pmac.c 46 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739
  1. /*
  2. * Support for IDE interfaces on PowerMacs.
  3. *
  4. * These IDE interfaces are memory-mapped and have a DBDMA channel
  5. * for doing DMA.
  6. *
  7. * Copyright (C) 1998-2003 Paul Mackerras & Ben. Herrenschmidt
  8. * Copyright (C) 2007 Bartlomiej Zolnierkiewicz
  9. *
  10. * This program is free software; you can redistribute it and/or
  11. * modify it under the terms of the GNU General Public License
  12. * as published by the Free Software Foundation; either version
  13. * 2 of the License, or (at your option) any later version.
  14. *
  15. * Some code taken from drivers/ide/ide-dma.c:
  16. *
  17. * Copyright (c) 1995-1998 Mark Lord
  18. *
  19. * TODO: - Use pre-calculated (kauai) timing tables all the time and
  20. * get rid of the "rounded" tables used previously, so we have the
  21. * same table format for all controllers and can then just have one
  22. * big table
  23. *
  24. */
  25. #include <linux/types.h>
  26. #include <linux/kernel.h>
  27. #include <linux/init.h>
  28. #include <linux/delay.h>
  29. #include <linux/ide.h>
  30. #include <linux/notifier.h>
  31. #include <linux/reboot.h>
  32. #include <linux/pci.h>
  33. #include <linux/adb.h>
  34. #include <linux/pmu.h>
  35. #include <linux/scatterlist.h>
  36. #include <asm/prom.h>
  37. #include <asm/io.h>
  38. #include <asm/dbdma.h>
  39. #include <asm/ide.h>
  40. #include <asm/pci-bridge.h>
  41. #include <asm/machdep.h>
  42. #include <asm/pmac_feature.h>
  43. #include <asm/sections.h>
  44. #include <asm/irq.h>
  45. #ifndef CONFIG_PPC64
  46. #include <asm/mediabay.h>
  47. #endif
  48. #include "../ide-timing.h"
  49. #undef IDE_PMAC_DEBUG
  50. #define DMA_WAIT_TIMEOUT 50
  51. typedef struct pmac_ide_hwif {
  52. unsigned long regbase;
  53. int irq;
  54. int kind;
  55. int aapl_bus_id;
  56. unsigned mediabay : 1;
  57. unsigned broken_dma : 1;
  58. unsigned broken_dma_warn : 1;
  59. struct device_node* node;
  60. struct macio_dev *mdev;
  61. u32 timings[4];
  62. volatile u32 __iomem * *kauai_fcr;
  63. #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
  64. /* Those fields are duplicating what is in hwif. We currently
  65. * can't use the hwif ones because of some assumptions that are
  66. * beeing done by the generic code about the kind of dma controller
  67. * and format of the dma table. This will have to be fixed though.
  68. */
  69. volatile struct dbdma_regs __iomem * dma_regs;
  70. struct dbdma_cmd* dma_table_cpu;
  71. #endif
  72. } pmac_ide_hwif_t;
  73. enum {
  74. controller_ohare, /* OHare based */
  75. controller_heathrow, /* Heathrow/Paddington */
  76. controller_kl_ata3, /* KeyLargo ATA-3 */
  77. controller_kl_ata4, /* KeyLargo ATA-4 */
  78. controller_un_ata6, /* UniNorth2 ATA-6 */
  79. controller_k2_ata6, /* K2 ATA-6 */
  80. controller_sh_ata6, /* Shasta ATA-6 */
  81. };
  82. static const char* model_name[] = {
  83. "OHare ATA", /* OHare based */
  84. "Heathrow ATA", /* Heathrow/Paddington */
  85. "KeyLargo ATA-3", /* KeyLargo ATA-3 (MDMA only) */
  86. "KeyLargo ATA-4", /* KeyLargo ATA-4 (UDMA/66) */
  87. "UniNorth ATA-6", /* UniNorth2 ATA-6 (UDMA/100) */
  88. "K2 ATA-6", /* K2 ATA-6 (UDMA/100) */
  89. "Shasta ATA-6", /* Shasta ATA-6 (UDMA/133) */
  90. };
  91. /*
  92. * Extra registers, both 32-bit little-endian
  93. */
  94. #define IDE_TIMING_CONFIG 0x200
  95. #define IDE_INTERRUPT 0x300
  96. /* Kauai (U2) ATA has different register setup */
  97. #define IDE_KAUAI_PIO_CONFIG 0x200
  98. #define IDE_KAUAI_ULTRA_CONFIG 0x210
  99. #define IDE_KAUAI_POLL_CONFIG 0x220
  100. /*
  101. * Timing configuration register definitions
  102. */
  103. /* Number of IDE_SYSCLK_NS ticks, argument is in nanoseconds */
  104. #define SYSCLK_TICKS(t) (((t) + IDE_SYSCLK_NS - 1) / IDE_SYSCLK_NS)
  105. #define SYSCLK_TICKS_66(t) (((t) + IDE_SYSCLK_66_NS - 1) / IDE_SYSCLK_66_NS)
  106. #define IDE_SYSCLK_NS 30 /* 33Mhz cell */
  107. #define IDE_SYSCLK_66_NS 15 /* 66Mhz cell */
  108. /* 133Mhz cell, found in shasta.
  109. * See comments about 100 Mhz Uninorth 2...
  110. * Note that PIO_MASK and MDMA_MASK seem to overlap
  111. */
  112. #define TR_133_PIOREG_PIO_MASK 0xff000fff
  113. #define TR_133_PIOREG_MDMA_MASK 0x00fff800
  114. #define TR_133_UDMAREG_UDMA_MASK 0x0003ffff
  115. #define TR_133_UDMAREG_UDMA_EN 0x00000001
  116. /* 100Mhz cell, found in Uninorth 2. I don't have much infos about
  117. * this one yet, it appears as a pci device (106b/0033) on uninorth
  118. * internal PCI bus and it's clock is controlled like gem or fw. It
  119. * appears to be an evolution of keylargo ATA4 with a timing register
  120. * extended to 2 32bits registers and a similar DBDMA channel. Other
  121. * registers seem to exist but I can't tell much about them.
  122. *
  123. * So far, I'm using pre-calculated tables for this extracted from
  124. * the values used by the MacOS X driver.
  125. *
  126. * The "PIO" register controls PIO and MDMA timings, the "ULTRA"
  127. * register controls the UDMA timings. At least, it seems bit 0
  128. * of this one enables UDMA vs. MDMA, and bits 4..7 are the
  129. * cycle time in units of 10ns. Bits 8..15 are used by I don't
  130. * know their meaning yet
  131. */
  132. #define TR_100_PIOREG_PIO_MASK 0xff000fff
  133. #define TR_100_PIOREG_MDMA_MASK 0x00fff000
  134. #define TR_100_UDMAREG_UDMA_MASK 0x0000ffff
  135. #define TR_100_UDMAREG_UDMA_EN 0x00000001
  136. /* 66Mhz cell, found in KeyLargo. Can do ultra mode 0 to 2 on
  137. * 40 connector cable and to 4 on 80 connector one.
  138. * Clock unit is 15ns (66Mhz)
  139. *
  140. * 3 Values can be programmed:
  141. * - Write data setup, which appears to match the cycle time. They
  142. * also call it DIOW setup.
  143. * - Ready to pause time (from spec)
  144. * - Address setup. That one is weird. I don't see where exactly
  145. * it fits in UDMA cycles, I got it's name from an obscure piece
  146. * of commented out code in Darwin. They leave it to 0, we do as
  147. * well, despite a comment that would lead to think it has a
  148. * min value of 45ns.
  149. * Apple also add 60ns to the write data setup (or cycle time ?) on
  150. * reads.
  151. */
  152. #define TR_66_UDMA_MASK 0xfff00000
  153. #define TR_66_UDMA_EN 0x00100000 /* Enable Ultra mode for DMA */
  154. #define TR_66_UDMA_ADDRSETUP_MASK 0xe0000000 /* Address setup */
  155. #define TR_66_UDMA_ADDRSETUP_SHIFT 29
  156. #define TR_66_UDMA_RDY2PAUS_MASK 0x1e000000 /* Ready 2 pause time */
  157. #define TR_66_UDMA_RDY2PAUS_SHIFT 25
  158. #define TR_66_UDMA_WRDATASETUP_MASK 0x01e00000 /* Write data setup time */
  159. #define TR_66_UDMA_WRDATASETUP_SHIFT 21
  160. #define TR_66_MDMA_MASK 0x000ffc00
  161. #define TR_66_MDMA_RECOVERY_MASK 0x000f8000
  162. #define TR_66_MDMA_RECOVERY_SHIFT 15
  163. #define TR_66_MDMA_ACCESS_MASK 0x00007c00
  164. #define TR_66_MDMA_ACCESS_SHIFT 10
  165. #define TR_66_PIO_MASK 0x000003ff
  166. #define TR_66_PIO_RECOVERY_MASK 0x000003e0
  167. #define TR_66_PIO_RECOVERY_SHIFT 5
  168. #define TR_66_PIO_ACCESS_MASK 0x0000001f
  169. #define TR_66_PIO_ACCESS_SHIFT 0
  170. /* 33Mhz cell, found in OHare, Heathrow (& Paddington) and KeyLargo
  171. * Can do pio & mdma modes, clock unit is 30ns (33Mhz)
  172. *
  173. * The access time and recovery time can be programmed. Some older
  174. * Darwin code base limit OHare to 150ns cycle time. I decided to do
  175. * the same here fore safety against broken old hardware ;)
  176. * The HalfTick bit, when set, adds half a clock (15ns) to the access
  177. * time and removes one from recovery. It's not supported on KeyLargo
  178. * implementation afaik. The E bit appears to be set for PIO mode 0 and
  179. * is used to reach long timings used in this mode.
