adm1025.c 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647
  1. /*
  2. * adm1025.c
  3. *
  4. * Copyright (C) 2000 Chen-Yuan Wu <gwu@esoft.com>
  5. * Copyright (C) 2003-2004 Jean Delvare <khali@linux-fr.org>
  6. *
  7. * The ADM1025 is a sensor chip made by Analog Devices. It reports up to 6
  8. * voltages (including its own power source) and up to two temperatures
  9. * (its own plus up to one external one). Voltages are scaled internally
  10. * (which is not the common way) with ratios such that the nominal value
  11. * of each voltage correspond to a register value of 192 (which means a
  12. * resolution of about 0.5% of the nominal value). Temperature values are
  13. * reported with a 1 deg resolution and a 3 deg accuracy. Complete
  14. * datasheet can be obtained from Analog's website at:
  15. * http://www.analog.com/Analog_Root/productPage/productHome/0,2121,ADM1025,00.html
  16. *
  17. * This driver also supports the ADM1025A, which differs from the ADM1025
  18. * only in that it has "open-drain VID inputs while the ADM1025 has
  19. * on-chip 100k pull-ups on the VID inputs". It doesn't make any
  20. * difference for us.
  21. *
  22. * This driver also supports the NE1619, a sensor chip made by Philips.
  23. * That chip is similar to the ADM1025A, with a few differences. The only
  24. * difference that matters to us is that the NE1619 has only two possible
  25. * addresses while the ADM1025A has a third one. Complete datasheet can be
  26. * obtained from Philips's website at:
  27. * http://www.semiconductors.philips.com/pip/NE1619DS.html
  28. *
  29. * Since the ADM1025 was the first chipset supported by this driver, most
  30. * comments will refer to this chipset, but are actually general and
  31. * concern all supported chipsets, unless mentioned otherwise.
  32. *
  33. * This program is free software; you can redistribute it and/or modify
  34. * it under the terms of the GNU General Public License as published by
  35. * the Free Software Foundation; either version 2 of the License, or
  36. * (at your option) any later version.
  37. *
  38. * This program is distributed in the hope that it will be useful,
  39. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  40. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  41. * GNU General Public License for more details.
  42. *
  43. * You should have received a copy of the GNU General Public License
  44. * along with this program; if not, write to the Free Software
  45. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  46. */
  47. #include <linux/module.h>
  48. #include <linux/init.h>
  49. #include <linux/slab.h>
  50. #include <linux/jiffies.h>
  51. #include <linux/i2c.h>
  52. #include <linux/hwmon.h>
  53. #include <linux/hwmon-sysfs.h>
  54. #include <linux/hwmon-vid.h>
  55. #include <linux/err.h>
  56. #include <linux/mutex.h>
  57. /*
  58. * Addresses to scan
  59. * ADM1025 and ADM1025A have three possible addresses: 0x2c, 0x2d and 0x2e.
  60. * NE1619 has two possible addresses: 0x2c and 0x2d.
  61. */
  62. static const unsigned short normal_i2c[] = { 0x2c, 0x2d, 0x2e, I2C_CLIENT_END };
  63. /*
  64. * Insmod parameters
  65. */
  66. I2C_CLIENT_INSMOD_2(adm1025, ne1619);
  67. /*
  68. * The ADM1025 registers
  69. */
  70. #define ADM1025_REG_MAN_ID 0x3E
  71. #define ADM1025_REG_CHIP_ID 0x3F
  72. #define ADM1025_REG_CONFIG 0x40
  73. #define ADM1025_REG_STATUS1 0x41
  74. #define ADM1025_REG_STATUS2 0x42
  75. #define ADM1025_REG_IN(nr) (0x20 + (nr))
  76. #define ADM1025_REG_IN_MAX(nr) (0x2B + (nr) * 2)
  77. #define ADM1025_REG_IN_MIN(nr) (0x2C + (nr) * 2)
  78. #define ADM1025_REG_TEMP(nr) (0x26 + (nr))
  79. #define ADM1025_REG_TEMP_HIGH(nr) (0x37 + (nr) * 2)
  80. #define ADM1025_REG_TEMP_LOW(nr) (0x38 + (nr) * 2)
  81. #define ADM1025_REG_VID 0x47
  82. #define ADM1025_REG_VID4 0x49
  83. /*
  84. * Conversions and various macros
  85. * The ADM1025 uses signed 8-bit values for temperatures.
