exec.c 40 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792
  1. /*
  2. * linux/fs/exec.c
  3. *
  4. * Copyright (C) 1991, 1992 Linus Torvalds
  5. */
  6. /*
  7. * #!-checking implemented by tytso.
  8. */
  9. /*
  10. * Demand-loading implemented 01.12.91 - no need to read anything but
  11. * the header into memory. The inode of the executable is put into
  12. * "current->executable", and page faults do the actual loading. Clean.
  13. *
  14. * Once more I can proudly say that linux stood up to being changed: it
  15. * was less than 2 hours work to get demand-loading completely implemented.
  16. *
  17. * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
  18. * current->executable is only used by the procfs. This allows a dispatch
  19. * table to check for several different types of binary formats. We keep
  20. * trying until we recognize the file or we run out of supported binary
  21. * formats.
  22. */
  23. #include <linux/slab.h>
  24. #include <linux/file.h>
  25. #include <linux/fdtable.h>
  26. #include <linux/mman.h>
  27. #include <linux/stat.h>
  28. #include <linux/fcntl.h>
  29. #include <linux/smp_lock.h>
  30. #include <linux/string.h>
  31. #include <linux/init.h>
  32. #include <linux/pagemap.h>
  33. #include <linux/highmem.h>
  34. #include <linux/spinlock.h>
  35. #include <linux/key.h>
  36. #include <linux/personality.h>
  37. #include <linux/binfmts.h>
  38. #include <linux/swap.h>
  39. #include <linux/utsname.h>
  40. #include <linux/pid_namespace.h>
  41. #include <linux/module.h>
  42. #include <linux/namei.h>
  43. #include <linux/proc_fs.h>
  44. #include <linux/ptrace.h>
  45. #include <linux/mount.h>
  46. #include <linux/security.h>
  47. #include <linux/syscalls.h>
  48. #include <linux/rmap.h>
  49. #include <linux/tsacct_kern.h>
  50. #include <linux/cn_proc.h>
  51. #include <linux/audit.h>
  52. #include <asm/uaccess.h>
  53. #include <asm/mmu_context.h>
  54. #include <asm/tlb.h>
  55. #ifdef CONFIG_KMOD
  56. #include <linux/kmod.h>
  57. #endif
  58. #ifdef __alpha__
  59. /* for /sbin/loader handling in search_binary_handler() */
  60. #include <linux/a.out.h>
  61. #endif
  62. int core_uses_pid;
  63. char core_pattern[CORENAME_MAX_SIZE] = "core";
  64. int suid_dumpable = 0;
  65. /* The maximal length of core_pattern is also specified in sysctl.c */
  66. static LIST_HEAD(formats);
  67. static DEFINE_RWLOCK(binfmt_lock);
  68. int register_binfmt(struct linux_binfmt * fmt)
  69. {
  70. if (!fmt)
  71. return -EINVAL;
  72. write_lock(&binfmt_lock);
  73. list_add(&fmt->lh, &formats);
  74. write_unlock(&binfmt_lock);
  75. return 0;
  76. }
  77. EXPORT_SYMBOL(register_binfmt);
  78. void unregister_binfmt(struct linux_binfmt * fmt)
  79. {
  80. write_lock(&binfmt_lock);
  81. list_del(&fmt->lh);
  82. write_unlock(&binfmt_lock);
  83. }
  84. EXPORT_SYMBOL(unregister_binfmt);
  85. static inline void put_binfmt(struct linux_binfmt * fmt)
  86. {
  87. module_put(fmt->module);
  88. }
  89. /*
  90. * Note that a shared library must be both readable and executable due to
  91. * security reasons.
  92. *
  93. * Also note that we take the address to load from from the file itself.
  94. */
  95. asmlinkage long sys_uselib(const char __user * library)
  96. {
  97. struct file * file;
  98. struct nameidata nd;
  99. int error;
  100. error = __user_path_lookup_open(library, LOOKUP_FOLLOW, &nd, FMODE_READ|FMODE_EXEC);
  101. if (error)
  102. goto out;
  103. error = -EINVAL;
  104. if (!S_ISREG(nd.path.dentry->d_inode->i_mode))
  105. goto exit;
  106. error = vfs_permission(&nd, MAY_READ | MAY_EXEC);
  107. if (error)
  108. goto exit;
  109. file = nameidata_to_filp(&nd, O_RDONLY|O_LARGEFILE);
  110. error = PTR_ERR(file);
  111. if (IS_ERR(file))
  112. goto out;
  113. error = -ENOEXEC;
  114. if(file->f_op) {
  115. struct linux_binfmt * fmt;
  116. read_lock(&binfmt_lock);
  117. list_for_each_entry(fmt, &formats, lh) {
  118. if (!fmt->load_shlib)
  119. continue;
  120. if (!try_module_get(fmt->module))
  121. continue;
  122. read_unlock(&binfmt_lock);
  123. error = fmt->load_shlib(file);
  124. read_lock(&binfmt_lock);
  125. put_binfmt(fmt);
  126. if (error != -ENOEXEC)
  127. break;
  128. }
  129. read_unlock(&binfmt_lock);
  130. }
  131. fput(file);
  132. out:
  133. return error;
  134. exit:
  135. release_open_intent(&nd);
  136. path_put(&nd.path);
  137. goto out;
  138. }
  139. #ifdef CONFIG_MMU
  140. static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
  141. int write)
  142. {
  143. struct page *page;
  144. int ret;
  145. #ifdef CONFIG_STACK_GROWSUP
  146. if (write) {
  147. ret = expand_stack_downwards(bprm->vma, pos);
  148. if (ret < 0)
  149. return NULL;
  150. }
  151. #endif
  152. ret = get_user_pages(current, bprm->mm, pos,
  153. 1, write, 1, &page, NULL);
  154. if (ret <= 0)
  155. return NULL;
  156. if (write) {
  157. unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
  158. struct rlimit *rlim;
  159. /*
  160. * We've historically supported up to 32 pages (ARG_MAX)
  161. * of argument strings even with small stacks
  162. */
  163. if (size <= ARG_MAX)
  164. return page;
  165. /*
  166. * Limit to 1/4-th the stack size for the argv+env strings.
  167. * This ensures that:
  168. * - the remaining binfmt code will not run out of stack space,
  169. * - the program will have a reasonable amount of stack left
  170. * to work from.
  171. */
  172. rlim = current->signal->rlim;
  173. if (size > rlim[RLIMIT_STACK].rlim_cur / 4) {
  174. put_page(page);
  175. return NULL;
  176. }
  177. }
  178. return page;
  179. }
  180. static void put_arg_page(struct page *page)
  181. {
  182. put_page(page);
  183. }
  184. static void free_arg_page(struct linux_binprm *bprm, int i)
  185. {
  186. }
  187. static void free_arg_pages(struct linux_binprm *bprm)
  188. {
  189. }
  190. static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
  191. struct page *page)
  192. {
  193. flush_cache_page(bprm->vma, pos, page_to_pfn(page));
  194. }
  195. static int __bprm_mm_init(struct linux_binprm *bprm)
  196. {
  197. int err = -ENOMEM;
  198. struct vm_area_struct *vma = NULL;
  199. struct mm_struct *mm = bprm->mm;
  200. bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
  201. if (!vma)
  202. goto err;
  203. down_write(&mm->mmap_sem);
  204. vma->vm_mm = mm;
  205. /*
  206. * Place the stack at the largest stack address the architecture
  207. * supports. Later, we'll move this to an appropriate place. We don't
  208. * use STACK_TOP because that can depend on attributes which aren't
  209. * configured yet.