  180. */
  181. #define TR_33_MDMA_MASK 0x003ff800
  182. #define TR_33_MDMA_RECOVERY_MASK 0x001f0000
  183. #define TR_33_MDMA_RECOVERY_SHIFT 16
  184. #define TR_33_MDMA_ACCESS_MASK 0x0000f800
  185. #define TR_33_MDMA_ACCESS_SHIFT 11
  186. #define TR_33_MDMA_HALFTICK 0x00200000
  187. #define TR_33_PIO_MASK 0x000007ff
  188. #define TR_33_PIO_E 0x00000400
  189. #define TR_33_PIO_RECOVERY_MASK 0x000003e0
  190. #define TR_33_PIO_RECOVERY_SHIFT 5
  191. #define TR_33_PIO_ACCESS_MASK 0x0000001f
  192. #define TR_33_PIO_ACCESS_SHIFT 0
  193. /*
  194. * Interrupt register definitions
  195. */
  196. #define IDE_INTR_DMA 0x80000000
  197. #define IDE_INTR_DEVICE 0x40000000
  198. /*
  199. * FCR Register on Kauai. Not sure what bit 0x4 is ...
  200. */
  201. #define KAUAI_FCR_UATA_MAGIC 0x00000004
  202. #define KAUAI_FCR_UATA_RESET_N 0x00000002
  203. #define KAUAI_FCR_UATA_ENABLE 0x00000001
  204. #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
  205. /* Rounded Multiword DMA timings
  206. *
  207. * I gave up finding a generic formula for all controller
  208. * types and instead, built tables based on timing values
  209. * used by Apple in Darwin's implementation.
  210. */
  211. struct mdma_timings_t {
  212. int accessTime;
  213. int recoveryTime;
  214. int cycleTime;
  215. };
  216. struct mdma_timings_t mdma_timings_33[] =
  217. {
  218. { 240, 240, 480 },
  219. { 180, 180, 360 },
  220. { 135, 135, 270 },
  221. { 120, 120, 240 },
  222. { 105, 105, 210 },
  223. { 90, 90, 180 },
  224. { 75, 75, 150 },
  225. { 75, 45, 120 },
  226. { 0, 0, 0 }
  227. };
  228. struct mdma_timings_t mdma_timings_33k[] =
  229. {
  230. { 240, 240, 480 },
  231. { 180, 180, 360 },
  232. { 150, 150, 300 },
  233. { 120, 120, 240 },
  234. { 90, 120, 210 },
  235. { 90, 90, 180 },
  236. { 90, 60, 150 },
  237. { 90, 30, 120 },
  238. { 0, 0, 0 }
  239. };
  240. struct mdma_timings_t mdma_timings_66[] =
  241. {
  242. { 240, 240, 480 },
  243. { 180, 180, 360 },
  244. { 135, 135, 270 },
  245. { 120, 120, 240 },
  246. { 105, 105, 210 },
  247. { 90, 90, 180 },
  248. { 90, 75, 165 },
  249. { 75, 45, 120 },
  250. { 0, 0, 0 }
  251. };
  252. /* KeyLargo ATA-4 Ultra DMA timings (rounded) */
  253. struct {
  254. int addrSetup; /* ??? */
  255. int rdy2pause;
  256. int wrDataSetup;
  257. } kl66_udma_timings[] =
  258. {
  259. { 0, 180, 120 }, /* Mode 0 */
  260. { 0, 150, 90 }, /* 1 */
  261. { 0, 120, 60 }, /* 2 */
  262. { 0, 90, 45 }, /* 3 */
  263. { 0, 90, 30 } /* 4 */
  264. };
  265. /* UniNorth 2 ATA/100 timings */
  266. struct kauai_timing {
  267. int cycle_time;
  268. u32 timing_reg;
  269. };
  270. static struct kauai_timing kauai_pio_timings[] =
  271. {
  272. { 930 , 0x08000fff },
  273. { 600 , 0x08000a92 },
  274. { 383 , 0x0800060f },
  275. { 360 , 0x08000492 },
  276. { 330 , 0x0800048f },
  277. { 300 , 0x080003cf },
  278. { 270 , 0x080003cc },
  279. { 240 , 0x0800038b },
  280. { 239 , 0x0800030c },
  281. { 180 , 0x05000249 },
  282. { 120 , 0x04000148 },
  283. { 0 , 0 },
  284. };
  285. static struct kauai_timing kauai_mdma_timings[] =
  286. {
  287. { 1260 , 0x00fff000 },
  288. { 480 , 0x00618000 },
  289. { 360 , 0x00492000 },
  290. { 270 , 0x0038e000 },
  291. { 240 , 0x0030c000 },
  292. { 210 , 0x002cb000 },
  293. { 180 , 0x00249000 },
  294. { 150 , 0x00209000 },
  295. { 120 , 0x00148000 },
  296. { 0 , 0 },
  297. };
  298. static struct kauai_timing kauai_udma_timings[] =
  299. {
  300. { 120 , 0x000070c0 },
  301. { 90 , 0x00005d80 },
  302. { 60 , 0x00004a60 },
  303. { 45 , 0x00003a50 },
  304. { 30 , 0x00002a30 },
  305. { 20 , 0x00002921 },
  306. { 0 , 0 },
  307. };
  308. static struct kauai_timing shasta_pio_timings[] =
  309. {
  310. { 930 , 0x08000fff },
  311. { 600 , 0x0A000c97 },
  312. { 383 , 0x07000712 },
  313. { 360 , 0x040003cd },
  314. { 330 , 0x040003cd },
  315. { 300 , 0x040003cd },
  316. { 270 , 0x040003cd },
  317. { 240 , 0x040003cd },
  318. { 239 , 0x040003cd },
  319. { 180 , 0x0400028b },
  320. { 120 , 0x0400010a },
  321. { 0 , 0 },
  322. };
  323. static struct kauai_timing shasta_mdma_timings[] =
  324. {
  325. { 1260 , 0x00fff000 },
  326. { 480 , 0x00820800 },
  327. { 360 , 0x00820800 },
  328. { 270 , 0x00820800 },
  329. { 240 , 0x00820800 },
  330. { 210 , 0x00820800 },
  331. { 180 , 0x00820800 },
  332. { 150 , 0x0028b000 },
  333. { 120 , 0x001ca000 },
  334. { 0 , 0 },
  335. };
  336. static struct kauai_timing shasta_udma133_timings[] =
  337. {
  338. { 120 , 0x00035901, },
  339. { 90 , 0x000348b1, },
  340. { 60 , 0x00033881, },
  341. { 45 , 0x00033861, },
  342. { 30 , 0x00033841, },
  343. { 20 , 0x00033031, },
  344. { 15 , 0x00033021, },
  345. { 0 , 0 },
  346. };
  347. static inline u32
  348. kauai_lookup_timing(struct kauai_timing* table, int cycle_time)
  349. {
  350. int i;
  351. for (i=0; table[i].cycle_time; i++)
  352. if (cycle_time > table[i+1].cycle_time)
  353. return table[i].timing_reg;
  354. BUG();
  355. return 0;
  356. }
  357. /* allow up to 256 DBDMA commands per xfer */
  358. #define MAX_DCMDS 256
  359. /*
  360. * Wait 1s for disk to answer on IDE bus after a hard reset
  361. * of the device (via GPIO/FCR).
  362. *
  363. * Some devices seem to "pollute" the bus even after dropping
  364. * the BSY bit (typically some combo drives slave on the UDMA
  365. * bus) after a hard reset. Since we hard reset all drives on
  366. * KeyLargo ATA66, we have to keep that delay around. I may end
  367. * up not hard resetting anymore on these and keep the delay only
  368. * for older interfaces instead (we have to reset when coming
  369. * from MacOS...) --BenH.
