t3_hw.c 110 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686
  1. /*
  2. * Copyright (c) 2003-2007 Chelsio, Inc. All rights reserved.
  3. *
  4. * This software is available to you under a choice of one of two
  5. * licenses. You may choose to be licensed under the terms of the GNU
  6. * General Public License (GPL) Version 2, available from the file
  7. * COPYING in the main directory of this source tree, or the
  8. * OpenIB.org BSD license below:
  9. *
  10. * Redistribution and use in source and binary forms, with or
  11. * without modification, are permitted provided that the following
  12. * conditions are met:
  13. *
  14. * - Redistributions of source code must retain the above
  15. * copyright notice, this list of conditions and the following
  16. * disclaimer.
  17. *
  18. * - Redistributions in binary form must reproduce the above
  19. * copyright notice, this list of conditions and the following
  20. * disclaimer in the documentation and/or other materials
  21. * provided with the distribution.
  22. *
  23. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  24. * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  25. * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  26. * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  27. * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  28. * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  29. * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  30. * SOFTWARE.
  31. */
  32. #include "common.h"
  33. #include "regs.h"
  34. #include "sge_defs.h"
  35. #include "firmware_exports.h"
  36. /**
  37. * t3_wait_op_done_val - wait until an operation is completed
  38. * @adapter: the adapter performing the operation
  39. * @reg: the register to check for completion
  40. * @mask: a single-bit field within @reg that indicates completion
  41. * @polarity: the value of the field when the operation is completed
  42. * @attempts: number of check iterations
  43. * @delay: delay in usecs between iterations
  44. * @valp: where to store the value of the register at completion time
  45. *
  46. * Wait until an operation is completed by checking a bit in a register
  47. * up to @attempts times. If @valp is not NULL the value of the register
  48. * at the time it indicated completion is stored there. Returns 0 if the
  49. * operation completes and -EAGAIN otherwise.
  50. */
  51. int t3_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
  52. int polarity, int attempts, int delay, u32 *valp)
  53. {
  54. while (1) {
  55. u32 val = t3_read_reg(adapter, reg);
  56. if (!!(val & mask) == polarity) {
  57. if (valp)
  58. *valp = val;
  59. return 0;
  60. }
  61. if (--attempts == 0)
  62. return -EAGAIN;
  63. if (delay)
  64. udelay(delay);
  65. }
  66. }
  67. /**
  68. * t3_write_regs - write a bunch of registers
  69. * @adapter: the adapter to program
  70. * @p: an array of register address/register value pairs
  71. * @n: the number of address/value pairs
  72. * @offset: register address offset
  73. *
  74. * Takes an array of register address/register value pairs and writes each
  75. * value to the corresponding register. Register addresses are adjusted
  76. * by the supplied offset.
  77. */
  78. void t3_write_regs(struct adapter *adapter, const struct addr_val_pair *p,
  79. int n, unsigned int offset)
  80. {
  81. while (n--) {
  82. t3_write_reg(adapter, p->reg_addr + offset, p->val);
  83. p++;
  84. }
  85. }
  86. /**
  87. * t3_set_reg_field - set a register field to a value
  88. * @adapter: the adapter to program
  89. * @addr: the register address
  90. * @mask: specifies the portion of the register to modify
  91. * @val: the new value for the register field
  92. *
  93. * Sets a register field specified by the supplied mask to the
  94. * given value.
  95. */
  96. void t3_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
  97. u32 val)
  98. {
  99. u32 v = t3_read_reg(adapter, addr) & ~mask;
  100. t3_write_reg(adapter, addr, v | val);
  101. t3_read_reg(adapter, addr); /* flush */
  102. }
  103. /**
  104. * t3_read_indirect - read indirectly addressed registers
  105. * @adap: the adapter
  106. * @addr_reg: register holding the indirect address
  107. * @data_reg: register holding the value of the indirect register
  108. * @vals: where the read register values are stored
  109. * @start_idx: index of first indirect register to read
  110. * @nregs: how many indirect registers to read
  111. *
  112. * Reads registers that are accessed indirectly through an address/data
  113. * register pair.
  114. */
  115. static void t3_read_indirect(struct adapter *adap, unsigned int addr_reg,
  116. unsigned int data_reg, u32 *vals,
  117. unsigned int nregs, unsigned int start_idx)
  118. {
  119. while (nregs--) {
  120. t3_write_reg(adap, addr_reg, start_idx);
  121. *vals++ = t3_read_reg(adap, data_reg);
  122. start_idx++;
  123. }
  124. }
  125. /**
  126. * t3_mc7_bd_read - read from MC7 through backdoor accesses
  127. * @mc7: identifies MC7 to read from
  128. * @start: index of first 64-bit word to read
  129. * @n: number of 64-bit words to read
  130. * @buf: where to store the read result
  131. *
  132. * Read n 64-bit words from MC7 starting at word start, using backdoor
  133. * accesses.
  134. */
  135. int t3_mc7_bd_read(struct mc7 *mc7, unsigned int start, unsigned int n,
  136. u64 *buf)
  137. {
  138. static const int shift[] = { 0, 0, 16, 24 };
  139. static const int step[] = { 0, 32, 16, 8 };
  140. unsigned int size64 = mc7->size / 8; /* # of 64-bit words */
  141. struct adapter *adap = mc7->adapter;
  142. if (start >= size64 || start + n > size64)
  143. return -EINVAL;
  144. start *= (8 << mc7->width);
  145. while (n--) {
  146. int i;
  147. u64 val64 = 0;
  148. for (i = (1 << mc7->width) - 1; i >= 0; --i) {
  149. int attempts = 10;
  150. u32 val;
  151. t3_write_reg(adap, mc7->offset + A_MC7_BD_ADDR, start);
  152. t3_write_reg(adap, mc7->offset + A_MC7_BD_OP, 0);
  153. val = t3_read_reg(adap, mc7->offset + A_MC7_BD_OP);
  154. while ((val & F_BUSY) && attempts--)
  155. val = t3_read_reg(adap,
  156. mc7->offset + A_MC7_BD_OP);
  157. if (val & F_BUSY)
  158. return -EIO;
  159. val = t3_read_reg(adap, mc7->offset + A_MC7_BD_DATA1);
  160. if (mc7->width == 0) {
  161. val64 = t3_read_reg(adap,
  162. mc7->offset +
  163. A_MC7_BD_DATA0);
  164. val64 |= (u64) val << 32;
  165. } else {
  166. if (mc7->width > 1)
  167. val >>= shift[mc7->width];
  168. val64 |= (u64) val << (step[mc7->width] * i);
  169. }
  170. start += 8;
  171. }
  172. *buf++ = val64;
  173. }
  174. return 0;
  175. }
  176. /*
  177. * Initialize MI1.
  178. */
  179. static void mi1_init(struct adapter *adap, const struct adapter_info *ai)
  180. {
  181. u32 clkdiv = adap->params.vpd.cclk / (2 * adap->params.vpd.mdc) - 1;
  182. u32 val = F_PREEN | V_MDIINV(ai->mdiinv) | V_MDIEN(ai->mdien) |
  183. V_CLKDIV(clkdiv);
  184. if (!(ai->caps & SUPPORTED_10000baseT_Full))
  185. val |= V_ST(1);
  186. t3_write_reg(adap, A_MI1_CFG, val);
  187. }
  188. #define MDIO_ATTEMPTS 10
  189. /*
  190. * MI1 read/write operations for direct-addressed PHYs.
  191. */
  192. static int mi1_read(struct adapter *adapter, int phy_addr, int mmd_addr,
  193. int reg_addr, unsigned int *valp)
  194. {
  195. int ret;
  196. u32 addr = V_REGADDR(reg_addr) | V_PHYADDR(phy_addr);
  197. if (mmd_addr)
  198. return -EINVAL;
  199. mutex_lock(&adapter->mdio_lock);
  200. t3_write_reg(adapter, A_MI1_ADDR, addr);
  201. t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(2));
  202. ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0, MDIO_ATTEMPTS, 20);
  203. if (!ret)
  204. *valp = t3_read_reg(adapter, A_MI1_DATA);
  205. mutex_unlock(&adapter->mdio_lock);
  206. return ret;
  207. }
  208. static int mi1_write(struct adapter *adapter, int phy_addr, int mmd_addr,
  209. int reg_addr, unsigned int val)
  210. {
  211. int ret;
  212. u32 addr = V_REGADDR(reg_addr) | V_PHYADDR(phy_addr);
  213. if (mmd_addr)
  214. return -EINVAL;
  215. mutex_lock(&adapter->mdio_lock);
  216. t3_write_reg(adapter, A_MI1_ADDR, addr);
  217. t3_write_reg(adapter, A_MI1_DATA, val);
  218. t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(1));
  219. ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0, MDIO_ATTEMPTS, 20);
  220. mutex_unlock(&adapter->mdio_lock);
  221. return ret;
  222. }
  223. static const struct mdio_ops mi1_mdio_ops = {
  224. mi1_read,
  225. mi1_write
  226. };
  227. /*
  228. * MI1 read/write operations for indirect-addressed PHYs.
  229. */
  230. static int mi1_ext_read(struct adapter *adapter, int phy_addr, int mmd_addr,
  231. int reg_addr, unsigned int *valp)
  232. {
  233. int ret;
  234. u32 addr = V_REGADDR(mmd_addr) | V_PHYADDR(phy_addr);
  235. mutex_lock(&adapter->mdio_lock);
  236. t3_write_reg(adapter, A_MI1_ADDR, addr);
  237. t3_write_reg(adapter, A_MI1_DATA, reg_addr);
  238. t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(0));
  239. ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0, MDIO_ATTEMPTS, 20);
  240. if (!ret) {
  241. t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(3));
  242. ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0,
  243. MDIO_ATTEMPTS, 20);
  244. if (!ret)
  245. *valp = t3_read_reg(adapter, A_MI1_DATA);
  246. }
  247. mutex_unlock(&adapter->mdio_lock);
  248. return ret;
  249. }
  250. static int mi1_ext_write(struct adapter *adapter, int phy_addr, int mmd_addr,
  251. int reg_addr, unsigned int val)
  252. {
  253. int ret;
  254. u32 addr = V_REGADDR(mmd_addr) | V_PHYADDR(phy_addr);
  255. mutex_lock(&adapter->mdio_lock);
  256. t3_write_reg(adapter, A_MI1_ADDR, addr);
  257. t3_write_reg(adapter, A_MI1_DATA, reg_addr);
  258. t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(0));
  259. ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0, MDIO_ATTEMPTS, 20);
  260. if (!ret) {
  261. t3_write_reg(adapter, A_MI1_DATA, val);
  262. t3_write_reg(adapter, A_MI1_OP, V_MDI_OP(1));
  263. ret = t3_wait_op_done(adapter, A_MI1_OP, F_BUSY, 0,
  264. MDIO_ATTEMPTS, 20);
  265. }
  266. mutex_unlock(&adapter->mdio_lock);
  267. return ret;
  268. }
  269. static const struct mdio_ops mi1_mdio_ext_ops = {
  270. mi1_ext_read,
  271. mi1_ext_write
  272. };
  273. /**
  274. * t3_mdio_change_bits - modify the value of a PHY register
  275. * @phy: the PHY to operate on
  276. * @mmd: the device address
  277. * @reg: the register address
  278. * @clear: what part of the register value to mask off
  279. * @set: what part of the register value to set
  280. *
  281. * Changes the value of a PHY register by applying a mask to its current
  282. * value and ORing the result with a new value.
  283. */
  284. int t3_mdio_change_bits(struct cphy *phy, int mmd, int reg, unsigned int clear,
  285. unsigned int set)
  286. {
  287. int ret;
  288. unsigned int val;
  289. ret = mdio_read(phy, mmd, reg, &val);
  290. if (!ret) {
  291. val &= ~clear;
  292. ret = mdio_write(phy, mmd, reg, val | set);
  293. }
  294. return ret;
  295. }
  296. /**
  297. * t3_phy_reset - reset a PHY block
  298. * @phy: the PHY to operate on
  299. * @mmd: the device address of the PHY block to reset
  300. * @wait: how long to wait for the reset to complete in 1ms increments
  301. *
  302. * Resets a PHY block and optionally waits for the reset to complete.
  303. * @mmd should be 0 for 10/100/1000 PHYs and the device address to reset
  304. * for 10G PHYs.
  305. */
  306. int t3_phy_reset(struct cphy *phy, int mmd, int wait)
  307. {
  308. int err;
  309. unsigned int ctl;
  310. err = t3_mdio_change_bits(phy, mmd, MII_BMCR, BMCR_PDOWN, BMCR_RESET);
  311. if (err || !wait)
  312. return err;
  313. do {
  314. err = mdio_read(phy, mmd, MII_BMCR, &ctl);
  315. if (err)
  316. return err;
  317. ctl &= BMCR_RESET;
  318. if (ctl)
  319. msleep(1);
  320. } while (ctl && --wait);
  321. return ctl ? -1 : 0;
  322. }
  323. /**
  324. * t3_phy_advertise - set the PHY advertisement registers for autoneg
  325. * @phy: the PHY to operate on
  326. * @advert: bitmap of capabilities the PHY should advertise
  327. *
  328. * Sets a 10/100/1000 PHY's advertisement registers to advertise the
  329. * requested capabilities.
  330. */
  331. int t3_phy_advertise(struct cphy *phy, unsigned int advert)
  332. {
  333. int err;
  334. unsigned int val = 0;
  335. err = mdio_read(phy, 0, MII_CTRL1000, &val);
  336. if (err)
  337. return err;
  338. val &= ~(ADVERTISE_1000HALF | ADVERTISE_1000FULL);
  339. if (advert & ADVERTISED_1000baseT_Half)
  340. val |= ADVERTISE_1000HALF;
  341. if (advert & ADVERTISED_1000baseT_Full)
  342. val |= ADVERTISE_1000FULL;
  343. err = mdio_write(phy, 0, MII_CTRL1000, val);
  344. if (err)
  345. return err;
  346. val = 1;
  347. if (advert & ADVERTISED_10baseT_Half)
  348. val |= ADVERTISE_10HALF;
  349. if (advert & ADVERTISED_10baseT_Full)
  350. val |= ADVERTISE_10FULL;
  351. if (advert & ADVERTISED_100baseT_Half)
  352. val |= ADVERTISE_100HALF;
  353. if (advert & ADVERTISED_100baseT_Full)
  354. val |= ADVERTISE_100FULL;
  355. if (advert & ADVERTISED_Pause)
  356. val |= ADVERTISE_PAUSE_CAP;
  357. if (advert & ADVERTISED_Asym_Pause)
  358. val |= ADVERTISE_PAUSE_ASYM;
  359. return mdio_write(phy, 0, MII_ADVERTISE, val);
  360. }
  361. /**
  362. * t3_set_phy_speed_duplex - force PHY speed and duplex
  363. * @phy: the PHY to operate on
  364. * @speed: requested PHY speed
  365. * @duplex: requested PHY duplex
  366. *
  367. * Force a 10/100/1000 PHY's speed and duplex. This also disables
  368. * auto-negotiation except for GigE, where auto-negotiation is mandatory.
  369. */
  370. int t3_set_phy_speed_duplex(struct cphy *phy, int speed, int duplex)
  371. {
  372. int err;
  373. unsigned int ctl;
  374. err = mdio_read(phy, 0, MII_BMCR, &ctl);
  375. if (err)
  376. return err;
  377. if (speed >= 0) {
  378. ctl &= ~(BMCR_SPEED100 | BMCR_SPEED1000 | BMCR_ANENABLE);
  379. if (speed == SPEED_100)
  380. ctl |= BMCR_SPEED100;
  381. else if (speed == SPEED_1000)
  382. ctl |= BMCR_SPEED1000;
  383. }
  384. if (duplex >= 0) {
  385. ctl &= ~(BMCR_FULLDPLX | BMCR_ANENABLE);
  386. if (duplex == DUPLEX_FULL)
  387. ctl |= BMCR_FULLDPLX;
  388. }
  389. if (ctl & BMCR_SPEED1000) /* auto-negotiation required for GigE */
  390. ctl |= BMCR_ANENABLE;
  391. return mdio_write(phy, 0, MII_BMCR, ctl);
  392. }
  393. static const struct adapter_info t3_adap_info[] = {
  394. {2, 0, 0, 0,
  395. F_GPIO2_OEN | F_GPIO4_OEN |
  396. F_GPIO2_OUT_VAL | F_GPIO4_OUT_VAL, F_GPIO3 | F_GPIO5,
  397. 0,
  398. &mi1_mdio_ops, "Chelsio PE9000"},
  399. {2, 0, 0, 0,
  400. F_GPIO2_OEN | F_GPIO4_OEN |
  401. F_GPIO2_OUT_VAL | F_GPIO4_OUT_VAL, F_GPIO3 | F_GPIO5,
  402. 0,
  403. &mi1_mdio_ops, "Chelsio T302"},
  404. {1, 0, 0, 0,
  405. F_GPIO1_OEN | F_GPIO6_OEN | F_GPIO7_OEN | F_GPIO10_OEN |
  406. F_GPIO11_OEN | F_GPIO1_OUT_VAL | F_GPIO6_OUT_VAL | F_GPIO10_OUT_VAL,
  407. 0, SUPPORTED_10000baseT_Full | SUPPORTED_AUI,
  408. &mi1_mdio_ext_ops, "Chelsio T310"},
  409. {2, 0, 0, 0,
  410. F_GPIO1_OEN | F_GPIO2_OEN | F_GPIO4_OEN | F_GPIO5_OEN | F_GPIO6_OEN |
  411. F_GPIO7_OEN | F_GPIO10_OEN | F_GPIO11_OEN | F_GPIO1_OUT_VAL |
  412. F_GPIO5_OUT_VAL | F_GPIO6_OUT_VAL | F_GPIO10_OUT_VAL, 0,
  413. SUPPORTED_10000baseT_Full | SUPPORTED_AUI,
  414. &mi1_mdio_ext_ops, "Chelsio T320"},
  415. };
  416. /*
  417. * Return the adapter_info structure with a given index. Out-of-range indices
  418. * return NULL.
  419. */
  420. const struct adapter_info *t3_get_adapter_info(unsigned int id)
  421. {
  422. return id < ARRAY_SIZE(t3_adap_info) ? &t3_adap_info[id] : NULL;
  423. }
  424. #define CAPS_1G (SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Full | \
  425. SUPPORTED_1000baseT_Full | SUPPORTED_Autoneg | SUPPORTED_MII)
  426. #define CAPS_10G (SUPPORTED_10000baseT_Full | SUPPORTED_AUI)
  427. static const struct port_type_info port_types[] = {
  428. {NULL},
  429. {t3_ael1002_phy_prep, CAPS_10G | SUPPORTED_FIBRE,
  430. "10GBASE-XR"},
  431. {t3_vsc8211_phy_prep, CAPS_1G | SUPPORTED_TP | SUPPORTED_IRQ,
  432. "10/100/1000BASE-T"},
  433. {NULL, CAPS_1G | SUPPORTED_TP | SUPPORTED_IRQ,
  434. "10/100/1000BASE-T"},
  435. {t3_xaui_direct_phy_prep, CAPS_10G | SUPPORTED_TP, "10GBASE-CX4"},
  436. {NULL, CAPS_10G, "10GBASE-KX4"},
  437. {t3_qt2045_phy_prep, CAPS_10G | SUPPORTED_TP, "10GBASE-CX4"},
  438. {t3_ael1006_phy_prep, CAPS_10G | SUPPORTED_FIBRE,
  439. "10GBASE-SR"},
  440. {NULL, CAPS_10G | SUPPORTED_TP, "10GBASE-CX4"},
  441. };
  442. #undef CAPS_1G
  443. #undef CAPS_10G
  444. #define VPD_ENTRY(name, len) \
  445. u8 name##_kword[2]; u8 name##_len; u8 name##_data[len]
  446. /*
  447. * Partial EEPROM Vital Product Data structure. Includes only the ID and
  448. * VPD-R sections.
  449. */
  450. struct t3_vpd {
  451. u8 id_tag;
  452. u8 id_len[2];
  453. u8 id_data[16];
  454. u8 vpdr_tag;
  455. u8 vpdr_len[2];
  456. VPD_ENTRY(pn, 16); /* part number */
  457. VPD_ENTRY(ec, 16); /* EC level */
  458. VPD_ENTRY(sn, SERNUM_LEN); /* serial number */
  459. VPD_ENTRY(na, 12); /* MAC address base */
  460. VPD_ENTRY(cclk, 6); /* core clock */
  461. VPD_ENTRY(mclk, 6); /* mem clock */
  462. VPD_ENTRY(uclk, 6); /* uP clk */
  463. VPD_ENTRY(mdc, 6); /* MDIO clk */
  464. VPD_ENTRY(mt, 2); /* mem timing */
  465. VPD_ENTRY(xaui0cfg, 6); /* XAUI0 config */
  466. VPD_ENTRY(xaui1cfg, 6); /* XAUI1 config */
  467. VPD_ENTRY(port0, 2); /* PHY0 complex */
  468. VPD_ENTRY(port1, 2); /* PHY1 complex */
  469. VPD_ENTRY(port2, 2); /* PHY2 complex */
  470. VPD_ENTRY(port3, 2); /* PHY3 complex */
  471. VPD_ENTRY(rv, 1); /* csum */
  472. u32 pad; /* for multiple-of-4 sizing and alignment */
  473. };
  474. #define EEPROM_MAX_POLL 4
  475. #define EEPROM_STAT_ADDR 0x4000
  476. #define VPD_BASE 0xc00
  477. /**
  478. * t3_seeprom_read - read a VPD EEPROM location
  479. * @adapter: adapter to read
  480. * @addr: EEPROM address
  481. * @data: where to store the read data
  482. *
  483. * Read a 32-bit word from a location in VPD EEPROM using the card's PCI
  484. * VPD ROM capability. A zero is written to the flag bit when the
  485. * addres is written to the control register. The hardware device will
  486. * set the flag to 1 when 4 bytes have been read into the data register.