  210. */
  211. vma->vm_end = STACK_TOP_MAX;
  212. vma->vm_start = vma->vm_end - PAGE_SIZE;
  213. vma->vm_flags = VM_STACK_FLAGS;
  214. vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
  215. err = insert_vm_struct(mm, vma);
  216. if (err) {
  217. up_write(&mm->mmap_sem);
  218. goto err;
  219. }
  220. mm->stack_vm = mm->total_vm = 1;
  221. up_write(&mm->mmap_sem);
  222. bprm->p = vma->vm_end - sizeof(void *);
  223. return 0;
  224. err:
  225. if (vma) {
  226. bprm->vma = NULL;
  227. kmem_cache_free(vm_area_cachep, vma);
  228. }
  229. return err;
  230. }
  231. static bool valid_arg_len(struct linux_binprm *bprm, long len)
  232. {
  233. return len <= MAX_ARG_STRLEN;
  234. }
  235. #else
  236. static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
  237. int write)
  238. {
  239. struct page *page;
  240. page = bprm->page[pos / PAGE_SIZE];
  241. if (!page && write) {
  242. page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
  243. if (!page)
  244. return NULL;
  245. bprm->page[pos / PAGE_SIZE] = page;
  246. }
  247. return page;
  248. }
  249. static void put_arg_page(struct page *page)
  250. {
  251. }
  252. static void free_arg_page(struct linux_binprm *bprm, int i)
  253. {
  254. if (bprm->page[i]) {
  255. __free_page(bprm->page[i]);
  256. bprm->page[i] = NULL;
  257. }
  258. }
  259. static void free_arg_pages(struct linux_binprm *bprm)
  260. {
  261. int i;
  262. for (i = 0; i < MAX_ARG_PAGES; i++)
  263. free_arg_page(bprm, i);
  264. }
  265. static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
  266. struct page *page)
  267. {
  268. }
  269. static int __bprm_mm_init(struct linux_binprm *bprm)
  270. {
  271. bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
  272. return 0;
  273. }
  274. static bool valid_arg_len(struct linux_binprm *bprm, long len)
  275. {
  276. return len <= bprm->p;
  277. }
  278. #endif /* CONFIG_MMU */
  279. /*
  280. * Create a new mm_struct and populate it with a temporary stack
  281. * vm_area_struct. We don't have enough context at this point to set the stack
  282. * flags, permissions, and offset, so we use temporary values. We'll update
  283. * them later in setup_arg_pages().
  284. */
  285. int bprm_mm_init(struct linux_binprm *bprm)
  286. {
  287. int err;
  288. struct mm_struct *mm = NULL;
  289. bprm->mm = mm = mm_alloc();
  290. err = -ENOMEM;
  291. if (!mm)
  292. goto err;
  293. err = init_new_context(current, mm);
  294. if (err)
  295. goto err;
  296. err = __bprm_mm_init(bprm);
  297. if (err)
  298. goto err;
  299. return 0;
  300. err:
  301. if (mm) {
  302. bprm->mm = NULL;
  303. mmdrop(mm);
  304. }
  305. return err;
  306. }
  307. /*
  308. * count() counts the number of strings in array ARGV.
  309. */
  310. static int count(char __user * __user * argv, int max)
  311. {
  312. int i = 0;
  313. if (argv != NULL) {
  314. for (;;) {
  315. char __user * p;
  316. if (get_user(p, argv))
  317. return -EFAULT;
  318. if (!p)
  319. break;
  320. argv++;
  321. if(++i > max)
  322. return -E2BIG;
  323. cond_resched();
  324. }
  325. }
  326. return i;
  327. }
  328. /*
  329. * 'copy_strings()' copies argument/environment strings from the old
  330. * processes's memory to the new process's stack. The call to get_user_pages()
  331. * ensures the destination page is created and not swapped out.
  332. */
  333. static int copy_strings(int argc, char __user * __user * argv,
  334. struct linux_binprm *bprm)
  335. {
  336. struct page *kmapped_page = NULL;
  337. char *kaddr = NULL;
  338. unsigned long kpos = 0;
  339. int ret;
  340. while (argc-- > 0) {
  341. char __user *str;
  342. int len;
  343. unsigned long pos;
  344. if (get_user(str, argv+argc) ||
  345. !(len = strnlen_user(str, MAX_ARG_STRLEN))) {
  346. ret = -EFAULT;
  347. goto out;
  348. }
  349. if (!valid_arg_len(bprm, len)) {
  350. ret = -E2BIG;
  351. goto out;
  352. }
  353. /* We're going to work our way backwords. */
  354. pos = bprm->p;
  355. str += len;
  356. bprm->p -= len;
  357. while (len > 0) {
  358. int offset, bytes_to_copy;
  359. offset = pos % PAGE_SIZE;
  360. if (offset == 0)
  361. offset = PAGE_SIZE;
  362. bytes_to_copy = offset;
  363. if (bytes_to_copy > len)
  364. bytes_to_copy = len;
  365. offset -= bytes_to_copy;
  366. pos -= bytes_to_copy;
  367. str -= bytes_to_copy;
  368. len -= bytes_to_copy;
  369. if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
  370. struct page *page;
  371. page = get_arg_page(bprm, pos, 1);
  372. if (!page) {
  373. ret = -E2BIG;
  374. goto out;
  375. }
  376. if (kmapped_page) {
  377. flush_kernel_dcache_page(kmapped_page);
  378. kunmap(kmapped_page);
  379. put_arg_page(kmapped_page);
  380. }
  381. kmapped_page = page;
  382. kaddr = kmap(kmapped_page);
  383. kpos = pos & PAGE_MASK;
  384. flush_arg_page(bprm, kpos, kmapped_page);
  385. }
  386. if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
  387. ret = -EFAULT;
  388. goto out;
  389. }
  390. }
  391. }
  392. ret = 0;
  393. out:
  394. if (kmapped_page) {
  395. flush_kernel_dcache_page(kmapped_page);
  396. kunmap(kmapped_page);
  397. put_arg_page(kmapped_page);
  398. }
  399. return ret;
  400. }
  401. /*
  402. * Like copy_strings, but get argv and its values from kernel memory.
  403. */
  404. int copy_strings_kernel(int argc,char ** argv, struct linux_binprm *bprm)
  405. {
  406. int r;
  407. mm_segment_t oldfs = get_fs();
  408. set_fs(KERNEL_DS);
  409. r = copy_strings(argc, (char __user * __user *)argv, bprm);
  410. set_fs(oldfs);
  411. return r;
  412. }
  413. EXPORT_SYMBOL(copy_strings_kernel);
  414. #ifdef CONFIG_MMU
  415. /*
  416. * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
  417. * the binfmt code determines where the new stack should reside, we shift it to
  418. * its final location. The process proceeds as follows:
  419. *
  420. * 1) Use shift to calculate the new vma endpoints.
  421. * 2) Extend vma to cover both the old and new ranges. This ensures the
  422. * arguments passed to subsequent functions are consistent.
