namespace.c 59 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361
  1. /*
  2. * linux/fs/namespace.c
  3. *
  4. * (C) Copyright Al Viro 2000, 2001
  5. * Released under GPL v2.
  6. *
  7. * Based on code from fs/super.c, copyright Linus Torvalds and others.
  8. * Heavily rewritten.
  9. */
  10. #include <linux/syscalls.h>
  11. #include <linux/slab.h>
  12. #include <linux/sched.h>
  13. #include <linux/smp_lock.h>
  14. #include <linux/init.h>
  15. #include <linux/kernel.h>
  16. #include <linux/acct.h>
  17. #include <linux/capability.h>
  18. #include <linux/cpumask.h>
  19. #include <linux/module.h>
  20. #include <linux/sysfs.h>
  21. #include <linux/seq_file.h>
  22. #include <linux/mnt_namespace.h>
  23. #include <linux/namei.h>
  24. #include <linux/security.h>
  25. #include <linux/mount.h>
  26. #include <linux/ramfs.h>
  27. #include <linux/log2.h>
  28. #include <linux/idr.h>
  29. #include <asm/uaccess.h>
  30. #include <asm/unistd.h>
  31. #include "pnode.h"
  32. #include "internal.h"
  33. #define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
  34. #define HASH_SIZE (1UL << HASH_SHIFT)
  35. /* spinlock for vfsmount related operations, inplace of dcache_lock */
  36. __cacheline_aligned_in_smp DEFINE_SPINLOCK(vfsmount_lock);
  37. static int event;
  38. static DEFINE_IDA(mnt_id_ida);
  39. static DEFINE_IDA(mnt_group_ida);
  40. static struct list_head *mount_hashtable __read_mostly;
  41. static struct kmem_cache *mnt_cache __read_mostly;
  42. static struct rw_semaphore namespace_sem;
  43. /* /sys/fs */
  44. struct kobject *fs_kobj;
  45. EXPORT_SYMBOL_GPL(fs_kobj);
  46. static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
  47. {
  48. unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
  49. tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
  50. tmp = tmp + (tmp >> HASH_SHIFT);
  51. return tmp & (HASH_SIZE - 1);
  52. }
  53. #define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16)
  54. /* allocation is serialized by namespace_sem */
  55. static int mnt_alloc_id(struct vfsmount *mnt)
  56. {
  57. int res;
  58. retry:
  59. ida_pre_get(&mnt_id_ida, GFP_KERNEL);
  60. spin_lock(&vfsmount_lock);
  61. res = ida_get_new(&mnt_id_ida, &mnt->mnt_id);
  62. spin_unlock(&vfsmount_lock);
  63. if (res == -EAGAIN)
  64. goto retry;
  65. return res;
  66. }
  67. static void mnt_free_id(struct vfsmount *mnt)
  68. {
  69. spin_lock(&vfsmount_lock);
  70. ida_remove(&mnt_id_ida, mnt->mnt_id);
  71. spin_unlock(&vfsmount_lock);
  72. }
  73. /*
  74. * Allocate a new peer group ID
  75. *
  76. * mnt_group_ida is protected by namespace_sem
  77. */
  78. static int mnt_alloc_group_id(struct vfsmount *mnt)
  79. {
  80. if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
  81. return -ENOMEM;
  82. return ida_get_new_above(&mnt_group_ida, 1, &mnt->mnt_group_id);
  83. }
  84. /*
  85. * Release a peer group ID
  86. */
  87. void mnt_release_group_id(struct vfsmount *mnt)
  88. {
  89. ida_remove(&mnt_group_ida, mnt->mnt_group_id);
  90. mnt->mnt_group_id = 0;
  91. }
  92. struct vfsmount *alloc_vfsmnt(const char *name)
  93. {
  94. struct vfsmount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
  95. if (mnt) {
  96. int err;
  97. err = mnt_alloc_id(mnt);
  98. if (err) {
  99. kmem_cache_free(mnt_cache, mnt);
  100. return NULL;
  101. }
  102. atomic_set(&mnt->mnt_count, 1);
  103. INIT_LIST_HEAD(&mnt->mnt_hash);
  104. INIT_LIST_HEAD(&mnt->mnt_child);
  105. INIT_LIST_HEAD(&mnt->mnt_mounts);
  106. INIT_LIST_HEAD(&mnt->mnt_list);
  107. INIT_LIST_HEAD(&mnt->mnt_expire);
  108. INIT_LIST_HEAD(&mnt->mnt_share);
  109. INIT_LIST_HEAD(&mnt->mnt_slave_list);
  110. INIT_LIST_HEAD(&mnt->mnt_slave);
  111. atomic_set(&mnt->__mnt_writers, 0);
  112. if (name) {
  113. int size = strlen(name) + 1;
  114. char *newname = kmalloc(size, GFP_KERNEL);
  115. if (newname) {
  116. memcpy(newname, name, size);
  117. mnt->mnt_devname = newname;
  118. }
  119. }
  120. }
  121. return mnt;
  122. }
  123. /*
  124. * Most r/o checks on a fs are for operations that take
  125. * discrete amounts of time, like a write() or unlink().
  126. * We must keep track of when those operations start
  127. * (for permission checks) and when they end, so that
  128. * we can determine when writes are able to occur to
  129. * a filesystem.
  130. */
  131. /*
  132. * __mnt_is_readonly: check whether a mount is read-only
  133. * @mnt: the mount to check for its write status
  134. *
  135. * This shouldn't be used directly ouside of the VFS.
  136. * It does not guarantee that the filesystem will stay
  137. * r/w, just that it is right *now*. This can not and
  138. * should not be used in place of IS_RDONLY(inode).
  139. * mnt_want/drop_write() will _keep_ the filesystem
  140. * r/w.
  141. */
  142. int __mnt_is_readonly(struct vfsmount *mnt)
  143. {
  144. if (mnt->mnt_flags & MNT_READONLY)
  145. return 1;
  146. if (mnt->mnt_sb->s_flags & MS_RDONLY)
  147. return 1;
  148. return 0;
  149. }
  150. EXPORT_SYMBOL_GPL(__mnt_is_readonly);
  151. struct mnt_writer {
  152. /*
  153. * If holding multiple instances of this lock, they
  154. * must be ordered by cpu number.
  155. */
  156. spinlock_t lock;
  157. struct lock_class_key lock_class; /* compiles out with !lockdep */
  158. unsigned long count;
  159. struct vfsmount *mnt;
  160. } ____cacheline_aligned_in_smp;
  161. static DEFINE_PER_CPU(struct mnt_writer, mnt_writers);
  162. static int __init init_mnt_writers(void)
  163. {
  164. int cpu;
  165. for_each_possible_cpu(cpu) {
  166. struct mnt_writer *writer = &per_cpu(mnt_writers, cpu);
  167. spin_lock_init(&writer->lock);
  168. lockdep_set_class(&writer->lock, &writer->lock_class);
  169. writer->count = 0;
  170. }
  171. return 0;
  172. }
  173. fs_initcall(init_mnt_writers);
  174. static void unlock_mnt_writers(void)
  175. {
  176. int cpu;
  177. struct mnt_writer *cpu_writer;
  178. for_each_possible_cpu(cpu) {
  179. cpu_writer = &per_cpu(mnt_writers, cpu);
  180. spin_unlock(&cpu_writer->lock);
  181. }
  182. }
  183. static inline void __clear_mnt_count(struct mnt_writer *cpu_writer)
  184. {
  185. if (!cpu_writer->mnt)
  186. return;
  187. /*
  188. * This is in case anyone ever leaves an invalid,
  189. * old ->mnt and a count of 0.
  190. */
  191. if (!cpu_writer->count)
  192. return;
  193. atomic_add(cpu_writer->count, &cpu_writer->mnt->__mnt_writers);
  194. cpu_writer->count = 0;
  195. }
  196. /*
  197. * must hold cpu_writer->lock
  198. */
  199. static inline void use_cpu_writer_for_mount(struct mnt_writer *cpu_writer,
  200. struct vfsmount *mnt)
  201. {
  202. if (cpu_writer->mnt == mnt)
  203. return;
  204. __clear_mnt_count(cpu_writer);
  205. cpu_writer->mnt = mnt;
  206. }
  207. /*
  208. * Most r/o checks on a fs are for operations that take
  209. * discrete amounts of time, like a write() or unlink().
  210. * We must keep track of when those operations start
  211. * (for permission checks) and when they end, so that
  212. * we can determine when writes are able to occur to
  213. * a filesystem.
  214. */
  215. /**
  216. * mnt_want_write - get write access to a mount
  217. * @mnt: the mount on which to take a write
  218. *
  219. * This tells the low-level filesystem that a write is
  220. * about to be performed to it, and makes sure that
  221. * writes are allowed before returning success. When
  222. * the write operation is finished, mnt_drop_write()
  223. * must be called. This is effectively a refcount.
  224. */
  225. int mnt_want_write(struct vfsmount *mnt)
  226. {
  227. int ret = 0;
  228. struct mnt_writer *cpu_writer;
  229. cpu_writer = &get_cpu_var(mnt_writers);
  230. spin_lock(&cpu_writer->lock);
  231. if (__mnt_is_readonly(mnt)) {
  232. ret = -EROFS;
  233. goto out;
  234. }
  235. use_cpu_writer_for_mount(cpu_writer, mnt);
  236. cpu_writer->count++;
  237. out:
  238. spin_unlock(&cpu_writer->lock);
  239. put_cpu_var(mnt_writers);
  240. return ret;
  241. }
  242. EXPORT_SYMBOL_GPL(mnt_want_write);
  243. static void lock_mnt_writers(void)
  244. {
  245. int cpu;
  246. struct mnt_writer *cpu_writer;
  247. for_each_possible_cpu(cpu) {
  248. cpu_writer = &per_cpu(mnt_writers, cpu);
  249. spin_lock(&cpu_writer->lock);
  250. __clear_mnt_count(cpu_writer);
  251. cpu_writer->mnt = NULL;
  252. }
  253. }
  254. /*
  255. * These per-cpu write counts are not guaranteed to have
  256. * matched increments and decrements on any given cpu.
  257. * A file open()ed for write on one cpu and close()d on
  258. * another cpu will imbalance this count. Make sure it
  259. * does not get too far out of whack.
  260. */
  261. static void handle_write_count_underflow(struct vfsmount *mnt)
  262. {
  263. if (atomic_read(&mnt->__mnt_writers) >=
  264. MNT_WRITER_UNDERFLOW_LIMIT)
  265. return;
  266. /*
  267. * It isn't necessary to hold all of the locks
  268. * at the same time, but doing it this way makes
  269. * us share a lot more code.