  487. */
  488. int t3_seeprom_read(struct adapter *adapter, u32 addr, __le32 *data)
  489. {
  490. u16 val;
  491. int attempts = EEPROM_MAX_POLL;
  492. u32 v;
  493. unsigned int base = adapter->params.pci.vpd_cap_addr;
  494. if ((addr >= EEPROMSIZE && addr != EEPROM_STAT_ADDR) || (addr & 3))
  495. return -EINVAL;
  496. pci_write_config_word(adapter->pdev, base + PCI_VPD_ADDR, addr);
  497. do {
  498. udelay(10);
  499. pci_read_config_word(adapter->pdev, base + PCI_VPD_ADDR, &val);
  500. } while (!(val & PCI_VPD_ADDR_F) && --attempts);
  501. if (!(val & PCI_VPD_ADDR_F)) {
  502. CH_ERR(adapter, "reading EEPROM address 0x%x failed\n", addr);
  503. return -EIO;
  504. }
  505. pci_read_config_dword(adapter->pdev, base + PCI_VPD_DATA, &v);
  506. *data = cpu_to_le32(v);
  507. return 0;
  508. }
  509. /**
  510. * t3_seeprom_write - write a VPD EEPROM location
  511. * @adapter: adapter to write
  512. * @addr: EEPROM address
  513. * @data: value to write
  514. *
  515. * Write a 32-bit word to a location in VPD EEPROM using the card's PCI
  516. * VPD ROM capability.
  517. */
  518. int t3_seeprom_write(struct adapter *adapter, u32 addr, __le32 data)
  519. {
  520. u16 val;
  521. int attempts = EEPROM_MAX_POLL;
  522. unsigned int base = adapter->params.pci.vpd_cap_addr;
  523. if ((addr >= EEPROMSIZE && addr != EEPROM_STAT_ADDR) || (addr & 3))
  524. return -EINVAL;
  525. pci_write_config_dword(adapter->pdev, base + PCI_VPD_DATA,
  526. le32_to_cpu(data));
  527. pci_write_config_word(adapter->pdev,base + PCI_VPD_ADDR,
  528. addr | PCI_VPD_ADDR_F);
  529. do {
  530. msleep(1);
  531. pci_read_config_word(adapter->pdev, base + PCI_VPD_ADDR, &val);
  532. } while ((val & PCI_VPD_ADDR_F) && --attempts);
  533. if (val & PCI_VPD_ADDR_F) {
  534. CH_ERR(adapter, "write to EEPROM address 0x%x failed\n", addr);
  535. return -EIO;
  536. }
  537. return 0;
  538. }
  539. /**
  540. * t3_seeprom_wp - enable/disable EEPROM write protection
  541. * @adapter: the adapter
  542. * @enable: 1 to enable write protection, 0 to disable it
  543. *
  544. * Enables or disables write protection on the serial EEPROM.
  545. */
  546. int t3_seeprom_wp(struct adapter *adapter, int enable)
  547. {
  548. return t3_seeprom_write(adapter, EEPROM_STAT_ADDR, enable ? 0xc : 0);
  549. }
  550. /*
  551. * Convert a character holding a hex digit to a number.
  552. */
  553. static unsigned int hex2int(unsigned char c)
  554. {
  555. return isdigit(c) ? c - '0' : toupper(c) - 'A' + 10;
  556. }
  557. /**
  558. * get_vpd_params - read VPD parameters from VPD EEPROM
  559. * @adapter: adapter to read
  560. * @p: where to store the parameters
  561. *
  562. * Reads card parameters stored in VPD EEPROM.
  563. */
  564. static int get_vpd_params(struct adapter *adapter, struct vpd_params *p)
  565. {
  566. int i, addr, ret;
  567. struct t3_vpd vpd;
  568. /*
  569. * Card information is normally at VPD_BASE but some early cards had
  570. * it at 0.
  571. */
  572. ret = t3_seeprom_read(adapter, VPD_BASE, (__le32 *)&vpd);
  573. if (ret)
  574. return ret;
  575. addr = vpd.id_tag == 0x82 ? VPD_BASE : 0;
  576. for (i = 0; i < sizeof(vpd); i += 4) {
  577. ret = t3_seeprom_read(adapter, addr + i,
  578. (__le32 *)((u8 *)&vpd + i));
  579. if (ret)
  580. return ret;
  581. }
  582. p->cclk = simple_strtoul(vpd.cclk_data, NULL, 10);
  583. p->mclk = simple_strtoul(vpd.mclk_data, NULL, 10);
  584. p->uclk = simple_strtoul(vpd.uclk_data, NULL, 10);
  585. p->mdc = simple_strtoul(vpd.mdc_data, NULL, 10);
  586. p->mem_timing = simple_strtoul(vpd.mt_data, NULL, 10);
  587. memcpy(p->sn, vpd.sn_data, SERNUM_LEN);
  588. /* Old eeproms didn't have port information */
  589. if (adapter->params.rev == 0 && !vpd.port0_data[0]) {
  590. p->port_type[0] = uses_xaui(adapter) ? 1 : 2;
  591. p->port_type[1] = uses_xaui(adapter) ? 6 : 2;
  592. } else {
  593. p->port_type[0] = hex2int(vpd.port0_data[0]);
  594. p->port_type[1] = hex2int(vpd.port1_data[0]);
  595. p->xauicfg[0] = simple_strtoul(vpd.xaui0cfg_data, NULL, 16);
  596. p->xauicfg[1] = simple_strtoul(vpd.xaui1cfg_data, NULL, 16);
  597. }
  598. for (i = 0; i < 6; i++)
  599. p->eth_base[i] = hex2int(vpd.na_data[2 * i]) * 16 +
  600. hex2int(vpd.na_data[2 * i + 1]);
  601. return 0;
  602. }
  603. /* serial flash and firmware constants */
  604. enum {
  605. SF_ATTEMPTS = 5, /* max retries for SF1 operations */
  606. SF_SEC_SIZE = 64 * 1024, /* serial flash sector size */
  607. SF_SIZE = SF_SEC_SIZE * 8, /* serial flash size */
  608. /* flash command opcodes */
  609. SF_PROG_PAGE = 2, /* program page */
  610. SF_WR_DISABLE = 4, /* disable writes */
  611. SF_RD_STATUS = 5, /* read status register */
  612. SF_WR_ENABLE = 6, /* enable writes */
  613. SF_RD_DATA_FAST = 0xb, /* read flash */
  614. SF_ERASE_SECTOR = 0xd8, /* erase sector */
  615. FW_FLASH_BOOT_ADDR = 0x70000, /* start address of FW in flash */
  616. FW_VERS_ADDR = 0x77ffc, /* flash address holding FW version */
  617. FW_MIN_SIZE = 8 /* at least version and csum */
  618. };
  619. /**
  620. * sf1_read - read data from the serial flash
  621. * @adapter: the adapter
  622. * @byte_cnt: number of bytes to read
  623. * @cont: whether another operation will be chained
  624. * @valp: where to store the read data
  625. *
  626. * Reads up to 4 bytes of data from the serial flash. The location of
  627. * the read needs to be specified prior to calling this by issuing the
  628. * appropriate commands to the serial flash.
  629. */
  630. static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
  631. u32 *valp)
  632. {
  633. int ret;
  634. if (!byte_cnt || byte_cnt > 4)
  635. return -EINVAL;
  636. if (t3_read_reg(adapter, A_SF_OP) & F_BUSY)
  637. return -EBUSY;
  638. t3_write_reg(adapter, A_SF_OP, V_CONT(cont) | V_BYTECNT(byte_cnt - 1));
  639. ret = t3_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 10);
  640. if (!ret)
  641. *valp = t3_read_reg(adapter, A_SF_DATA);
  642. return ret;
  643. }
  644. /**
  645. * sf1_write - write data to the serial flash
  646. * @adapter: the adapter
  647. * @byte_cnt: number of bytes to write
  648. * @cont: whether another operation will be chained
  649. * @val: value to write
  650. *
  651. * Writes up to 4 bytes of data to the serial flash. The location of
  652. * the write needs to be specified prior to calling this by issuing the
  653. * appropriate commands to the serial flash.
  654. */
  655. static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
  656. u32 val)
  657. {
  658. if (!byte_cnt || byte_cnt > 4)
  659. return -EINVAL;
  660. if (t3_read_reg(adapter, A_SF_OP) & F_BUSY)
  661. return -EBUSY;
  662. t3_write_reg(adapter, A_SF_DATA, val);
  663. t3_write_reg(adapter, A_SF_OP,
  664. V_CONT(cont) | V_BYTECNT(byte_cnt - 1) | V_OP(1));
  665. return t3_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 10);
  666. }
  667. /**
  668. * flash_wait_op - wait for a flash operation to complete
  669. * @adapter: the adapter
  670. * @attempts: max number of polls of the status register
  671. * @delay: delay between polls in ms
  672. *
  673. * Wait for a flash operation to complete by polling the status register.
  674. */
  675. static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
  676. {
  677. int ret;
  678. u32 status;
  679. while (1) {
  680. if ((ret = sf1_write(adapter, 1, 1, SF_RD_STATUS)) != 0 ||
  681. (ret = sf1_read(adapter, 1, 0, &status)) != 0)
  682. return ret;
  683. if (!(status & 1))
  684. return 0;
  685. if (--attempts == 0)
  686. return -EAGAIN;
  687. if (delay)
  688. msleep(delay);
  689. }
  690. }
  691. /**
  692. * t3_read_flash - read words from serial flash
  693. * @adapter: the adapter
  694. * @addr: the start address for the read
  695. * @nwords: how many 32-bit words to read
  696. * @data: where to store the read data
  697. * @byte_oriented: whether to store data as bytes or as words
  698. *
  699. * Read the specified number of 32-bit words from the serial flash.
  700. * If @byte_oriented is set the read data is stored as a byte array
  701. * (i.e., big-endian), otherwise as 32-bit words in the platform's
  702. * natural endianess.
  703. */
  704. int t3_read_flash(struct adapter *adapter, unsigned int addr,
  705. unsigned int nwords, u32 *data, int byte_oriented)
  706. {
  707. int ret;
  708. if (addr + nwords * sizeof(u32) > SF_SIZE || (addr & 3))
  709. return -EINVAL;
  710. addr = swab32(addr) | SF_RD_DATA_FAST;
  711. if ((ret = sf1_write(adapter, 4, 1, addr)) != 0 ||
  712. (ret = sf1_read(adapter, 1, 1, data)) != 0)
  713. return ret;
  714. for (; nwords; nwords--, data++) {
  715. ret = sf1_read(adapter, 4, nwords > 1, data);
  716. if (ret)
  717. return ret;
  718. if (byte_oriented)
  719. *data = htonl(*data);
  720. }
  721. return 0;
  722. }
  723. /**
  724. * t3_write_flash - write up to a page of data to the serial flash
  725. * @adapter: the adapter
  726. * @addr: the start address to write
  727. * @n: length of data to write
  728. * @data: the data to write
  729. *
  730. * Writes up to a page of data (256 bytes) to the serial flash starting
  731. * at the given address.
  732. */
  733. static int t3_write_flash(struct adapter *adapter, unsigned int addr,
  734. unsigned int n, const u8 *data)
  735. {
  736. int ret;
  737. u32 buf[64];
  738. unsigned int i, c, left, val, offset = addr & 0xff;
  739. if (addr + n > SF_SIZE || offset + n > 256)
  740. return -EINVAL;
  741. val = swab32(addr) | SF_PROG_PAGE;
  742. if ((ret = sf1_write(adapter, 1, 0, SF_WR_ENABLE)) != 0 ||
  743. (ret = sf1_write(adapter, 4, 1, val)) != 0)
  744. return ret;
  745. for (left = n; left; left -= c) {
  746. c = min(left, 4U);
  747. for (val = 0, i = 0; i < c; ++i)
  748. val = (val << 8) + *data++;
  749. ret = sf1_write(adapter, c, c != left, val);
  750. if (ret)
  751. return ret;
  752. }
  753. if ((ret = flash_wait_op(adapter, 5, 1)) != 0)
  754. return ret;
  755. /* Read the page to verify the write succeeded */
  756. ret = t3_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, 1);
  757. if (ret)
  758. return ret;
  759. if (memcmp(data - n, (u8 *) buf + offset, n))
  760. return -EIO;
  761. return 0;
  762. }
  763. /**
  764. * t3_get_tp_version - read the tp sram version
  765. * @adapter: the adapter
  766. * @vers: where to place the version
  767. *
  768. * Reads the protocol sram version from sram.
  769. */
  770. int t3_get_tp_version(struct adapter *adapter, u32 *vers)
  771. {
  772. int ret;
  773. /* Get version loaded in SRAM */
  774. t3_write_reg(adapter, A_TP_EMBED_OP_FIELD0, 0);
  775. ret = t3_wait_op_done(adapter, A_TP_EMBED_OP_FIELD0,
  776. 1, 1, 5, 1);
  777. if (ret)
  778. return ret;
  779. *vers = t3_read_reg(adapter, A_TP_EMBED_OP_FIELD1);
  780. return 0;
  781. }
  782. /**
  783. * t3_check_tpsram_version - read the tp sram version
  784. * @adapter: the adapter
  785. * @must_load: set to 1 if loading a new microcode image is required
  786. *
  787. * Reads the protocol sram version from flash.
  788. */
  789. int t3_check_tpsram_version(struct adapter *adapter, int *must_load)
  790. {
  791. int ret;
  792. u32 vers;
  793. unsigned int major, minor;
  794. if (adapter->params.rev == T3_REV_A)
  795. return 0;
  796. *must_load = 1;
  797. ret = t3_get_tp_version(adapter, &vers);
  798. if (ret)
  799. return ret;
  800. major = G_TP_VERSION_MAJOR(vers);
  801. minor = G_TP_VERSION_MINOR(vers);
  802. if (major == TP_VERSION_MAJOR && minor == TP_VERSION_MINOR)
  803. return 0;
  804. if (major != TP_VERSION_MAJOR)
  805. CH_ERR(adapter, "found wrong TP version (%u.%u), "
  806. "driver needs version %d.%d\n", major, minor,
  807. TP_VERSION_MAJOR, TP_VERSION_MINOR);
  808. else {
  809. *must_load = 0;
  810. CH_ERR(adapter, "found wrong TP version (%u.%u), "
  811. "driver compiled for version %d.%d\n", major, minor,
  812. TP_VERSION_MAJOR, TP_VERSION_MINOR);
  813. }
  814. return -EINVAL;
  815. }
  816. /**
  817. * t3_check_tpsram - check if provided protocol SRAM
  818. * is compatible with this driver
  819. * @adapter: the adapter
  820. * @tp_sram: the firmware image to write
  821. * @size: image size
  822. *
  823. * Checks if an adapter's tp sram is compatible with the driver.
  824. * Returns 0 if the versions are compatible, a negative error otherwise.
  825. */
  826. int t3_check_tpsram(struct adapter *adapter, const u8 *tp_sram,
  827. unsigned int size)
  828. {
  829. u32 csum;
  830. unsigned int i;
  831. const __be32 *p = (const __be32 *)tp_sram;
  832. /* Verify checksum */
  833. for (csum = 0, i = 0; i < size / sizeof(csum); i++)
  834. csum += ntohl(p[i]);
  835. if (csum != 0xffffffff) {
  836. CH_ERR(adapter, "corrupted protocol SRAM image, checksum %u\n",
  837. csum);
  838. return -EINVAL;
  839. }
  840. return 0;
  841. }
  842. enum fw_version_type {
  843. FW_VERSION_N3,
  844. FW_VERSION_T3
  845. };
  846. /**
  847. * t3_get_fw_version - read the firmware version
  848. * @adapter: the adapter
  849. * @vers: where to place the version
  850. *
  851. * Reads the FW version from flash.
  852. */
  853. int t3_get_fw_version(struct adapter *adapter, u32 *vers)
  854. {
  855. return t3_read_flash(adapter, FW_VERS_ADDR, 1, vers, 0);
  856. }
  857. /**
  858. * t3_check_fw_version - check if the FW is compatible with this driver
  859. * @adapter: the adapter
  860. * @must_load: set to 1 if loading a new FW image is required
  861. * Checks if an adapter's FW is compatible with the driver. Returns 0
  862. * if the versions are compatible, a negative error otherwise.
  863. */
  864. int t3_check_fw_version(struct adapter *adapter, int *must_load)
  865. {
  866. int ret;
  867. u32 vers;
  868. unsigned int type, major, minor;
  869. *must_load = 1;
  870. ret = t3_get_fw_version(adapter, &vers);
  871. if (ret)
  872. return ret;
  873. type = G_FW_VERSION_TYPE(vers);
  874. major = G_FW_VERSION_MAJOR(vers);
  875. minor = G_FW_VERSION_MINOR(vers);
  876. if (type == FW_VERSION_T3 && major == FW_VERSION_MAJOR &&
  877. minor == FW_VERSION_MINOR)
  878. return 0;
  879. if (major != FW_VERSION_MAJOR)
  880. CH_ERR(adapter, "found wrong FW version(%u.%u), "
  881. "driver needs version %u.%u\n", major, minor,
  882. FW_VERSION_MAJOR, FW_VERSION_MINOR);
  883. else if (minor < FW_VERSION_MINOR) {
  884. *must_load = 0;
  885. CH_WARN(adapter, "found old FW minor version(%u.%u), "
  886. "driver compiled for version %u.%u\n", major, minor,
  887. FW_VERSION_MAJOR, FW_VERSION_MINOR);
  888. } else {
  889. CH_WARN(adapter, "found newer FW version(%u.%u), "
  890. "driver compiled for version %u.%u\n", major, minor,
  891. FW_VERSION_MAJOR, FW_VERSION_MINOR);
  892. return 0;
  893. }
  894. return -EINVAL;
  895. }
  896. /**
  897. * t3_flash_erase_sectors - erase a range of flash sectors
  898. * @adapter: the adapter
  899. * @start: the first sector to erase
  900. * @end: the last sector to erase
  901. *
  902. * Erases the sectors in the given range.
  903. */
  904. static int t3_flash_erase_sectors(struct adapter *adapter, int start, int end)
  905. {
  906. while (start <= end) {
  907. int ret;
  908. if ((ret = sf1_write(adapter, 1, 0, SF_WR_ENABLE)) != 0 ||
  909. (ret = sf1_write(adapter, 4, 0,
  910. SF_ERASE_SECTOR | (start << 8))) != 0 ||
  911. (ret = flash_wait_op(adapter, 5, 500)) != 0)
  912. return ret;
  913. start++;
  914. }
  915. return 0;
  916. }
  917. /*
  918. * t3_load_fw - download firmware
  919. * @adapter: the adapter
  920. * @fw_data: the firmware image to write
  921. * @size: image size
  922. *
  923. * Write the supplied firmware image to the card's serial flash.
  924. * The FW image has the following sections: @size - 8 bytes of code and
  925. * data, followed by 4 bytes of FW version, followed by the 32-bit
  926. * 1's complement checksum of the whole image.
  927. */
  928. int t3_load_fw(struct adapter *adapter, const u8 *fw_data, unsigned int size)
  929. {
  930. u32 csum;
  931. unsigned int i;
  932. const __be32 *p = (const __be32 *)fw_data;
  933. int ret, addr, fw_sector = FW_FLASH_BOOT_ADDR >> 16;
  934. if ((size & 3) || size < FW_MIN_SIZE)
  935. return -EINVAL;
  936. if (size > FW_VERS_ADDR + 8 - FW_FLASH_BOOT_ADDR)
  937. return -EFBIG;
  938. for (csum = 0, i = 0; i < size / sizeof(csum); i++)
  939. csum += ntohl(p[i]);
  940. if (csum != 0xffffffff) {
  941. CH_ERR(adapter, "corrupted firmware image, checksum %u\n",
  942. csum);
  943. return -EINVAL;
  944. }
  945. ret = t3_flash_erase_sectors(adapter, fw_sector, fw_sector);
  946. if (ret)
  947. goto out;
  948. size -= 8; /* trim off version and checksum */
  949. for (addr = FW_FLASH_BOOT_ADDR; size;) {
  950. unsigned int chunk_size = min(size, 256U);
  951. ret = t3_write_flash(adapter, addr, chunk_size, fw_data);
  952. if (ret)
  953. goto out;
  954. addr += chunk_size;
  955. fw_data += chunk_size;
  956. size -= chunk_size;
  957. }
  958. ret = t3_write_flash(adapter, FW_VERS_ADDR, 4, fw_data);
  959. out:
  960. if (ret)
  961. CH_ERR(adapter, "firmware download failed, error %d\n", ret);
  962. return ret;
  963. }
  964. #define CIM_CTL_BASE 0x2000
  965. /**
  966. * t3_cim_ctl_blk_read - read a block from CIM control region
  967. *
  968. * @adap: the adapter
  969. * @addr: the start address within the CIM control region
  970. * @n: number of words to read
  971. * @valp: where to store the result
  972. *
  973. * Reads a block of 4-byte words from the CIM control region.
