pgtable.c 7.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332
  1. #include <linux/mm.h>
  2. #include <asm/pgalloc.h>
  3. #include <asm/pgtable.h>
  4. #include <asm/tlb.h>
  5. #include <asm/fixmap.h>
  6. pte_t *pte_alloc_one_kernel(struct mm_struct *mm, unsigned long address)
  7. {
  8. return (pte_t *)__get_free_page(GFP_KERNEL|__GFP_REPEAT|__GFP_ZERO);
  9. }
  10. pgtable_t pte_alloc_one(struct mm_struct *mm, unsigned long address)
  11. {
  12. struct page *pte;
  13. #ifdef CONFIG_HIGHPTE
  14. pte = alloc_pages(GFP_KERNEL|__GFP_HIGHMEM|__GFP_REPEAT|__GFP_ZERO, 0);
  15. #else
  16. pte = alloc_pages(GFP_KERNEL|__GFP_REPEAT|__GFP_ZERO, 0);
  17. #endif
  18. if (pte)
  19. pgtable_page_ctor(pte);
  20. return pte;
  21. }
  22. void __pte_free_tlb(struct mmu_gather *tlb, struct page *pte)
  23. {
  24. pgtable_page_dtor(pte);
  25. paravirt_release_pte(page_to_pfn(pte));
  26. tlb_remove_page(tlb, pte);
  27. }
  28. #if PAGETABLE_LEVELS > 2
  29. void __pmd_free_tlb(struct mmu_gather *tlb, pmd_t *pmd)
  30. {
  31. paravirt_release_pmd(__pa(pmd) >> PAGE_SHIFT);
  32. tlb_remove_page(tlb, virt_to_page(pmd));
  33. }
  34. #if PAGETABLE_LEVELS > 3
  35. void __pud_free_tlb(struct mmu_gather *tlb, pud_t *pud)
  36. {
  37. paravirt_release_pud(__pa(pud) >> PAGE_SHIFT);
  38. tlb_remove_page(tlb, virt_to_page(pud));
  39. }
  40. #endif /* PAGETABLE_LEVELS > 3 */
  41. #endif /* PAGETABLE_LEVELS > 2 */
  42. static inline void pgd_list_add(pgd_t *pgd)
  43. {
  44. struct page *page = virt_to_page(pgd);
  45. list_add(&page->lru, &pgd_list);
  46. }
  47. static inline void pgd_list_del(pgd_t *pgd)
  48. {
  49. struct page *page = virt_to_page(pgd);
  50. list_del(&page->lru);
  51. }
  52. #define UNSHARED_PTRS_PER_PGD \
  53. (SHARED_KERNEL_PMD ? KERNEL_PGD_BOUNDARY : PTRS_PER_PGD)
  54. static void pgd_ctor(void *p)
  55. {
  56. pgd_t *pgd = p;
  57. /* If the pgd points to a shared pagetable level (either the
  58. ptes in non-PAE, or shared PMD in PAE), then just copy the
  59. references from swapper_pg_dir. */
  60. if (PAGETABLE_LEVELS == 2 ||
  61. (PAGETABLE_LEVELS == 3 && SHARED_KERNEL_PMD) ||
  62. PAGETABLE_LEVELS == 4) {
  63. clone_pgd_range(pgd + KERNEL_PGD_BOUNDARY,
  64. swapper_pg_dir + KERNEL_PGD_BOUNDARY,
  65. KERNEL_PGD_PTRS);
  66. paravirt_alloc_pmd_clone(__pa(pgd) >> PAGE_SHIFT,
  67. __pa(swapper_pg_dir) >> PAGE_SHIFT,
  68. KERNEL_PGD_BOUNDARY,
  69. KERNEL_PGD_PTRS);
  70. }
  71. /* list required to sync kernel mapping updates */
  72. if (!SHARED_KERNEL_PMD)
  73. pgd_list_add(pgd);
  74. }
  75. static void pgd_dtor(void *pgd)
  76. {
  77. unsigned long flags; /* can be called from interrupt context */
  78. if (SHARED_KERNEL_PMD)
  79. return;
  80. spin_lock_irqsave(&pgd_lock, flags);
  81. pgd_list_del(pgd);
  82. spin_unlock_irqrestore(&pgd_lock, flags);
  83. }
  84. /*
  85. * List of all pgd's needed for non-PAE so it can invalidate entries
  86. * in both cached and uncached pgd's; not needed for PAE since the
  87. * kernel pmd is shared. If PAE were not to share the pmd a similar
  88. * tactic would be needed. This is essentially codepath-based locking
  89. * against pageattr.c; it is the unique case in which a valid change
  90. * of kernel pagetables can't be lazily synchronized by vmalloc faults.
