lowcomms.c 36 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495
  1. /******************************************************************************
  2. *******************************************************************************
  3. **
  4. ** Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved.
  5. ** Copyright (C) 2004-2007 Red Hat, Inc. All rights reserved.
  6. **
  7. ** This copyrighted material is made available to anyone wishing to use,
  8. ** modify, copy, or redistribute it subject to the terms and conditions
  9. ** of the GNU General Public License v.2.
  10. **
  11. *******************************************************************************
  12. ******************************************************************************/
  13. /*
  14. * lowcomms.c
  15. *
  16. * This is the "low-level" comms layer.
  17. *
  18. * It is responsible for sending/receiving messages
  19. * from other nodes in the cluster.
  20. *
  21. * Cluster nodes are referred to by their nodeids. nodeids are
  22. * simply 32 bit numbers to the locking module - if they need to
  23. * be expanded for the cluster infrastructure then that is it's
  24. * responsibility. It is this layer's
  25. * responsibility to resolve these into IP address or
  26. * whatever it needs for inter-node communication.
  27. *
  28. * The comms level is two kernel threads that deal mainly with
  29. * the receiving of messages from other nodes and passing them
  30. * up to the mid-level comms layer (which understands the
  31. * message format) for execution by the locking core, and
  32. * a send thread which does all the setting up of connections
  33. * to remote nodes and the sending of data. Threads are not allowed
  34. * to send their own data because it may cause them to wait in times
  35. * of high load. Also, this way, the sending thread can collect together
  36. * messages bound for one node and send them in one block.
  37. *
  38. * lowcomms will choose to use wither TCP or SCTP as its transport layer
  39. * depending on the configuration variable 'protocol'. This should be set
  40. * to 0 (default) for TCP or 1 for SCTP. It shouldbe configured using a
  41. * cluster-wide mechanism as it must be the same on all nodes of the cluster
  42. * for the DLM to function.
  43. *
  44. */
  45. #include <asm/ioctls.h>
  46. #include <net/sock.h>
  47. #include <net/tcp.h>
  48. #include <linux/pagemap.h>
  49. #include <linux/idr.h>
  50. #include <linux/file.h>
  51. #include <linux/mutex.h>
  52. #include <linux/sctp.h>
  53. #include <net/sctp/user.h>
  54. #include "dlm_internal.h"
  55. #include "lowcomms.h"
  56. #include "midcomms.h"
  57. #include "config.h"
  58. #define NEEDED_RMEM (4*1024*1024)
  59. struct cbuf {
  60. unsigned int base;
  61. unsigned int len;
  62. unsigned int mask;
  63. };
  64. static void cbuf_add(struct cbuf *cb, int n)
  65. {
  66. cb->len += n;
  67. }
  68. static int cbuf_data(struct cbuf *cb)
  69. {
  70. return ((cb->base + cb->len) & cb->mask);
  71. }
  72. static void cbuf_init(struct cbuf *cb, int size)
  73. {
  74. cb->base = cb->len = 0;
  75. cb->mask = size-1;
  76. }
  77. static void cbuf_eat(struct cbuf *cb, int n)
  78. {
  79. cb->len -= n;
  80. cb->base += n;
  81. cb->base &= cb->mask;
  82. }
  83. static bool cbuf_empty(struct cbuf *cb)
  84. {
  85. return cb->len == 0;
  86. }
  87. struct connection {
  88. struct socket *sock; /* NULL if not connected */
  89. uint32_t nodeid; /* So we know who we are in the list */
  90. struct mutex sock_mutex;
  91. unsigned long flags;
  92. #define CF_READ_PENDING 1
  93. #define CF_WRITE_PENDING 2
  94. #define CF_CONNECT_PENDING 3
  95. #define CF_INIT_PENDING 4
  96. #define CF_IS_OTHERCON 5
  97. struct list_head writequeue; /* List of outgoing writequeue_entries */
  98. spinlock_t writequeue_lock;
  99. int (*rx_action) (struct connection *); /* What to do when active */
  100. void (*connect_action) (struct connection *); /* What to do to connect */
  101. struct page *rx_page;
  102. struct cbuf cb;
  103. int retries;
  104. #define MAX_CONNECT_RETRIES 3
  105. int sctp_assoc;
  106. struct connection *othercon;
  107. struct work_struct rwork; /* Receive workqueue */
  108. struct work_struct swork; /* Send workqueue */
  109. };
  110. #define sock2con(x) ((struct connection *)(x)->sk_user_data)
  111. /* An entry waiting to be sent */
  112. struct writequeue_entry {
  113. struct list_head list;
  114. struct page *page;
  115. int offset;
  116. int len;
  117. int end;
  118. int users;
  119. struct connection *con;
  120. };
  121. static struct sockaddr_storage *dlm_local_addr[DLM_MAX_ADDR_COUNT];
  122. static int dlm_local_count;
  123. /* Work queues */
  124. static struct workqueue_struct *recv_workqueue;
  125. static struct workqueue_struct *send_workqueue;
  126. static DEFINE_IDR(connections_idr);
  127. static DEFINE_MUTEX(connections_lock);
  128. static int max_nodeid;
  129. static struct kmem_cache *con_cache;
  130. static void process_recv_sockets(struct work_struct *work);
  131. static void process_send_sockets(struct work_struct *work);
  132. /*
  133. * If 'allocation' is zero then we don't attempt to create a new
  134. * connection structure for this node.
