vmx.c 82 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "irq.h"
  18. #include "vmx.h"
  19. #include "mmu.h"
  20. #include <linux/kvm_host.h>
  21. #include <linux/module.h>
  22. #include <linux/kernel.h>
  23. #include <linux/mm.h>
  24. #include <linux/highmem.h>
  25. #include <linux/sched.h>
  26. #include <linux/moduleparam.h>
  27. #include <asm/io.h>
  28. #include <asm/desc.h>
  29. MODULE_AUTHOR("Qumranet");
  30. MODULE_LICENSE("GPL");
  31. static int bypass_guest_pf = 1;
  32. module_param(bypass_guest_pf, bool, 0);
  33. static int enable_vpid = 1;
  34. module_param(enable_vpid, bool, 0);
  35. static int flexpriority_enabled = 1;
  36. module_param(flexpriority_enabled, bool, 0);
  37. static int enable_ept = 1;
  38. module_param(enable_ept, bool, 0);
  39. struct vmcs {
  40. u32 revision_id;
  41. u32 abort;
  42. char data[0];
  43. };
  44. struct vcpu_vmx {
  45. struct kvm_vcpu vcpu;
  46. int launched;
  47. u8 fail;
  48. u32 idt_vectoring_info;
  49. struct kvm_msr_entry *guest_msrs;
  50. struct kvm_msr_entry *host_msrs;
  51. int nmsrs;
  52. int save_nmsrs;
  53. int msr_offset_efer;
  54. #ifdef CONFIG_X86_64
  55. int msr_offset_kernel_gs_base;
  56. #endif
  57. struct vmcs *vmcs;
  58. struct {
  59. int loaded;
  60. u16 fs_sel, gs_sel, ldt_sel;
  61. int gs_ldt_reload_needed;
  62. int fs_reload_needed;
  63. int guest_efer_loaded;
  64. } host_state;
  65. struct {
  66. struct {
  67. bool pending;
  68. u8 vector;
  69. unsigned rip;
  70. } irq;
  71. } rmode;
  72. int vpid;
  73. };
  74. static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
  75. {
  76. return container_of(vcpu, struct vcpu_vmx, vcpu);
  77. }
  78. static int init_rmode(struct kvm *kvm);
  79. static DEFINE_PER_CPU(struct vmcs *, vmxarea);
  80. static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
  81. static struct page *vmx_io_bitmap_a;
  82. static struct page *vmx_io_bitmap_b;
  83. static struct page *vmx_msr_bitmap;
  84. static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
  85. static DEFINE_SPINLOCK(vmx_vpid_lock);
  86. static struct vmcs_config {
  87. int size;
  88. int order;
  89. u32 revision_id;
  90. u32 pin_based_exec_ctrl;
  91. u32 cpu_based_exec_ctrl;
  92. u32 cpu_based_2nd_exec_ctrl;
  93. u32 vmexit_ctrl;
  94. u32 vmentry_ctrl;
  95. } vmcs_config;
  96. struct vmx_capability {
  97. u32 ept;
  98. u32 vpid;
  99. } vmx_capability;
  100. #define VMX_SEGMENT_FIELD(seg) \
  101. [VCPU_SREG_##seg] = { \
  102. .selector = GUEST_##seg##_SELECTOR, \
  103. .base = GUEST_##seg##_BASE, \
  104. .limit = GUEST_##seg##_LIMIT, \
  105. .ar_bytes = GUEST_##seg##_AR_BYTES, \
  106. }
  107. static struct kvm_vmx_segment_field {
  108. unsigned selector;
  109. unsigned base;
  110. unsigned limit;
  111. unsigned ar_bytes;
  112. } kvm_vmx_segment_fields[] = {
  113. VMX_SEGMENT_FIELD(CS),
  114. VMX_SEGMENT_FIELD(DS),
  115. VMX_SEGMENT_FIELD(ES),
  116. VMX_SEGMENT_FIELD(FS),
  117. VMX_SEGMENT_FIELD(GS),
  118. VMX_SEGMENT_FIELD(SS),
  119. VMX_SEGMENT_FIELD(TR),
  120. VMX_SEGMENT_FIELD(LDTR),
  121. };
  122. /*
  123. * Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it
  124. * away by decrementing the array size.
  125. */
  126. static const u32 vmx_msr_index[] = {
  127. #ifdef CONFIG_X86_64
  128. MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, MSR_KERNEL_GS_BASE,
  129. #endif
  130. MSR_EFER, MSR_K6_STAR,
  131. };
  132. #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
  133. static void load_msrs(struct kvm_msr_entry *e, int n)
  134. {
  135. int i;
  136. for (i = 0; i < n; ++i)
  137. wrmsrl(e[i].index, e[i].data);
  138. }
  139. static void save_msrs(struct kvm_msr_entry *e, int n)
  140. {
  141. int i;
  142. for (i = 0; i < n; ++i)
  143. rdmsrl(e[i].index, e[i].data);
  144. }
  145. static inline int is_page_fault(u32 intr_info)
  146. {
  147. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  148. INTR_INFO_VALID_MASK)) ==
  149. (INTR_TYPE_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
  150. }
  151. static inline int is_no_device(u32 intr_info)
  152. {
  153. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  154. INTR_INFO_VALID_MASK)) ==
  155. (INTR_TYPE_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
  156. }
  157. static inline int is_invalid_opcode(u32 intr_info)
  158. {
  159. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  160. INTR_INFO_VALID_MASK)) ==
  161. (INTR_TYPE_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
  162. }
  163. static inline int is_external_interrupt(u32 intr_info)
  164. {
  165. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
  166. == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  167. }
  168. static inline int cpu_has_vmx_msr_bitmap(void)
  169. {
  170. return (vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS);
  171. }
  172. static inline int cpu_has_vmx_tpr_shadow(void)
  173. {
  174. return (vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW);
  175. }
  176. static inline int vm_need_tpr_shadow(struct kvm *kvm)
  177. {
  178. return ((cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm)));
  179. }
  180. static inline int cpu_has_secondary_exec_ctrls(void)
  181. {
  182. return (vmcs_config.cpu_based_exec_ctrl &
  183. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS);
  184. }
  185. static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
  186. {
  187. return flexpriority_enabled
  188. && (vmcs_config.cpu_based_2nd_exec_ctrl &
  189. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
  190. }
  191. static inline int cpu_has_vmx_invept_individual_addr(void)
  192. {
  193. return (!!(vmx_capability.ept & VMX_EPT_EXTENT_INDIVIDUAL_BIT));
  194. }
  195. static inline int cpu_has_vmx_invept_context(void)
  196. {
  197. return (!!(vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT));
  198. }
  199. static inline int cpu_has_vmx_invept_global(void)
  200. {
  201. return (!!(vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT));
  202. }
  203. static inline int cpu_has_vmx_ept(void)
  204. {
  205. return (vmcs_config.cpu_based_2nd_exec_ctrl &
  206. SECONDARY_EXEC_ENABLE_EPT);
  207. }
  208. static inline int vm_need_ept(void)
  209. {
  210. return (cpu_has_vmx_ept() && enable_ept);
  211. }
  212. static inline int vm_need_virtualize_apic_accesses(struct kvm *kvm)
  213. {
  214. return ((cpu_has_vmx_virtualize_apic_accesses()) &&
  215. (irqchip_in_kernel(kvm)));
  216. }
  217. static inline int cpu_has_vmx_vpid(void)
  218. {
  219. return (vmcs_config.cpu_based_2nd_exec_ctrl &
  220. SECONDARY_EXEC_ENABLE_VPID);
  221. }
  222. static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
  223. {
  224. int i;
  225. for (i = 0; i < vmx->nmsrs; ++i)
  226. if (vmx->guest_msrs[i].index == msr)
  227. return i;
  228. return -1;
  229. }
  230. static inline void __invvpid(int ext, u16 vpid, gva_t gva)
  231. {
  232. struct {
  233. u64 vpid : 16;
  234. u64 rsvd : 48;
  235. u64 gva;
  236. } operand = { vpid, 0, gva };
  237. asm volatile (ASM_VMX_INVVPID
  238. /* CF==1 or ZF==1 --> rc = -1 */
  239. "; ja 1f ; ud2 ; 1:"
  240. : : "a"(&operand), "c"(ext) : "cc", "memory");
  241. }
  242. static inline void __invept(int ext, u64 eptp, gpa_t gpa)
  243. {
  244. struct {
  245. u64 eptp, gpa;
  246. } operand = {eptp, gpa};
  247. asm volatile (ASM_VMX_INVEPT
  248. /* CF==1 or ZF==1 --> rc = -1 */
  249. "; ja 1f ; ud2 ; 1:\n"
  250. : : "a" (&operand), "c" (ext) : "cc", "memory");
  251. }
  252. static struct kvm_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
  253. {
  254. int i;
  255. i = __find_msr_index(vmx, msr);
  256. if (i >= 0)
  257. return &vmx->guest_msrs[i];
  258. return NULL;
  259. }
  260. static void vmcs_clear(struct vmcs *vmcs)
  261. {
  262. u64 phys_addr = __pa(vmcs);
  263. u8 error;
  264. asm volatile (ASM_VMX_VMCLEAR_RAX "; setna %0"
  265. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  266. : "cc", "memory");
  267. if (error)
  268. printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
  269. vmcs, phys_addr);
  270. }
  271. static void __vcpu_clear(void *arg)
  272. {
  273. struct vcpu_vmx *vmx = arg;
  274. int cpu = raw_smp_processor_id();
  275. if (vmx->vcpu.cpu == cpu)
  276. vmcs_clear(vmx->vmcs);
  277. if (per_cpu(current_vmcs, cpu) == vmx->vmcs)
  278. per_cpu(current_vmcs, cpu) = NULL;
  279. rdtscll(vmx->vcpu.arch.host_tsc);
  280. }
  281. static void vcpu_clear(struct vcpu_vmx *vmx)
  282. {
  283. if (vmx->vcpu.cpu == -1)
  284. return;
  285. smp_call_function_single(vmx->vcpu.cpu, __vcpu_clear, vmx, 0, 1);
  286. vmx->launched = 0;
  287. }
  288. static inline void vpid_sync_vcpu_all(struct vcpu_vmx *vmx)
  289. {
  290. if (vmx->vpid == 0)
  291. return;
  292. __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
  293. }
  294. static inline void ept_sync_global(void)
  295. {
  296. if (cpu_has_vmx_invept_global())
  297. __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
  298. }
  299. static inline void ept_sync_context(u64 eptp)
  300. {
  301. if (vm_need_ept()) {
  302. if (cpu_has_vmx_invept_context())
  303. __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
  304. else
  305. ept_sync_global();
  306. }
  307. }
  308. static inline void ept_sync_individual_addr(u64 eptp, gpa_t gpa)
  309. {
  310. if (vm_need_ept()) {
  311. if (cpu_has_vmx_invept_individual_addr())
  312. __invept(VMX_EPT_EXTENT_INDIVIDUAL_ADDR,
  313. eptp, gpa);
  314. else
  315. ept_sync_context(eptp);
  316. }
  317. }
  318. static unsigned long vmcs_readl(unsigned long field)
  319. {
  320. unsigned long value;
  321. asm volatile (ASM_VMX_VMREAD_RDX_RAX
  322. : "=a"(value) : "d"(field) : "cc");
  323. return value;
  324. }
  325. static u16 vmcs_read16(unsigned long field)
  326. {
  327. return vmcs_readl(field);
  328. }
  329. static u32 vmcs_read32(unsigned long field)
  330. {
  331. return vmcs_readl(field);
  332. }
  333. static u64 vmcs_read64(unsigned long field)
  334. {
  335. #ifdef CONFIG_X86_64
  336. return vmcs_readl(field);
  337. #else
  338. return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
  339. #endif
  340. }
  341. static noinline void vmwrite_error(unsigned long field, unsigned long value)
  342. {
  343. printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
  344. field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
  345. dump_stack();
  346. }
  347. static void vmcs_writel(unsigned long field, unsigned long value)
  348. {
  349. u8 error;
  350. asm volatile (ASM_VMX_VMWRITE_RAX_RDX "; setna %0"
  351. : "=q"(error) : "a"(value), "d"(field) : "cc");
  352. if (unlikely(error))
  353. vmwrite_error(field, value);
  354. }
  355. static void vmcs_write16(unsigned long field, u16 value)
  356. {
  357. vmcs_writel(field, value);
  358. }
  359. static void vmcs_write32(unsigned long field, u32 value)
  360. {
  361. vmcs_writel(field, value);
  362. }
  363. static void vmcs_write64(unsigned long field, u64 value)
  364. {
  365. #ifdef CONFIG_X86_64
  366. vmcs_writel(field, value);
  367. #else
  368. vmcs_writel(field, value);
  369. asm volatile ("");
  370. vmcs_writel(field+1, value >> 32);
  371. #endif
  372. }
  373. static void vmcs_clear_bits(unsigned long field, u32 mask)
  374. {
  375. vmcs_writel(field, vmcs_readl(field) & ~mask);
  376. }
  377. static void vmcs_set_bits(unsigned long field, u32 mask)
  378. {
  379. vmcs_writel(field, vmcs_readl(field) | mask);
  380. }
  381. static void update_exception_bitmap(struct kvm_vcpu *vcpu)
  382. {
  383. u32 eb;
  384. eb = (1u << PF_VECTOR) | (1u << UD_VECTOR);
  385. if (!vcpu->fpu_active)
  386. eb |= 1u << NM_VECTOR;
  387. if (vcpu->guest_debug.enabled)
  388. eb |= 1u << 1;
  389. if (vcpu->arch.rmode.active)
  390. eb = ~0;
  391. if (vm_need_ept())
  392. eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
  393. vmcs_write32(EXCEPTION_BITMAP, eb);
  394. }
  395. static void reload_tss(void)
  396. {
  397. /*
  398. * VT restores TR but not its size. Useless.