  423. * 3) Move vma's page tables to the new range.
  424. * 4) Free up any cleared pgd range.
  425. * 5) Shrink the vma to cover only the new range.
  426. */
  427. static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
  428. {
  429. struct mm_struct *mm = vma->vm_mm;
  430. unsigned long old_start = vma->vm_start;
  431. unsigned long old_end = vma->vm_end;
  432. unsigned long length = old_end - old_start;
  433. unsigned long new_start = old_start - shift;
  434. unsigned long new_end = old_end - shift;
  435. struct mmu_gather *tlb;
  436. BUG_ON(new_start > new_end);
  437. /*
  438. * ensure there are no vmas between where we want to go
  439. * and where we are
  440. */
  441. if (vma != find_vma(mm, new_start))
  442. return -EFAULT;
  443. /*
  444. * cover the whole range: [new_start, old_end)
  445. */
  446. vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL);
  447. /*
  448. * move the page tables downwards, on failure we rely on
  449. * process cleanup to remove whatever mess we made.
  450. */
  451. if (length != move_page_tables(vma, old_start,
  452. vma, new_start, length))
  453. return -ENOMEM;
  454. lru_add_drain();
  455. tlb = tlb_gather_mmu(mm, 0);
  456. if (new_end > old_start) {
  457. /*
  458. * when the old and new regions overlap clear from new_end.
  459. */
  460. free_pgd_range(&tlb, new_end, old_end, new_end,
  461. vma->vm_next ? vma->vm_next->vm_start : 0);
  462. } else {
  463. /*
  464. * otherwise, clean from old_start; this is done to not touch
  465. * the address space in [new_end, old_start) some architectures
  466. * have constraints on va-space that make this illegal (IA64) -
  467. * for the others its just a little faster.
  468. */
  469. free_pgd_range(&tlb, old_start, old_end, new_end,
  470. vma->vm_next ? vma->vm_next->vm_start : 0);
  471. }
  472. tlb_finish_mmu(tlb, new_end, old_end);
  473. /*
  474. * shrink the vma to just the new range.
  475. */
  476. vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
  477. return 0;
  478. }
  479. #define EXTRA_STACK_VM_PAGES 20 /* random */
  480. /*
  481. * Finalizes the stack vm_area_struct. The flags and permissions are updated,
  482. * the stack is optionally relocated, and some extra space is added.
  483. */
  484. int setup_arg_pages(struct linux_binprm *bprm,
  485. unsigned long stack_top,
  486. int executable_stack)
  487. {
  488. unsigned long ret;
  489. unsigned long stack_shift;
  490. struct mm_struct *mm = current->mm;
  491. struct vm_area_struct *vma = bprm->vma;
  492. struct vm_area_struct *prev = NULL;
  493. unsigned long vm_flags;
  494. unsigned long stack_base;
  495. #ifdef CONFIG_STACK_GROWSUP
  496. /* Limit stack size to 1GB */
  497. stack_base = current->signal->rlim[RLIMIT_STACK].rlim_max;
  498. if (stack_base > (1 << 30))
  499. stack_base = 1 << 30;
  500. /* Make sure we didn't let the argument array grow too large. */
  501. if (vma->vm_end - vma->vm_start > stack_base)
  502. return -ENOMEM;
  503. stack_base = PAGE_ALIGN(stack_top - stack_base);
  504. stack_shift = vma->vm_start - stack_base;
  505. mm->arg_start = bprm->p - stack_shift;
  506. bprm->p = vma->vm_end - stack_shift;
  507. #else
  508. stack_top = arch_align_stack(stack_top);
  509. stack_top = PAGE_ALIGN(stack_top);
  510. stack_shift = vma->vm_end - stack_top;
  511. bprm->p -= stack_shift;
  512. mm->arg_start = bprm->p;
  513. #endif
  514. if (bprm->loader)
  515. bprm->loader -= stack_shift;
  516. bprm->exec -= stack_shift;
  517. down_write(&mm->mmap_sem);
  518. vm_flags = VM_STACK_FLAGS;
  519. /*
  520. * Adjust stack execute permissions; explicitly enable for
  521. * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
  522. * (arch default) otherwise.
  523. */
  524. if (unlikely(executable_stack == EXSTACK_ENABLE_X))
  525. vm_flags |= VM_EXEC;
  526. else if (executable_stack == EXSTACK_DISABLE_X)
  527. vm_flags &= ~VM_EXEC;
  528. vm_flags |= mm->def_flags;
  529. ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
  530. vm_flags);
  531. if (ret)
  532. goto out_unlock;
  533. BUG_ON(prev != vma);
  534. /* Move stack pages down in memory. */
  535. if (stack_shift) {
  536. ret = shift_arg_pages(vma, stack_shift);
  537. if (ret) {
  538. up_write(&mm->mmap_sem);
  539. return ret;
  540. }
  541. }
  542. #ifdef CONFIG_STACK_GROWSUP
  543. stack_base = vma->vm_end + EXTRA_STACK_VM_PAGES * PAGE_SIZE;
  544. #else
  545. stack_base = vma->vm_start - EXTRA_STACK_VM_PAGES * PAGE_SIZE;
  546. #endif
  547. ret = expand_stack(vma, stack_base);
  548. if (ret)
  549. ret = -EFAULT;
  550. out_unlock:
  551. up_write(&mm->mmap_sem);
  552. return 0;
  553. }
  554. EXPORT_SYMBOL(setup_arg_pages);
  555. #endif /* CONFIG_MMU */
  556. struct file *open_exec(const char *name)
  557. {
  558. struct nameidata nd;
  559. int err;
  560. struct file *file;
  561. err = path_lookup_open(AT_FDCWD, name, LOOKUP_FOLLOW, &nd, FMODE_READ|FMODE_EXEC);
  562. file = ERR_PTR(err);
  563. if (!err) {
  564. struct inode *inode = nd.path.dentry->d_inode;
  565. file = ERR_PTR(-EACCES);
  566. if (S_ISREG(inode->i_mode)) {
  567. int err = vfs_permission(&nd, MAY_EXEC);
  568. file = ERR_PTR(err);
  569. if (!err) {
  570. file = nameidata_to_filp(&nd,
  571. O_RDONLY|O_LARGEFILE);
  572. if (!IS_ERR(file)) {
  573. err = deny_write_access(file);
  574. if (err) {
  575. fput(file);
  576. file = ERR_PTR(err);
  577. }
  578. }
  579. out:
  580. return file;
  581. }
  582. }
  583. release_open_intent(&nd);
  584. path_put(&nd.path);
  585. }
  586. goto out;
  587. }
  588. EXPORT_SYMBOL(open_exec);
  589. int kernel_read(struct file *file, unsigned long offset,
  590. char *addr, unsigned long count)
  591. {
  592. mm_segment_t old_fs;
  593. loff_t pos = offset;
  594. int result;
  595. old_fs = get_fs();
  596. set_fs(get_ds());
  597. /* The cast to a user pointer is valid due to the set_fs() */
  598. result = vfs_read(file, (void __user *)addr, count, &pos);
  599. set_fs(old_fs);
  600. return result;
  601. }
  602. EXPORT_SYMBOL(kernel_read);
  603. static int exec_mmap(struct mm_struct *mm)
  604. {
  605. struct task_struct *tsk;
  606. struct mm_struct * old_mm, *active_mm;
  607. /* Notify parent that we're no longer interested in the old VM */
  608. tsk = current;
  609. old_mm = current->mm;
  610. mm_release(tsk, old_mm);
  611. if (old_mm) {
  612. /*
  613. * Make sure that if there is a core dump in progress
  614. * for the old mm, we get out and die instead of going
  615. * through with the exec. We must hold mmap_sem around
  616. * checking core_waiters and changing tsk->mm. The
  617. * core-inducing thread will increment core_waiters for
  618. * each thread whose ->mm == old_mm.