  135. */
  136. static struct connection *__nodeid2con(int nodeid, gfp_t alloc)
  137. {
  138. struct connection *con = NULL;
  139. int r;
  140. int n;
  141. con = idr_find(&connections_idr, nodeid);
  142. if (con || !alloc)
  143. return con;
  144. r = idr_pre_get(&connections_idr, alloc);
  145. if (!r)
  146. return NULL;
  147. con = kmem_cache_zalloc(con_cache, alloc);
  148. if (!con)
  149. return NULL;
  150. r = idr_get_new_above(&connections_idr, con, nodeid, &n);
  151. if (r) {
  152. kmem_cache_free(con_cache, con);
  153. return NULL;
  154. }
  155. if (n != nodeid) {
  156. idr_remove(&connections_idr, n);
  157. kmem_cache_free(con_cache, con);
  158. return NULL;
  159. }
  160. con->nodeid = nodeid;
  161. mutex_init(&con->sock_mutex);
  162. INIT_LIST_HEAD(&con->writequeue);
  163. spin_lock_init(&con->writequeue_lock);
  164. INIT_WORK(&con->swork, process_send_sockets);
  165. INIT_WORK(&con->rwork, process_recv_sockets);
  166. /* Setup action pointers for child sockets */
  167. if (con->nodeid) {
  168. struct connection *zerocon = idr_find(&connections_idr, 0);
  169. con->connect_action = zerocon->connect_action;
  170. if (!con->rx_action)
  171. con->rx_action = zerocon->rx_action;
  172. }
  173. if (nodeid > max_nodeid)
  174. max_nodeid = nodeid;
  175. return con;
  176. }
  177. static struct connection *nodeid2con(int nodeid, gfp_t allocation)
  178. {
  179. struct connection *con;
  180. mutex_lock(&connections_lock);
  181. con = __nodeid2con(nodeid, allocation);
  182. mutex_unlock(&connections_lock);
  183. return con;
  184. }
  185. /* This is a bit drastic, but only called when things go wrong */
  186. static struct connection *assoc2con(int assoc_id)
  187. {
  188. int i;
  189. struct connection *con;
  190. mutex_lock(&connections_lock);
  191. for (i=0; i<=max_nodeid; i++) {
  192. con = __nodeid2con(i, 0);
  193. if (con && con->sctp_assoc == assoc_id) {
  194. mutex_unlock(&connections_lock);
  195. return con;
  196. }
  197. }
  198. mutex_unlock(&connections_lock);
  199. return NULL;
  200. }
  201. static int nodeid_to_addr(int nodeid, struct sockaddr *retaddr)
  202. {
  203. struct sockaddr_storage addr;
  204. int error;
  205. if (!dlm_local_count)
  206. return -1;
  207. error = dlm_nodeid_to_addr(nodeid, &addr);
  208. if (error)
  209. return error;
  210. if (dlm_local_addr[0]->ss_family == AF_INET) {
  211. struct sockaddr_in *in4 = (struct sockaddr_in *) &addr;
  212. struct sockaddr_in *ret4 = (struct sockaddr_in *) retaddr;
  213. ret4->sin_addr.s_addr = in4->sin_addr.s_addr;
  214. } else {
  215. struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) &addr;
  216. struct sockaddr_in6 *ret6 = (struct sockaddr_in6 *) retaddr;
  217. memcpy(&ret6->sin6_addr, &in6->sin6_addr,
  218. sizeof(in6->sin6_addr));
  219. }
  220. return 0;
  221. }
  222. /* Data available on socket or listen socket received a connect */
  223. static void lowcomms_data_ready(struct sock *sk, int count_unused)
  224. {
  225. struct connection *con = sock2con(sk);
  226. if (con && !test_and_set_bit(CF_READ_PENDING, &con->flags))
  227. queue_work(recv_workqueue, &con->rwork);
  228. }
  229. static void lowcomms_write_space(struct sock *sk)
  230. {
  231. struct connection *con = sock2con(sk);
  232. if (con && !test_and_set_bit(CF_WRITE_PENDING, &con->flags))
  233. queue_work(send_workqueue, &con->swork);
  234. }
  235. static inline void lowcomms_connect_sock(struct connection *con)
  236. {
  237. if (!test_and_set_bit(CF_CONNECT_PENDING, &con->flags))
  238. queue_work(send_workqueue, &con->swork);
  239. }
  240. static void lowcomms_state_change(struct sock *sk)
  241. {
  242. if (sk->sk_state == TCP_ESTABLISHED)
  243. lowcomms_write_space(sk);
  244. }
  245. /* Make a socket active */
  246. static int add_sock(struct socket *sock, struct connection *con)
  247. {
  248. con->sock = sock;
  249. /* Install a data_ready callback */
  250. con->sock->sk->sk_data_ready = lowcomms_data_ready;
  251. con->sock->sk->sk_write_space = lowcomms_write_space;
  252. con->sock->sk->sk_state_change = lowcomms_state_change;
  253. con->sock->sk->sk_user_data = con;
  254. return 0;
  255. }
  256. /* Add the port number to an IPv6 or 4 sockaddr and return the address
  257. length */
  258. static void make_sockaddr(struct sockaddr_storage *saddr, uint16_t port,
  259. int *addr_len)
  260. {
  261. saddr->ss_family = dlm_local_addr[0]->ss_family;
  262. if (saddr->ss_family == AF_INET) {
  263. struct sockaddr_in *in4_addr = (struct sockaddr_in *)saddr;
  264. in4_addr->sin_port = cpu_to_be16(port);
  265. *addr_len = sizeof(struct sockaddr_in);
  266. memset(&in4_addr->sin_zero, 0, sizeof(in4_addr->sin_zero));
  267. } else {
  268. struct sockaddr_in6 *in6_addr = (struct sockaddr_in6 *)saddr;
  269. in6_addr->sin6_port = cpu_to_be16(port);
  270. *addr_len = sizeof(struct sockaddr_in6);
  271. }
  272. memset((char *)saddr + *addr_len, 0, sizeof(struct sockaddr_storage) - *addr_len);
  273. }
  274. /* Close a remote connection and tidy up */
  275. static void close_connection(struct connection *con, bool and_other)
  276. {
  277. mutex_lock(&con->sock_mutex);
  278. if (con->sock) {
  279. sock_release(con->sock);
  280. con->sock = NULL;
  281. }
  282. if (con->othercon && and_other) {
  283. /* Will only re-enter once. */
  284. close_connection(con->othercon, false);
  285. }
  286. if (con->rx_page) {
  287. __free_page(con->rx_page);
  288. con->rx_page = NULL;
  289. }
  290. con->retries = 0;
  291. mutex_unlock(&con->sock_mutex);
  292. }
  293. /* We only send shutdown messages to nodes that are not part of the cluster */
  294. static void sctp_send_shutdown(sctp_assoc_t associd)
  295. {
  296. static char outcmsg[CMSG_SPACE(sizeof(struct sctp_sndrcvinfo))];
  297. struct msghdr outmessage;
  298. struct cmsghdr *cmsg;
  299. struct sctp_sndrcvinfo *sinfo;
  300. int ret;
  301. struct connection *con;
  302. con = nodeid2con(0,0);
  303. BUG_ON(con == NULL);
  304. outmessage.msg_name = NULL;
  305. outmessage.msg_namelen = 0;
  306. outmessage.msg_control = outcmsg;
  307. outmessage.msg_controllen = sizeof(outcmsg);
  308. outmessage.msg_flags = MSG_EOR;
  309. cmsg = CMSG_FIRSTHDR(&outmessage);
  310. cmsg->cmsg_level = IPPROTO_SCTP;
  311. cmsg->cmsg_type = SCTP_SNDRCV;
  312. cmsg->cmsg_len = CMSG_LEN(sizeof(struct sctp_sndrcvinfo));
  313. outmessage.msg_controllen = cmsg->cmsg_len;
  314. sinfo = CMSG_DATA(cmsg);
  315. memset(sinfo, 0x00, sizeof(struct sctp_sndrcvinfo));
  316. sinfo->sinfo_flags |= MSG_EOF;
  317. sinfo->sinfo_assoc_id = associd;
  318. ret = kernel_sendmsg(con->sock, &outmessage, NULL, 0, 0);
  319. if (ret != 0)
  320. log_print("send EOF to node failed: %d", ret);
  321. }
  322. /* INIT failed but we don't know which node...
