bnx2x_init.h 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569
  1. /* bnx2x_init.h: Broadcom Everest network driver.
  2. *
  3. * Copyright (c) 2007-2008 Broadcom Corporation
  4. *
  5. * This program is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License as published by
  7. * the Free Software Foundation.
  8. *
  9. * Maintained by: Eilon Greenstein <eilong@broadcom.com>
  10. * Written by: Eliezer Tamir
  11. */
  12. #ifndef BNX2X_INIT_H
  13. #define BNX2X_INIT_H
  14. #define COMMON 0x1
  15. #define PORT0 0x2
  16. #define PORT1 0x4
  17. #define INIT_EMULATION 0x1
  18. #define INIT_FPGA 0x2
  19. #define INIT_ASIC 0x4
  20. #define INIT_HARDWARE 0x7
  21. #define STORM_INTMEM_SIZE (0x5800 / 4)
  22. #define TSTORM_INTMEM_ADDR 0x1a0000
  23. #define CSTORM_INTMEM_ADDR 0x220000
  24. #define XSTORM_INTMEM_ADDR 0x2a0000
  25. #define USTORM_INTMEM_ADDR 0x320000
  26. /* Init operation types and structures */
  27. #define OP_RD 0x1 /* read single register */
  28. #define OP_WR 0x2 /* write single register */
  29. #define OP_IW 0x3 /* write single register using mailbox */
  30. #define OP_SW 0x4 /* copy a string to the device */
  31. #define OP_SI 0x5 /* copy a string using mailbox */
  32. #define OP_ZR 0x6 /* clear memory */
  33. #define OP_ZP 0x7 /* unzip then copy with DMAE */
  34. #define OP_WB 0x8 /* copy a string using DMAE */
  35. struct raw_op {
  36. u32 op :8;
  37. u32 offset :24;
  38. u32 raw_data;
  39. };
  40. struct op_read {
  41. u32 op :8;
  42. u32 offset :24;
  43. u32 pad;
  44. };
  45. struct op_write {
  46. u32 op :8;
  47. u32 offset :24;
  48. u32 val;
  49. };
  50. struct op_string_write {
  51. u32 op :8;
  52. u32 offset :24;
  53. #ifdef __LITTLE_ENDIAN
  54. u16 data_off;
  55. u16 data_len;
  56. #else /* __BIG_ENDIAN */
  57. u16 data_len;
  58. u16 data_off;
  59. #endif
  60. };
  61. struct op_zero {
  62. u32 op :8;
  63. u32 offset :24;
  64. u32 len;
  65. };
  66. union init_op {
  67. struct op_read read;
  68. struct op_write write;
  69. struct op_string_write str_wr;
  70. struct op_zero zero;
  71. struct raw_op raw;
  72. };
  73. #include "bnx2x_init_values.h"
  74. static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val);
  75. static void bnx2x_write_dmae(struct bnx2x *bp, dma_addr_t dma_addr,
  76. u32 dst_addr, u32 len32);
  77. static int bnx2x_gunzip(struct bnx2x *bp, u8 *zbuf, int len);
  78. static void bnx2x_init_str_wr(struct bnx2x *bp, u32 addr, const u32 *data,
  79. u32 len)
  80. {
  81. int i;
  82. for (i = 0; i < len; i++) {
  83. REG_WR(bp, addr + i*4, data[i]);
  84. if (!(i % 10000)) {
  85. touch_softlockup_watchdog();
  86. cpu_relax();
  87. }
  88. }
  89. }
  90. #define INIT_MEM_WR(reg, data, reg_off, len) \
  91. bnx2x_init_str_wr(bp, reg + reg_off*4, data, len)
  92. static void bnx2x_init_ind_wr(struct bnx2x *bp, u32 addr, const u32 *data,
  93. u16 len)
  94. {
  95. int i;
  96. for (i = 0; i < len; i++) {
  97. REG_WR_IND(bp, addr + i*4, data[i]);
  98. if (!(i % 10000)) {
  99. touch_softlockup_watchdog();
  100. cpu_relax();
  101. }
  102. }
  103. }
  104. static void bnx2x_init_wr_wb(struct bnx2x *bp, u32 addr, const u32 *data,
  105. u32 len, int gunzip)
  106. {
  107. int offset = 0;
  108. if (gunzip) {
  109. int rc;