  399. */
  400. struct descriptor_table gdt;
  401. struct desc_struct *descs;
  402. get_gdt(&gdt);
  403. descs = (void *)gdt.base;
  404. descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
  405. load_TR_desc();
  406. }
  407. static void load_transition_efer(struct vcpu_vmx *vmx)
  408. {
  409. int efer_offset = vmx->msr_offset_efer;
  410. u64 host_efer = vmx->host_msrs[efer_offset].data;
  411. u64 guest_efer = vmx->guest_msrs[efer_offset].data;
  412. u64 ignore_bits;
  413. if (efer_offset < 0)
  414. return;
  415. /*
  416. * NX is emulated; LMA and LME handled by hardware; SCE meaninless
  417. * outside long mode
  418. */
  419. ignore_bits = EFER_NX | EFER_SCE;
  420. #ifdef CONFIG_X86_64
  421. ignore_bits |= EFER_LMA | EFER_LME;
  422. /* SCE is meaningful only in long mode on Intel */
  423. if (guest_efer & EFER_LMA)
  424. ignore_bits &= ~(u64)EFER_SCE;
  425. #endif
  426. if ((guest_efer & ~ignore_bits) == (host_efer & ~ignore_bits))
  427. return;
  428. vmx->host_state.guest_efer_loaded = 1;
  429. guest_efer &= ~ignore_bits;
  430. guest_efer |= host_efer & ignore_bits;
  431. wrmsrl(MSR_EFER, guest_efer);
  432. vmx->vcpu.stat.efer_reload++;
  433. }
  434. static void reload_host_efer(struct vcpu_vmx *vmx)
  435. {
  436. if (vmx->host_state.guest_efer_loaded) {
  437. vmx->host_state.guest_efer_loaded = 0;
  438. load_msrs(vmx->host_msrs + vmx->msr_offset_efer, 1);
  439. }
  440. }
  441. static void vmx_save_host_state(struct kvm_vcpu *vcpu)
  442. {
  443. struct vcpu_vmx *vmx = to_vmx(vcpu);
  444. if (vmx->host_state.loaded)
  445. return;
  446. vmx->host_state.loaded = 1;
  447. /*
  448. * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
  449. * allow segment selectors with cpl > 0 or ti == 1.
  450. */
  451. vmx->host_state.ldt_sel = read_ldt();
  452. vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
  453. vmx->host_state.fs_sel = read_fs();
  454. if (!(vmx->host_state.fs_sel & 7)) {
  455. vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
  456. vmx->host_state.fs_reload_needed = 0;
  457. } else {
  458. vmcs_write16(HOST_FS_SELECTOR, 0);
  459. vmx->host_state.fs_reload_needed = 1;
  460. }
  461. vmx->host_state.gs_sel = read_gs();
  462. if (!(vmx->host_state.gs_sel & 7))
  463. vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
  464. else {
  465. vmcs_write16(HOST_GS_SELECTOR, 0);
  466. vmx->host_state.gs_ldt_reload_needed = 1;
  467. }
  468. #ifdef CONFIG_X86_64
  469. vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
  470. vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
  471. #else
  472. vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
  473. vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
  474. #endif
  475. #ifdef CONFIG_X86_64
  476. if (is_long_mode(&vmx->vcpu))
  477. save_msrs(vmx->host_msrs +
  478. vmx->msr_offset_kernel_gs_base, 1);
  479. #endif
  480. load_msrs(vmx->guest_msrs, vmx->save_nmsrs);
  481. load_transition_efer(vmx);
  482. }
  483. static void __vmx_load_host_state(struct vcpu_vmx *vmx)
  484. {
  485. unsigned long flags;
  486. if (!vmx->host_state.loaded)
  487. return;
  488. ++vmx->vcpu.stat.host_state_reload;
  489. vmx->host_state.loaded = 0;
  490. if (vmx->host_state.fs_reload_needed)
  491. load_fs(vmx->host_state.fs_sel);
  492. if (vmx->host_state.gs_ldt_reload_needed) {
  493. load_ldt(vmx->host_state.ldt_sel);
  494. /*
  495. * If we have to reload gs, we must take care to
  496. * preserve our gs base.
  497. */
  498. local_irq_save(flags);
  499. load_gs(vmx->host_state.gs_sel);
  500. #ifdef CONFIG_X86_64
  501. wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
  502. #endif
  503. local_irq_restore(flags);
  504. }
  505. reload_tss();
  506. save_msrs(vmx->guest_msrs, vmx->save_nmsrs);
  507. load_msrs(vmx->host_msrs, vmx->save_nmsrs);
  508. reload_host_efer(vmx);
  509. }
  510. static void vmx_load_host_state(struct vcpu_vmx *vmx)
  511. {
  512. preempt_disable();
  513. __vmx_load_host_state(vmx);
  514. preempt_enable();
  515. }
  516. /*
  517. * Switches to specified vcpu, until a matching vcpu_put(), but assumes
  518. * vcpu mutex is already taken.
  519. */
  520. static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  521. {
  522. struct vcpu_vmx *vmx = to_vmx(vcpu);
  523. u64 phys_addr = __pa(vmx->vmcs);
  524. u64 tsc_this, delta, new_offset;
  525. if (vcpu->cpu != cpu) {
  526. vcpu_clear(vmx);
  527. kvm_migrate_timers(vcpu);
  528. vpid_sync_vcpu_all(vmx);
  529. }
  530. if (per_cpu(current_vmcs, cpu) != vmx->vmcs) {
  531. u8 error;
  532. per_cpu(current_vmcs, cpu) = vmx->vmcs;
  533. asm volatile (ASM_VMX_VMPTRLD_RAX "; setna %0"
  534. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  535. : "cc");
  536. if (error)
  537. printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
  538. vmx->vmcs, phys_addr);
  539. }
  540. if (vcpu->cpu != cpu) {
  541. struct descriptor_table dt;
  542. unsigned long sysenter_esp;
  543. vcpu->cpu = cpu;
  544. /*
  545. * Linux uses per-cpu TSS and GDT, so set these when switching
  546. * processors.
  547. */
  548. vmcs_writel(HOST_TR_BASE, read_tr_base()); /* 22.2.4 */
  549. get_gdt(&dt);
  550. vmcs_writel(HOST_GDTR_BASE, dt.base); /* 22.2.4 */
  551. rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
  552. vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
  553. /*
  554. * Make sure the time stamp counter is monotonous.
  555. */
  556. rdtscll(tsc_this);
  557. if (tsc_this < vcpu->arch.host_tsc) {
  558. delta = vcpu->arch.host_tsc - tsc_this;
  559. new_offset = vmcs_read64(TSC_OFFSET) + delta;
  560. vmcs_write64(TSC_OFFSET, new_offset);
  561. }
  562. }
  563. }
  564. static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
  565. {
  566. __vmx_load_host_state(to_vmx(vcpu));
  567. }
  568. static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
  569. {
  570. if (vcpu->fpu_active)
  571. return;
  572. vcpu->fpu_active = 1;
  573. vmcs_clear_bits(GUEST_CR0, X86_CR0_TS);
  574. if (vcpu->arch.cr0 & X86_CR0_TS)
  575. vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
  576. update_exception_bitmap(vcpu);
  577. }
  578. static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
  579. {
  580. if (!vcpu->fpu_active)
  581. return;
  582. vcpu->fpu_active = 0;
  583. vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
  584. update_exception_bitmap(vcpu);
  585. }
  586. static void vmx_vcpu_decache(struct kvm_vcpu *vcpu)
  587. {
  588. vcpu_clear(to_vmx(vcpu));
  589. }
  590. static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
  591. {
  592. return vmcs_readl(GUEST_RFLAGS);
  593. }
  594. static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  595. {
  596. if (vcpu->arch.rmode.active)
  597. rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  598. vmcs_writel(GUEST_RFLAGS, rflags);
  599. }
  600. static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
  601. {
  602. unsigned long rip;
  603. u32 interruptibility;
  604. rip = vmcs_readl(GUEST_RIP);
  605. rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  606. vmcs_writel(GUEST_RIP, rip);
  607. /*
  608. * We emulated an instruction, so temporary interrupt blocking
  609. * should be removed, if set.
  610. */
  611. interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  612. if (interruptibility & 3)
  613. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
  614. interruptibility & ~3);
  615. vcpu->arch.interrupt_window_open = 1;
  616. }
  617. static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
  618. bool has_error_code, u32 error_code)
  619. {
  620. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  621. nr | INTR_TYPE_EXCEPTION
  622. | (has_error_code ? INTR_INFO_DELIVER_CODE_MASK : 0)
  623. | INTR_INFO_VALID_MASK);
  624. if (has_error_code)
  625. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
  626. }
  627. static bool vmx_exception_injected(struct kvm_vcpu *vcpu)
  628. {
  629. struct vcpu_vmx *vmx = to_vmx(vcpu);
  630. return !(vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
  631. }
  632. /*
  633. * Swap MSR entry in host/guest MSR entry array.
  634. */
  635. #ifdef CONFIG_X86_64
  636. static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
  637. {
  638. struct kvm_msr_entry tmp;
  639. tmp = vmx->guest_msrs[to];
  640. vmx->guest_msrs[to] = vmx->guest_msrs[from];
  641. vmx->guest_msrs[from] = tmp;
  642. tmp = vmx->host_msrs[to];
  643. vmx->host_msrs[to] = vmx->host_msrs[from];
  644. vmx->host_msrs[from] = tmp;
  645. }
  646. #endif
  647. /*
  648. * Set up the vmcs to automatically save and restore system
  649. * msrs. Don't touch the 64-bit msrs if the guest is in legacy
  650. * mode, as fiddling with msrs is very expensive.
  651. */
  652. static void setup_msrs(struct vcpu_vmx *vmx)
  653. {
  654. int save_nmsrs;
  655. vmx_load_host_state(vmx);
  656. save_nmsrs = 0;
  657. #ifdef CONFIG_X86_64
  658. if (is_long_mode(&vmx->vcpu)) {
  659. int index;
  660. index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
  661. if (index >= 0)
  662. move_msr_up(vmx, index, save_nmsrs++);
  663. index = __find_msr_index(vmx, MSR_LSTAR);
  664. if (index >= 0)
  665. move_msr_up(vmx, index, save_nmsrs++);
  666. index = __find_msr_index(vmx, MSR_CSTAR);
  667. if (index >= 0)
  668. move_msr_up(vmx, index, save_nmsrs++);
  669. index = __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
  670. if (index >= 0)
  671. move_msr_up(vmx, index, save_nmsrs++);
  672. /*
  673. * MSR_K6_STAR is only needed on long mode guests, and only
  674. * if efer.sce is enabled.
  675. */
  676. index = __find_msr_index(vmx, MSR_K6_STAR);
  677. if ((index >= 0) && (vmx->vcpu.arch.shadow_efer & EFER_SCE))
  678. move_msr_up(vmx, index, save_nmsrs++);
  679. }
  680. #endif
  681. vmx->save_nmsrs = save_nmsrs;
  682. #ifdef CONFIG_X86_64
  683. vmx->msr_offset_kernel_gs_base =
  684. __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
  685. #endif
  686. vmx->msr_offset_efer = __find_msr_index(vmx, MSR_EFER);
  687. }
  688. /*
  689. * reads and returns guest's timestamp counter "register"
  690. * guest_tsc = host_tsc + tsc_offset -- 21.3
  691. */
  692. static u64 guest_read_tsc(void)
  693. {
  694. u64 host_tsc, tsc_offset;
  695. rdtscll(host_tsc);
  696. tsc_offset = vmcs_read64(TSC_OFFSET);
  697. return host_tsc + tsc_offset;
  698. }
  699. /*
  700. * writes 'guest_tsc' into guest's timestamp counter "register"
  701. * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
  702. */
  703. static void guest_write_tsc(u64 guest_tsc)
  704. {
  705. u64 host_tsc;
  706. rdtscll(host_tsc);
  707. vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
  708. }
  709. /*
  710. * Reads an msr value (of 'msr_index') into 'pdata'.