  974. */
  975. int t3_cim_ctl_blk_read(struct adapter *adap, unsigned int addr,
  976. unsigned int n, unsigned int *valp)
  977. {
  978. int ret = 0;
  979. if (t3_read_reg(adap, A_CIM_HOST_ACC_CTRL) & F_HOSTBUSY)
  980. return -EBUSY;
  981. for ( ; !ret && n--; addr += 4) {
  982. t3_write_reg(adap, A_CIM_HOST_ACC_CTRL, CIM_CTL_BASE + addr);
  983. ret = t3_wait_op_done(adap, A_CIM_HOST_ACC_CTRL, F_HOSTBUSY,
  984. 0, 5, 2);
  985. if (!ret)
  986. *valp++ = t3_read_reg(adap, A_CIM_HOST_ACC_DATA);
  987. }
  988. return ret;
  989. }
  990. /**
  991. * t3_link_changed - handle interface link changes
  992. * @adapter: the adapter
  993. * @port_id: the port index that changed link state
  994. *
  995. * Called when a port's link settings change to propagate the new values
  996. * to the associated PHY and MAC. After performing the common tasks it
  997. * invokes an OS-specific handler.
  998. */
  999. void t3_link_changed(struct adapter *adapter, int port_id)
  1000. {
  1001. int link_ok, speed, duplex, fc;
  1002. struct port_info *pi = adap2pinfo(adapter, port_id);
  1003. struct cphy *phy = &pi->phy;
  1004. struct cmac *mac = &pi->mac;
  1005. struct link_config *lc = &pi->link_config;
  1006. phy->ops->get_link_status(phy, &link_ok, &speed, &duplex, &fc);
  1007. if (link_ok != lc->link_ok && adapter->params.rev > 0 &&
  1008. uses_xaui(adapter)) {
  1009. if (link_ok)
  1010. t3b_pcs_reset(mac);
  1011. t3_write_reg(adapter, A_XGM_XAUI_ACT_CTRL + mac->offset,
  1012. link_ok ? F_TXACTENABLE | F_RXEN : 0);
  1013. }
  1014. lc->link_ok = link_ok;
  1015. lc->speed = speed < 0 ? SPEED_INVALID : speed;
  1016. lc->duplex = duplex < 0 ? DUPLEX_INVALID : duplex;
  1017. if (lc->requested_fc & PAUSE_AUTONEG)
  1018. fc &= lc->requested_fc;
  1019. else
  1020. fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
  1021. if (link_ok && speed >= 0 && lc->autoneg == AUTONEG_ENABLE) {
  1022. /* Set MAC speed, duplex, and flow control to match PHY. */
  1023. t3_mac_set_speed_duplex_fc(mac, speed, duplex, fc);
  1024. lc->fc = fc;
  1025. }
  1026. t3_os_link_changed(adapter, port_id, link_ok, speed, duplex, fc);
  1027. }
  1028. /**
  1029. * t3_link_start - apply link configuration to MAC/PHY
  1030. * @phy: the PHY to setup
  1031. * @mac: the MAC to setup
  1032. * @lc: the requested link configuration
  1033. *
  1034. * Set up a port's MAC and PHY according to a desired link configuration.
  1035. * - If the PHY can auto-negotiate first decide what to advertise, then
  1036. * enable/disable auto-negotiation as desired, and reset.
  1037. * - If the PHY does not auto-negotiate just reset it.
  1038. * - If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
  1039. * otherwise do it later based on the outcome of auto-negotiation.
  1040. */
  1041. int t3_link_start(struct cphy *phy, struct cmac *mac, struct link_config *lc)
  1042. {
  1043. unsigned int fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
  1044. lc->link_ok = 0;
  1045. if (lc->supported & SUPPORTED_Autoneg) {
  1046. lc->advertising &= ~(ADVERTISED_Asym_Pause | ADVERTISED_Pause);
  1047. if (fc) {
  1048. lc->advertising |= ADVERTISED_Asym_Pause;
  1049. if (fc & PAUSE_RX)
  1050. lc->advertising |= ADVERTISED_Pause;
  1051. }
  1052. phy->ops->advertise(phy, lc->advertising);
  1053. if (lc->autoneg == AUTONEG_DISABLE) {
  1054. lc->speed = lc->requested_speed;
  1055. lc->duplex = lc->requested_duplex;
  1056. lc->fc = (unsigned char)fc;
  1057. t3_mac_set_speed_duplex_fc(mac, lc->speed, lc->duplex,
  1058. fc);
  1059. /* Also disables autoneg */
  1060. phy->ops->set_speed_duplex(phy, lc->speed, lc->duplex);
  1061. phy->ops->reset(phy, 0);
  1062. } else
  1063. phy->ops->autoneg_enable(phy);
  1064. } else {
  1065. t3_mac_set_speed_duplex_fc(mac, -1, -1, fc);
  1066. lc->fc = (unsigned char)fc;
  1067. phy->ops->reset(phy, 0);
  1068. }
  1069. return 0;
  1070. }
  1071. /**
  1072. * t3_set_vlan_accel - control HW VLAN extraction
  1073. * @adapter: the adapter
  1074. * @ports: bitmap of adapter ports to operate on
  1075. * @on: enable (1) or disable (0) HW VLAN extraction
  1076. *
  1077. * Enables or disables HW extraction of VLAN tags for the given port.
  1078. */
  1079. void t3_set_vlan_accel(struct adapter *adapter, unsigned int ports, int on)
  1080. {
  1081. t3_set_reg_field(adapter, A_TP_OUT_CONFIG,
  1082. ports << S_VLANEXTRACTIONENABLE,
  1083. on ? (ports << S_VLANEXTRACTIONENABLE) : 0);
  1084. }
  1085. struct intr_info {
  1086. unsigned int mask; /* bits to check in interrupt status */
  1087. const char *msg; /* message to print or NULL */
  1088. short stat_idx; /* stat counter to increment or -1 */
  1089. unsigned short fatal:1; /* whether the condition reported is fatal */
  1090. };
  1091. /**
  1092. * t3_handle_intr_status - table driven interrupt handler
  1093. * @adapter: the adapter that generated the interrupt
  1094. * @reg: the interrupt status register to process
  1095. * @mask: a mask to apply to the interrupt status
  1096. * @acts: table of interrupt actions
  1097. * @stats: statistics counters tracking interrupt occurences
  1098. *
  1099. * A table driven interrupt handler that applies a set of masks to an
  1100. * interrupt status word and performs the corresponding actions if the
  1101. * interrupts described by the mask have occured. The actions include
  1102. * optionally printing a warning or alert message, and optionally
  1103. * incrementing a stat counter. The table is terminated by an entry
  1104. * specifying mask 0. Returns the number of fatal interrupt conditions.
  1105. */
  1106. static int t3_handle_intr_status(struct adapter *adapter, unsigned int reg,
  1107. unsigned int mask,
  1108. const struct intr_info *acts,
  1109. unsigned long *stats)
  1110. {
  1111. int fatal = 0;
  1112. unsigned int status = t3_read_reg(adapter, reg) & mask;
  1113. for (; acts->mask; ++acts) {
  1114. if (!(status & acts->mask))
  1115. continue;
  1116. if (acts->fatal) {
  1117. fatal++;
  1118. CH_ALERT(adapter, "%s (0x%x)\n",
  1119. acts->msg, status & acts->mask);
  1120. } else if (acts->msg)
  1121. CH_WARN(adapter, "%s (0x%x)\n",
  1122. acts->msg, status & acts->mask);
  1123. if (acts->stat_idx >= 0)
  1124. stats[acts->stat_idx]++;
  1125. }
  1126. if (status) /* clear processed interrupts */
  1127. t3_write_reg(adapter, reg, status);
  1128. return fatal;
  1129. }
  1130. #define SGE_INTR_MASK (F_RSPQDISABLED | \
  1131. F_UC_REQ_FRAMINGERROR | F_R_REQ_FRAMINGERROR | \
  1132. F_CPPARITYERROR | F_OCPARITYERROR | F_RCPARITYERROR | \
  1133. F_IRPARITYERROR | V_ITPARITYERROR(M_ITPARITYERROR) | \
  1134. V_FLPARITYERROR(M_FLPARITYERROR) | F_LODRBPARITYERROR | \
  1135. F_HIDRBPARITYERROR | F_LORCQPARITYERROR | \
  1136. F_HIRCQPARITYERROR)
  1137. #define MC5_INTR_MASK (F_PARITYERR | F_ACTRGNFULL | F_UNKNOWNCMD | \
  1138. F_REQQPARERR | F_DISPQPARERR | F_DELACTEMPTY | \
  1139. F_NFASRCHFAIL)
  1140. #define MC7_INTR_MASK (F_AE | F_UE | F_CE | V_PE(M_PE))
  1141. #define XGM_INTR_MASK (V_TXFIFO_PRTY_ERR(M_TXFIFO_PRTY_ERR) | \
  1142. V_RXFIFO_PRTY_ERR(M_RXFIFO_PRTY_ERR) | \
  1143. F_TXFIFO_UNDERRUN | F_RXFIFO_OVERFLOW)
  1144. #define PCIX_INTR_MASK (F_MSTDETPARERR | F_SIGTARABT | F_RCVTARABT | \
  1145. F_RCVMSTABT | F_SIGSYSERR | F_DETPARERR | \
  1146. F_SPLCMPDIS | F_UNXSPLCMP | F_RCVSPLCMPERR | \
  1147. F_DETCORECCERR | F_DETUNCECCERR | F_PIOPARERR | \
  1148. V_WFPARERR(M_WFPARERR) | V_RFPARERR(M_RFPARERR) | \
  1149. V_CFPARERR(M_CFPARERR) /* | V_MSIXPARERR(M_MSIXPARERR) */)
  1150. #define PCIE_INTR_MASK (F_UNXSPLCPLERRR | F_UNXSPLCPLERRC | F_PCIE_PIOPARERR |\
  1151. F_PCIE_WFPARERR | F_PCIE_RFPARERR | F_PCIE_CFPARERR | \
  1152. /* V_PCIE_MSIXPARERR(M_PCIE_MSIXPARERR) | */ \
  1153. F_RETRYBUFPARERR | F_RETRYLUTPARERR | F_RXPARERR | \
  1154. F_TXPARERR | V_BISTERR(M_BISTERR))
  1155. #define ULPRX_INTR_MASK (F_PARERRDATA | F_PARERRPCMD | F_ARBPF1PERR | \
  1156. F_ARBPF0PERR | F_ARBFPERR | F_PCMDMUXPERR | \
  1157. F_DATASELFRAMEERR1 | F_DATASELFRAMEERR0)
  1158. #define ULPTX_INTR_MASK 0xfc
  1159. #define CPLSW_INTR_MASK (F_CIM_OP_MAP_PERR | F_TP_FRAMING_ERROR | \
  1160. F_SGE_FRAMING_ERROR | F_CIM_FRAMING_ERROR | \
  1161. F_ZERO_SWITCH_ERROR)
  1162. #define CIM_INTR_MASK (F_BLKWRPLINT | F_BLKRDPLINT | F_BLKWRCTLINT | \
  1163. F_BLKRDCTLINT | F_BLKWRFLASHINT | F_BLKRDFLASHINT | \
  1164. F_SGLWRFLASHINT | F_WRBLKFLASHINT | F_BLKWRBOOTINT | \
  1165. F_FLASHRANGEINT | F_SDRAMRANGEINT | F_RSVDSPACEINT | \
  1166. F_DRAMPARERR | F_ICACHEPARERR | F_DCACHEPARERR | \
  1167. F_OBQSGEPARERR | F_OBQULPHIPARERR | F_OBQULPLOPARERR | \
  1168. F_IBQSGELOPARERR | F_IBQSGEHIPARERR | F_IBQULPPARERR | \
  1169. F_IBQTPPARERR | F_ITAGPARERR | F_DTAGPARERR)
  1170. #define PMTX_INTR_MASK (F_ZERO_C_CMD_ERROR | ICSPI_FRM_ERR | OESPI_FRM_ERR | \
  1171. V_ICSPI_PAR_ERROR(M_ICSPI_PAR_ERROR) | \
  1172. V_OESPI_PAR_ERROR(M_OESPI_PAR_ERROR))
  1173. #define PMRX_INTR_MASK (F_ZERO_E_CMD_ERROR | IESPI_FRM_ERR | OCSPI_FRM_ERR | \
  1174. V_IESPI_PAR_ERROR(M_IESPI_PAR_ERROR) | \
  1175. V_OCSPI_PAR_ERROR(M_OCSPI_PAR_ERROR))
  1176. #define MPS_INTR_MASK (V_TX0TPPARERRENB(M_TX0TPPARERRENB) | \
  1177. V_TX1TPPARERRENB(M_TX1TPPARERRENB) | \
  1178. V_RXTPPARERRENB(M_RXTPPARERRENB) | \
  1179. V_MCAPARERRENB(M_MCAPARERRENB))
  1180. #define PL_INTR_MASK (F_T3DBG | F_XGMAC0_0 | F_XGMAC0_1 | F_MC5A | F_PM1_TX | \
  1181. F_PM1_RX | F_ULP2_TX | F_ULP2_RX | F_TP1 | F_CIM | \
  1182. F_MC7_CM | F_MC7_PMTX | F_MC7_PMRX | F_SGE3 | F_PCIM0 | \
  1183. F_MPS0 | F_CPL_SWITCH)
  1184. /*
  1185. * Interrupt handler for the PCIX1 module.
  1186. */
  1187. static void pci_intr_handler(struct adapter *adapter)
  1188. {
  1189. static const struct intr_info pcix1_intr_info[] = {
  1190. {F_MSTDETPARERR, "PCI master detected parity error", -1, 1},
  1191. {F_SIGTARABT, "PCI signaled target abort", -1, 1},
  1192. {F_RCVTARABT, "PCI received target abort", -1, 1},
  1193. {F_RCVMSTABT, "PCI received master abort", -1, 1},
  1194. {F_SIGSYSERR, "PCI signaled system error", -1, 1},
  1195. {F_DETPARERR, "PCI detected parity error", -1, 1},
  1196. {F_SPLCMPDIS, "PCI split completion discarded", -1, 1},
  1197. {F_UNXSPLCMP, "PCI unexpected split completion error", -1, 1},
  1198. {F_RCVSPLCMPERR, "PCI received split completion error", -1,
  1199. 1},
  1200. {F_DETCORECCERR, "PCI correctable ECC error",
  1201. STAT_PCI_CORR_ECC, 0},
  1202. {F_DETUNCECCERR, "PCI uncorrectable ECC error", -1, 1},
  1203. {F_PIOPARERR, "PCI PIO FIFO parity error", -1, 1},
  1204. {V_WFPARERR(M_WFPARERR), "PCI write FIFO parity error", -1,
  1205. 1},
  1206. {V_RFPARERR(M_RFPARERR), "PCI read FIFO parity error", -1,
  1207. 1},
  1208. {V_CFPARERR(M_CFPARERR), "PCI command FIFO parity error", -1,
  1209. 1},
  1210. {V_MSIXPARERR(M_MSIXPARERR), "PCI MSI-X table/PBA parity "
  1211. "error", -1, 1},
  1212. {0}
  1213. };
  1214. if (t3_handle_intr_status(adapter, A_PCIX_INT_CAUSE, PCIX_INTR_MASK,
  1215. pcix1_intr_info, adapter->irq_stats))
  1216. t3_fatal_err(adapter);
  1217. }
  1218. /*
  1219. * Interrupt handler for the PCIE module.
  1220. */
  1221. static void pcie_intr_handler(struct adapter *adapter)
  1222. {
  1223. static const struct intr_info pcie_intr_info[] = {
  1224. {F_PEXERR, "PCI PEX error", -1, 1},
  1225. {F_UNXSPLCPLERRR,
  1226. "PCI unexpected split completion DMA read error", -1, 1},
  1227. {F_UNXSPLCPLERRC,
  1228. "PCI unexpected split completion DMA command error", -1, 1},
  1229. {F_PCIE_PIOPARERR, "PCI PIO FIFO parity error", -1, 1},
  1230. {F_PCIE_WFPARERR, "PCI write FIFO parity error", -1, 1},
  1231. {F_PCIE_RFPARERR, "PCI read FIFO parity error", -1, 1},
  1232. {F_PCIE_CFPARERR, "PCI command FIFO parity error", -1, 1},
  1233. {V_PCIE_MSIXPARERR(M_PCIE_MSIXPARERR),
  1234. "PCI MSI-X table/PBA parity error", -1, 1},
  1235. {F_RETRYBUFPARERR, "PCI retry buffer parity error", -1, 1},
  1236. {F_RETRYLUTPARERR, "PCI retry LUT parity error", -1, 1},
  1237. {F_RXPARERR, "PCI Rx parity error", -1, 1},
  1238. {F_TXPARERR, "PCI Tx parity error", -1, 1},
  1239. {V_BISTERR(M_BISTERR), "PCI BIST error", -1, 1},
  1240. {0}
  1241. };
  1242. if (t3_read_reg(adapter, A_PCIE_INT_CAUSE) & F_PEXERR)
  1243. CH_ALERT(adapter, "PEX error code 0x%x\n",
  1244. t3_read_reg(adapter, A_PCIE_PEX_ERR));
  1245. if (t3_handle_intr_status(adapter, A_PCIE_INT_CAUSE, PCIE_INTR_MASK,
  1246. pcie_intr_info, adapter->irq_stats))
  1247. t3_fatal_err(adapter);
  1248. }
  1249. /*
  1250. * TP interrupt handler.
  1251. */
  1252. static void tp_intr_handler(struct adapter *adapter)
  1253. {
  1254. static const struct intr_info tp_intr_info[] = {
  1255. {0xffffff, "TP parity error", -1, 1},
  1256. {0x1000000, "TP out of Rx pages", -1, 1},
  1257. {0x2000000, "TP out of Tx pages", -1, 1},
  1258. {0}
  1259. };
  1260. static struct intr_info tp_intr_info_t3c[] = {
  1261. {0x1fffffff, "TP parity error", -1, 1},
  1262. {F_FLMRXFLSTEMPTY, "TP out of Rx pages", -1, 1},
  1263. {F_FLMTXFLSTEMPTY, "TP out of Tx pages", -1, 1},
  1264. {0}
  1265. };
  1266. if (t3_handle_intr_status(adapter, A_TP_INT_CAUSE, 0xffffffff,
  1267. adapter->params.rev < T3_REV_C ?
  1268. tp_intr_info : tp_intr_info_t3c, NULL))
  1269. t3_fatal_err(adapter);
  1270. }
  1271. /*
  1272. * CIM interrupt handler.
  1273. */
  1274. static void cim_intr_handler(struct adapter *adapter)
  1275. {
  1276. static const struct intr_info cim_intr_info[] = {
  1277. {F_RSVDSPACEINT, "CIM reserved space write", -1, 1},
  1278. {F_SDRAMRANGEINT, "CIM SDRAM address out of range", -1, 1},
  1279. {F_FLASHRANGEINT, "CIM flash address out of range", -1, 1},
  1280. {F_BLKWRBOOTINT, "CIM block write to boot space", -1, 1},
  1281. {F_WRBLKFLASHINT, "CIM write to cached flash space", -1, 1},
  1282. {F_SGLWRFLASHINT, "CIM single write to flash space", -1, 1},
  1283. {F_BLKRDFLASHINT, "CIM block read from flash space", -1, 1},
  1284. {F_BLKWRFLASHINT, "CIM block write to flash space", -1, 1},
  1285. {F_BLKRDCTLINT, "CIM block read from CTL space", -1, 1},
  1286. {F_BLKWRCTLINT, "CIM block write to CTL space", -1, 1},
  1287. {F_BLKRDPLINT, "CIM block read from PL space", -1, 1},
  1288. {F_BLKWRPLINT, "CIM block write to PL space", -1, 1},
  1289. {F_DRAMPARERR, "CIM DRAM parity error", -1, 1},
  1290. {F_ICACHEPARERR, "CIM icache parity error", -1, 1},
  1291. {F_DCACHEPARERR, "CIM dcache parity error", -1, 1},
  1292. {F_OBQSGEPARERR, "CIM OBQ SGE parity error", -1, 1},
  1293. {F_OBQULPHIPARERR, "CIM OBQ ULPHI parity error", -1, 1},
  1294. {F_OBQULPLOPARERR, "CIM OBQ ULPLO parity error", -1, 1},
  1295. {F_IBQSGELOPARERR, "CIM IBQ SGELO parity error", -1, 1},
  1296. {F_IBQSGEHIPARERR, "CIM IBQ SGEHI parity error", -1, 1},
  1297. {F_IBQULPPARERR, "CIM IBQ ULP parity error", -1, 1},
  1298. {F_IBQTPPARERR, "CIM IBQ TP parity error", -1, 1},
  1299. {F_ITAGPARERR, "CIM itag parity error", -1, 1},
  1300. {F_DTAGPARERR, "CIM dtag parity error", -1, 1},
  1301. {0}
  1302. };
  1303. if (t3_handle_intr_status(adapter, A_CIM_HOST_INT_CAUSE, 0xffffffff,
  1304. cim_intr_info, NULL))
  1305. t3_fatal_err(adapter);
  1306. }
  1307. /*
  1308. * ULP RX interrupt handler.
  1309. */
  1310. static void ulprx_intr_handler(struct adapter *adapter)
  1311. {
  1312. static const struct intr_info ulprx_intr_info[] = {
  1313. {F_PARERRDATA, "ULP RX data parity error", -1, 1},
  1314. {F_PARERRPCMD, "ULP RX command parity error", -1, 1},
  1315. {F_ARBPF1PERR, "ULP RX ArbPF1 parity error", -1, 1},
  1316. {F_ARBPF0PERR, "ULP RX ArbPF0 parity error", -1, 1},
  1317. {F_ARBFPERR, "ULP RX ArbF parity error", -1, 1},
  1318. {F_PCMDMUXPERR, "ULP RX PCMDMUX parity error", -1, 1},
  1319. {F_DATASELFRAMEERR1, "ULP RX frame error", -1, 1},
  1320. {F_DATASELFRAMEERR0, "ULP RX frame error", -1, 1},
  1321. {0}
  1322. };
  1323. if (t3_handle_intr_status(adapter, A_ULPRX_INT_CAUSE, 0xffffffff,
  1324. ulprx_intr_info, NULL))
  1325. t3_fatal_err(adapter);
  1326. }
  1327. /*
  1328. * ULP TX interrupt handler.
