. static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
  496. {
  497. struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
  498. struct rt_prio_array *array = &rt_rq->active;
  499. list_del_init(&rt_se->run_list);
  500. if (list_empty(array->queue + rt_se_prio(rt_se)))
  501. __clear_bit(rt_se_prio(rt_se), array->bitmap);
  502. dec_rt_tasks(rt_se, rt_rq);
  503. }
  504. /*
  505. * Because the prio of an upper entry depends on the lower
  506. * entries, we must remove entries top - down.
  507. */
  508. static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
  509. {
  510. struct sched_rt_entity *back = NULL;
  511. for_each_sched_rt_entity(rt_se) {
  512. rt_se->back = back;
  513. back = rt_se;
  514. }
  515. for (rt_se = back; rt_se; rt_se = rt_se->back) {
  516. if (on_rt_rq(rt_se))
  517. __dequeue_rt_entity(rt_se);
  518. }
  519. }
  520. static void enqueue_rt_entity(struct sched_rt_entity *rt_se)
  521. {
  522. dequeue_rt_stack(rt_se);
  523. for_each_sched_rt_entity(rt_se)
  524. __enqueue_rt_entity(rt_se);
  525. }
  526. static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
  527. {
  528. dequeue_rt_stack(rt_se);
  529. for_each_sched_rt_entity(rt_se) {
  530. struct rt_rq *rt_rq = group_rt_rq(rt_se);
  531. if (rt_rq && rt_rq->rt_nr_running)
  532. __enqueue_rt_entity(rt_se);
  533. }
  534. }
  535. /*
  536. * Adding/removing a task to/from a priority array:
  537. */
  538. static void enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup)
  539. {
  540. struct sched_rt_entity *rt_se = &p->rt;
  541. if (wakeup)
  542. rt_se->timeout = 0;
  543. enqueue_rt_entity(rt_se);
  544. inc_cpu_load(rq, p->se.load.weight);
  545. }
  546. static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep)
  547. {
  548. struct sched_rt_entity *rt_se = &p->rt;
  549. update_curr_rt(rq);
  550. dequeue_rt_entity(rt_se);
  551. dec_cpu_load(rq, p->se.load.weight);
  552. }
  553. /*
  554. * Put task to the end of the run list without the overhead of dequeue
  555. * followed by enqueue.
  556. */
  557. static
  558. void requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
  559. {
  560. struct rt_prio_array *array = &rt_rq->active;
  561. if (on_rt_rq(rt_se)) {
  562. list_del_init(&rt_se->run_list);
  563. list_add_tail(&rt_se->run_list,
  564. array->queue + rt_se_prio(rt_se));
  565. }
  566. }
  567. static void requeue_task_rt(struct rq *rq, struct task_struct *p)
  568. {
  569. struct sched_rt_entity *rt_se = &p->rt;
  570. struct rt_rq *rt_rq;
  571. for_each_sched_rt_entity(rt_se) {
  572. rt_rq = rt_rq_of_se(rt_se);
  573. requeue_rt_entity(rt_rq, rt_se);
  574. }
  575. }
  576. static void yield_task_rt(struct rq *rq)
  577. {
  578. requeue_task_rt(rq, rq->curr);
  579. }
  580. #ifdef CONFIG_SMP
  581. static int find_lowest_rq(struct task_struct *task);
  582. static int select_task_rq_rt(struct task_struct *p, int sync)
  583. {
  584. struct rq *rq = task_rq(p);
  585. /*
  586. * If the current task is an RT task, then
  587. * try to see if we can wake this RT task up on another
  588. * runqueue. Otherwise simply start this RT task
  589. * on its current runqueue.
  590. *
  591. * We want to avoid overloading runqueues. Even if
  592. * the RT task is of higher priority than the current RT task.
  593. * RT tasks behave differently than other tasks. If
  594. * one gets preempted, we try to push it off to another queue.
  595. * So trying to keep a preempting RT task on the same
  596. * cache hot CPU will force the running RT task to
  597. * a cold CPU. So we waste all the cache for the lower
  598. * RT task in hopes of saving some of a RT task
  599. * that is just being woken and probably will have
  600. * cold cache anyway.