  270. */
  271. lock_mnt_writers();
  272. /*
  273. * vfsmount_lock is for mnt_flags.
  274. */
  275. spin_lock(&vfsmount_lock);
  276. /*
  277. * If coalescing the per-cpu writer counts did not
  278. * get us back to a positive writer count, we have
  279. * a bug.
  280. */
  281. if ((atomic_read(&mnt->__mnt_writers) < 0) &&
  282. !(mnt->mnt_flags & MNT_IMBALANCED_WRITE_COUNT)) {
  283. printk(KERN_DEBUG "leak detected on mount(%p) writers "
  284. "count: %d\n",
  285. mnt, atomic_read(&mnt->__mnt_writers));
  286. WARN_ON(1);
  287. /* use the flag to keep the dmesg spam down */
  288. mnt->mnt_flags |= MNT_IMBALANCED_WRITE_COUNT;
  289. }
  290. spin_unlock(&vfsmount_lock);
  291. unlock_mnt_writers();
  292. }
  293. /**
  294. * mnt_drop_write - give up write access to a mount
  295. * @mnt: the mount on which to give up write access
  296. *
  297. * Tells the low-level filesystem that we are done
  298. * performing writes to it. Must be matched with
  299. * mnt_want_write() call above.
  300. */
  301. void mnt_drop_write(struct vfsmount *mnt)
  302. {
  303. int must_check_underflow = 0;
  304. struct mnt_writer *cpu_writer;
  305. cpu_writer = &get_cpu_var(mnt_writers);
  306. spin_lock(&cpu_writer->lock);
  307. use_cpu_writer_for_mount(cpu_writer, mnt);
  308. if (cpu_writer->count > 0) {
  309. cpu_writer->count--;
  310. } else {
  311. must_check_underflow = 1;
  312. atomic_dec(&mnt->__mnt_writers);
  313. }
  314. spin_unlock(&cpu_writer->lock);
  315. /*
  316. * Logically, we could call this each time,
  317. * but the __mnt_writers cacheline tends to
  318. * be cold, and makes this expensive.
  319. */
  320. if (must_check_underflow)
  321. handle_write_count_underflow(mnt);
  322. /*
  323. * This could be done right after the spinlock
  324. * is taken because the spinlock keeps us on
  325. * the cpu, and disables preemption. However,
  326. * putting it here bounds the amount that
  327. * __mnt_writers can underflow. Without it,
  328. * we could theoretically wrap __mnt_writers.
  329. */
  330. put_cpu_var(mnt_writers);
  331. }
  332. EXPORT_SYMBOL_GPL(mnt_drop_write);
  333. static int mnt_make_readonly(struct vfsmount *mnt)
  334. {
  335. int ret = 0;
  336. lock_mnt_writers();
  337. /*
  338. * With all the locks held, this value is stable
  339. */
  340. if (atomic_read(&mnt->__mnt_writers) > 0) {
  341. ret = -EBUSY;
  342. goto out;
  343. }
  344. /*
  345. * nobody can do a successful mnt_want_write() with all
  346. * of the counts in MNT_DENIED_WRITE and the locks held.
  347. */
  348. spin_lock(&vfsmount_lock);
  349. if (!ret)
  350. mnt->mnt_flags |= MNT_READONLY;
  351. spin_unlock(&vfsmount_lock);
  352. out:
  353. unlock_mnt_writers();
  354. return ret;
  355. }
  356. static void __mnt_unmake_readonly(struct vfsmount *mnt)
  357. {
  358. spin_lock(&vfsmount_lock);
  359. mnt->mnt_flags &= ~MNT_READONLY;
  360. spin_unlock(&vfsmount_lock);
  361. }
  362. int simple_set_mnt(struct vfsmount *mnt, struct super_block *sb)
  363. {
  364. mnt->mnt_sb = sb;
  365. mnt->mnt_root = dget(sb->s_root);
  366. return 0;
  367. }
  368. EXPORT_SYMBOL(simple_set_mnt);
  369. void free_vfsmnt(struct vfsmount *mnt)
  370. {
  371. kfree(mnt->mnt_devname);
  372. mnt_free_id(mnt);
  373. kmem_cache_free(mnt_cache, mnt);
  374. }
  375. /*
  376. * find the first or last mount at @dentry on vfsmount @mnt depending on
  377. * @dir. If @dir is set return the first mount else return the last mount.
  378. */
  379. struct vfsmount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
  380. int dir)
  381. {
  382. struct list_head *head = mount_hashtable + hash(mnt, dentry);
  383. struct list_head *tmp = head;
  384. struct vfsmount *p, *found = NULL;
  385. for (;;) {
  386. tmp = dir ? tmp->next : tmp->prev;
  387. p = NULL;
  388. if (tmp == head)
  389. break;
  390. p = list_entry(tmp, struct vfsmount, mnt_hash);
  391. if (p->mnt_parent == mnt && p->mnt_mountpoint == dentry) {
  392. found = p;
  393. break;
  394. }
  395. }
  396. return found;
  397. }
  398. /*
  399. * lookup_mnt increments the ref count before returning
  400. * the vfsmount struct.
  401. */
  402. struct vfsmount *lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
  403. {
  404. struct vfsmount *child_mnt;
  405. spin_lock(&vfsmount_lock);
  406. if ((child_mnt = __lookup_mnt(mnt, dentry, 1)))
  407. mntget(child_mnt);
  408. spin_unlock(&vfsmount_lock);
  409. return child_mnt;
  410. }
  411. static inline int check_mnt(struct vfsmount *mnt)
  412. {
  413. return mnt->mnt_ns == current->nsproxy->mnt_ns;
  414. }
  415. static void touch_mnt_namespace(struct mnt_namespace *ns)
  416. {
  417. if (ns) {
  418. ns->event = ++event;
  419. wake_up_interruptible(&ns->poll);
  420. }
  421. }
  422. static void __touch_mnt_namespace(struct mnt_namespace *ns)
  423. {
  424. if (ns && ns->event != event) {
  425. ns->event = event;
  426. wake_up_interruptible(&ns->poll);
  427. }
  428. }
  429. static void detach_mnt(struct vfsmount *mnt, struct path *old_path)
  430. {
  431. old_path->dentry = mnt->mnt_mountpoint;
  432. old_path->mnt = mnt->mnt_parent;
  433. mnt->mnt_parent = mnt;
  434. mnt->mnt_mountpoint = mnt->mnt_root;
  435. list_del_init(&mnt->mnt_child);
  436. list_del_init(&mnt->mnt_hash);
  437. old_path->dentry->d_mounted--;
  438. }
  439. void mnt_set_mountpoint(struct vfsmount *mnt, struct dentry *dentry,
  440. struct vfsmount *child_mnt)
  441. {
  442. child_mnt->mnt_parent = mntget(mnt);
  443. child_mnt->mnt_mountpoint = dget(dentry);
  444. dentry->d_mounted++;
  445. }
  446. static void attach_mnt(struct vfsmount *mnt, struct path *path)
  447. {
  448. mnt_set_mountpoint(path->mnt, path->dentry, mnt);
  449. list_add_tail(&mnt->mnt_hash, mount_hashtable +
  450. hash(path->mnt, path->dentry));
  451. list_add_tail(&mnt->mnt_child, &path->mnt->mnt_mounts);
  452. }
  453. /*
  454. * the caller must hold vfsmount_lock
  455. */
  456. static void commit_tree(struct vfsmount *mnt)
  457. {
  458. struct vfsmount *parent = mnt->mnt_parent;
  459. struct vfsmount *m;
  460. LIST_HEAD(head);
  461. struct mnt_namespace *n = parent->mnt_ns;
  462. BUG_ON(parent == mnt);
  463. list_add_tail(&head, &mnt->mnt_list);
  464. list_for_each_entry(m, &head, mnt_list)
  465. m->mnt_ns = n;
  466. list_splice(&head, n->list.prev);
  467. list_add_tail(&mnt->mnt_hash, mount_hashtable +
  468. hash(parent, mnt->mnt_mountpoint));
  469. list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
  470. touch_mnt_namespace(n);
  471. }
  472. static struct vfsmount *next_mnt(struct vfsmount *p, struct vfsmount *root)
  473. {
  474. struct list_head *next = p->mnt_mounts.next;
  475. if (next == &p->mnt_mounts) {
  476. while (1) {
  477. if (p == root)
  478. return NULL;
  479. next = p->mnt_child.next;
  480. if (next != &p->mnt_parent->mnt_mounts)
  481. break;
  482. p = p->mnt_parent;
  483. }
  484. }
  485. return list_entry(next, struct vfsmount, mnt_child);
  486. }
  487. static struct vfsmount *skip_mnt_tree(struct vfsmount *p)
  488. {
  489. struct list_head *prev = p->mnt_mounts.prev;
  490. while (prev != &p->mnt_mounts) {
  491. p = list_entry(prev, struct vfsmount, mnt_child);
  492. prev = p->mnt_mounts.prev;
  493. }
  494. return p;
  495. }
  496. static struct vfsmount *clone_mnt(struct vfsmount *old, struct dentry *root,
  497. int flag)
  498. {
  499. struct super_block *sb = old->mnt_sb;
  500. struct vfsmount *mnt = alloc_vfsmnt(old->mnt_devname);
  501. if (mnt) {
  502. if (flag & (CL_SLAVE | CL_PRIVATE))
  503. mnt->mnt_group_id = 0; /* not a peer of original */
  504. else
  505. mnt->mnt_group_id = old->mnt_group_id;
  506. if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
  507. int err = mnt_alloc_group_id(mnt);
  508. if (err)
  509. goto out_free;
  510. }
  511. mnt->mnt_flags = old->mnt_flags;
  512. atomic_inc(&sb->s_active);
  513. mnt->mnt_sb = sb;
  514. mnt->mnt_root = dget(root);
  515. mnt->mnt_mountpoint = mnt->mnt_root;
  516. mnt->mnt_parent = mnt;
  517. if (flag & CL_SLAVE) {
  518. list_add(&mnt->mnt_slave, &old->mnt_slave_list);
  519. mnt->mnt_master = old;
  520. CLEAR_MNT_SHARED(mnt);
  521. } else if (!(flag & CL_PRIVATE)) {
  522. if ((flag & CL_PROPAGATION) || IS_MNT_SHARED(old))
  523. list_add(&mnt->mnt_share, &old->mnt_share);
  524. if (IS_MNT_SLAVE(old))
  525. list_add(&mnt->mnt_slave, &old->mnt_slave);
  526. mnt->mnt_master = old->mnt_master;
  527. }
  528. if (flag & CL_MAKE_SHARED)
  529. set_mnt_shared(mnt);
  530. /* stick the duplicate mount on the same expiry list
  531. * as the original if that was on one */
  532. if (flag & CL_EXPIRE) {
  533. if (!list_empty(&old->mnt_expire))
  534. list_add(&mnt->mnt_expire, &old->mnt_expire);
  535. }
  536. }
  537. return mnt;
  538. out_free:
  539. free_vfsmnt(mnt);
  540. return NULL;
  541. }
  542. static inline void __mntput(struct vfsmount *mnt)
  543. {
  544. int cpu;
  545. struct super_block *sb = mnt->mnt_sb;
  546. /*
  547. * We don't have to hold all of the locks at the
  548. * same time here because we know that we're the
  549. * last reference to mnt and that no new writers
  550. * can come in.