  86. */
  87. static const int in_scale[6] = { 2500, 2250, 3300, 5000, 12000, 3300 };
  88. #define IN_FROM_REG(reg,scale) (((reg) * (scale) + 96) / 192)
  89. #define IN_TO_REG(val,scale) ((val) <= 0 ? 0 : \
  90. (val) * 192 >= (scale) * 255 ? 255 : \
  91. ((val) * 192 + (scale)/2) / (scale))
  92. #define TEMP_FROM_REG(reg) ((reg) * 1000)
  93. #define TEMP_TO_REG(val) ((val) <= -127500 ? -128 : \
  94. (val) >= 126500 ? 127 : \
  95. (((val) < 0 ? (val)-500 : (val)+500) / 1000))
  96. /*
  97. * Functions declaration
  98. */
  99. static int adm1025_attach_adapter(struct i2c_adapter *adapter);
  100. static int adm1025_detect(struct i2c_adapter *adapter, int address, int kind);
  101. static void adm1025_init_client(struct i2c_client *client);
  102. static int adm1025_detach_client(struct i2c_client *client);
  103. static struct adm1025_data *adm1025_update_device(struct device *dev);
  104. /*
  105. * Driver data (common to all clients)
  106. */
  107. static struct i2c_driver adm1025_driver = {
  108. .driver = {
  109. .name = "adm1025",
  110. },
  111. .attach_adapter = adm1025_attach_adapter,
  112. .detach_client = adm1025_detach_client,
  113. };
  114. /*
  115. * Client data (each client gets its own)
  116. */
  117. struct adm1025_data {
  118. struct i2c_client client;
  119. struct device *hwmon_dev;
  120. struct mutex update_lock;
  121. char valid; /* zero until following fields are valid */
  122. unsigned long last_updated; /* in jiffies */
  123. u8 in[6]; /* register value */
  124. u8 in_max[6]; /* register value */
  125. u8 in_min[6]; /* register value */
  126. s8 temp[2]; /* register value */
  127. s8 temp_min[2]; /* register value */
  128. s8 temp_max[2]; /* register value */
  129. u16 alarms; /* register values, combined */
  130. u8 vid; /* register values, combined */
  131. u8 vrm;
  132. };
  133. /*
  134. * Sysfs stuff
  135. */
  136. static ssize_t
  137. show_in(struct device *dev, struct device_attribute *attr, char *buf)
  138. {
  139. int index = to_sensor_dev_attr(attr)->index;
  140. struct adm1025_data *data = adm1025_update_device(dev);
  141. return sprintf(buf, "%u\n", IN_FROM_REG(data->in[index],
  142. in_scale[index]));
  143. }
  144. static ssize_t
  145. show_in_min(struct device *dev, struct device_attribute *attr, char *buf)
  146. {
  147. int index = to_sensor_dev_attr(attr)->index;
  148. struct adm1025_data *data = adm1025_update_device(dev);
  149. return sprintf(buf, "%u\n", IN_FROM_REG(data->in_min[index],
  150. in_scale[index]));
  151. }
  152. static ssize_t
  153. show_in_max(struct device *dev, struct device_attribute *attr, char *buf)
  154. {
  155. int index = to_sensor_dev_attr(attr)->index;
  156. struct adm1025_data *data = adm1025_update_device(dev);
  157. return sprintf(buf, "%u\n", IN_FROM_REG(data->in_max[index],
  158. in_scale[index]));
  159. }
  160. static ssize_t
  161. show_temp(struct device *dev, struct device_attribute *attr, char *buf)
  162. {
  163. int index = to_sensor_dev_attr(attr)->index;
  164. struct adm1025_data *data = adm1025_update_device(dev);
  165. return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp[index]));
  166. }
  167. static ssize_t