  601. */
  602. if (unlikely(rt_task(rq->curr)) &&
  603. (p->rt.nr_cpus_allowed > 1)) {
  604. int cpu = find_lowest_rq(p);
  605. return (cpu == -1) ? task_cpu(p) : cpu;
  606. }
  607. /*
  608. * Otherwise, just let it ride on the affined RQ and the
  609. * post-schedule router will push the preempted task away
  610. */
  611. return task_cpu(p);
  612. }
  613. #endif /* CONFIG_SMP */
  614. /*
  615. * Preempt the current task with a newly woken task if needed:
  616. */
  617. static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p)
  618. {
  619. if (p->prio < rq->curr->prio) {
  620. resched_task(rq->curr);
  621. return;
  622. }
  623. #ifdef CONFIG_SMP
  624. /*
  625. * If:
  626. *
  627. * - the newly woken task is of equal priority to the current task
  628. * - the newly woken task is non-migratable while current is migratable
  629. * - current will be preempted on the next reschedule
  630. *
  631. * we should check to see if current can readily move to a different
  632. * cpu. If so, we will reschedule to allow the push logic to try
  633. * to move current somewhere else, making room for our non-migratable
  634. * task.
  635. */
  636. if((p->prio == rq->curr->prio)
  637. && p->rt.nr_cpus_allowed == 1
  638. && rq->curr->rt.nr_cpus_allowed != 1) {
  639. cpumask_t mask;
  640. if (cpupri_find(&rq->rd->cpupri, rq->curr, &mask))
  641. /*
  642. * There appears to be other cpus that can accept
  643. * current, so lets reschedule to try and push it away
  644. */
  645. resched_task(rq->curr);
  646. }
  647. #endif
  648. }
  649. static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
  650. struct rt_rq *rt_rq)
  651. {
  652. struct rt_prio_array *array = &rt_rq->active;
  653. struct sched_rt_entity *next = NULL;
  654. struct list_head *queue;
  655. int idx;
  656. idx = sched_find_first_bit(array->bitmap);
  657. BUG_ON(idx >= MAX_RT_PRIO);
  658. queue = array->queue + idx;
  659. next = list_entry(queue->next, struct sched_rt_entity, run_list);
  660. return next;
  661. }
  662. static struct task_struct *pick_next_task_rt(struct rq *rq)
  663. {
  664. struct sched_rt_entity *rt_se;
  665. struct task_struct *p;
  666. struct rt_rq *rt_rq;
  667. rt_rq = &rq->rt;
  668. if (unlikely(!rt_rq->rt_nr_running))
  669. return NULL;
  670. if (rt_rq_throttled(rt_rq))
  671. return NULL;
  672. do {
  673. rt_se = pick_next_rt_entity(rq, rt_rq);
  674. BUG_ON(!rt_se);
  675. rt_rq = group_rt_rq(rt_se);
  676. } while (rt_rq);
  677. p = rt_task_of(rt_se);
  678. p->se.exec_start = rq->clock;
  679. return p;
  680. }
  681. static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
  682. {
  683. update_curr_rt(rq);
  684. p->se.exec_start = 0;
  685. }
  686. #ifdef CONFIG_SMP
  687. /* Only try algorithms three times */
  688. #define RT_MAX_TRIES 3
  689. static int double_lock_balance(struct rq *this_rq, struct rq *busiest);
  690. static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep);
  691. static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
  692. {
  693. if (!task_running(rq, p) &&
  694. (cpu < 0 || cpu_isset(cpu, p->cpus_allowed)) &&
  695. (p->rt.nr_cpus_allowed > 1))
  696. return 1;
  697. return 0;
  698. }
  699. /* Return the second highest RT task, NULL otherwise */
  700. static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu)
  701. {
  702. struct task_struct *next = NULL;
  703. struct sched_rt_entity *rt_se;