  551. */
  552. for_each_possible_cpu(cpu) {
  553. struct mnt_writer *cpu_writer = &per_cpu(mnt_writers, cpu);
  554. if (cpu_writer->mnt != mnt)
  555. continue;
  556. spin_lock(&cpu_writer->lock);
  557. atomic_add(cpu_writer->count, &mnt->__mnt_writers);
  558. cpu_writer->count = 0;
  559. /*
  560. * Might as well do this so that no one
  561. * ever sees the pointer and expects
  562. * it to be valid.
  563. */
  564. cpu_writer->mnt = NULL;
  565. spin_unlock(&cpu_writer->lock);
  566. }
  567. /*
  568. * This probably indicates that somebody messed
  569. * up a mnt_want/drop_write() pair. If this
  570. * happens, the filesystem was probably unable
  571. * to make r/w->r/o transitions.
  572. */
  573. WARN_ON(atomic_read(&mnt->__mnt_writers));
  574. dput(mnt->mnt_root);
  575. free_vfsmnt(mnt);
  576. deactivate_super(sb);
  577. }
  578. void mntput_no_expire(struct vfsmount *mnt)
  579. {
  580. repeat:
  581. if (atomic_dec_and_lock(&mnt->mnt_count, &vfsmount_lock)) {
  582. if (likely(!mnt->mnt_pinned)) {
  583. spin_unlock(&vfsmount_lock);
  584. __mntput(mnt);
  585. return;
  586. }
  587. atomic_add(mnt->mnt_pinned + 1, &mnt->mnt_count);
  588. mnt->mnt_pinned = 0;
  589. spin_unlock(&vfsmount_lock);
  590. acct_auto_close_mnt(mnt);
  591. security_sb_umount_close(mnt);
  592. goto repeat;
  593. }
  594. }
  595. EXPORT_SYMBOL(mntput_no_expire);
  596. void mnt_pin(struct vfsmount *mnt)
  597. {
  598. spin_lock(&vfsmount_lock);
  599. mnt->mnt_pinned++;
  600. spin_unlock(&vfsmount_lock);
  601. }
  602. EXPORT_SYMBOL(mnt_pin);
  603. void mnt_unpin(struct vfsmount *mnt)
  604. {
  605. spin_lock(&vfsmount_lock);
  606. if (mnt->mnt_pinned) {
  607. atomic_inc(&mnt->mnt_count);
  608. mnt->mnt_pinned--;
  609. }
  610. spin_unlock(&vfsmount_lock);
  611. }
  612. EXPORT_SYMBOL(mnt_unpin);
  613. static inline void mangle(struct seq_file *m, const char *s)
  614. {
  615. seq_escape(m, s, " \t\n\\");
  616. }
  617. /*
  618. * Simple .show_options callback for filesystems which don't want to
  619. * implement more complex mount option showing.
  620. *
  621. * See also save_mount_options().
  622. */
  623. int generic_show_options(struct seq_file *m, struct vfsmount *mnt)
  624. {
  625. const char *options = mnt->mnt_sb->s_options;
  626. if (options != NULL && options[0]) {
  627. seq_putc(m, ',');
  628. mangle(m, options);
  629. }
  630. return 0;
  631. }
  632. EXPORT_SYMBOL(generic_show_options);
  633. /*
  634. * If filesystem uses generic_show_options(), this function should be
  635. * called from the fill_super() callback.
  636. *
  637. * The .remount_fs callback usually needs to be handled in a special
  638. * way, to make sure, that previous options are not overwritten if the
  639. * remount fails.
  640. *
  641. * Also note, that if the filesystem's .remount_fs function doesn't
  642. * reset all options to their default value, but changes only newly
  643. * given options, then the displayed options will not reflect reality
  644. * any more.
  645. */
  646. void save_mount_options(struct super_block *sb, char *options)
  647. {
  648. kfree(sb->s_options);
  649. sb->s_options = kstrdup(options, GFP_KERNEL);
  650. }
  651. EXPORT_SYMBOL(save_mount_options);
  652. #ifdef CONFIG_PROC_FS
  653. /* iterator */
  654. static void *m_start(struct seq_file *m, loff_t *pos)
  655. {
  656. struct proc_mounts *p = m->private;
  657. down_read(&namespace_sem);
  658. return seq_list_start(&p->ns->list, *pos);
  659. }
  660. static void *m_next(struct seq_file *m, void *v, loff_t *pos)
  661. {
  662. struct proc_mounts *p = m->private;
  663. return seq_list_next(v, &p->ns->list, pos);
  664. }
  665. static void m_stop(struct seq_file *m, void *v)
  666. {
  667. up_read(&namespace_sem);
  668. }
  669. struct proc_fs_info {
  670. int flag;
  671. const char *str;
  672. };
  673. static int show_sb_opts(struct seq_file *m, struct super_block *sb)
  674. {
  675. static const struct proc_fs_info fs_info[] = {
  676. { MS_SYNCHRONOUS, ",sync" },
  677. { MS_DIRSYNC, ",dirsync" },
  678. { MS_MANDLOCK, ",mand" },
  679. { 0, NULL }
  680. };
  681. const struct proc_fs_info *fs_infop;
  682. for (fs_infop = fs_info; fs_infop->flag; fs_infop++) {
  683. if (sb->s_flags & fs_infop->flag)
  684. seq_puts(m, fs_infop->str);
  685. }
  686. return security_sb_show_options(m, sb);
  687. }
  688. static void show_mnt_opts(struct seq_file *m, struct vfsmount *mnt)
  689. {
  690. static const struct proc_fs_info mnt_info[] = {
  691. { MNT_NOSUID, ",nosuid" },
  692. { MNT_NODEV, ",nodev" },
  693. { MNT_NOEXEC, ",noexec" },
  694. { MNT_NOATIME, ",noatime" },
  695. { MNT_NODIRATIME, ",nodiratime" },
  696. { MNT_RELATIME, ",relatime" },
  697. { 0, NULL }
  698. };
  699. const struct proc_fs_info *fs_infop;
  700. for (fs_infop = mnt_info; fs_infop->flag; fs_infop++) {
  701. if (mnt->mnt_flags & fs_infop->flag)
  702. seq_puts(m, fs_infop->str);
  703. }
  704. }
  705. static void show_type(struct seq_file *m, struct super_block *sb)
  706. {
  707. mangle(m, sb->s_type->name);
  708. if (sb->s_subtype && sb->s_subtype[0]) {
  709. seq_putc(m, '.');
  710. mangle(m, sb->s_subtype);
  711. }
  712. }
  713. static int show_vfsmnt(struct seq_file *m, void *v)
  714. {
  715. struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
  716. int err = 0;
  717. struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
  718. mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
  719. seq_putc(m, ' ');
  720. seq_path(m, &mnt_path, " \t\n\\");
  721. seq_putc(m, ' ');
  722. show_type(m, mnt->mnt_sb);
  723. seq_puts(m, __mnt_is_readonly(mnt) ? " ro" : " rw");
  724. err = show_sb_opts(m, mnt->mnt_sb);
  725. if (err)
  726. goto out;
  727. show_mnt_opts(m, mnt);
  728. if (mnt->mnt_sb->s_op->show_options)
  729. err = mnt->mnt_sb->s_op->show_options(m, mnt);
  730. seq_puts(m, " 0 0\n");
  731. out:
  732. return err;
  733. }
  734. const struct seq_operations mounts_op = {
  735. .start = m_start,
  736. .next = m_next,
  737. .stop = m_stop,
  738. .show = show_vfsmnt
  739. };
  740. static int show_mountinfo(struct seq_file *m, void *v)
  741. {
  742. struct proc_mounts *p = m->private;
  743. struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
  744. struct super_block *sb = mnt->mnt_sb;
  745. struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
  746. struct path root = p->root;
  747. int err = 0;
  748. seq_printf(m, "%i %i %u:%u ", mnt->mnt_id, mnt->mnt_parent->mnt_id,
  749. MAJOR(sb->s_dev), MINOR(sb->s_dev));
  750. seq_dentry(m, mnt->mnt_root, " \t\n\\");
  751. seq_putc(m, ' ');
  752. seq_path_root(m, &mnt_path, &root, " \t\n\\");
  753. if (root.mnt != p->root.mnt || root.dentry != p->root.dentry) {
  754. /*
  755. * Mountpoint is outside root, discard that one. Ugly,
  756. * but less so than trying to do that in iterator in a
  757. * race-free way (due to renames).
  758. */
  759. return SEQ_SKIP;
  760. }
  761. seq_puts(m, mnt->mnt_flags & MNT_READONLY ? " ro" : " rw");
  762. show_mnt_opts(m, mnt);
  763. /* Tagged fields ("foo:X" or "bar") */
  764. if (IS_MNT_SHARED(mnt))
  765. seq_printf(m, " shared:%i", mnt->mnt_group_id);
  766. if (IS_MNT_SLAVE(mnt)) {
  767. int master = mnt->mnt_master->mnt_group_id;
  768. int dom = get_dominating_id(mnt, &p->root);
  769. seq_printf(m, " master:%i", master);
  770. if (dom && dom != master)
  771. seq_printf(m, " propagate_from:%i", dom);
  772. }
  773. if (IS_MNT_UNBINDABLE(mnt))
  774. seq_puts(m, " unbindable");
  775. /* Filesystem specific data */
  776. seq_puts(m, " - ");
  777. show_type(m, sb);
  778. seq_putc(m, ' ');
  779. mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
  780. seq_puts(m, sb->s_flags & MS_RDONLY ? " ro" : " rw");
  781. err = show_sb_opts(m, sb);
  782. if (err)
  783. goto out;
  784. if (sb->s_op->show_options)
  785. err = sb->s_op->show_options(m, mnt);
  786. seq_putc(m, '\n');
  787. out:
  788. return err;
  789. }
  790. const struct seq_operations mountinfo_op = {
  791. .start = m_start,
  792. .next = m_next,
  793. .stop = m_stop,
  794. .show = show_mountinfo,
  795. };
  796. static int show_vfsstat(struct seq_file *m, void *v)
  797. {
  798. struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
  799. struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
  800. int err = 0;
  801. /* device */
  802. if (mnt->mnt_devname) {
  803. seq_puts(m, "device ");
  804. mangle(m, mnt->mnt_devname);
  805. } else
  806. seq_puts(m, "no device");
  807. /* mount point */
  808. seq_puts(m, " mounted on ");
  809. seq_path(m, &mnt_path, " \t\n\\");
  810. seq_putc(m, ' ');
  811. /* file system type */
  812. seq_puts(m, "with fstype ");
  813. show_type(m, mnt->mnt_sb);
  814. /* optional statistics */
  815. if (mnt->mnt_sb->s_op->show_stats) {
  816. seq_putc(m, ' ');
  817. err = mnt->mnt_sb->s_op->show_stats(m, mnt);
  818. }
  819. seq_putc(m, '\n');
  820. return err;
  821. }
  822. const struct seq_operations mountstats_op = {
  823. .start = m_start,
  824. .next = m_next,
  825. .stop = m_stop,
  826. .show = show_vfsstat,
  827. };
  828. #endif /* CONFIG_PROC_FS */
  829. /**
  830. * may_umount_tree - check if a mount tree is busy
  831. * @mnt: root of mount tree
  832. *
  833. * This is called to check if a tree of mounts has any
  834. * open files, pwds, chroots or sub mounts that are
  835. * busy.