  1329. */
  1330. static void ulptx_intr_handler(struct adapter *adapter)
  1331. {
  1332. static const struct intr_info ulptx_intr_info[] = {
  1333. {F_PBL_BOUND_ERR_CH0, "ULP TX channel 0 PBL out of bounds",
  1334. STAT_ULP_CH0_PBL_OOB, 0},
  1335. {F_PBL_BOUND_ERR_CH1, "ULP TX channel 1 PBL out of bounds",
  1336. STAT_ULP_CH1_PBL_OOB, 0},
  1337. {0xfc, "ULP TX parity error", -1, 1},
  1338. {0}
  1339. };
  1340. if (t3_handle_intr_status(adapter, A_ULPTX_INT_CAUSE, 0xffffffff,
  1341. ulptx_intr_info, adapter->irq_stats))
  1342. t3_fatal_err(adapter);
  1343. }
  1344. #define ICSPI_FRM_ERR (F_ICSPI0_FIFO2X_RX_FRAMING_ERROR | \
  1345. F_ICSPI1_FIFO2X_RX_FRAMING_ERROR | F_ICSPI0_RX_FRAMING_ERROR | \
  1346. F_ICSPI1_RX_FRAMING_ERROR | F_ICSPI0_TX_FRAMING_ERROR | \
  1347. F_ICSPI1_TX_FRAMING_ERROR)
  1348. #define OESPI_FRM_ERR (F_OESPI0_RX_FRAMING_ERROR | \
  1349. F_OESPI1_RX_FRAMING_ERROR | F_OESPI0_TX_FRAMING_ERROR | \
  1350. F_OESPI1_TX_FRAMING_ERROR | F_OESPI0_OFIFO2X_TX_FRAMING_ERROR | \
  1351. F_OESPI1_OFIFO2X_TX_FRAMING_ERROR)
  1352. /*
  1353. * PM TX interrupt handler.
  1354. */
  1355. static void pmtx_intr_handler(struct adapter *adapter)
  1356. {
  1357. static const struct intr_info pmtx_intr_info[] = {
  1358. {F_ZERO_C_CMD_ERROR, "PMTX 0-length pcmd", -1, 1},
  1359. {ICSPI_FRM_ERR, "PMTX ispi framing error", -1, 1},
  1360. {OESPI_FRM_ERR, "PMTX ospi framing error", -1, 1},
  1361. {V_ICSPI_PAR_ERROR(M_ICSPI_PAR_ERROR),
  1362. "PMTX ispi parity error", -1, 1},
  1363. {V_OESPI_PAR_ERROR(M_OESPI_PAR_ERROR),
  1364. "PMTX ospi parity error", -1, 1},
  1365. {0}
  1366. };
  1367. if (t3_handle_intr_status(adapter, A_PM1_TX_INT_CAUSE, 0xffffffff,
  1368. pmtx_intr_info, NULL))
  1369. t3_fatal_err(adapter);
  1370. }
  1371. #define IESPI_FRM_ERR (F_IESPI0_FIFO2X_RX_FRAMING_ERROR | \
  1372. F_IESPI1_FIFO2X_RX_FRAMING_ERROR | F_IESPI0_RX_FRAMING_ERROR | \
  1373. F_IESPI1_RX_FRAMING_ERROR | F_IESPI0_TX_FRAMING_ERROR | \
  1374. F_IESPI1_TX_FRAMING_ERROR)
  1375. #define OCSPI_FRM_ERR (F_OCSPI0_RX_FRAMING_ERROR | \
  1376. F_OCSPI1_RX_FRAMING_ERROR | F_OCSPI0_TX_FRAMING_ERROR | \
  1377. F_OCSPI1_TX_FRAMING_ERROR | F_OCSPI0_OFIFO2X_TX_FRAMING_ERROR | \
  1378. F_OCSPI1_OFIFO2X_TX_FRAMING_ERROR)
  1379. /*
  1380. * PM RX interrupt handler.
  1381. */
  1382. static void pmrx_intr_handler(struct adapter *adapter)
  1383. {
  1384. static const struct intr_info pmrx_intr_info[] = {
  1385. {F_ZERO_E_CMD_ERROR, "PMRX 0-length pcmd", -1, 1},
  1386. {IESPI_FRM_ERR, "PMRX ispi framing error", -1, 1},
  1387. {OCSPI_FRM_ERR, "PMRX ospi framing error", -1, 1},
  1388. {V_IESPI_PAR_ERROR(M_IESPI_PAR_ERROR),
  1389. "PMRX ispi parity error", -1, 1},
  1390. {V_OCSPI_PAR_ERROR(M_OCSPI_PAR_ERROR),
  1391. "PMRX ospi parity error", -1, 1},
  1392. {0}
  1393. };
  1394. if (t3_handle_intr_status(adapter, A_PM1_RX_INT_CAUSE, 0xffffffff,
  1395. pmrx_intr_info, NULL))
  1396. t3_fatal_err(adapter);
  1397. }
  1398. /*
  1399. * CPL switch interrupt handler.
  1400. */
  1401. static void cplsw_intr_handler(struct adapter *adapter)
  1402. {
  1403. static const struct intr_info cplsw_intr_info[] = {
  1404. {F_CIM_OP_MAP_PERR, "CPL switch CIM parity error", -1, 1},
  1405. {F_CIM_OVFL_ERROR, "CPL switch CIM overflow", -1, 1},
  1406. {F_TP_FRAMING_ERROR, "CPL switch TP framing error", -1, 1},
  1407. {F_SGE_FRAMING_ERROR, "CPL switch SGE framing error", -1, 1},
  1408. {F_CIM_FRAMING_ERROR, "CPL switch CIM framing error", -1, 1},
  1409. {F_ZERO_SWITCH_ERROR, "CPL switch no-switch error", -1, 1},
  1410. {0}
  1411. };
  1412. if (t3_handle_intr_status(adapter, A_CPL_INTR_CAUSE, 0xffffffff,
  1413. cplsw_intr_info, NULL))
  1414. t3_fatal_err(adapter);
  1415. }
  1416. /*
  1417. * MPS interrupt handler.
  1418. */
  1419. static void mps_intr_handler(struct adapter *adapter)
  1420. {
  1421. static const struct intr_info mps_intr_info[] = {
  1422. {0x1ff, "MPS parity error", -1, 1},
  1423. {0}
  1424. };
  1425. if (t3_handle_intr_status(adapter, A_MPS_INT_CAUSE, 0xffffffff,
  1426. mps_intr_info, NULL))
  1427. t3_fatal_err(adapter);
  1428. }
  1429. #define MC7_INTR_FATAL (F_UE | V_PE(M_PE) | F_AE)
  1430. /*
  1431. * MC7 interrupt handler.
  1432. */
  1433. static void mc7_intr_handler(struct mc7 *mc7)
  1434. {
  1435. struct adapter *adapter = mc7->adapter;
  1436. u32 cause = t3_read_reg(adapter, mc7->offset + A_MC7_INT_CAUSE);
  1437. if (cause & F_CE) {
  1438. mc7->stats.corr_err++;
  1439. CH_WARN(adapter, "%s MC7 correctable error at addr 0x%x, "
  1440. "data 0x%x 0x%x 0x%x\n", mc7->name,
  1441. t3_read_reg(adapter, mc7->offset + A_MC7_CE_ADDR),
  1442. t3_read_reg(adapter, mc7->offset + A_MC7_CE_DATA0),
  1443. t3_read_reg(adapter, mc7->offset + A_MC7_CE_DATA1),
  1444. t3_read_reg(adapter, mc7->offset + A_MC7_CE_DATA2));
  1445. }
  1446. if (cause & F_UE) {
  1447. mc7->stats.uncorr_err++;
  1448. CH_ALERT(adapter, "%s MC7 uncorrectable error at addr 0x%x, "
  1449. "data 0x%x 0x%x 0x%x\n", mc7->name,
  1450. t3_read_reg(adapter, mc7->offset + A_MC7_UE_ADDR),
  1451. t3_read_reg(adapter, mc7->offset + A_MC7_UE_DATA0),
  1452. t3_read_reg(adapter, mc7->offset + A_MC7_UE_DATA1),
  1453. t3_read_reg(adapter, mc7->offset + A_MC7_UE_DATA2));
  1454. }
  1455. if (G_PE(cause)) {
  1456. mc7->stats.parity_err++;
  1457. CH_ALERT(adapter, "%s MC7 parity error 0x%x\n",
  1458. mc7->name, G_PE(cause));
  1459. }
  1460. if (cause & F_AE) {
  1461. u32 addr = 0;
  1462. if (adapter->params.rev > 0)
  1463. addr = t3_read_reg(adapter,
  1464. mc7->offset + A_MC7_ERR_ADDR);
  1465. mc7->stats.addr_err++;
  1466. CH_ALERT(adapter, "%s MC7 address error: 0x%x\n",
  1467. mc7->name, addr);
  1468. }
  1469. if (cause & MC7_INTR_FATAL)
  1470. t3_fatal_err(adapter);
  1471. t3_write_reg(adapter, mc7->offset + A_MC7_INT_CAUSE, cause);
  1472. }
  1473. #define XGM_INTR_FATAL (V_TXFIFO_PRTY_ERR(M_TXFIFO_PRTY_ERR) | \
  1474. V_RXFIFO_PRTY_ERR(M_RXFIFO_PRTY_ERR))
  1475. /*
  1476. * XGMAC interrupt handler.
  1477. */
  1478. static int mac_intr_handler(struct adapter *adap, unsigned int idx)
  1479. {
  1480. struct cmac *mac = &adap2pinfo(adap, idx)->mac;
  1481. u32 cause = t3_read_reg(adap, A_XGM_INT_CAUSE + mac->offset);
  1482. if (cause & V_TXFIFO_PRTY_ERR(M_TXFIFO_PRTY_ERR)) {
  1483. mac->stats.tx_fifo_parity_err++;
  1484. CH_ALERT(adap, "port%d: MAC TX FIFO parity error\n", idx);
  1485. }
  1486. if (cause & V_RXFIFO_PRTY_ERR(M_RXFIFO_PRTY_ERR)) {
  1487. mac->stats.rx_fifo_parity_err++;
  1488. CH_ALERT(adap, "port%d: MAC RX FIFO parity error\n", idx);
  1489. }
  1490. if (cause & F_TXFIFO_UNDERRUN)
  1491. mac->stats.tx_fifo_urun++;
  1492. if (cause & F_RXFIFO_OVERFLOW)
  1493. mac->stats.rx_fifo_ovfl++;
  1494. if (cause & V_SERDES_LOS(M_SERDES_LOS))
  1495. mac->stats.serdes_signal_loss++;
  1496. if (cause & F_XAUIPCSCTCERR)
  1497. mac->stats.xaui_pcs_ctc_err++;
  1498. if (cause & F_XAUIPCSALIGNCHANGE)
  1499. mac->stats.xaui_pcs_align_change++;
  1500. t3_write_reg(adap, A_XGM_INT_CAUSE + mac->offset, cause);
  1501. if (cause & XGM_INTR_FATAL)
  1502. t3_fatal_err(adap);
  1503. return cause != 0;
  1504. }
  1505. /*
  1506. * Interrupt handler for PHY events.
  1507. */
  1508. int t3_phy_intr_handler(struct adapter *adapter)
  1509. {
  1510. u32 mask, gpi = adapter_info(adapter)->gpio_intr;
  1511. u32 i, cause = t3_read_reg(adapter, A_T3DBG_INT_CAUSE);
  1512. for_each_port(adapter, i) {
  1513. struct port_info *p = adap2pinfo(adapter, i);
  1514. mask = gpi - (gpi & (gpi - 1));
  1515. gpi -= mask;
  1516. if (!(p->port_type->caps & SUPPORTED_IRQ))
  1517. continue;
  1518. if (cause & mask) {
  1519. int phy_cause = p->phy.ops->intr_handler(&p->phy);
  1520. if (phy_cause & cphy_cause_link_change)
  1521. t3_link_changed(adapter, i);
  1522. if (phy_cause & cphy_cause_fifo_error)
  1523. p->phy.fifo_errors++;
  1524. }
  1525. }
  1526. t3_write_reg(adapter, A_T3DBG_INT_CAUSE, cause);
  1527. return 0;
  1528. }
  1529. /*
  1530. * T3 slow path (non-data) interrupt handler.
  1531. */
  1532. int t3_slow_intr_handler(struct adapter *adapter)
  1533. {
  1534. u32 cause = t3_read_reg(adapter, A_PL_INT_CAUSE0);
  1535. cause &= adapter->slow_intr_mask;
  1536. if (!cause)
  1537. return 0;
  1538. if (cause & F_PCIM0) {
  1539. if (is_pcie(adapter))
  1540. pcie_intr_handler(adapter);
  1541. else
  1542. pci_intr_handler(adapter);
  1543. }
  1544. if (cause & F_SGE3)
  1545. t3_sge_err_intr_handler(adapter);
  1546. if (cause & F_MC7_PMRX)
  1547. mc7_intr_handler(&adapter->pmrx);
  1548. if (cause & F_MC7_PMTX)
  1549. mc7_intr_handler(&adapter->pmtx);
  1550. if (cause & F_MC7_CM)
  1551. mc7_intr_handler(&adapter->cm);
  1552. if (cause & F_CIM)
  1553. cim_intr_handler(adapter);
  1554. if (cause & F_TP1)
  1555. tp_intr_handler(adapter);
  1556. if (cause & F_ULP2_RX)
  1557. ulprx_intr_handler(adapter);
  1558. if (cause & F_ULP2_TX)
  1559. ulptx_intr_handler(adapter);
  1560. if (cause & F_PM1_RX)
  1561. pmrx_intr_handler(adapter);
  1562. if (cause & F_PM1_TX)
  1563. pmtx_intr_handler(adapter);
  1564. if (cause & F_CPL_SWITCH)
  1565. cplsw_intr_handler(adapter);
  1566. if (cause & F_MPS0)
  1567. mps_intr_handler(adapter);
  1568. if (cause & F_MC5A)
  1569. t3_mc5_intr_handler(&adapter->mc5);
  1570. if (cause & F_XGMAC0_0)
  1571. mac_intr_handler(adapter, 0);
  1572. if (cause & F_XGMAC0_1)
  1573. mac_intr_handler(adapter, 1);
  1574. if (cause & F_T3DBG)
  1575. t3_os_ext_intr_handler(adapter);
  1576. /* Clear the interrupts just processed. */
  1577. t3_write_reg(adapter, A_PL_INT_CAUSE0, cause);
  1578. t3_read_reg(adapter, A_PL_INT_CAUSE0); /* flush */
  1579. return 1;
  1580. }
  1581. /**
  1582. * t3_intr_enable - enable interrupts
  1583. * @adapter: the adapter whose interrupts should be enabled
  1584. *
  1585. * Enable interrupts by setting the interrupt enable registers of the
  1586. * various HW modules and then enabling the top-level interrupt
  1587. * concentrator.
  1588. */
  1589. void t3_intr_enable(struct adapter *adapter)
  1590. {
  1591. static const struct addr_val_pair intr_en_avp[] = {
  1592. {A_SG_INT_ENABLE, SGE_INTR_MASK},
  1593. {A_MC7_INT_ENABLE, MC7_INTR_MASK},
  1594. {A_MC7_INT_ENABLE - MC7_PMRX_BASE_ADDR + MC7_PMTX_BASE_ADDR,
  1595. MC7_INTR_MASK},
  1596. {A_MC7_INT_ENABLE - MC7_PMRX_BASE_ADDR + MC7_CM_BASE_ADDR,
  1597. MC7_INTR_MASK},
  1598. {A_MC5_DB_INT_ENABLE, MC5_INTR_MASK},
  1599. {A_ULPRX_INT_ENABLE, ULPRX_INTR_MASK},
  1600. {A_PM1_TX_INT_ENABLE, PMTX_INTR_MASK},
  1601. {A_PM1_RX_INT_ENABLE, PMRX_INTR_MASK},
  1602. {A_CIM_HOST_INT_ENABLE, CIM_INTR_MASK},
  1603. {A_MPS_INT_ENABLE, MPS_INTR_MASK},
  1604. };
  1605. adapter->slow_intr_mask = PL_INTR_MASK;
  1606. t3_write_regs(adapter, intr_en_avp, ARRAY_SIZE(intr_en_avp), 0);
  1607. t3_write_reg(adapter, A_TP_INT_ENABLE,
  1608. adapter->params.rev >= T3_REV_C ? 0x2bfffff : 0x3bfffff);
  1609. if (adapter->params.rev > 0) {
  1610. t3_write_reg(adapter, A_CPL_INTR_ENABLE,
  1611. CPLSW_INTR_MASK | F_CIM_OVFL_ERROR);
  1612. t3_write_reg(adapter, A_ULPTX_INT_ENABLE,
  1613. ULPTX_INTR_MASK | F_PBL_BOUND_ERR_CH0 |
  1614. F_PBL_BOUND_ERR_CH1);
  1615. } else {
  1616. t3_write_reg(adapter, A_CPL_INTR_ENABLE, CPLSW_INTR_MASK);
  1617. t3_write_reg(adapter, A_ULPTX_INT_ENABLE, ULPTX_INTR_MASK);
  1618. }
  1619. t3_write_reg(adapter, A_T3DBG_GPIO_ACT_LOW,
  1620. adapter_info(adapter)->gpio_intr);
  1621. t3_write_reg(adapter, A_T3DBG_INT_ENABLE,
  1622. adapter_info(adapter)->gpio_intr);
  1623. if (is_pcie(adapter))
  1624. t3_write_reg(adapter, A_PCIE_INT_ENABLE, PCIE_INTR_MASK);
  1625. else
  1626. t3_write_reg(adapter, A_PCIX_INT_ENABLE, PCIX_INTR_MASK);
  1627. t3_write_reg(adapter, A_PL_INT_ENABLE0, adapter->slow_intr_mask);
  1628. t3_read_reg(adapter, A_PL_INT_ENABLE0); /* flush */
  1629. }
  1630. /**
  1631. * t3_intr_disable - disable a card's interrupts
  1632. * @adapter: the adapter whose interrupts should be disabled
  1633. *
  1634. * Disable interrupts. We only disable the top-level interrupt
  1635. * concentrator and the SGE data interrupts.
  1636. */
  1637. void t3_intr_disable(struct adapter *adapter)
  1638. {
  1639. t3_write_reg(adapter, A_PL_INT_ENABLE0, 0);
  1640. t3_read_reg(adapter, A_PL_INT_ENABLE0); /* flush */
  1641. adapter->slow_intr_mask = 0;
  1642. }
  1643. /**
  1644. * t3_intr_clear - clear all interrupts
  1645. * @adapter: the adapter whose interrupts should be cleared
  1646. *
  1647. * Clears all interrupts.
  1648. */
  1649. void t3_intr_clear(struct adapter *adapter)
  1650. {
  1651. static const unsigned int cause_reg_addr[] = {
  1652. A_SG_INT_CAUSE,
  1653. A_SG_RSPQ_FL_STATUS,
  1654. A_PCIX_INT_CAUSE,
  1655. A_MC7_INT_CAUSE,
  1656. A_MC7_INT_CAUSE - MC7_PMRX_BASE_ADDR + MC7_PMTX_BASE_ADDR,
  1657. A_MC7_INT_CAUSE - MC7_PMRX_BASE_ADDR + MC7_CM_BASE_ADDR,
  1658. A_CIM_HOST_INT_CAUSE,
  1659. A_TP_INT_CAUSE,
  1660. A_MC5_DB_INT_CAUSE,
  1661. A_ULPRX_INT_CAUSE,
  1662. A_ULPTX_INT_CAUSE,
  1663. A_CPL_INTR_CAUSE,
  1664. A_PM1_TX_INT_CAUSE,
  1665. A_PM1_RX_INT_CAUSE,
  1666. A_MPS_INT_CAUSE,
  1667. A_T3DBG_INT_CAUSE,
  1668. };
  1669. unsigned int i;
  1670. /* Clear PHY and MAC interrupts for each port. */
  1671. for_each_port(adapter, i)
  1672. t3_port_intr_clear(adapter, i);
  1673. for (i = 0; i < ARRAY_SIZE(cause_reg_addr); ++i)
  1674. t3_write_reg(adapter, cause_reg_addr[i], 0xffffffff);
  1675. if (is_pcie(adapter))
  1676. t3_write_reg(adapter, A_PCIE_PEX_ERR, 0xffffffff);
  1677. t3_write_reg(adapter, A_PL_INT_CAUSE0, 0xffffffff);
  1678. t3_read_reg(adapter, A_PL_INT_CAUSE0); /* flush */
  1679. }
  1680. /**
  1681. * t3_port_intr_enable - enable port-specific interrupts
  1682. * @adapter: associated adapter
  1683. * @idx: index of port whose interrupts should be enabled
  1684. *
  1685. * Enable port-specific (i.e., MAC and PHY) interrupts for the given
  1686. * adapter port.
  1687. */
  1688. void t3_port_intr_enable(struct adapter *adapter, int idx)
  1689. {
  1690. struct cphy *phy = &adap2pinfo(adapter, idx)->phy;
  1691. t3_write_reg(adapter, XGM_REG(A_XGM_INT_ENABLE, idx), XGM_INTR_MASK);
  1692. t3_read_reg(adapter, XGM_REG(A_XGM_INT_ENABLE, idx)); /* flush */
  1693. phy->ops->intr_enable(phy);
  1694. }
  1695. /**
  1696. * t3_port_intr_disable - disable port-specific interrupts
  1697. * @adapter: associated adapter
  1698. * @idx: index of port whose interrupts should be disabled
  1699. *
  1700. * Disable port-specific (i.e., MAC and PHY) interrupts for the given
  1701. * adapter port.