  704. struct rt_prio_array *array;
  705. struct rt_rq *rt_rq;
  706. int idx;
  707. for_each_leaf_rt_rq(rt_rq, rq) {
  708. array = &rt_rq->active;
  709. idx = sched_find_first_bit(array->bitmap);
  710. next_idx:
  711. if (idx >= MAX_RT_PRIO)
  712. continue;
  713. if (next && next->prio < idx)
  714. continue;
  715. list_for_each_entry(rt_se, array->queue + idx, run_list) {
  716. struct task_struct *p = rt_task_of(rt_se);
  717. if (pick_rt_task(rq, p, cpu)) {
  718. next = p;
  719. break;
  720. }
  721. }
  722. if (!next) {
  723. idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
  724. goto next_idx;
  725. }
  726. }
  727. return next;
  728. }
  729. static DEFINE_PER_CPU(cpumask_t, local_cpu_mask);
  730. static inline int pick_optimal_cpu(int this_cpu, cpumask_t *mask)
  731. {
  732. int first;
  733. /* "this_cpu" is cheaper to preempt than a remote processor */
  734. if ((this_cpu != -1) && cpu_isset(this_cpu, *mask))
  735. return this_cpu;
  736. first = first_cpu(*mask);
  737. if (first != NR_CPUS)
  738. return first;
  739. return -1;
  740. }
  741. static int find_lowest_rq(struct task_struct *task)
  742. {
  743. struct sched_domain *sd;
  744. cpumask_t *lowest_mask = &__get_cpu_var(local_cpu_mask);
  745. int this_cpu = smp_processor_id();
  746. int cpu = task_cpu(task);
  747. if (task->rt.nr_cpus_allowed == 1)
  748. return -1; /* No other targets possible */
  749. if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
  750. return -1; /* No targets found */
  751. /*
  752. * At this point we have built a mask of cpus representing the
  753. * lowest priority tasks in the system. Now we want to elect
  754. * the best one based on our affinity and topology.
  755. *
  756. * We prioritize the last cpu that the task executed on since
  757. * it is most likely cache-hot in that location.
  758. */
  759. if (cpu_isset(cpu, *lowest_mask))
  760. return cpu;
  761. /*
  762. * Otherwise, we consult the sched_domains span maps to figure
  763. * out which cpu is logically closest to our hot cache data.
  764. */
  765. if (this_cpu == cpu)
  766. this_cpu = -1; /* Skip this_cpu opt if the same */
  767. for_each_domain(cpu, sd) {
  768. if (sd->flags & SD_WAKE_AFFINE) {
  769. cpumask_t domain_mask;
  770. int best_cpu;
  771. cpus_and(domain_mask, sd->span, *lowest_mask);
  772. best_cpu = pick_optimal_cpu(this_cpu,
  773. &domain_mask);
  774. if (best_cpu != -1)
  775. return best_cpu;
  776. }
  777. }
  778. /*
  779. * And finally, if there were no matches within the domains
  780. * just give the caller *something* to work with from the compatible
  781. * locations.
  782. */
  783. return pick_optimal_cpu(this_cpu, lowest_mask);
  784. }
  785. /* Will lock the rq it finds */
  786. static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
  787. {
  788. struct rq *lowest_rq = NULL;
  789. int tries;
  790. int cpu;
  791. for (tries = 0; tries < RT_MAX_TRIES; tries++) {
  792. cpu = find_lowest_rq(task);
  793. if ((cpu == -1) || (cpu == rq->cpu))
  794. break;
  795. lowest_rq = cpu_rq(cpu);
  796. /* if the prio of this runqueue changed, try again */
  797. if (double_lock_balance(rq, lowest_rq)) {
  798. /*
  799. * We had to unlock the run queue. In
  800. * the mean time, task could have
  801. * migrated already or had its affinity changed.
  802. * Also make sure that it wasn't scheduled on its rq.