  91. * vmalloc faults work because attached pagetables are never freed.
  92. * -- wli
  93. */
  94. #ifdef CONFIG_X86_PAE
  95. /*
  96. * In PAE mode, we need to do a cr3 reload (=tlb flush) when
  97. * updating the top-level pagetable entries to guarantee the
  98. * processor notices the update. Since this is expensive, and
  99. * all 4 top-level entries are used almost immediately in a
  100. * new process's life, we just pre-populate them here.
  101. *
  102. * Also, if we're in a paravirt environment where the kernel pmd is
  103. * not shared between pagetables (!SHARED_KERNEL_PMDS), we allocate
  104. * and initialize the kernel pmds here.
  105. */
  106. #define PREALLOCATED_PMDS UNSHARED_PTRS_PER_PGD
  107. void pud_populate(struct mm_struct *mm, pud_t *pudp, pmd_t *pmd)
  108. {
  109. paravirt_alloc_pmd(mm, __pa(pmd) >> PAGE_SHIFT);
  110. /* Note: almost everything apart from _PAGE_PRESENT is
  111. reserved at the pmd (PDPT) level. */
  112. set_pud(pudp, __pud(__pa(pmd) | _PAGE_PRESENT));
  113. /*
  114. * According to Intel App note "TLBs, Paging-Structure Caches,
  115. * and Their Invalidation", April 2007, document 317080-001,
  116. * section 8.1: in PAE mode we explicitly have to flush the
  117. * TLB via cr3 if the top-level pgd is changed...
  118. */
  119. if (mm == current->active_mm)
  120. write_cr3(read_cr3());
  121. }
  122. #else /* !CONFIG_X86_PAE */
  123. /* No need to prepopulate any pagetable entries in non-PAE modes. */
  124. #define PREALLOCATED_PMDS 0
  125. #endif /* CONFIG_X86_PAE */
  126. static void free_pmds(pmd_t *pmds[])
  127. {
  128. int i;
  129. for(i = 0; i < PREALLOCATED_PMDS; i++)
  130. if (pmds[i])
  131. free_page((unsigned long)pmds[i]);
  132. }
  133. static int preallocate_pmds(pmd_t *pmds[])
  134. {
  135. int i;
  136. bool failed = false;
  137. for(i = 0; i < PREALLOCATED_PMDS; i++) {
  138. pmd_t *pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL|__GFP_REPEAT);
  139. if (pmd == NULL)
  140. failed = true;
  141. pmds[i] = pmd;
  142. }
  143. if (failed) {
  144. free_pmds(pmds);
  145. return -ENOMEM;
  146. }
  147. return 0;
  148. }
  149. /*
  150. * Mop up any pmd pages which may still be attached to the pgd.
  151. * Normally they will be freed by munmap/exit_mmap, but any pmd we
  152. * preallocate which never got a corresponding vma will need to be
  153. * freed manually.
