xc5000.c 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981
  1. /*
  2. * Driver for Xceive XC5000 "QAM/8VSB single chip tuner"
  3. *
  4. * Copyright (c) 2007 Xceive Corporation
  5. * Copyright (c) 2007 Steven Toth <stoth@hauppauge.com>
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License as published by
  9. * the Free Software Foundation; either version 2 of the License, or
  10. * (at your option) any later version.
  11. *
  12. * This program is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  15. *
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program; if not, write to the Free Software
  20. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  21. */
  22. #include <linux/module.h>
  23. #include <linux/moduleparam.h>
  24. #include <linux/videodev2.h>
  25. #include <linux/delay.h>
  26. #include <linux/dvb/frontend.h>
  27. #include <linux/i2c.h>
  28. #include "dvb_frontend.h"
  29. #include "xc5000.h"
  30. #include "xc5000_priv.h"
  31. static int debug;
  32. module_param(debug, int, 0644);
  33. MODULE_PARM_DESC(debug, "Turn on/off debugging (default:off).");
  34. #define dprintk(level,fmt, arg...) if (debug >= level) \
  35. printk(KERN_INFO "%s: " fmt, "xc5000", ## arg)
  36. #define XC5000_DEFAULT_FIRMWARE "dvb-fe-xc5000-1.1.fw"
  37. #define XC5000_DEFAULT_FIRMWARE_SIZE 12332
  38. /* Misc Defines */
  39. #define MAX_TV_STANDARD 23
  40. #define XC_MAX_I2C_WRITE_LENGTH 64
  41. /* Signal Types */
  42. #define XC_RF_MODE_AIR 0
  43. #define XC_RF_MODE_CABLE 1
  44. /* Result codes */
  45. #define XC_RESULT_SUCCESS 0
  46. #define XC_RESULT_RESET_FAILURE 1
  47. #define XC_RESULT_I2C_WRITE_FAILURE 2
  48. #define XC_RESULT_I2C_READ_FAILURE 3
  49. #define XC_RESULT_OUT_OF_RANGE 5
  50. /* Product id */
  51. #define XC_PRODUCT_ID_FW_NOT_LOADED 0x2000
  52. #define XC_PRODUCT_ID_FW_LOADED 0x1388
  53. /* Registers */
  54. #define XREG_INIT 0x00
  55. #define XREG_VIDEO_MODE 0x01
  56. #define XREG_AUDIO_MODE 0x02
  57. #define XREG_RF_FREQ 0x03
  58. #define XREG_D_CODE 0x04
  59. #define XREG_IF_OUT 0x05
  60. #define XREG_SEEK_MODE 0x07
  61. #define XREG_POWER_DOWN 0x0A
  62. #define XREG_SIGNALSOURCE 0x0D /* 0=Air, 1=Cable */
  63. #define XREG_SMOOTHEDCVBS 0x0E
  64. #define XREG_XTALFREQ 0x0F
  65. #define XREG_FINERFFREQ 0x10
  66. #define XREG_DDIMODE 0x11
  67. #define XREG_ADC_ENV 0x00
  68. #define XREG_QUALITY 0x01
  69. #define XREG_FRAME_LINES 0x02
  70. #define XREG_HSYNC_FREQ 0x03
  71. #define XREG_LOCK 0x04
  72. #define XREG_FREQ_ERROR 0x05
  73. #define XREG_SNR 0x06
  74. #define XREG_VERSION 0x07
  75. #define XREG_PRODUCT_ID 0x08
  76. #define XREG_BUSY 0x09
  77. /*
  78. Basic firmware description. This will remain with
  79. the driver for documentation purposes.
  80. This represents an I2C firmware file encoded as a
  81. string of unsigned char. Format is as follows:
  82. char[0 ]=len0_MSB -> len = len_MSB * 256 + len_LSB
  83. char[1 ]=len0_LSB -> length of first write transaction
  84. char[2 ]=data0 -> first byte to be sent
  85. char[3 ]=data1
  86. char[4 ]=data2
  87. char[ ]=...
  88. char[M ]=dataN -> last byte to be sent
  89. char[M+1]=len1_MSB -> len = len_MSB * 256 + len_LSB
  90. char[M+2]=len1_LSB -> length of second write transaction
  91. char[M+3]=data0
  92. char[M+4]=data1
  93. ...
  94. etc.
  95. The [len] value should be interpreted as follows:
  96. len= len_MSB _ len_LSB
  97. len=1111_1111_1111_1111 : End of I2C_SEQUENCE
  98. len=0000_0000_0000_0000 : Reset command: Do hardware reset
  99. len=0NNN_NNNN_NNNN_NNNN : Normal transaction: number of bytes = {1:32767)
  100. len=1WWW_WWWW_WWWW_WWWW : Wait command: wait for {1:32767} ms
  101. For the RESET and WAIT commands, the two following bytes will contain
  102. immediately the length of the following transaction.