  110. #ifdef __BIG_ENDIAN
  111. int i, size;
  112. u32 *temp;
  113. temp = kmalloc(len, GFP_KERNEL);
  114. size = (len / 4) + ((len % 4) ? 1 : 0);
  115. for (i = 0; i < size; i++)
  116. temp[i] = swab32(data[i]);
  117. data = temp;
  118. #endif
  119. rc = bnx2x_gunzip(bp, (u8 *)data, len);
  120. if (rc) {
  121. DP(NETIF_MSG_HW, "gunzip failed ! rc %d\n", rc);
  122. return;
  123. }
  124. len = bp->gunzip_outlen;
  125. #ifdef __BIG_ENDIAN
  126. kfree(temp);
  127. for (i = 0; i < len; i++)
  128. ((u32 *)bp->gunzip_buf)[i] =
  129. swab32(((u32 *)bp->gunzip_buf)[i]);
  130. #endif
  131. } else {
  132. if ((len * 4) > FW_BUF_SIZE) {
  133. BNX2X_ERR("LARGE DMAE OPERATION ! len 0x%x\n", len*4);
  134. return;
  135. }
  136. memcpy(bp->gunzip_buf, data, len * 4);
  137. }
  138. while (len > DMAE_LEN32_MAX) {
  139. bnx2x_write_dmae(bp, bp->gunzip_mapping + offset,
  140. addr + offset, DMAE_LEN32_MAX);
  141. offset += DMAE_LEN32_MAX * 4;
  142. len -= DMAE_LEN32_MAX;
  143. }
  144. bnx2x_write_dmae(bp, bp->gunzip_mapping + offset, addr + offset, len);
  145. }
  146. #define INIT_MEM_WB(reg, data, reg_off, len) \
  147. bnx2x_init_wr_wb(bp, reg + reg_off*4, data, len, 0)
  148. #define INIT_GUNZIP_DMAE(reg, data, reg_off, len) \
  149. bnx2x_init_wr_wb(bp, reg + reg_off*4, data, len, 1)
  150. static void bnx2x_init_fill(struct bnx2x *bp, u32 addr, int fill, u32 len)
  151. {
  152. int offset = 0;
  153. if ((len * 4) > FW_BUF_SIZE) {
  154. BNX2X_ERR("LARGE DMAE OPERATION ! len 0x%x\n", len * 4);
  155. return;
  156. }
  157. memset(bp->gunzip_buf, fill, len * 4);
  158. while (len > DMAE_LEN32_MAX) {
  159. bnx2x_write_dmae(bp, bp->gunzip_mapping + offset,
  160. addr + offset, DMAE_LEN32_MAX);
  161. offset += DMAE_LEN32_MAX * 4;
  162. len -= DMAE_LEN32_MAX;
  163. }
  164. bnx2x_write_dmae(bp, bp->gunzip_mapping + offset, addr + offset, len);
  165. }
  166. static void bnx2x_init_block(struct bnx2x *bp, u32 op_start, u32 op_end)
  167. {
  168. int i;
  169. union init_op *op;
  170. u32 op_type, addr, len;
  171. const u32 *data;
  172. for (i = op_start; i < op_end; i++) {
  173. op = (union init_op *)&(init_ops[i]);
  174. op_type = op->str_wr.op;
  175. addr = op->str_wr.offset;
  176. len = op->str_wr.data_len;
  177. data = init_data + op->str_wr.data_off;
  178. switch (op_type) {
  179. case OP_RD:
  180. REG_RD(bp, addr);
  181. break;
  182. case OP_WR:
  183. REG_WR(bp, addr, op->write.val);
  184. break;
  185. case OP_SW:
  186. bnx2x_init_str_wr(bp, addr, data, len);
  187. break;
  188. case OP_WB:
  189. bnx2x_init_wr_wb(bp, addr, data, len, 0);
  190. break;
  191. case OP_SI:
  192. bnx2x_init_ind_wr(bp, addr, data, len);
  193. break;
  194. case OP_ZR:
  195. bnx2x_init_fill(bp, addr, 0, op->zero.len);
  196. break;
  197. case OP_ZP:
  198. bnx2x_init_wr_wb(bp, addr, data, len, 1);
  199. break;
  200. default:
  201. BNX2X_ERR("BAD init operation!\n");
  202. }
  203. }
  204. }
  205. /****************************************************************************
  206. * PXP
  207. ****************************************************************************/
  208. /*
  209. * This code configures the PCI read/write arbiter
  210. * which implements a wighted round robin
  211. * between the virtual queues in the chip.