  619. */
  620. down_read(&old_mm->mmap_sem);
  621. if (unlikely(old_mm->core_waiters)) {
  622. up_read(&old_mm->mmap_sem);
  623. return -EINTR;
  624. }
  625. }
  626. task_lock(tsk);
  627. active_mm = tsk->active_mm;
  628. tsk->mm = mm;
  629. tsk->active_mm = mm;
  630. activate_mm(active_mm, mm);
  631. task_unlock(tsk);
  632. mm_update_next_owner(old_mm);
  633. arch_pick_mmap_layout(mm);
  634. if (old_mm) {
  635. up_read(&old_mm->mmap_sem);
  636. BUG_ON(active_mm != old_mm);
  637. mmput(old_mm);
  638. return 0;
  639. }
  640. mmdrop(active_mm);
  641. return 0;
  642. }
  643. /*
  644. * This function makes sure the current process has its own signal table,
  645. * so that flush_signal_handlers can later reset the handlers without
  646. * disturbing other processes. (Other processes might share the signal
  647. * table via the CLONE_SIGHAND option to clone().)
  648. */
  649. static int de_thread(struct task_struct *tsk)
  650. {
  651. struct signal_struct *sig = tsk->signal;
  652. struct sighand_struct *oldsighand = tsk->sighand;
  653. spinlock_t *lock = &oldsighand->siglock;
  654. struct task_struct *leader = NULL;
  655. int count;
  656. if (thread_group_empty(tsk))
  657. goto no_thread_group;
  658. /*
  659. * Kill all other threads in the thread group.
  660. */
  661. spin_lock_irq(lock);
  662. if (signal_group_exit(sig)) {
  663. /*
  664. * Another group action in progress, just
  665. * return so that the signal is processed.
  666. */
  667. spin_unlock_irq(lock);
  668. return -EAGAIN;
  669. }
  670. sig->group_exit_task = tsk;
  671. zap_other_threads(tsk);
  672. /* Account for the thread group leader hanging around: */
  673. count = thread_group_leader(tsk) ? 1 : 2;
  674. sig->notify_count = count;
  675. while (atomic_read(&sig->count) > count) {
  676. __set_current_state(TASK_UNINTERRUPTIBLE);
  677. spin_unlock_irq(lock);
  678. schedule();
  679. spin_lock_irq(lock);
  680. }
  681. spin_unlock_irq(lock);
  682. /*
  683. * At this point all other threads have exited, all we have to
  684. * do is to wait for the thread group leader to become inactive,
  685. * and to assume its PID:
  686. */
  687. if (!thread_group_leader(tsk)) {
  688. leader = tsk->group_leader;
  689. sig->notify_count = -1; /* for exit_notify() */
  690. for (;;) {
  691. write_lock_irq(&tasklist_lock);
  692. if (likely(leader->exit_state))
  693. break;
  694. __set_current_state(TASK_UNINTERRUPTIBLE);
  695. write_unlock_irq(&tasklist_lock);
  696. schedule();
  697. }
  698. if (unlikely(task_child_reaper(tsk) == leader))
  699. task_active_pid_ns(tsk)->child_reaper = tsk;
  700. /*
  701. * The only record we have of the real-time age of a
  702. * process, regardless of execs it's done, is start_time.
  703. * All the past CPU time is accumulated in signal_struct
  704. * from sister threads now dead. But in this non-leader
  705. * exec, nothing survives from the original leader thread,
  706. * whose birth marks the true age of this process now.
  707. * When we take on its identity by switching to its PID, we
  708. * also take its birthdate (always earlier than our own).
  709. */
  710. tsk->start_time = leader->start_time;
  711. BUG_ON(!same_thread_group(leader, tsk));
  712. BUG_ON(has_group_leader_pid(tsk));
  713. /*
  714. * An exec() starts a new thread group with the
  715. * TGID of the previous thread group. Rehash the
  716. * two threads with a switched PID, and release
  717. * the former thread group leader:
  718. */
  719. /* Become a process group leader with the old leader's pid.
  720. * The old leader becomes a thread of the this thread group.
  721. * Note: The old leader also uses this pid until release_task
  722. * is called. Odd but simple and correct.
  723. */
  724. detach_pid(tsk, PIDTYPE_PID);
  725. tsk->pid = leader->pid;
  726. attach_pid(tsk, PIDTYPE_PID, task_pid(leader));
  727. transfer_pid(leader, tsk, PIDTYPE_PGID);
  728. transfer_pid(leader, tsk, PIDTYPE_SID);
  729. list_replace_rcu(&leader->tasks, &tsk->tasks);
  730. tsk->group_leader = tsk;
  731. leader->group_leader = tsk;
  732. tsk->exit_signal = SIGCHLD;
  733. BUG_ON(leader->exit_state != EXIT_ZOMBIE);
  734. leader->exit_state = EXIT_DEAD;
  735. write_unlock_irq(&tasklist_lock);
  736. }
  737. sig->group_exit_task = NULL;
  738. sig->notify_count = 0;
  739. no_thread_group:
  740. exit_itimers(sig);
  741. flush_itimer_signals();
  742. if (leader)
  743. release_task(leader);
  744. if (atomic_read(&oldsighand->count) != 1) {
  745. struct sighand_struct *newsighand;
  746. /*
  747. * This ->sighand is shared with the CLONE_SIGHAND
  748. * but not CLONE_THREAD task, switch to the new one.
  749. */
  750. newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
  751. if (!newsighand)
  752. return -ENOMEM;
  753. atomic_set(&newsighand->count, 1);
  754. memcpy(newsighand->action, oldsighand->action,
  755. sizeof(newsighand->action));
  756. write_lock_irq(&tasklist_lock);
  757. spin_lock(&oldsighand->siglock);
  758. rcu_assign_pointer(tsk->sighand, newsighand);
  759. spin_unlock(&oldsighand->siglock);
  760. write_unlock_irq(&tasklist_lock);
  761. __cleanup_sighand(oldsighand);
  762. }
  763. BUG_ON(!thread_group_leader(tsk));
  764. return 0;
  765. }
  766. /*
  767. * These functions flushes out all traces of the currently running executable
  768. * so that a new one can be started
  769. */
  770. static void flush_old_files(struct files_struct * files)
  771. {
  772. long j = -1;
  773. struct fdtable *fdt;
  774. spin_lock(&files->file_lock);
  775. for (;;) {
  776. unsigned long set, i;
  777. j++;
  778. i = j * __NFDBITS;
  779. fdt = files_fdtable(files);
  780. if (i >= fdt->max_fds)
  781. break;
  782. set = fdt->close_on_exec->fds_bits[j];
  783. if (!set)
  784. continue;
  785. fdt->close_on_exec->fds_bits[j] = 0;
  786. spin_unlock(&files->file_lock);
  787. for ( ; set ; i++,set >>= 1) {
  788. if (set & 1) {
  789. sys_close(i);
  790. }
  791. }
  792. spin_lock(&files->file_lock);
  793. }
  794. spin_unlock(&files->file_lock);
  795. }
  796. char *get_task_comm(char *buf, struct task_struct *tsk)
  797. {
  798. /* buf must be at least sizeof(tsk->comm) in size */
  799. task_lock(tsk);
  800. strncpy(buf, tsk->comm, sizeof(tsk->comm));
  801. task_unlock(tsk);
  802. return buf;
  803. }
  804. void set_task_comm(struct task_struct *tsk, char *buf)
  805. {
  806. task_lock(tsk);
  807. strlcpy(tsk->comm, buf, sizeof(tsk->comm));
  808. task_unlock(tsk);
  809. }
  810. int flush_old_exec(struct linux_binprm * bprm)
  811. {
  812. char * name;
  813. int i, ch, retval;
  814. char tcomm[sizeof(current->comm)];
  815. /*
  816. * Make sure we have a private signal table and that
  817. * we are unassociated from the previous thread group.