  103. */
  104. typedef struct {
  105. char *Name;
  106. u16 AudioMode;
  107. u16 VideoMode;
  108. } XC_TV_STANDARD;
  109. /* Tuner standards */
  110. #define MN_NTSC_PAL_BTSC 0
  111. #define MN_NTSC_PAL_A2 1
  112. #define MN_NTSC_PAL_EIAJ 2
  113. #define MN_NTSC_PAL_Mono 3
  114. #define BG_PAL_A2 4
  115. #define BG_PAL_NICAM 5
  116. #define BG_PAL_MONO 6
  117. #define I_PAL_NICAM 7
  118. #define I_PAL_NICAM_MONO 8
  119. #define DK_PAL_A2 9
  120. #define DK_PAL_NICAM 10
  121. #define DK_PAL_MONO 11
  122. #define DK_SECAM_A2DK1 12
  123. #define DK_SECAM_A2LDK3 13
  124. #define DK_SECAM_A2MONO 14
  125. #define L_SECAM_NICAM 15
  126. #define LC_SECAM_NICAM 16
  127. #define DTV6 17
  128. #define DTV8 18
  129. #define DTV7_8 19
  130. #define DTV7 20
  131. #define FM_Radio_INPUT2 21
  132. #define FM_Radio_INPUT1 22
  133. static XC_TV_STANDARD XC5000_Standard[MAX_TV_STANDARD] = {
  134. {"M/N-NTSC/PAL-BTSC", 0x0400, 0x8020},
  135. {"M/N-NTSC/PAL-A2", 0x0600, 0x8020},
  136. {"M/N-NTSC/PAL-EIAJ", 0x0440, 0x8020},
  137. {"M/N-NTSC/PAL-Mono", 0x0478, 0x8020},
  138. {"B/G-PAL-A2", 0x0A00, 0x8049},
  139. {"B/G-PAL-NICAM", 0x0C04, 0x8049},
  140. {"B/G-PAL-MONO", 0x0878, 0x8059},
  141. {"I-PAL-NICAM", 0x1080, 0x8009},
  142. {"I-PAL-NICAM-MONO", 0x0E78, 0x8009},
  143. {"D/K-PAL-A2", 0x1600, 0x8009},
  144. {"D/K-PAL-NICAM", 0x0E80, 0x8009},
  145. {"D/K-PAL-MONO", 0x1478, 0x8009},
  146. {"D/K-SECAM-A2 DK1", 0x1200, 0x8009},
  147. {"D/K-SECAM-A2 L/DK3",0x0E00, 0x8009},
  148. {"D/K-SECAM-A2 MONO", 0x1478, 0x8009},
  149. {"L-SECAM-NICAM", 0x8E82, 0x0009},
  150. {"L'-SECAM-NICAM", 0x8E82, 0x4009},
  151. {"DTV6", 0x00C0, 0x8002},
  152. {"DTV8", 0x00C0, 0x800B},
  153. {"DTV7/8", 0x00C0, 0x801B},
  154. {"DTV7", 0x00C0, 0x8007},
  155. {"FM Radio-INPUT2", 0x9802, 0x9002},
  156. {"FM Radio-INPUT1", 0x0208, 0x9002}
  157. };
  158. static int xc5000_is_firmware_loaded(struct dvb_frontend *fe);
  159. static int xc5000_writeregs(struct xc5000_priv *priv, u8 *buf, u8 len);
  160. static int xc5000_readregs(struct xc5000_priv *priv, u8 *buf, u8 len);
  161. static void xc5000_TunerReset(struct dvb_frontend *fe);
  162. static int xc_send_i2c_data(struct xc5000_priv *priv, u8 *buf, int len)
  163. {
  164. return xc5000_writeregs(priv, buf, len)
  165. ? XC_RESULT_I2C_WRITE_FAILURE : XC_RESULT_SUCCESS;
  166. }
  167. static int xc_read_i2c_data(struct xc5000_priv *priv, u8 *buf, int len)
  168. {
  169. return xc5000_readregs(priv, buf, len)
  170. ? XC_RESULT_I2C_READ_FAILURE : XC_RESULT_SUCCESS;
  171. }
  172. static int xc_reset(struct dvb_frontend *fe)
  173. {
  174. xc5000_TunerReset(fe);
  175. return XC_RESULT_SUCCESS;
  176. }
  177. static void xc_wait(int wait_ms)
  178. {
  179. msleep(wait_ms);
  180. }
  181. static void xc5000_TunerReset(struct dvb_frontend *fe)
  182. {
  183. struct xc5000_priv *priv = fe->tuner_priv;
  184. int ret;
  185. dprintk(1, "%s()\n", __func__);
  186. if (priv->cfg->tuner_callback) {
  187. ret = priv->cfg->tuner_callback(priv->devptr,
  188. XC5000_TUNER_RESET, 0);
  189. if (ret)
  190. printk(KERN_ERR "xc5000: reset failed\n");
  191. } else
  192. printk(KERN_ERR "xc5000: no tuner reset callback function, fatal\n");
  193. }
  194. static int xc_write_reg(struct xc5000_priv *priv, u16 regAddr, u16 i2cData)
  195. {
  196. u8 buf[4];
  197. int WatchDogTimer = 5;
  198. int result;
  199. buf[0] = (regAddr >> 8) & 0xFF;
  200. buf[1] = regAddr & 0xFF;
  201. buf[2] = (i2cData >> 8) & 0xFF;
  202. buf[3] = i2cData & 0xFF;