  370. */
  371. #define IDE_WAKEUP_DELAY (1*HZ)
  372. static int pmac_ide_init_dma(ide_hwif_t *, const struct ide_port_info *);
  373. static int pmac_ide_build_dmatable(ide_drive_t *drive, struct request *rq);
  374. static void pmac_ide_selectproc(ide_drive_t *drive);
  375. static void pmac_ide_kauai_selectproc(ide_drive_t *drive);
  376. #endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */
  377. #define PMAC_IDE_REG(x) \
  378. ((void __iomem *)((drive)->hwif->io_ports.data_addr + (x)))
  379. /*
  380. * Apply the timings of the proper unit (master/slave) to the shared
  381. * timing register when selecting that unit. This version is for
  382. * ASICs with a single timing register
  383. */
  384. static void
  385. pmac_ide_selectproc(ide_drive_t *drive)
  386. {
  387. pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
  388. if (pmif == NULL)
  389. return;
  390. if (drive->select.b.unit & 0x01)
  391. writel(pmif->timings[1], PMAC_IDE_REG(IDE_TIMING_CONFIG));
  392. else
  393. writel(pmif->timings[0], PMAC_IDE_REG(IDE_TIMING_CONFIG));
  394. (void)readl(PMAC_IDE_REG(IDE_TIMING_CONFIG));
  395. }
  396. /*
  397. * Apply the timings of the proper unit (master/slave) to the shared
  398. * timing register when selecting that unit. This version is for
  399. * ASICs with a dual timing register (Kauai)
  400. */
  401. static void
  402. pmac_ide_kauai_selectproc(ide_drive_t *drive)
  403. {
  404. pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
  405. if (pmif == NULL)
  406. return;
  407. if (drive->select.b.unit & 0x01) {
  408. writel(pmif->timings[1], PMAC_IDE_REG(IDE_KAUAI_PIO_CONFIG));
  409. writel(pmif->timings[3], PMAC_IDE_REG(IDE_KAUAI_ULTRA_CONFIG));
  410. } else {
  411. writel(pmif->timings[0], PMAC_IDE_REG(IDE_KAUAI_PIO_CONFIG));
  412. writel(pmif->timings[2], PMAC_IDE_REG(IDE_KAUAI_ULTRA_CONFIG));
  413. }
  414. (void)readl(PMAC_IDE_REG(IDE_KAUAI_PIO_CONFIG));
  415. }
  416. /*
  417. * Force an update of controller timing values for a given drive
  418. */
  419. static void
  420. pmac_ide_do_update_timings(ide_drive_t *drive)
  421. {
  422. pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
  423. if (pmif == NULL)
  424. return;
  425. if (pmif->kind == controller_sh_ata6 ||
  426. pmif->kind == controller_un_ata6 ||
  427. pmif->kind == controller_k2_ata6)
  428. pmac_ide_kauai_selectproc(drive);
  429. else
  430. pmac_ide_selectproc(drive);
  431. }
  432. static void
  433. pmac_outbsync(ide_drive_t *drive, u8 value, unsigned long port)
  434. {
  435. u32 tmp;
  436. writeb(value, (void __iomem *) port);
  437. tmp = readl(PMAC_IDE_REG(IDE_TIMING_CONFIG));
  438. }
  439. /*
  440. * Old tuning functions (called on hdparm -p), sets up drive PIO timings
  441. */
  442. static void
  443. pmac_ide_set_pio_mode(ide_drive_t *drive, const u8 pio)
  444. {
  445. u32 *timings, t;
  446. unsigned accessTicks, recTicks;
  447. unsigned accessTime, recTime;
  448. pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
  449. unsigned int cycle_time;
  450. if (pmif == NULL)
  451. return;
  452. /* which drive is it ? */
  453. timings = &pmif->timings[drive->select.b.unit & 0x01];
  454. t = *timings;
  455. cycle_time = ide_pio_cycle_time(drive, pio);
  456. switch (pmif->kind) {
  457. case controller_sh_ata6: {
  458. /* 133Mhz cell */
  459. u32 tr = kauai_lookup_timing(shasta_pio_timings, cycle_time);
  460. t = (t & ~TR_133_PIOREG_PIO_MASK) | tr;
  461. break;
  462. }
  463. case controller_un_ata6:
  464. case controller_k2_ata6: {
  465. /* 100Mhz cell */
  466. u32 tr = kauai_lookup_timing(kauai_pio_timings, cycle_time);
  467. t = (t & ~TR_100_PIOREG_PIO_MASK) | tr;
  468. break;
  469. }
  470. case controller_kl_ata4:
  471. /* 66Mhz cell */
  472. recTime = cycle_time - ide_pio_timings[pio].active_time
  473. - ide_pio_timings[pio].setup_time;
  474. recTime = max(recTime, 150U);
  475. accessTime = ide_pio_timings[pio].active_time;
  476. accessTime = max(accessTime, 150U);
  477. accessTicks = SYSCLK_TICKS_66(accessTime);
  478. accessTicks = min(accessTicks, 0x1fU);
  479. recTicks = SYSCLK_TICKS_66(recTime);
  480. recTicks = min(recTicks, 0x1fU);
  481. t = (t & ~TR_66_PIO_MASK) |
  482. (accessTicks << TR_66_PIO_ACCESS_SHIFT) |
  483. (recTicks << TR_66_PIO_RECOVERY_SHIFT);
  484. break;
  485. default: {
  486. /* 33Mhz cell */
  487. int ebit = 0;
  488. recTime = cycle_time - ide_pio_timings[pio].active_time
  489. - ide_pio_timings[pio].setup_time;
  490. recTime = max(recTime, 150U);
  491. accessTime = ide_pio_timings[pio].active_time;
  492. accessTime = max(accessTime, 150U);
  493. accessTicks = SYSCLK_TICKS(accessTime);
  494. accessTicks = min(accessTicks, 0x1fU);
  495. accessTicks = max(accessTicks, 4U);
  496. recTicks = SYSCLK_TICKS(recTime);
  497. recTicks = min(recTicks, 0x1fU);
  498. recTicks = max(recTicks, 5U) - 4;
  499. if (recTicks > 9) {
  500. recTicks--; /* guess, but it's only for PIO0, so... */
  501. ebit = 1;
  502. }
  503. t = (t & ~TR_33_PIO_MASK) |
  504. (accessTicks << TR_33_PIO_ACCESS_SHIFT) |
  505. (recTicks << TR_33_PIO_RECOVERY_SHIFT);
  506. if (ebit)
  507. t |= TR_33_PIO_E;
  508. break;
  509. }
  510. }
  511. #ifdef IDE_PMAC_DEBUG
  512. printk(KERN_ERR "%s: Set PIO timing for mode %d, reg: 0x%08x\n",
  513. drive->name, pio, *timings);
  514. #endif
  515. *timings = t;
  516. pmac_ide_do_update_timings(drive);
  517. }
  518. #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
  519. /*
  520. * Calculate KeyLargo ATA/66 UDMA timings
  521. */
  522. static int
  523. set_timings_udma_ata4(u32 *timings, u8 speed)
  524. {
  525. unsigned rdyToPauseTicks, wrDataSetupTicks, addrTicks;
  526. if (speed > XFER_UDMA_4)
  527. return 1;
  528. rdyToPauseTicks = SYSCLK_TICKS_66(kl66_udma_timings[speed & 0xf].rdy2pause);
  529. wrDataSetupTicks = SYSCLK_TICKS_66(kl66_udma_timings[speed & 0xf].wrDataSetup);
  530. addrTicks = SYSCLK_TICKS_66(kl66_udma_timings[speed & 0xf].addrSetup);
  531. *timings = ((*timings) & ~(TR_66_UDMA_MASK | TR_66_MDMA_MASK)) |
  532. (wrDataSetupTicks << TR_66_UDMA_WRDATASETUP_SHIFT) |
  533. (rdyToPauseTicks << TR_66_UDMA_RDY2PAUS_SHIFT) |
  534. (addrTicks <<TR_66_UDMA_ADDRSETUP_SHIFT) |
  535. TR_66_UDMA_EN;
  536. #ifdef IDE_PMAC_DEBUG
  537. printk(KERN_ERR "ide_pmac: Set UDMA timing for mode %d, reg: 0x%08x\n",
  538. speed & 0xf, *timings);
  539. #endif
  540. return 0;
  541. }
  542. /*
  543. * Calculate Kauai ATA/100 UDMA timings
  544. */
  545. static int
  546. set_timings_udma_ata6(u32 *pio_timings, u32 *ultra_timings, u8 speed)
  547. {
  548. struct ide_timing *t = ide_timing_find_mode(speed);
  549. u32 tr;
  550. if (speed > XFER_UDMA_5 || t == NULL)
  551. return 1;
  552. tr = kauai_lookup_timing(kauai_udma_timings, (int)t->udma);
  553. *ultra_timings = ((*ultra_timings) & ~TR_100_UDMAREG_UDMA_MASK) | tr;
  554. *ultra_timings = (*ultra_timings) | TR_100_UDMAREG_UDMA_EN;
  555. return 0;
  556. }
  557. /*
  558. * Calculate Shasta ATA/133 UDMA timings
  559. */
  560. static int
  561. set_timings_udma_shasta(u32 *pio_timings, u32 *ultra_timings, u8 speed)
  562. {
  563. struct ide_timing *t = ide_timing_find_mode(speed);
  564. u32 tr;