  711. * Returns 0 on success, non-0 otherwise.
  712. * Assumes vcpu_load() was already called.
  713. */
  714. static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  715. {
  716. u64 data;
  717. struct kvm_msr_entry *msr;
  718. if (!pdata) {
  719. printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
  720. return -EINVAL;
  721. }
  722. switch (msr_index) {
  723. #ifdef CONFIG_X86_64
  724. case MSR_FS_BASE:
  725. data = vmcs_readl(GUEST_FS_BASE);
  726. break;
  727. case MSR_GS_BASE:
  728. data = vmcs_readl(GUEST_GS_BASE);
  729. break;
  730. case MSR_EFER:
  731. return kvm_get_msr_common(vcpu, msr_index, pdata);
  732. #endif
  733. case MSR_IA32_TIME_STAMP_COUNTER:
  734. data = guest_read_tsc();
  735. break;
  736. case MSR_IA32_SYSENTER_CS:
  737. data = vmcs_read32(GUEST_SYSENTER_CS);
  738. break;
  739. case MSR_IA32_SYSENTER_EIP:
  740. data = vmcs_readl(GUEST_SYSENTER_EIP);
  741. break;
  742. case MSR_IA32_SYSENTER_ESP:
  743. data = vmcs_readl(GUEST_SYSENTER_ESP);
  744. break;
  745. default:
  746. msr = find_msr_entry(to_vmx(vcpu), msr_index);
  747. if (msr) {
  748. data = msr->data;
  749. break;
  750. }
  751. return kvm_get_msr_common(vcpu, msr_index, pdata);
  752. }
  753. *pdata = data;
  754. return 0;
  755. }
  756. /*
  757. * Writes msr value into into the appropriate "register".
  758. * Returns 0 on success, non-0 otherwise.
  759. * Assumes vcpu_load() was already called.
  760. */
  761. static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  762. {
  763. struct vcpu_vmx *vmx = to_vmx(vcpu);
  764. struct kvm_msr_entry *msr;
  765. int ret = 0;
  766. switch (msr_index) {
  767. #ifdef CONFIG_X86_64
  768. case MSR_EFER:
  769. vmx_load_host_state(vmx);
  770. ret = kvm_set_msr_common(vcpu, msr_index, data);
  771. break;
  772. case MSR_FS_BASE:
  773. vmcs_writel(GUEST_FS_BASE, data);
  774. break;
  775. case MSR_GS_BASE:
  776. vmcs_writel(GUEST_GS_BASE, data);
  777. break;
  778. #endif
  779. case MSR_IA32_SYSENTER_CS:
  780. vmcs_write32(GUEST_SYSENTER_CS, data);
  781. break;
  782. case MSR_IA32_SYSENTER_EIP:
  783. vmcs_writel(GUEST_SYSENTER_EIP, data);
  784. break;
  785. case MSR_IA32_SYSENTER_ESP:
  786. vmcs_writel(GUEST_SYSENTER_ESP, data);
  787. break;
  788. case MSR_IA32_TIME_STAMP_COUNTER:
  789. guest_write_tsc(data);
  790. break;
  791. default:
  792. vmx_load_host_state(vmx);
  793. msr = find_msr_entry(vmx, msr_index);
  794. if (msr) {
  795. msr->data = data;
  796. break;
  797. }
  798. ret = kvm_set_msr_common(vcpu, msr_index, data);
  799. }
  800. return ret;
  801. }
  802. /*
  803. * Sync the rsp and rip registers into the vcpu structure. This allows
  804. * registers to be accessed by indexing vcpu->arch.regs.
  805. */
  806. static void vcpu_load_rsp_rip(struct kvm_vcpu *vcpu)
  807. {
  808. vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
  809. vcpu->arch.rip = vmcs_readl(GUEST_RIP);
  810. }
  811. /*
  812. * Syncs rsp and rip back into the vmcs. Should be called after possible
  813. * modification.
  814. */
  815. static void vcpu_put_rsp_rip(struct kvm_vcpu *vcpu)
  816. {
  817. vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
  818. vmcs_writel(GUEST_RIP, vcpu->arch.rip);
  819. }
  820. static int set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg)
  821. {
  822. unsigned long dr7 = 0x400;
  823. int old_singlestep;
  824. old_singlestep = vcpu->guest_debug.singlestep;
  825. vcpu->guest_debug.enabled = dbg->enabled;
  826. if (vcpu->guest_debug.enabled) {
  827. int i;
  828. dr7 |= 0x200; /* exact */
  829. for (i = 0; i < 4; ++i) {
  830. if (!dbg->breakpoints[i].enabled)
  831. continue;
  832. vcpu->guest_debug.bp[i] = dbg->breakpoints[i].address;
  833. dr7 |= 2 << (i*2); /* global enable */
  834. dr7 |= 0 << (i*4+16); /* execution breakpoint */
  835. }
  836. vcpu->guest_debug.singlestep = dbg->singlestep;
  837. } else
  838. vcpu->guest_debug.singlestep = 0;
  839. if (old_singlestep && !vcpu->guest_debug.singlestep) {
  840. unsigned long flags;
  841. flags = vmcs_readl(GUEST_RFLAGS);
  842. flags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  843. vmcs_writel(GUEST_RFLAGS, flags);
  844. }
  845. update_exception_bitmap(vcpu);
  846. vmcs_writel(GUEST_DR7, dr7);
  847. return 0;
  848. }
  849. static int vmx_get_irq(struct kvm_vcpu *vcpu)
  850. {
  851. struct vcpu_vmx *vmx = to_vmx(vcpu);
  852. u32 idtv_info_field;
  853. idtv_info_field = vmx->idt_vectoring_info;
  854. if (idtv_info_field & INTR_INFO_VALID_MASK) {
  855. if (is_external_interrupt(idtv_info_field))
  856. return idtv_info_field & VECTORING_INFO_VECTOR_MASK;
  857. else
  858. printk(KERN_DEBUG "pending exception: not handled yet\n");
  859. }
  860. return -1;
  861. }
  862. static __init int cpu_has_kvm_support(void)
  863. {
  864. unsigned long ecx = cpuid_ecx(1);
  865. return test_bit(5, &ecx); /* CPUID.1:ECX.VMX[bit 5] -> VT */
  866. }
  867. static __init int vmx_disabled_by_bios(void)
  868. {
  869. u64 msr;
  870. rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
  871. return (msr & (MSR_IA32_FEATURE_CONTROL_LOCKED |
  872. MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED))
  873. == MSR_IA32_FEATURE_CONTROL_LOCKED;
  874. /* locked but not enabled */
  875. }
  876. static void hardware_enable(void *garbage)
  877. {
  878. int cpu = raw_smp_processor_id();
  879. u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
  880. u64 old;
  881. rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
  882. if ((old & (MSR_IA32_FEATURE_CONTROL_LOCKED |
  883. MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED))
  884. != (MSR_IA32_FEATURE_CONTROL_LOCKED |
  885. MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED))
  886. /* enable and lock */
  887. wrmsrl(MSR_IA32_FEATURE_CONTROL, old |
  888. MSR_IA32_FEATURE_CONTROL_LOCKED |
  889. MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED);
  890. write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
  891. asm volatile (ASM_VMX_VMXON_RAX : : "a"(&phys_addr), "m"(phys_addr)
  892. : "memory", "cc");
  893. }
  894. static void hardware_disable(void *garbage)
  895. {
  896. asm volatile (ASM_VMX_VMXOFF : : : "cc");
  897. write_cr4(read_cr4() & ~X86_CR4_VMXE);
  898. }
  899. static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
  900. u32 msr, u32 *result)
  901. {
  902. u32 vmx_msr_low, vmx_msr_high;
  903. u32 ctl = ctl_min | ctl_opt;
  904. rdmsr(msr, vmx_msr_low, vmx_msr_high);
  905. ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
  906. ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
  907. /* Ensure minimum (required) set of control bits are supported. */
  908. if (ctl_min & ~ctl)
  909. return -EIO;
  910. *result = ctl;
  911. return 0;
  912. }
  913. static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
  914. {
  915. u32 vmx_msr_low, vmx_msr_high;
  916. u32 min, opt, min2, opt2;
  917. u32 _pin_based_exec_control = 0;
  918. u32 _cpu_based_exec_control = 0;
  919. u32 _cpu_based_2nd_exec_control = 0;
  920. u32 _vmexit_control = 0;
  921. u32 _vmentry_control = 0;
  922. min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
  923. opt = 0;
  924. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
  925. &_pin_based_exec_control) < 0)
  926. return -EIO;
  927. min = CPU_BASED_HLT_EXITING |
  928. #ifdef CONFIG_X86_64
  929. CPU_BASED_CR8_LOAD_EXITING |
  930. CPU_BASED_CR8_STORE_EXITING |
  931. #endif
  932. CPU_BASED_CR3_LOAD_EXITING |
  933. CPU_BASED_CR3_STORE_EXITING |
  934. CPU_BASED_USE_IO_BITMAPS |
  935. CPU_BASED_MOV_DR_EXITING |
  936. CPU_BASED_USE_TSC_OFFSETING;
  937. opt = CPU_BASED_TPR_SHADOW |
  938. CPU_BASED_USE_MSR_BITMAPS |
  939. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
  940. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
  941. &_cpu_based_exec_control) < 0)
  942. return -EIO;
  943. #ifdef CONFIG_X86_64
  944. if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
  945. _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
  946. ~CPU_BASED_CR8_STORE_EXITING;
  947. #endif
  948. if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
  949. min2 = 0;
  950. opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
  951. SECONDARY_EXEC_WBINVD_EXITING |
  952. SECONDARY_EXEC_ENABLE_VPID |
  953. SECONDARY_EXEC_ENABLE_EPT;
  954. if (adjust_vmx_controls(min2, opt2,
  955. MSR_IA32_VMX_PROCBASED_CTLS2,
  956. &_cpu_based_2nd_exec_control) < 0)
  957. return -EIO;
  958. }
  959. #ifndef CONFIG_X86_64
  960. if (!(_cpu_based_2nd_exec_control &
  961. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
  962. _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
  963. #endif
  964. if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
  965. /* CR3 accesses don't need to cause VM Exits when EPT enabled */
  966. min &= ~(CPU_BASED_CR3_LOAD_EXITING |
  967. CPU_BASED_CR3_STORE_EXITING);
  968. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
  969. &_cpu_based_exec_control) < 0)
  970. return -EIO;
  971. rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
  972. vmx_capability.ept, vmx_capability.vpid);
  973. }
  974. min = 0;
  975. #ifdef CONFIG_X86_64
  976. min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
  977. #endif
  978. opt = 0;
  979. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
  980. &_vmexit_control) < 0)
  981. return -EIO;
  982. min = opt = 0;
  983. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
  984. &_vmentry_control) < 0)
  985. return -EIO;
  986. rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
  987. /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
  988. if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
  989. return -EIO;
  990. #ifdef CONFIG_X86_64
  991. /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
  992. if (vmx_msr_high & (1u<<16))
  993. return -EIO;
  994. #endif
  995. /* Require Write-Back (WB) memory type for VMCS accesses. */
  996. if (((vmx_msr_high >> 18) & 15) != 6)
  997. return -EIO;
  998. vmcs_conf->size = vmx_msr_high & 0x1fff;
  999. vmcs_conf->order = get_order(vmcs_config.size);
  1000. vmcs_conf->revision_id = vmx_msr_low;
  1001. vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
  1002. vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
  1003. vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
  1004. vmcs_conf->vmexit_ctrl = _vmexit_control;
  1005. vmcs_conf->vmentry_ctrl = _vmentry_control;
  1006. return 0;
  1007. }
  1008. static struct vmcs *alloc_vmcs_cpu(int cpu)
  1009. {
  1010. int node = cpu_to_node(cpu);
  1011. struct page *pages;
  1012. struct vmcs *vmcs;