  203. result = xc_send_i2c_data(priv, buf, 4);
  204. if (result == XC_RESULT_SUCCESS) {
  205. /* wait for busy flag to clear */
  206. while ((WatchDogTimer > 0) && (result == XC_RESULT_SUCCESS)) {
  207. buf[0] = 0;
  208. buf[1] = XREG_BUSY;
  209. result = xc_send_i2c_data(priv, buf, 2);
  210. if (result == XC_RESULT_SUCCESS) {
  211. result = xc_read_i2c_data(priv, buf, 2);
  212. if (result == XC_RESULT_SUCCESS) {
  213. if ((buf[0] == 0) && (buf[1] == 0)) {
  214. /* busy flag cleared */
  215. break;
  216. } else {
  217. xc_wait(100); /* wait 5 ms */
  218. WatchDogTimer--;
  219. }
  220. }
  221. }
  222. }
  223. }
  224. if (WatchDogTimer < 0)
  225. result = XC_RESULT_I2C_WRITE_FAILURE;
  226. return result;
  227. }
  228. static int xc_read_reg(struct xc5000_priv *priv, u16 regAddr, u16 *i2cData)
  229. {
  230. u8 buf[2];
  231. int result;
  232. buf[0] = (regAddr >> 8) & 0xFF;
  233. buf[1] = regAddr & 0xFF;
  234. result = xc_send_i2c_data(priv, buf, 2);
  235. if (result != XC_RESULT_SUCCESS)
  236. return result;
  237. result = xc_read_i2c_data(priv, buf, 2);
  238. if (result != XC_RESULT_SUCCESS)
  239. return result;
  240. *i2cData = buf[0] * 256 + buf[1];
  241. return result;
  242. }
  243. static int xc_load_i2c_sequence(struct dvb_frontend *fe, const u8 *i2c_sequence)
  244. {
  245. struct xc5000_priv *priv = fe->tuner_priv;
  246. int i, nbytes_to_send, result;
  247. unsigned int len, pos, index;
  248. u8 buf[XC_MAX_I2C_WRITE_LENGTH];
  249. index=0;
  250. while ((i2c_sequence[index]!=0xFF) || (i2c_sequence[index+1]!=0xFF)) {
  251. len = i2c_sequence[index]* 256 + i2c_sequence[index+1];
  252. if (len == 0x0000) {
  253. /* RESET command */
  254. result = xc_reset(fe);
  255. index += 2;
  256. if (result != XC_RESULT_SUCCESS)
  257. return result;
  258. } else if (len & 0x8000) {
  259. /* WAIT command */
  260. xc_wait(len & 0x7FFF);
  261. index += 2;
  262. } else {
  263. /* Send i2c data whilst ensuring individual transactions
  264. * do not exceed XC_MAX_I2C_WRITE_LENGTH bytes.
  265. */
  266. index += 2;
  267. buf[0] = i2c_sequence[index];
  268. buf[1] = i2c_sequence[index + 1];
  269. pos = 2;
  270. while (pos < len) {
  271. if ((len - pos) > XC_MAX_I2C_WRITE_LENGTH - 2) {
  272. nbytes_to_send = XC_MAX_I2C_WRITE_LENGTH;
  273. } else {
  274. nbytes_to_send = (len - pos + 2);
  275. }
  276. for (i=2; i<nbytes_to_send; i++) {
  277. buf[i] = i2c_sequence[index + pos + i - 2];
  278. }
  279. result = xc_send_i2c_data(priv, buf, nbytes_to_send);
  280. if (result != XC_RESULT_SUCCESS)
  281. return result;
  282. pos += nbytes_to_send - 2;
  283. }
  284. index += len;
  285. }
  286. }
  287. return XC_RESULT_SUCCESS;
  288. }
  289. static int xc_initialize(struct xc5000_priv *priv)
  290. {
  291. dprintk(1, "%s()\n", __func__);
  292. return xc_write_reg(priv, XREG_INIT, 0);
  293. }
  294. static int xc_SetTVStandard(struct xc5000_priv *priv,
  295. u16 VideoMode, u16 AudioMode)
  296. {
  297. int ret;
  298. dprintk(1, "%s(0x%04x,0x%04x)\n", __func__, VideoMode, AudioMode);
  299. dprintk(1, "%s() Standard = %s\n",
  300. __func__,
  301. XC5000_Standard[priv->video_standard].Name);
  302. ret = xc_write_reg(priv, XREG_VIDEO_MODE, VideoMode);
  303. if (ret == XC_RESULT_SUCCESS)
  304. ret = xc_write_reg(priv, XREG_AUDIO_MODE, AudioMode);
  305. return ret;
  306. }
  307. static int xc_shutdown(struct xc5000_priv *priv)
  308. {
  309. return XC_RESULT_SUCCESS;
  310. /* Fixme: cannot bring tuner back alive once shutdown
  311. * without reloading the driver modules.