  168. show_temp_min(struct device *dev, struct device_attribute *attr, char *buf)
  169. {
  170. int index = to_sensor_dev_attr(attr)->index;
  171. struct adm1025_data *data = adm1025_update_device(dev);
  172. return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_min[index]));
  173. }
  174. static ssize_t
  175. show_temp_max(struct device *dev, struct device_attribute *attr, char *buf)
  176. {
  177. int index = to_sensor_dev_attr(attr)->index;
  178. struct adm1025_data *data = adm1025_update_device(dev);
  179. return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_max[index]));
  180. }
  181. static ssize_t set_in_min(struct device *dev, struct device_attribute *attr,
  182. const char *buf, size_t count)
  183. {
  184. int index = to_sensor_dev_attr(attr)->index;
  185. struct i2c_client *client = to_i2c_client(dev);
  186. struct adm1025_data *data = i2c_get_clientdata(client);
  187. long val = simple_strtol(buf, NULL, 10);
  188. mutex_lock(&data->update_lock);
  189. data->in_min[index] = IN_TO_REG(val, in_scale[index]);
  190. i2c_smbus_write_byte_data(client, ADM1025_REG_IN_MIN(index),
  191. data->in_min[index]);
  192. mutex_unlock(&data->update_lock);
  193. return count;
  194. }
  195. static ssize_t set_in_max(struct device *dev, struct device_attribute *attr,
  196. const char *buf, size_t count)
  197. {
  198. int index = to_sensor_dev_attr(attr)->index;
  199. struct i2c_client *client = to_i2c_client(dev);
  200. struct adm1025_data *data = i2c_get_clientdata(client);
  201. long val = simple_strtol(buf, NULL, 10);
  202. mutex_lock(&data->update_lock);
  203. data->in_max[index] = IN_TO_REG(val, in_scale[index]);
  204. i2c_smbus_write_byte_data(client, ADM1025_REG_IN_MAX(index),
  205. data->in_max[index]);
  206. mutex_unlock(&data->update_lock);
  207. return count;
  208. }
  209. #define set_in(offset) \
  210. static SENSOR_DEVICE_ATTR(in##offset##_input, S_IRUGO, \
  211. show_in, NULL, offset); \
  212. static SENSOR_DEVICE_ATTR(in##offset##_min, S_IWUSR | S_IRUGO, \
  213. show_in_min, set_in_min, offset); \
  214. static SENSOR_DEVICE_ATTR(in##offset##_max, S_IWUSR | S_IRUGO, \
  215. show_in_max, set_in_max, offset)
  216. set_in(0);
  217. set_in(1);
  218. set_in(2);
  219. set_in(3);
  220. set_in(4);
  221. set_in(5);
  222. static ssize_t set_temp_min(struct device *dev, struct device_attribute *attr,
  223. const char *buf, size_t count)
  224. {
  225. int index = to_sensor_dev_attr(attr)->index;
  226. struct i2c_client *client = to_i2c_client(dev);
  227. struct adm1025_data *data = i2c_get_clientdata(client);
  228. long val = simple_strtol(buf, NULL, 10);
  229. mutex_lock(&data->update_lock);
  230. data->temp_min[index] = TEMP_TO_REG(val);
  231. i2c_smbus_write_byte_data(client, ADM1025_REG_TEMP_LOW(index),
  232. data->temp_min[index]);
  233. mutex_unlock(&data->update_lock);
  234. return count;
  235. }
  236. static ssize_t set_temp_max(struct device *dev, struct device_attribute *attr,
  237. const char *buf, size_t count)
  238. {
  239. int index = to_sensor_dev_attr(attr)->index;
  240. struct i2c_client *client = to_i2c_client(dev);
  241. struct adm1025_data *data = i2c_get_clientdata(client);
  242. long val = simple_strtol(buf, NULL, 10);