  323. restart INIT on all pending nodes */
  324. static void sctp_init_failed(void)
  325. {
  326. int i;
  327. struct connection *con;
  328. mutex_lock(&connections_lock);
  329. for (i=1; i<=max_nodeid; i++) {
  330. con = __nodeid2con(i, 0);
  331. if (!con)
  332. continue;
  333. con->sctp_assoc = 0;
  334. if (test_and_clear_bit(CF_CONNECT_PENDING, &con->flags)) {
  335. if (!test_and_set_bit(CF_WRITE_PENDING, &con->flags)) {
  336. queue_work(send_workqueue, &con->swork);
  337. }
  338. }
  339. }
  340. mutex_unlock(&connections_lock);
  341. }
  342. /* Something happened to an association */
  343. static void process_sctp_notification(struct connection *con,
  344. struct msghdr *msg, char *buf)
  345. {
  346. union sctp_notification *sn = (union sctp_notification *)buf;
  347. if (sn->sn_header.sn_type == SCTP_ASSOC_CHANGE) {
  348. switch (sn->sn_assoc_change.sac_state) {
  349. case SCTP_COMM_UP:
  350. case SCTP_RESTART:
  351. {
  352. /* Check that the new node is in the lockspace */
  353. struct sctp_prim prim;
  354. int nodeid;
  355. int prim_len, ret;
  356. int addr_len;
  357. struct connection *new_con;
  358. struct file *file;
  359. sctp_peeloff_arg_t parg;
  360. int parglen = sizeof(parg);
  361. /*
  362. * We get this before any data for an association.
  363. * We verify that the node is in the cluster and
  364. * then peel off a socket for it.
  365. */
  366. if ((int)sn->sn_assoc_change.sac_assoc_id <= 0) {
  367. log_print("COMM_UP for invalid assoc ID %d",
  368. (int)sn->sn_assoc_change.sac_assoc_id);
  369. sctp_init_failed();
  370. return;
  371. }
  372. memset(&prim, 0, sizeof(struct sctp_prim));
  373. prim_len = sizeof(struct sctp_prim);
  374. prim.ssp_assoc_id = sn->sn_assoc_change.sac_assoc_id;
  375. ret = kernel_getsockopt(con->sock,
  376. IPPROTO_SCTP,
  377. SCTP_PRIMARY_ADDR,
  378. (char*)&prim,
  379. &prim_len);
  380. if (ret < 0) {
  381. log_print("getsockopt/sctp_primary_addr on "
  382. "new assoc %d failed : %d",
  383. (int)sn->sn_assoc_change.sac_assoc_id,
  384. ret);
  385. /* Retry INIT later */
  386. new_con = assoc2con(sn->sn_assoc_change.sac_assoc_id);
  387. if (new_con)
  388. clear_bit(CF_CONNECT_PENDING, &con->flags);
  389. return;
  390. }
  391. make_sockaddr(&prim.ssp_addr, 0, &addr_len);
  392. if (dlm_addr_to_nodeid(&prim.ssp_addr, &nodeid)) {
  393. int i;
  394. unsigned char *b=(unsigned char *)&prim.ssp_addr;
  395. log_print("reject connect from unknown addr");
  396. for (i=0; i<sizeof(struct sockaddr_storage);i++)
  397. printk("%02x ", b[i]);
  398. printk("\n");
  399. sctp_send_shutdown(prim.ssp_assoc_id);
  400. return;
  401. }
  402. new_con = nodeid2con(nodeid, GFP_KERNEL);
  403. if (!new_con)
  404. return;
  405. /* Peel off a new sock */
  406. parg.associd = sn->sn_assoc_change.sac_assoc_id;
  407. ret = kernel_getsockopt(con->sock, IPPROTO_SCTP,
  408. SCTP_SOCKOPT_PEELOFF,
  409. (void *)&parg, &parglen);
  410. if (ret) {
  411. log_print("Can't peel off a socket for "
  412. "connection %d to node %d: err=%d\n",
  413. parg.associd, nodeid, ret);
  414. }
  415. file = fget(parg.sd);
  416. new_con->sock = SOCKET_I(file->f_dentry->d_inode);
  417. add_sock(new_con->sock, new_con);
  418. fput(file);
  419. put_unused_fd(parg.sd);
  420. log_print("got new/restarted association %d nodeid %d",
  421. (int)sn->sn_assoc_change.sac_assoc_id, nodeid);
  422. /* Send any pending writes */
  423. clear_bit(CF_CONNECT_PENDING, &new_con->flags);
  424. clear_bit(CF_INIT_PENDING, &con->flags);
  425. if (!test_and_set_bit(CF_WRITE_PENDING, &new_con->flags)) {
  426. queue_work(send_workqueue, &new_con->swork);
  427. }
  428. if (!test_and_set_bit(CF_READ_PENDING, &new_con->flags))
  429. queue_work(recv_workqueue, &new_con->rwork);
  430. }
  431. break;
  432. case SCTP_COMM_LOST:
  433. case SCTP_SHUTDOWN_COMP:
  434. {
  435. con = assoc2con(sn->sn_assoc_change.sac_assoc_id);
  436. if (con) {
  437. con->sctp_assoc = 0;
  438. }
  439. }
  440. break;
  441. /* We don't know which INIT failed, so clear the PENDING flags
  442. * on them all. if assoc_id is zero then it will then try
  443. * again */
  444. case SCTP_CANT_STR_ASSOC:
  445. {
  446. log_print("Can't start SCTP association - retrying");
  447. sctp_init_failed();
  448. }
  449. break;
  450. default:
  451. log_print("unexpected SCTP assoc change id=%d state=%d",
  452. (int)sn->sn_assoc_change.sac_assoc_id,
  453. sn->sn_assoc_change.sac_state);
  454. }
  455. }
  456. }
  457. /* Data received from remote end */
  458. static int receive_from_sock(struct connection *con)
  459. {
  460. int ret = 0;
  461. struct msghdr msg = {};
  462. struct kvec iov[2];
  463. unsigned len;
  464. int r;
  465. int call_again_soon = 0;
  466. int nvec;
  467. char incmsg[CMSG_SPACE(sizeof(struct sctp_sndrcvinfo))];
  468. mutex_lock(&con->sock_mutex);
  469. if (con->sock == NULL) {
  470. ret = -EAGAIN;
  471. goto out_close;
  472. }
  473. if (con->rx_page == NULL) {
  474. /*
  475. * This doesn't need to be atomic, but I think it should
  476. * improve performance if it is.