  154. */
  155. static void pgd_mop_up_pmds(struct mm_struct *mm, pgd_t *pgdp)
  156. {
  157. int i;
  158. for(i = 0; i < PREALLOCATED_PMDS; i++) {
  159. pgd_t pgd = pgdp[i];
  160. if (pgd_val(pgd) != 0) {
  161. pmd_t *pmd = (pmd_t *)pgd_page_vaddr(pgd);
  162. pgdp[i] = native_make_pgd(0);
  163. paravirt_release_pmd(pgd_val(pgd) >> PAGE_SHIFT);
  164. pmd_free(mm, pmd);
  165. }
  166. }
  167. }
  168. static void pgd_prepopulate_pmd(struct mm_struct *mm, pgd_t *pgd, pmd_t *pmds[])
  169. {
  170. pud_t *pud;
  171. unsigned long addr;
  172. int i;
  173. pud = pud_offset(pgd, 0);
  174. for (addr = i = 0; i < PREALLOCATED_PMDS;
  175. i++, pud++, addr += PUD_SIZE) {
  176. pmd_t *pmd = pmds[i];
  177. if (i >= KERNEL_PGD_BOUNDARY)
  178. memcpy(pmd, (pmd_t *)pgd_page_vaddr(swapper_pg_dir[i]),
  179. sizeof(pmd_t) * PTRS_PER_PMD);
  180. pud_populate(mm, pud, pmd);
  181. }
  182. }
  183. pgd_t *pgd_alloc(struct mm_struct *mm)
  184. {
  185. pgd_t *pgd;
  186. pmd_t *pmds[PREALLOCATED_PMDS];
  187. unsigned long flags;
  188. pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
  189. if (pgd == NULL)
  190. goto out;
  191. mm->pgd = pgd;
  192. if (preallocate_pmds(pmds) != 0)
  193. goto out_free_pgd;
  194. if (paravirt_pgd_alloc(mm) != 0)
  195. goto out_free_pmds;
  196. /*
  197. * Make sure that pre-populating the pmds is atomic with
  198. * respect to anything walking the pgd_list, so that they
  199. * never see a partially populated pgd.
  200. */
  201. spin_lock_irqsave(&pgd_lock, flags);
  202. pgd_ctor(pgd);
  203. pgd_prepopulate_pmd(mm, pgd, pmds);
  204. spin_unlock_irqrestore(&pgd_lock, flags);
  205. return pgd;
  206. out_free_pmds:
  207. free_pmds(pmds);
  208. out_free_pgd:
  209. free_page((unsigned long)pgd);
  210. out:
  211. return NULL;
  212. }
  213. void pgd_free(struct mm_struct *mm, pgd_t *pgd)
  214. {
  215. pgd_mop_up_pmds(mm, pgd);
  216. pgd_dtor(pgd);
  217. paravirt_pgd_free(mm, pgd);
  218. free_page((unsigned long)pgd);
  219. }
  220. int ptep_set_access_flags(struct vm_area_struct *vma,
  221. unsigned long address, pte_t *ptep,
  222. pte_t entry, int dirty)
  223. {
  224. int changed = !pte_same(*ptep, entry);
  225. if (changed && dirty) {
  226. *ptep = entry;
  227. pte_update_defer(vma->vm_mm, address, ptep);
  228. flush_tlb_page(vma, address);
  229. }
  230. return changed;
  231. }
  232. int ptep_test_and_clear_young(struct vm_area_struct *vma,
  233. unsigned long addr, pte_t *ptep)
  234. {
  235. int ret = 0;
  236. if (pte_young(*ptep))
  237. ret = test_and_clear_bit(_PAGE_BIT_ACCESSED,
  238. (unsigned long *) &ptep->pte);
  239. if (ret)
  240. pte_update(vma->vm_mm, addr, ptep);
  241. return ret;
  242. }
  243. int ptep_clear_flush_young(struct vm_area_struct *vma,
  244. unsigned long address, pte_t *ptep)
  245. {
  246. int young;
  247. young = ptep_test_and_clear_young(vma, address, ptep);
  248. if (young)
  249. flush_tlb_page(vma, address);
  250. return young;
  251. }
  252. int fixmaps_set;
  253. void __native_set_fixmap(enum fixed_addresses idx, pte_t pte)
  254. {
  255. unsigned long address = __fix_to_virt(idx);
  256. if (idx >= __end_of_fixed_addresses) {
  257. BUG();
  258. return;
  259. }
  260. set_pte_vaddr(address, pte);
  261. fixmaps_set++;
  262. }
  263. void native_set_fixmap(enum fixed_addresses idx, unsigned long phys, pgprot_t flags)
  264. {
  265. __native_set_fixmap(idx, pfn_pte(phys >> PAGE_SHIFT, flags));
  266. }