  312. * return xc_write_reg(priv, XREG_POWER_DOWN, 0);
  313. */
  314. }
  315. static int xc_SetSignalSource(struct xc5000_priv *priv, u16 rf_mode)
  316. {
  317. dprintk(1, "%s(%d) Source = %s\n", __func__, rf_mode,
  318. rf_mode == XC_RF_MODE_AIR ? "ANTENNA" : "CABLE");
  319. if ((rf_mode != XC_RF_MODE_AIR) && (rf_mode != XC_RF_MODE_CABLE))
  320. {
  321. rf_mode = XC_RF_MODE_CABLE;
  322. printk(KERN_ERR
  323. "%s(), Invalid mode, defaulting to CABLE",
  324. __func__);
  325. }
  326. return xc_write_reg(priv, XREG_SIGNALSOURCE, rf_mode);
  327. }
  328. static const struct dvb_tuner_ops xc5000_tuner_ops;
  329. static int xc_set_RF_frequency(struct xc5000_priv *priv, u32 freq_hz)
  330. {
  331. u16 freq_code;
  332. dprintk(1, "%s(%u)\n", __func__, freq_hz);
  333. if ((freq_hz > xc5000_tuner_ops.info.frequency_max) ||
  334. (freq_hz < xc5000_tuner_ops.info.frequency_min))
  335. return XC_RESULT_OUT_OF_RANGE;
  336. freq_code = (u16)(freq_hz / 15625);
  337. return xc_write_reg(priv, XREG_RF_FREQ, freq_code);
  338. }
  339. static int xc_set_IF_frequency(struct xc5000_priv *priv, u32 freq_khz)
  340. {
  341. u32 freq_code = (freq_khz * 1024)/1000;
  342. dprintk(1, "%s(freq_khz = %d) freq_code = 0x%x\n",
  343. __func__, freq_khz, freq_code);
  344. return xc_write_reg(priv, XREG_IF_OUT, freq_code);
  345. }
  346. static int xc_get_ADC_Envelope(struct xc5000_priv *priv, u16 *adc_envelope)
  347. {
  348. return xc_read_reg(priv, XREG_ADC_ENV, adc_envelope);
  349. }
  350. static int xc_get_frequency_error(struct xc5000_priv *priv, u32 *freq_error_hz)
  351. {
  352. int result;
  353. u16 regData;
  354. u32 tmp;
  355. result = xc_read_reg(priv, XREG_FREQ_ERROR, &regData);
  356. if (result)
  357. return result;
  358. tmp = (u32)regData;
  359. (*freq_error_hz) = (tmp * 15625) / 1000;
  360. return result;
  361. }
  362. static int xc_get_lock_status(struct xc5000_priv *priv, u16 *lock_status)
  363. {
  364. return xc_read_reg(priv, XREG_LOCK, lock_status);
  365. }
  366. static int xc_get_version(struct xc5000_priv *priv,
  367. u8 *hw_majorversion, u8 *hw_minorversion,
  368. u8 *fw_majorversion, u8 *fw_minorversion)
  369. {
  370. u16 data;
  371. int result;
  372. result = xc_read_reg(priv, XREG_VERSION, &data);
  373. if (result)
  374. return result;
  375. (*hw_majorversion) = (data >> 12) & 0x0F;
  376. (*hw_minorversion) = (data >> 8) & 0x0F;
  377. (*fw_majorversion) = (data >> 4) & 0x0F;
  378. (*fw_minorversion) = data & 0x0F;
  379. return 0;
  380. }
  381. static int xc_get_hsync_freq(struct xc5000_priv *priv, u32 *hsync_freq_hz)
  382. {
  383. u16 regData;
  384. int result;
  385. result = xc_read_reg(priv, XREG_HSYNC_FREQ, &regData);
  386. if (result)
  387. return result;
  388. (*hsync_freq_hz) = ((regData & 0x0fff) * 763)/100;
  389. return result;
  390. }
  391. static int xc_get_frame_lines(struct xc5000_priv *priv, u16 *frame_lines)
  392. {
  393. return xc_read_reg(priv, XREG_FRAME_LINES, frame_lines);
  394. }
  395. static int xc_get_quality(struct xc5000_priv *priv, u16 *quality)
  396. {
  397. return xc_read_reg(priv, XREG_QUALITY, quality);
  398. }
  399. static u16 WaitForLock(struct xc5000_priv *priv)
  400. {
  401. u16 lockState = 0;
  402. int watchDogCount = 40;
  403. while ((lockState == 0) && (watchDogCount > 0)) {