  565. if (speed > XFER_UDMA_6 || t == NULL)
  566. return 1;
  567. tr = kauai_lookup_timing(shasta_udma133_timings, (int)t->udma);
  568. *ultra_timings = ((*ultra_timings) & ~TR_133_UDMAREG_UDMA_MASK) | tr;
  569. *ultra_timings = (*ultra_timings) | TR_133_UDMAREG_UDMA_EN;
  570. return 0;
  571. }
  572. /*
  573. * Calculate MDMA timings for all cells
  574. */
  575. static void
  576. set_timings_mdma(ide_drive_t *drive, int intf_type, u32 *timings, u32 *timings2,
  577. u8 speed)
  578. {
  579. int cycleTime, accessTime = 0, recTime = 0;
  580. unsigned accessTicks, recTicks;
  581. struct hd_driveid *id = drive->id;
  582. struct mdma_timings_t* tm = NULL;
  583. int i;
  584. /* Get default cycle time for mode */
  585. switch(speed & 0xf) {
  586. case 0: cycleTime = 480; break;
  587. case 1: cycleTime = 150; break;
  588. case 2: cycleTime = 120; break;
  589. default:
  590. BUG();
  591. break;
  592. }
  593. /* Check if drive provides explicit DMA cycle time */
  594. if ((id->field_valid & 2) && id->eide_dma_time)
  595. cycleTime = max_t(int, id->eide_dma_time, cycleTime);
  596. /* OHare limits according to some old Apple sources */
  597. if ((intf_type == controller_ohare) && (cycleTime < 150))
  598. cycleTime = 150;
  599. /* Get the proper timing array for this controller */
  600. switch(intf_type) {
  601. case controller_sh_ata6:
  602. case controller_un_ata6:
  603. case controller_k2_ata6:
  604. break;
  605. case controller_kl_ata4:
  606. tm = mdma_timings_66;
  607. break;
  608. case controller_kl_ata3:
  609. tm = mdma_timings_33k;
  610. break;
  611. default:
  612. tm = mdma_timings_33;
  613. break;
  614. }
  615. if (tm != NULL) {
  616. /* Lookup matching access & recovery times */
  617. i = -1;
  618. for (;;) {
  619. if (tm[i+1].cycleTime < cycleTime)
  620. break;
  621. i++;
  622. }
  623. cycleTime = tm[i].cycleTime;
  624. accessTime = tm[i].accessTime;
  625. recTime = tm[i].recoveryTime;
  626. #ifdef IDE_PMAC_DEBUG
  627. printk(KERN_ERR "%s: MDMA, cycleTime: %d, accessTime: %d, recTime: %d\n",
  628. drive->name, cycleTime, accessTime, recTime);
  629. #endif
  630. }
  631. switch(intf_type) {
  632. case controller_sh_ata6: {
  633. /* 133Mhz cell */
  634. u32 tr = kauai_lookup_timing(shasta_mdma_timings, cycleTime);
  635. *timings = ((*timings) & ~TR_133_PIOREG_MDMA_MASK) | tr;
  636. *timings2 = (*timings2) & ~TR_133_UDMAREG_UDMA_EN;
  637. }
  638. case controller_un_ata6:
  639. case controller_k2_ata6: {
  640. /* 100Mhz cell */
  641. u32 tr = kauai_lookup_timing(kauai_mdma_timings, cycleTime);
  642. *timings = ((*timings) & ~TR_100_PIOREG_MDMA_MASK) | tr;
  643. *timings2 = (*timings2) & ~TR_100_UDMAREG_UDMA_EN;
  644. }
  645. break;
  646. case controller_kl_ata4:
  647. /* 66Mhz cell */
  648. accessTicks = SYSCLK_TICKS_66(accessTime);
  649. accessTicks = min(accessTicks, 0x1fU);
  650. accessTicks = max(accessTicks, 0x1U);
  651. recTicks = SYSCLK_TICKS_66(recTime);
  652. recTicks = min(recTicks, 0x1fU);
  653. recTicks = max(recTicks, 0x3U);
  654. /* Clear out mdma bits and disable udma */
  655. *timings = ((*timings) & ~(TR_66_MDMA_MASK | TR_66_UDMA_MASK)) |
  656. (accessTicks << TR_66_MDMA_ACCESS_SHIFT) |
  657. (recTicks << TR_66_MDMA_RECOVERY_SHIFT);
  658. break;
  659. case controller_kl_ata3:
  660. /* 33Mhz cell on KeyLargo */
  661. accessTicks = SYSCLK_TICKS(accessTime);
  662. accessTicks = max(accessTicks, 1U);
  663. accessTicks = min(accessTicks, 0x1fU);
  664. accessTime = accessTicks * IDE_SYSCLK_NS;
  665. recTicks = SYSCLK_TICKS(recTime);
  666. recTicks = max(recTicks, 1U);
  667. recTicks = min(recTicks, 0x1fU);
  668. *timings = ((*timings) & ~TR_33_MDMA_MASK) |
  669. (accessTicks << TR_33_MDMA_ACCESS_SHIFT) |
  670. (recTicks << TR_33_MDMA_RECOVERY_SHIFT);
  671. break;
  672. default: {
  673. /* 33Mhz cell on others */
  674. int halfTick = 0;
  675. int origAccessTime = accessTime;
  676. int origRecTime = recTime;
  677. accessTicks = SYSCLK_TICKS(accessTime);
  678. accessTicks = max(accessTicks, 1U);
  679. accessTicks = min(accessTicks, 0x1fU);
  680. accessTime = accessTicks * IDE_SYSCLK_NS;
  681. recTicks = SYSCLK_TICKS(recTime);
  682. recTicks = max(recTicks, 2U) - 1;
  683. recTicks = min(recTicks, 0x1fU);
  684. recTime = (recTicks + 1) * IDE_SYSCLK_NS;
  685. if ((accessTicks > 1) &&
  686. ((accessTime - IDE_SYSCLK_NS/2) >= origAccessTime) &&
  687. ((recTime - IDE_SYSCLK_NS/2) >= origRecTime)) {
  688. halfTick = 1;
  689. accessTicks--;
  690. }
  691. *timings = ((*timings) & ~TR_33_MDMA_MASK) |
  692. (accessTicks << TR_33_MDMA_ACCESS_SHIFT) |
  693. (recTicks << TR_33_MDMA_RECOVERY_SHIFT);
  694. if (halfTick)
  695. *timings |= TR_33_MDMA_HALFTICK;
  696. }
  697. }
  698. #ifdef IDE_PMAC_DEBUG
  699. printk(KERN_ERR "%s: Set MDMA timing for mode %d, reg: 0x%08x\n",
  700. drive->name, speed & 0xf, *timings);
  701. #endif
  702. }
  703. #endif /* #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC */
  704. static void pmac_ide_set_dma_mode(ide_drive_t *drive, const u8 speed)
  705. {
  706. int unit = (drive->select.b.unit & 0x01);
  707. int ret = 0;
  708. pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
  709. u32 *timings, *timings2, tl[2];
  710. timings = &pmif->timings[unit];
  711. timings2 = &pmif->timings[unit+2];
  712. /* Copy timings to local image */
  713. tl[0] = *timings;
  714. tl[1] = *timings2;
  715. #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
  716. if (speed >= XFER_UDMA_0) {
  717. if (pmif->kind == controller_kl_ata4)
  718. ret = set_timings_udma_ata4(&tl[0], speed);
  719. else if (pmif->kind == controller_un_ata6
  720. || pmif->kind == controller_k2_ata6)
  721. ret = set_timings_udma_ata6(&tl[0], &tl[1], speed);
  722. else if (pmif->kind == controller_sh_ata6)
  723. ret = set_timings_udma_shasta(&tl[0], &tl[1], speed);
  724. else
  725. ret = -1;
  726. } else
  727. set_timings_mdma(drive, pmif->kind, &tl[0], &tl[1], speed);
  728. #endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */
  729. if (ret)
  730. return;
  731. /* Apply timings to controller */
  732. *timings = tl[0];
  733. *timings2 = tl[1];
  734. pmac_ide_do_update_timings(drive);
  735. }
  736. /*
  737. * Blast some well known "safe" values to the timing registers at init or
  738. * wakeup from sleep time, before we do real calculation
  739. */
  740. static void
  741. sanitize_timings(pmac_ide_hwif_t *pmif)
  742. {
  743. unsigned int value, value2 = 0;
  744. switch(pmif->kind) {
  745. case controller_sh_ata6:
  746. value = 0x0a820c97;
  747. value2 = 0x00033031;
  748. break;
  749. case controller_un_ata6:
  750. case controller_k2_ata6:
  751. value = 0x08618a92;
  752. value2 = 0x00002921;
  753. break;
  754. case controller_kl_ata4:
  755. value = 0x0008438c;
  756. break;
  757. case controller_kl_ata3:
  758. value = 0x00084526;
  759. break;
  760. case controller_heathrow:
  761. case controller_ohare:
  762. default:
  763. value = 0x00074526;
  764. break;
  765. }
  766. pmif->timings[0] = pmif->timings[1] = value;
  767. pmif->timings[2] = pmif->timings[3] = value2;
  768. }
  769. /* Suspend call back, should be called after the child devices