  477. */
  478. con->rx_page = alloc_page(GFP_ATOMIC);
  479. if (con->rx_page == NULL)
  480. goto out_resched;
  481. cbuf_init(&con->cb, PAGE_CACHE_SIZE);
  482. }
  483. /* Only SCTP needs these really */
  484. memset(&incmsg, 0, sizeof(incmsg));
  485. msg.msg_control = incmsg;
  486. msg.msg_controllen = sizeof(incmsg);
  487. /*
  488. * iov[0] is the bit of the circular buffer between the current end
  489. * point (cb.base + cb.len) and the end of the buffer.
  490. */
  491. iov[0].iov_len = con->cb.base - cbuf_data(&con->cb);
  492. iov[0].iov_base = page_address(con->rx_page) + cbuf_data(&con->cb);
  493. iov[1].iov_len = 0;
  494. nvec = 1;
  495. /*
  496. * iov[1] is the bit of the circular buffer between the start of the
  497. * buffer and the start of the currently used section (cb.base)
  498. */
  499. if (cbuf_data(&con->cb) >= con->cb.base) {
  500. iov[0].iov_len = PAGE_CACHE_SIZE - cbuf_data(&con->cb);
  501. iov[1].iov_len = con->cb.base;
  502. iov[1].iov_base = page_address(con->rx_page);
  503. nvec = 2;
  504. }
  505. len = iov[0].iov_len + iov[1].iov_len;
  506. r = ret = kernel_recvmsg(con->sock, &msg, iov, nvec, len,
  507. MSG_DONTWAIT | MSG_NOSIGNAL);
  508. if (ret <= 0)
  509. goto out_close;
  510. /* Process SCTP notifications */
  511. if (msg.msg_flags & MSG_NOTIFICATION) {
  512. msg.msg_control = incmsg;
  513. msg.msg_controllen = sizeof(incmsg);
  514. process_sctp_notification(con, &msg,
  515. page_address(con->rx_page) + con->cb.base);
  516. mutex_unlock(&con->sock_mutex);
  517. return 0;
  518. }
  519. BUG_ON(con->nodeid == 0);
  520. if (ret == len)
  521. call_again_soon = 1;
  522. cbuf_add(&con->cb, ret);
  523. ret = dlm_process_incoming_buffer(con->nodeid,
  524. page_address(con->rx_page),
  525. con->cb.base, con->cb.len,
  526. PAGE_CACHE_SIZE);
  527. if (ret == -EBADMSG) {
  528. log_print("lowcomms: addr=%p, base=%u, len=%u, "
  529. "iov_len=%u, iov_base[0]=%p, read=%d",
  530. page_address(con->rx_page), con->cb.base, con->cb.len,
  531. len, iov[0].iov_base, r);
  532. }
  533. if (ret < 0)
  534. goto out_close;
  535. cbuf_eat(&con->cb, ret);
  536. if (cbuf_empty(&con->cb) && !call_again_soon) {
  537. __free_page(con->rx_page);
  538. con->rx_page = NULL;
  539. }
  540. if (call_again_soon)
  541. goto out_resched;
  542. mutex_unlock(&con->sock_mutex);
  543. return 0;
  544. out_resched:
  545. if (!test_and_set_bit(CF_READ_PENDING, &con->flags))
  546. queue_work(recv_workqueue, &con->rwork);
  547. mutex_unlock(&con->sock_mutex);
  548. return -EAGAIN;
  549. out_close:
  550. mutex_unlock(&con->sock_mutex);
  551. if (ret != -EAGAIN) {
  552. close_connection(con, false);
  553. /* Reconnect when there is something to send */
  554. }
  555. /* Don't return success if we really got EOF */
  556. if (ret == 0)
  557. ret = -EAGAIN;
  558. return ret;
  559. }
  560. /* Listening socket is busy, accept a connection */
  561. static int tcp_accept_from_sock(struct connection *con)
  562. {
  563. int result;
  564. struct sockaddr_storage peeraddr;
  565. struct socket *newsock;
  566. int len;
  567. int nodeid;
  568. struct connection *newcon;
  569. struct connection *addcon;
  570. memset(&peeraddr, 0, sizeof(peeraddr));
  571. result = sock_create_kern(dlm_local_addr[0]->ss_family, SOCK_STREAM,
  572. IPPROTO_TCP, &newsock);
  573. if (result < 0)
  574. return -ENOMEM;
  575. mutex_lock_nested(&con->sock_mutex, 0);
  576. result = -ENOTCONN;
  577. if (con->sock == NULL)
  578. goto accept_err;
  579. newsock->type = con->sock->type;
  580. newsock->ops = con->sock->ops;
  581. result = con->sock->ops->accept(con->sock, newsock, O_NONBLOCK);
  582. if (result < 0)
  583. goto accept_err;
  584. /* Get the connected socket's peer */
  585. memset(&peeraddr, 0, sizeof(peeraddr));
  586. if (newsock->ops->getname(newsock, (struct sockaddr *)&peeraddr,
  587. &len, 2)) {
  588. result = -ECONNABORTED;
  589. goto accept_err;
  590. }
  591. /* Get the new node's NODEID */
  592. make_sockaddr(&peeraddr, 0, &len);
  593. if (dlm_addr_to_nodeid(&peeraddr, &nodeid)) {
  594. log_print("connect from non cluster node");
  595. sock_release(newsock);
  596. mutex_unlock(&con->sock_mutex);
  597. return -1;
  598. }
  599. log_print("got connection from %d", nodeid);
  600. /* Check to see if we already have a connection to this node. This
  601. * could happen if the two nodes initiate a connection at roughly
  602. * the same time and the connections cross on the wire.