  404. xc_get_lock_status(priv, &lockState);
  405. if (lockState != 1) {
  406. xc_wait(5);
  407. watchDogCount--;
  408. }
  409. }
  410. return lockState;
  411. }
  412. static int xc_tune_channel(struct xc5000_priv *priv, u32 freq_hz)
  413. {
  414. int found = 0;
  415. dprintk(1, "%s(%u)\n", __func__, freq_hz);
  416. if (xc_set_RF_frequency(priv, freq_hz) != XC_RESULT_SUCCESS)
  417. return 0;
  418. if (WaitForLock(priv) == 1)
  419. found = 1;
  420. return found;
  421. }
  422. static int xc5000_readreg(struct xc5000_priv *priv, u16 reg, u16 *val)
  423. {
  424. u8 buf[2] = { reg >> 8, reg & 0xff };
  425. u8 bval[2] = { 0, 0 };
  426. struct i2c_msg msg[2] = {
  427. { .addr = priv->cfg->i2c_address,
  428. .flags = 0, .buf = &buf[0], .len = 2 },
  429. { .addr = priv->cfg->i2c_address,
  430. .flags = I2C_M_RD, .buf = &bval[0], .len = 2 },
  431. };
  432. if (i2c_transfer(priv->i2c, msg, 2) != 2) {
  433. printk(KERN_WARNING "xc5000: I2C read failed\n");
  434. return -EREMOTEIO;
  435. }
  436. *val = (bval[0] << 8) | bval[1];
  437. return 0;
  438. }
  439. static int xc5000_writeregs(struct xc5000_priv *priv, u8 *buf, u8 len)
  440. {
  441. struct i2c_msg msg = { .addr = priv->cfg->i2c_address,
  442. .flags = 0, .buf = buf, .len = len };
  443. if (i2c_transfer(priv->i2c, &msg, 1) != 1) {
  444. printk(KERN_ERR "xc5000: I2C write failed (len=%i)\n",
  445. (int)len);
  446. return -EREMOTEIO;
  447. }
  448. return 0;
  449. }
  450. static int xc5000_readregs(struct xc5000_priv *priv, u8 *buf, u8 len)
  451. {
  452. struct i2c_msg msg = { .addr = priv->cfg->i2c_address,
  453. .flags = I2C_M_RD, .buf = buf, .len = len };
  454. if (i2c_transfer(priv->i2c, &msg, 1) != 1) {
  455. printk(KERN_ERR "xc5000 I2C read failed (len=%i)\n",(int)len);
  456. return -EREMOTEIO;
  457. }
  458. return 0;
  459. }
  460. static int xc5000_fwupload(struct dvb_frontend* fe)
  461. {
  462. struct xc5000_priv *priv = fe->tuner_priv;
  463. const struct firmware *fw;
  464. int ret;
  465. /* request the firmware, this will block and timeout */
  466. printk(KERN_INFO "xc5000: waiting for firmware upload (%s)...\n",
  467. XC5000_DEFAULT_FIRMWARE);
  468. ret = request_firmware(&fw, XC5000_DEFAULT_FIRMWARE, &priv->i2c->dev);
  469. if (ret) {
  470. printk(KERN_ERR "xc5000: Upload failed. (file not found?)\n");
  471. ret = XC_RESULT_RESET_FAILURE;
  472. goto out;
  473. } else {
  474. printk(KERN_INFO "xc5000: firmware read %Zu bytes.\n",
  475. fw->size);
  476. ret = XC_RESULT_SUCCESS;
  477. }
  478. if (fw->size != XC5000_DEFAULT_FIRMWARE_SIZE) {
  479. printk(KERN_ERR "xc5000: firmware incorrect size\n");
  480. ret = XC_RESULT_RESET_FAILURE;
  481. } else {
  482. printk(KERN_INFO "xc5000: firmware upload\n");
  483. ret = xc_load_i2c_sequence(fe, fw->data );
  484. }
  485. out:
  486. release_firmware(fw);
  487. return ret;
  488. }
  489. static void xc_debug_dump(struct xc5000_priv *priv)
  490. {
  491. u16 adc_envelope;
  492. u32 freq_error_hz = 0;
  493. u16 lock_status;
  494. u32 hsync_freq_hz = 0;
  495. u16 frame_lines;
  496. u16 quality;
  497. u8 hw_majorversion = 0, hw_minorversion = 0;
  498. u8 fw_majorversion = 0, fw_minorversion = 0;
  499. /* Wait for stats to stabilize.
  500. * Frame Lines needs two frame times after initial lock
  501. * before it is valid.