  836. */
  837. int may_umount_tree(struct vfsmount *mnt)
  838. {
  839. int actual_refs = 0;
  840. int minimum_refs = 0;
  841. struct vfsmount *p;
  842. spin_lock(&vfsmount_lock);
  843. for (p = mnt; p; p = next_mnt(p, mnt)) {
  844. actual_refs += atomic_read(&p->mnt_count);
  845. minimum_refs += 2;
  846. }
  847. spin_unlock(&vfsmount_lock);
  848. if (actual_refs > minimum_refs)
  849. return 0;
  850. return 1;
  851. }
  852. EXPORT_SYMBOL(may_umount_tree);
  853. /**
  854. * may_umount - check if a mount point is busy
  855. * @mnt: root of mount
  856. *
  857. * This is called to check if a mount point has any
  858. * open files, pwds, chroots or sub mounts. If the
  859. * mount has sub mounts this will return busy
  860. * regardless of whether the sub mounts are busy.
  861. *
  862. * Doesn't take quota and stuff into account. IOW, in some cases it will
  863. * give false negatives. The main reason why it's here is that we need
  864. * a non-destructive way to look for easily umountable filesystems.
  865. */
  866. int may_umount(struct vfsmount *mnt)
  867. {
  868. int ret = 1;
  869. spin_lock(&vfsmount_lock);
  870. if (propagate_mount_busy(mnt, 2))
  871. ret = 0;
  872. spin_unlock(&vfsmount_lock);
  873. return ret;
  874. }
  875. EXPORT_SYMBOL(may_umount);
  876. void release_mounts(struct list_head *head)
  877. {
  878. struct vfsmount *mnt;
  879. while (!list_empty(head)) {
  880. mnt = list_first_entry(head, struct vfsmount, mnt_hash);
  881. list_del_init(&mnt->mnt_hash);
  882. if (mnt->mnt_parent != mnt) {
  883. struct dentry *dentry;
  884. struct vfsmount *m;
  885. spin_lock(&vfsmount_lock);
  886. dentry = mnt->mnt_mountpoint;
  887. m = mnt->mnt_parent;
  888. mnt->mnt_mountpoint = mnt->mnt_root;
  889. mnt->mnt_parent = mnt;
  890. m->mnt_ghosts--;
  891. spin_unlock(&vfsmount_lock);
  892. dput(dentry);
  893. mntput(m);
  894. }
  895. mntput(mnt);
  896. }
  897. }
  898. void umount_tree(struct vfsmount *mnt, int propagate, struct list_head *kill)
  899. {
  900. struct vfsmount *p;
  901. for (p = mnt; p; p = next_mnt(p, mnt))
  902. list_move(&p->mnt_hash, kill);
  903. if (propagate)
  904. propagate_umount(kill);
  905. list_for_each_entry(p, kill, mnt_hash) {
  906. list_del_init(&p->mnt_expire);
  907. list_del_init(&p->mnt_list);
  908. __touch_mnt_namespace(p->mnt_ns);
  909. p->mnt_ns = NULL;
  910. list_del_init(&p->mnt_child);
  911. if (p->mnt_parent != p) {
  912. p->mnt_parent->mnt_ghosts++;
  913. p->mnt_mountpoint->d_mounted--;
  914. }
  915. change_mnt_propagation(p, MS_PRIVATE);
  916. }
  917. }
  918. static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts);
  919. static int do_umount(struct vfsmount *mnt, int flags)
  920. {
  921. struct super_block *sb = mnt->mnt_sb;
  922. int retval;
  923. LIST_HEAD(umount_list);
  924. retval = security_sb_umount(mnt, flags);
  925. if (retval)
  926. return retval;
  927. /*
  928. * Allow userspace to request a mountpoint be expired rather than
  929. * unmounting unconditionally. Unmount only happens if:
  930. * (1) the mark is already set (the mark is cleared by mntput())
  931. * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
  932. */
  933. if (flags & MNT_EXPIRE) {
  934. if (mnt == current->fs->root.mnt ||
  935. flags & (MNT_FORCE | MNT_DETACH))
  936. return -EINVAL;
  937. if (atomic_read(&mnt->mnt_count) != 2)
  938. return -EBUSY;
  939. if (!xchg(&mnt->mnt_expiry_mark, 1))
  940. return -EAGAIN;
  941. }
  942. /*
  943. * If we may have to abort operations to get out of this
  944. * mount, and they will themselves hold resources we must
  945. * allow the fs to do things. In the Unix tradition of
  946. * 'Gee thats tricky lets do it in userspace' the umount_begin
  947. * might fail to complete on the first run through as other tasks
  948. * must return, and the like. Thats for the mount program to worry
  949. * about for the moment.
  950. */
  951. if (flags & MNT_FORCE && sb->s_op->umount_begin) {
  952. lock_kernel();
  953. sb->s_op->umount_begin(sb);
  954. unlock_kernel();
  955. }
  956. /*
  957. * No sense to grab the lock for this test, but test itself looks
  958. * somewhat bogus. Suggestions for better replacement?
  959. * Ho-hum... In principle, we might treat that as umount + switch
  960. * to rootfs. GC would eventually take care of the old vfsmount.
  961. * Actually it makes sense, especially if rootfs would contain a
  962. * /reboot - static binary that would close all descriptors and
  963. * call reboot(9). Then init(8) could umount root and exec /reboot.
  964. */
  965. if (mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
  966. /*
  967. * Special case for "unmounting" root ...
  968. * we just try to remount it readonly.
  969. */
  970. down_write(&sb->s_umount);
  971. if (!(sb->s_flags & MS_RDONLY)) {
  972. lock_kernel();
  973. retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
  974. unlock_kernel();
  975. }
  976. up_write(&sb->s_umount);
  977. return retval;
  978. }
  979. down_write(&namespace_sem);
  980. spin_lock(&vfsmount_lock);
  981. event++;
  982. if (!(flags & MNT_DETACH))
  983. shrink_submounts(mnt, &umount_list);
  984. retval = -EBUSY;
  985. if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
  986. if (!list_empty(&mnt->mnt_list))
  987. umount_tree(mnt, 1, &umount_list);
  988. retval = 0;
  989. }
  990. spin_unlock(&vfsmount_lock);
  991. if (retval)
  992. security_sb_umount_busy(mnt);
  993. up_write(&namespace_sem);
  994. release_mounts(&umount_list);
  995. return retval;
  996. }
  997. /*
  998. * Now umount can handle mount points as well as block devices.
  999. * This is important for filesystems which use unnamed block devices.
  1000. *
  1001. * We now support a flag for forced unmount like the other 'big iron'
  1002. * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
  1003. */
  1004. asmlinkage long sys_umount(char __user * name, int flags)
  1005. {
  1006. struct nameidata nd;
  1007. int retval;
  1008. retval = __user_walk(name, LOOKUP_FOLLOW, &nd);
  1009. if (retval)
  1010. goto out;
  1011. retval = -EINVAL;
  1012. if (nd.path.dentry != nd.path.mnt->mnt_root)
  1013. goto dput_and_out;
  1014. if (!check_mnt(nd.path.mnt))
  1015. goto dput_and_out;
  1016. retval = -EPERM;
  1017. if (!capable(CAP_SYS_ADMIN))
  1018. goto dput_and_out;
  1019. retval = do_umount(nd.path.mnt, flags);
  1020. dput_and_out:
  1021. /* we mustn't call path_put() as that would clear mnt_expiry_mark */
  1022. dput(nd.path.dentry);
  1023. mntput_no_expire(nd.path.mnt);
  1024. out:
  1025. return retval;
  1026. }
  1027. #ifdef __ARCH_WANT_SYS_OLDUMOUNT
  1028. /*
  1029. * The 2.0 compatible umount. No flags.