  1013. pages = alloc_pages_node(node, GFP_KERNEL, vmcs_config.order);
  1014. if (!pages)
  1015. return NULL;
  1016. vmcs = page_address(pages);
  1017. memset(vmcs, 0, vmcs_config.size);
  1018. vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
  1019. return vmcs;
  1020. }
  1021. static struct vmcs *alloc_vmcs(void)
  1022. {
  1023. return alloc_vmcs_cpu(raw_smp_processor_id());
  1024. }
  1025. static void free_vmcs(struct vmcs *vmcs)
  1026. {
  1027. free_pages((unsigned long)vmcs, vmcs_config.order);
  1028. }
  1029. static void free_kvm_area(void)
  1030. {
  1031. int cpu;
  1032. for_each_online_cpu(cpu)
  1033. free_vmcs(per_cpu(vmxarea, cpu));
  1034. }
  1035. static __init int alloc_kvm_area(void)
  1036. {
  1037. int cpu;
  1038. for_each_online_cpu(cpu) {
  1039. struct vmcs *vmcs;
  1040. vmcs = alloc_vmcs_cpu(cpu);
  1041. if (!vmcs) {
  1042. free_kvm_area();
  1043. return -ENOMEM;
  1044. }
  1045. per_cpu(vmxarea, cpu) = vmcs;
  1046. }
  1047. return 0;
  1048. }
  1049. static __init int hardware_setup(void)
  1050. {
  1051. if (setup_vmcs_config(&vmcs_config) < 0)
  1052. return -EIO;
  1053. if (boot_cpu_has(X86_FEATURE_NX))
  1054. kvm_enable_efer_bits(EFER_NX);
  1055. return alloc_kvm_area();
  1056. }
  1057. static __exit void hardware_unsetup(void)
  1058. {
  1059. free_kvm_area();
  1060. }
  1061. static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
  1062. {
  1063. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1064. if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
  1065. vmcs_write16(sf->selector, save->selector);
  1066. vmcs_writel(sf->base, save->base);
  1067. vmcs_write32(sf->limit, save->limit);
  1068. vmcs_write32(sf->ar_bytes, save->ar);
  1069. } else {
  1070. u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
  1071. << AR_DPL_SHIFT;
  1072. vmcs_write32(sf->ar_bytes, 0x93 | dpl);
  1073. }
  1074. }
  1075. static void enter_pmode(struct kvm_vcpu *vcpu)
  1076. {
  1077. unsigned long flags;
  1078. vcpu->arch.rmode.active = 0;
  1079. vmcs_writel(GUEST_TR_BASE, vcpu->arch.rmode.tr.base);
  1080. vmcs_write32(GUEST_TR_LIMIT, vcpu->arch.rmode.tr.limit);
  1081. vmcs_write32(GUEST_TR_AR_BYTES, vcpu->arch.rmode.tr.ar);
  1082. flags = vmcs_readl(GUEST_RFLAGS);
  1083. flags &= ~(X86_EFLAGS_IOPL | X86_EFLAGS_VM);
  1084. flags |= (vcpu->arch.rmode.save_iopl << IOPL_SHIFT);
  1085. vmcs_writel(GUEST_RFLAGS, flags);
  1086. vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
  1087. (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
  1088. update_exception_bitmap(vcpu);
  1089. fix_pmode_dataseg(VCPU_SREG_ES, &vcpu->arch.rmode.es);
  1090. fix_pmode_dataseg(VCPU_SREG_DS, &vcpu->arch.rmode.ds);
  1091. fix_pmode_dataseg(VCPU_SREG_GS, &vcpu->arch.rmode.gs);
  1092. fix_pmode_dataseg(VCPU_SREG_FS, &vcpu->arch.rmode.fs);
  1093. vmcs_write16(GUEST_SS_SELECTOR, 0);
  1094. vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
  1095. vmcs_write16(GUEST_CS_SELECTOR,
  1096. vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
  1097. vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
  1098. }
  1099. static gva_t rmode_tss_base(struct kvm *kvm)
  1100. {
  1101. if (!kvm->arch.tss_addr) {
  1102. gfn_t base_gfn = kvm->memslots[0].base_gfn +
  1103. kvm->memslots[0].npages - 3;
  1104. return base_gfn << PAGE_SHIFT;
  1105. }
  1106. return kvm->arch.tss_addr;
  1107. }
  1108. static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
  1109. {
  1110. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1111. save->selector = vmcs_read16(sf->selector);
  1112. save->base = vmcs_readl(sf->base);
  1113. save->limit = vmcs_read32(sf->limit);
  1114. save->ar = vmcs_read32(sf->ar_bytes);
  1115. vmcs_write16(sf->selector, save->base >> 4);
  1116. vmcs_write32(sf->base, save->base & 0xfffff);
  1117. vmcs_write32(sf->limit, 0xffff);
  1118. vmcs_write32(sf->ar_bytes, 0xf3);
  1119. }
  1120. static void enter_rmode(struct kvm_vcpu *vcpu)
  1121. {
  1122. unsigned long flags;
  1123. vcpu->arch.rmode.active = 1;
  1124. vcpu->arch.rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
  1125. vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
  1126. vcpu->arch.rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
  1127. vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
  1128. vcpu->arch.rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
  1129. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  1130. flags = vmcs_readl(GUEST_RFLAGS);
  1131. vcpu->arch.rmode.save_iopl
  1132. = (flags & X86_EFLAGS_IOPL) >> IOPL_SHIFT;
  1133. flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  1134. vmcs_writel(GUEST_RFLAGS, flags);
  1135. vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
  1136. update_exception_bitmap(vcpu);
  1137. vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
  1138. vmcs_write32(GUEST_SS_LIMIT, 0xffff);
  1139. vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
  1140. vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
  1141. vmcs_write32(GUEST_CS_LIMIT, 0xffff);
  1142. if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
  1143. vmcs_writel(GUEST_CS_BASE, 0xf0000);
  1144. vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
  1145. fix_rmode_seg(VCPU_SREG_ES, &vcpu->arch.rmode.es);
  1146. fix_rmode_seg(VCPU_SREG_DS, &vcpu->arch.rmode.ds);
  1147. fix_rmode_seg(VCPU_SREG_GS, &vcpu->arch.rmode.gs);
  1148. fix_rmode_seg(VCPU_SREG_FS, &vcpu->arch.rmode.fs);
  1149. kvm_mmu_reset_context(vcpu);
  1150. init_rmode(vcpu->kvm);
  1151. }
  1152. #ifdef CONFIG_X86_64
  1153. static void enter_lmode(struct kvm_vcpu *vcpu)
  1154. {
  1155. u32 guest_tr_ar;
  1156. guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
  1157. if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
  1158. printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
  1159. __func__);
  1160. vmcs_write32(GUEST_TR_AR_BYTES,
  1161. (guest_tr_ar & ~AR_TYPE_MASK)
  1162. | AR_TYPE_BUSY_64_TSS);
  1163. }
  1164. vcpu->arch.shadow_efer |= EFER_LMA;
  1165. find_msr_entry(to_vmx(vcpu), MSR_EFER)->data |= EFER_LMA | EFER_LME;
  1166. vmcs_write32(VM_ENTRY_CONTROLS,
  1167. vmcs_read32(VM_ENTRY_CONTROLS)
  1168. | VM_ENTRY_IA32E_MODE);
  1169. }
  1170. static void exit_lmode(struct kvm_vcpu *vcpu)
  1171. {
  1172. vcpu->arch.shadow_efer &= ~EFER_LMA;
  1173. vmcs_write32(VM_ENTRY_CONTROLS,
  1174. vmcs_read32(VM_ENTRY_CONTROLS)
  1175. & ~VM_ENTRY_IA32E_MODE);
  1176. }
  1177. #endif
  1178. static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
  1179. {
  1180. vpid_sync_vcpu_all(to_vmx(vcpu));
  1181. }
  1182. static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
  1183. {
  1184. vcpu->arch.cr4 &= KVM_GUEST_CR4_MASK;
  1185. vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & ~KVM_GUEST_CR4_MASK;
  1186. }
  1187. static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
  1188. {
  1189. if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
  1190. if (!load_pdptrs(vcpu, vcpu->arch.cr3)) {
  1191. printk(KERN_ERR "EPT: Fail to load pdptrs!\n");
  1192. return;
  1193. }
  1194. vmcs_write64(GUEST_PDPTR0, vcpu->arch.pdptrs[0]);
  1195. vmcs_write64(GUEST_PDPTR1, vcpu->arch.pdptrs[1]);
  1196. vmcs_write64(GUEST_PDPTR2, vcpu->arch.pdptrs[2]);
  1197. vmcs_write64(GUEST_PDPTR3, vcpu->arch.pdptrs[3]);
  1198. }
  1199. }
  1200. static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
  1201. static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
  1202. unsigned long cr0,
  1203. struct kvm_vcpu *vcpu)
  1204. {
  1205. if (!(cr0 & X86_CR0_PG)) {
  1206. /* From paging/starting to nonpaging */
  1207. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
  1208. vmcs_config.cpu_based_exec_ctrl |
  1209. (CPU_BASED_CR3_LOAD_EXITING |
  1210. CPU_BASED_CR3_STORE_EXITING));
  1211. vcpu->arch.cr0 = cr0;
  1212. vmx_set_cr4(vcpu, vcpu->arch.cr4);
  1213. *hw_cr0 |= X86_CR0_PE | X86_CR0_PG;
  1214. *hw_cr0 &= ~X86_CR0_WP;
  1215. } else if (!is_paging(vcpu)) {
  1216. /* From nonpaging to paging */
  1217. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
  1218. vmcs_config.cpu_based_exec_ctrl &
  1219. ~(CPU_BASED_CR3_LOAD_EXITING |
  1220. CPU_BASED_CR3_STORE_EXITING));
  1221. vcpu->arch.cr0 = cr0;
  1222. vmx_set_cr4(vcpu, vcpu->arch.cr4);
  1223. if (!(vcpu->arch.cr0 & X86_CR0_WP))
  1224. *hw_cr0 &= ~X86_CR0_WP;
  1225. }
  1226. }
  1227. static void ept_update_paging_mode_cr4(unsigned long *hw_cr4,
  1228. struct kvm_vcpu *vcpu)
  1229. {
  1230. if (!is_paging(vcpu)) {
  1231. *hw_cr4 &= ~X86_CR4_PAE;
  1232. *hw_cr4 |= X86_CR4_PSE;
  1233. } else if (!(vcpu->arch.cr4 & X86_CR4_PAE))
  1234. *hw_cr4 &= ~X86_CR4_PAE;
  1235. }
  1236. static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  1237. {
  1238. unsigned long hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK) |
  1239. KVM_VM_CR0_ALWAYS_ON;
  1240. vmx_fpu_deactivate(vcpu);
  1241. if (vcpu->arch.rmode.active && (cr0 & X86_CR0_PE))
  1242. enter_pmode(vcpu);
  1243. if (!vcpu->arch.rmode.active && !(cr0 & X86_CR0_PE))
  1244. enter_rmode(vcpu);
  1245. #ifdef CONFIG_X86_64
  1246. if (vcpu->arch.shadow_efer & EFER_LME) {
  1247. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
  1248. enter_lmode(vcpu);
  1249. if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
  1250. exit_lmode(vcpu);
  1251. }
  1252. #endif
  1253. if (vm_need_ept())
  1254. ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
  1255. vmcs_writel(CR0_READ_SHADOW, cr0);
  1256. vmcs_writel(GUEST_CR0, hw_cr0);
  1257. vcpu->arch.cr0 = cr0;
  1258. if (!(cr0 & X86_CR0_TS) || !(cr0 & X86_CR0_PE))
  1259. vmx_fpu_activate(vcpu);
  1260. }
  1261. static u64 construct_eptp(unsigned long root_hpa)
  1262. {
  1263. u64 eptp;
  1264. /* TODO write the value reading from MSR */
  1265. eptp = VMX_EPT_DEFAULT_MT |
  1266. VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
  1267. eptp |= (root_hpa & PAGE_MASK);
  1268. return eptp;
  1269. }
  1270. static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  1271. {
  1272. unsigned long guest_cr3;
  1273. u64 eptp;
  1274. guest_cr3 = cr3;
  1275. if (vm_need_ept()) {
  1276. eptp = construct_eptp(cr3);
  1277. vmcs_write64(EPT_POINTER, eptp);
  1278. ept_sync_context(eptp);
  1279. ept_load_pdptrs(vcpu);
  1280. guest_cr3 = is_paging(vcpu) ? vcpu->arch.cr3 :
  1281. VMX_EPT_IDENTITY_PAGETABLE_ADDR;
  1282. }
  1283. vmx_flush_tlb(vcpu);
  1284. vmcs_writel(GUEST_CR3, guest_cr3);
  1285. if (vcpu->arch.cr0 & X86_CR0_PE)
  1286. vmx_fpu_deactivate(vcpu);
  1287. }
  1288. static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  1289. {
  1290. unsigned long hw_cr4 = cr4 | (vcpu->arch.rmode.active ?