  243. mutex_lock(&data->update_lock);
  244. data->temp_max[index] = TEMP_TO_REG(val);
  245. i2c_smbus_write_byte_data(client, ADM1025_REG_TEMP_HIGH(index),
  246. data->temp_max[index]);
  247. mutex_unlock(&data->update_lock);
  248. return count;
  249. }
  250. #define set_temp(offset) \
  251. static SENSOR_DEVICE_ATTR(temp##offset##_input, S_IRUGO, \
  252. show_temp, NULL, offset - 1); \
  253. static SENSOR_DEVICE_ATTR(temp##offset##_min, S_IWUSR | S_IRUGO, \
  254. show_temp_min, set_temp_min, offset - 1); \
  255. static SENSOR_DEVICE_ATTR(temp##offset##_max, S_IWUSR | S_IRUGO, \
  256. show_temp_max, set_temp_max, offset - 1)
  257. set_temp(1);
  258. set_temp(2);
  259. static ssize_t
  260. show_alarms(struct device *dev, struct device_attribute *attr, char *buf)
  261. {
  262. struct adm1025_data *data = adm1025_update_device(dev);
  263. return sprintf(buf, "%u\n", data->alarms);
  264. }
  265. static DEVICE_ATTR(alarms, S_IRUGO, show_alarms, NULL);
  266. static ssize_t
  267. show_alarm(struct device *dev, struct device_attribute *attr, char *buf)
  268. {
  269. int bitnr = to_sensor_dev_attr(attr)->index;
  270. struct adm1025_data *data = adm1025_update_device(dev);
  271. return sprintf(buf, "%u\n", (data->alarms >> bitnr) & 1);
  272. }
  273. static SENSOR_DEVICE_ATTR(in0_alarm, S_IRUGO, show_alarm, NULL, 0);
  274. static SENSOR_DEVICE_ATTR(in1_alarm, S_IRUGO, show_alarm, NULL, 1);
  275. static SENSOR_DEVICE_ATTR(in2_alarm, S_IRUGO, show_alarm, NULL, 2);
  276. static SENSOR_DEVICE_ATTR(in3_alarm, S_IRUGO, show_alarm, NULL, 3);
  277. static SENSOR_DEVICE_ATTR(in4_alarm, S_IRUGO, show_alarm, NULL, 8);
  278. static SENSOR_DEVICE_ATTR(in5_alarm, S_IRUGO, show_alarm, NULL, 9);
  279. static SENSOR_DEVICE_ATTR(temp1_alarm, S_IRUGO, show_alarm, NULL, 5);
  280. static SENSOR_DEVICE_ATTR(temp2_alarm, S_IRUGO, show_alarm, NULL, 4);
  281. static SENSOR_DEVICE_ATTR(temp1_fault, S_IRUGO, show_alarm, NULL, 14);
  282. static ssize_t
  283. show_vid(struct device *dev, struct device_attribute *attr, char *buf)
  284. {
  285. struct adm1025_data *data = adm1025_update_device(dev);
  286. return sprintf(buf, "%u\n", vid_from_reg(data->vid, data->vrm));
  287. }
  288. static DEVICE_ATTR(cpu0_vid, S_IRUGO, show_vid, NULL);
  289. static ssize_t
  290. show_vrm(struct device *dev, struct device_attribute *attr, char *buf)
  291. {
  292. struct adm1025_data *data = dev_get_drvdata(dev);
  293. return sprintf(buf, "%u\n", data->vrm);
  294. }
  295. static ssize_t set_vrm(struct device *dev, struct device_attribute *attr,
  296. const char *buf, size_t count)
  297. {
  298. struct adm1025_data *data = dev_get_drvdata(dev);
  299. data->vrm = simple_strtoul(buf, NULL, 10);
  300. return count;
  301. }
  302. static DEVICE_ATTR(vrm, S_IRUGO | S_IWUSR, show_vrm, set_vrm);
  303. /*
  304. * Real code
  305. */
  306. static int adm1025_attach_adapter(struct i2c_adapter *adapter)
  307. {
  308. if (!(adapter->class & I2C_CLASS_HWMON))
  309. return 0;
  310. return i2c_probe(adapter, &addr_data, adm1025_detect);
  311. }
  312. static struct attribute *adm1025_attributes[] = {
  313. &sensor_dev_attr_in0_input.dev_attr.attr,