  1030. */
  1031. asmlinkage long sys_oldumount(char __user * name)
  1032. {
  1033. return sys_umount(name, 0);
  1034. }
  1035. #endif
  1036. static int mount_is_safe(struct nameidata *nd)
  1037. {
  1038. if (capable(CAP_SYS_ADMIN))
  1039. return 0;
  1040. return -EPERM;
  1041. #ifdef notyet
  1042. if (S_ISLNK(nd->path.dentry->d_inode->i_mode))
  1043. return -EPERM;
  1044. if (nd->path.dentry->d_inode->i_mode & S_ISVTX) {
  1045. if (current->uid != nd->path.dentry->d_inode->i_uid)
  1046. return -EPERM;
  1047. }
  1048. if (vfs_permission(nd, MAY_WRITE))
  1049. return -EPERM;
  1050. return 0;
  1051. #endif
  1052. }
  1053. struct vfsmount *copy_tree(struct vfsmount *mnt, struct dentry *dentry,
  1054. int flag)
  1055. {
  1056. struct vfsmount *res, *p, *q, *r, *s;
  1057. struct path path;
  1058. if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt))
  1059. return NULL;
  1060. res = q = clone_mnt(mnt, dentry, flag);
  1061. if (!q)
  1062. goto Enomem;
  1063. q->mnt_mountpoint = mnt->mnt_mountpoint;
  1064. p = mnt;
  1065. list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
  1066. if (!is_subdir(r->mnt_mountpoint, dentry))
  1067. continue;
  1068. for (s = r; s; s = next_mnt(s, r)) {
  1069. if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) {
  1070. s = skip_mnt_tree(s);
  1071. continue;
  1072. }
  1073. while (p != s->mnt_parent) {
  1074. p = p->mnt_parent;
  1075. q = q->mnt_parent;
  1076. }
  1077. p = s;
  1078. path.mnt = q;
  1079. path.dentry = p->mnt_mountpoint;
  1080. q = clone_mnt(p, p->mnt_root, flag);
  1081. if (!q)
  1082. goto Enomem;
  1083. spin_lock(&vfsmount_lock);
  1084. list_add_tail(&q->mnt_list, &res->mnt_list);
  1085. attach_mnt(q, &path);
  1086. spin_unlock(&vfsmount_lock);
  1087. }
  1088. }
  1089. return res;
  1090. Enomem:
  1091. if (res) {
  1092. LIST_HEAD(umount_list);
  1093. spin_lock(&vfsmount_lock);
  1094. umount_tree(res, 0, &umount_list);
  1095. spin_unlock(&vfsmount_lock);
  1096. release_mounts(&umount_list);
  1097. }
  1098. return NULL;
  1099. }
  1100. struct vfsmount *collect_mounts(struct vfsmount *mnt, struct dentry *dentry)
  1101. {
  1102. struct vfsmount *tree;
  1103. down_write(&namespace_sem);
  1104. tree = copy_tree(mnt, dentry, CL_COPY_ALL | CL_PRIVATE);
  1105. up_write(&namespace_sem);
  1106. return tree;
  1107. }
  1108. void drop_collected_mounts(struct vfsmount *mnt)
  1109. {
  1110. LIST_HEAD(umount_list);
  1111. down_write(&namespace_sem);
  1112. spin_lock(&vfsmount_lock);
  1113. umount_tree(mnt, 0, &umount_list);
  1114. spin_unlock(&vfsmount_lock);
  1115. up_write(&namespace_sem);
  1116. release_mounts(&umount_list);
  1117. }
  1118. static void cleanup_group_ids(struct vfsmount *mnt, struct vfsmount *end)
  1119. {
  1120. struct vfsmount *p;
  1121. for (p = mnt; p != end; p = next_mnt(p, mnt)) {
  1122. if (p->mnt_group_id && !IS_MNT_SHARED(p))
  1123. mnt_release_group_id(p);
  1124. }
  1125. }
  1126. static int invent_group_ids(struct vfsmount *mnt, bool recurse)
  1127. {
  1128. struct vfsmount *p;
  1129. for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
  1130. if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
  1131. int err = mnt_alloc_group_id(p);
  1132. if (err) {
  1133. cleanup_group_ids(mnt, p);
  1134. return err;
  1135. }
  1136. }
  1137. }
  1138. return 0;
  1139. }
  1140. /*
  1141. * @source_mnt : mount tree to be attached
  1142. * @nd : place the mount tree @source_mnt is attached
  1143. * @parent_nd : if non-null, detach the source_mnt from its parent and
  1144. * store the parent mount and mountpoint dentry.
  1145. * (done when source_mnt is moved)
  1146. *
  1147. * NOTE: in the table below explains the semantics when a source mount
  1148. * of a given type is attached to a destination mount of a given type.
  1149. * ---------------------------------------------------------------------------
  1150. * | BIND MOUNT OPERATION |
  1151. * |**************************************************************************
  1152. * | source-->| shared | private | slave | unbindable |
  1153. * | dest | | | | |
  1154. * | | | | | | |
  1155. * | v | | | | |
  1156. * |**************************************************************************
  1157. * | shared | shared (++) | shared (+) | shared(+++)| invalid |
  1158. * | | | | | |
  1159. * |non-shared| shared (+) | private | slave (*) | invalid |
  1160. * ***************************************************************************
  1161. * A bind operation clones the source mount and mounts the clone on the
  1162. * destination mount.
  1163. *
  1164. * (++) the cloned mount is propagated to all the mounts in the propagation
  1165. * tree of the destination mount and the cloned mount is added to
  1166. * the peer group of the source mount.
  1167. * (+) the cloned mount is created under the destination mount and is marked
  1168. * as shared. The cloned mount is added to the peer group of the source
  1169. * mount.
  1170. * (+++) the mount is propagated to all the mounts in the propagation tree
  1171. * of the destination mount and the cloned mount is made slave
  1172. * of the same master as that of the source mount. The cloned mount
  1173. * is marked as 'shared and slave'.
  1174. * (*) the cloned mount is made a slave of the same master as that of the
  1175. * source mount.
  1176. *
  1177. * ---------------------------------------------------------------------------
  1178. * | MOVE MOUNT OPERATION |
  1179. * |**************************************************************************
  1180. * | source-->| shared | private | slave | unbindable |
  1181. * | dest | | | | |
  1182. * | | | | | | |
  1183. * | v | | | | |
  1184. * |**************************************************************************
  1185. * | shared | shared (+) | shared (+) | shared(+++) | invalid |
  1186. * | | | | | |
  1187. * |non-shared| shared (+*) | private | slave (*) | unbindable |
  1188. * ***************************************************************************
  1189. *
  1190. * (+) the mount is moved to the destination. And is then propagated to
  1191. * all the mounts in the propagation tree of the destination mount.
  1192. * (+*) the mount is moved to the destination.
  1193. * (+++) the mount is moved to the destination and is then propagated to
  1194. * all the mounts belonging to the destination mount's propagation tree.
  1195. * the mount is marked as 'shared and slave'.
  1196. * (*) the mount continues to be a slave at the new location.
  1197. *
  1198. * if the source mount is a tree, the operations explained above is
  1199. * applied to each mount in the tree.
  1200. * Must be called without spinlocks held, since this function can sleep
  1201. * in allocations.
  1202. */
  1203. static int attach_recursive_mnt(struct vfsmount *source_mnt,
  1204. struct path *path, struct path *parent_path)
  1205. {
  1206. LIST_HEAD(tree_list);
  1207. struct vfsmount *dest_mnt = path->mnt;
  1208. struct dentry *dest_dentry = path->dentry;
  1209. struct vfsmount *child, *p;
  1210. int err;
  1211. if (IS_MNT_SHARED(dest_mnt)) {
  1212. err = invent_group_ids(source_mnt, true);
  1213. if (err)
  1214. goto out;
  1215. }
  1216. err = propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list);
  1217. if (err)
  1218. goto out_cleanup_ids;
  1219. if (IS_MNT_SHARED(dest_mnt)) {
  1220. for (p = source_mnt; p; p = next_mnt(p, source_mnt))
  1221. set_mnt_shared(p);
  1222. }
  1223. spin_lock(&vfsmount_lock);
  1224. if (parent_path) {
  1225. detach_mnt(source_mnt, parent_path);
  1226. attach_mnt(source_mnt, path);
  1227. touch_mnt_namespace(current->nsproxy->mnt_ns);
  1228. } else {
  1229. mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt);
  1230. commit_tree(source_mnt);
  1231. }
  1232. list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
  1233. list_del_init(&child->mnt_hash);
  1234. commit_tree(child);
  1235. }
  1236. spin_unlock(&vfsmount_lock);
  1237. return 0;
  1238. out_cleanup_ids:
  1239. if (IS_MNT_SHARED(dest_mnt))
  1240. cleanup_group_ids(source_mnt, NULL);
  1241. out:
  1242. return err;
  1243. }
  1244. static int graft_tree(struct vfsmount *mnt, struct path *path)
  1245. {
  1246. int err;
  1247. if (mnt->mnt_sb->s_flags & MS_NOUSER)
  1248. return -EINVAL;
  1249. if (S_ISDIR(path->dentry->d_inode->i_mode) !=
  1250. S_ISDIR(mnt->mnt_root->d_inode->i_mode))
  1251. return -ENOTDIR;
  1252. err = -ENOENT;
  1253. mutex_lock(&path->dentry->d_inode->i_mutex);
  1254. if (IS_DEADDIR(path->dentry->d_inode))
  1255. goto out_unlock;
  1256. err = security_sb_check_sb(mnt, path);
  1257. if (err)
  1258. goto out_unlock;
  1259. err = -ENOENT;
  1260. if (IS_ROOT(path->dentry) || !d_unhashed(path->dentry))
  1261. err = attach_recursive_mnt(mnt, path, NULL);
  1262. out_unlock:
  1263. mutex_unlock(&path->dentry->d_inode->i_mutex);
  1264. if (!err)
  1265. security_sb_post_addmount(mnt, path);
  1266. return err;
  1267. }
  1268. /*
  1269. * recursively change the type of the mountpoint.
  1270. * noinline this do_mount helper to save do_mount stack space.
  1271. */
  1272. static noinline int do_change_type(struct nameidata *nd, int flag)
  1273. {
  1274. struct vfsmount *m, *mnt = nd->path.mnt;
  1275. int recurse = flag & MS_REC;
  1276. int type = flag & ~MS_REC;
  1277. int err = 0;
  1278. if (!capable(CAP_SYS_ADMIN))
  1279. return -EPERM;
  1280. if (nd->path.dentry != nd->path.mnt->mnt_root)
  1281. return -EINVAL;
  1282. down_write(&namespace_sem);
  1283. if (type == MS_SHARED) {
  1284. err = invent_group_ids(mnt, recurse);
  1285. if (err)
  1286. goto out_unlock;
  1287. }
  1288. spin_lock(&vfsmount_lock);
  1289. for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
  1290. change_mnt_propagation(m, type);
  1291. spin_unlock(&vfsmount_lock);
  1292. out_unlock:
  1293. up_write(&namespace_sem);
  1294. return err;
  1295. }
  1296. /*
  1297. * do loopback mount.
  1298. * noinline this do_mount helper to save do_mount stack space.