  1291. KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
  1292. vcpu->arch.cr4 = cr4;
  1293. if (vm_need_ept())
  1294. ept_update_paging_mode_cr4(&hw_cr4, vcpu);
  1295. vmcs_writel(CR4_READ_SHADOW, cr4);
  1296. vmcs_writel(GUEST_CR4, hw_cr4);
  1297. }
  1298. static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
  1299. {
  1300. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1301. struct kvm_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
  1302. vcpu->arch.shadow_efer = efer;
  1303. if (!msr)
  1304. return;
  1305. if (efer & EFER_LMA) {
  1306. vmcs_write32(VM_ENTRY_CONTROLS,
  1307. vmcs_read32(VM_ENTRY_CONTROLS) |
  1308. VM_ENTRY_IA32E_MODE);
  1309. msr->data = efer;
  1310. } else {
  1311. vmcs_write32(VM_ENTRY_CONTROLS,
  1312. vmcs_read32(VM_ENTRY_CONTROLS) &
  1313. ~VM_ENTRY_IA32E_MODE);
  1314. msr->data = efer & ~EFER_LME;
  1315. }
  1316. setup_msrs(vmx);
  1317. }
  1318. static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
  1319. {
  1320. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1321. return vmcs_readl(sf->base);
  1322. }
  1323. static void vmx_get_segment(struct kvm_vcpu *vcpu,
  1324. struct kvm_segment *var, int seg)
  1325. {
  1326. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1327. u32 ar;
  1328. var->base = vmcs_readl(sf->base);
  1329. var->limit = vmcs_read32(sf->limit);
  1330. var->selector = vmcs_read16(sf->selector);
  1331. ar = vmcs_read32(sf->ar_bytes);
  1332. if (ar & AR_UNUSABLE_MASK)
  1333. ar = 0;
  1334. var->type = ar & 15;
  1335. var->s = (ar >> 4) & 1;
  1336. var->dpl = (ar >> 5) & 3;
  1337. var->present = (ar >> 7) & 1;
  1338. var->avl = (ar >> 12) & 1;
  1339. var->l = (ar >> 13) & 1;
  1340. var->db = (ar >> 14) & 1;
  1341. var->g = (ar >> 15) & 1;
  1342. var->unusable = (ar >> 16) & 1;
  1343. }
  1344. static int vmx_get_cpl(struct kvm_vcpu *vcpu)
  1345. {
  1346. struct kvm_segment kvm_seg;
  1347. if (!(vcpu->arch.cr0 & X86_CR0_PE)) /* if real mode */
  1348. return 0;
  1349. if (vmx_get_rflags(vcpu) & X86_EFLAGS_VM) /* if virtual 8086 */
  1350. return 3;
  1351. vmx_get_segment(vcpu, &kvm_seg, VCPU_SREG_CS);
  1352. return kvm_seg.selector & 3;
  1353. }
  1354. static u32 vmx_segment_access_rights(struct kvm_segment *var)
  1355. {
  1356. u32 ar;
  1357. if (var->unusable)
  1358. ar = 1 << 16;
  1359. else {
  1360. ar = var->type & 15;
  1361. ar |= (var->s & 1) << 4;
  1362. ar |= (var->dpl & 3) << 5;
  1363. ar |= (var->present & 1) << 7;
  1364. ar |= (var->avl & 1) << 12;
  1365. ar |= (var->l & 1) << 13;
  1366. ar |= (var->db & 1) << 14;
  1367. ar |= (var->g & 1) << 15;
  1368. }
  1369. if (ar == 0) /* a 0 value means unusable */
  1370. ar = AR_UNUSABLE_MASK;
  1371. return ar;
  1372. }
  1373. static void vmx_set_segment(struct kvm_vcpu *vcpu,
  1374. struct kvm_segment *var, int seg)
  1375. {
  1376. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1377. u32 ar;
  1378. if (vcpu->arch.rmode.active && seg == VCPU_SREG_TR) {
  1379. vcpu->arch.rmode.tr.selector = var->selector;
  1380. vcpu->arch.rmode.tr.base = var->base;
  1381. vcpu->arch.rmode.tr.limit = var->limit;
  1382. vcpu->arch.rmode.tr.ar = vmx_segment_access_rights(var);
  1383. return;
  1384. }
  1385. vmcs_writel(sf->base, var->base);
  1386. vmcs_write32(sf->limit, var->limit);
  1387. vmcs_write16(sf->selector, var->selector);
  1388. if (vcpu->arch.rmode.active && var->s) {
  1389. /*
  1390. * Hack real-mode segments into vm86 compatibility.
  1391. */
  1392. if (var->base == 0xffff0000 && var->selector == 0xf000)
  1393. vmcs_writel(sf->base, 0xf0000);
  1394. ar = 0xf3;
  1395. } else
  1396. ar = vmx_segment_access_rights(var);
  1397. vmcs_write32(sf->ar_bytes, ar);
  1398. }
  1399. static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  1400. {
  1401. u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
  1402. *db = (ar >> 14) & 1;
  1403. *l = (ar >> 13) & 1;
  1404. }
  1405. static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1406. {
  1407. dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
  1408. dt->base = vmcs_readl(GUEST_IDTR_BASE);
  1409. }
  1410. static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1411. {
  1412. vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
  1413. vmcs_writel(GUEST_IDTR_BASE, dt->base);
  1414. }
  1415. static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1416. {
  1417. dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
  1418. dt->base = vmcs_readl(GUEST_GDTR_BASE);
  1419. }
  1420. static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1421. {
  1422. vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
  1423. vmcs_writel(GUEST_GDTR_BASE, dt->base);
  1424. }
  1425. static int init_rmode_tss(struct kvm *kvm)
  1426. {
  1427. gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
  1428. u16 data = 0;
  1429. int ret = 0;
  1430. int r;
  1431. r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
  1432. if (r < 0)
  1433. goto out;
  1434. data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
  1435. r = kvm_write_guest_page(kvm, fn++, &data, 0x66, sizeof(u16));
  1436. if (r < 0)
  1437. goto out;
  1438. r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
  1439. if (r < 0)
  1440. goto out;
  1441. r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
  1442. if (r < 0)
  1443. goto out;
  1444. data = ~0;
  1445. r = kvm_write_guest_page(kvm, fn, &data,
  1446. RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
  1447. sizeof(u8));
  1448. if (r < 0)
  1449. goto out;
  1450. ret = 1;
  1451. out:
  1452. return ret;
  1453. }
  1454. static int init_rmode_identity_map(struct kvm *kvm)
  1455. {
  1456. int i, r, ret;
  1457. pfn_t identity_map_pfn;
  1458. u32 tmp;
  1459. if (!vm_need_ept())
  1460. return 1;
  1461. if (unlikely(!kvm->arch.ept_identity_pagetable)) {
  1462. printk(KERN_ERR "EPT: identity-mapping pagetable "
  1463. "haven't been allocated!\n");
  1464. return 0;
  1465. }
  1466. if (likely(kvm->arch.ept_identity_pagetable_done))
  1467. return 1;
  1468. ret = 0;
  1469. identity_map_pfn = VMX_EPT_IDENTITY_PAGETABLE_ADDR >> PAGE_SHIFT;
  1470. r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
  1471. if (r < 0)
  1472. goto out;
  1473. /* Set up identity-mapping pagetable for EPT in real mode */
  1474. for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
  1475. tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
  1476. _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
  1477. r = kvm_write_guest_page(kvm, identity_map_pfn,
  1478. &tmp, i * sizeof(tmp), sizeof(tmp));
  1479. if (r < 0)
  1480. goto out;
  1481. }
  1482. kvm->arch.ept_identity_pagetable_done = true;
  1483. ret = 1;
  1484. out:
  1485. return ret;
  1486. }
  1487. static void seg_setup(int seg)
  1488. {
  1489. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1490. vmcs_write16(sf->selector, 0);
  1491. vmcs_writel(sf->base, 0);
  1492. vmcs_write32(sf->limit, 0xffff);
  1493. vmcs_write32(sf->ar_bytes, 0x93);
  1494. }
  1495. static int alloc_apic_access_page(struct kvm *kvm)
  1496. {
  1497. struct kvm_userspace_memory_region kvm_userspace_mem;
  1498. int r = 0;
  1499. down_write(&kvm->slots_lock);
  1500. if (kvm->arch.apic_access_page)
  1501. goto out;
  1502. kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
  1503. kvm_userspace_mem.flags = 0;
  1504. kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
  1505. kvm_userspace_mem.memory_size = PAGE_SIZE;
  1506. r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
  1507. if (r)
  1508. goto out;
  1509. down_read(&current->mm->mmap_sem);
  1510. kvm->arch.apic_access_page = gfn_to_page(kvm, 0xfee00);
  1511. up_read(&current->mm->mmap_sem);
  1512. out:
  1513. up_write(&kvm->slots_lock);
  1514. return r;
  1515. }
  1516. static int alloc_identity_pagetable(struct kvm *kvm)
  1517. {
  1518. struct kvm_userspace_memory_region kvm_userspace_mem;
  1519. int r = 0;
  1520. down_write(&kvm->slots_lock);
  1521. if (kvm->arch.ept_identity_pagetable)
  1522. goto out;
  1523. kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
  1524. kvm_userspace_mem.flags = 0;
  1525. kvm_userspace_mem.guest_phys_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
  1526. kvm_userspace_mem.memory_size = PAGE_SIZE;
  1527. r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
  1528. if (r)
  1529. goto out;
  1530. down_read(&current->mm->mmap_sem);
  1531. kvm->arch.ept_identity_pagetable = gfn_to_page(kvm,
  1532. VMX_EPT_IDENTITY_PAGETABLE_ADDR >> PAGE_SHIFT);
  1533. up_read(&current->mm->mmap_sem);
  1534. out:
  1535. up_write(&kvm->slots_lock);
  1536. return r;
  1537. }
  1538. static void allocate_vpid(struct vcpu_vmx *vmx)
  1539. {
  1540. int vpid;
  1541. vmx->vpid = 0;
  1542. if (!enable_vpid || !cpu_has_vmx_vpid())
  1543. return;
  1544. spin_lock(&vmx_vpid_lock);
  1545. vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
  1546. if (vpid < VMX_NR_VPIDS) {
  1547. vmx->vpid = vpid;
  1548. __set_bit(vpid, vmx_vpid_bitmap);
  1549. }
  1550. spin_unlock(&vmx_vpid_lock);
  1551. }
  1552. void vmx_disable_intercept_for_msr(struct page *msr_bitmap, u32 msr)
  1553. {
  1554. void *va;
  1555. if (!cpu_has_vmx_msr_bitmap())
  1556. return;
  1557. /*
  1558. * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
  1559. * have the write-low and read-high bitmap offsets the wrong way round.
  1560. * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
  1561. */
  1562. va = kmap(msr_bitmap);
  1563. if (msr <= 0x1fff) {
  1564. __clear_bit(msr, va + 0x000); /* read-low */
  1565. __clear_bit(msr, va + 0x800); /* write-low */
  1566. } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
  1567. msr &= 0x1fff;
  1568. __clear_bit(msr, va + 0x400); /* read-high */
  1569. __clear_bit(msr, va + 0xc00); /* write-high */
  1570. }
  1571. kunmap(msr_bitmap);
  1572. }
  1573. /*
  1574. * Sets up the vmcs for emulated real mode.