  314. &sensor_dev_attr_in1_input.dev_attr.attr,
  315. &sensor_dev_attr_in2_input.dev_attr.attr,
  316. &sensor_dev_attr_in3_input.dev_attr.attr,
  317. &sensor_dev_attr_in5_input.dev_attr.attr,
  318. &sensor_dev_attr_in0_min.dev_attr.attr,
  319. &sensor_dev_attr_in1_min.dev_attr.attr,
  320. &sensor_dev_attr_in2_min.dev_attr.attr,
  321. &sensor_dev_attr_in3_min.dev_attr.attr,
  322. &sensor_dev_attr_in5_min.dev_attr.attr,
  323. &sensor_dev_attr_in0_max.dev_attr.attr,
  324. &sensor_dev_attr_in1_max.dev_attr.attr,
  325. &sensor_dev_attr_in2_max.dev_attr.attr,
  326. &sensor_dev_attr_in3_max.dev_attr.attr,
  327. &sensor_dev_attr_in5_max.dev_attr.attr,
  328. &sensor_dev_attr_in0_alarm.dev_attr.attr,
  329. &sensor_dev_attr_in1_alarm.dev_attr.attr,
  330. &sensor_dev_attr_in2_alarm.dev_attr.attr,
  331. &sensor_dev_attr_in3_alarm.dev_attr.attr,
  332. &sensor_dev_attr_in5_alarm.dev_attr.attr,
  333. &sensor_dev_attr_temp1_input.dev_attr.attr,
  334. &sensor_dev_attr_temp2_input.dev_attr.attr,
  335. &sensor_dev_attr_temp1_min.dev_attr.attr,
  336. &sensor_dev_attr_temp2_min.dev_attr.attr,
  337. &sensor_dev_attr_temp1_max.dev_attr.attr,
  338. &sensor_dev_attr_temp2_max.dev_attr.attr,
  339. &sensor_dev_attr_temp1_alarm.dev_attr.attr,
  340. &sensor_dev_attr_temp2_alarm.dev_attr.attr,
  341. &sensor_dev_attr_temp1_fault.dev_attr.attr,
  342. &dev_attr_alarms.attr,
  343. &dev_attr_cpu0_vid.attr,
  344. &dev_attr_vrm.attr,
  345. NULL
  346. };
  347. static const struct attribute_group adm1025_group = {
  348. .attrs = adm1025_attributes,
  349. };
  350. static struct attribute *adm1025_attributes_in4[] = {
  351. &sensor_dev_attr_in4_input.dev_attr.attr,
  352. &sensor_dev_attr_in4_min.dev_attr.attr,
  353. &sensor_dev_attr_in4_max.dev_attr.attr,
  354. &sensor_dev_attr_in4_alarm.dev_attr.attr,
  355. NULL
  356. };
  357. static const struct attribute_group adm1025_group_in4 = {
  358. .attrs = adm1025_attributes_in4,
  359. };
  360. /*
  361. * The following function does more than just detection. If detection
  362. * succeeds, it also registers the new chip.
  363. */
  364. static int adm1025_detect(struct i2c_adapter *adapter, int address, int kind)
  365. {
  366. struct i2c_client *client;
  367. struct adm1025_data *data;
  368. int err = 0;
  369. const char *name = "";
  370. u8 config;
  371. if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
  372. goto exit;
  373. if (!(data = kzalloc(sizeof(struct adm1025_data), GFP_KERNEL))) {
  374. err = -ENOMEM;
  375. goto exit;
  376. }
  377. client = &data->client;
  378. i2c_set_clientdata(client, data);
  379. client->addr = address;
  380. client->adapter = adapter;
  381. client->driver = &adm1025_driver;
  382. /*
  383. * Now we do the remaining detection. A negative kind means that
  384. * the driver was loaded with no force parameter (default), so we
  385. * must both detect and identify the chip. A zero kind means that
  386. * the driver was loaded with the force parameter, the detection
  387. * step shall be skipped. A positive kind means that the driver
  388. * was loaded with the force parameter and a given kind of chip is
  389. * requested, so both the detection and the identification steps
  390. * are skipped.