  603. * In this case we store the incoming one in "othercon"
  604. */
  605. newcon = nodeid2con(nodeid, GFP_KERNEL);
  606. if (!newcon) {
  607. result = -ENOMEM;
  608. goto accept_err;
  609. }
  610. mutex_lock_nested(&newcon->sock_mutex, 1);
  611. if (newcon->sock) {
  612. struct connection *othercon = newcon->othercon;
  613. if (!othercon) {
  614. othercon = kmem_cache_zalloc(con_cache, GFP_KERNEL);
  615. if (!othercon) {
  616. log_print("failed to allocate incoming socket");
  617. mutex_unlock(&newcon->sock_mutex);
  618. result = -ENOMEM;
  619. goto accept_err;
  620. }
  621. othercon->nodeid = nodeid;
  622. othercon->rx_action = receive_from_sock;
  623. mutex_init(&othercon->sock_mutex);
  624. INIT_WORK(&othercon->swork, process_send_sockets);
  625. INIT_WORK(&othercon->rwork, process_recv_sockets);
  626. set_bit(CF_IS_OTHERCON, &othercon->flags);
  627. }
  628. if (!othercon->sock) {
  629. newcon->othercon = othercon;
  630. othercon->sock = newsock;
  631. newsock->sk->sk_user_data = othercon;
  632. add_sock(newsock, othercon);
  633. addcon = othercon;
  634. }
  635. else {
  636. printk("Extra connection from node %d attempted\n", nodeid);
  637. result = -EAGAIN;
  638. mutex_unlock(&newcon->sock_mutex);
  639. goto accept_err;
  640. }
  641. }
  642. else {
  643. newsock->sk->sk_user_data = newcon;
  644. newcon->rx_action = receive_from_sock;
  645. add_sock(newsock, newcon);
  646. addcon = newcon;
  647. }
  648. mutex_unlock(&newcon->sock_mutex);
  649. /*
  650. * Add it to the active queue in case we got data
  651. * beween processing the accept adding the socket
  652. * to the read_sockets list
  653. */
  654. if (!test_and_set_bit(CF_READ_PENDING, &addcon->flags))
  655. queue_work(recv_workqueue, &addcon->rwork);
  656. mutex_unlock(&con->sock_mutex);
  657. return 0;
  658. accept_err:
  659. mutex_unlock(&con->sock_mutex);
  660. sock_release(newsock);
  661. if (result != -EAGAIN)
  662. log_print("error accepting connection from node: %d", result);
  663. return result;
  664. }
  665. static void free_entry(struct writequeue_entry *e)
  666. {
  667. __free_page(e->page);
  668. kfree(e);
  669. }
  670. /* Initiate an SCTP association.
  671. This is a special case of send_to_sock() in that we don't yet have a
  672. peeled-off socket for this association, so we use the listening socket
  673. and add the primary IP address of the remote node.
  674. */
  675. static void sctp_init_assoc(struct connection *con)
  676. {
  677. struct sockaddr_storage rem_addr;
  678. char outcmsg[CMSG_SPACE(sizeof(struct sctp_sndrcvinfo))];
  679. struct msghdr outmessage;
  680. struct cmsghdr *cmsg;
  681. struct sctp_sndrcvinfo *sinfo;
  682. struct connection *base_con;
  683. struct writequeue_entry *e;
  684. int len, offset;
  685. int ret;
  686. int addrlen;
  687. struct kvec iov[1];
  688. if (test_and_set_bit(CF_INIT_PENDING, &con->flags))
  689. return;
  690. if (con->retries++ > MAX_CONNECT_RETRIES)
  691. return;
  692. log_print("Initiating association with node %d", con->nodeid);
  693. if (nodeid_to_addr(con->nodeid, (struct sockaddr *)&rem_addr)) {
  694. log_print("no address for nodeid %d", con->nodeid);
  695. return;
  696. }
  697. base_con = nodeid2con(0, 0);
  698. BUG_ON(base_con == NULL);
  699. make_sockaddr(&rem_addr, dlm_config.ci_tcp_port, &addrlen);
  700. outmessage.msg_name = &rem_addr;
  701. outmessage.msg_namelen = addrlen;
  702. outmessage.msg_control = outcmsg;
  703. outmessage.msg_controllen = sizeof(outcmsg);
  704. outmessage.msg_flags = MSG_EOR;
  705. spin_lock(&con->writequeue_lock);
  706. e = list_entry(con->writequeue.next, struct writequeue_entry,
  707. list);
  708. BUG_ON((struct list_head *) e == &con->writequeue);
  709. len = e->len;
  710. offset = e->offset;
  711. spin_unlock(&con->writequeue_lock);
  712. kmap(e->page);
  713. /* Send the first block off the write queue */
  714. iov[0].iov_base = page_address(e->page)+offset;
  715. iov[0].iov_len = len;
  716. cmsg = CMSG_FIRSTHDR(&outmessage);
  717. cmsg->cmsg_level = IPPROTO_SCTP;
  718. cmsg->cmsg_type = SCTP_SNDRCV;
  719. cmsg->cmsg_len = CMSG_LEN(sizeof(struct sctp_sndrcvinfo));
  720. sinfo = CMSG_DATA(cmsg);
  721. memset(sinfo, 0x00, sizeof(struct sctp_sndrcvinfo));
  722. sinfo->sinfo_ppid = cpu_to_le32(dlm_our_nodeid());
  723. outmessage.msg_controllen = cmsg->cmsg_len;
  724. ret = kernel_sendmsg(base_con->sock, &outmessage, iov, 1, len);
  725. if (ret < 0) {
  726. log_print("Send first packet to node %d failed: %d",
  727. con->nodeid, ret);
  728. /* Try again later */
  729. clear_bit(CF_CONNECT_PENDING, &con->flags);
  730. clear_bit(CF_INIT_PENDING, &con->flags);
  731. }
  732. else {
  733. spin_lock(&con->writequeue_lock);
  734. e->offset += ret;
  735. e->len -= ret;
  736. if (e->len == 0 && e->users == 0) {
  737. list_del(&e->list);
  738. kunmap(e->page);
  739. free_entry(e);
  740. }
  741. spin_unlock(&con->writequeue_lock);
  742. }
  743. }
  744. /* Connect a new socket to its peer */
  745. static void tcp_connect_to_sock(struct connection *con)
  746. {
  747. int result = -EHOSTUNREACH;
  748. struct sockaddr_storage saddr, src_addr;
  749. int addr_len;
  750. struct socket *sock;
  751. if (con->nodeid == 0) {
  752. log_print("attempt to connect sock 0 foiled");
  753. return;
  754. }
  755. mutex_lock(&con->sock_mutex);
  756. if (con->retries++ > MAX_CONNECT_RETRIES)
  757. goto out;
  758. /* Some odd races can cause double-connects, ignore them */
  759. if (con->sock) {
  760. result = 0;
  761. goto out;
  762. }
  763. /* Create a socket to communicate with */
  764. result = sock_create_kern(dlm_local_addr[0]->ss_family, SOCK_STREAM,
  765. IPPROTO_TCP, &sock);
  766. if (result < 0)
  767. goto out_err;
  768. memset(&saddr, 0, sizeof(saddr));
  769. if (dlm_nodeid_to_addr(con->nodeid, &saddr))
  770. goto out_err;
  771. sock->sk->sk_user_data = con;
  772. con->rx_action = receive_from_sock;
  773. con->connect_action = tcp_connect_to_sock;
  774. add_sock(sock, con);
  775. /* Bind to our cluster-known address connecting to avoid
  776. routing problems */
  777. memcpy(&src_addr, dlm_local_addr[0], sizeof(src_addr));
  778. make_sockaddr(&src_addr, 0, &addr_len);
  779. result = sock->ops->bind(sock, (struct sockaddr *) &src_addr,
  780. addr_len);
  781. if (result < 0) {
  782. log_print("could not bind for connect: %d", result);
  783. /* This *may* not indicate a critical error */
  784. }
  785. make_sockaddr(&saddr, dlm_config.ci_tcp_port, &addr_len);
  786. log_print("connecting to %d", con->nodeid);
  787. result =
  788. sock->ops->connect(sock, (struct sockaddr *)&saddr, addr_len,
  789. O_NONBLOCK);
  790. if (result == -EINPROGRESS)
  791. result = 0;
  792. if (result == 0)
  793. goto out;
  794. out_err:
  795. if (con->sock) {
  796. sock_release(con->sock);
  797. con->sock = NULL;
  798. }
  799. /*
  800. * Some errors are fatal and this list might need adjusting. For other
  801. * errors we try again until the max number of retries is reached.