  1575. */
  1576. static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
  1577. {
  1578. u32 host_sysenter_cs;
  1579. u32 junk;
  1580. unsigned long a;
  1581. struct descriptor_table dt;
  1582. int i;
  1583. unsigned long kvm_vmx_return;
  1584. u32 exec_control;
  1585. /* I/O */
  1586. vmcs_write64(IO_BITMAP_A, page_to_phys(vmx_io_bitmap_a));
  1587. vmcs_write64(IO_BITMAP_B, page_to_phys(vmx_io_bitmap_b));
  1588. if (cpu_has_vmx_msr_bitmap())
  1589. vmcs_write64(MSR_BITMAP, page_to_phys(vmx_msr_bitmap));
  1590. vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
  1591. /* Control */
  1592. vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
  1593. vmcs_config.pin_based_exec_ctrl);
  1594. exec_control = vmcs_config.cpu_based_exec_ctrl;
  1595. if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
  1596. exec_control &= ~CPU_BASED_TPR_SHADOW;
  1597. #ifdef CONFIG_X86_64
  1598. exec_control |= CPU_BASED_CR8_STORE_EXITING |
  1599. CPU_BASED_CR8_LOAD_EXITING;
  1600. #endif
  1601. }
  1602. if (!vm_need_ept())
  1603. exec_control |= CPU_BASED_CR3_STORE_EXITING |
  1604. CPU_BASED_CR3_LOAD_EXITING;
  1605. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
  1606. if (cpu_has_secondary_exec_ctrls()) {
  1607. exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
  1608. if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
  1609. exec_control &=
  1610. ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  1611. if (vmx->vpid == 0)
  1612. exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
  1613. if (!vm_need_ept())
  1614. exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
  1615. vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
  1616. }
  1617. vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, !!bypass_guest_pf);
  1618. vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, !!bypass_guest_pf);
  1619. vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
  1620. vmcs_writel(HOST_CR0, read_cr0()); /* 22.2.3 */
  1621. vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
  1622. vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
  1623. vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
  1624. vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1625. vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1626. vmcs_write16(HOST_FS_SELECTOR, read_fs()); /* 22.2.4 */
  1627. vmcs_write16(HOST_GS_SELECTOR, read_gs()); /* 22.2.4 */
  1628. vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1629. #ifdef CONFIG_X86_64
  1630. rdmsrl(MSR_FS_BASE, a);
  1631. vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
  1632. rdmsrl(MSR_GS_BASE, a);
  1633. vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
  1634. #else
  1635. vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
  1636. vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
  1637. #endif
  1638. vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
  1639. get_idt(&dt);
  1640. vmcs_writel(HOST_IDTR_BASE, dt.base); /* 22.2.4 */
  1641. asm("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return));
  1642. vmcs_writel(HOST_RIP, kvm_vmx_return); /* 22.2.5 */
  1643. vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
  1644. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
  1645. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
  1646. rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
  1647. vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
  1648. rdmsrl(MSR_IA32_SYSENTER_ESP, a);
  1649. vmcs_writel(HOST_IA32_SYSENTER_ESP, a); /* 22.2.3 */
  1650. rdmsrl(MSR_IA32_SYSENTER_EIP, a);
  1651. vmcs_writel(HOST_IA32_SYSENTER_EIP, a); /* 22.2.3 */
  1652. for (i = 0; i < NR_VMX_MSR; ++i) {
  1653. u32 index = vmx_msr_index[i];
  1654. u32 data_low, data_high;
  1655. u64 data;
  1656. int j = vmx->nmsrs;
  1657. if (rdmsr_safe(index, &data_low, &data_high) < 0)
  1658. continue;
  1659. if (wrmsr_safe(index, data_low, data_high) < 0)
  1660. continue;
  1661. data = data_low | ((u64)data_high << 32);
  1662. vmx->host_msrs[j].index = index;
  1663. vmx->host_msrs[j].reserved = 0;
  1664. vmx->host_msrs[j].data = data;
  1665. vmx->guest_msrs[j] = vmx->host_msrs[j];
  1666. ++vmx->nmsrs;
  1667. }
  1668. vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
  1669. /* 22.2.1, 20.8.1 */
  1670. vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
  1671. vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
  1672. vmcs_writel(CR4_GUEST_HOST_MASK, KVM_GUEST_CR4_MASK);
  1673. return 0;
  1674. }
  1675. static int init_rmode(struct kvm *kvm)
  1676. {
  1677. if (!init_rmode_tss(kvm))
  1678. return 0;
  1679. if (!init_rmode_identity_map(kvm))
  1680. return 0;
  1681. return 1;
  1682. }
  1683. static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
  1684. {
  1685. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1686. u64 msr;
  1687. int ret;
  1688. down_read(&vcpu->kvm->slots_lock);
  1689. if (!init_rmode(vmx->vcpu.kvm)) {
  1690. ret = -ENOMEM;
  1691. goto out;
  1692. }
  1693. vmx->vcpu.arch.rmode.active = 0;
  1694. vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
  1695. kvm_set_cr8(&vmx->vcpu, 0);
  1696. msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
  1697. if (vmx->vcpu.vcpu_id == 0)
  1698. msr |= MSR_IA32_APICBASE_BSP;
  1699. kvm_set_apic_base(&vmx->vcpu, msr);
  1700. fx_init(&vmx->vcpu);
  1701. /*
  1702. * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
  1703. * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
  1704. */
  1705. if (vmx->vcpu.vcpu_id == 0) {
  1706. vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
  1707. vmcs_writel(GUEST_CS_BASE, 0x000f0000);
  1708. } else {
  1709. vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
  1710. vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
  1711. }
  1712. vmcs_write32(GUEST_CS_LIMIT, 0xffff);
  1713. vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
  1714. seg_setup(VCPU_SREG_DS);
  1715. seg_setup(VCPU_SREG_ES);
  1716. seg_setup(VCPU_SREG_FS);
  1717. seg_setup(VCPU_SREG_GS);
  1718. seg_setup(VCPU_SREG_SS);
  1719. vmcs_write16(GUEST_TR_SELECTOR, 0);
  1720. vmcs_writel(GUEST_TR_BASE, 0);
  1721. vmcs_write32(GUEST_TR_LIMIT, 0xffff);
  1722. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  1723. vmcs_write16(GUEST_LDTR_SELECTOR, 0);
  1724. vmcs_writel(GUEST_LDTR_BASE, 0);
  1725. vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
  1726. vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
  1727. vmcs_write32(GUEST_SYSENTER_CS, 0);
  1728. vmcs_writel(GUEST_SYSENTER_ESP, 0);
  1729. vmcs_writel(GUEST_SYSENTER_EIP, 0);
  1730. vmcs_writel(GUEST_RFLAGS, 0x02);
  1731. if (vmx->vcpu.vcpu_id == 0)
  1732. vmcs_writel(GUEST_RIP, 0xfff0);
  1733. else
  1734. vmcs_writel(GUEST_RIP, 0);
  1735. vmcs_writel(GUEST_RSP, 0);
  1736. /* todo: dr0 = dr1 = dr2 = dr3 = 0; dr6 = 0xffff0ff0 */
  1737. vmcs_writel(GUEST_DR7, 0x400);
  1738. vmcs_writel(GUEST_GDTR_BASE, 0);
  1739. vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
  1740. vmcs_writel(GUEST_IDTR_BASE, 0);
  1741. vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
  1742. vmcs_write32(GUEST_ACTIVITY_STATE, 0);
  1743. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
  1744. vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
  1745. guest_write_tsc(0);
  1746. /* Special registers */
  1747. vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
  1748. setup_msrs(vmx);
  1749. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
  1750. if (cpu_has_vmx_tpr_shadow()) {
  1751. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
  1752. if (vm_need_tpr_shadow(vmx->vcpu.kvm))
  1753. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
  1754. page_to_phys(vmx->vcpu.arch.apic->regs_page));
  1755. vmcs_write32(TPR_THRESHOLD, 0);
  1756. }
  1757. if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
  1758. vmcs_write64(APIC_ACCESS_ADDR,
  1759. page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
  1760. if (vmx->vpid != 0)
  1761. vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
  1762. vmx->vcpu.arch.cr0 = 0x60000010;
  1763. vmx_set_cr0(&vmx->vcpu, vmx->vcpu.arch.cr0); /* enter rmode */
  1764. vmx_set_cr4(&vmx->vcpu, 0);
  1765. vmx_set_efer(&vmx->vcpu, 0);
  1766. vmx_fpu_activate(&vmx->vcpu);
  1767. update_exception_bitmap(&vmx->vcpu);
  1768. vpid_sync_vcpu_all(vmx);
  1769. ret = 0;
  1770. out:
  1771. up_read(&vcpu->kvm->slots_lock);
  1772. return ret;
  1773. }
  1774. static void vmx_inject_irq(struct kvm_vcpu *vcpu, int irq)
  1775. {
  1776. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1777. KVMTRACE_1D(INJ_VIRQ, vcpu, (u32)irq, handler);
  1778. if (vcpu->arch.rmode.active) {
  1779. vmx->rmode.irq.pending = true;
  1780. vmx->rmode.irq.vector = irq;
  1781. vmx->rmode.irq.rip = vmcs_readl(GUEST_RIP);
  1782. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  1783. irq | INTR_TYPE_SOFT_INTR | INTR_INFO_VALID_MASK);
  1784. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
  1785. vmcs_writel(GUEST_RIP, vmx->rmode.irq.rip - 1);
  1786. return;
  1787. }
  1788. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  1789. irq | INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  1790. }
  1791. static void kvm_do_inject_irq(struct kvm_vcpu *vcpu)
  1792. {
  1793. int word_index = __ffs(vcpu->arch.irq_summary);
  1794. int bit_index = __ffs(vcpu->arch.irq_pending[word_index]);
  1795. int irq = word_index * BITS_PER_LONG + bit_index;
  1796. clear_bit(bit_index, &vcpu->arch.irq_pending[word_index]);
  1797. if (!vcpu->arch.irq_pending[word_index])
  1798. clear_bit(word_index, &vcpu->arch.irq_summary);
  1799. vmx_inject_irq(vcpu, irq);
  1800. }
  1801. static void do_interrupt_requests(struct kvm_vcpu *vcpu,
  1802. struct kvm_run *kvm_run)
  1803. {
  1804. u32 cpu_based_vm_exec_control;
  1805. vcpu->arch.interrupt_window_open =
  1806. ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
  1807. (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0);
  1808. if (vcpu->arch.interrupt_window_open &&
  1809. vcpu->arch.irq_summary &&
  1810. !(vmcs_read32(VM_ENTRY_INTR_INFO_FIELD) & INTR_INFO_VALID_MASK))
  1811. /*
  1812. * If interrupts enabled, and not blocked by sti or mov ss. Good.
  1813. */
  1814. kvm_do_inject_irq(vcpu);
  1815. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  1816. if (!vcpu->arch.interrupt_window_open &&
  1817. (vcpu->arch.irq_summary || kvm_run->request_interrupt_window))
  1818. /*
  1819. * Interrupts blocked. Wait for unblock.
  1820. */
  1821. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
  1822. else
  1823. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
  1824. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  1825. }
  1826. static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
  1827. {
  1828. int ret;
  1829. struct kvm_userspace_memory_region tss_mem = {
  1830. .slot = 8,
  1831. .guest_phys_addr = addr,
  1832. .memory_size = PAGE_SIZE * 3,
  1833. .flags = 0,
  1834. };
  1835. ret = kvm_set_memory_region(kvm, &tss_mem, 0);
  1836. if (ret)
  1837. return ret;
  1838. kvm->arch.tss_addr = addr;
  1839. return 0;
  1840. }
  1841. static void kvm_guest_debug_pre(struct kvm_vcpu *vcpu)
  1842. {
  1843. struct kvm_guest_debug *dbg = &vcpu->guest_debug;
  1844. set_debugreg(dbg->bp[0], 0);
  1845. set_debugreg(dbg->bp[1], 1);
  1846. set_debugreg(dbg->bp[2], 2);
  1847. set_debugreg(dbg->bp[3], 3);
  1848. if (dbg->singlestep) {
  1849. unsigned long flags;
  1850. flags = vmcs_readl(GUEST_RFLAGS);
  1851. flags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
  1852. vmcs_writel(GUEST_RFLAGS, flags);
  1853. }
  1854. }
  1855. static int handle_rmode_exception(struct kvm_vcpu *vcpu,
  1856. int vec, u32 err_code)
  1857. {
  1858. if (!vcpu->arch.rmode.active)
  1859. return 0;
  1860. /*
  1861. * Instruction with address size override prefix opcode 0x67
  1862. * Cause the #SS fault with 0 error code in VM86 mode.