  212. *
  213. * The values were derived for each PCI max payload and max request size.
  214. * since max payload and max request size are only known at run time,
  215. * this is done as a separate init stage.
  216. */
  217. #define NUM_WR_Q 13
  218. #define NUM_RD_Q 29
  219. #define MAX_RD_ORD 3
  220. #define MAX_WR_ORD 2
  221. /* configuration for one arbiter queue */
  222. struct arb_line {
  223. int l;
  224. int add;
  225. int ubound;
  226. };
  227. /* derived configuration for each read queue for each max request size */
  228. static const struct arb_line read_arb_data[NUM_RD_Q][MAX_RD_ORD + 1] = {
  229. {{8 , 64 , 25}, {16 , 64 , 25}, {32 , 64 , 25}, {64 , 64 , 41} },
  230. {{4 , 8 , 4}, {4 , 8 , 4}, {4 , 8 , 4}, {4 , 8 , 4} },
  231. {{4 , 3 , 3}, {4 , 3 , 3}, {4 , 3 , 3}, {4 , 3 , 3} },
  232. {{8 , 3 , 6}, {16 , 3 , 11}, {16 , 3 , 11}, {16 , 3 , 11} },
  233. {{8 , 64 , 25}, {16 , 64 , 25}, {32 , 64 , 25}, {64 , 64 , 41} },
  234. {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {64 , 3 , 41} },
  235. {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {64 , 3 , 41} },
  236. {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {64 , 3 , 41} },
  237. {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {64 , 3 , 41} },
  238. {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} },
  239. {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} },
  240. {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} },
  241. {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} },
  242. {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} },
  243. {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} },
  244. {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} },
  245. {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} },
  246. {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} },
  247. {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} },
  248. {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} },
  249. {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} },
  250. {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} },
  251. {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} },
  252. {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} },
  253. {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} },
  254. {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} },
  255. {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} },
  256. {{8 , 3 , 6}, {16 , 3 , 11}, {32 , 3 , 21}, {32 , 3 , 21} },
  257. {{8 , 64 , 25}, {16 , 64 , 41}, {32 , 64 , 81}, {64 , 64 , 120} }
  258. };
  259. /* derived configuration for each write queue for each max request size */
  260. static const struct arb_line write_arb_data[NUM_WR_Q][MAX_WR_ORD + 1] = {
  261. {{4 , 6 , 3}, {4 , 6 , 3}, {4 , 6 , 3} },