  818. */
  819. retval = de_thread(current);
  820. if (retval)
  821. goto out;
  822. set_mm_exe_file(bprm->mm, bprm->file);
  823. /*
  824. * Release all of the old mmap stuff
  825. */
  826. retval = exec_mmap(bprm->mm);
  827. if (retval)
  828. goto out;
  829. bprm->mm = NULL; /* We're using it now */
  830. /* This is the point of no return */
  831. current->sas_ss_sp = current->sas_ss_size = 0;
  832. if (current->euid == current->uid && current->egid == current->gid)
  833. set_dumpable(current->mm, 1);
  834. else
  835. set_dumpable(current->mm, suid_dumpable);
  836. name = bprm->filename;
  837. /* Copies the binary name from after last slash */
  838. for (i=0; (ch = *(name++)) != '\0';) {
  839. if (ch == '/')
  840. i = 0; /* overwrite what we wrote */
  841. else
  842. if (i < (sizeof(tcomm) - 1))
  843. tcomm[i++] = ch;
  844. }
  845. tcomm[i] = '\0';
  846. set_task_comm(current, tcomm);
  847. current->flags &= ~PF_RANDOMIZE;
  848. flush_thread();
  849. /* Set the new mm task size. We have to do that late because it may
  850. * depend on TIF_32BIT which is only updated in flush_thread() on
  851. * some architectures like powerpc
  852. */
  853. current->mm->task_size = TASK_SIZE;
  854. if (bprm->e_uid != current->euid || bprm->e_gid != current->egid) {
  855. suid_keys(current);
  856. set_dumpable(current->mm, suid_dumpable);
  857. current->pdeath_signal = 0;
  858. } else if (file_permission(bprm->file, MAY_READ) ||
  859. (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)) {
  860. suid_keys(current);
  861. set_dumpable(current->mm, suid_dumpable);
  862. }
  863. /* An exec changes our domain. We are no longer part of the thread
  864. group */
  865. current->self_exec_id++;
  866. flush_signal_handlers(current, 0);
  867. flush_old_files(current->files);
  868. return 0;
  869. out:
  870. return retval;
  871. }
  872. EXPORT_SYMBOL(flush_old_exec);
  873. /*
  874. * Fill the binprm structure from the inode.
  875. * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
  876. */
  877. int prepare_binprm(struct linux_binprm *bprm)
  878. {
  879. int mode;
  880. struct inode * inode = bprm->file->f_path.dentry->d_inode;
  881. int retval;
  882. mode = inode->i_mode;
  883. if (bprm->file->f_op == NULL)
  884. return -EACCES;
  885. bprm->e_uid = current->euid;
  886. bprm->e_gid = current->egid;
  887. if(!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)) {
  888. /* Set-uid? */
  889. if (mode & S_ISUID) {
  890. current->personality &= ~PER_CLEAR_ON_SETID;
  891. bprm->e_uid = inode->i_uid;
  892. }
  893. /* Set-gid? */
  894. /*
  895. * If setgid is set but no group execute bit then this
  896. * is a candidate for mandatory locking, not a setgid
  897. * executable.
  898. */
  899. if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
  900. current->personality &= ~PER_CLEAR_ON_SETID;
  901. bprm->e_gid = inode->i_gid;
  902. }
  903. }
  904. /* fill in binprm security blob */
  905. retval = security_bprm_set(bprm);
  906. if (retval)
  907. return retval;
  908. memset(bprm->buf,0,BINPRM_BUF_SIZE);
  909. return kernel_read(bprm->file,0,bprm->buf,BINPRM_BUF_SIZE);
  910. }
  911. EXPORT_SYMBOL(prepare_binprm);
  912. static int unsafe_exec(struct task_struct *p)
  913. {
  914. int unsafe = 0;
  915. if (p->ptrace & PT_PTRACED) {
  916. if (p->ptrace & PT_PTRACE_CAP)
  917. unsafe |= LSM_UNSAFE_PTRACE_CAP;
  918. else
  919. unsafe |= LSM_UNSAFE_PTRACE;
  920. }
  921. if (atomic_read(&p->fs->count) > 1 ||
  922. atomic_read(&p->files->count) > 1 ||
  923. atomic_read(&p->sighand->count) > 1)
  924. unsafe |= LSM_UNSAFE_SHARE;
  925. return unsafe;
  926. }
  927. void compute_creds(struct linux_binprm *bprm)
  928. {
  929. int unsafe;
  930. if (bprm->e_uid != current->uid) {
  931. suid_keys(current);
  932. current->pdeath_signal = 0;
  933. }
  934. exec_keys(current);
  935. task_lock(current);
  936. unsafe = unsafe_exec(current);
  937. security_bprm_apply_creds(bprm, unsafe);
  938. task_unlock(current);
  939. security_bprm_post_apply_creds(bprm);
  940. }
  941. EXPORT_SYMBOL(compute_creds);
  942. /*
  943. * Arguments are '\0' separated strings found at the location bprm->p
  944. * points to; chop off the first by relocating brpm->p to right after
  945. * the first '\0' encountered.