  1863. */
  1864. if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
  1865. if (emulate_instruction(vcpu, NULL, 0, 0, 0) == EMULATE_DONE)
  1866. return 1;
  1867. return 0;
  1868. }
  1869. static int handle_exception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1870. {
  1871. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1872. u32 intr_info, error_code;
  1873. unsigned long cr2, rip;
  1874. u32 vect_info;
  1875. enum emulation_result er;
  1876. vect_info = vmx->idt_vectoring_info;
  1877. intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  1878. if ((vect_info & VECTORING_INFO_VALID_MASK) &&
  1879. !is_page_fault(intr_info))
  1880. printk(KERN_ERR "%s: unexpected, vectoring info 0x%x "
  1881. "intr info 0x%x\n", __func__, vect_info, intr_info);
  1882. if (!irqchip_in_kernel(vcpu->kvm) && is_external_interrupt(vect_info)) {
  1883. int irq = vect_info & VECTORING_INFO_VECTOR_MASK;
  1884. set_bit(irq, vcpu->arch.irq_pending);
  1885. set_bit(irq / BITS_PER_LONG, &vcpu->arch.irq_summary);
  1886. }
  1887. if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200) /* nmi */
  1888. return 1; /* already handled by vmx_vcpu_run() */
  1889. if (is_no_device(intr_info)) {
  1890. vmx_fpu_activate(vcpu);
  1891. return 1;
  1892. }
  1893. if (is_invalid_opcode(intr_info)) {
  1894. er = emulate_instruction(vcpu, kvm_run, 0, 0, EMULTYPE_TRAP_UD);
  1895. if (er != EMULATE_DONE)
  1896. kvm_queue_exception(vcpu, UD_VECTOR);
  1897. return 1;
  1898. }
  1899. error_code = 0;
  1900. rip = vmcs_readl(GUEST_RIP);
  1901. if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
  1902. error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
  1903. if (is_page_fault(intr_info)) {
  1904. /* EPT won't cause page fault directly */
  1905. if (vm_need_ept())
  1906. BUG();
  1907. cr2 = vmcs_readl(EXIT_QUALIFICATION);
  1908. KVMTRACE_3D(PAGE_FAULT, vcpu, error_code, (u32)cr2,
  1909. (u32)((u64)cr2 >> 32), handler);
  1910. return kvm_mmu_page_fault(vcpu, cr2, error_code);
  1911. }
  1912. if (vcpu->arch.rmode.active &&
  1913. handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
  1914. error_code)) {
  1915. if (vcpu->arch.halt_request) {
  1916. vcpu->arch.halt_request = 0;
  1917. return kvm_emulate_halt(vcpu);
  1918. }
  1919. return 1;
  1920. }
  1921. if ((intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK)) ==
  1922. (INTR_TYPE_EXCEPTION | 1)) {
  1923. kvm_run->exit_reason = KVM_EXIT_DEBUG;
  1924. return 0;
  1925. }
  1926. kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
  1927. kvm_run->ex.exception = intr_info & INTR_INFO_VECTOR_MASK;
  1928. kvm_run->ex.error_code = error_code;
  1929. return 0;
  1930. }
  1931. static int handle_external_interrupt(struct kvm_vcpu *vcpu,
  1932. struct kvm_run *kvm_run)
  1933. {
  1934. ++vcpu->stat.irq_exits;
  1935. KVMTRACE_1D(INTR, vcpu, vmcs_read32(VM_EXIT_INTR_INFO), handler);
  1936. return 1;
  1937. }
  1938. static int handle_triple_fault(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1939. {
  1940. kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
  1941. return 0;
  1942. }
  1943. static int handle_io(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1944. {
  1945. unsigned long exit_qualification;
  1946. int size, down, in, string, rep;
  1947. unsigned port;
  1948. ++vcpu->stat.io_exits;
  1949. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  1950. string = (exit_qualification & 16) != 0;
  1951. if (string) {
  1952. if (emulate_instruction(vcpu,
  1953. kvm_run, 0, 0, 0) == EMULATE_DO_MMIO)
  1954. return 0;
  1955. return 1;
  1956. }
  1957. size = (exit_qualification & 7) + 1;
  1958. in = (exit_qualification & 8) != 0;
  1959. down = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_DF) != 0;
  1960. rep = (exit_qualification & 32) != 0;
  1961. port = exit_qualification >> 16;
  1962. return kvm_emulate_pio(vcpu, kvm_run, in, size, port);
  1963. }
  1964. static void
  1965. vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
  1966. {
  1967. /*
  1968. * Patch in the VMCALL instruction:
  1969. */
  1970. hypercall[0] = 0x0f;
  1971. hypercall[1] = 0x01;
  1972. hypercall[2] = 0xc1;
  1973. }
  1974. static int handle_cr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1975. {
  1976. unsigned long exit_qualification;
  1977. int cr;
  1978. int reg;
  1979. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  1980. cr = exit_qualification & 15;
  1981. reg = (exit_qualification >> 8) & 15;
  1982. switch ((exit_qualification >> 4) & 3) {
  1983. case 0: /* mov to cr */
  1984. KVMTRACE_3D(CR_WRITE, vcpu, (u32)cr, (u32)vcpu->arch.regs[reg],
  1985. (u32)((u64)vcpu->arch.regs[reg] >> 32), handler);
  1986. switch (cr) {
  1987. case 0:
  1988. vcpu_load_rsp_rip(vcpu);
  1989. kvm_set_cr0(vcpu, vcpu->arch.regs[reg]);
  1990. skip_emulated_instruction(vcpu);
  1991. return 1;
  1992. case 3:
  1993. vcpu_load_rsp_rip(vcpu);
  1994. kvm_set_cr3(vcpu, vcpu->arch.regs[reg]);
  1995. skip_emulated_instruction(vcpu);
  1996. return 1;
  1997. case 4:
  1998. vcpu_load_rsp_rip(vcpu);
  1999. kvm_set_cr4(vcpu, vcpu->arch.regs[reg]);
  2000. skip_emulated_instruction(vcpu);
  2001. return 1;
  2002. case 8:
  2003. vcpu_load_rsp_rip(vcpu);
  2004. kvm_set_cr8(vcpu, vcpu->arch.regs[reg]);
  2005. skip_emulated_instruction(vcpu);
  2006. if (irqchip_in_kernel(vcpu->kvm))
  2007. return 1;
  2008. kvm_run->exit_reason = KVM_EXIT_SET_TPR;
  2009. return 0;
  2010. };
  2011. break;
  2012. case 2: /* clts */
  2013. vcpu_load_rsp_rip(vcpu);
  2014. vmx_fpu_deactivate(vcpu);
  2015. vcpu->arch.cr0 &= ~X86_CR0_TS;
  2016. vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
  2017. vmx_fpu_activate(vcpu);
  2018. KVMTRACE_0D(CLTS, vcpu, handler);
  2019. skip_emulated_instruction(vcpu);
  2020. return 1;
  2021. case 1: /*mov from cr*/
  2022. switch (cr) {
  2023. case 3:
  2024. vcpu_load_rsp_rip(vcpu);
  2025. vcpu->arch.regs[reg] = vcpu->arch.cr3;
  2026. vcpu_put_rsp_rip(vcpu);
  2027. KVMTRACE_3D(CR_READ, vcpu, (u32)cr,
  2028. (u32)vcpu->arch.regs[reg],
  2029. (u32)((u64)vcpu->arch.regs[reg] >> 32),
  2030. handler);
  2031. skip_emulated_instruction(vcpu);
  2032. return 1;
  2033. case 8:
  2034. vcpu_load_rsp_rip(vcpu);
  2035. vcpu->arch.regs[reg] = kvm_get_cr8(vcpu);
  2036. vcpu_put_rsp_rip(vcpu);
  2037. KVMTRACE_2D(CR_READ, vcpu, (u32)cr,
  2038. (u32)vcpu->arch.regs[reg], handler);
  2039. skip_emulated_instruction(vcpu);
  2040. return 1;
  2041. }
  2042. break;
  2043. case 3: /* lmsw */
  2044. kvm_lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
  2045. skip_emulated_instruction(vcpu);
  2046. return 1;
  2047. default:
  2048. break;
  2049. }
  2050. kvm_run->exit_reason = 0;
  2051. pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
  2052. (int)(exit_qualification >> 4) & 3, cr);
  2053. return 0;
  2054. }
  2055. static int handle_dr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2056. {
  2057. unsigned long exit_qualification;
  2058. unsigned long val;
  2059. int dr, reg;
  2060. /*
  2061. * FIXME: this code assumes the host is debugging the guest.
  2062. * need to deal with guest debugging itself too.
  2063. */
  2064. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2065. dr = exit_qualification & 7;
  2066. reg = (exit_qualification >> 8) & 15;
  2067. vcpu_load_rsp_rip(vcpu);
  2068. if (exit_qualification & 16) {
  2069. /* mov from dr */
  2070. switch (dr) {
  2071. case 6:
  2072. val = 0xffff0ff0;
  2073. break;
  2074. case 7:
  2075. val = 0x400;
  2076. break;
  2077. default:
  2078. val = 0;
  2079. }
  2080. vcpu->arch.regs[reg] = val;
  2081. KVMTRACE_2D(DR_READ, vcpu, (u32)dr, (u32)val, handler);
  2082. } else {
  2083. /* mov to dr */
  2084. }
  2085. vcpu_put_rsp_rip(vcpu);
  2086. skip_emulated_instruction(vcpu);
  2087. return 1;
  2088. }
  2089. static int handle_cpuid(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2090. {
  2091. kvm_emulate_cpuid(vcpu);
  2092. return 1;
  2093. }
  2094. static int handle_rdmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2095. {
  2096. u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
  2097. u64 data;
  2098. if (vmx_get_msr(vcpu, ecx, &data)) {
  2099. kvm_inject_gp(vcpu, 0);
  2100. return 1;
  2101. }
  2102. KVMTRACE_3D(MSR_READ, vcpu, ecx, (u32)data, (u32)(data >> 32),
  2103. handler);
  2104. /* FIXME: handling of bits 32:63 of rax, rdx */
  2105. vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
  2106. vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
  2107. skip_emulated_instruction(vcpu);
  2108. return 1;
  2109. }
  2110. static int handle_wrmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2111. {
  2112. u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
  2113. u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
  2114. | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
  2115. KVMTRACE_3D(MSR_WRITE, vcpu, ecx, (u32)data, (u32)(data >> 32),
  2116. handler);
  2117. if (vmx_set_msr(vcpu, ecx, data) != 0) {
  2118. kvm_inject_gp(vcpu, 0);
  2119. return 1;
  2120. }
  2121. skip_emulated_instruction(vcpu);
  2122. return 1;
  2123. }
  2124. static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu,
  2125. struct kvm_run *kvm_run)
  2126. {
  2127. return 1;
  2128. }
  2129. static int handle_interrupt_window(struct kvm_vcpu *vcpu,
  2130. struct kvm_run *kvm_run)
  2131. {
  2132. u32 cpu_based_vm_exec_control;
  2133. /* clear pending irq */
  2134. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2135. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
  2136. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2137. KVMTRACE_0D(PEND_INTR, vcpu, handler);
  2138. /*
  2139. * If the user space waits to inject interrupts, exit as soon as
  2140. * possible
  2141. */
  2142. if (kvm_run->request_interrupt_window &&
  2143. !vcpu->arch.irq_summary) {
  2144. kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
  2145. ++vcpu->stat.irq_window_exits;
  2146. return 0;
  2147. }
  2148. return 1;
  2149. }
  2150. static int handle_halt(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2151. {
  2152. skip_emulated_instruction(vcpu);
  2153. return kvm_emulate_halt(vcpu);
  2154. }
  2155. static int handle_vmcall(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2156. {
  2157. skip_emulated_instruction(vcpu);
  2158. kvm_emulate_hypercall(vcpu);
  2159. return 1;
  2160. }
  2161. static int handle_wbinvd(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2162. {
  2163. skip_emulated_instruction(vcpu);
  2164. /* TODO: Add support for VT-d/pass-through device */
  2165. return 1;
  2166. }
  2167. static int handle_apic_access(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2168. {
  2169. u64 exit_qualification;
  2170. enum emulation_result er;
  2171. unsigned long offset;
  2172. exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
  2173. offset = exit_qualification & 0xffful;
  2174. KVMTRACE_1D(APIC_ACCESS, vcpu, (u32)offset, handler);
  2175. er = emulate_instruction(vcpu, kvm_run, 0, 0, 0);
  2176. if (er != EMULATE_DONE) {
  2177. printk(KERN_ERR
  2178. "Fail to handle apic access vmexit! Offset is 0x%lx\n",
  2179. offset);
  2180. return -ENOTSUPP;
  2181. }
  2182. return 1;
  2183. }
  2184. static int handle_task_switch(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2185. {
  2186. unsigned long exit_qualification;
  2187. u16 tss_selector;
  2188. int reason;
  2189. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  2190. reason = (u32)exit_qualification >> 30;
  2191. tss_selector = exit_qualification;
  2192. return kvm_task_switch(vcpu, tss_selector, reason);
  2193. }
  2194. static int handle_ept_violation(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2195. {
  2196. u64 exit_qualification;
  2197. enum emulation_result er;
  2198. gpa_t gpa;
  2199. unsigned long hva;
  2200. int gla_validity;
  2201. int r;
  2202. exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
  2203. if (exit_qualification & (1 << 6)) {
  2204. printk(KERN_ERR "EPT: GPA exceeds GAW!\n");
  2205. return -ENOTSUPP;
  2206. }
  2207. gla_validity = (exit_qualification >> 7) & 0x3;
  2208. if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
  2209. printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
  2210. printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
  2211. (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
  2212. (long unsigned int)vmcs_read64(GUEST_LINEAR_ADDRESS));
  2213. printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
  2214. (long unsigned int)exit_qualification);
  2215. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  2216. kvm_run->hw.hardware_exit_reason = 0;
  2217. return -ENOTSUPP;
  2218. }
  2219. gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
  2220. hva = gfn_to_hva(vcpu->kvm, gpa >> PAGE_SHIFT);
  2221. if (!kvm_is_error_hva(hva)) {
  2222. r = kvm_mmu_page_fault(vcpu, gpa & PAGE_MASK, 0);
  2223. if (r < 0) {
  2224. printk(KERN_ERR "EPT: Not enough memory!\n");
  2225. return -ENOMEM;
  2226. }
  2227. return 1;
  2228. } else {
  2229. /* must be MMIO */
  2230. er = emulate_instruction(vcpu, kvm_run, 0, 0, 0);
  2231. if (er == EMULATE_FAIL) {
  2232. printk(KERN_ERR
  2233. "EPT: Fail to handle EPT violation vmexit!er is %d\n",
  2234. er);
  2235. printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
  2236. (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
  2237. (long unsigned int)vmcs_read64(GUEST_LINEAR_ADDRESS));
  2238. printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
  2239. (long unsigned int)exit_qualification);
  2240. return -ENOTSUPP;
  2241. } else if (er == EMULATE_DO_MMIO)
  2242. return 0;
  2243. }
  2244. return 1;
  2245. }
  2246. /*
  2247. * The exit handlers return 1 if the exit was handled fully and guest execution
  2248. * may resume. Otherwise they set the kvm_run parameter to indicate what needs
  2249. * to be done to userspace and return 0.