  1702. */
  1703. void t3_port_intr_disable(struct adapter *adapter, int idx)
  1704. {
  1705. struct cphy *phy = &adap2pinfo(adapter, idx)->phy;
  1706. t3_write_reg(adapter, XGM_REG(A_XGM_INT_ENABLE, idx), 0);
  1707. t3_read_reg(adapter, XGM_REG(A_XGM_INT_ENABLE, idx)); /* flush */
  1708. phy->ops->intr_disable(phy);
  1709. }
  1710. /**
  1711. * t3_port_intr_clear - clear port-specific interrupts
  1712. * @adapter: associated adapter
  1713. * @idx: index of port whose interrupts to clear
  1714. *
  1715. * Clear port-specific (i.e., MAC and PHY) interrupts for the given
  1716. * adapter port.
  1717. */
  1718. void t3_port_intr_clear(struct adapter *adapter, int idx)
  1719. {
  1720. struct cphy *phy = &adap2pinfo(adapter, idx)->phy;
  1721. t3_write_reg(adapter, XGM_REG(A_XGM_INT_CAUSE, idx), 0xffffffff);
  1722. t3_read_reg(adapter, XGM_REG(A_XGM_INT_CAUSE, idx)); /* flush */
  1723. phy->ops->intr_clear(phy);
  1724. }
  1725. #define SG_CONTEXT_CMD_ATTEMPTS 100
  1726. /**
  1727. * t3_sge_write_context - write an SGE context
  1728. * @adapter: the adapter
  1729. * @id: the context id
  1730. * @type: the context type
  1731. *
  1732. * Program an SGE context with the values already loaded in the
  1733. * CONTEXT_DATA? registers.
  1734. */
  1735. static int t3_sge_write_context(struct adapter *adapter, unsigned int id,
  1736. unsigned int type)
  1737. {
  1738. t3_write_reg(adapter, A_SG_CONTEXT_MASK0, 0xffffffff);
  1739. t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0xffffffff);
  1740. t3_write_reg(adapter, A_SG_CONTEXT_MASK2, 0xffffffff);
  1741. t3_write_reg(adapter, A_SG_CONTEXT_MASK3, 0xffffffff);
  1742. t3_write_reg(adapter, A_SG_CONTEXT_CMD,
  1743. V_CONTEXT_CMD_OPCODE(1) | type | V_CONTEXT(id));
  1744. return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
  1745. 0, SG_CONTEXT_CMD_ATTEMPTS, 1);
  1746. }
  1747. static int clear_sge_ctxt(struct adapter *adap, unsigned int id,
  1748. unsigned int type)
  1749. {
  1750. t3_write_reg(adap, A_SG_CONTEXT_DATA0, 0);
  1751. t3_write_reg(adap, A_SG_CONTEXT_DATA1, 0);
  1752. t3_write_reg(adap, A_SG_CONTEXT_DATA2, 0);
  1753. t3_write_reg(adap, A_SG_CONTEXT_DATA3, 0);
  1754. return t3_sge_write_context(adap, id, type);
  1755. }
  1756. /**
  1757. * t3_sge_init_ecntxt - initialize an SGE egress context
  1758. * @adapter: the adapter to configure
  1759. * @id: the context id
  1760. * @gts_enable: whether to enable GTS for the context
  1761. * @type: the egress context type
  1762. * @respq: associated response queue
  1763. * @base_addr: base address of queue
  1764. * @size: number of queue entries
  1765. * @token: uP token
  1766. * @gen: initial generation value for the context
  1767. * @cidx: consumer pointer
  1768. *
  1769. * Initialize an SGE egress context and make it ready for use. If the
  1770. * platform allows concurrent context operations, the caller is
  1771. * responsible for appropriate locking.
  1772. */
  1773. int t3_sge_init_ecntxt(struct adapter *adapter, unsigned int id, int gts_enable,
  1774. enum sge_context_type type, int respq, u64 base_addr,
  1775. unsigned int size, unsigned int token, int gen,
  1776. unsigned int cidx)
  1777. {
  1778. unsigned int credits = type == SGE_CNTXT_OFLD ? 0 : FW_WR_NUM;
  1779. if (base_addr & 0xfff) /* must be 4K aligned */
  1780. return -EINVAL;
  1781. if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
  1782. return -EBUSY;
  1783. base_addr >>= 12;
  1784. t3_write_reg(adapter, A_SG_CONTEXT_DATA0, V_EC_INDEX(cidx) |
  1785. V_EC_CREDITS(credits) | V_EC_GTS(gts_enable));
  1786. t3_write_reg(adapter, A_SG_CONTEXT_DATA1, V_EC_SIZE(size) |
  1787. V_EC_BASE_LO(base_addr & 0xffff));
  1788. base_addr >>= 16;
  1789. t3_write_reg(adapter, A_SG_CONTEXT_DATA2, base_addr);
  1790. base_addr >>= 32;
  1791. t3_write_reg(adapter, A_SG_CONTEXT_DATA3,
  1792. V_EC_BASE_HI(base_addr & 0xf) | V_EC_RESPQ(respq) |
  1793. V_EC_TYPE(type) | V_EC_GEN(gen) | V_EC_UP_TOKEN(token) |
  1794. F_EC_VALID);
  1795. return t3_sge_write_context(adapter, id, F_EGRESS);
  1796. }
  1797. /**
  1798. * t3_sge_init_flcntxt - initialize an SGE free-buffer list context
  1799. * @adapter: the adapter to configure
  1800. * @id: the context id
  1801. * @gts_enable: whether to enable GTS for the context
  1802. * @base_addr: base address of queue
  1803. * @size: number of queue entries
  1804. * @bsize: size of each buffer for this queue
  1805. * @cong_thres: threshold to signal congestion to upstream producers
  1806. * @gen: initial generation value for the context
  1807. * @cidx: consumer pointer
  1808. *
  1809. * Initialize an SGE free list context and make it ready for use. The
  1810. * caller is responsible for ensuring only one context operation occurs
  1811. * at a time.
  1812. */
  1813. int t3_sge_init_flcntxt(struct adapter *adapter, unsigned int id,
  1814. int gts_enable, u64 base_addr, unsigned int size,
  1815. unsigned int bsize, unsigned int cong_thres, int gen,
  1816. unsigned int cidx)
  1817. {
  1818. if (base_addr & 0xfff) /* must be 4K aligned */
  1819. return -EINVAL;
  1820. if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
  1821. return -EBUSY;
  1822. base_addr >>= 12;
  1823. t3_write_reg(adapter, A_SG_CONTEXT_DATA0, base_addr);
  1824. base_addr >>= 32;
  1825. t3_write_reg(adapter, A_SG_CONTEXT_DATA1,
  1826. V_FL_BASE_HI((u32) base_addr) |
  1827. V_FL_INDEX_LO(cidx & M_FL_INDEX_LO));
  1828. t3_write_reg(adapter, A_SG_CONTEXT_DATA2, V_FL_SIZE(size) |
  1829. V_FL_GEN(gen) | V_FL_INDEX_HI(cidx >> 12) |
  1830. V_FL_ENTRY_SIZE_LO(bsize & M_FL_ENTRY_SIZE_LO));
  1831. t3_write_reg(adapter, A_SG_CONTEXT_DATA3,
  1832. V_FL_ENTRY_SIZE_HI(bsize >> (32 - S_FL_ENTRY_SIZE_LO)) |
  1833. V_FL_CONG_THRES(cong_thres) | V_FL_GTS(gts_enable));
  1834. return t3_sge_write_context(adapter, id, F_FREELIST);
  1835. }
  1836. /**
  1837. * t3_sge_init_rspcntxt - initialize an SGE response queue context
  1838. * @adapter: the adapter to configure
  1839. * @id: the context id
  1840. * @irq_vec_idx: MSI-X interrupt vector index, 0 if no MSI-X, -1 if no IRQ
  1841. * @base_addr: base address of queue
  1842. * @size: number of queue entries
  1843. * @fl_thres: threshold for selecting the normal or jumbo free list
  1844. * @gen: initial generation value for the context
  1845. * @cidx: consumer pointer
  1846. *
  1847. * Initialize an SGE response queue context and make it ready for use.
  1848. * The caller is responsible for ensuring only one context operation
  1849. * occurs at a time.
  1850. */
  1851. int t3_sge_init_rspcntxt(struct adapter *adapter, unsigned int id,
  1852. int irq_vec_idx, u64 base_addr, unsigned int size,
  1853. unsigned int fl_thres, int gen, unsigned int cidx)
  1854. {
  1855. unsigned int intr = 0;
  1856. if (base_addr & 0xfff) /* must be 4K aligned */
  1857. return -EINVAL;
  1858. if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
  1859. return -EBUSY;
  1860. base_addr >>= 12;
  1861. t3_write_reg(adapter, A_SG_CONTEXT_DATA0, V_CQ_SIZE(size) |
  1862. V_CQ_INDEX(cidx));
  1863. t3_write_reg(adapter, A_SG_CONTEXT_DATA1, base_addr);
  1864. base_addr >>= 32;
  1865. if (irq_vec_idx >= 0)
  1866. intr = V_RQ_MSI_VEC(irq_vec_idx) | F_RQ_INTR_EN;
  1867. t3_write_reg(adapter, A_SG_CONTEXT_DATA2,
  1868. V_CQ_BASE_HI((u32) base_addr) | intr | V_RQ_GEN(gen));
  1869. t3_write_reg(adapter, A_SG_CONTEXT_DATA3, fl_thres);
  1870. return t3_sge_write_context(adapter, id, F_RESPONSEQ);
  1871. }
  1872. /**
  1873. * t3_sge_init_cqcntxt - initialize an SGE completion queue context
  1874. * @adapter: the adapter to configure
  1875. * @id: the context id
  1876. * @base_addr: base address of queue
  1877. * @size: number of queue entries
  1878. * @rspq: response queue for async notifications
  1879. * @ovfl_mode: CQ overflow mode
  1880. * @credits: completion queue credits
  1881. * @credit_thres: the credit threshold
  1882. *
  1883. * Initialize an SGE completion queue context and make it ready for use.
  1884. * The caller is responsible for ensuring only one context operation
  1885. * occurs at a time.
  1886. */
  1887. int t3_sge_init_cqcntxt(struct adapter *adapter, unsigned int id, u64 base_addr,
  1888. unsigned int size, int rspq, int ovfl_mode,
  1889. unsigned int credits, unsigned int credit_thres)
  1890. {
  1891. if (base_addr & 0xfff) /* must be 4K aligned */
  1892. return -EINVAL;
  1893. if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
  1894. return -EBUSY;
  1895. base_addr >>= 12;
  1896. t3_write_reg(adapter, A_SG_CONTEXT_DATA0, V_CQ_SIZE(size));
  1897. t3_write_reg(adapter, A_SG_CONTEXT_DATA1, base_addr);
  1898. base_addr >>= 32;
  1899. t3_write_reg(adapter, A_SG_CONTEXT_DATA2,
  1900. V_CQ_BASE_HI((u32) base_addr) | V_CQ_RSPQ(rspq) |
  1901. V_CQ_GEN(1) | V_CQ_OVERFLOW_MODE(ovfl_mode) |
  1902. V_CQ_ERR(ovfl_mode));
  1903. t3_write_reg(adapter, A_SG_CONTEXT_DATA3, V_CQ_CREDITS(credits) |
  1904. V_CQ_CREDIT_THRES(credit_thres));
  1905. return t3_sge_write_context(adapter, id, F_CQ);
  1906. }
  1907. /**
  1908. * t3_sge_enable_ecntxt - enable/disable an SGE egress context
  1909. * @adapter: the adapter
  1910. * @id: the egress context id
  1911. * @enable: enable (1) or disable (0) the context
  1912. *
  1913. * Enable or disable an SGE egress context. The caller is responsible for
  1914. * ensuring only one context operation occurs at a time.
  1915. */
  1916. int t3_sge_enable_ecntxt(struct adapter *adapter, unsigned int id, int enable)
  1917. {
  1918. if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
  1919. return -EBUSY;
  1920. t3_write_reg(adapter, A_SG_CONTEXT_MASK0, 0);
  1921. t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0);
  1922. t3_write_reg(adapter, A_SG_CONTEXT_MASK2, 0);
  1923. t3_write_reg(adapter, A_SG_CONTEXT_MASK3, F_EC_VALID);
  1924. t3_write_reg(adapter, A_SG_CONTEXT_DATA3, V_EC_VALID(enable));
  1925. t3_write_reg(adapter, A_SG_CONTEXT_CMD,
  1926. V_CONTEXT_CMD_OPCODE(1) | F_EGRESS | V_CONTEXT(id));
  1927. return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
  1928. 0, SG_CONTEXT_CMD_ATTEMPTS, 1);
  1929. }
  1930. /**
  1931. * t3_sge_disable_fl - disable an SGE free-buffer list
  1932. * @adapter: the adapter
  1933. * @id: the free list context id
  1934. *
  1935. * Disable an SGE free-buffer list. The caller is responsible for
  1936. * ensuring only one context operation occurs at a time.
  1937. */
  1938. int t3_sge_disable_fl(struct adapter *adapter, unsigned int id)
  1939. {
  1940. if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
  1941. return -EBUSY;
  1942. t3_write_reg(adapter, A_SG_CONTEXT_MASK0, 0);
  1943. t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0);
  1944. t3_write_reg(adapter, A_SG_CONTEXT_MASK2, V_FL_SIZE(M_FL_SIZE));
  1945. t3_write_reg(adapter, A_SG_CONTEXT_MASK3, 0);
  1946. t3_write_reg(adapter, A_SG_CONTEXT_DATA2, 0);
  1947. t3_write_reg(adapter, A_SG_CONTEXT_CMD,
  1948. V_CONTEXT_CMD_OPCODE(1) | F_FREELIST | V_CONTEXT(id));
  1949. return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
  1950. 0, SG_CONTEXT_CMD_ATTEMPTS, 1);
  1951. }
  1952. /**
  1953. * t3_sge_disable_rspcntxt - disable an SGE response queue
  1954. * @adapter: the adapter
  1955. * @id: the response queue context id
  1956. *
  1957. * Disable an SGE response queue. The caller is responsible for
  1958. * ensuring only one context operation occurs at a time.
  1959. */
  1960. int t3_sge_disable_rspcntxt(struct adapter *adapter, unsigned int id)
  1961. {
  1962. if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
  1963. return -EBUSY;
  1964. t3_write_reg(adapter, A_SG_CONTEXT_MASK0, V_CQ_SIZE(M_CQ_SIZE));
  1965. t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0);
  1966. t3_write_reg(adapter, A_SG_CONTEXT_MASK2, 0);
  1967. t3_write_reg(adapter, A_SG_CONTEXT_MASK3, 0);
  1968. t3_write_reg(adapter, A_SG_CONTEXT_DATA0, 0);
  1969. t3_write_reg(adapter, A_SG_CONTEXT_CMD,
  1970. V_CONTEXT_CMD_OPCODE(1) | F_RESPONSEQ | V_CONTEXT(id));
  1971. return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
  1972. 0, SG_CONTEXT_CMD_ATTEMPTS, 1);
  1973. }
  1974. /**
  1975. * t3_sge_disable_cqcntxt - disable an SGE completion queue
  1976. * @adapter: the adapter
  1977. * @id: the completion queue context id
  1978. *
  1979. * Disable an SGE completion queue. The caller is responsible for
  1980. * ensuring only one context operation occurs at a time.
  1981. */
  1982. int t3_sge_disable_cqcntxt(struct adapter *adapter, unsigned int id)
  1983. {
  1984. if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
  1985. return -EBUSY;
  1986. t3_write_reg(adapter, A_SG_CONTEXT_MASK0, V_CQ_SIZE(M_CQ_SIZE));
  1987. t3_write_reg(adapter, A_SG_CONTEXT_MASK1, 0);
  1988. t3_write_reg(adapter, A_SG_CONTEXT_MASK2, 0);
  1989. t3_write_reg(adapter, A_SG_CONTEXT_MASK3, 0);
  1990. t3_write_reg(adapter, A_SG_CONTEXT_DATA0, 0);
  1991. t3_write_reg(adapter, A_SG_CONTEXT_CMD,
  1992. V_CONTEXT_CMD_OPCODE(1) | F_CQ | V_CONTEXT(id));
  1993. return t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
  1994. 0, SG_CONTEXT_CMD_ATTEMPTS, 1);
  1995. }
  1996. /**
  1997. * t3_sge_cqcntxt_op - perform an operation on a completion queue context
  1998. * @adapter: the adapter
  1999. * @id: the context id
  2000. * @op: the operation to perform
  2001. *
  2002. * Perform the selected operation on an SGE completion queue context.
  2003. * The caller is responsible for ensuring only one context operation
  2004. * occurs at a time.
  2005. */
  2006. int t3_sge_cqcntxt_op(struct adapter *adapter, unsigned int id, unsigned int op,
  2007. unsigned int credits)
  2008. {
  2009. u32 val;
  2010. if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
  2011. return -EBUSY;
  2012. t3_write_reg(adapter, A_SG_CONTEXT_DATA0, credits << 16);
  2013. t3_write_reg(adapter, A_SG_CONTEXT_CMD, V_CONTEXT_CMD_OPCODE(op) |
  2014. V_CONTEXT(id) | F_CQ);
  2015. if (t3_wait_op_done_val(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY,
  2016. 0, SG_CONTEXT_CMD_ATTEMPTS, 1, &val))
  2017. return -EIO;
  2018. if (op >= 2 && op < 7) {
  2019. if (adapter->params.rev > 0)
  2020. return G_CQ_INDEX(val);
  2021. t3_write_reg(adapter, A_SG_CONTEXT_CMD,
  2022. V_CONTEXT_CMD_OPCODE(0) | F_CQ | V_CONTEXT(id));
  2023. if (t3_wait_op_done(adapter, A_SG_CONTEXT_CMD,
  2024. F_CONTEXT_CMD_BUSY, 0,
  2025. SG_CONTEXT_CMD_ATTEMPTS, 1))
  2026. return -EIO;
  2027. return G_CQ_INDEX(t3_read_reg(adapter, A_SG_CONTEXT_DATA0));
  2028. }
  2029. return 0;
  2030. }
  2031. /**
  2032. * t3_sge_read_context - read an SGE context
  2033. * @type: the context type
  2034. * @adapter: the adapter
  2035. * @id: the context id
  2036. * @data: holds the retrieved context
  2037. *
  2038. * Read an SGE egress context. The caller is responsible for ensuring
  2039. * only one context operation occurs at a time.
  2040. */
  2041. static int t3_sge_read_context(unsigned int type, struct adapter *adapter,
  2042. unsigned int id, u32 data[4])
  2043. {
  2044. if (t3_read_reg(adapter, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
  2045. return -EBUSY;
  2046. t3_write_reg(adapter, A_SG_CONTEXT_CMD,
  2047. V_CONTEXT_CMD_OPCODE(0) | type | V_CONTEXT(id));
  2048. if (t3_wait_op_done(adapter, A_SG_CONTEXT_CMD, F_CONTEXT_CMD_BUSY, 0,
  2049. SG_CONTEXT_CMD_ATTEMPTS, 1))
  2050. return -EIO;
  2051. data[0] = t3_read_reg(adapter, A_SG_CONTEXT_DATA0);
  2052. data[1] = t3_read_reg(adapter, A_SG_CONTEXT_DATA1);
  2053. data[2] = t3_read_reg(adapter, A_SG_CONTEXT_DATA2);
  2054. data[3] = t3_read_reg(adapter, A_SG_CONTEXT_DATA3);
  2055. return 0;
  2056. }
  2057. /**
  2058. * t3_sge_read_ecntxt - read an SGE egress context
  2059. * @adapter: the adapter
  2060. * @id: the context id
  2061. * @data: holds the retrieved context
  2062. *
  2063. * Read an SGE egress context. The caller is responsible for ensuring
  2064. * only one context operation occurs at a time.
  2065. */
  2066. int t3_sge_read_ecntxt(struct adapter *adapter, unsigned int id, u32 data[4])
  2067. {
  2068. if (id >= 65536)
  2069. return -EINVAL;
  2070. return t3_sge_read_context(F_EGRESS, adapter, id, data);
  2071. }
  2072. /**
  2073. * t3_sge_read_cq - read an SGE CQ context
  2074. * @adapter: the adapter
  2075. * @id: the context id
  2076. * @data: holds the retrieved context
  2077. *
  2078. * Read an SGE CQ context. The caller is responsible for ensuring
  2079. * only one context operation occurs at a time.
  2080. */
  2081. int t3_sge_read_cq(struct adapter *adapter, unsigned int id, u32 data[4])
  2082. {
  2083. if (id >= 65536)
  2084. return -EINVAL;
  2085. return t3_sge_read_context(F_CQ, adapter, id, data);
  2086. }
  2087. /**
  2088. * t3_sge_read_fl - read an SGE free-list context
  2089. * @adapter: the adapter
  2090. * @id: the context id
  2091. * @data: holds the retrieved context
  2092. *
  2093. * Read an SGE free-list context. The caller is responsible for ensuring
  2094. * only one context operation occurs at a time.
  2095. */
  2096. int t3_sge_read_fl(struct adapter *adapter, unsigned int id, u32 data[4])
  2097. {
  2098. if (id >= SGE_QSETS * 2)
  2099. return -EINVAL;
  2100. return t3_sge_read_context(F_FREELIST, adapter, id, data);
  2101. }
  2102. /**
  2103. * t3_sge_read_rspq - read an SGE response queue context
  2104. * @adapter: the adapter
  2105. * @id: the context id
  2106. * @data: holds the retrieved context
  2107. *
  2108. * Read an SGE response queue context. The caller is responsible for
  2109. * ensuring only one context operation occurs at a time.