  770. * have actually been suspended
  771. */
  772. static int
  773. pmac_ide_do_suspend(ide_hwif_t *hwif)
  774. {
  775. pmac_ide_hwif_t *pmif = (pmac_ide_hwif_t *)hwif->hwif_data;
  776. /* We clear the timings */
  777. pmif->timings[0] = 0;
  778. pmif->timings[1] = 0;
  779. disable_irq(pmif->irq);
  780. /* The media bay will handle itself just fine */
  781. if (pmif->mediabay)
  782. return 0;
  783. /* Kauai has bus control FCRs directly here */
  784. if (pmif->kauai_fcr) {
  785. u32 fcr = readl(pmif->kauai_fcr);
  786. fcr &= ~(KAUAI_FCR_UATA_RESET_N | KAUAI_FCR_UATA_ENABLE);
  787. writel(fcr, pmif->kauai_fcr);
  788. }
  789. /* Disable the bus on older machines and the cell on kauai */
  790. ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, pmif->node, pmif->aapl_bus_id,
  791. 0);
  792. return 0;
  793. }
  794. /* Resume call back, should be called before the child devices
  795. * are resumed
  796. */
  797. static int
  798. pmac_ide_do_resume(ide_hwif_t *hwif)
  799. {
  800. pmac_ide_hwif_t *pmif = (pmac_ide_hwif_t *)hwif->hwif_data;
  801. /* Hard reset & re-enable controller (do we really need to reset ? -BenH) */
  802. if (!pmif->mediabay) {
  803. ppc_md.feature_call(PMAC_FTR_IDE_RESET, pmif->node, pmif->aapl_bus_id, 1);
  804. ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, pmif->node, pmif->aapl_bus_id, 1);
  805. msleep(10);
  806. ppc_md.feature_call(PMAC_FTR_IDE_RESET, pmif->node, pmif->aapl_bus_id, 0);
  807. /* Kauai has it different */
  808. if (pmif->kauai_fcr) {
  809. u32 fcr = readl(pmif->kauai_fcr);
  810. fcr |= KAUAI_FCR_UATA_RESET_N | KAUAI_FCR_UATA_ENABLE;
  811. writel(fcr, pmif->kauai_fcr);
  812. }
  813. msleep(jiffies_to_msecs(IDE_WAKEUP_DELAY));
  814. }
  815. /* Sanitize drive timings */
  816. sanitize_timings(pmif);
  817. enable_irq(pmif->irq);
  818. return 0;
  819. }
  820. static u8 pmac_ide_cable_detect(ide_hwif_t *hwif)
  821. {
  822. pmac_ide_hwif_t *pmif = (pmac_ide_hwif_t *)ide_get_hwifdata(hwif);
  823. struct device_node *np = pmif->node;
  824. const char *cable = of_get_property(np, "cable-type", NULL);
  825. /* Get cable type from device-tree. */
  826. if (cable && !strncmp(cable, "80-", 3))
  827. return ATA_CBL_PATA80;
  828. /*
  829. * G5's seem to have incorrect cable type in device-tree.
  830. * Let's assume they have a 80 conductor cable, this seem
  831. * to be always the case unless the user mucked around.
  832. */
  833. if (of_device_is_compatible(np, "K2-UATA") ||
  834. of_device_is_compatible(np, "shasta-ata"))
  835. return ATA_CBL_PATA80;
  836. return ATA_CBL_PATA40;
  837. }
  838. static const struct ide_port_ops pmac_ide_ata6_port_ops = {
  839. .set_pio_mode = pmac_ide_set_pio_mode,
  840. .set_dma_mode = pmac_ide_set_dma_mode,
  841. .selectproc = pmac_ide_kauai_selectproc,
  842. .cable_detect = pmac_ide_cable_detect,
  843. };
  844. static const struct ide_port_ops pmac_ide_ata4_port_ops = {
  845. .set_pio_mode = pmac_ide_set_pio_mode,
  846. .set_dma_mode = pmac_ide_set_dma_mode,
  847. .selectproc = pmac_ide_selectproc,
  848. .cable_detect = pmac_ide_cable_detect,
  849. };
  850. static const struct ide_port_ops pmac_ide_port_ops = {
  851. .set_pio_mode = pmac_ide_set_pio_mode,
  852. .set_dma_mode = pmac_ide_set_dma_mode,
  853. .selectproc = pmac_ide_selectproc,
  854. };
  855. static const struct ide_dma_ops pmac_dma_ops;
  856. static const struct ide_port_info pmac_port_info = {
  857. .init_dma = pmac_ide_init_dma,
  858. .chipset = ide_pmac,
  859. #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
  860. .dma_ops = &pmac_dma_ops,
  861. #endif
  862. .port_ops = &pmac_ide_port_ops,
  863. .host_flags = IDE_HFLAG_SET_PIO_MODE_KEEP_DMA |
  864. IDE_HFLAG_POST_SET_MODE |
  865. IDE_HFLAG_MMIO |
  866. IDE_HFLAG_UNMASK_IRQS,
  867. .pio_mask = ATA_PIO4,
  868. .mwdma_mask = ATA_MWDMA2,
  869. };
  870. /*
  871. * Setup, register & probe an IDE channel driven by this driver, this is
  872. * called by one of the 2 probe functions (macio or PCI).
  873. */
  874. static int __devinit
  875. pmac_ide_setup_device(pmac_ide_hwif_t *pmif, ide_hwif_t *hwif, hw_regs_t *hw)
  876. {
  877. struct device_node *np = pmif->node;
  878. const int *bidp;
  879. u8 idx[4] = { 0xff, 0xff, 0xff, 0xff };
  880. struct ide_port_info d = pmac_port_info;
  881. pmif->broken_dma = pmif->broken_dma_warn = 0;
  882. if (of_device_is_compatible(np, "shasta-ata")) {
  883. pmif->kind = controller_sh_ata6;
  884. d.port_ops = &pmac_ide_ata6_port_ops;
  885. d.udma_mask = ATA_UDMA6;
  886. } else if (of_device_is_compatible(np, "kauai-ata")) {
  887. pmif->kind = controller_un_ata6;
  888. d.port_ops = &pmac_ide_ata6_port_ops;
  889. d.udma_mask = ATA_UDMA5;
  890. } else if (of_device_is_compatible(np, "K2-UATA")) {
  891. pmif->kind = controller_k2_ata6;
  892. d.port_ops = &pmac_ide_ata6_port_ops;
  893. d.udma_mask = ATA_UDMA5;
  894. } else if (of_device_is_compatible(np, "keylargo-ata")) {
  895. if (strcmp(np->name, "ata-4") == 0) {
  896. pmif->kind = controller_kl_ata4;
  897. d.port_ops = &pmac_ide_ata4_port_ops;
  898. d.udma_mask = ATA_UDMA4;
  899. } else
  900. pmif->kind = controller_kl_ata3;
  901. } else if (of_device_is_compatible(np, "heathrow-ata")) {
  902. pmif->kind = controller_heathrow;
  903. } else {
  904. pmif->kind = controller_ohare;
  905. pmif->broken_dma = 1;
  906. }
  907. bidp = of_get_property(np, "AAPL,bus-id", NULL);
  908. pmif->aapl_bus_id = bidp ? *bidp : 0;
  909. /* On Kauai-type controllers, we make sure the FCR is correct */
  910. if (pmif->kauai_fcr)
  911. writel(KAUAI_FCR_UATA_MAGIC |
  912. KAUAI_FCR_UATA_RESET_N |
  913. KAUAI_FCR_UATA_ENABLE, pmif->kauai_fcr);
  914. pmif->mediabay = 0;
  915. /* Make sure we have sane timings */
  916. sanitize_timings(pmif);
  917. #ifndef CONFIG_PPC64
  918. /* XXX FIXME: Media bay stuff need re-organizing */
  919. if (np->parent && np->parent->name
  920. && strcasecmp(np->parent->name, "media-bay") == 0) {
  921. #ifdef CONFIG_PMAC_MEDIABAY
  922. media_bay_set_ide_infos(np->parent, pmif->regbase, pmif->irq,
  923. hwif);
  924. #endif /* CONFIG_PMAC_MEDIABAY */
  925. pmif->mediabay = 1;
  926. if (!bidp)
  927. pmif->aapl_bus_id = 1;
  928. } else if (pmif->kind == controller_ohare) {
  929. /* The code below is having trouble on some ohare machines
  930. * (timing related ?). Until I can put my hand on one of these
  931. * units, I keep the old way
  932. */
  933. ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, np, 0, 1);
  934. } else
  935. #endif
  936. {
  937. /* This is necessary to enable IDE when net-booting */
  938. ppc_md.feature_call(PMAC_FTR_IDE_RESET, np, pmif->aapl_bus_id, 1);
  939. ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, np, pmif->aapl_bus_id, 1);
  940. msleep(10);
  941. ppc_md.feature_call(PMAC_FTR_IDE_RESET, np, pmif->aapl_bus_id, 0);
  942. msleep(jiffies_to_msecs(IDE_WAKEUP_DELAY));
  943. }
  944. /* Setup MMIO ops */
  945. default_hwif_mmiops(hwif);
  946. hwif->OUTBSYNC = pmac_outbsync;
  947. hwif->hwif_data = pmif;
  948. ide_init_port_hw(hwif, hw);
  949. printk(KERN_INFO "ide%d: Found Apple %s controller, bus ID %d%s, irq %d\n",