  262. {{4 , 2 , 3}, {4 , 2 , 3}, {4 , 2 , 3} },
  263. {{8 , 2 , 6}, {16 , 2 , 11}, {16 , 2 , 11} },
  264. {{8 , 2 , 6}, {16 , 2 , 11}, {32 , 2 , 21} },
  265. {{8 , 2 , 6}, {16 , 2 , 11}, {32 , 2 , 21} },
  266. {{8 , 2 , 6}, {16 , 2 , 11}, {32 , 2 , 21} },
  267. {{8 , 64 , 25}, {16 , 64 , 25}, {32 , 64 , 25} },
  268. {{8 , 2 , 6}, {16 , 2 , 11}, {16 , 2 , 11} },
  269. {{8 , 2 , 6}, {16 , 2 , 11}, {16 , 2 , 11} },
  270. {{8 , 9 , 6}, {16 , 9 , 11}, {32 , 9 , 21} },
  271. {{8 , 47 , 19}, {16 , 47 , 19}, {32 , 47 , 21} },
  272. {{8 , 9 , 6}, {16 , 9 , 11}, {16 , 9 , 11} },
  273. {{8 , 64 , 25}, {16 , 64 , 41}, {32 , 64 , 81} }
  274. };
  275. /* register adresses for read queues */
  276. static const struct arb_line read_arb_addr[NUM_RD_Q-1] = {
  277. {PXP2_REG_RQ_BW_RD_L0, PXP2_REG_RQ_BW_RD_ADD0,
  278. PXP2_REG_RQ_BW_RD_UBOUND0},
  279. {PXP2_REG_PSWRQ_BW_L1, PXP2_REG_PSWRQ_BW_ADD1,
  280. PXP2_REG_PSWRQ_BW_UB1},
  281. {PXP2_REG_PSWRQ_BW_L2, PXP2_REG_PSWRQ_BW_ADD2,
  282. PXP2_REG_PSWRQ_BW_UB2},
  283. {PXP2_REG_PSWRQ_BW_L3, PXP2_REG_PSWRQ_BW_ADD3,
  284. PXP2_REG_PSWRQ_BW_UB3},
  285. {PXP2_REG_RQ_BW_RD_L4, PXP2_REG_RQ_BW_RD_ADD4,
  286. PXP2_REG_RQ_BW_RD_UBOUND4},
  287. {PXP2_REG_RQ_BW_RD_L5, PXP2_REG_RQ_BW_RD_ADD5,
  288. PXP2_REG_RQ_BW_RD_UBOUND5},
  289. {PXP2_REG_PSWRQ_BW_L6, PXP2_REG_PSWRQ_BW_ADD6,
  290. PXP2_REG_PSWRQ_BW_UB6},
  291. {PXP2_REG_PSWRQ_BW_L7, PXP2_REG_PSWRQ_BW_ADD7,
  292. PXP2_REG_PSWRQ_BW_UB7},
  293. {PXP2_REG_PSWRQ_BW_L8, PXP2_REG_PSWRQ_BW_ADD8,
  294. PXP2_REG_PSWRQ_BW_UB8},
  295. {PXP2_REG_PSWRQ_BW_L9, PXP2_REG_PSWRQ_BW_ADD9,
  296. PXP2_REG_PSWRQ_BW_UB9},
  297. {PXP2_REG_PSWRQ_BW_L10, PXP2_REG_PSWRQ_BW_ADD10,
  298. PXP2_REG_PSWRQ_BW_UB10},
  299. {PXP2_REG_PSWRQ_BW_L11, PXP2_REG_PSWRQ_BW_ADD11,
  300. PXP2_REG_PSWRQ_BW_UB11},
  301. {PXP2_REG_RQ_BW_RD_L12, PXP2_REG_RQ_BW_RD_ADD12,
  302. PXP2_REG_RQ_BW_RD_UBOUND12},
  303. {PXP2_REG_RQ_BW_RD_L13, PXP2_REG_RQ_BW_RD_ADD13,
  304. PXP2_REG_RQ_BW_RD_UBOUND13},
  305. {PXP2_REG_RQ_BW_RD_L14, PXP2_REG_RQ_BW_RD_ADD14,
  306. PXP2_REG_RQ_BW_RD_UBOUND14},
  307. {PXP2_REG_RQ_BW_RD_L15, PXP2_REG_RQ_BW_RD_ADD15,
  308. PXP2_REG_RQ_BW_RD_UBOUND15},
  309. {PXP2_REG_RQ_BW_RD_L16, PXP2_REG_RQ_BW_RD_ADD16,
  310. PXP2_REG_RQ_BW_RD_UBOUND16},
  311. {PXP2_REG_RQ_BW_RD_L17, PXP2_REG_RQ_BW_RD_ADD17,
  312. PXP2_REG_RQ_BW_RD_UBOUND17},
  313. {PXP2_REG_RQ_BW_RD_L18, PXP2_REG_RQ_BW_RD_ADD18,
  314. PXP2_REG_RQ_BW_RD_UBOUND18},
  315. {PXP2_REG_RQ_BW_RD_L19, PXP2_REG_RQ_BW_RD_ADD19,
  316. PXP2_REG_RQ_BW_RD_UBOUND19},
  317. {PXP2_REG_RQ_BW_RD_L20, PXP2_REG_RQ_BW_RD_ADD20,
  318. PXP2_REG_RQ_BW_RD_UBOUND20},
  319. {PXP2_REG_RQ_BW_RD_L22, PXP2_REG_RQ_BW_RD_ADD22,
  320. PXP2_REG_RQ_BW_RD_UBOUND22},
  321. {PXP2_REG_RQ_BW_RD_L23, PXP2_REG_RQ_BW_RD_ADD23,
  322. PXP2_REG_RQ_BW_RD_UBOUND23},