  2110. */
  2111. int t3_sge_read_rspq(struct adapter *adapter, unsigned int id, u32 data[4])
  2112. {
  2113. if (id >= SGE_QSETS)
  2114. return -EINVAL;
  2115. return t3_sge_read_context(F_RESPONSEQ, adapter, id, data);
  2116. }
  2117. /**
  2118. * t3_config_rss - configure Rx packet steering
  2119. * @adapter: the adapter
  2120. * @rss_config: RSS settings (written to TP_RSS_CONFIG)
  2121. * @cpus: values for the CPU lookup table (0xff terminated)
  2122. * @rspq: values for the response queue lookup table (0xffff terminated)
  2123. *
  2124. * Programs the receive packet steering logic. @cpus and @rspq provide
  2125. * the values for the CPU and response queue lookup tables. If they
  2126. * provide fewer values than the size of the tables the supplied values
  2127. * are used repeatedly until the tables are fully populated.
  2128. */
  2129. void t3_config_rss(struct adapter *adapter, unsigned int rss_config,
  2130. const u8 * cpus, const u16 *rspq)
  2131. {
  2132. int i, j, cpu_idx = 0, q_idx = 0;
  2133. if (cpus)
  2134. for (i = 0; i < RSS_TABLE_SIZE; ++i) {
  2135. u32 val = i << 16;
  2136. for (j = 0; j < 2; ++j) {
  2137. val |= (cpus[cpu_idx++] & 0x3f) << (8 * j);
  2138. if (cpus[cpu_idx] == 0xff)
  2139. cpu_idx = 0;
  2140. }
  2141. t3_write_reg(adapter, A_TP_RSS_LKP_TABLE, val);
  2142. }
  2143. if (rspq)
  2144. for (i = 0; i < RSS_TABLE_SIZE; ++i) {
  2145. t3_write_reg(adapter, A_TP_RSS_MAP_TABLE,
  2146. (i << 16) | rspq[q_idx++]);
  2147. if (rspq[q_idx] == 0xffff)
  2148. q_idx = 0;
  2149. }
  2150. t3_write_reg(adapter, A_TP_RSS_CONFIG, rss_config);
  2151. }
  2152. /**
  2153. * t3_read_rss - read the contents of the RSS tables
  2154. * @adapter: the adapter
  2155. * @lkup: holds the contents of the RSS lookup table
  2156. * @map: holds the contents of the RSS map table
  2157. *
  2158. * Reads the contents of the receive packet steering tables.
  2159. */
  2160. int t3_read_rss(struct adapter *adapter, u8 * lkup, u16 *map)
  2161. {
  2162. int i;
  2163. u32 val;
  2164. if (lkup)
  2165. for (i = 0; i < RSS_TABLE_SIZE; ++i) {
  2166. t3_write_reg(adapter, A_TP_RSS_LKP_TABLE,
  2167. 0xffff0000 | i);
  2168. val = t3_read_reg(adapter, A_TP_RSS_LKP_TABLE);
  2169. if (!(val & 0x80000000))
  2170. return -EAGAIN;
  2171. *lkup++ = val;
  2172. *lkup++ = (val >> 8);
  2173. }
  2174. if (map)
  2175. for (i = 0; i < RSS_TABLE_SIZE; ++i) {
  2176. t3_write_reg(adapter, A_TP_RSS_MAP_TABLE,
  2177. 0xffff0000 | i);
  2178. val = t3_read_reg(adapter, A_TP_RSS_MAP_TABLE);
  2179. if (!(val & 0x80000000))
  2180. return -EAGAIN;
  2181. *map++ = val;
  2182. }
  2183. return 0;
  2184. }
  2185. /**
  2186. * t3_tp_set_offload_mode - put TP in NIC/offload mode
  2187. * @adap: the adapter
  2188. * @enable: 1 to select offload mode, 0 for regular NIC
  2189. *
  2190. * Switches TP to NIC/offload mode.
  2191. */
  2192. void t3_tp_set_offload_mode(struct adapter *adap, int enable)
  2193. {
  2194. if (is_offload(adap) || !enable)
  2195. t3_set_reg_field(adap, A_TP_IN_CONFIG, F_NICMODE,
  2196. V_NICMODE(!enable));
  2197. }
  2198. /**
  2199. * pm_num_pages - calculate the number of pages of the payload memory
  2200. * @mem_size: the size of the payload memory
  2201. * @pg_size: the size of each payload memory page
  2202. *
  2203. * Calculate the number of pages, each of the given size, that fit in a
  2204. * memory of the specified size, respecting the HW requirement that the
  2205. * number of pages must be a multiple of 24.
  2206. */
  2207. static inline unsigned int pm_num_pages(unsigned int mem_size,
  2208. unsigned int pg_size)
  2209. {
  2210. unsigned int n = mem_size / pg_size;
  2211. return n - n % 24;
  2212. }
  2213. #define mem_region(adap, start, size, reg) \
  2214. t3_write_reg((adap), A_ ## reg, (start)); \
  2215. start += size
  2216. /**
  2217. * partition_mem - partition memory and configure TP memory settings
  2218. * @adap: the adapter
  2219. * @p: the TP parameters
  2220. *
  2221. * Partitions context and payload memory and configures TP's memory
  2222. * registers.
  2223. */
  2224. static void partition_mem(struct adapter *adap, const struct tp_params *p)
  2225. {
  2226. unsigned int m, pstructs, tids = t3_mc5_size(&adap->mc5);
  2227. unsigned int timers = 0, timers_shift = 22;
  2228. if (adap->params.rev > 0) {
  2229. if (tids <= 16 * 1024) {
  2230. timers = 1;
  2231. timers_shift = 16;
  2232. } else if (tids <= 64 * 1024) {
  2233. timers = 2;
  2234. timers_shift = 18;
  2235. } else if (tids <= 256 * 1024) {
  2236. timers = 3;
  2237. timers_shift = 20;
  2238. }
  2239. }
  2240. t3_write_reg(adap, A_TP_PMM_SIZE,
  2241. p->chan_rx_size | (p->chan_tx_size >> 16));
  2242. t3_write_reg(adap, A_TP_PMM_TX_BASE, 0);
  2243. t3_write_reg(adap, A_TP_PMM_TX_PAGE_SIZE, p->tx_pg_size);
  2244. t3_write_reg(adap, A_TP_PMM_TX_MAX_PAGE, p->tx_num_pgs);
  2245. t3_set_reg_field(adap, A_TP_PARA_REG3, V_TXDATAACKIDX(M_TXDATAACKIDX),
  2246. V_TXDATAACKIDX(fls(p->tx_pg_size) - 12));
  2247. t3_write_reg(adap, A_TP_PMM_RX_BASE, 0);
  2248. t3_write_reg(adap, A_TP_PMM_RX_PAGE_SIZE, p->rx_pg_size);
  2249. t3_write_reg(adap, A_TP_PMM_RX_MAX_PAGE, p->rx_num_pgs);
  2250. pstructs = p->rx_num_pgs + p->tx_num_pgs;
  2251. /* Add a bit of headroom and make multiple of 24 */
  2252. pstructs += 48;
  2253. pstructs -= pstructs % 24;
  2254. t3_write_reg(adap, A_TP_CMM_MM_MAX_PSTRUCT, pstructs);
  2255. m = tids * TCB_SIZE;
  2256. mem_region(adap, m, (64 << 10) * 64, SG_EGR_CNTX_BADDR);
  2257. mem_region(adap, m, (64 << 10) * 64, SG_CQ_CONTEXT_BADDR);
  2258. t3_write_reg(adap, A_TP_CMM_TIMER_BASE, V_CMTIMERMAXNUM(timers) | m);
  2259. m += ((p->ntimer_qs - 1) << timers_shift) + (1 << 22);
  2260. mem_region(adap, m, pstructs * 64, TP_CMM_MM_BASE);
  2261. mem_region(adap, m, 64 * (pstructs / 24), TP_CMM_MM_PS_FLST_BASE);
  2262. mem_region(adap, m, 64 * (p->rx_num_pgs / 24), TP_CMM_MM_RX_FLST_BASE);
  2263. mem_region(adap, m, 64 * (p->tx_num_pgs / 24), TP_CMM_MM_TX_FLST_BASE);
  2264. m = (m + 4095) & ~0xfff;
  2265. t3_write_reg(adap, A_CIM_SDRAM_BASE_ADDR, m);
  2266. t3_write_reg(adap, A_CIM_SDRAM_ADDR_SIZE, p->cm_size - m);
  2267. tids = (p->cm_size - m - (3 << 20)) / 3072 - 32;
  2268. m = t3_mc5_size(&adap->mc5) - adap->params.mc5.nservers -
  2269. adap->params.mc5.nfilters - adap->params.mc5.nroutes;
  2270. if (tids < m)
  2271. adap->params.mc5.nservers += m - tids;
  2272. }
  2273. static inline void tp_wr_indirect(struct adapter *adap, unsigned int addr,
  2274. u32 val)
  2275. {
  2276. t3_write_reg(adap, A_TP_PIO_ADDR, addr);
  2277. t3_write_reg(adap, A_TP_PIO_DATA, val);
  2278. }
  2279. static void tp_config(struct adapter *adap, const struct tp_params *p)
  2280. {
  2281. t3_write_reg(adap, A_TP_GLOBAL_CONFIG, F_TXPACINGENABLE | F_PATHMTU |
  2282. F_IPCHECKSUMOFFLOAD | F_UDPCHECKSUMOFFLOAD |
  2283. F_TCPCHECKSUMOFFLOAD | V_IPTTL(64));
  2284. t3_write_reg(adap, A_TP_TCP_OPTIONS, V_MTUDEFAULT(576) |
  2285. F_MTUENABLE | V_WINDOWSCALEMODE(1) |
  2286. V_TIMESTAMPSMODE(0) | V_SACKMODE(1) | V_SACKRX(1));
  2287. t3_write_reg(adap, A_TP_DACK_CONFIG, V_AUTOSTATE3(1) |
  2288. V_AUTOSTATE2(1) | V_AUTOSTATE1(0) |
  2289. V_BYTETHRESHOLD(16384) | V_MSSTHRESHOLD(2) |
  2290. F_AUTOCAREFUL | F_AUTOENABLE | V_DACK_MODE(1));
  2291. t3_set_reg_field(adap, A_TP_IN_CONFIG, F_RXFBARBPRIO | F_TXFBARBPRIO,
  2292. F_IPV6ENABLE | F_NICMODE);
  2293. t3_write_reg(adap, A_TP_TX_RESOURCE_LIMIT, 0x18141814);
  2294. t3_write_reg(adap, A_TP_PARA_REG4, 0x5050105);
  2295. t3_set_reg_field(adap, A_TP_PARA_REG6, 0,
  2296. adap->params.rev > 0 ? F_ENABLEESND :
  2297. F_T3A_ENABLEESND);
  2298. t3_set_reg_field(adap, A_TP_PC_CONFIG,
  2299. F_ENABLEEPCMDAFULL,
  2300. F_ENABLEOCSPIFULL |F_TXDEFERENABLE | F_HEARBEATDACK |
  2301. F_TXCONGESTIONMODE | F_RXCONGESTIONMODE);
  2302. t3_set_reg_field(adap, A_TP_PC_CONFIG2, F_CHDRAFULL,
  2303. F_ENABLEIPV6RSS | F_ENABLENONOFDTNLSYN |
  2304. F_ENABLEARPMISS | F_DISBLEDAPARBIT0);
  2305. t3_write_reg(adap, A_TP_PROXY_FLOW_CNTL, 1080);
  2306. t3_write_reg(adap, A_TP_PROXY_FLOW_CNTL, 1000);
  2307. if (adap->params.rev > 0) {
  2308. tp_wr_indirect(adap, A_TP_EGRESS_CONFIG, F_REWRITEFORCETOSIZE);
  2309. t3_set_reg_field(adap, A_TP_PARA_REG3, F_TXPACEAUTO,
  2310. F_TXPACEAUTO);
  2311. t3_set_reg_field(adap, A_TP_PC_CONFIG, F_LOCKTID, F_LOCKTID);
  2312. t3_set_reg_field(adap, A_TP_PARA_REG3, 0, F_TXPACEAUTOSTRICT);
  2313. } else
  2314. t3_set_reg_field(adap, A_TP_PARA_REG3, 0, F_TXPACEFIXED);
  2315. if (adap->params.rev == T3_REV_C)
  2316. t3_set_reg_field(adap, A_TP_PC_CONFIG,
  2317. V_TABLELATENCYDELTA(M_TABLELATENCYDELTA),
  2318. V_TABLELATENCYDELTA(4));
  2319. t3_write_reg(adap, A_TP_TX_MOD_QUEUE_WEIGHT1, 0);
  2320. t3_write_reg(adap, A_TP_TX_MOD_QUEUE_WEIGHT0, 0);
  2321. t3_write_reg(adap, A_TP_MOD_CHANNEL_WEIGHT, 0);
  2322. t3_write_reg(adap, A_TP_MOD_RATE_LIMIT, 0xf2200000);
  2323. }
  2324. /* Desired TP timer resolution in usec */
  2325. #define TP_TMR_RES 50
  2326. /* TCP timer values in ms */
  2327. #define TP_DACK_TIMER 50
  2328. #define TP_RTO_MIN 250
  2329. /**
  2330. * tp_set_timers - set TP timing parameters
  2331. * @adap: the adapter to set
  2332. * @core_clk: the core clock frequency in Hz
  2333. *
  2334. * Set TP's timing parameters, such as the various timer resolutions and
  2335. * the TCP timer values.
  2336. */
  2337. static void tp_set_timers(struct adapter *adap, unsigned int core_clk)
  2338. {
  2339. unsigned int tre = fls(core_clk / (1000000 / TP_TMR_RES)) - 1;
  2340. unsigned int dack_re = fls(core_clk / 5000) - 1; /* 200us */
  2341. unsigned int tstamp_re = fls(core_clk / 1000); /* 1ms, at least */
  2342. unsigned int tps = core_clk >> tre;
  2343. t3_write_reg(adap, A_TP_TIMER_RESOLUTION, V_TIMERRESOLUTION(tre) |
  2344. V_DELAYEDACKRESOLUTION(dack_re) |
  2345. V_TIMESTAMPRESOLUTION(tstamp_re));
  2346. t3_write_reg(adap, A_TP_DACK_TIMER,
  2347. (core_clk >> dack_re) / (1000 / TP_DACK_TIMER));
  2348. t3_write_reg(adap, A_TP_TCP_BACKOFF_REG0, 0x3020100);
  2349. t3_write_reg(adap, A_TP_TCP_BACKOFF_REG1, 0x7060504);
  2350. t3_write_reg(adap, A_TP_TCP_BACKOFF_REG2, 0xb0a0908);
  2351. t3_write_reg(adap, A_TP_TCP_BACKOFF_REG3, 0xf0e0d0c);
  2352. t3_write_reg(adap, A_TP_SHIFT_CNT, V_SYNSHIFTMAX(6) |
  2353. V_RXTSHIFTMAXR1(4) | V_RXTSHIFTMAXR2(15) |
  2354. V_PERSHIFTBACKOFFMAX(8) | V_PERSHIFTMAX(8) |
  2355. V_KEEPALIVEMAX(9));
  2356. #define SECONDS * tps
  2357. t3_write_reg(adap, A_TP_MSL, adap->params.rev > 0 ? 0 : 2 SECONDS);
  2358. t3_write_reg(adap, A_TP_RXT_MIN, tps / (1000 / TP_RTO_MIN));
  2359. t3_write_reg(adap, A_TP_RXT_MAX, 64 SECONDS);
  2360. t3_write_reg(adap, A_TP_PERS_MIN, 5 SECONDS);
  2361. t3_write_reg(adap, A_TP_PERS_MAX, 64 SECONDS);
  2362. t3_write_reg(adap, A_TP_KEEP_IDLE, 7200 SECONDS);
  2363. t3_write_reg(adap, A_TP_KEEP_INTVL, 75 SECONDS);
  2364. t3_write_reg(adap, A_TP_INIT_SRTT, 3 SECONDS);
  2365. t3_write_reg(adap, A_TP_FINWAIT2_TIMER, 600 SECONDS);
  2366. #undef SECONDS
  2367. }
  2368. /**
  2369. * t3_tp_set_coalescing_size - set receive coalescing size
  2370. * @adap: the adapter
  2371. * @size: the receive coalescing size
  2372. * @psh: whether a set PSH bit should deliver coalesced data
  2373. *
  2374. * Set the receive coalescing size and PSH bit handling.
  2375. */
  2376. int t3_tp_set_coalescing_size(struct adapter *adap, unsigned int size, int psh)
  2377. {
  2378. u32 val;
  2379. if (size > MAX_RX_COALESCING_LEN)
  2380. return -EINVAL;
  2381. val = t3_read_reg(adap, A_TP_PARA_REG3);
  2382. val &= ~(F_RXCOALESCEENABLE | F_RXCOALESCEPSHEN);
  2383. if (size) {
  2384. val |= F_RXCOALESCEENABLE;
  2385. if (psh)
  2386. val |= F_RXCOALESCEPSHEN;
  2387. size = min(MAX_RX_COALESCING_LEN, size);
  2388. t3_write_reg(adap, A_TP_PARA_REG2, V_RXCOALESCESIZE(size) |
  2389. V_MAXRXDATA(MAX_RX_COALESCING_LEN));
  2390. }
  2391. t3_write_reg(adap, A_TP_PARA_REG3, val);
  2392. return 0;
  2393. }
  2394. /**
  2395. * t3_tp_set_max_rxsize - set the max receive size
  2396. * @adap: the adapter
  2397. * @size: the max receive size
  2398. *
  2399. * Set TP's max receive size. This is the limit that applies when
  2400. * receive coalescing is disabled.
  2401. */
  2402. void t3_tp_set_max_rxsize(struct adapter *adap, unsigned int size)
  2403. {
  2404. t3_write_reg(adap, A_TP_PARA_REG7,
  2405. V_PMMAXXFERLEN0(size) | V_PMMAXXFERLEN1(size));
  2406. }
  2407. static void init_mtus(unsigned short mtus[])
  2408. {
  2409. /*
  2410. * See draft-mathis-plpmtud-00.txt for the values. The min is 88 so
  2411. * it can accomodate max size TCP/IP headers when SACK and timestamps
  2412. * are enabled and still have at least 8 bytes of payload.
  2413. */
  2414. mtus[0] = 88;
  2415. mtus[1] = 88;
  2416. mtus[2] = 256;
  2417. mtus[3] = 512;
  2418. mtus[4] = 576;
  2419. mtus[5] = 1024;
  2420. mtus[6] = 1280;
  2421. mtus[7] = 1492;
  2422. mtus[8] = 1500;
  2423. mtus[9] = 2002;
  2424. mtus[10] = 2048;
  2425. mtus[11] = 4096;
  2426. mtus[12] = 4352;
  2427. mtus[13] = 8192;
  2428. mtus[14] = 9000;
  2429. mtus[15] = 9600;
  2430. }
  2431. /*
  2432. * Initial congestion control parameters.
  2433. */
  2434. static void init_cong_ctrl(unsigned short *a, unsigned short *b)
  2435. {
  2436. a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
  2437. a[9] = 2;
  2438. a[10] = 3;
  2439. a[11] = 4;
  2440. a[12] = 5;
  2441. a[13] = 6;
  2442. a[14] = 7;
  2443. a[15] = 8;
  2444. a[16] = 9;
  2445. a[17] = 10;
  2446. a[18] = 14;
  2447. a[19] = 17;
  2448. a[20] = 21;
  2449. a[21] = 25;
  2450. a[22] = 30;
  2451. a[23] = 35;
  2452. a[24] = 45;
  2453. a[25] = 60;
  2454. a[26] = 80;
  2455. a[27] = 100;
  2456. a[28] = 200;
  2457. a[29] = 300;
  2458. a[30] = 400;
  2459. a[31] = 500;
  2460. b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
  2461. b[9] = b[10] = 1;
  2462. b[11] = b[12] = 2;
  2463. b[13] = b[14] = b[15] = b[16] = 3;
  2464. b[17] = b[18] = b[19] = b[20] = b[21] = 4;
  2465. b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
  2466. b[28] = b[29] = 6;
  2467. b[30] = b[31] = 7;
  2468. }
  2469. /* The minimum additive increment value for the congestion control table */
  2470. #define CC_MIN_INCR 2U
  2471. /**
  2472. * t3_load_mtus - write the MTU and congestion control HW tables
  2473. * @adap: the adapter
  2474. * @mtus: the unrestricted values for the MTU table
  2475. * @alphs: the values for the congestion control alpha parameter
  2476. * @beta: the values for the congestion control beta parameter
  2477. * @mtu_cap: the maximum permitted effective MTU
  2478. *
  2479. * Write the MTU table with the supplied MTUs capping each at &mtu_cap.
  2480. * Update the high-speed congestion control table with the supplied alpha,
  2481. * beta, and MTUs.
  2482. */
  2483. void t3_load_mtus(struct adapter *adap, unsigned short mtus[NMTUS],
  2484. unsigned short alpha[NCCTRL_WIN],
  2485. unsigned short beta[NCCTRL_WIN], unsigned short mtu_cap)
  2486. {
  2487. static const unsigned int avg_pkts[NCCTRL_WIN] = {
  2488. 2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
  2489. 896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
  2490. 28672, 40960, 57344, 81920, 114688, 163840, 229376
  2491. };
  2492. unsigned int i, w;
  2493. for (i = 0; i < NMTUS; ++i) {
  2494. unsigned int mtu = min(mtus[i], mtu_cap);
  2495. unsigned int log2 = fls(mtu);
  2496. if (!(mtu & ((1 << log2) >> 2))) /* round */
  2497. log2--;
  2498. t3_write_reg(adap, A_TP_MTU_TABLE,
  2499. (i << 24) | (log2 << 16) | mtu);
  2500. for (w = 0; w < NCCTRL_WIN; ++w) {
  2501. unsigned int inc;
  2502. inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
  2503. CC_MIN_INCR);
  2504. t3_write_reg(adap, A_TP_CCTRL_TABLE, (i << 21) |
  2505. (w << 16) | (beta[w] << 13) | inc);
  2506. }
  2507. }
  2508. }
  2509. /**
  2510. * t3_read_hw_mtus - returns the values in the HW MTU table
  2511. * @adap: the adapter
  2512. * @mtus: where to store the HW MTU values
  2513. *
  2514. * Reads the HW MTU table.