  946. */
  947. int remove_arg_zero(struct linux_binprm *bprm)
  948. {
  949. int ret = 0;
  950. unsigned long offset;
  951. char *kaddr;
  952. struct page *page;
  953. if (!bprm->argc)
  954. return 0;
  955. do {
  956. offset = bprm->p & ~PAGE_MASK;
  957. page = get_arg_page(bprm, bprm->p, 0);
  958. if (!page) {
  959. ret = -EFAULT;
  960. goto out;
  961. }
  962. kaddr = kmap_atomic(page, KM_USER0);
  963. for (; offset < PAGE_SIZE && kaddr[offset];
  964. offset++, bprm->p++)
  965. ;
  966. kunmap_atomic(kaddr, KM_USER0);
  967. put_arg_page(page);
  968. if (offset == PAGE_SIZE)
  969. free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
  970. } while (offset == PAGE_SIZE);
  971. bprm->p++;
  972. bprm->argc--;
  973. ret = 0;
  974. out:
  975. return ret;
  976. }
  977. EXPORT_SYMBOL(remove_arg_zero);
  978. /*
  979. * cycle the list of binary formats handler, until one recognizes the image
  980. */
  981. int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs)
  982. {
  983. int try,retval;
  984. struct linux_binfmt *fmt;
  985. #ifdef __alpha__
  986. /* handle /sbin/loader.. */
  987. {
  988. struct exec * eh = (struct exec *) bprm->buf;
  989. if (!bprm->loader && eh->fh.f_magic == 0x183 &&
  990. (eh->fh.f_flags & 0x3000) == 0x3000)
  991. {
  992. struct file * file;
  993. unsigned long loader;
  994. allow_write_access(bprm->file);
  995. fput(bprm->file);
  996. bprm->file = NULL;
  997. loader = bprm->vma->vm_end - sizeof(void *);
  998. file = open_exec("/sbin/loader");
  999. retval = PTR_ERR(file);
  1000. if (IS_ERR(file))
  1001. return retval;
  1002. /* Remember if the application is TASO. */
  1003. bprm->sh_bang = eh->ah.entry < 0x100000000UL;
  1004. bprm->file = file;
  1005. bprm->loader = loader;
  1006. retval = prepare_binprm(bprm);
  1007. if (retval<0)
  1008. return retval;
  1009. /* should call search_binary_handler recursively here,
  1010. but it does not matter */
  1011. }
  1012. }
  1013. #endif
  1014. retval = security_bprm_check(bprm);
  1015. if (retval)
  1016. return retval;
  1017. /* kernel module loader fixup */
  1018. /* so we don't try to load run modprobe in kernel space. */
  1019. set_fs(USER_DS);
  1020. retval = audit_bprm(bprm);
  1021. if (retval)
  1022. return retval;
  1023. retval = -ENOENT;
  1024. for (try=0; try<2; try++) {
  1025. read_lock(&binfmt_lock);
  1026. list_for_each_entry(fmt, &formats, lh) {
  1027. int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary;
  1028. if (!fn)
  1029. continue;
  1030. if (!try_module_get(fmt->module))
  1031. continue;
  1032. read_unlock(&binfmt_lock);
  1033. retval = fn(bprm, regs);
  1034. if (retval >= 0) {
  1035. put_binfmt(fmt);
  1036. allow_write_access(bprm->file);
  1037. if (bprm->file)
  1038. fput(bprm->file);
  1039. bprm->file = NULL;
  1040. current->did_exec = 1;
  1041. proc_exec_connector(current);
  1042. return retval;
  1043. }
  1044. read_lock(&binfmt_lock);
  1045. put_binfmt(fmt);
  1046. if (retval != -ENOEXEC || bprm->mm == NULL)
  1047. break;
  1048. if (!bprm->file) {
  1049. read_unlock(&binfmt_lock);
  1050. return retval;
  1051. }
  1052. }
  1053. read_unlock(&binfmt_lock);
  1054. if (retval != -ENOEXEC || bprm->mm == NULL) {
  1055. break;
  1056. #ifdef CONFIG_KMOD
  1057. }else{
  1058. #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
  1059. if (printable(bprm->buf[0]) &&
  1060. printable(bprm->buf[1]) &&
  1061. printable(bprm->buf[2]) &&
  1062. printable(bprm->buf[3]))
  1063. break; /* -ENOEXEC */
  1064. request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2]));
  1065. #endif
  1066. }
  1067. }
  1068. return retval;
  1069. }
  1070. EXPORT_SYMBOL(search_binary_handler);
  1071. void free_bprm(struct linux_binprm *bprm)
  1072. {
  1073. free_arg_pages(bprm);
  1074. kfree(bprm);
  1075. }
  1076. /*
  1077. * sys_execve() executes a new program.
  1078. */
  1079. int do_execve(char * filename,
  1080. char __user *__user *argv,
  1081. char __user *__user *envp,
  1082. struct pt_regs * regs)
  1083. {
  1084. struct linux_binprm *bprm;
  1085. struct file *file;
  1086. struct files_struct *displaced;
  1087. int retval;
  1088. retval = unshare_files(&displaced);
  1089. if (retval)
  1090. goto out_ret;
  1091. retval = -ENOMEM;
  1092. bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
  1093. if (!bprm)
  1094. goto out_files;
  1095. file = open_exec(filename);
  1096. retval = PTR_ERR(file);
  1097. if (IS_ERR(file))
  1098. goto out_kfree;
  1099. sched_exec();
  1100. bprm->file = file;
  1101. bprm->filename = filename;
  1102. bprm->interp = filename;
  1103. retval = bprm_mm_init(bprm);
  1104. if (retval)
  1105. goto out_file;
  1106. bprm->argc = count(argv, MAX_ARG_STRINGS);
  1107. if ((retval = bprm->argc) < 0)
  1108. goto out_mm;
  1109. bprm->envc = count(envp, MAX_ARG_STRINGS);
  1110. if ((retval = bprm->envc) < 0)
  1111. goto out_mm;
  1112. retval = security_bprm_alloc(bprm);
  1113. if (retval)
  1114. goto out;
  1115. retval = prepare_binprm(bprm);
  1116. if (retval < 0)
  1117. goto out;
  1118. retval = copy_strings_kernel(1, &bprm->filename, bprm);
  1119. if (retval < 0)
  1120. goto out;
  1121. bprm->exec = bprm->p;
  1122. retval = copy_strings(bprm->envc, envp, bprm);
  1123. if (retval < 0)
  1124. goto out;
  1125. retval = copy_strings(bprm->argc, argv, bprm);
  1126. if (retval < 0)
  1127. goto out;
  1128. retval = search_binary_handler(bprm,regs);
  1129. if (retval >= 0) {
  1130. /* execve success */
  1131. security_bprm_free(bprm);
  1132. acct_update_integrals(current);
  1133. free_bprm(bprm);
  1134. if (displaced)
  1135. put_files_struct(displaced);
  1136. return retval;
  1137. }
  1138. out:
  1139. if (bprm->security)
  1140. security_bprm_free(bprm);
  1141. out_mm:
  1142. if (bprm->mm)
  1143. mmput (bprm->mm);
  1144. out_file:
  1145. if (bprm->file) {
  1146. allow_write_access(bprm->file);
  1147. fput(bprm->file);
  1148. }
  1149. out_kfree:
  1150. free_bprm(bprm);
  1151. out_files:
  1152. if (displaced)
  1153. reset_files_struct(displaced);
  1154. out_ret:
  1155. return retval;
  1156. }
  1157. int set_binfmt(struct linux_binfmt *new)
  1158. {
  1159. struct linux_binfmt *old = current->binfmt;
  1160. if (new) {
  1161. if (!try_module_get(new->module))
  1162. return -1;
  1163. }
  1164. current->binfmt = new;
  1165. if (old)
  1166. module_put(old->module);
  1167. return 0;
  1168. }
  1169. EXPORT_SYMBOL(set_binfmt);
  1170. /* format_corename will inspect the pattern parameter, and output a