  323. {PXP2_REG_RQ_BW_RD_L24, PXP2_REG_RQ_BW_RD_ADD24,
  324. PXP2_REG_RQ_BW_RD_UBOUND24},
  325. {PXP2_REG_RQ_BW_RD_L25, PXP2_REG_RQ_BW_RD_ADD25,
  326. PXP2_REG_RQ_BW_RD_UBOUND25},
  327. {PXP2_REG_RQ_BW_RD_L26, PXP2_REG_RQ_BW_RD_ADD26,
  328. PXP2_REG_RQ_BW_RD_UBOUND26},
  329. {PXP2_REG_RQ_BW_RD_L27, PXP2_REG_RQ_BW_RD_ADD27,
  330. PXP2_REG_RQ_BW_RD_UBOUND27},
  331. {PXP2_REG_PSWRQ_BW_L28, PXP2_REG_PSWRQ_BW_ADD28,
  332. PXP2_REG_PSWRQ_BW_UB28}
  333. };
  334. /* register adresses for wrtie queues */
  335. static const struct arb_line write_arb_addr[NUM_WR_Q-1] = {
  336. {PXP2_REG_PSWRQ_BW_L1, PXP2_REG_PSWRQ_BW_ADD1,
  337. PXP2_REG_PSWRQ_BW_UB1},
  338. {PXP2_REG_PSWRQ_BW_L2, PXP2_REG_PSWRQ_BW_ADD2,
  339. PXP2_REG_PSWRQ_BW_UB2},
  340. {PXP2_REG_PSWRQ_BW_L3, PXP2_REG_PSWRQ_BW_ADD3,
  341. PXP2_REG_PSWRQ_BW_UB3},
  342. {PXP2_REG_PSWRQ_BW_L6, PXP2_REG_PSWRQ_BW_ADD6,
  343. PXP2_REG_PSWRQ_BW_UB6},
  344. {PXP2_REG_PSWRQ_BW_L7, PXP2_REG_PSWRQ_BW_ADD7,
  345. PXP2_REG_PSWRQ_BW_UB7},
  346. {PXP2_REG_PSWRQ_BW_L8, PXP2_REG_PSWRQ_BW_ADD8,
  347. PXP2_REG_PSWRQ_BW_UB8},
  348. {PXP2_REG_PSWRQ_BW_L9, PXP2_REG_PSWRQ_BW_ADD9,
  349. PXP2_REG_PSWRQ_BW_UB9},
  350. {PXP2_REG_PSWRQ_BW_L10, PXP2_REG_PSWRQ_BW_ADD10,
  351. PXP2_REG_PSWRQ_BW_UB10},
  352. {PXP2_REG_PSWRQ_BW_L11, PXP2_REG_PSWRQ_BW_ADD11,
  353. PXP2_REG_PSWRQ_BW_UB11},
  354. {PXP2_REG_PSWRQ_BW_L28, PXP2_REG_PSWRQ_BW_ADD28,
  355. PXP2_REG_PSWRQ_BW_UB28},
  356. {PXP2_REG_RQ_BW_WR_L29, PXP2_REG_RQ_BW_WR_ADD29,
  357. PXP2_REG_RQ_BW_WR_UBOUND29},
  358. {PXP2_REG_RQ_BW_WR_L30, PXP2_REG_RQ_BW_WR_ADD30,
  359. PXP2_REG_RQ_BW_WR_UBOUND30}
  360. };
  361. static void bnx2x_init_pxp(struct bnx2x *bp)
  362. {
  363. int r_order, w_order;
  364. u32 val, i;
  365. pci_read_config_word(bp->pdev,
  366. bp->pcie_cap + PCI_EXP_DEVCTL, (u16 *)&val);
  367. DP(NETIF_MSG_HW, "read 0x%x from devctl\n", (u16)val);
  368. w_order = ((val & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
  369. r_order = ((val & PCI_EXP_DEVCTL_READRQ) >> 12);
  370. if (r_order > MAX_RD_ORD) {
  371. DP(NETIF_MSG_HW, "read order of %d order adjusted to %d\n",
  372. r_order, MAX_RD_ORD);
  373. r_order = MAX_RD_ORD;
  374. }
  375. if (w_order > MAX_WR_ORD) {
  376. DP(NETIF_MSG_HW, "write order of %d order adjusted to %d\n",
  377. w_order, MAX_WR_ORD);
  378. w_order = MAX_WR_ORD;
  379. }
  380. DP(NETIF_MSG_HW, "read order %d write order %d\n", r_order, w_order);
  381. for (i = 0; i < NUM_RD_Q-1; i++) {
  382. REG_WR(bp, read_arb_addr[i].l, read_arb_data[i][r_order].l);
  383. REG_WR(bp, read_arb_addr[i].add,
  384. read_arb_data[i][r_order].add);
  385. REG_WR(bp, read_arb_addr[i].ubound,
  386. read_arb_data[i][r_order].ubound);
  387. }
  388. for (i = 0; i < NUM_WR_Q-1; i++) {
  389. if ((write_arb_addr[i].l == PXP2_REG_RQ_BW_WR_L29) ||