  2515. */
  2516. void t3_read_hw_mtus(struct adapter *adap, unsigned short mtus[NMTUS])
  2517. {
  2518. int i;
  2519. for (i = 0; i < NMTUS; ++i) {
  2520. unsigned int val;
  2521. t3_write_reg(adap, A_TP_MTU_TABLE, 0xff000000 | i);
  2522. val = t3_read_reg(adap, A_TP_MTU_TABLE);
  2523. mtus[i] = val & 0x3fff;
  2524. }
  2525. }
  2526. /**
  2527. * t3_get_cong_cntl_tab - reads the congestion control table
  2528. * @adap: the adapter
  2529. * @incr: where to store the alpha values
  2530. *
  2531. * Reads the additive increments programmed into the HW congestion
  2532. * control table.
  2533. */
  2534. void t3_get_cong_cntl_tab(struct adapter *adap,
  2535. unsigned short incr[NMTUS][NCCTRL_WIN])
  2536. {
  2537. unsigned int mtu, w;
  2538. for (mtu = 0; mtu < NMTUS; ++mtu)
  2539. for (w = 0; w < NCCTRL_WIN; ++w) {
  2540. t3_write_reg(adap, A_TP_CCTRL_TABLE,
  2541. 0xffff0000 | (mtu << 5) | w);
  2542. incr[mtu][w] = t3_read_reg(adap, A_TP_CCTRL_TABLE) &
  2543. 0x1fff;
  2544. }
  2545. }
  2546. /**
  2547. * t3_tp_get_mib_stats - read TP's MIB counters
  2548. * @adap: the adapter
  2549. * @tps: holds the returned counter values
  2550. *
  2551. * Returns the values of TP's MIB counters.
  2552. */
  2553. void t3_tp_get_mib_stats(struct adapter *adap, struct tp_mib_stats *tps)
  2554. {
  2555. t3_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_RDATA, (u32 *) tps,
  2556. sizeof(*tps) / sizeof(u32), 0);
  2557. }
  2558. #define ulp_region(adap, name, start, len) \
  2559. t3_write_reg((adap), A_ULPRX_ ## name ## _LLIMIT, (start)); \
  2560. t3_write_reg((adap), A_ULPRX_ ## name ## _ULIMIT, \
  2561. (start) + (len) - 1); \
  2562. start += len
  2563. #define ulptx_region(adap, name, start, len) \
  2564. t3_write_reg((adap), A_ULPTX_ ## name ## _LLIMIT, (start)); \
  2565. t3_write_reg((adap), A_ULPTX_ ## name ## _ULIMIT, \
  2566. (start) + (len) - 1)
  2567. static void ulp_config(struct adapter *adap, const struct tp_params *p)
  2568. {
  2569. unsigned int m = p->chan_rx_size;
  2570. ulp_region(adap, ISCSI, m, p->chan_rx_size / 8);
  2571. ulp_region(adap, TDDP, m, p->chan_rx_size / 8);
  2572. ulptx_region(adap, TPT, m, p->chan_rx_size / 4);
  2573. ulp_region(adap, STAG, m, p->chan_rx_size / 4);
  2574. ulp_region(adap, RQ, m, p->chan_rx_size / 4);
  2575. ulptx_region(adap, PBL, m, p->chan_rx_size / 4);
  2576. ulp_region(adap, PBL, m, p->chan_rx_size / 4);
  2577. t3_write_reg(adap, A_ULPRX_TDDP_TAGMASK, 0xffffffff);
  2578. }
  2579. /**
  2580. * t3_set_proto_sram - set the contents of the protocol sram
  2581. * @adapter: the adapter
  2582. * @data: the protocol image
  2583. *
  2584. * Write the contents of the protocol SRAM.
  2585. */
  2586. int t3_set_proto_sram(struct adapter *adap, const u8 *data)
  2587. {
  2588. int i;
  2589. const __be32 *buf = (const __be32 *)data;
  2590. for (i = 0; i < PROTO_SRAM_LINES; i++) {
  2591. t3_write_reg(adap, A_TP_EMBED_OP_FIELD5, be32_to_cpu(*buf++));
  2592. t3_write_reg(adap, A_TP_EMBED_OP_FIELD4, be32_to_cpu(*buf++));
  2593. t3_write_reg(adap, A_TP_EMBED_OP_FIELD3, be32_to_cpu(*buf++));
  2594. t3_write_reg(adap, A_TP_EMBED_OP_FIELD2, be32_to_cpu(*buf++));
  2595. t3_write_reg(adap, A_TP_EMBED_OP_FIELD1, be32_to_cpu(*buf++));
  2596. t3_write_reg(adap, A_TP_EMBED_OP_FIELD0, i << 1 | 1 << 31);
  2597. if (t3_wait_op_done(adap, A_TP_EMBED_OP_FIELD0, 1, 1, 5, 1))
  2598. return -EIO;
  2599. }
  2600. t3_write_reg(adap, A_TP_EMBED_OP_FIELD0, 0);
  2601. return 0;
  2602. }
  2603. void t3_config_trace_filter(struct adapter *adapter,
  2604. const struct trace_params *tp, int filter_index,
  2605. int invert, int enable)
  2606. {
  2607. u32 addr, key[4], mask[4];
  2608. key[0] = tp->sport | (tp->sip << 16);
  2609. key[1] = (tp->sip >> 16) | (tp->dport << 16);
  2610. key[2] = tp->dip;
  2611. key[3] = tp->proto | (tp->vlan << 8) | (tp->intf << 20);
  2612. mask[0] = tp->sport_mask | (tp->sip_mask << 16);
  2613. mask[1] = (tp->sip_mask >> 16) | (tp->dport_mask << 16);
  2614. mask[2] = tp->dip_mask;
  2615. mask[3] = tp->proto_mask | (tp->vlan_mask << 8) | (tp->intf_mask << 20);
  2616. if (invert)
  2617. key[3] |= (1 << 29);
  2618. if (enable)
  2619. key[3] |= (1 << 28);
  2620. addr = filter_index ? A_TP_RX_TRC_KEY0 : A_TP_TX_TRC_KEY0;
  2621. tp_wr_indirect(adapter, addr++, key[0]);
  2622. tp_wr_indirect(adapter, addr++, mask[0]);
  2623. tp_wr_indirect(adapter, addr++, key[1]);
  2624. tp_wr_indirect(adapter, addr++, mask[1]);
  2625. tp_wr_indirect(adapter, addr++, key[2]);
  2626. tp_wr_indirect(adapter, addr++, mask[2]);
  2627. tp_wr_indirect(adapter, addr++, key[3]);
  2628. tp_wr_indirect(adapter, addr, mask[3]);
  2629. t3_read_reg(adapter, A_TP_PIO_DATA);
  2630. }
  2631. /**
  2632. * t3_config_sched - configure a HW traffic scheduler
  2633. * @adap: the adapter
  2634. * @kbps: target rate in Kbps
  2635. * @sched: the scheduler index
  2636. *
  2637. * Configure a HW scheduler for the target rate
  2638. */
  2639. int t3_config_sched(struct adapter *adap, unsigned int kbps, int sched)
  2640. {
  2641. unsigned int v, tps, cpt, bpt, delta, mindelta = ~0;
  2642. unsigned int clk = adap->params.vpd.cclk * 1000;
  2643. unsigned int selected_cpt = 0, selected_bpt = 0;
  2644. if (kbps > 0) {
  2645. kbps *= 125; /* -> bytes */
  2646. for (cpt = 1; cpt <= 255; cpt++) {
  2647. tps = clk / cpt;
  2648. bpt = (kbps + tps / 2) / tps;
  2649. if (bpt > 0 && bpt <= 255) {
  2650. v = bpt * tps;
  2651. delta = v >= kbps ? v - kbps : kbps - v;
  2652. if (delta <= mindelta) {
  2653. mindelta = delta;
  2654. selected_cpt = cpt;
  2655. selected_bpt = bpt;
  2656. }
  2657. } else if (selected_cpt)
  2658. break;
  2659. }
  2660. if (!selected_cpt)
  2661. return -EINVAL;
  2662. }
  2663. t3_write_reg(adap, A_TP_TM_PIO_ADDR,
  2664. A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2);
  2665. v = t3_read_reg(adap, A_TP_TM_PIO_DATA);
  2666. if (sched & 1)
  2667. v = (v & 0xffff) | (selected_cpt << 16) | (selected_bpt << 24);
  2668. else
  2669. v = (v & 0xffff0000) | selected_cpt | (selected_bpt << 8);
  2670. t3_write_reg(adap, A_TP_TM_PIO_DATA, v);
  2671. return 0;
  2672. }
  2673. static int tp_init(struct adapter *adap, const struct tp_params *p)
  2674. {
  2675. int busy = 0;
  2676. tp_config(adap, p);
  2677. t3_set_vlan_accel(adap, 3, 0);
  2678. if (is_offload(adap)) {
  2679. tp_set_timers(adap, adap->params.vpd.cclk * 1000);
  2680. t3_write_reg(adap, A_TP_RESET, F_FLSTINITENABLE);
  2681. busy = t3_wait_op_done(adap, A_TP_RESET, F_FLSTINITENABLE,
  2682. 0, 1000, 5);
  2683. if (busy)
  2684. CH_ERR(adap, "TP initialization timed out\n");
  2685. }
  2686. if (!busy)
  2687. t3_write_reg(adap, A_TP_RESET, F_TPRESET);
  2688. return busy;
  2689. }
  2690. int t3_mps_set_active_ports(struct adapter *adap, unsigned int port_mask)
  2691. {
  2692. if (port_mask & ~((1 << adap->params.nports) - 1))
  2693. return -EINVAL;
  2694. t3_set_reg_field(adap, A_MPS_CFG, F_PORT1ACTIVE | F_PORT0ACTIVE,
  2695. port_mask << S_PORT0ACTIVE);
  2696. return 0;
  2697. }
  2698. /*
  2699. * Perform the bits of HW initialization that are dependent on the number
  2700. * of available ports.
  2701. */
  2702. static void init_hw_for_avail_ports(struct adapter *adap, int nports)
  2703. {
  2704. int i;
  2705. if (nports == 1) {
  2706. t3_set_reg_field(adap, A_ULPRX_CTL, F_ROUND_ROBIN, 0);
  2707. t3_set_reg_field(adap, A_ULPTX_CONFIG, F_CFG_RR_ARB, 0);
  2708. t3_write_reg(adap, A_MPS_CFG, F_TPRXPORTEN | F_TPTXPORT0EN |
  2709. F_PORT0ACTIVE | F_ENFORCEPKT);
  2710. t3_write_reg(adap, A_PM1_TX_CFG, 0xffffffff);
  2711. } else {
  2712. t3_set_reg_field(adap, A_ULPRX_CTL, 0, F_ROUND_ROBIN);
  2713. t3_set_reg_field(adap, A_ULPTX_CONFIG, 0, F_CFG_RR_ARB);
  2714. t3_write_reg(adap, A_ULPTX_DMA_WEIGHT,
  2715. V_D1_WEIGHT(16) | V_D0_WEIGHT(16));
  2716. t3_write_reg(adap, A_MPS_CFG, F_TPTXPORT0EN | F_TPTXPORT1EN |
  2717. F_TPRXPORTEN | F_PORT0ACTIVE | F_PORT1ACTIVE |
  2718. F_ENFORCEPKT);
  2719. t3_write_reg(adap, A_PM1_TX_CFG, 0x80008000);
  2720. t3_set_reg_field(adap, A_TP_PC_CONFIG, 0, F_TXTOSQUEUEMAPMODE);
  2721. t3_write_reg(adap, A_TP_TX_MOD_QUEUE_REQ_MAP,
  2722. V_TX_MOD_QUEUE_REQ_MAP(0xaa));
  2723. for (i = 0; i < 16; i++)
  2724. t3_write_reg(adap, A_TP_TX_MOD_QUE_TABLE,
  2725. (i << 16) | 0x1010);
  2726. }
  2727. }
  2728. static int calibrate_xgm(struct adapter *adapter)
  2729. {
  2730. if (uses_xaui(adapter)) {
  2731. unsigned int v, i;
  2732. for (i = 0; i < 5; ++i) {
  2733. t3_write_reg(adapter, A_XGM_XAUI_IMP, 0);
  2734. t3_read_reg(adapter, A_XGM_XAUI_IMP);
  2735. msleep(1);
  2736. v = t3_read_reg(adapter, A_XGM_XAUI_IMP);
  2737. if (!(v & (F_XGM_CALFAULT | F_CALBUSY))) {
  2738. t3_write_reg(adapter, A_XGM_XAUI_IMP,
  2739. V_XAUIIMP(G_CALIMP(v) >> 2));
  2740. return 0;
  2741. }
  2742. }
  2743. CH_ERR(adapter, "MAC calibration failed\n");
  2744. return -1;
  2745. } else {
  2746. t3_write_reg(adapter, A_XGM_RGMII_IMP,
  2747. V_RGMIIIMPPD(2) | V_RGMIIIMPPU(3));
  2748. t3_set_reg_field(adapter, A_XGM_RGMII_IMP, F_XGM_IMPSETUPDATE,
  2749. F_XGM_IMPSETUPDATE);
  2750. }
  2751. return 0;
  2752. }
  2753. static void calibrate_xgm_t3b(struct adapter *adapter)
  2754. {
  2755. if (!uses_xaui(adapter)) {
  2756. t3_write_reg(adapter, A_XGM_RGMII_IMP, F_CALRESET |
  2757. F_CALUPDATE | V_RGMIIIMPPD(2) | V_RGMIIIMPPU(3));
  2758. t3_set_reg_field(adapter, A_XGM_RGMII_IMP, F_CALRESET, 0);
  2759. t3_set_reg_field(adapter, A_XGM_RGMII_IMP, 0,
  2760. F_XGM_IMPSETUPDATE);
  2761. t3_set_reg_field(adapter, A_XGM_RGMII_IMP, F_XGM_IMPSETUPDATE,
  2762. 0);
  2763. t3_set_reg_field(adapter, A_XGM_RGMII_IMP, F_CALUPDATE, 0);
  2764. t3_set_reg_field(adapter, A_XGM_RGMII_IMP, 0, F_CALUPDATE);
  2765. }
  2766. }
  2767. struct mc7_timing_params {
  2768. unsigned char ActToPreDly;
  2769. unsigned char ActToRdWrDly;
  2770. unsigned char PreCyc;
  2771. unsigned char RefCyc[5];
  2772. unsigned char BkCyc;
  2773. unsigned char WrToRdDly;
  2774. unsigned char RdToWrDly;
  2775. };
  2776. /*
  2777. * Write a value to a register and check that the write completed. These
  2778. * writes normally complete in a cycle or two, so one read should suffice.
  2779. * The very first read exists to flush the posted write to the device.
  2780. */
  2781. static int wrreg_wait(struct adapter *adapter, unsigned int addr, u32 val)
  2782. {
  2783. t3_write_reg(adapter, addr, val);
  2784. t3_read_reg(adapter, addr); /* flush */
  2785. if (!(t3_read_reg(adapter, addr) & F_BUSY))
  2786. return 0;
  2787. CH_ERR(adapter, "write to MC7 register 0x%x timed out\n", addr);
  2788. return -EIO;
  2789. }
  2790. static int mc7_init(struct mc7 *mc7, unsigned int mc7_clock, int mem_type)
  2791. {
  2792. static const unsigned int mc7_mode[] = {
  2793. 0x632, 0x642, 0x652, 0x432, 0x442
  2794. };
  2795. static const struct mc7_timing_params mc7_timings[] = {
  2796. {12, 3, 4, {20, 28, 34, 52, 0}, 15, 6, 4},
  2797. {12, 4, 5, {20, 28, 34, 52, 0}, 16, 7, 4},
  2798. {12, 5, 6, {20, 28, 34, 52, 0}, 17, 8, 4},
  2799. {9, 3, 4, {15, 21, 26, 39, 0}, 12, 6, 4},
  2800. {9, 4, 5, {15, 21, 26, 39, 0}, 13, 7, 4}
  2801. };
  2802. u32 val;
  2803. unsigned int width, density, slow, attempts;
  2804. struct adapter *adapter = mc7->adapter;
  2805. const struct mc7_timing_params *p = &mc7_timings[mem_type];
  2806. if (!mc7->size)
  2807. return 0;
  2808. val = t3_read_reg(adapter, mc7->offset + A_MC7_CFG);
  2809. slow = val & F_SLOW;
  2810. width = G_WIDTH(val);
  2811. density = G_DEN(val);
  2812. t3_write_reg(adapter, mc7->offset + A_MC7_CFG, val | F_IFEN);
  2813. val = t3_read_reg(adapter, mc7->offset + A_MC7_CFG); /* flush */
  2814. msleep(1);
  2815. if (!slow) {
  2816. t3_write_reg(adapter, mc7->offset + A_MC7_CAL, F_SGL_CAL_EN);
  2817. t3_read_reg(adapter, mc7->offset + A_MC7_CAL);
  2818. msleep(1);
  2819. if (t3_read_reg(adapter, mc7->offset + A_MC7_CAL) &
  2820. (F_BUSY | F_SGL_CAL_EN | F_CAL_FAULT)) {
  2821. CH_ERR(adapter, "%s MC7 calibration timed out\n",
  2822. mc7->name);
  2823. goto out_fail;
  2824. }
  2825. }
  2826. t3_write_reg(adapter, mc7->offset + A_MC7_PARM,
  2827. V_ACTTOPREDLY(p->ActToPreDly) |
  2828. V_ACTTORDWRDLY(p->ActToRdWrDly) | V_PRECYC(p->PreCyc) |
  2829. V_REFCYC(p->RefCyc[density]) | V_BKCYC(p->BkCyc) |
  2830. V_WRTORDDLY(p->WrToRdDly) | V_RDTOWRDLY(p->RdToWrDly));
  2831. t3_write_reg(adapter, mc7->offset + A_MC7_CFG,
  2832. val | F_CLKEN | F_TERM150);
  2833. t3_read_reg(adapter, mc7->offset + A_MC7_CFG); /* flush */
  2834. if (!slow)
  2835. t3_set_reg_field(adapter, mc7->offset + A_MC7_DLL, F_DLLENB,
  2836. F_DLLENB);
  2837. udelay(1);
  2838. val = slow ? 3 : 6;
  2839. if (wrreg_wait(adapter, mc7->offset + A_MC7_PRE, 0) ||
  2840. wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE2, 0) ||
  2841. wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE3, 0) ||
  2842. wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE1, val))
  2843. goto out_fail;
  2844. if (!slow) {
  2845. t3_write_reg(adapter, mc7->offset + A_MC7_MODE, 0x100);
  2846. t3_set_reg_field(adapter, mc7->offset + A_MC7_DLL, F_DLLRST, 0);
  2847. udelay(5);
  2848. }
  2849. if (wrreg_wait(adapter, mc7->offset + A_MC7_PRE, 0) ||
  2850. wrreg_wait(adapter, mc7->offset + A_MC7_REF, 0) ||
  2851. wrreg_wait(adapter, mc7->offset + A_MC7_REF, 0) ||
  2852. wrreg_wait(adapter, mc7->offset + A_MC7_MODE,
  2853. mc7_mode[mem_type]) ||
  2854. wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE1, val | 0x380) ||
  2855. wrreg_wait(adapter, mc7->offset + A_MC7_EXT_MODE1, val))
  2856. goto out_fail;
  2857. /* clock value is in KHz */
  2858. mc7_clock = mc7_clock * 7812 + mc7_clock / 2; /* ns */
  2859. mc7_clock /= 1000000; /* KHz->MHz, ns->us */
  2860. t3_write_reg(adapter, mc7->offset + A_MC7_REF,
  2861. F_PERREFEN | V_PREREFDIV(mc7_clock));
  2862. t3_read_reg(adapter, mc7->offset + A_MC7_REF); /* flush */
  2863. t3_write_reg(adapter, mc7->offset + A_MC7_ECC, F_ECCGENEN | F_ECCCHKEN);
  2864. t3_write_reg(adapter, mc7->offset + A_MC7_BIST_DATA, 0);
  2865. t3_write_reg(adapter, mc7->offset + A_MC7_BIST_ADDR_BEG, 0);
  2866. t3_write_reg(adapter, mc7->offset + A_MC7_BIST_ADDR_END,
  2867. (mc7->size << width) - 1);
  2868. t3_write_reg(adapter, mc7->offset + A_MC7_BIST_OP, V_OP(1));
  2869. t3_read_reg(adapter, mc7->offset + A_MC7_BIST_OP); /* flush */
  2870. attempts = 50;
  2871. do {
  2872. msleep(250);
  2873. val = t3_read_reg(adapter, mc7->offset + A_MC7_BIST_OP);
  2874. } while ((val & F_BUSY) && --attempts);
  2875. if (val & F_BUSY) {
  2876. CH_ERR(adapter, "%s MC7 BIST timed out\n", mc7->name);
  2877. goto out_fail;
  2878. }
  2879. /* Enable normal memory accesses. */
  2880. t3_set_reg_field(adapter, mc7->offset + A_MC7_CFG, 0, F_RDY);
  2881. return 0;
  2882. out_fail:
  2883. return -1;
  2884. }
  2885. static void config_pcie(struct adapter *adap)
  2886. {
  2887. static const u16 ack_lat[4][6] = {
  2888. {237, 416, 559, 1071, 2095, 4143},
  2889. {128, 217, 289, 545, 1057, 2081},
  2890. {73, 118, 154, 282, 538, 1050},
  2891. {67, 107, 86, 150, 278, 534}
  2892. };
  2893. static const u16 rpl_tmr[4][6] = {
  2894. {711, 1248, 1677, 3213, 6285, 12429},
  2895. {384, 651, 867, 1635, 3171, 6243},
  2896. {219, 354, 462, 846, 1614, 3150},
  2897. {201, 321, 258, 450, 834, 1602}
  2898. };
  2899. u16 val;
  2900. unsigned int log2_width, pldsize;
  2901. unsigned int fst_trn_rx, fst_trn_tx, acklat, rpllmt;
  2902. pci_read_config_word(adap->pdev,
  2903. adap->params.pci.pcie_cap_addr + PCI_EXP_DEVCTL,
  2904. &val);
  2905. pldsize = (val & PCI_EXP_DEVCTL_PAYLOAD) >> 5;
  2906. pci_read_config_word(adap->pdev,
  2907. adap->params.pci.pcie_cap_addr + PCI_EXP_LNKCTL,
  2908. &val);
  2909. fst_trn_tx = G_NUMFSTTRNSEQ(t3_read_reg(adap, A_PCIE_PEX_CTRL0));
  2910. fst_trn_rx = adap->params.rev == 0 ? fst_trn_tx :
  2911. G_NUMFSTTRNSEQRX(t3_read_reg(adap, A_PCIE_MODE));
  2912. log2_width = fls(adap->params.pci.width) - 1;
  2913. acklat = ack_lat[log2_width][pldsize];
  2914. if (val & 1) /* check LOsEnable */
  2915. acklat += fst_trn_tx * 4;
  2916. rpllmt = rpl_tmr[log2_width][pldsize] + fst_trn_rx * 4;
  2917. if (adap->params.rev == 0)
  2918. t3_set_reg_field(adap, A_PCIE_PEX_CTRL1,
  2919. V_T3A_ACKLAT(M_T3A_ACKLAT),
  2920. V_T3A_ACKLAT(acklat));
  2921. else
  2922. t3_set_reg_field(adap, A_PCIE_PEX_CTRL1, V_ACKLAT(M_ACKLAT),
  2923. V_ACKLAT(acklat));
  2924. t3_set_reg_field(adap, A_PCIE_PEX_CTRL0, V_REPLAYLMT(M_REPLAYLMT),
  2925. V_REPLAYLMT(rpllmt));
  2926. t3_write_reg(adap, A_PCIE_PEX_ERR, 0xffffffff);
  2927. t3_set_reg_field(adap, A_PCIE_CFG, 0,
  2928. F_ENABLELINKDWNDRST | F_ENABLELINKDOWNRST |
  2929. F_PCIE_DMASTOPEN | F_PCIE_CLIDECEN);
  2930. }
  2931. /*
  2932. * Initialize and configure T3 HW modules. This performs the
  2933. * initialization steps that need to be done once after a card is reset.