  1299. */
  1300. static noinline int do_loopback(struct nameidata *nd, char *old_name,
  1301. int recurse)
  1302. {
  1303. struct nameidata old_nd;
  1304. struct vfsmount *mnt = NULL;
  1305. int err = mount_is_safe(nd);
  1306. if (err)
  1307. return err;
  1308. if (!old_name || !*old_name)
  1309. return -EINVAL;
  1310. err = path_lookup(old_name, LOOKUP_FOLLOW, &old_nd);
  1311. if (err)
  1312. return err;
  1313. down_write(&namespace_sem);
  1314. err = -EINVAL;
  1315. if (IS_MNT_UNBINDABLE(old_nd.path.mnt))
  1316. goto out;
  1317. if (!check_mnt(nd->path.mnt) || !check_mnt(old_nd.path.mnt))
  1318. goto out;
  1319. err = -ENOMEM;
  1320. if (recurse)
  1321. mnt = copy_tree(old_nd.path.mnt, old_nd.path.dentry, 0);
  1322. else
  1323. mnt = clone_mnt(old_nd.path.mnt, old_nd.path.dentry, 0);
  1324. if (!mnt)
  1325. goto out;
  1326. err = graft_tree(mnt, &nd->path);
  1327. if (err) {
  1328. LIST_HEAD(umount_list);
  1329. spin_lock(&vfsmount_lock);
  1330. umount_tree(mnt, 0, &umount_list);
  1331. spin_unlock(&vfsmount_lock);
  1332. release_mounts(&umount_list);
  1333. }
  1334. out:
  1335. up_write(&namespace_sem);
  1336. path_put(&old_nd.path);
  1337. return err;
  1338. }
  1339. static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
  1340. {
  1341. int error = 0;
  1342. int readonly_request = 0;
  1343. if (ms_flags & MS_RDONLY)
  1344. readonly_request = 1;
  1345. if (readonly_request == __mnt_is_readonly(mnt))
  1346. return 0;
  1347. if (readonly_request)
  1348. error = mnt_make_readonly(mnt);
  1349. else
  1350. __mnt_unmake_readonly(mnt);
  1351. return error;
  1352. }
  1353. /*
  1354. * change filesystem flags. dir should be a physical root of filesystem.
  1355. * If you've mounted a non-root directory somewhere and want to do remount
  1356. * on it - tough luck.
  1357. * noinline this do_mount helper to save do_mount stack space.
  1358. */
  1359. static noinline int do_remount(struct nameidata *nd, int flags, int mnt_flags,
  1360. void *data)
  1361. {
  1362. int err;
  1363. struct super_block *sb = nd->path.mnt->mnt_sb;
  1364. if (!capable(CAP_SYS_ADMIN))
  1365. return -EPERM;
  1366. if (!check_mnt(nd->path.mnt))
  1367. return -EINVAL;
  1368. if (nd->path.dentry != nd->path.mnt->mnt_root)
  1369. return -EINVAL;
  1370. down_write(&sb->s_umount);
  1371. if (flags & MS_BIND)
  1372. err = change_mount_flags(nd->path.mnt, flags);
  1373. else
  1374. err = do_remount_sb(sb, flags, data, 0);
  1375. if (!err)
  1376. nd->path.mnt->mnt_flags = mnt_flags;
  1377. up_write(&sb->s_umount);
  1378. if (!err)
  1379. security_sb_post_remount(nd->path.mnt, flags, data);
  1380. return err;
  1381. }
  1382. static inline int tree_contains_unbindable(struct vfsmount *mnt)
  1383. {
  1384. struct vfsmount *p;
  1385. for (p = mnt; p; p = next_mnt(p, mnt)) {
  1386. if (IS_MNT_UNBINDABLE(p))
  1387. return 1;
  1388. }
  1389. return 0;
  1390. }
  1391. /*
  1392. * noinline this do_mount helper to save do_mount stack space.
  1393. */
  1394. static noinline int do_move_mount(struct nameidata *nd, char *old_name)
  1395. {
  1396. struct nameidata old_nd;
  1397. struct path parent_path;
  1398. struct vfsmount *p;
  1399. int err = 0;
  1400. if (!capable(CAP_SYS_ADMIN))
  1401. return -EPERM;
  1402. if (!old_name || !*old_name)
  1403. return -EINVAL;
  1404. err = path_lookup(old_name, LOOKUP_FOLLOW, &old_nd);
  1405. if (err)
  1406. return err;
  1407. down_write(&namespace_sem);
  1408. while (d_mountpoint(nd->path.dentry) &&
  1409. follow_down(&nd->path.mnt, &nd->path.dentry))
  1410. ;
  1411. err = -EINVAL;
  1412. if (!check_mnt(nd->path.mnt) || !check_mnt(old_nd.path.mnt))
  1413. goto out;
  1414. err = -ENOENT;
  1415. mutex_lock(&nd->path.dentry->d_inode->i_mutex);
  1416. if (IS_DEADDIR(nd->path.dentry->d_inode))
  1417. goto out1;
  1418. if (!IS_ROOT(nd->path.dentry) && d_unhashed(nd->path.dentry))
  1419. goto out1;
  1420. err = -EINVAL;
  1421. if (old_nd.path.dentry != old_nd.path.mnt->mnt_root)
  1422. goto out1;
  1423. if (old_nd.path.mnt == old_nd.path.mnt->mnt_parent)
  1424. goto out1;
  1425. if (S_ISDIR(nd->path.dentry->d_inode->i_mode) !=
  1426. S_ISDIR(old_nd.path.dentry->d_inode->i_mode))
  1427. goto out1;
  1428. /*
  1429. * Don't move a mount residing in a shared parent.
  1430. */
  1431. if (old_nd.path.mnt->mnt_parent &&
  1432. IS_MNT_SHARED(old_nd.path.mnt->mnt_parent))
  1433. goto out1;
  1434. /*
  1435. * Don't move a mount tree containing unbindable mounts to a destination
  1436. * mount which is shared.
  1437. */
  1438. if (IS_MNT_SHARED(nd->path.mnt) &&
  1439. tree_contains_unbindable(old_nd.path.mnt))
  1440. goto out1;
  1441. err = -ELOOP;
  1442. for (p = nd->path.mnt; p->mnt_parent != p; p = p->mnt_parent)
  1443. if (p == old_nd.path.mnt)
  1444. goto out1;
  1445. err = attach_recursive_mnt(old_nd.path.mnt, &nd->path, &parent_path);
  1446. if (err)
  1447. goto out1;
  1448. /* if the mount is moved, it should no longer be expire
  1449. * automatically */
  1450. list_del_init(&old_nd.path.mnt->mnt_expire);
  1451. out1:
  1452. mutex_unlock(&nd->path.dentry->d_inode->i_mutex);
  1453. out:
  1454. up_write(&namespace_sem);
  1455. if (!err)
  1456. path_put(&parent_path);
  1457. path_put(&old_nd.path);
  1458. return err;
  1459. }
  1460. /*
  1461. * create a new mount for userspace and request it to be added into the
  1462. * namespace's tree
  1463. * noinline this do_mount helper to save do_mount stack space.
  1464. */
  1465. static noinline int do_new_mount(struct nameidata *nd, char *type, int flags,
  1466. int mnt_flags, char *name, void *data)
  1467. {
  1468. struct vfsmount *mnt;
  1469. if (!type || !memchr(type, 0, PAGE_SIZE))
  1470. return -EINVAL;
  1471. /* we need capabilities... */
  1472. if (!capable(CAP_SYS_ADMIN))
  1473. return -EPERM;
  1474. mnt = do_kern_mount(type, flags, name, data);
  1475. if (IS_ERR(mnt))
  1476. return PTR_ERR(mnt);
  1477. return do_add_mount(mnt, nd, mnt_flags, NULL);
  1478. }
  1479. /*
  1480. * add a mount into a namespace's mount tree
  1481. * - provide the option of adding the new mount to an expiration list
  1482. */
  1483. int do_add_mount(struct vfsmount *newmnt, struct nameidata *nd,
  1484. int mnt_flags, struct list_head *fslist)
  1485. {
  1486. int err;
  1487. down_write(&namespace_sem);
  1488. /* Something was mounted here while we slept */
  1489. while (d_mountpoint(nd->path.dentry) &&
  1490. follow_down(&nd->path.mnt, &nd->path.dentry))
  1491. ;
  1492. err = -EINVAL;
  1493. if (!check_mnt(nd->path.mnt))
  1494. goto unlock;
  1495. /* Refuse the same filesystem on the same mount point */
  1496. err = -EBUSY;
  1497. if (nd->path.mnt->mnt_sb == newmnt->mnt_sb &&
  1498. nd->path.mnt->mnt_root == nd->path.dentry)
  1499. goto unlock;
  1500. err = -EINVAL;
  1501. if (S_ISLNK(newmnt->mnt_root->d_inode->i_mode))
  1502. goto unlock;
  1503. newmnt->mnt_flags = mnt_flags;
  1504. if ((err = graft_tree(newmnt, &nd->path)))
  1505. goto unlock;
  1506. if (fslist) /* add to the specified expiration list */
  1507. list_add_tail(&newmnt->mnt_expire, fslist);
  1508. up_write(&namespace_sem);
  1509. return 0;
  1510. unlock:
  1511. up_write(&namespace_sem);
  1512. mntput(newmnt);
  1513. return err;
  1514. }
  1515. EXPORT_SYMBOL_GPL(do_add_mount);
  1516. /*
  1517. * process a list of expirable mountpoints with the intent of discarding any
  1518. * mountpoints that aren't in use and haven't been touched since last we came
  1519. * here
  1520. */
  1521. void mark_mounts_for_expiry(struct list_head *mounts)
  1522. {
  1523. struct vfsmount *mnt, *next;
  1524. LIST_HEAD(graveyard);
  1525. LIST_HEAD(umounts);
  1526. if (list_empty(mounts))
  1527. return;
  1528. down_write(&namespace_sem);
  1529. spin_lock(&vfsmount_lock);
  1530. /* extract from the expiration list every vfsmount that matches the
  1531. * following criteria:
  1532. * - only referenced by its parent vfsmount
  1533. * - still marked for expiry (marked on the last call here; marks are
  1534. * cleared by mntput())
  1535. */
  1536. list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
  1537. if (!xchg(&mnt->mnt_expiry_mark, 1) ||
  1538. propagate_mount_busy(mnt, 1))
  1539. continue;
  1540. list_move(&mnt->mnt_expire, &graveyard);
  1541. }
  1542. while (!list_empty(&graveyard)) {
  1543. mnt = list_first_entry(&graveyard, struct vfsmount, mnt_expire);
  1544. touch_mnt_namespace(mnt->mnt_ns);
  1545. umount_tree(mnt, 1, &umounts);
  1546. }
  1547. spin_unlock(&vfsmount_lock);
  1548. up_write(&namespace_sem);
  1549. release_mounts(&umounts);
  1550. }
  1551. EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
  1552. /*
  1553. * Ripoff of 'select_parent()'
  1554. *
  1555. * search the list of submounts for a given mountpoint, and move any
  1556. * shrinkable submounts to the 'graveyard' list.
  1557. */
  1558. static int select_submounts(struct vfsmount *parent, struct list_head *graveyard)
  1559. {
  1560. struct vfsmount *this_parent = parent;
  1561. struct list_head *next;
  1562. int found = 0;
  1563. repeat:
  1564. next = this_parent->mnt_mounts.next;
  1565. resume:
  1566. while (next != &this_parent->mnt_mounts) {
  1567. struct list_head *tmp = next;
  1568. struct vfsmount *mnt = list_entry(tmp, struct vfsmount, mnt_child);
  1569. next = tmp->next;
  1570. if (!(mnt->mnt_flags & MNT_SHRINKABLE))
  1571. continue;
  1572. /*
  1573. * Descend a level if the d_mounts list is non-empty.
