sched_cpupri.c 4.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174
  1. /*
  2. * kernel/sched_cpupri.c
  3. *
  4. * CPU priority management
  5. *
  6. * Copyright (C) 2007-2008 Novell
  7. *
  8. * Author: Gregory Haskins <ghaskins@novell.com>
  9. *
  10. * This code tracks the priority of each CPU so that global migration
  11. * decisions are easy to calculate. Each CPU can be in a state as follows:
  12. *
  13. * (INVALID), IDLE, NORMAL, RT1, ... RT99
  14. *
  15. * going from the lowest priority to the highest. CPUs in the INVALID state
  16. * are not eligible for routing. The system maintains this state with
  17. * a 2 dimensional bitmap (the first for priority class, the second for cpus
  18. * in that class). Therefore a typical application without affinity
  19. * restrictions can find a suitable CPU with O(1) complexity (e.g. two bit
  20. * searches). For tasks with affinity restrictions, the algorithm has a
  21. * worst case complexity of O(min(102, nr_domcpus)), though the scenario that
  22. * yields the worst case search is fairly contrived.
  23. *
  24. * This program is free software; you can redistribute it and/or
  25. * modify it under the terms of the GNU General Public License
  26. * as published by the Free Software Foundation; version 2
  27. * of the License.
  28. */
  29. #include "sched_cpupri.h"
  30. /* Convert between a 140 based task->prio, and our 102 based cpupri */
  31. static int convert_prio(int prio)
  32. {
  33. int cpupri;
  34. if (prio == CPUPRI_INVALID)
  35. cpupri = CPUPRI_INVALID;
  36. else if (prio == MAX_PRIO)
  37. cpupri = CPUPRI_IDLE;
  38. else if (prio >= MAX_RT_PRIO)
  39. cpupri = CPUPRI_NORMAL;
  40. else
  41. cpupri = MAX_RT_PRIO - prio + 1;
  42. return cpupri;
  43. }
  44. #define for_each_cpupri_active(array, idx) \
  45. for (idx = find_first_bit(array, CPUPRI_NR_PRIORITIES); \
  46. idx < CPUPRI_NR_PRIORITIES; \
  47. idx = find_next_bit(array, CPUPRI_NR_PRIORITIES, idx+1))
  48. /**
  49. * cpupri_find - find the best (lowest-pri) CPU in the system
  50. * @cp: The cpupri context
  51. * @p: The task
  52. * @lowest_mask: A mask to fill in with selected CPUs
  53. *
  54. * Note: This function returns the recommended CPUs as calculated during the
  55. * current invokation. By the time the call returns, the CPUs may have in
  56. * fact changed priorities any number of times. While not ideal, it is not
  57. * an issue of correctness since the normal rebalancer logic will correct
  58. * any discrepancies created by racing against the uncertainty of the current
  59. * priority configuration.
  60. *
  61. * Returns: (int)bool - CPUs were found
  62. */
  63. int cpupri_find(struct cpupri *cp, struct task_struct *p,
  64. cpumask_t *lowest_mask)
  65. {
  66. int idx = 0;
  67. int task_pri = convert_prio(p->prio);
  68. for_each_cpupri_active(cp->pri_active, idx) {
  69. struct cpupri_vec *vec = &cp->pri_to_cpu[idx];
  70. cpumask_t mask;
  71. if (idx >= task_pri)
  72. break;
  73. cpus_and(mask, p->cpus_allowed, vec->mask);
  74. if (cpus_empty(mask))
  75. continue;
  76. *lowest_mask = mask;
  77. return 1;
  78. }
  79. return 0;
  80. }
  81. /**
  82. * cpupri_set - update the cpu priority setting
  83. * @cp: The cpupri context
  84. * @cpu: The target cpu
  85. * @pri: The priority (INVALID-RT99) to assign to this CPU
  86. *
  87. * Note: Assumes cpu_rq(cpu)->lock is locked
  88. *
  89. * Returns: (void)
  90. */
  91. void cpupri_set(struct cpupri *cp, int cpu, int newpri)
  92. {
  93. int *currpri = &cp->cpu_to_pri[cpu];
  94. int oldpri = *currpri;
  95. unsigned long flags;
  96. newpri = convert_prio(newpri);
  97. BUG_ON(newpri >= CPUPRI_NR_PRIORITIES);
  98. if (newpri == oldpri)
  99. return;
  100. /*
  101. * If the cpu was currently mapped to a different value, we
  102. * first need to unmap the old value
  103. */
  104. if (likely(oldpri != CPUPRI_INVALID)) {
  105. struct cpupri_vec *vec = &cp->pri_to_cpu[oldpri];
  106. spin_lock_irqsave(&vec->lock, flags);
  107. vec->count--;
  108. if (!vec->count)
  109. clear_bit(oldpri, cp->pri_active);
  110. cpu_clear(cpu, vec->mask);
  111. spin_unlock_irqrestore(&vec->lock, flags);
  112. }
  113. if (likely(newpri != CPUPRI_INVALID)) {
  114. struct cpupri_vec *vec = &cp->pri_to_cpu[newpri];
  115. spin_lock_irqsave(&vec->lock, flags);
  116. cpu_set(cpu, vec->mask);
  117. vec->count++;
  118. if (vec->count == 1)
  119. set_bit(newpri, cp->pri_active);
  120. spin_unlock_irqrestore(&vec->lock, flags);
  121. }
  122. *currpri = newpri;
  123. }
  124. /**
  125. * cpupri_init - initialize the cpupri structure
  126. * @cp: The cpupri context
  127. *
  128. * Returns: (void)
  129. */
  130. void cpupri_init(struct cpupri *cp)
  131. {
  132. int i;
  133. memset(cp, 0, sizeof(*cp));
  134. for (i = 0; i < CPUPRI_NR_PRIORITIES; i++) {
  135. struct cpupri_vec *vec = &cp->pri_to_cpu[i];
  136. spin_lock_init(&vec->lock);
  137. vec->count = 0;
  138. cpus_clear(vec->mask);
  139. }
  140. for_each_possible_cpu(i)
  141. cp->cpu_to_pri[i] = CPUPRI_INVALID;
  142. }