  1171. * name into corename, which must have space for at least
  1172. * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
  1173. */
  1174. static int format_corename(char *corename, const char *pattern, long signr)
  1175. {
  1176. const char *pat_ptr = pattern;
  1177. char *out_ptr = corename;
  1178. char *const out_end = corename + CORENAME_MAX_SIZE;
  1179. int rc;
  1180. int pid_in_pattern = 0;
  1181. int ispipe = 0;
  1182. if (*pattern == '|')
  1183. ispipe = 1;
  1184. /* Repeat as long as we have more pattern to process and more output
  1185. space */
  1186. while (*pat_ptr) {
  1187. if (*pat_ptr != '%') {
  1188. if (out_ptr == out_end)
  1189. goto out;
  1190. *out_ptr++ = *pat_ptr++;
  1191. } else {
  1192. switch (*++pat_ptr) {
  1193. case 0:
  1194. goto out;
  1195. /* Double percent, output one percent */
  1196. case '%':
  1197. if (out_ptr == out_end)
  1198. goto out;
  1199. *out_ptr++ = '%';
  1200. break;
  1201. /* pid */
  1202. case 'p':
  1203. pid_in_pattern = 1;
  1204. rc = snprintf(out_ptr, out_end - out_ptr,
  1205. "%d", task_tgid_vnr(current));
  1206. if (rc > out_end - out_ptr)
  1207. goto out;
  1208. out_ptr += rc;
  1209. break;
  1210. /* uid */
  1211. case 'u':
  1212. rc = snprintf(out_ptr, out_end - out_ptr,
  1213. "%d", current->uid);
  1214. if (rc > out_end - out_ptr)
  1215. goto out;
  1216. out_ptr += rc;
  1217. break;
  1218. /* gid */
  1219. case 'g':
  1220. rc = snprintf(out_ptr, out_end - out_ptr,
  1221. "%d", current->gid);
  1222. if (rc > out_end - out_ptr)
  1223. goto out;
  1224. out_ptr += rc;
  1225. break;
  1226. /* signal that caused the coredump */
  1227. case 's':
  1228. rc = snprintf(out_ptr, out_end - out_ptr,
  1229. "%ld", signr);
  1230. if (rc > out_end - out_ptr)
  1231. goto out;
  1232. out_ptr += rc;
  1233. break;
  1234. /* UNIX time of coredump */
  1235. case 't': {
  1236. struct timeval tv;
  1237. do_gettimeofday(&tv);
  1238. rc = snprintf(out_ptr, out_end - out_ptr,
  1239. "%lu", tv.tv_sec);
  1240. if (rc > out_end - out_ptr)
  1241. goto out;
  1242. out_ptr += rc;
  1243. break;
  1244. }
  1245. /* hostname */
  1246. case 'h':
  1247. down_read(&uts_sem);
  1248. rc = snprintf(out_ptr, out_end - out_ptr,
  1249. "%s", utsname()->nodename);
  1250. up_read(&uts_sem);
  1251. if (rc > out_end - out_ptr)
  1252. goto out;
  1253. out_ptr += rc;
  1254. break;
  1255. /* executable */
  1256. case 'e':
  1257. rc = snprintf(out_ptr, out_end - out_ptr,
  1258. "%s", current->comm);
  1259. if (rc > out_end - out_ptr)
  1260. goto out;
  1261. out_ptr += rc;
  1262. break;
  1263. /* core limit size */
  1264. case 'c':
  1265. rc = snprintf(out_ptr, out_end - out_ptr,
  1266. "%lu", current->signal->rlim[RLIMIT_CORE].rlim_cur);
  1267. if (rc > out_end - out_ptr)
  1268. goto out;
  1269. out_ptr += rc;
  1270. break;
  1271. default:
  1272. break;
  1273. }
  1274. ++pat_ptr;
  1275. }
  1276. }
  1277. /* Backward compatibility with core_uses_pid:
  1278. *
  1279. * If core_pattern does not include a %p (as is the default)
  1280. * and core_uses_pid is set, then .%pid will be appended to
  1281. * the filename. Do not do this for piped commands. */
  1282. if (!ispipe && !pid_in_pattern
  1283. && (core_uses_pid || atomic_read(&current->mm->mm_users) != 1)) {
  1284. rc = snprintf(out_ptr, out_end - out_ptr,
  1285. ".%d", task_tgid_vnr(current));
  1286. if (rc > out_end - out_ptr)
  1287. goto out;
  1288. out_ptr += rc;
  1289. }
  1290. out:
  1291. *out_ptr = 0;
  1292. return ispipe;
  1293. }
  1294. static void zap_process(struct task_struct *start)
  1295. {
  1296. struct task_struct *t;
  1297. start->signal->flags = SIGNAL_GROUP_EXIT;
  1298. start->signal->group_stop_count = 0;
  1299. t = start;
  1300. do {
  1301. if (t != current && t->mm) {
  1302. t->mm->core_waiters++;
  1303. sigaddset(&t->pending.signal, SIGKILL);
  1304. signal_wake_up(t, 1);
  1305. }
  1306. } while ((t = next_thread(t)) != start);
  1307. }
  1308. static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
  1309. int exit_code)
  1310. {
  1311. struct task_struct *g, *p;
  1312. unsigned long flags;
  1313. int err = -EAGAIN;
  1314. spin_lock_irq(&tsk->sighand->siglock);
  1315. if (!signal_group_exit(tsk->signal)) {
  1316. tsk->signal->group_exit_code = exit_code;
  1317. zap_process(tsk);
  1318. err = 0;
  1319. }
  1320. spin_unlock_irq(&tsk->sighand->siglock);
  1321. if (err)
  1322. return err;
  1323. if (atomic_read(&mm->mm_users) == mm->core_waiters + 1)
  1324. goto done;
  1325. rcu_read_lock();
  1326. for_each_process(g) {
  1327. if (g == tsk->group_leader)
  1328. continue;
  1329. p = g;
  1330. do {
  1331. if (p->mm) {
  1332. if (p->mm == mm) {
  1333. /*
  1334. * p->sighand can't disappear, but
  1335. * may be changed by de_thread()
  1336. */
  1337. lock_task_sighand(p, &flags);
  1338. zap_process(p);
  1339. unlock_task_sighand(p, &flags);
  1340. }
  1341. break;
  1342. }
  1343. } while ((p = next_thread(p)) != g);
  1344. }
  1345. rcu_read_unlock();
  1346. done:
  1347. return mm->core_waiters;
  1348. }
  1349. static int coredump_wait(int exit_code)
  1350. {
  1351. struct task_struct *tsk = current;
  1352. struct mm_struct *mm = tsk->mm;
  1353. struct completion startup_done;
  1354. struct completion *vfork_done;
  1355. int core_waiters;
  1356. init_completion(&mm->core_done);
  1357. init_completion(&startup_done);
  1358. mm->core_startup_done = &startup_done;
  1359. core_waiters = zap_threads(tsk, mm, exit_code);
  1360. up_write(&mm->mmap_sem);
  1361. if (unlikely(core_waiters < 0))
  1362. goto fail;
  1363. /*
  1364. * Make sure nobody is waiting for us to release the VM,
  1365. * otherwise we can deadlock when we wait on each other
  1366. */
  1367. vfork_done = tsk->vfork_done;
  1368. if (vfork_done) {
  1369. tsk->vfork_done = NULL;
  1370. complete(vfork_done);
  1371. }
  1372. if (core_waiters)
  1373. wait_for_completion(&startup_done);
  1374. fail:
  1375. BUG_ON(mm->core_waiters);
  1376. return core_waiters;
  1377. }
  1378. /*
  1379. * set_dumpable converts traditional three-value dumpable to two flags and
  1380. * stores them into mm->flags. It modifies lower two bits of mm->flags, but
  1381. * these bits are not changed atomically. So get_dumpable can observe the
  1382. * intermediate state. To avoid doing unexpected behavior, get get_dumpable
  1383. * return either old dumpable or new one by paying attention to the order of
  1384. * modifying the bits.