  802. */
  803. if (result != -EHOSTUNREACH && result != -ENETUNREACH &&
  804. result != -ENETDOWN && result != -EINVAL
  805. && result != -EPROTONOSUPPORT) {
  806. lowcomms_connect_sock(con);
  807. result = 0;
  808. }
  809. out:
  810. mutex_unlock(&con->sock_mutex);
  811. return;
  812. }
  813. static struct socket *tcp_create_listen_sock(struct connection *con,
  814. struct sockaddr_storage *saddr)
  815. {
  816. struct socket *sock = NULL;
  817. int result = 0;
  818. int one = 1;
  819. int addr_len;
  820. if (dlm_local_addr[0]->ss_family == AF_INET)
  821. addr_len = sizeof(struct sockaddr_in);
  822. else
  823. addr_len = sizeof(struct sockaddr_in6);
  824. /* Create a socket to communicate with */
  825. result = sock_create_kern(dlm_local_addr[0]->ss_family, SOCK_STREAM,
  826. IPPROTO_TCP, &sock);
  827. if (result < 0) {
  828. log_print("Can't create listening comms socket");
  829. goto create_out;
  830. }
  831. result = kernel_setsockopt(sock, SOL_SOCKET, SO_REUSEADDR,
  832. (char *)&one, sizeof(one));
  833. if (result < 0) {
  834. log_print("Failed to set SO_REUSEADDR on socket: %d", result);
  835. }
  836. sock->sk->sk_user_data = con;
  837. con->rx_action = tcp_accept_from_sock;
  838. con->connect_action = tcp_connect_to_sock;
  839. con->sock = sock;
  840. /* Bind to our port */
  841. make_sockaddr(saddr, dlm_config.ci_tcp_port, &addr_len);
  842. result = sock->ops->bind(sock, (struct sockaddr *) saddr, addr_len);
  843. if (result < 0) {
  844. log_print("Can't bind to port %d", dlm_config.ci_tcp_port);
  845. sock_release(sock);
  846. sock = NULL;
  847. con->sock = NULL;
  848. goto create_out;
  849. }
  850. result = kernel_setsockopt(sock, SOL_SOCKET, SO_KEEPALIVE,
  851. (char *)&one, sizeof(one));
  852. if (result < 0) {
  853. log_print("Set keepalive failed: %d", result);
  854. }
  855. result = sock->ops->listen(sock, 5);
  856. if (result < 0) {
  857. log_print("Can't listen on port %d", dlm_config.ci_tcp_port);
  858. sock_release(sock);
  859. sock = NULL;
  860. goto create_out;
  861. }
  862. create_out:
  863. return sock;
  864. }
  865. /* Get local addresses */
  866. static void init_local(void)
  867. {
  868. struct sockaddr_storage sas, *addr;
  869. int i;
  870. dlm_local_count = 0;
  871. for (i = 0; i < DLM_MAX_ADDR_COUNT - 1; i++) {
  872. if (dlm_our_addr(&sas, i))
  873. break;
  874. addr = kmalloc(sizeof(*addr), GFP_KERNEL);
  875. if (!addr)
  876. break;
  877. memcpy(addr, &sas, sizeof(*addr));
  878. dlm_local_addr[dlm_local_count++] = addr;
  879. }
  880. }
  881. /* Bind to an IP address. SCTP allows multiple address so it can do
  882. multi-homing */
  883. static int add_sctp_bind_addr(struct connection *sctp_con,
  884. struct sockaddr_storage *addr,
  885. int addr_len, int num)
  886. {
  887. int result = 0;
  888. if (num == 1)
  889. result = kernel_bind(sctp_con->sock,
  890. (struct sockaddr *) addr,
  891. addr_len);
  892. else
  893. result = kernel_setsockopt(sctp_con->sock, SOL_SCTP,
  894. SCTP_SOCKOPT_BINDX_ADD,
  895. (char *)addr, addr_len);
  896. if (result < 0)
  897. log_print("Can't bind to port %d addr number %d",
  898. dlm_config.ci_tcp_port, num);
  899. return result;
  900. }
  901. /* Initialise SCTP socket and bind to all interfaces */
  902. static int sctp_listen_for_all(void)
  903. {
  904. struct socket *sock = NULL;
  905. struct sockaddr_storage localaddr;
  906. struct sctp_event_subscribe subscribe;
  907. int result = -EINVAL, num = 1, i, addr_len;
  908. struct connection *con = nodeid2con(0, GFP_KERNEL);
  909. int bufsize = NEEDED_RMEM;
  910. if (!con)
  911. return -ENOMEM;
  912. log_print("Using SCTP for communications");
  913. result = sock_create_kern(dlm_local_addr[0]->ss_family, SOCK_SEQPACKET,
  914. IPPROTO_SCTP, &sock);
  915. if (result < 0) {
  916. log_print("Can't create comms socket, check SCTP is loaded");
  917. goto out;
  918. }
  919. /* Listen for events */
  920. memset(&subscribe, 0, sizeof(subscribe));
  921. subscribe.sctp_data_io_event = 1;
  922. subscribe.sctp_association_event = 1;
  923. subscribe.sctp_send_failure_event = 1;
  924. subscribe.sctp_shutdown_event = 1;
  925. subscribe.sctp_partial_delivery_event = 1;
  926. result = kernel_setsockopt(sock, SOL_SOCKET, SO_RCVBUFFORCE,
  927. (char *)&bufsize, sizeof(bufsize));
  928. if (result)
  929. log_print("Error increasing buffer space on socket %d", result);
  930. result = kernel_setsockopt(sock, SOL_SCTP, SCTP_EVENTS,
  931. (char *)&subscribe, sizeof(subscribe));
  932. if (result < 0) {
  933. log_print("Failed to set SCTP_EVENTS on socket: result=%d",
  934. result);
  935. goto create_delsock;
  936. }
  937. /* Init con struct */
  938. sock->sk->sk_user_data = con;
  939. con->sock = sock;
  940. con->sock->sk->sk_data_ready = lowcomms_data_ready;
  941. con->rx_action = receive_from_sock;
  942. con->connect_action = sctp_init_assoc;
  943. /* Bind to all interfaces. */
  944. for (i = 0; i < dlm_local_count; i++) {