  803. */
  804. if (unlikely(task_rq(task) != rq ||
  805. !cpu_isset(lowest_rq->cpu,
  806. task->cpus_allowed) ||
  807. task_running(rq, task) ||
  808. !task->se.on_rq)) {
  809. spin_unlock(&lowest_rq->lock);
  810. lowest_rq = NULL;
  811. break;
  812. }
  813. }
  814. /* If this rq is still suitable use it. */
  815. if (lowest_rq->rt.highest_prio > task->prio)
  816. break;
  817. /* try again */
  818. spin_unlock(&lowest_rq->lock);
  819. lowest_rq = NULL;
  820. }
  821. return lowest_rq;
  822. }
  823. /*
  824. * If the current CPU has more than one RT task, see if the non
  825. * running task can migrate over to a CPU that is running a task
  826. * of lesser priority.
  827. */
  828. static int push_rt_task(struct rq *rq)
  829. {
  830. struct task_struct *next_task;
  831. struct rq *lowest_rq;
  832. int ret = 0;
  833. int paranoid = RT_MAX_TRIES;
  834. if (!rq->rt.overloaded)
  835. return 0;
  836. next_task = pick_next_highest_task_rt(rq, -1);
  837. if (!next_task)
  838. return 0;
  839. retry:
  840. if (unlikely(next_task == rq->curr)) {
  841. WARN_ON(1);
  842. return 0;
  843. }
  844. /*
  845. * It's possible that the next_task slipped in of
  846. * higher priority than current. If that's the case
  847. * just reschedule current.
  848. */
  849. if (unlikely(next_task->prio < rq->curr->prio)) {
  850. resched_task(rq->curr);
  851. return 0;
  852. }
  853. /* We might release rq lock */
  854. get_task_struct(next_task);
  855. /* find_lock_lowest_rq locks the rq if found */
  856. lowest_rq = find_lock_lowest_rq(next_task, rq);
  857. if (!lowest_rq) {
  858. struct task_struct *task;
  859. /*
  860. * find lock_lowest_rq releases rq->lock
  861. * so it is possible that next_task has changed.
  862. * If it has, then try again.
  863. */
  864. task = pick_next_highest_task_rt(rq, -1);
  865. if (unlikely(task != next_task) && task && paranoid--) {
  866. put_task_struct(next_task);
  867. next_task = task;
  868. goto retry;
  869. }
  870. goto out;
  871. }
  872. deactivate_task(rq, next_task, 0);
  873. set_task_cpu(next_task, lowest_rq->cpu);
  874. activate_task(lowest_rq, next_task, 0);
  875. resched_task(lowest_rq->curr);
  876. spin_unlock(&lowest_rq->lock);
  877. ret = 1;
  878. out:
  879. put_task_struct(next_task);
  880. return ret;
  881. }
  882. /*
  883. * TODO: Currently we just use the second highest prio task on
  884. * the queue, and stop when it can't migrate (or there's
  885. * no more RT tasks). There may be a case where a lower
  886. * priority RT task has a different affinity than the
  887. * higher RT task. In this case the lower RT task could
  888. * possibly be able to migrate where as the higher priority
  889. * RT task could not. We currently ignore this issue.
  890. * Enhancements are welcome!
  891. */
  892. static void push_rt_tasks(struct rq *rq)
  893. {
  894. /* push_rt_task will return true if it moved an RT */
  895. while (push_rt_task(rq))
  896. ;
  897. }
  898. static int pull_rt_task(struct rq *this_rq)
  899. {
  900. int this_cpu = this_rq->cpu, ret = 0, cpu;
  901. struct task_struct *p, *next;
  902. struct rq *src_rq;
  903. if (likely(!rt_overloaded(this_rq)))
  904. return 0;
  905. next = pick_next_task_rt(this_rq);
  906. for_each_cpu_mask(cpu, this_rq->rd->rto_mask) {
  907. if (this_cpu == cpu)
  908. continue;
  909. src_rq = cpu_rq(cpu);
  910. /*
  911. * We can potentially drop this_rq's lock in
  912. * double_lock_balance, and another CPU could
  913. * steal our next task - hence we must cause
  914. * the caller to recalculate the next task
  915. * in that case:
  916. */
  917. if (double_lock_balance(this_rq, src_rq)) {
  918. struct task_struct *old_next = next;
  919. next = pick_next_task_rt(this_rq);
  920. if (next != old_next)
  921. ret = 1;
  922. }
  923. /*
  924. * Are there still pullable RT tasks?