  950. hwif->index, model_name[pmif->kind], pmif->aapl_bus_id,
  951. pmif->mediabay ? " (mediabay)" : "", hwif->irq);
  952. if (pmif->mediabay) {
  953. #ifdef CONFIG_PMAC_MEDIABAY
  954. if (check_media_bay_by_base(pmif->regbase, MB_CD)) {
  955. #else
  956. if (1) {
  957. #endif
  958. hwif->drives[0].noprobe = 1;
  959. hwif->drives[1].noprobe = 1;
  960. }
  961. }
  962. idx[0] = hwif->index;
  963. ide_device_add(idx, &d);
  964. return 0;
  965. }
  966. static void __devinit pmac_ide_init_ports(hw_regs_t *hw, unsigned long base)
  967. {
  968. int i;
  969. for (i = 0; i < 8; ++i)
  970. hw->io_ports_array[i] = base + i * 0x10;
  971. hw->io_ports.ctl_addr = base + 0x160;
  972. }
  973. /*
  974. * Attach to a macio probed interface
  975. */
  976. static int __devinit
  977. pmac_ide_macio_attach(struct macio_dev *mdev, const struct of_device_id *match)
  978. {
  979. void __iomem *base;
  980. unsigned long regbase;
  981. ide_hwif_t *hwif;
  982. pmac_ide_hwif_t *pmif;
  983. int irq, rc;
  984. hw_regs_t hw;
  985. pmif = kzalloc(sizeof(*pmif), GFP_KERNEL);
  986. if (pmif == NULL)
  987. return -ENOMEM;
  988. hwif = ide_find_port();
  989. if (hwif == NULL) {
  990. printk(KERN_ERR "ide-pmac: MacIO interface attach with no slot\n");
  991. printk(KERN_ERR " %s\n", mdev->ofdev.node->full_name);
  992. rc = -ENODEV;
  993. goto out_free_pmif;
  994. }
  995. if (macio_resource_count(mdev) == 0) {
  996. printk(KERN_WARNING "ide-pmac: no address for %s\n",
  997. mdev->ofdev.node->full_name);
  998. rc = -ENXIO;
  999. goto out_free_pmif;
  1000. }
  1001. /* Request memory resource for IO ports */
  1002. if (macio_request_resource(mdev, 0, "ide-pmac (ports)")) {
  1003. printk(KERN_ERR "ide-pmac: can't request MMIO resource for "
  1004. "%s!\n", mdev->ofdev.node->full_name);
  1005. rc = -EBUSY;
  1006. goto out_free_pmif;
  1007. }
  1008. /* XXX This is bogus. Should be fixed in the registry by checking
  1009. * the kind of host interrupt controller, a bit like gatwick
  1010. * fixes in irq.c. That works well enough for the single case
  1011. * where that happens though...
  1012. */
  1013. if (macio_irq_count(mdev) == 0) {
  1014. printk(KERN_WARNING "ide-pmac: no intrs for device %s, using "
  1015. "13\n", mdev->ofdev.node->full_name);
  1016. irq = irq_create_mapping(NULL, 13);
  1017. } else
  1018. irq = macio_irq(mdev, 0);
  1019. base = ioremap(macio_resource_start(mdev, 0), 0x400);
  1020. regbase = (unsigned long) base;
  1021. hwif->dev = &mdev->bus->pdev->dev;
  1022. pmif->mdev = mdev;
  1023. pmif->node = mdev->ofdev.node;
  1024. pmif->regbase = regbase;
  1025. pmif->irq = irq;
  1026. pmif->kauai_fcr = NULL;
  1027. #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
  1028. if (macio_resource_count(mdev) >= 2) {
  1029. if (macio_request_resource(mdev, 1, "ide-pmac (dma)"))
  1030. printk(KERN_WARNING "ide-pmac: can't request DMA "
  1031. "resource for %s!\n",
  1032. mdev->ofdev.node->full_name);
  1033. else
  1034. pmif->dma_regs = ioremap(macio_resource_start(mdev, 1), 0x1000);
  1035. } else
  1036. pmif->dma_regs = NULL;
  1037. #endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */
  1038. dev_set_drvdata(&mdev->ofdev.dev, hwif);
  1039. memset(&hw, 0, sizeof(hw));
  1040. pmac_ide_init_ports(&hw, pmif->regbase);
  1041. hw.irq = irq;
  1042. hw.dev = &mdev->ofdev.dev;
  1043. rc = pmac_ide_setup_device(pmif, hwif, &hw);
  1044. if (rc != 0) {
  1045. /* The inteface is released to the common IDE layer */
  1046. dev_set_drvdata(&mdev->ofdev.dev, NULL);
  1047. iounmap(base);
  1048. if (pmif->dma_regs) {
  1049. iounmap(pmif->dma_regs);
  1050. macio_release_resource(mdev, 1);
  1051. }
  1052. macio_release_resource(mdev, 0);
  1053. kfree(pmif);
  1054. }
  1055. return rc;
  1056. out_free_pmif:
  1057. kfree(pmif);
  1058. return rc;
  1059. }
  1060. static int
  1061. pmac_ide_macio_suspend(struct macio_dev *mdev, pm_message_t mesg)
  1062. {
  1063. ide_hwif_t *hwif = (ide_hwif_t *)dev_get_drvdata(&mdev->ofdev.dev);
  1064. int rc = 0;
  1065. if (mesg.event != mdev->ofdev.dev.power.power_state.event
  1066. && (mesg.event & PM_EVENT_SLEEP)) {
  1067. rc = pmac_ide_do_suspend(hwif);
  1068. if (rc == 0)
  1069. mdev->ofdev.dev.power.power_state = mesg;
  1070. }
  1071. return rc;
  1072. }
  1073. static int
  1074. pmac_ide_macio_resume(struct macio_dev *mdev)
  1075. {
  1076. ide_hwif_t *hwif = (ide_hwif_t *)dev_get_drvdata(&mdev->ofdev.dev);
  1077. int rc = 0;
  1078. if (mdev->ofdev.dev.power.power_state.event != PM_EVENT_ON) {
  1079. rc = pmac_ide_do_resume(hwif);
  1080. if (rc == 0)
  1081. mdev->ofdev.dev.power.power_state = PMSG_ON;
  1082. }
  1083. return rc;
  1084. }
  1085. /*
  1086. * Attach to a PCI probed interface
  1087. */
  1088. static int __devinit
  1089. pmac_ide_pci_attach(struct pci_dev *pdev, const struct pci_device_id *id)
  1090. {
  1091. ide_hwif_t *hwif;
  1092. struct device_node *np;
  1093. pmac_ide_hwif_t *pmif;
  1094. void __iomem *base;
  1095. unsigned long rbase, rlen;
  1096. int rc;
  1097. hw_regs_t hw;
  1098. np = pci_device_to_OF_node(pdev);
  1099. if (np == NULL) {
  1100. printk(KERN_ERR "ide-pmac: cannot find MacIO node for Kauai ATA interface\n");
  1101. return -ENODEV;
  1102. }
  1103. pmif = kzalloc(sizeof(*pmif), GFP_KERNEL);
  1104. if (pmif == NULL)
  1105. return -ENOMEM;
  1106. hwif = ide_find_port();
  1107. if (hwif == NULL) {
  1108. printk(KERN_ERR "ide-pmac: PCI interface attach with no slot\n");
  1109. printk(KERN_ERR " %s\n", np->full_name);
  1110. rc = -ENODEV;
  1111. goto out_free_pmif;
  1112. }
  1113. if (pci_enable_device(pdev)) {
  1114. printk(KERN_WARNING "ide-pmac: Can't enable PCI device for "
  1115. "%s\n", np->full_name);
  1116. rc = -ENXIO;
  1117. goto out_free_pmif;
  1118. }
  1119. pci_set_master(pdev);
  1120. if (pci_request_regions(pdev, "Kauai ATA")) {
  1121. printk(KERN_ERR "ide-pmac: Cannot obtain PCI resources for "
  1122. "%s\n", np->full_name);
  1123. rc = -ENXIO;
  1124. goto out_free_pmif;
  1125. }
  1126. hwif->dev = &pdev->dev;
  1127. pmif->mdev = NULL;
  1128. pmif->node = np;
  1129. rbase = pci_resource_start(pdev, 0);
  1130. rlen = pci_resource_len(pdev, 0);
  1131. base = ioremap(rbase, rlen);
  1132. pmif->regbase = (unsigned long) base + 0x2000;
  1133. #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
  1134. pmif->dma_regs = base + 0x1000;
  1135. #endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */
  1136. pmif->kauai_fcr = base;
  1137. pmif->irq = pdev->irq;
  1138. pci_set_drvdata(pdev, hwif);
  1139. memset(&hw, 0, sizeof(hw));
  1140. pmac_ide_init_ports(&hw, pmif->regbase);
  1141. hw.irq = pdev->irq;
  1142. hw.dev = &pdev->dev;
  1143. rc = pmac_ide_setup_device(pmif, hwif, &hw);
  1144. if (rc != 0) {
  1145. /* The inteface is released to the common IDE layer */
  1146. pci_set_drvdata(pdev, NULL);
  1147. iounmap(base);
  1148. pci_release_regions(pdev);
  1149. kfree(pmif);
  1150. }
  1151. return rc;
  1152. out_free_pmif:
  1153. kfree(pmif);
  1154. return rc;
  1155. }
  1156. static int
  1157. pmac_ide_pci_suspend(struct pci_dev *pdev, pm_message_t mesg)
  1158. {
  1159. ide_hwif_t *hwif = (ide_hwif_t *)pci_get_drvdata(pdev);