  1385. *
  1386. * dumpable | mm->flags (binary)
  1387. * old new | initial interim final
  1388. * ---------+-----------------------
  1389. * 0 1 | 00 01 01
  1390. * 0 2 | 00 10(*) 11
  1391. * 1 0 | 01 00 00
  1392. * 1 2 | 01 11 11
  1393. * 2 0 | 11 10(*) 00
  1394. * 2 1 | 11 11 01
  1395. *
  1396. * (*) get_dumpable regards interim value of 10 as 11.
  1397. */
  1398. void set_dumpable(struct mm_struct *mm, int value)
  1399. {
  1400. switch (value) {
  1401. case 0:
  1402. clear_bit(MMF_DUMPABLE, &mm->flags);
  1403. smp_wmb();
  1404. clear_bit(MMF_DUMP_SECURELY, &mm->flags);
  1405. break;
  1406. case 1:
  1407. set_bit(MMF_DUMPABLE, &mm->flags);
  1408. smp_wmb();
  1409. clear_bit(MMF_DUMP_SECURELY, &mm->flags);
  1410. break;
  1411. case 2:
  1412. set_bit(MMF_DUMP_SECURELY, &mm->flags);
  1413. smp_wmb();
  1414. set_bit(MMF_DUMPABLE, &mm->flags);
  1415. break;
  1416. }
  1417. }
  1418. int get_dumpable(struct mm_struct *mm)
  1419. {
  1420. int ret;
  1421. ret = mm->flags & 0x3;
  1422. return (ret >= 2) ? 2 : ret;
  1423. }
  1424. int do_coredump(long signr, int exit_code, struct pt_regs * regs)
  1425. {
  1426. char corename[CORENAME_MAX_SIZE + 1];
  1427. struct mm_struct *mm = current->mm;
  1428. struct linux_binfmt * binfmt;
  1429. struct inode * inode;
  1430. struct file * file;
  1431. int retval = 0;
  1432. int fsuid = current->fsuid;
  1433. int flag = 0;
  1434. int ispipe = 0;
  1435. unsigned long core_limit = current->signal->rlim[RLIMIT_CORE].rlim_cur;
  1436. char **helper_argv = NULL;
  1437. int helper_argc = 0;
  1438. char *delimit;
  1439. audit_core_dumps(signr);
  1440. binfmt = current->binfmt;
  1441. if (!binfmt || !binfmt->core_dump)
  1442. goto fail;
  1443. down_write(&mm->mmap_sem);
  1444. /*
  1445. * If another thread got here first, or we are not dumpable, bail out.
  1446. */
  1447. if (mm->core_waiters || !get_dumpable(mm)) {
  1448. up_write(&mm->mmap_sem);
  1449. goto fail;
  1450. }
  1451. /*
  1452. * We cannot trust fsuid as being the "true" uid of the
  1453. * process nor do we know its entire history. We only know it
  1454. * was tainted so we dump it as root in mode 2.
  1455. */
  1456. if (get_dumpable(mm) == 2) { /* Setuid core dump mode */
  1457. flag = O_EXCL; /* Stop rewrite attacks */
  1458. current->fsuid = 0; /* Dump root private */
  1459. }
  1460. retval = coredump_wait(exit_code);
  1461. if (retval < 0)
  1462. goto fail;
  1463. /*
  1464. * Clear any false indication of pending signals that might
  1465. * be seen by the filesystem code called to write the core file.
  1466. */
  1467. clear_thread_flag(TIF_SIGPENDING);
  1468. /*
  1469. * lock_kernel() because format_corename() is controlled by sysctl, which
  1470. * uses lock_kernel()
  1471. */
  1472. lock_kernel();
  1473. ispipe = format_corename(corename, core_pattern, signr);
  1474. unlock_kernel();
  1475. /*
  1476. * Don't bother to check the RLIMIT_CORE value if core_pattern points
  1477. * to a pipe. Since we're not writing directly to the filesystem
  1478. * RLIMIT_CORE doesn't really apply, as no actual core file will be
  1479. * created unless the pipe reader choses to write out the core file
  1480. * at which point file size limits and permissions will be imposed
  1481. * as it does with any other process
  1482. */
  1483. if ((!ispipe) && (core_limit < binfmt->min_coredump))
  1484. goto fail_unlock;
  1485. if (ispipe) {
  1486. helper_argv = argv_split(GFP_KERNEL, corename+1, &helper_argc);
  1487. /* Terminate the string before the first option */
  1488. delimit = strchr(corename, ' ');
  1489. if (delimit)
  1490. *delimit = '\0';
  1491. delimit = strrchr(helper_argv[0], '/');
  1492. if (delimit)
  1493. delimit++;
  1494. else
  1495. delimit = helper_argv[0];
  1496. if (!strcmp(delimit, current->comm)) {
  1497. printk(KERN_NOTICE "Recursive core dump detected, "
  1498. "aborting\n");
  1499. goto fail_unlock;
  1500. }
  1501. core_limit = RLIM_INFINITY;
  1502. /* SIGPIPE can happen, but it's just never processed */
  1503. if (call_usermodehelper_pipe(corename+1, helper_argv, NULL,
  1504. &file)) {
  1505. printk(KERN_INFO "Core dump to %s pipe failed\n",
  1506. corename);
  1507. goto fail_unlock;
  1508. }
  1509. } else
  1510. file = filp_open(corename,
  1511. O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag,
  1512. 0600);
  1513. if (IS_ERR(file))
  1514. goto fail_unlock;
  1515. inode = file->f_path.dentry->d_inode;
  1516. if (inode->i_nlink > 1)
  1517. goto close_fail; /* multiple links - don't dump */
  1518. if (!ispipe && d_unhashed(file->f_path.dentry))
  1519. goto close_fail;
  1520. /* AK: actually i see no reason to not allow this for named pipes etc.,
  1521. but keep the previous behaviour for now. */
  1522. if (!ispipe && !S_ISREG(inode->i_mode))
  1523. goto close_fail;
  1524. /*
  1525. * Dont allow local users get cute and trick others to coredump
  1526. * into their pre-created files:
  1527. */
  1528. if (inode->i_uid != current->fsuid)
  1529. goto close_fail;
  1530. if (!file->f_op)
  1531. goto close_fail;
  1532. if (!file->f_op->write)
  1533. goto close_fail;
  1534. if (!ispipe && do_truncate(file->f_path.dentry, 0, 0, file) != 0)
  1535. goto close_fail;
  1536. retval = binfmt->core_dump(signr, regs, file, core_limit);
  1537. if (retval)
  1538. current->signal->group_exit_code |= 0x80;
  1539. close_fail:
  1540. filp_close(file, NULL);
  1541. fail_unlock:
  1542. if (helper_argv)
  1543. argv_free(helper_argv);
  1544. current->fsuid = fsuid;
  1545. complete_all(&mm->core_done);
  1546. fail:
  1547. return retval;
  1548. }