  1574. */
  1575. if (!list_empty(&mnt->mnt_mounts)) {
  1576. this_parent = mnt;
  1577. goto repeat;
  1578. }
  1579. if (!propagate_mount_busy(mnt, 1)) {
  1580. list_move_tail(&mnt->mnt_expire, graveyard);
  1581. found++;
  1582. }
  1583. }
  1584. /*
  1585. * All done at this level ... ascend and resume the search
  1586. */
  1587. if (this_parent != parent) {
  1588. next = this_parent->mnt_child.next;
  1589. this_parent = this_parent->mnt_parent;
  1590. goto resume;
  1591. }
  1592. return found;
  1593. }
  1594. /*
  1595. * process a list of expirable mountpoints with the intent of discarding any
  1596. * submounts of a specific parent mountpoint
  1597. */
  1598. static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts)
  1599. {
  1600. LIST_HEAD(graveyard);
  1601. struct vfsmount *m;
  1602. /* extract submounts of 'mountpoint' from the expiration list */
  1603. while (select_submounts(mnt, &graveyard)) {
  1604. while (!list_empty(&graveyard)) {
  1605. m = list_first_entry(&graveyard, struct vfsmount,
  1606. mnt_expire);
  1607. touch_mnt_namespace(mnt->mnt_ns);
  1608. umount_tree(mnt, 1, umounts);
  1609. }
  1610. }
  1611. }
  1612. /*
  1613. * Some copy_from_user() implementations do not return the exact number of
  1614. * bytes remaining to copy on a fault. But copy_mount_options() requires that.
  1615. * Note that this function differs from copy_from_user() in that it will oops
  1616. * on bad values of `to', rather than returning a short copy.
  1617. */
  1618. static long exact_copy_from_user(void *to, const void __user * from,
  1619. unsigned long n)
  1620. {
  1621. char *t = to;
  1622. const char __user *f = from;
  1623. char c;
  1624. if (!access_ok(VERIFY_READ, from, n))
  1625. return n;
  1626. while (n) {
  1627. if (__get_user(c, f)) {
  1628. memset(t, 0, n);
  1629. break;
  1630. }
  1631. *t++ = c;
  1632. f++;
  1633. n--;
  1634. }
  1635. return n;
  1636. }
  1637. int copy_mount_options(const void __user * data, unsigned long *where)
  1638. {
  1639. int i;
  1640. unsigned long page;
  1641. unsigned long size;
  1642. *where = 0;
  1643. if (!data)
  1644. return 0;
  1645. if (!(page = __get_free_page(GFP_KERNEL)))
  1646. return -ENOMEM;
  1647. /* We only care that *some* data at the address the user
  1648. * gave us is valid. Just in case, we'll zero
  1649. * the remainder of the page.
  1650. */
  1651. /* copy_from_user cannot cross TASK_SIZE ! */
  1652. size = TASK_SIZE - (unsigned long)data;
  1653. if (size > PAGE_SIZE)
  1654. size = PAGE_SIZE;
  1655. i = size - exact_copy_from_user((void *)page, data, size);
  1656. if (!i) {
  1657. free_page(page);
  1658. return -EFAULT;
  1659. }
  1660. if (i != PAGE_SIZE)
  1661. memset((char *)page + i, 0, PAGE_SIZE - i);
  1662. *where = page;
  1663. return 0;
  1664. }
  1665. /*
  1666. * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
  1667. * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
  1668. *
  1669. * data is a (void *) that can point to any structure up to
  1670. * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
  1671. * information (or be NULL).
  1672. *
  1673. * Pre-0.97 versions of mount() didn't have a flags word.
  1674. * When the flags word was introduced its top half was required
  1675. * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
  1676. * Therefore, if this magic number is present, it carries no information
  1677. * and must be discarded.
  1678. */
  1679. long do_mount(char *dev_name, char *dir_name, char *type_page,
  1680. unsigned long flags, void *data_page)
  1681. {
  1682. struct nameidata nd;
  1683. int retval = 0;
  1684. int mnt_flags = 0;
  1685. /* Discard magic */
  1686. if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
  1687. flags &= ~MS_MGC_MSK;
  1688. /* Basic sanity checks */
  1689. if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
  1690. return -EINVAL;
  1691. if (dev_name && !memchr(dev_name, 0, PAGE_SIZE))
  1692. return -EINVAL;
  1693. if (data_page)
  1694. ((char *)data_page)[PAGE_SIZE - 1] = 0;
  1695. /* Separate the per-mountpoint flags */
  1696. if (flags & MS_NOSUID)
  1697. mnt_flags |= MNT_NOSUID;
  1698. if (flags & MS_NODEV)
  1699. mnt_flags |= MNT_NODEV;
  1700. if (flags & MS_NOEXEC)
  1701. mnt_flags |= MNT_NOEXEC;
  1702. if (flags & MS_NOATIME)
  1703. mnt_flags |= MNT_NOATIME;
  1704. if (flags & MS_NODIRATIME)
  1705. mnt_flags |= MNT_NODIRATIME;
  1706. if (flags & MS_RELATIME)
  1707. mnt_flags |= MNT_RELATIME;
  1708. if (flags & MS_RDONLY)
  1709. mnt_flags |= MNT_READONLY;
  1710. flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE |
  1711. MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT);
  1712. /* ... and get the mountpoint */
  1713. retval = path_lookup(dir_name, LOOKUP_FOLLOW, &nd);
  1714. if (retval)
  1715. return retval;
  1716. retval = security_sb_mount(dev_name, &nd.path,
  1717. type_page, flags, data_page);
  1718. if (retval)
  1719. goto dput_out;
  1720. if (flags & MS_REMOUNT)
  1721. retval = do_remount(&nd, flags & ~MS_REMOUNT, mnt_flags,
  1722. data_page);
  1723. else if (flags & MS_BIND)
  1724. retval = do_loopback(&nd, dev_name, flags & MS_REC);
  1725. else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
  1726. retval = do_change_type(&nd, flags);
  1727. else if (flags & MS_MOVE)
  1728. retval = do_move_mount(&nd, dev_name);
  1729. else
  1730. retval = do_new_mount(&nd, type_page, flags, mnt_flags,
  1731. dev_name, data_page);
  1732. dput_out:
  1733. path_put(&nd.path);
  1734. return retval;
  1735. }
  1736. /*
  1737. * Allocate a new namespace structure and populate it with contents
  1738. * copied from the namespace of the passed in task structure.
  1739. */
  1740. static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns,
  1741. struct fs_struct *fs)
  1742. {
  1743. struct mnt_namespace *new_ns;
  1744. struct vfsmount *rootmnt = NULL, *pwdmnt = NULL, *altrootmnt = NULL;
  1745. struct vfsmount *p, *q;
  1746. new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
  1747. if (!new_ns)
  1748. return ERR_PTR(-ENOMEM);
  1749. atomic_set(&new_ns->count, 1);
  1750. INIT_LIST_HEAD(&new_ns->list);
  1751. init_waitqueue_head(&new_ns->poll);
  1752. new_ns->event = 0;
  1753. down_write(&namespace_sem);
  1754. /* First pass: copy the tree topology */
  1755. new_ns->root = copy_tree(mnt_ns->root, mnt_ns->root->mnt_root,
  1756. CL_COPY_ALL | CL_EXPIRE);
  1757. if (!new_ns->root) {
  1758. up_write(&namespace_sem);
  1759. kfree(new_ns);
  1760. return ERR_PTR(-ENOMEM);;
  1761. }
  1762. spin_lock(&vfsmount_lock);
  1763. list_add_tail(&new_ns->list, &new_ns->root->mnt_list);
  1764. spin_unlock(&vfsmount_lock);
  1765. /*
  1766. * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
  1767. * as belonging to new namespace. We have already acquired a private
  1768. * fs_struct, so tsk->fs->lock is not needed.
  1769. */
  1770. p = mnt_ns->root;
  1771. q = new_ns->root;
  1772. while (p) {
  1773. q->mnt_ns = new_ns;
  1774. if (fs) {
  1775. if (p == fs->root.mnt) {
  1776. rootmnt = p;
  1777. fs->root.mnt = mntget(q);
  1778. }
  1779. if (p == fs->pwd.mnt) {
  1780. pwdmnt = p;
  1781. fs->pwd.mnt = mntget(q);
  1782. }
  1783. if (p == fs->altroot.mnt) {
  1784. altrootmnt = p;
  1785. fs->altroot.mnt = mntget(q);
  1786. }
  1787. }
  1788. p = next_mnt(p, mnt_ns->root);
  1789. q = next_mnt(q, new_ns->root);
  1790. }
  1791. up_write(&namespace_sem);
  1792. if (rootmnt)
  1793. mntput(rootmnt);
  1794. if (pwdmnt)
  1795. mntput(pwdmnt);
  1796. if (altrootmnt)
  1797. mntput(altrootmnt);
  1798. return new_ns;
  1799. }
  1800. struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
  1801. struct fs_struct *new_fs)
  1802. {
  1803. struct mnt_namespace *new_ns;
  1804. BUG_ON(!ns);
  1805. get_mnt_ns(ns);
  1806. if (!(flags & CLONE_NEWNS))
  1807. return ns;
  1808. new_ns = dup_mnt_ns(ns, new_fs);
  1809. put_mnt_ns(ns);
  1810. return new_ns;
  1811. }
  1812. asmlinkage long sys_mount(char __user * dev_name, char __user * dir_name,
  1813. char __user * type, unsigned long flags,
  1814. void __user * data)
  1815. {
  1816. int retval;
  1817. unsigned long data_page;
  1818. unsigned long type_page;
  1819. unsigned long dev_page;
  1820. char *dir_page;
  1821. retval = copy_mount_options(type, &type_page);
  1822. if (retval < 0)
  1823. return retval;
  1824. dir_page = getname(dir_name);
  1825. retval = PTR_ERR(dir_page);
  1826. if (IS_ERR(dir_page))
  1827. goto out1;
  1828. retval = copy_mount_options(dev_name, &dev_page);
  1829. if (retval < 0)
  1830. goto out2;
  1831. retval = copy_mount_options(data, &data_page);
  1832. if (retval < 0)
  1833. goto out3;
  1834. lock_kernel();
  1835. retval = do_mount((char *)dev_page, dir_page, (char *)type_page,
  1836. flags, (void *)data_page);
  1837. unlock_kernel();
  1838. free_page(data_page);
  1839. out3:
  1840. free_page(dev_page);
  1841. out2:
  1842. putname(dir_page);
  1843. out1:
  1844. free_page(type_page);
  1845. return retval;
  1846. }
  1847. /*
  1848. * Replace the fs->{rootmnt,root} with {mnt,dentry}. Put the old values.