  391. */
  392. config = i2c_smbus_read_byte_data(client, ADM1025_REG_CONFIG);
  393. if (kind < 0) { /* detection */
  394. if ((config & 0x80) != 0x00
  395. || (i2c_smbus_read_byte_data(client,
  396. ADM1025_REG_STATUS1) & 0xC0) != 0x00
  397. || (i2c_smbus_read_byte_data(client,
  398. ADM1025_REG_STATUS2) & 0xBC) != 0x00) {
  399. dev_dbg(&adapter->dev,
  400. "ADM1025 detection failed at 0x%02x.\n",
  401. address);
  402. goto exit_free;
  403. }
  404. }
  405. if (kind <= 0) { /* identification */
  406. u8 man_id, chip_id;
  407. man_id = i2c_smbus_read_byte_data(client, ADM1025_REG_MAN_ID);
  408. chip_id = i2c_smbus_read_byte_data(client, ADM1025_REG_CHIP_ID);
  409. if (man_id == 0x41) { /* Analog Devices */
  410. if ((chip_id & 0xF0) == 0x20) { /* ADM1025/ADM1025A */
  411. kind = adm1025;
  412. }
  413. } else
  414. if (man_id == 0xA1) { /* Philips */
  415. if (address != 0x2E
  416. && (chip_id & 0xF0) == 0x20) { /* NE1619 */
  417. kind = ne1619;
  418. }
  419. }
  420. if (kind <= 0) { /* identification failed */
  421. dev_info(&adapter->dev,
  422. "Unsupported chip (man_id=0x%02X, "
  423. "chip_id=0x%02X).\n", man_id, chip_id);
  424. goto exit_free;
  425. }
  426. }
  427. if (kind == adm1025) {
  428. name = "adm1025";
  429. } else if (kind == ne1619) {
  430. name = "ne1619";
  431. }
  432. /* We can fill in the remaining client fields */
  433. strlcpy(client->name, name, I2C_NAME_SIZE);
  434. mutex_init(&data->update_lock);
  435. /* Tell the I2C layer a new client has arrived */
  436. if ((err = i2c_attach_client(client)))
  437. goto exit_free;
  438. /* Initialize the ADM1025 chip */
  439. adm1025_init_client(client);
  440. /* Register sysfs hooks */
  441. if ((err = sysfs_create_group(&client->dev.kobj, &adm1025_group)))
  442. goto exit_detach;
  443. /* Pin 11 is either in4 (+12V) or VID4 */
  444. if (!(config & 0x20)) {
  445. if ((err = sysfs_create_group(&client->dev.kobj,
  446. &adm1025_group_in4)))
  447. goto exit_remove;
  448. }
  449. data->hwmon_dev = hwmon_device_register(&client->dev);
  450. if (IS_ERR(data->hwmon_dev)) {
  451. err = PTR_ERR(data->hwmon_dev);
  452. goto exit_remove;
  453. }
  454. return 0;
  455. exit_remove:
  456. sysfs_remove_group(&client->dev.kobj, &adm1025_group);
  457. sysfs_remove_group(&client->dev.kobj, &adm1025_group_in4);
  458. exit_detach:
  459. i2c_detach_client(client);
  460. exit_free:
  461. kfree(data);
  462. exit:
  463. return err;
  464. }
  465. static void adm1025_init_client(struct i2c_client *client)
  466. {
  467. u8 reg;
  468. struct adm1025_data *data = i2c_get_clientdata(client);
  469. int i;
  470. data->vrm = vid_which_vrm();
  471. /*
  472. * Set high limits
  473. * Usually we avoid setting limits on driver init, but it happens
  474. * that the ADM1025 comes with stupid default limits (all registers
  475. * set to 0). In case the chip has not gone through any limit
  476. * setting yet, we better set the high limits to the max so that
  477. * no alarm triggers.