  925. */
  926. if (src_rq->rt.rt_nr_running <= 1)
  927. goto skip;
  928. p = pick_next_highest_task_rt(src_rq, this_cpu);
  929. /*
  930. * Do we have an RT task that preempts
  931. * the to-be-scheduled task?
  932. */
  933. if (p && (!next || (p->prio < next->prio))) {
  934. WARN_ON(p == src_rq->curr);
  935. WARN_ON(!p->se.on_rq);
  936. /*
  937. * There's a chance that p is higher in priority
  938. * than what's currently running on its cpu.
  939. * This is just that p is wakeing up and hasn't
  940. * had a chance to schedule. We only pull
  941. * p if it is lower in priority than the
  942. * current task on the run queue or
  943. * this_rq next task is lower in prio than
  944. * the current task on that rq.
  945. */
  946. if (p->prio < src_rq->curr->prio ||
  947. (next && next->prio < src_rq->curr->prio))
  948. goto skip;
  949. ret = 1;
  950. deactivate_task(src_rq, p, 0);
  951. set_task_cpu(p, this_cpu);
  952. activate_task(this_rq, p, 0);
  953. /*
  954. * We continue with the search, just in
  955. * case there's an even higher prio task
  956. * in another runqueue. (low likelyhood
  957. * but possible)
  958. *
  959. * Update next so that we won't pick a task
  960. * on another cpu with a priority lower (or equal)
  961. * than the one we just picked.
  962. */
  963. next = p;
  964. }
  965. skip:
  966. spin_unlock(&src_rq->lock);
  967. }
  968. return ret;
  969. }
  970. static void pre_schedule_rt(struct rq *rq, struct task_struct *prev)
  971. {
  972. /* Try to pull RT tasks here if we lower this rq's prio */
  973. if (unlikely(rt_task(prev)) && rq->rt.highest_prio > prev->prio)
  974. pull_rt_task(rq);
  975. }
  976. static void post_schedule_rt(struct rq *rq)
  977. {
  978. /*
  979. * If we have more than one rt_task queued, then
  980. * see if we can push the other rt_tasks off to other CPUS.
  981. * Note we may release the rq lock, and since
  982. * the lock was owned by prev, we need to release it
  983. * first via finish_lock_switch and then reaquire it here.
  984. */
  985. if (unlikely(rq->rt.overloaded)) {
  986. spin_lock_irq(&rq->lock);
  987. push_rt_tasks(rq);
  988. spin_unlock_irq(&rq->lock);
  989. }
  990. }
  991. /*
  992. * If we are not running and we are not going to reschedule soon, we should
  993. * try to push tasks away now
  994. */
  995. static void task_wake_up_rt(struct rq *rq, struct task_struct *p)
  996. {
  997. if (!task_running(rq, p) &&
  998. !test_tsk_need_resched(rq->curr) &&
  999. rq->rt.overloaded)
  1000. push_rt_tasks(rq);
  1001. }
  1002. static unsigned long
  1003. load_balance_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1004. unsigned long max_load_move,
  1005. struct sched_domain *sd, enum cpu_idle_type idle,
  1006. int *all_pinned, int *this_best_prio)
  1007. {
  1008. /* don't touch RT tasks */
  1009. return 0;
  1010. }
  1011. static int
  1012. move_one_task_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
  1013. struct sched_domain *sd, enum cpu_idle_type idle)
  1014. {
  1015. /* don't touch RT tasks */
  1016. return 0;
  1017. }
  1018. static void set_cpus_allowed_rt(struct task_struct *p,
  1019. const cpumask_t *new_mask)
  1020. {
  1021. int weight = cpus_weight(*new_mask);
  1022. BUG_ON(!rt_task(p));
  1023. /*
  1024. * Update the migration status of the RQ if we have an RT task
  1025. * which is running AND changing its weight value.