  2934. * MAC and PHY initialization is handled separarely whenever a port is enabled.
  2935. *
  2936. * fw_params are passed to FW and their value is platform dependent. Only the
  2937. * top 8 bits are available for use, the rest must be 0.
  2938. */
  2939. int t3_init_hw(struct adapter *adapter, u32 fw_params)
  2940. {
  2941. int err = -EIO, attempts, i;
  2942. const struct vpd_params *vpd = &adapter->params.vpd;
  2943. if (adapter->params.rev > 0)
  2944. calibrate_xgm_t3b(adapter);
  2945. else if (calibrate_xgm(adapter))
  2946. goto out_err;
  2947. if (vpd->mclk) {
  2948. partition_mem(adapter, &adapter->params.tp);
  2949. if (mc7_init(&adapter->pmrx, vpd->mclk, vpd->mem_timing) ||
  2950. mc7_init(&adapter->pmtx, vpd->mclk, vpd->mem_timing) ||
  2951. mc7_init(&adapter->cm, vpd->mclk, vpd->mem_timing) ||
  2952. t3_mc5_init(&adapter->mc5, adapter->params.mc5.nservers,
  2953. adapter->params.mc5.nfilters,
  2954. adapter->params.mc5.nroutes))
  2955. goto out_err;
  2956. for (i = 0; i < 32; i++)
  2957. if (clear_sge_ctxt(adapter, i, F_CQ))
  2958. goto out_err;
  2959. }
  2960. if (tp_init(adapter, &adapter->params.tp))
  2961. goto out_err;
  2962. t3_tp_set_coalescing_size(adapter,
  2963. min(adapter->params.sge.max_pkt_size,
  2964. MAX_RX_COALESCING_LEN), 1);
  2965. t3_tp_set_max_rxsize(adapter,
  2966. min(adapter->params.sge.max_pkt_size, 16384U));
  2967. ulp_config(adapter, &adapter->params.tp);
  2968. if (is_pcie(adapter))
  2969. config_pcie(adapter);
  2970. else
  2971. t3_set_reg_field(adapter, A_PCIX_CFG, 0,
  2972. F_DMASTOPEN | F_CLIDECEN);
  2973. if (adapter->params.rev == T3_REV_C)
  2974. t3_set_reg_field(adapter, A_ULPTX_CONFIG, 0,
  2975. F_CFG_CQE_SOP_MASK);
  2976. t3_write_reg(adapter, A_PM1_RX_CFG, 0xffffffff);
  2977. t3_write_reg(adapter, A_PM1_RX_MODE, 0);
  2978. t3_write_reg(adapter, A_PM1_TX_MODE, 0);
  2979. init_hw_for_avail_ports(adapter, adapter->params.nports);
  2980. t3_sge_init(adapter, &adapter->params.sge);
  2981. t3_write_reg(adapter, A_CIM_HOST_ACC_DATA, vpd->uclk | fw_params);
  2982. t3_write_reg(adapter, A_CIM_BOOT_CFG,
  2983. V_BOOTADDR(FW_FLASH_BOOT_ADDR >> 2));
  2984. t3_read_reg(adapter, A_CIM_BOOT_CFG); /* flush */
  2985. attempts = 100;
  2986. do { /* wait for uP to initialize */
  2987. msleep(20);
  2988. } while (t3_read_reg(adapter, A_CIM_HOST_ACC_DATA) && --attempts);
  2989. if (!attempts) {
  2990. CH_ERR(adapter, "uP initialization timed out\n");
  2991. goto out_err;
  2992. }
  2993. err = 0;
  2994. out_err:
  2995. return err;
  2996. }
  2997. /**
  2998. * get_pci_mode - determine a card's PCI mode
  2999. * @adapter: the adapter
  3000. * @p: where to store the PCI settings
  3001. *
  3002. * Determines a card's PCI mode and associated parameters, such as speed
  3003. * and width.
  3004. */
  3005. static void get_pci_mode(struct adapter *adapter, struct pci_params *p)
  3006. {
  3007. static unsigned short speed_map[] = { 33, 66, 100, 133 };
  3008. u32 pci_mode, pcie_cap;
  3009. pcie_cap = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
  3010. if (pcie_cap) {
  3011. u16 val;
  3012. p->variant = PCI_VARIANT_PCIE;
  3013. p->pcie_cap_addr = pcie_cap;
  3014. pci_read_config_word(adapter->pdev, pcie_cap + PCI_EXP_LNKSTA,
  3015. &val);
  3016. p->width = (val >> 4) & 0x3f;
  3017. return;
  3018. }
  3019. pci_mode = t3_read_reg(adapter, A_PCIX_MODE);
  3020. p->speed = speed_map[G_PCLKRANGE(pci_mode)];
  3021. p->width = (pci_mode & F_64BIT) ? 64 : 32;
  3022. pci_mode = G_PCIXINITPAT(pci_mode);
  3023. if (pci_mode == 0)
  3024. p->variant = PCI_VARIANT_PCI;
  3025. else if (pci_mode < 4)
  3026. p->variant = PCI_VARIANT_PCIX_MODE1_PARITY;
  3027. else if (pci_mode < 8)
  3028. p->variant = PCI_VARIANT_PCIX_MODE1_ECC;
  3029. else
  3030. p->variant = PCI_VARIANT_PCIX_266_MODE2;
  3031. }
  3032. /**
  3033. * init_link_config - initialize a link's SW state
  3034. * @lc: structure holding the link state
  3035. * @ai: information about the current card
  3036. *
  3037. * Initializes the SW state maintained for each link, including the link's
  3038. * capabilities and default speed/duplex/flow-control/autonegotiation
  3039. * settings.
  3040. */
  3041. static void init_link_config(struct link_config *lc, unsigned int caps)
  3042. {
  3043. lc->supported = caps;
  3044. lc->requested_speed = lc->speed = SPEED_INVALID;
  3045. lc->requested_duplex = lc->duplex = DUPLEX_INVALID;
  3046. lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
  3047. if (lc->supported & SUPPORTED_Autoneg) {
  3048. lc->advertising = lc->supported;
  3049. lc->autoneg = AUTONEG_ENABLE;
  3050. lc->requested_fc |= PAUSE_AUTONEG;
  3051. } else {
  3052. lc->advertising = 0;
  3053. lc->autoneg = AUTONEG_DISABLE;
  3054. }
  3055. }
  3056. /**
  3057. * mc7_calc_size - calculate MC7 memory size
  3058. * @cfg: the MC7 configuration
  3059. *
  3060. * Calculates the size of an MC7 memory in bytes from the value of its
  3061. * configuration register.
  3062. */
  3063. static unsigned int mc7_calc_size(u32 cfg)
  3064. {
  3065. unsigned int width = G_WIDTH(cfg);
  3066. unsigned int banks = !!(cfg & F_BKS) + 1;
  3067. unsigned int org = !!(cfg & F_ORG) + 1;
  3068. unsigned int density = G_DEN(cfg);
  3069. unsigned int MBs = ((256 << density) * banks) / (org << width);
  3070. return MBs << 20;
  3071. }
  3072. static void mc7_prep(struct adapter *adapter, struct mc7 *mc7,
  3073. unsigned int base_addr, const char *name)
  3074. {
  3075. u32 cfg;
  3076. mc7->adapter = adapter;
  3077. mc7->name = name;
  3078. mc7->offset = base_addr - MC7_PMRX_BASE_ADDR;
  3079. cfg = t3_read_reg(adapter, mc7->offset + A_MC7_CFG);
  3080. mc7->size = mc7->size = G_DEN(cfg) == M_DEN ? 0 : mc7_calc_size(cfg);
  3081. mc7->width = G_WIDTH(cfg);
  3082. }
  3083. void mac_prep(struct cmac *mac, struct adapter *adapter, int index)
  3084. {
  3085. mac->adapter = adapter;
  3086. mac->offset = (XGMAC0_1_BASE_ADDR - XGMAC0_0_BASE_ADDR) * index;
  3087. mac->nucast = 1;
  3088. if (adapter->params.rev == 0 && uses_xaui(adapter)) {
  3089. t3_write_reg(adapter, A_XGM_SERDES_CTRL + mac->offset,
  3090. is_10G(adapter) ? 0x2901c04 : 0x2301c04);
  3091. t3_set_reg_field(adapter, A_XGM_PORT_CFG + mac->offset,
  3092. F_ENRGMII, 0);
  3093. }
  3094. }
  3095. void early_hw_init(struct adapter *adapter, const struct adapter_info *ai)
  3096. {
  3097. u32 val = V_PORTSPEED(is_10G(adapter) ? 3 : 2);
  3098. mi1_init(adapter, ai);
  3099. t3_write_reg(adapter, A_I2C_CFG, /* set for 80KHz */
  3100. V_I2C_CLKDIV(adapter->params.vpd.cclk / 80 - 1));
  3101. t3_write_reg(adapter, A_T3DBG_GPIO_EN,
  3102. ai->gpio_out | F_GPIO0_OEN | F_GPIO0_OUT_VAL);
  3103. t3_write_reg(adapter, A_MC5_DB_SERVER_INDEX, 0);
  3104. t3_write_reg(adapter, A_SG_OCO_BASE, V_BASE1(0xfff));
  3105. if (adapter->params.rev == 0 || !uses_xaui(adapter))
  3106. val |= F_ENRGMII;
  3107. /* Enable MAC clocks so we can access the registers */
  3108. t3_write_reg(adapter, A_XGM_PORT_CFG, val);
  3109. t3_read_reg(adapter, A_XGM_PORT_CFG);
  3110. val |= F_CLKDIVRESET_;
  3111. t3_write_reg(adapter, A_XGM_PORT_CFG, val);
  3112. t3_read_reg(adapter, A_XGM_PORT_CFG);
  3113. t3_write_reg(adapter, XGM_REG(A_XGM_PORT_CFG, 1), val);
  3114. t3_read_reg(adapter, A_XGM_PORT_CFG);
  3115. }
  3116. /*
  3117. * Reset the adapter.
  3118. * Older PCIe cards lose their config space during reset, PCI-X
  3119. * ones don't.
  3120. */
  3121. static int t3_reset_adapter(struct adapter *adapter)
  3122. {
  3123. int i, save_and_restore_pcie =
  3124. adapter->params.rev < T3_REV_B2 && is_pcie(adapter);
  3125. uint16_t devid = 0;
  3126. if (save_and_restore_pcie)
  3127. pci_save_state(adapter->pdev);
  3128. t3_write_reg(adapter, A_PL_RST, F_CRSTWRM | F_CRSTWRMMODE);
  3129. /*
  3130. * Delay. Give Some time to device to reset fully.
  3131. * XXX The delay time should be modified.
  3132. */
  3133. for (i = 0; i < 10; i++) {
  3134. msleep(50);
  3135. pci_read_config_word(adapter->pdev, 0x00, &devid);
  3136. if (devid == 0x1425)
  3137. break;
  3138. }
  3139. if (devid != 0x1425)
  3140. return -1;
  3141. if (save_and_restore_pcie)
  3142. pci_restore_state(adapter->pdev);
  3143. return 0;
  3144. }
  3145. static int init_parity(struct adapter *adap)
  3146. {
  3147. int i, err, addr;
  3148. if (t3_read_reg(adap, A_SG_CONTEXT_CMD) & F_CONTEXT_CMD_BUSY)
  3149. return -EBUSY;
  3150. for (err = i = 0; !err && i < 16; i++)
  3151. err = clear_sge_ctxt(adap, i, F_EGRESS);
  3152. for (i = 0xfff0; !err && i <= 0xffff; i++)
  3153. err = clear_sge_ctxt(adap, i, F_EGRESS);
  3154. for (i = 0; !err && i < SGE_QSETS; i++)
  3155. err = clear_sge_ctxt(adap, i, F_RESPONSEQ);
  3156. if (err)
  3157. return err;
  3158. t3_write_reg(adap, A_CIM_IBQ_DBG_DATA, 0);
  3159. for (i = 0; i < 4; i++)
  3160. for (addr = 0; addr <= M_IBQDBGADDR; addr++) {
  3161. t3_write_reg(adap, A_CIM_IBQ_DBG_CFG, F_IBQDBGEN |
  3162. F_IBQDBGWR | V_IBQDBGQID(i) |
  3163. V_IBQDBGADDR(addr));
  3164. err = t3_wait_op_done(adap, A_CIM_IBQ_DBG_CFG,
  3165. F_IBQDBGBUSY, 0, 2, 1);
  3166. if (err)
  3167. return err;
  3168. }
  3169. return 0;
  3170. }
  3171. /*
  3172. * Initialize adapter SW state for the various HW modules, set initial values
  3173. * for some adapter tunables, take PHYs out of reset, and initialize the MDIO
  3174. * interface.
  3175. */
  3176. int t3_prep_adapter(struct adapter *adapter, const struct adapter_info *ai,
  3177. int reset)
  3178. {
  3179. int ret;
  3180. unsigned int i, j = 0;
  3181. get_pci_mode(adapter, &adapter->params.pci);
  3182. adapter->params.info = ai;
  3183. adapter->params.nports = ai->nports;
  3184. adapter->params.rev = t3_read_reg(adapter, A_PL_REV);
  3185. adapter->params.linkpoll_period = 0;
  3186. adapter->params.stats_update_period = is_10G(adapter) ?
  3187. MAC_STATS_ACCUM_SECS : (MAC_STATS_ACCUM_SECS * 10);
  3188. adapter->params.pci.vpd_cap_addr =
  3189. pci_find_capability(adapter->pdev, PCI_CAP_ID_VPD);
  3190. ret = get_vpd_params(adapter, &adapter->params.vpd);
  3191. if (ret < 0)
  3192. return ret;
  3193. if (reset && t3_reset_adapter(adapter))
  3194. return -1;
  3195. t3_sge_prep(adapter, &adapter->params.sge);
  3196. if (adapter->params.vpd.mclk) {
  3197. struct tp_params *p = &adapter->params.tp;
  3198. mc7_prep(adapter, &adapter->pmrx, MC7_PMRX_BASE_ADDR, "PMRX");
  3199. mc7_prep(adapter, &adapter->pmtx, MC7_PMTX_BASE_ADDR, "PMTX");
  3200. mc7_prep(adapter, &adapter->cm, MC7_CM_BASE_ADDR, "CM");
  3201. p->nchan = ai->nports;
  3202. p->pmrx_size = t3_mc7_size(&adapter->pmrx);
  3203. p->pmtx_size = t3_mc7_size(&adapter->pmtx);
  3204. p->cm_size = t3_mc7_size(&adapter->cm);
  3205. p->chan_rx_size = p->pmrx_size / 2; /* only 1 Rx channel */
  3206. p->chan_tx_size = p->pmtx_size / p->nchan;
  3207. p->rx_pg_size = 64 * 1024;
  3208. p->tx_pg_size = is_10G(adapter) ? 64 * 1024 : 16 * 1024;
  3209. p->rx_num_pgs = pm_num_pages(p->chan_rx_size, p->rx_pg_size);
  3210. p->tx_num_pgs = pm_num_pages(p->chan_tx_size, p->tx_pg_size);
  3211. p->ntimer_qs = p->cm_size >= (128 << 20) ||
  3212. adapter->params.rev > 0 ? 12 : 6;
  3213. }
  3214. adapter->params.offload = t3_mc7_size(&adapter->pmrx) &&
  3215. t3_mc7_size(&adapter->pmtx) &&
  3216. t3_mc7_size(&adapter->cm);
  3217. if (is_offload(adapter)) {
  3218. adapter->params.mc5.nservers = DEFAULT_NSERVERS;
  3219. adapter->params.mc5.nfilters = adapter->params.rev > 0 ?
  3220. DEFAULT_NFILTERS : 0;
  3221. adapter->params.mc5.nroutes = 0;
  3222. t3_mc5_prep(adapter, &adapter->mc5, MC5_MODE_144_BIT);
  3223. init_mtus(adapter->params.mtus);
  3224. init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
  3225. }
  3226. early_hw_init(adapter, ai);
  3227. ret = init_parity(adapter);
  3228. if (ret)
  3229. return ret;
  3230. for_each_port(adapter, i) {
  3231. u8 hw_addr[6];
  3232. struct port_info *p = adap2pinfo(adapter, i);
  3233. while (!adapter->params.vpd.port_type[j])
  3234. ++j;
  3235. p->port_type = &port_types[adapter->params.vpd.port_type[j]];
  3236. p->port_type->phy_prep(&p->phy, adapter, ai->phy_base_addr + j,
  3237. ai->mdio_ops);
  3238. mac_prep(&p->mac, adapter, j);
  3239. ++j;
  3240. /*
  3241. * The VPD EEPROM stores the base Ethernet address for the
  3242. * card. A port's address is derived from the base by adding
  3243. * the port's index to the base's low octet.
  3244. */
  3245. memcpy(hw_addr, adapter->params.vpd.eth_base, 5);
  3246. hw_addr[5] = adapter->params.vpd.eth_base[5] + i;
  3247. memcpy(adapter->port[i]->dev_addr, hw_addr,
  3248. ETH_ALEN);
  3249. memcpy(adapter->port[i]->perm_addr, hw_addr,
  3250. ETH_ALEN);
  3251. init_link_config(&p->link_config, p->port_type->caps);
  3252. p->phy.ops->power_down(&p->phy, 1);
  3253. if (!(p->port_type->caps & SUPPORTED_IRQ))
  3254. adapter->params.linkpoll_period = 10;
  3255. }
  3256. return 0;
  3257. }
  3258. void t3_led_ready(struct adapter *adapter)
  3259. {
  3260. t3_set_reg_field(adapter, A_T3DBG_GPIO_EN, F_GPIO0_OUT_VAL,
  3261. F_GPIO0_OUT_VAL);
  3262. }
  3263. int t3_replay_prep_adapter(struct adapter *adapter)
  3264. {
  3265. const struct adapter_info *ai = adapter->params.info;
  3266. unsigned int i, j = 0;
  3267. int ret;
  3268. early_hw_init(adapter, ai);
  3269. ret = init_parity(adapter);
  3270. if (ret)
  3271. return ret;
  3272. for_each_port(adapter, i) {
  3273. struct port_info *p = adap2pinfo(adapter, i);
  3274. while (!adapter->params.vpd.port_type[j])
  3275. ++j;
  3276. p->port_type->phy_prep(&p->phy, adapter, ai->phy_base_addr + j,
  3277. ai->mdio_ops);
  3278. p->phy.ops->power_down(&p->phy, 1);
  3279. ++j;
  3280. }
  3281. return 0;
  3282. }