  945. memcpy(&localaddr, dlm_local_addr[i], sizeof(localaddr));
  946. make_sockaddr(&localaddr, dlm_config.ci_tcp_port, &addr_len);
  947. result = add_sctp_bind_addr(con, &localaddr, addr_len, num);
  948. if (result)
  949. goto create_delsock;
  950. ++num;
  951. }
  952. result = sock->ops->listen(sock, 5);
  953. if (result < 0) {
  954. log_print("Can't set socket listening");
  955. goto create_delsock;
  956. }
  957. return 0;
  958. create_delsock:
  959. sock_release(sock);
  960. con->sock = NULL;
  961. out:
  962. return result;
  963. }
  964. static int tcp_listen_for_all(void)
  965. {
  966. struct socket *sock = NULL;
  967. struct connection *con = nodeid2con(0, GFP_KERNEL);
  968. int result = -EINVAL;
  969. if (!con)
  970. return -ENOMEM;
  971. /* We don't support multi-homed hosts */
  972. if (dlm_local_addr[1] != NULL) {
  973. log_print("TCP protocol can't handle multi-homed hosts, "
  974. "try SCTP");
  975. return -EINVAL;
  976. }
  977. log_print("Using TCP for communications");
  978. sock = tcp_create_listen_sock(con, dlm_local_addr[0]);
  979. if (sock) {
  980. add_sock(sock, con);
  981. result = 0;
  982. }
  983. else {
  984. result = -EADDRINUSE;
  985. }
  986. return result;
  987. }
  988. static struct writequeue_entry *new_writequeue_entry(struct connection *con,
  989. gfp_t allocation)
  990. {
  991. struct writequeue_entry *entry;
  992. entry = kmalloc(sizeof(struct writequeue_entry), allocation);
  993. if (!entry)
  994. return NULL;
  995. entry->page = alloc_page(allocation);
  996. if (!entry->page) {
  997. kfree(entry);
  998. return NULL;
  999. }
  1000. entry->offset = 0;
  1001. entry->len = 0;
  1002. entry->end = 0;
  1003. entry->users = 0;
  1004. entry->con = con;
  1005. return entry;
  1006. }
  1007. void *dlm_lowcomms_get_buffer(int nodeid, int len, gfp_t allocation, char **ppc)
  1008. {
  1009. struct connection *con;
  1010. struct writequeue_entry *e;
  1011. int offset = 0;
  1012. int users = 0;
  1013. con = nodeid2con(nodeid, allocation);
  1014. if (!con)
  1015. return NULL;
  1016. spin_lock(&con->writequeue_lock);
  1017. e = list_entry(con->writequeue.prev, struct writequeue_entry, list);
  1018. if ((&e->list == &con->writequeue) ||
  1019. (PAGE_CACHE_SIZE - e->end < len)) {
  1020. e = NULL;
  1021. } else {
  1022. offset = e->end;
  1023. e->end += len;
  1024. users = e->users++;
  1025. }
  1026. spin_unlock(&con->writequeue_lock);
  1027. if (e) {
  1028. got_one:
  1029. if (users == 0)
  1030. kmap(e->page);
  1031. *ppc = page_address(e->page) + offset;
  1032. return e;
  1033. }
  1034. e = new_writequeue_entry(con, allocation);
  1035. if (e) {
  1036. spin_lock(&con->writequeue_lock);
  1037. offset = e->end;
  1038. e->end += len;
  1039. users = e->users++;
  1040. list_add_tail(&e->list, &con->writequeue);
  1041. spin_unlock(&con->writequeue_lock);
  1042. goto got_one;
  1043. }
  1044. return NULL;
  1045. }
  1046. void dlm_lowcomms_commit_buffer(void *mh)
  1047. {
  1048. struct writequeue_entry *e = (struct writequeue_entry *)mh;
  1049. struct connection *con = e->con;
  1050. int users;
  1051. spin_lock(&con->writequeue_lock);
  1052. users = --e->users;
  1053. if (users)
  1054. goto out;
  1055. e->len = e->end - e->offset;
  1056. kunmap(e->page);
  1057. spin_unlock(&con->writequeue_lock);
  1058. if (!test_and_set_bit(CF_WRITE_PENDING, &con->flags)) {
  1059. queue_work(send_workqueue, &con->swork);
  1060. }
  1061. return;
  1062. out:
  1063. spin_unlock(&con->writequeue_lock);
  1064. return;
  1065. }
  1066. /* Send a message */
  1067. static void send_to_sock(struct connection *con)
  1068. {
  1069. int ret = 0;
  1070. ssize_t(*sendpage) (struct socket *, struct page *, int, size_t, int);
  1071. const int msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL;
  1072. struct writequeue_entry *e;
  1073. int len, offset;
  1074. mutex_lock(&con->sock_mutex);
  1075. if (con->sock == NULL)
  1076. goto out_connect;
  1077. sendpage = con->sock->ops->sendpage;
  1078. spin_lock(&con->writequeue_lock);
  1079. for (;;) {
  1080. e = list_entry(con->writequeue.next, struct writequeue_entry,
  1081. list);
  1082. if ((struct list_head *) e == &con->writequeue)
  1083. break;
  1084. len = e->len;
  1085. offset = e->offset;
  1086. BUG_ON(len == 0 && e->users == 0);
  1087. spin_unlock(&con->writequeue_lock);
  1088. kmap(e->page);
  1089. ret = 0;
  1090. if (len) {
  1091. ret = sendpage(con->sock, e->page, offset, len,
  1092. msg_flags);
  1093. if (ret == -EAGAIN || ret == 0) {
  1094. cond_resched();
  1095. goto out;
  1096. }
  1097. if (ret <= 0)
  1098. goto send_error;
  1099. }
  1100. /* Don't starve people filling buffers */
  1101. cond_resched();
  1102. spin_lock(&con->writequeue_lock);
  1103. e->offset += ret;
  1104. e->len -= ret;
  1105. if (e->len == 0 && e->users == 0) {
  1106. list_del(&e->list);
  1107. kunmap(e->page);
  1108. free_entry(e);
  1109. continue;
  1110. }
  1111. }