  390. (write_arb_addr[i].l == PXP2_REG_RQ_BW_WR_L30)) {
  391. REG_WR(bp, write_arb_addr[i].l,
  392. write_arb_data[i][w_order].l);
  393. REG_WR(bp, write_arb_addr[i].add,
  394. write_arb_data[i][w_order].add);
  395. REG_WR(bp, write_arb_addr[i].ubound,
  396. write_arb_data[i][w_order].ubound);
  397. } else {
  398. val = REG_RD(bp, write_arb_addr[i].l);
  399. REG_WR(bp, write_arb_addr[i].l,
  400. val | (write_arb_data[i][w_order].l << 10));
  401. val = REG_RD(bp, write_arb_addr[i].add);
  402. REG_WR(bp, write_arb_addr[i].add,
  403. val | (write_arb_data[i][w_order].add << 10));
  404. val = REG_RD(bp, write_arb_addr[i].ubound);
  405. REG_WR(bp, write_arb_addr[i].ubound,
  406. val | (write_arb_data[i][w_order].ubound << 7));
  407. }
  408. }
  409. val = write_arb_data[NUM_WR_Q-1][w_order].add;
  410. val += write_arb_data[NUM_WR_Q-1][w_order].ubound << 10;
  411. val += write_arb_data[NUM_WR_Q-1][w_order].l << 17;
  412. REG_WR(bp, PXP2_REG_PSWRQ_BW_RD, val);
  413. val = read_arb_data[NUM_RD_Q-1][r_order].add;
  414. val += read_arb_data[NUM_RD_Q-1][r_order].ubound << 10;
  415. val += read_arb_data[NUM_RD_Q-1][r_order].l << 17;
  416. REG_WR(bp, PXP2_REG_PSWRQ_BW_WR, val);
  417. REG_WR(bp, PXP2_REG_RQ_WR_MBS0, w_order);
  418. REG_WR(bp, PXP2_REG_RQ_WR_MBS1, w_order);
  419. REG_WR(bp, PXP2_REG_RQ_RD_MBS0, r_order);
  420. REG_WR(bp, PXP2_REG_RQ_RD_MBS1, r_order);
  421. if (r_order == MAX_RD_ORD)
  422. REG_WR(bp, PXP2_REG_RQ_PDR_LIMIT, 0xe00);
  423. REG_WR(bp, PXP2_REG_WR_USDMDP_TH, (0x18 << w_order));
  424. REG_WR(bp, PXP2_REG_WR_DMAE_TH, (128 << w_order)/16);
  425. }
  426. /****************************************************************************
  427. * CDU
  428. ****************************************************************************/
  429. #define CDU_REGION_NUMBER_XCM_AG 2
  430. #define CDU_REGION_NUMBER_UCM_AG 4
  431. /**
  432. * String-to-compress [31:8] = CID (all 24 bits)
  433. * String-to-compress [7:4] = Region
  434. * String-to-compress [3:0] = Type
  435. */
  436. #define CDU_VALID_DATA(_cid, _region, _type) \
  437. (((_cid) << 8) | (((_region) & 0xf) << 4) | (((_type) & 0xf)))
  438. #define CDU_CRC8(_cid, _region, _type) \
  439. calc_crc8(CDU_VALID_DATA(_cid, _region, _type), 0xff)
  440. #define CDU_RSRVD_VALUE_TYPE_A(_cid, _region, _type) \
  441. (0x80 | (CDU_CRC8(_cid, _region, _type) & 0x7f))
  442. #define CDU_RSRVD_VALUE_TYPE_B(_crc, _type) \
  443. (0x80 | ((_type) & 0xf << 3) | (CDU_CRC8(_cid, _region, _type) & 0x7))
  444. #define CDU_RSRVD_INVALIDATE_CONTEXT_VALUE(_val) ((_val) & ~0x80)
  445. /*****************************************************************************
  446. * Description:
  447. * Calculates crc 8 on a word value: polynomial 0-1-2-8
  448. * Code was translated from Verilog.