  502. */
  503. xc_wait(100);
  504. xc_get_ADC_Envelope(priv, &adc_envelope);
  505. dprintk(1, "*** ADC envelope (0-1023) = %d\n", adc_envelope);
  506. xc_get_frequency_error(priv, &freq_error_hz);
  507. dprintk(1, "*** Frequency error = %d Hz\n", freq_error_hz);
  508. xc_get_lock_status(priv, &lock_status);
  509. dprintk(1, "*** Lock status (0-Wait, 1-Locked, 2-No-signal) = %d\n",
  510. lock_status);
  511. xc_get_version(priv, &hw_majorversion, &hw_minorversion,
  512. &fw_majorversion, &fw_minorversion);
  513. dprintk(1, "*** HW: V%02x.%02x, FW: V%02x.%02x\n",
  514. hw_majorversion, hw_minorversion,
  515. fw_majorversion, fw_minorversion);
  516. xc_get_hsync_freq(priv, &hsync_freq_hz);
  517. dprintk(1, "*** Horizontal sync frequency = %d Hz\n", hsync_freq_hz);
  518. xc_get_frame_lines(priv, &frame_lines);
  519. dprintk(1, "*** Frame lines = %d\n", frame_lines);
  520. xc_get_quality(priv, &quality);
  521. dprintk(1, "*** Quality (0:<8dB, 7:>56dB) = %d\n", quality);
  522. }
  523. static int xc5000_set_params(struct dvb_frontend *fe,
  524. struct dvb_frontend_parameters *params)
  525. {
  526. struct xc5000_priv *priv = fe->tuner_priv;
  527. int ret;
  528. dprintk(1, "%s() frequency=%d (Hz)\n", __func__, params->frequency);
  529. switch(params->u.vsb.modulation) {
  530. case VSB_8:
  531. case VSB_16:
  532. dprintk(1, "%s() VSB modulation\n", __func__);
  533. priv->rf_mode = XC_RF_MODE_AIR;
  534. priv->freq_hz = params->frequency - 1750000;
  535. priv->bandwidth = BANDWIDTH_6_MHZ;
  536. priv->video_standard = DTV6;
  537. break;
  538. case QAM_64:
  539. case QAM_256:
  540. case QAM_AUTO:
  541. dprintk(1, "%s() QAM modulation\n", __func__);
  542. priv->rf_mode = XC_RF_MODE_CABLE;
  543. priv->freq_hz = params->frequency - 1750000;
  544. priv->bandwidth = BANDWIDTH_6_MHZ;
  545. priv->video_standard = DTV6;
  546. break;
  547. default:
  548. return -EINVAL;
  549. }
  550. dprintk(1, "%s() frequency=%d (compensated)\n",
  551. __func__, priv->freq_hz);
  552. ret = xc_SetSignalSource(priv, priv->rf_mode);
  553. if (ret != XC_RESULT_SUCCESS) {
  554. printk(KERN_ERR
  555. "xc5000: xc_SetSignalSource(%d) failed\n",
  556. priv->rf_mode);
  557. return -EREMOTEIO;
  558. }
  559. ret = xc_SetTVStandard(priv,
  560. XC5000_Standard[priv->video_standard].VideoMode,
  561. XC5000_Standard[priv->video_standard].AudioMode);
  562. if (ret != XC_RESULT_SUCCESS) {
  563. printk(KERN_ERR "xc5000: xc_SetTVStandard failed\n");
  564. return -EREMOTEIO;
  565. }
  566. ret = xc_set_IF_frequency(priv, priv->cfg->if_khz);
  567. if (ret != XC_RESULT_SUCCESS) {
  568. printk(KERN_ERR "xc5000: xc_Set_IF_frequency(%d) failed\n",
  569. priv->cfg->if_khz);
  570. return -EIO;
  571. }
  572. xc_tune_channel(priv, priv->freq_hz);
  573. if (debug)
  574. xc_debug_dump(priv);
  575. return 0;
  576. }
  577. static int xc5000_is_firmware_loaded(struct dvb_frontend *fe)
  578. {
  579. struct xc5000_priv *priv = fe->tuner_priv;
  580. int ret;
  581. u16 id;
  582. ret = xc5000_readreg(priv, XREG_PRODUCT_ID, &id);
  583. if (ret == XC_RESULT_SUCCESS) {
  584. if (id == XC_PRODUCT_ID_FW_NOT_LOADED)
  585. ret = XC_RESULT_RESET_FAILURE;
  586. else
  587. ret = XC_RESULT_SUCCESS;
  588. }
  589. dprintk(1, "%s() returns %s id = 0x%x\n", __func__,
  590. ret == XC_RESULT_SUCCESS ? "True" : "False", id);
  591. return ret;
  592. }
  593. static int xc_load_fw_and_init_tuner(struct dvb_frontend *fe);
  594. static int xc5000_set_analog_params(struct dvb_frontend *fe,
  595. struct analog_parameters *params)
  596. {
  597. struct xc5000_priv *priv = fe->tuner_priv;
  598. int ret;
  599. if (xc5000_is_firmware_loaded(fe) != XC_RESULT_SUCCESS)
  600. xc_load_fw_and_init_tuner(fe);
  601. dprintk(1, "%s() frequency=%d (in units of 62.5khz)\n",
  602. __func__, params->frequency);
  603. priv->rf_mode = XC_RF_MODE_CABLE; /* Fix me: it could be air. */
  604. /* params->frequency is in units of 62.5khz */
  605. priv->freq_hz = params->frequency * 62500;
  606. /* FIX ME: Some video standards may have several possible audio
  607. standards. We simply default to one of them here.