  1160. int rc = 0;
  1161. if (mesg.event != pdev->dev.power.power_state.event
  1162. && (mesg.event & PM_EVENT_SLEEP)) {
  1163. rc = pmac_ide_do_suspend(hwif);
  1164. if (rc == 0)
  1165. pdev->dev.power.power_state = mesg;
  1166. }
  1167. return rc;
  1168. }
  1169. static int
  1170. pmac_ide_pci_resume(struct pci_dev *pdev)
  1171. {
  1172. ide_hwif_t *hwif = (ide_hwif_t *)pci_get_drvdata(pdev);
  1173. int rc = 0;
  1174. if (pdev->dev.power.power_state.event != PM_EVENT_ON) {
  1175. rc = pmac_ide_do_resume(hwif);
  1176. if (rc == 0)
  1177. pdev->dev.power.power_state = PMSG_ON;
  1178. }
  1179. return rc;
  1180. }
  1181. static struct of_device_id pmac_ide_macio_match[] =
  1182. {
  1183. {
  1184. .name = "IDE",
  1185. },
  1186. {
  1187. .name = "ATA",
  1188. },
  1189. {
  1190. .type = "ide",
  1191. },
  1192. {
  1193. .type = "ata",
  1194. },
  1195. {},
  1196. };
  1197. static struct macio_driver pmac_ide_macio_driver =
  1198. {
  1199. .name = "ide-pmac",
  1200. .match_table = pmac_ide_macio_match,
  1201. .probe = pmac_ide_macio_attach,
  1202. .suspend = pmac_ide_macio_suspend,
  1203. .resume = pmac_ide_macio_resume,
  1204. };
  1205. static const struct pci_device_id pmac_ide_pci_match[] = {
  1206. { PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_UNI_N_ATA), 0 },
  1207. { PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_IPID_ATA100), 0 },
  1208. { PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_K2_ATA100), 0 },
  1209. { PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_SH_ATA), 0 },
  1210. { PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_IPID2_ATA), 0 },
  1211. {},
  1212. };
  1213. static struct pci_driver pmac_ide_pci_driver = {
  1214. .name = "ide-pmac",
  1215. .id_table = pmac_ide_pci_match,
  1216. .probe = pmac_ide_pci_attach,
  1217. .suspend = pmac_ide_pci_suspend,
  1218. .resume = pmac_ide_pci_resume,
  1219. };
  1220. MODULE_DEVICE_TABLE(pci, pmac_ide_pci_match);
  1221. int __init pmac_ide_probe(void)
  1222. {
  1223. int error;
  1224. if (!machine_is(powermac))
  1225. return -ENODEV;
  1226. #ifdef CONFIG_BLK_DEV_IDE_PMAC_ATA100FIRST
  1227. error = pci_register_driver(&pmac_ide_pci_driver);
  1228. if (error)
  1229. goto out;
  1230. error = macio_register_driver(&pmac_ide_macio_driver);
  1231. if (error) {
  1232. pci_unregister_driver(&pmac_ide_pci_driver);
  1233. goto out;
  1234. }
  1235. #else
  1236. error = macio_register_driver(&pmac_ide_macio_driver);
  1237. if (error)
  1238. goto out;
  1239. error = pci_register_driver(&pmac_ide_pci_driver);
  1240. if (error) {
  1241. macio_unregister_driver(&pmac_ide_macio_driver);
  1242. goto out;
  1243. }
  1244. #endif
  1245. out:
  1246. return error;
  1247. }
  1248. #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
  1249. /*
  1250. * pmac_ide_build_dmatable builds the DBDMA command list
  1251. * for a transfer and sets the DBDMA channel to point to it.
  1252. */
  1253. static int
  1254. pmac_ide_build_dmatable(ide_drive_t *drive, struct request *rq)
  1255. {
  1256. struct dbdma_cmd *table;
  1257. int i, count = 0;
  1258. ide_hwif_t *hwif = HWIF(drive);
  1259. pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)hwif->hwif_data;
  1260. volatile struct dbdma_regs __iomem *dma = pmif->dma_regs;
  1261. struct scatterlist *sg;
  1262. int wr = (rq_data_dir(rq) == WRITE);
  1263. /* DMA table is already aligned */
  1264. table = (struct dbdma_cmd *) pmif->dma_table_cpu;
  1265. /* Make sure DMA controller is stopped (necessary ?) */
  1266. writel((RUN|PAUSE|FLUSH|WAKE|DEAD) << 16, &dma->control);
  1267. while (readl(&dma->status) & RUN)
  1268. udelay(1);
  1269. hwif->sg_nents = i = ide_build_sglist(drive, rq);
  1270. if (!i)
  1271. return 0;
  1272. /* Build DBDMA commands list */
  1273. sg = hwif->sg_table;
  1274. while (i && sg_dma_len(sg)) {
  1275. u32 cur_addr;
  1276. u32 cur_len;
  1277. cur_addr = sg_dma_address(sg);
  1278. cur_len = sg_dma_len(sg);
  1279. if (pmif->broken_dma && cur_addr & (L1_CACHE_BYTES - 1)) {
  1280. if (pmif->broken_dma_warn == 0) {
  1281. printk(KERN_WARNING "%s: DMA on non aligned address, "
  1282. "switching to PIO on Ohare chipset\n", drive->name);
  1283. pmif->broken_dma_warn = 1;
  1284. }
  1285. goto use_pio_instead;
  1286. }
  1287. while (cur_len) {
  1288. unsigned int tc = (cur_len < 0xfe00)? cur_len: 0xfe00;
  1289. if (count++ >= MAX_DCMDS) {
  1290. printk(KERN_WARNING "%s: DMA table too small\n",
  1291. drive->name);
  1292. goto use_pio_instead;
  1293. }
  1294. st_le16(&table->command, wr? OUTPUT_MORE: INPUT_MORE);
  1295. st_le16(&table->req_count, tc);
  1296. st_le32(&table->phy_addr, cur_addr);
  1297. table->cmd_dep = 0;
  1298. table->xfer_status = 0;
  1299. table->res_count = 0;
  1300. cur_addr += tc;
  1301. cur_len -= tc;
  1302. ++table;
  1303. }
  1304. sg = sg_next(sg);
  1305. i--;
  1306. }
  1307. /* convert the last command to an input/output last command */
  1308. if (count) {
  1309. st_le16(&table[-1].command, wr? OUTPUT_LAST: INPUT_LAST);
  1310. /* add the stop command to the end of the list */
  1311. memset(table, 0, sizeof(struct dbdma_cmd));
  1312. st_le16(&table->command, DBDMA_STOP);
  1313. mb();
  1314. writel(hwif->dmatable_dma, &dma->cmdptr);
  1315. return 1;
  1316. }
  1317. printk(KERN_DEBUG "%s: empty DMA table?\n", drive->name);
  1318. use_pio_instead:
  1319. ide_destroy_dmatable(drive);
  1320. return 0; /* revert to PIO for this request */
  1321. }
  1322. /* Teardown mappings after DMA has completed. */
  1323. static void
  1324. pmac_ide_destroy_dmatable (ide_drive_t *drive)
  1325. {
  1326. ide_hwif_t *hwif = drive->hwif;
  1327. if (hwif->sg_nents) {
  1328. ide_destroy_dmatable(drive);
  1329. hwif->sg_nents = 0;
  1330. }
  1331. }
  1332. /*
  1333. * Prepare a DMA transfer. We build the DMA table, adjust the timings for
  1334. * a read on KeyLargo ATA/66 and mark us as waiting for DMA completion
  1335. */
  1336. static int
  1337. pmac_ide_dma_setup(ide_drive_t *drive)
  1338. {
  1339. ide_hwif_t *hwif = HWIF(drive);
  1340. pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)hwif->hwif_data;
  1341. struct request *rq = HWGROUP(drive)->rq;
  1342. u8 unit = (drive->select.b.unit & 0x01);
  1343. u8 ata4;
  1344. if (pmif == NULL)
  1345. return 1;
  1346. ata4 = (pmif->kind == controller_kl_ata4);
  1347. if (!pmac_ide_build_dmatable(drive, rq)) {
  1348. ide_map_sg(drive, rq);
  1349. return 1;
  1350. }
  1351. /* Apple adds 60ns to wrDataSetup on reads */
  1352. if (ata4 && (pmif->timings[unit] & TR_66_UDMA_EN)) {
  1353. writel(pmif->timings[unit] + (!rq_data_dir(rq) ? 0x00800000UL : 0),
  1354. PMAC_IDE_REG(IDE_TIMING_CONFIG));
  1355. (void)readl(PMAC_IDE_REG(IDE_TIMING_CONFIG));
  1356. }
  1357. drive->waiting_for_dma = 1;
  1358. return 0;
  1359. }
  1360. static void
  1361. pmac_ide_dma_exec_cmd(ide_drive_t *drive, u8 command)
  1362. {
  1363. /* issue cmd to drive */
  1364. ide_execute_command(drive, command, &ide_dma_intr, 2*WAIT_CMD, NULL);
  1365. }
  1366. /*
  1367. * Kick the DMA controller into life after the DMA command has been issued
  1368. * to the drive.