  1112. spin_unlock(&con->writequeue_lock);
  1113. out:
  1114. mutex_unlock(&con->sock_mutex);
  1115. return;
  1116. send_error:
  1117. mutex_unlock(&con->sock_mutex);
  1118. close_connection(con, false);
  1119. lowcomms_connect_sock(con);
  1120. return;
  1121. out_connect:
  1122. mutex_unlock(&con->sock_mutex);
  1123. if (!test_bit(CF_INIT_PENDING, &con->flags))
  1124. lowcomms_connect_sock(con);
  1125. return;
  1126. }
  1127. static void clean_one_writequeue(struct connection *con)
  1128. {
  1129. struct list_head *list;
  1130. struct list_head *temp;
  1131. spin_lock(&con->writequeue_lock);
  1132. list_for_each_safe(list, temp, &con->writequeue) {
  1133. struct writequeue_entry *e =
  1134. list_entry(list, struct writequeue_entry, list);
  1135. list_del(&e->list);
  1136. free_entry(e);
  1137. }
  1138. spin_unlock(&con->writequeue_lock);
  1139. }
  1140. /* Called from recovery when it knows that a node has
  1141. left the cluster */
  1142. int dlm_lowcomms_close(int nodeid)
  1143. {
  1144. struct connection *con;
  1145. log_print("closing connection to node %d", nodeid);
  1146. con = nodeid2con(nodeid, 0);
  1147. if (con) {
  1148. clean_one_writequeue(con);
  1149. close_connection(con, true);
  1150. }
  1151. return 0;
  1152. }
  1153. /* Receive workqueue function */
  1154. static void process_recv_sockets(struct work_struct *work)
  1155. {
  1156. struct connection *con = container_of(work, struct connection, rwork);
  1157. int err;
  1158. clear_bit(CF_READ_PENDING, &con->flags);
  1159. do {
  1160. err = con->rx_action(con);
  1161. } while (!err);
  1162. }
  1163. /* Send workqueue function */
  1164. static void process_send_sockets(struct work_struct *work)
  1165. {
  1166. struct connection *con = container_of(work, struct connection, swork);
  1167. if (test_and_clear_bit(CF_CONNECT_PENDING, &con->flags)) {
  1168. con->connect_action(con);
  1169. }
  1170. clear_bit(CF_WRITE_PENDING, &con->flags);
  1171. send_to_sock(con);
  1172. }
  1173. /* Discard all entries on the write queues */
  1174. static void clean_writequeues(void)
  1175. {
  1176. int nodeid;
  1177. for (nodeid = 1; nodeid <= max_nodeid; nodeid++) {
  1178. struct connection *con = __nodeid2con(nodeid, 0);
  1179. if (con)
  1180. clean_one_writequeue(con);
  1181. }
  1182. }
  1183. static void work_stop(void)
  1184. {
  1185. destroy_workqueue(recv_workqueue);
  1186. destroy_workqueue(send_workqueue);
  1187. }
  1188. static int work_start(void)
  1189. {
  1190. int error;
  1191. recv_workqueue = create_workqueue("dlm_recv");
  1192. error = IS_ERR(recv_workqueue);
  1193. if (error) {
  1194. log_print("can't start dlm_recv %d", error);
  1195. return error;
  1196. }
  1197. send_workqueue = create_singlethread_workqueue("dlm_send");
  1198. error = IS_ERR(send_workqueue);
  1199. if (error) {
  1200. log_print("can't start dlm_send %d", error);
  1201. destroy_workqueue(recv_workqueue);
  1202. return error;
  1203. }
  1204. return 0;
  1205. }
  1206. void dlm_lowcomms_stop(void)
  1207. {
  1208. int i;
  1209. struct connection *con;
  1210. /* Set all the flags to prevent any
  1211. socket activity.
  1212. */
  1213. mutex_lock(&connections_lock);
  1214. for (i = 0; i <= max_nodeid; i++) {
  1215. con = __nodeid2con(i, 0);
  1216. if (con) {
  1217. con->flags |= 0x0F;
  1218. if (con->sock)
  1219. con->sock->sk->sk_user_data = NULL;
  1220. }
  1221. }
  1222. mutex_unlock(&connections_lock);
  1223. work_stop();
  1224. mutex_lock(&connections_lock);
  1225. clean_writequeues();
  1226. for (i = 0; i <= max_nodeid; i++) {
  1227. con = __nodeid2con(i, 0);
  1228. if (con) {
  1229. close_connection(con, true);
  1230. if (con->othercon)
  1231. kmem_cache_free(con_cache, con->othercon);
  1232. kmem_cache_free(con_cache, con);
  1233. }
  1234. }
  1235. max_nodeid = 0;
  1236. mutex_unlock(&connections_lock);
  1237. kmem_cache_destroy(con_cache);
  1238. idr_init(&connections_idr);
  1239. }
  1240. int dlm_lowcomms_start(void)
  1241. {
  1242. int error = -EINVAL;
  1243. struct connection *con;
  1244. init_local();
  1245. if (!dlm_local_count) {
  1246. error = -ENOTCONN;
  1247. log_print("no local IP address has been set");
  1248. goto out;
  1249. }
  1250. error = -ENOMEM;
  1251. con_cache = kmem_cache_create("dlm_conn", sizeof(struct connection),
  1252. __alignof__(struct connection), 0,
  1253. NULL);
  1254. if (!con_cache)
  1255. goto out;
  1256. /* Start listening */
  1257. if (dlm_config.ci_protocol == 0)
  1258. error = tcp_listen_for_all();
  1259. else
  1260. error = sctp_listen_for_all();
  1261. if (error)
  1262. goto fail_unlisten;
  1263. error = work_start();
  1264. if (error)
  1265. goto fail_unlisten;
  1266. return 0;
  1267. fail_unlisten:
  1268. con = nodeid2con(0,0);
  1269. if (con) {
  1270. close_connection(con, false);
  1271. kmem_cache_free(con_cache, con);
  1272. }
  1273. kmem_cache_destroy(con_cache);
  1274. out:
  1275. return error;
  1276. }