  608. */
  609. if(params->std & V4L2_STD_MN) {
  610. /* default to BTSC audio standard */
  611. priv->video_standard = MN_NTSC_PAL_BTSC;
  612. goto tune_channel;
  613. }
  614. if(params->std & V4L2_STD_PAL_BG) {
  615. /* default to NICAM audio standard */
  616. priv->video_standard = BG_PAL_NICAM;
  617. goto tune_channel;
  618. }
  619. if(params->std & V4L2_STD_PAL_I) {
  620. /* default to NICAM audio standard */
  621. priv->video_standard = I_PAL_NICAM;
  622. goto tune_channel;
  623. }
  624. if(params->std & V4L2_STD_PAL_DK) {
  625. /* default to NICAM audio standard */
  626. priv->video_standard = DK_PAL_NICAM;
  627. goto tune_channel;
  628. }
  629. if(params->std & V4L2_STD_SECAM_DK) {
  630. /* default to A2 DK1 audio standard */
  631. priv->video_standard = DK_SECAM_A2DK1;
  632. goto tune_channel;
  633. }
  634. if(params->std & V4L2_STD_SECAM_L) {
  635. priv->video_standard = L_SECAM_NICAM;
  636. goto tune_channel;
  637. }
  638. if(params->std & V4L2_STD_SECAM_LC) {
  639. priv->video_standard = LC_SECAM_NICAM;
  640. goto tune_channel;
  641. }
  642. tune_channel:
  643. ret = xc_SetSignalSource(priv, priv->rf_mode);
  644. if (ret != XC_RESULT_SUCCESS) {
  645. printk(KERN_ERR
  646. "xc5000: xc_SetSignalSource(%d) failed\n",
  647. priv->rf_mode);
  648. return -EREMOTEIO;
  649. }
  650. ret = xc_SetTVStandard(priv,
  651. XC5000_Standard[priv->video_standard].VideoMode,
  652. XC5000_Standard[priv->video_standard].AudioMode);
  653. if (ret != XC_RESULT_SUCCESS) {
  654. printk(KERN_ERR "xc5000: xc_SetTVStandard failed\n");
  655. return -EREMOTEIO;
  656. }
  657. xc_tune_channel(priv, priv->freq_hz);
  658. if (debug)
  659. xc_debug_dump(priv);
  660. return 0;
  661. }
  662. static int xc5000_get_frequency(struct dvb_frontend *fe, u32 *freq)
  663. {
  664. struct xc5000_priv *priv = fe->tuner_priv;
  665. dprintk(1, "%s()\n", __func__);
  666. *freq = priv->freq_hz;
  667. return 0;
  668. }
  669. static int xc5000_get_bandwidth(struct dvb_frontend *fe, u32 *bw)
  670. {
  671. struct xc5000_priv *priv = fe->tuner_priv;
  672. dprintk(1, "%s()\n", __func__);
  673. *bw = priv->bandwidth;
  674. return 0;
  675. }
  676. static int xc5000_get_status(struct dvb_frontend *fe, u32 *status)
  677. {
  678. struct xc5000_priv *priv = fe->tuner_priv;
  679. u16 lock_status = 0;
  680. xc_get_lock_status(priv, &lock_status);
  681. dprintk(1, "%s() lock_status = 0x%08x\n", __func__, lock_status);
  682. *status = lock_status;
  683. return 0;
  684. }
  685. static int xc_load_fw_and_init_tuner(struct dvb_frontend *fe)
  686. {
  687. struct xc5000_priv *priv = fe->tuner_priv;
  688. int ret = 0;
  689. if (xc5000_is_firmware_loaded(fe) != XC_RESULT_SUCCESS) {
  690. ret = xc5000_fwupload(fe);
  691. if (ret != XC_RESULT_SUCCESS)
  692. return ret;
  693. }
  694. /* Start the tuner self-calibration process */
  695. ret |= xc_initialize(priv);
  696. /* Wait for calibration to complete.
  697. * We could continue but XC5000 will clock stretch subsequent
  698. * I2C transactions until calibration is complete. This way we
  699. * don't have to rely on clock stretching working.