  478. */
  479. for (i=0; i<6; i++) {
  480. reg = i2c_smbus_read_byte_data(client,
  481. ADM1025_REG_IN_MAX(i));
  482. if (reg == 0)
  483. i2c_smbus_write_byte_data(client,
  484. ADM1025_REG_IN_MAX(i),
  485. 0xFF);
  486. }
  487. for (i=0; i<2; i++) {
  488. reg = i2c_smbus_read_byte_data(client,
  489. ADM1025_REG_TEMP_HIGH(i));
  490. if (reg == 0)
  491. i2c_smbus_write_byte_data(client,
  492. ADM1025_REG_TEMP_HIGH(i),
  493. 0x7F);
  494. }
  495. /*
  496. * Start the conversions
  497. */
  498. reg = i2c_smbus_read_byte_data(client, ADM1025_REG_CONFIG);
  499. if (!(reg & 0x01))
  500. i2c_smbus_write_byte_data(client, ADM1025_REG_CONFIG,
  501. (reg&0x7E)|0x01);
  502. }
  503. static int adm1025_detach_client(struct i2c_client *client)
  504. {
  505. struct adm1025_data *data = i2c_get_clientdata(client);
  506. int err;
  507. hwmon_device_unregister(data->hwmon_dev);
  508. sysfs_remove_group(&client->dev.kobj, &adm1025_group);
  509. sysfs_remove_group(&client->dev.kobj, &adm1025_group_in4);
  510. if ((err = i2c_detach_client(client)))
  511. return err;
  512. kfree(data);
  513. return 0;
  514. }
  515. static struct adm1025_data *adm1025_update_device(struct device *dev)
  516. {
  517. struct i2c_client *client = to_i2c_client(dev);
  518. struct adm1025_data *data = i2c_get_clientdata(client);
  519. mutex_lock(&data->update_lock);
  520. if (time_after(jiffies, data->last_updated + HZ * 2) || !data->valid) {
  521. int i;
  522. dev_dbg(&client->dev, "Updating data.\n");
  523. for (i=0; i<6; i++) {
  524. data->in[i] = i2c_smbus_read_byte_data(client,
  525. ADM1025_REG_IN(i));
  526. data->in_min[i] = i2c_smbus_read_byte_data(client,
  527. ADM1025_REG_IN_MIN(i));
  528. data->in_max[i] = i2c_smbus_read_byte_data(client,
  529. ADM1025_REG_IN_MAX(i));
  530. }
  531. for (i=0; i<2; i++) {
  532. data->temp[i] = i2c_smbus_read_byte_data(client,
  533. ADM1025_REG_TEMP(i));
  534. data->temp_min[i] = i2c_smbus_read_byte_data(client,
  535. ADM1025_REG_TEMP_LOW(i));
  536. data->temp_max[i] = i2c_smbus_read_byte_data(client,
  537. ADM1025_REG_TEMP_HIGH(i));
  538. }
  539. data->alarms = i2c_smbus_read_byte_data(client,
  540. ADM1025_REG_STATUS1)
  541. | (i2c_smbus_read_byte_data(client,
  542. ADM1025_REG_STATUS2) << 8);
  543. data->vid = (i2c_smbus_read_byte_data(client,
  544. ADM1025_REG_VID) & 0x0f)
  545. | ((i2c_smbus_read_byte_data(client,
  546. ADM1025_REG_VID4) & 0x01) << 4);
  547. data->last_updated = jiffies;
  548. data->valid = 1;
  549. }
  550. mutex_unlock(&data->update_lock);
  551. return data;
  552. }
  553. static int __init sensors_adm1025_init(void)
  554. {
  555. return i2c_add_driver(&adm1025_driver);
  556. }
  557. static void __exit sensors_adm1025_exit(void)
  558. {
  559. i2c_del_driver(&adm1025_driver);
  560. }
  561. MODULE_AUTHOR("Jean Delvare <khali@linux-fr.org>");
  562. MODULE_DESCRIPTION("ADM1025 driver");
  563. MODULE_LICENSE("GPL");
  564. module_init(sensors_adm1025_init);
  565. module_exit(sensors_adm1025_exit);