  1026. */
  1027. if (p->se.on_rq && (weight != p->rt.nr_cpus_allowed)) {
  1028. struct rq *rq = task_rq(p);
  1029. if ((p->rt.nr_cpus_allowed <= 1) && (weight > 1)) {
  1030. rq->rt.rt_nr_migratory++;
  1031. } else if ((p->rt.nr_cpus_allowed > 1) && (weight <= 1)) {
  1032. BUG_ON(!rq->rt.rt_nr_migratory);
  1033. rq->rt.rt_nr_migratory--;
  1034. }
  1035. update_rt_migration(rq);
  1036. }
  1037. p->cpus_allowed = *new_mask;
  1038. p->rt.nr_cpus_allowed = weight;
  1039. }
  1040. /* Assumes rq->lock is held */
  1041. static void rq_online_rt(struct rq *rq)
  1042. {
  1043. if (rq->rt.overloaded)
  1044. rt_set_overload(rq);
  1045. __enable_runtime(rq);
  1046. cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio);
  1047. }
  1048. /* Assumes rq->lock is held */
  1049. static void rq_offline_rt(struct rq *rq)
  1050. {
  1051. if (rq->rt.overloaded)
  1052. rt_clear_overload(rq);
  1053. __disable_runtime(rq);
  1054. cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
  1055. }
  1056. /*
  1057. * When switch from the rt queue, we bring ourselves to a position
  1058. * that we might want to pull RT tasks from other runqueues.
  1059. */
  1060. static void switched_from_rt(struct rq *rq, struct task_struct *p,
  1061. int running)
  1062. {
  1063. /*
  1064. * If there are other RT tasks then we will reschedule
  1065. * and the scheduling of the other RT tasks will handle
  1066. * the balancing. But if we are the last RT task
  1067. * we may need to handle the pulling of RT tasks
  1068. * now.
  1069. */
  1070. if (!rq->rt.rt_nr_running)
  1071. pull_rt_task(rq);
  1072. }
  1073. #endif /* CONFIG_SMP */
  1074. /*
  1075. * When switching a task to RT, we may overload the runqueue
  1076. * with RT tasks. In this case we try to push them off to
  1077. * other runqueues.
  1078. */
  1079. static void switched_to_rt(struct rq *rq, struct task_struct *p,
  1080. int running)
  1081. {
  1082. int check_resched = 1;
  1083. /*
  1084. * If we are already running, then there's nothing
  1085. * that needs to be done. But if we are not running
  1086. * we may need to preempt the current running task.
  1087. * If that current running task is also an RT task
  1088. * then see if we can move to another run queue.
  1089. */
  1090. if (!running) {
  1091. #ifdef CONFIG_SMP
  1092. if (rq->rt.overloaded && push_rt_task(rq) &&
  1093. /* Don't resched if we changed runqueues */
  1094. rq != task_rq(p))
  1095. check_resched = 0;
  1096. #endif /* CONFIG_SMP */
  1097. if (check_resched && p->prio < rq->curr->prio)
  1098. resched_task(rq->curr);
  1099. }
  1100. }
  1101. /*
  1102. * Priority of the task has changed. This may cause
  1103. * us to initiate a push or pull.
  1104. */
  1105. static void prio_changed_rt(struct rq *rq, struct task_struct *p,
  1106. int oldprio, int running)
  1107. {
  1108. if (running) {
  1109. #ifdef CONFIG_SMP
  1110. /*
  1111. * If our priority decreases while running, we
  1112. * may need to pull tasks to this runqueue.
  1113. */
  1114. if (oldprio < p->prio)
  1115. pull_rt_task(rq);
  1116. /*
  1117. * If there's a higher priority task waiting to run
  1118. * then reschedule. Note, the above pull_rt_task
  1119. * can release the rq lock and p could migrate.
  1120. * Only reschedule if p is still on the same runqueue.