  700. */
  701. xc_wait( 100 );
  702. /* Default to "CABLE" mode */
  703. ret |= xc_write_reg(priv, XREG_SIGNALSOURCE, XC_RF_MODE_CABLE);
  704. return ret;
  705. }
  706. static int xc5000_sleep(struct dvb_frontend *fe)
  707. {
  708. struct xc5000_priv *priv = fe->tuner_priv;
  709. int ret;
  710. dprintk(1, "%s()\n", __func__);
  711. /* On Pinnacle PCTV HD 800i, the tuner cannot be reinitialized
  712. * once shutdown without reloading the driver. Maybe I am not
  713. * doing something right.
  714. *
  715. */
  716. ret = xc_shutdown(priv);
  717. if(ret != XC_RESULT_SUCCESS) {
  718. printk(KERN_ERR
  719. "xc5000: %s() unable to shutdown tuner\n",
  720. __func__);
  721. return -EREMOTEIO;
  722. }
  723. else {
  724. return XC_RESULT_SUCCESS;
  725. }
  726. }
  727. static int xc5000_init(struct dvb_frontend *fe)
  728. {
  729. struct xc5000_priv *priv = fe->tuner_priv;
  730. dprintk(1, "%s()\n", __func__);
  731. if (xc_load_fw_and_init_tuner(fe) != XC_RESULT_SUCCESS) {
  732. printk(KERN_ERR "xc5000: Unable to initialise tuner\n");
  733. return -EREMOTEIO;
  734. }
  735. if (debug)
  736. xc_debug_dump(priv);
  737. return 0;
  738. }
  739. static int xc5000_release(struct dvb_frontend *fe)
  740. {
  741. dprintk(1, "%s()\n", __func__);
  742. kfree(fe->tuner_priv);
  743. fe->tuner_priv = NULL;
  744. return 0;
  745. }
  746. static const struct dvb_tuner_ops xc5000_tuner_ops = {
  747. .info = {
  748. .name = "Xceive XC5000",
  749. .frequency_min = 1000000,
  750. .frequency_max = 1023000000,
  751. .frequency_step = 50000,
  752. },
  753. .release = xc5000_release,
  754. .init = xc5000_init,
  755. .sleep = xc5000_sleep,
  756. .set_params = xc5000_set_params,
  757. .set_analog_params = xc5000_set_analog_params,
  758. .get_frequency = xc5000_get_frequency,
  759. .get_bandwidth = xc5000_get_bandwidth,
  760. .get_status = xc5000_get_status
  761. };
  762. struct dvb_frontend *xc5000_attach(struct dvb_frontend *fe,
  763. struct i2c_adapter *i2c,
  764. struct xc5000_config *cfg, void *devptr)
  765. {
  766. struct xc5000_priv *priv = NULL;
  767. u16 id = 0;
  768. dprintk(1, "%s()\n", __func__);
  769. priv = kzalloc(sizeof(struct xc5000_priv), GFP_KERNEL);
  770. if (priv == NULL)
  771. return NULL;
  772. priv->cfg = cfg;
  773. priv->bandwidth = BANDWIDTH_6_MHZ;
  774. priv->i2c = i2c;
  775. priv->devptr = devptr;
  776. /* Check if firmware has been loaded. It is possible that another
  777. instance of the driver has loaded the firmware.
  778. */
  779. if (xc5000_readreg(priv, XREG_PRODUCT_ID, &id) != 0) {
  780. kfree(priv);
  781. return NULL;
  782. }
  783. switch(id) {
  784. case XC_PRODUCT_ID_FW_LOADED:
  785. printk(KERN_INFO
  786. "xc5000: Successfully identified at address 0x%02x\n",
  787. cfg->i2c_address);
  788. printk(KERN_INFO
  789. "xc5000: Firmware has been loaded previously\n");
  790. break;
  791. case XC_PRODUCT_ID_FW_NOT_LOADED:
  792. printk(KERN_INFO
  793. "xc5000: Successfully identified at address 0x%02x\n",
  794. cfg->i2c_address);
  795. printk(KERN_INFO
  796. "xc5000: Firmware has not been loaded previously\n");
  797. break;
  798. default:
  799. printk(KERN_ERR
  800. "xc5000: Device not found at addr 0x%02x (0x%x)\n",
  801. cfg->i2c_address, id);
  802. kfree(priv);
  803. return NULL;
  804. }
  805. memcpy(&fe->ops.tuner_ops, &xc5000_tuner_ops,
  806. sizeof(struct dvb_tuner_ops));
  807. fe->tuner_priv = priv;
  808. return fe;
  809. }
  810. EXPORT_SYMBOL(xc5000_attach);
  811. MODULE_AUTHOR("Steven Toth");
  812. MODULE_DESCRIPTION("Xceive xc5000 silicon tuner driver");
  813. MODULE_LICENSE("GPL");