  449. ****************************************************************************/
  450. static u8 calc_crc8(u32 data, u8 crc)
  451. {
  452. u8 D[32];
  453. u8 NewCRC[8];
  454. u8 C[8];
  455. u8 crc_res;
  456. u8 i;
  457. /* split the data into 31 bits */
  458. for (i = 0; i < 32; i++) {
  459. D[i] = data & 1;
  460. data = data >> 1;
  461. }
  462. /* split the crc into 8 bits */
  463. for (i = 0; i < 8; i++) {
  464. C[i] = crc & 1;
  465. crc = crc >> 1;
  466. }
  467. NewCRC[0] = D[31] ^ D[30] ^ D[28] ^ D[23] ^ D[21] ^ D[19] ^ D[18] ^
  468. D[16] ^ D[14] ^ D[12] ^ D[8] ^ D[7] ^ D[6] ^ D[0] ^ C[4] ^
  469. C[6] ^ C[7];
  470. NewCRC[1] = D[30] ^ D[29] ^ D[28] ^ D[24] ^ D[23] ^ D[22] ^ D[21] ^
  471. D[20] ^ D[18] ^ D[17] ^ D[16] ^ D[15] ^ D[14] ^ D[13] ^
  472. D[12] ^ D[9] ^ D[6] ^ D[1] ^ D[0] ^ C[0] ^ C[4] ^ C[5] ^ C[6];
  473. NewCRC[2] = D[29] ^ D[28] ^ D[25] ^ D[24] ^ D[22] ^ D[17] ^ D[15] ^
  474. D[13] ^ D[12] ^ D[10] ^ D[8] ^ D[6] ^ D[2] ^ D[1] ^ D[0] ^
  475. C[0] ^ C[1] ^ C[4] ^ C[5];
  476. NewCRC[3] = D[30] ^ D[29] ^ D[26] ^ D[25] ^ D[23] ^ D[18] ^ D[16] ^
  477. D[14] ^ D[13] ^ D[11] ^ D[9] ^ D[7] ^ D[3] ^ D[2] ^ D[1] ^
  478. C[1] ^ C[2] ^ C[5] ^ C[6];
  479. NewCRC[4] = D[31] ^ D[30] ^ D[27] ^ D[26] ^ D[24] ^ D[19] ^ D[17] ^
  480. D[15] ^ D[14] ^ D[12] ^ D[10] ^ D[8] ^ D[4] ^ D[3] ^ D[2] ^
  481. C[0] ^ C[2] ^ C[3] ^ C[6] ^ C[7];
  482. NewCRC[5] = D[31] ^ D[28] ^ D[27] ^ D[25] ^ D[20] ^ D[18] ^ D[16] ^
  483. D[15] ^ D[13] ^ D[11] ^ D[9] ^ D[5] ^ D[4] ^ D[3] ^ C[1] ^
  484. C[3] ^ C[4] ^ C[7];
  485. NewCRC[6] = D[29] ^ D[28] ^ D[26] ^ D[21] ^ D[19] ^ D[17] ^ D[16] ^
  486. D[14] ^ D[12] ^ D[10] ^ D[6] ^ D[5] ^ D[4] ^ C[2] ^ C[4] ^
  487. C[5];
  488. NewCRC[7] = D[30] ^ D[29] ^ D[27] ^ D[22] ^ D[20] ^ D[18] ^ D[17] ^
  489. D[15] ^ D[13] ^ D[11] ^ D[7] ^ D[6] ^ D[5] ^ C[3] ^ C[5] ^
  490. C[6];
  491. crc_res = 0;
  492. for (i = 0; i < 8; i++)
  493. crc_res |= (NewCRC[i] << i);
  494. return crc_res;
  495. }
  496. #endif /* BNX2X_INIT_H */