  1121. */
  1122. if (p->prio > rq->rt.highest_prio && rq->curr == p)
  1123. resched_task(p);
  1124. #else
  1125. /* For UP simply resched on drop of prio */
  1126. if (oldprio < p->prio)
  1127. resched_task(p);
  1128. #endif /* CONFIG_SMP */
  1129. } else {
  1130. /*
  1131. * This task is not running, but if it is
  1132. * greater than the current running task
  1133. * then reschedule.
  1134. */
  1135. if (p->prio < rq->curr->prio)
  1136. resched_task(rq->curr);
  1137. }
  1138. }
  1139. static void watchdog(struct rq *rq, struct task_struct *p)
  1140. {
  1141. unsigned long soft, hard;
  1142. if (!p->signal)
  1143. return;
  1144. soft = p->signal->rlim[RLIMIT_RTTIME].rlim_cur;
  1145. hard = p->signal->rlim[RLIMIT_RTTIME].rlim_max;
  1146. if (soft != RLIM_INFINITY) {
  1147. unsigned long next;
  1148. p->rt.timeout++;
  1149. next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
  1150. if (p->rt.timeout > next)
  1151. p->it_sched_expires = p->se.sum_exec_runtime;
  1152. }
  1153. }
  1154. static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
  1155. {
  1156. update_curr_rt(rq);
  1157. watchdog(rq, p);
  1158. /*
  1159. * RR tasks need a special form of timeslice management.
  1160. * FIFO tasks have no timeslices.
  1161. */
  1162. if (p->policy != SCHED_RR)
  1163. return;
  1164. if (--p->rt.time_slice)
  1165. return;
  1166. p->rt.time_slice = DEF_TIMESLICE;
  1167. /*
  1168. * Requeue to the end of queue if we are not the only element
  1169. * on the queue:
  1170. */
  1171. if (p->rt.run_list.prev != p->rt.run_list.next) {
  1172. requeue_task_rt(rq, p);
  1173. set_tsk_need_resched(p);
  1174. }
  1175. }
  1176. static void set_curr_task_rt(struct rq *rq)
  1177. {
  1178. struct task_struct *p = rq->curr;
  1179. p->se.exec_start = rq->clock;
  1180. }
  1181. static const struct sched_class rt_sched_class = {
  1182. .next = &fair_sched_class,
  1183. .enqueue_task = enqueue_task_rt,
  1184. .dequeue_task = dequeue_task_rt,
  1185. .yield_task = yield_task_rt,
  1186. #ifdef CONFIG_SMP
  1187. .select_task_rq = select_task_rq_rt,
  1188. #endif /* CONFIG_SMP */
  1189. .check_preempt_curr = check_preempt_curr_rt,
  1190. .pick_next_task = pick_next_task_rt,
  1191. .put_prev_task = put_prev_task_rt,
  1192. #ifdef CONFIG_SMP
  1193. .load_balance = load_balance_rt,
  1194. .move_one_task = move_one_task_rt,
  1195. .set_cpus_allowed = set_cpus_allowed_rt,
  1196. .rq_online = rq_online_rt,
  1197. .rq_offline = rq_offline_rt,
  1198. .pre_schedule = pre_schedule_rt,
  1199. .post_schedule = post_schedule_rt,
  1200. .task_wake_up = task_wake_up_rt,
  1201. .switched_from = switched_from_rt,
  1202. #endif
  1203. .set_curr_task = set_curr_task_rt,
  1204. .task_tick = task_tick_rt,
  1205. .prio_changed = prio_changed_rt,
  1206. .switched_to = switched_to_rt,
  1207. };
  1208. #ifdef CONFIG_SCHED_DEBUG
  1209. extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
  1210. static void print_rt_stats(struct seq_file *m, int cpu)
  1211. {
  1212. struct rt_rq *rt_rq;
  1213. rcu_read_lock();
  1214. for_each_leaf_rt_rq(rt_rq, cpu_rq(cpu))
  1215. print_rt_rq(m, cpu, rt_rq);
  1216. rcu_read_unlock();
  1217. }
  1218. #endif /* CONFIG_SCHED_DEBUG */