  1369. */
  1370. static void
  1371. pmac_ide_dma_start(ide_drive_t *drive)
  1372. {
  1373. pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
  1374. volatile struct dbdma_regs __iomem *dma;
  1375. dma = pmif->dma_regs;
  1376. writel((RUN << 16) | RUN, &dma->control);
  1377. /* Make sure it gets to the controller right now */
  1378. (void)readl(&dma->control);
  1379. }
  1380. /*
  1381. * After a DMA transfer, make sure the controller is stopped
  1382. */
  1383. static int
  1384. pmac_ide_dma_end (ide_drive_t *drive)
  1385. {
  1386. pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
  1387. volatile struct dbdma_regs __iomem *dma;
  1388. u32 dstat;
  1389. if (pmif == NULL)
  1390. return 0;
  1391. dma = pmif->dma_regs;
  1392. drive->waiting_for_dma = 0;
  1393. dstat = readl(&dma->status);
  1394. writel(((RUN|WAKE|DEAD) << 16), &dma->control);
  1395. pmac_ide_destroy_dmatable(drive);
  1396. /* verify good dma status. we don't check for ACTIVE beeing 0. We should...
  1397. * in theory, but with ATAPI decices doing buffer underruns, that would
  1398. * cause us to disable DMA, which isn't what we want
  1399. */
  1400. return (dstat & (RUN|DEAD)) != RUN;
  1401. }
  1402. /*
  1403. * Check out that the interrupt we got was for us. We can't always know this
  1404. * for sure with those Apple interfaces (well, we could on the recent ones but
  1405. * that's not implemented yet), on the other hand, we don't have shared interrupts
  1406. * so it's not really a problem
  1407. */
  1408. static int
  1409. pmac_ide_dma_test_irq (ide_drive_t *drive)
  1410. {
  1411. pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
  1412. volatile struct dbdma_regs __iomem *dma;
  1413. unsigned long status, timeout;
  1414. if (pmif == NULL)
  1415. return 0;
  1416. dma = pmif->dma_regs;
  1417. /* We have to things to deal with here:
  1418. *
  1419. * - The dbdma won't stop if the command was started
  1420. * but completed with an error without transferring all
  1421. * datas. This happens when bad blocks are met during
  1422. * a multi-block transfer.
  1423. *
  1424. * - The dbdma fifo hasn't yet finished flushing to
  1425. * to system memory when the disk interrupt occurs.
  1426. *
  1427. */
  1428. /* If ACTIVE is cleared, the STOP command have passed and
  1429. * transfer is complete.
  1430. */
  1431. status = readl(&dma->status);
  1432. if (!(status & ACTIVE))
  1433. return 1;
  1434. if (!drive->waiting_for_dma)
  1435. printk(KERN_WARNING "ide%d, ide_dma_test_irq \
  1436. called while not waiting\n", HWIF(drive)->index);
  1437. /* If dbdma didn't execute the STOP command yet, the
  1438. * active bit is still set. We consider that we aren't
  1439. * sharing interrupts (which is hopefully the case with
  1440. * those controllers) and so we just try to flush the
  1441. * channel for pending data in the fifo
  1442. */
  1443. udelay(1);
  1444. writel((FLUSH << 16) | FLUSH, &dma->control);
  1445. timeout = 0;
  1446. for (;;) {
  1447. udelay(1);
  1448. status = readl(&dma->status);
  1449. if ((status & FLUSH) == 0)
  1450. break;
  1451. if (++timeout > 100) {
  1452. printk(KERN_WARNING "ide%d, ide_dma_test_irq \
  1453. timeout flushing channel\n", HWIF(drive)->index);
  1454. break;
  1455. }
  1456. }
  1457. return 1;
  1458. }
  1459. static void pmac_ide_dma_host_set(ide_drive_t *drive, int on)
  1460. {
  1461. }
  1462. static void
  1463. pmac_ide_dma_lost_irq (ide_drive_t *drive)
  1464. {
  1465. pmac_ide_hwif_t* pmif = (pmac_ide_hwif_t *)HWIF(drive)->hwif_data;
  1466. volatile struct dbdma_regs __iomem *dma;
  1467. unsigned long status;
  1468. if (pmif == NULL)
  1469. return;
  1470. dma = pmif->dma_regs;
  1471. status = readl(&dma->status);
  1472. printk(KERN_ERR "ide-pmac lost interrupt, dma status: %lx\n", status);
  1473. }
  1474. static const struct ide_dma_ops pmac_dma_ops = {
  1475. .dma_host_set = pmac_ide_dma_host_set,
  1476. .dma_setup = pmac_ide_dma_setup,
  1477. .dma_exec_cmd = pmac_ide_dma_exec_cmd,
  1478. .dma_start = pmac_ide_dma_start,
  1479. .dma_end = pmac_ide_dma_end,
  1480. .dma_test_irq = pmac_ide_dma_test_irq,
  1481. .dma_timeout = ide_dma_timeout,
  1482. .dma_lost_irq = pmac_ide_dma_lost_irq,
  1483. };
  1484. /*
  1485. * Allocate the data structures needed for using DMA with an interface
  1486. * and fill the proper list of functions pointers
  1487. */
  1488. static int __devinit pmac_ide_init_dma(ide_hwif_t *hwif,
  1489. const struct ide_port_info *d)
  1490. {
  1491. pmac_ide_hwif_t *pmif = (pmac_ide_hwif_t *)hwif->hwif_data;
  1492. struct pci_dev *dev = to_pci_dev(hwif->dev);
  1493. /* We won't need pci_dev if we switch to generic consistent
  1494. * DMA routines ...
  1495. */
  1496. if (dev == NULL || pmif->dma_regs == 0)
  1497. return -ENODEV;
  1498. /*
  1499. * Allocate space for the DBDMA commands.
  1500. * The +2 is +1 for the stop command and +1 to allow for
  1501. * aligning the start address to a multiple of 16 bytes.
  1502. */
  1503. pmif->dma_table_cpu = (struct dbdma_cmd*)pci_alloc_consistent(
  1504. dev,
  1505. (MAX_DCMDS + 2) * sizeof(struct dbdma_cmd),
  1506. &hwif->dmatable_dma);
  1507. if (pmif->dma_table_cpu == NULL) {
  1508. printk(KERN_ERR "%s: unable to allocate DMA command list\n",
  1509. hwif->name);
  1510. return -ENOMEM;
  1511. }
  1512. hwif->sg_max_nents = MAX_DCMDS;
  1513. return 0;
  1514. }
  1515. #else
  1516. static int __devinit pmac_ide_init_dma(ide_hwif_t *hwif,
  1517. const struct ide_port_info *d)
  1518. {
  1519. return -EOPNOTSUPP;
  1520. }
  1521. #endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */
  1522. module_init(pmac_ide_probe);
  1523. MODULE_LICENSE("GPL");