  1849. * It can block. Requires the big lock held.
  1850. */
  1851. void set_fs_root(struct fs_struct *fs, struct path *path)
  1852. {
  1853. struct path old_root;
  1854. write_lock(&fs->lock);
  1855. old_root = fs->root;
  1856. fs->root = *path;
  1857. path_get(path);
  1858. write_unlock(&fs->lock);
  1859. if (old_root.dentry)
  1860. path_put(&old_root);
  1861. }
  1862. /*
  1863. * Replace the fs->{pwdmnt,pwd} with {mnt,dentry}. Put the old values.
  1864. * It can block. Requires the big lock held.
  1865. */
  1866. void set_fs_pwd(struct fs_struct *fs, struct path *path)
  1867. {
  1868. struct path old_pwd;
  1869. write_lock(&fs->lock);
  1870. old_pwd = fs->pwd;
  1871. fs->pwd = *path;
  1872. path_get(path);
  1873. write_unlock(&fs->lock);
  1874. if (old_pwd.dentry)
  1875. path_put(&old_pwd);
  1876. }
  1877. static void chroot_fs_refs(struct path *old_root, struct path *new_root)
  1878. {
  1879. struct task_struct *g, *p;
  1880. struct fs_struct *fs;
  1881. read_lock(&tasklist_lock);
  1882. do_each_thread(g, p) {
  1883. task_lock(p);
  1884. fs = p->fs;
  1885. if (fs) {
  1886. atomic_inc(&fs->count);
  1887. task_unlock(p);
  1888. if (fs->root.dentry == old_root->dentry
  1889. && fs->root.mnt == old_root->mnt)
  1890. set_fs_root(fs, new_root);
  1891. if (fs->pwd.dentry == old_root->dentry
  1892. && fs->pwd.mnt == old_root->mnt)
  1893. set_fs_pwd(fs, new_root);
  1894. put_fs_struct(fs);
  1895. } else
  1896. task_unlock(p);
  1897. } while_each_thread(g, p);
  1898. read_unlock(&tasklist_lock);
  1899. }
  1900. /*
  1901. * pivot_root Semantics:
  1902. * Moves the root file system of the current process to the directory put_old,
  1903. * makes new_root as the new root file system of the current process, and sets
  1904. * root/cwd of all processes which had them on the current root to new_root.
  1905. *
  1906. * Restrictions:
  1907. * The new_root and put_old must be directories, and must not be on the
  1908. * same file system as the current process root. The put_old must be
  1909. * underneath new_root, i.e. adding a non-zero number of /.. to the string
  1910. * pointed to by put_old must yield the same directory as new_root. No other
  1911. * file system may be mounted on put_old. After all, new_root is a mountpoint.
  1912. *
  1913. * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
  1914. * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
  1915. * in this situation.
  1916. *
  1917. * Notes:
  1918. * - we don't move root/cwd if they are not at the root (reason: if something
  1919. * cared enough to change them, it's probably wrong to force them elsewhere)
  1920. * - it's okay to pick a root that isn't the root of a file system, e.g.
  1921. * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
  1922. * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
  1923. * first.
  1924. */
  1925. asmlinkage long sys_pivot_root(const char __user * new_root,
  1926. const char __user * put_old)
  1927. {
  1928. struct vfsmount *tmp;
  1929. struct nameidata new_nd, old_nd;
  1930. struct path parent_path, root_parent, root;
  1931. int error;
  1932. if (!capable(CAP_SYS_ADMIN))
  1933. return -EPERM;
  1934. error = __user_walk(new_root, LOOKUP_FOLLOW | LOOKUP_DIRECTORY,
  1935. &new_nd);
  1936. if (error)
  1937. goto out0;
  1938. error = -EINVAL;
  1939. if (!check_mnt(new_nd.path.mnt))
  1940. goto out1;
  1941. error = __user_walk(put_old, LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old_nd);
  1942. if (error)
  1943. goto out1;
  1944. error = security_sb_pivotroot(&old_nd.path, &new_nd.path);
  1945. if (error) {
  1946. path_put(&old_nd.path);
  1947. goto out1;
  1948. }
  1949. read_lock(&current->fs->lock);
  1950. root = current->fs->root;
  1951. path_get(&current->fs->root);
  1952. read_unlock(&current->fs->lock);
  1953. down_write(&namespace_sem);
  1954. mutex_lock(&old_nd.path.dentry->d_inode->i_mutex);
  1955. error = -EINVAL;
  1956. if (IS_MNT_SHARED(old_nd.path.mnt) ||
  1957. IS_MNT_SHARED(new_nd.path.mnt->mnt_parent) ||
  1958. IS_MNT_SHARED(root.mnt->mnt_parent))
  1959. goto out2;
  1960. if (!check_mnt(root.mnt))
  1961. goto out2;
  1962. error = -ENOENT;
  1963. if (IS_DEADDIR(new_nd.path.dentry->d_inode))
  1964. goto out2;
  1965. if (d_unhashed(new_nd.path.dentry) && !IS_ROOT(new_nd.path.dentry))
  1966. goto out2;
  1967. if (d_unhashed(old_nd.path.dentry) && !IS_ROOT(old_nd.path.dentry))
  1968. goto out2;
  1969. error = -EBUSY;
  1970. if (new_nd.path.mnt == root.mnt ||
  1971. old_nd.path.mnt == root.mnt)
  1972. goto out2; /* loop, on the same file system */
  1973. error = -EINVAL;
  1974. if (root.mnt->mnt_root != root.dentry)
  1975. goto out2; /* not a mountpoint */
  1976. if (root.mnt->mnt_parent == root.mnt)
  1977. goto out2; /* not attached */
  1978. if (new_nd.path.mnt->mnt_root != new_nd.path.dentry)
  1979. goto out2; /* not a mountpoint */
  1980. if (new_nd.path.mnt->mnt_parent == new_nd.path.mnt)
  1981. goto out2; /* not attached */
  1982. /* make sure we can reach put_old from new_root */
  1983. tmp = old_nd.path.mnt;
  1984. spin_lock(&vfsmount_lock);
  1985. if (tmp != new_nd.path.mnt) {
  1986. for (;;) {
  1987. if (tmp->mnt_parent == tmp)
  1988. goto out3; /* already mounted on put_old */
  1989. if (tmp->mnt_parent == new_nd.path.mnt)
  1990. break;
  1991. tmp = tmp->mnt_parent;
  1992. }
  1993. if (!is_subdir(tmp->mnt_mountpoint, new_nd.path.dentry))
  1994. goto out3;
  1995. } else if (!is_subdir(old_nd.path.dentry, new_nd.path.dentry))
  1996. goto out3;
  1997. detach_mnt(new_nd.path.mnt, &parent_path);
  1998. detach_mnt(root.mnt, &root_parent);
  1999. /* mount old root on put_old */
  2000. attach_mnt(root.mnt, &old_nd.path);
  2001. /* mount new_root on / */
  2002. attach_mnt(new_nd.path.mnt, &root_parent);
  2003. touch_mnt_namespace(current->nsproxy->mnt_ns);
  2004. spin_unlock(&vfsmount_lock);
  2005. chroot_fs_refs(&root, &new_nd.path);
  2006. security_sb_post_pivotroot(&root, &new_nd.path);
  2007. error = 0;
  2008. path_put(&root_parent);
  2009. path_put(&parent_path);
  2010. out2:
  2011. mutex_unlock(&old_nd.path.dentry->d_inode->i_mutex);
  2012. up_write(&namespace_sem);
  2013. path_put(&root);
  2014. path_put(&old_nd.path);
  2015. out1:
  2016. path_put(&new_nd.path);
  2017. out0:
  2018. return error;
  2019. out3:
  2020. spin_unlock(&vfsmount_lock);
  2021. goto out2;
  2022. }
  2023. static void __init init_mount_tree(void)
  2024. {
  2025. struct vfsmount *mnt;
  2026. struct mnt_namespace *ns;
  2027. struct path root;
  2028. mnt = do_kern_mount("rootfs", 0, "rootfs", NULL);
  2029. if (IS_ERR(mnt))
  2030. panic("Can't create rootfs");
  2031. ns = kmalloc(sizeof(*ns), GFP_KERNEL);
  2032. if (!ns)
  2033. panic("Can't allocate initial namespace");
  2034. atomic_set(&ns->count, 1);
  2035. INIT_LIST_HEAD(&ns->list);
  2036. init_waitqueue_head(&ns->poll);
  2037. ns->event = 0;
  2038. list_add(&mnt->mnt_list, &ns->list);
  2039. ns->root = mnt;
  2040. mnt->mnt_ns = ns;
  2041. init_task.nsproxy->mnt_ns = ns;
  2042. get_mnt_ns(ns);
  2043. root.mnt = ns->root;
  2044. root.dentry = ns->root->mnt_root;
  2045. set_fs_pwd(current->fs, &root);
  2046. set_fs_root(current->fs, &root);
  2047. }
  2048. void __init mnt_init(void)
  2049. {
  2050. unsigned u;
  2051. int err;
  2052. init_rwsem(&namespace_sem);
  2053. mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct vfsmount),
  2054. 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
  2055. mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
  2056. if (!mount_hashtable)
  2057. panic("Failed to allocate mount hash table\n");
  2058. printk("Mount-cache hash table entries: %lu\n", HASH_SIZE);
  2059. for (u = 0; u < HASH_SIZE; u++)
  2060. INIT_LIST_HEAD(&mount_hashtable[u]);
  2061. err = sysfs_init();
  2062. if (err)
  2063. printk(KERN_WARNING "%s: sysfs_init error: %d\n",
  2064. __func__, err);
  2065. fs_kobj = kobject_create_and_add("fs", NULL);
  2066. if (!fs_kobj)
  2067. printk(KERN_WARNING "%s: kobj create error\n", __func__);
  2068. init_rootfs();
  2069. init_mount_tree();
  2070. }
  2071. void __put_mnt_ns(struct mnt_namespace *ns)
  2072. {
  2073. struct vfsmount *root = ns->root;
  2074. LIST_HEAD(umount_list);
  2075. ns->root = NULL;
  2076. spin_unlock(&vfsmount_lock);
  2077. down_write(&namespace_sem);
  2078. spin_lock(&vfsmount_lock);
  2079. umount_tree(root, 0, &umount_list);
  2080. spin_unlock(&vfsmount_lock);
  2081. up_write(&namespace_sem);
  2082. release_mounts(&umount_list);
  2083. kfree(ns);
  2084. }