  2250. */
  2251. static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu,
  2252. struct kvm_run *kvm_run) = {
  2253. [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
  2254. [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
  2255. [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
  2256. [EXIT_REASON_IO_INSTRUCTION] = handle_io,
  2257. [EXIT_REASON_CR_ACCESS] = handle_cr,
  2258. [EXIT_REASON_DR_ACCESS] = handle_dr,
  2259. [EXIT_REASON_CPUID] = handle_cpuid,
  2260. [EXIT_REASON_MSR_READ] = handle_rdmsr,
  2261. [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
  2262. [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
  2263. [EXIT_REASON_HLT] = handle_halt,
  2264. [EXIT_REASON_VMCALL] = handle_vmcall,
  2265. [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
  2266. [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
  2267. [EXIT_REASON_WBINVD] = handle_wbinvd,
  2268. [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
  2269. [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
  2270. };
  2271. static const int kvm_vmx_max_exit_handlers =
  2272. ARRAY_SIZE(kvm_vmx_exit_handlers);
  2273. /*
  2274. * The guest has exited. See if we can fix it or if we need userspace
  2275. * assistance.
  2276. */
  2277. static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
  2278. {
  2279. u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
  2280. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2281. u32 vectoring_info = vmx->idt_vectoring_info;
  2282. KVMTRACE_3D(VMEXIT, vcpu, exit_reason, (u32)vmcs_readl(GUEST_RIP),
  2283. (u32)((u64)vmcs_readl(GUEST_RIP) >> 32), entryexit);
  2284. /* Access CR3 don't cause VMExit in paging mode, so we need
  2285. * to sync with guest real CR3. */
  2286. if (vm_need_ept() && is_paging(vcpu)) {
  2287. vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
  2288. ept_load_pdptrs(vcpu);
  2289. }
  2290. if (unlikely(vmx->fail)) {
  2291. kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
  2292. kvm_run->fail_entry.hardware_entry_failure_reason
  2293. = vmcs_read32(VM_INSTRUCTION_ERROR);
  2294. return 0;
  2295. }
  2296. if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
  2297. (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
  2298. exit_reason != EXIT_REASON_EPT_VIOLATION))
  2299. printk(KERN_WARNING "%s: unexpected, valid vectoring info and "
  2300. "exit reason is 0x%x\n", __func__, exit_reason);
  2301. if (exit_reason < kvm_vmx_max_exit_handlers
  2302. && kvm_vmx_exit_handlers[exit_reason])
  2303. return kvm_vmx_exit_handlers[exit_reason](vcpu, kvm_run);
  2304. else {
  2305. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  2306. kvm_run->hw.hardware_exit_reason = exit_reason;
  2307. }
  2308. return 0;
  2309. }
  2310. static void update_tpr_threshold(struct kvm_vcpu *vcpu)
  2311. {
  2312. int max_irr, tpr;
  2313. if (!vm_need_tpr_shadow(vcpu->kvm))
  2314. return;
  2315. if (!kvm_lapic_enabled(vcpu) ||
  2316. ((max_irr = kvm_lapic_find_highest_irr(vcpu)) == -1)) {
  2317. vmcs_write32(TPR_THRESHOLD, 0);
  2318. return;
  2319. }
  2320. tpr = (kvm_lapic_get_cr8(vcpu) & 0x0f) << 4;
  2321. vmcs_write32(TPR_THRESHOLD, (max_irr > tpr) ? tpr >> 4 : max_irr >> 4);
  2322. }
  2323. static void enable_irq_window(struct kvm_vcpu *vcpu)
  2324. {
  2325. u32 cpu_based_vm_exec_control;
  2326. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  2327. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
  2328. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  2329. }
  2330. static void vmx_intr_assist(struct kvm_vcpu *vcpu)
  2331. {
  2332. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2333. u32 idtv_info_field, intr_info_field;
  2334. int has_ext_irq, interrupt_window_open;
  2335. int vector;
  2336. update_tpr_threshold(vcpu);
  2337. has_ext_irq = kvm_cpu_has_interrupt(vcpu);
  2338. intr_info_field = vmcs_read32(VM_ENTRY_INTR_INFO_FIELD);
  2339. idtv_info_field = vmx->idt_vectoring_info;
  2340. if (intr_info_field & INTR_INFO_VALID_MASK) {
  2341. if (idtv_info_field & INTR_INFO_VALID_MASK) {
  2342. /* TODO: fault when IDT_Vectoring */
  2343. if (printk_ratelimit())
  2344. printk(KERN_ERR "Fault when IDT_Vectoring\n");
  2345. }
  2346. if (has_ext_irq)
  2347. enable_irq_window(vcpu);
  2348. return;
  2349. }
  2350. if (unlikely(idtv_info_field & INTR_INFO_VALID_MASK)) {
  2351. if ((idtv_info_field & VECTORING_INFO_TYPE_MASK)
  2352. == INTR_TYPE_EXT_INTR
  2353. && vcpu->arch.rmode.active) {
  2354. u8 vect = idtv_info_field & VECTORING_INFO_VECTOR_MASK;
  2355. vmx_inject_irq(vcpu, vect);
  2356. if (unlikely(has_ext_irq))
  2357. enable_irq_window(vcpu);
  2358. return;
  2359. }
  2360. KVMTRACE_1D(REDELIVER_EVT, vcpu, idtv_info_field, handler);
  2361. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, idtv_info_field);
  2362. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
  2363. vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
  2364. if (unlikely(idtv_info_field & INTR_INFO_DELIVER_CODE_MASK))
  2365. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
  2366. vmcs_read32(IDT_VECTORING_ERROR_CODE));
  2367. if (unlikely(has_ext_irq))
  2368. enable_irq_window(vcpu);
  2369. return;
  2370. }
  2371. if (!has_ext_irq)
  2372. return;
  2373. interrupt_window_open =
  2374. ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
  2375. (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0);
  2376. if (interrupt_window_open) {
  2377. vector = kvm_cpu_get_interrupt(vcpu);
  2378. vmx_inject_irq(vcpu, vector);
  2379. kvm_timer_intr_post(vcpu, vector);
  2380. } else
  2381. enable_irq_window(vcpu);
  2382. }
  2383. /*
  2384. * Failure to inject an interrupt should give us the information
  2385. * in IDT_VECTORING_INFO_FIELD. However, if the failure occurs
  2386. * when fetching the interrupt redirection bitmap in the real-mode
  2387. * tss, this doesn't happen. So we do it ourselves.
  2388. */
  2389. static void fixup_rmode_irq(struct vcpu_vmx *vmx)
  2390. {
  2391. vmx->rmode.irq.pending = 0;
  2392. if (vmcs_readl(GUEST_RIP) + 1 != vmx->rmode.irq.rip)
  2393. return;
  2394. vmcs_writel(GUEST_RIP, vmx->rmode.irq.rip);
  2395. if (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) {
  2396. vmx->idt_vectoring_info &= ~VECTORING_INFO_TYPE_MASK;
  2397. vmx->idt_vectoring_info |= INTR_TYPE_EXT_INTR;
  2398. return;
  2399. }
  2400. vmx->idt_vectoring_info =
  2401. VECTORING_INFO_VALID_MASK
  2402. | INTR_TYPE_EXT_INTR
  2403. | vmx->rmode.irq.vector;
  2404. }
  2405. static void vmx_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2406. {
  2407. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2408. u32 intr_info;
  2409. /*
  2410. * Loading guest fpu may have cleared host cr0.ts
  2411. */
  2412. vmcs_writel(HOST_CR0, read_cr0());
  2413. asm(
  2414. /* Store host registers */
  2415. #ifdef CONFIG_X86_64
  2416. "push %%rdx; push %%rbp;"
  2417. "push %%rcx \n\t"
  2418. #else
  2419. "push %%edx; push %%ebp;"
  2420. "push %%ecx \n\t"
  2421. #endif
  2422. ASM_VMX_VMWRITE_RSP_RDX "\n\t"
  2423. /* Check if vmlaunch of vmresume is needed */
  2424. "cmpl $0, %c[launched](%0) \n\t"
  2425. /* Load guest registers. Don't clobber flags. */
  2426. #ifdef CONFIG_X86_64
  2427. "mov %c[cr2](%0), %%rax \n\t"
  2428. "mov %%rax, %%cr2 \n\t"
  2429. "mov %c[rax](%0), %%rax \n\t"
  2430. "mov %c[rbx](%0), %%rbx \n\t"
  2431. "mov %c[rdx](%0), %%rdx \n\t"
  2432. "mov %c[rsi](%0), %%rsi \n\t"
  2433. "mov %c[rdi](%0), %%rdi \n\t"
  2434. "mov %c[rbp](%0), %%rbp \n\t"
  2435. "mov %c[r8](%0), %%r8 \n\t"
  2436. "mov %c[r9](%0), %%r9 \n\t"
  2437. "mov %c[r10](%0), %%r10 \n\t"
  2438. "mov %c[r11](%0), %%r11 \n\t"
  2439. "mov %c[r12](%0), %%r12 \n\t"
  2440. "mov %c[r13](%0), %%r13 \n\t"
  2441. "mov %c[r14](%0), %%r14 \n\t"
  2442. "mov %c[r15](%0), %%r15 \n\t"
  2443. "mov %c[rcx](%0), %%rcx \n\t" /* kills %0 (rcx) */
  2444. #else
  2445. "mov %c[cr2](%0), %%eax \n\t"
  2446. "mov %%eax, %%cr2 \n\t"
  2447. "mov %c[rax](%0), %%eax \n\t"
  2448. "mov %c[rbx](%0), %%ebx \n\t"
  2449. "mov %c[rdx](%0), %%edx \n\t"
  2450. "mov %c[rsi](%0), %%esi \n\t"
  2451. "mov %c[rdi](%0), %%edi \n\t"
  2452. "mov %c[rbp](%0), %%ebp \n\t"
  2453. "mov %c[rcx](%0), %%ecx \n\t" /* kills %0 (ecx) */
  2454. #endif
  2455. /* Enter guest mode */
  2456. "jne .Llaunched \n\t"
  2457. ASM_VMX_VMLAUNCH "\n\t"
  2458. "jmp .Lkvm_vmx_return \n\t"
  2459. ".Llaunched: " ASM_VMX_VMRESUME "\n\t"
  2460. ".Lkvm_vmx_return: "
  2461. /* Save guest registers, load host registers, keep flags */
  2462. #ifdef CONFIG_X86_64
  2463. "xchg %0, (%%rsp) \n\t"
  2464. "mov %%rax, %c[rax](%0) \n\t"
  2465. "mov %%rbx, %c[rbx](%0) \n\t"
  2466. "pushq (%%rsp); popq %c[rcx](%0) \n\t"
  2467. "mov %%rdx, %c[rdx](%0) \n\t"
  2468. "mov %%rsi, %c[rsi](%0) \n\t"
  2469. "mov %%rdi, %c[rdi](%0) \n\t"
  2470. "mov %%rbp, %c[rbp](%0) \n\t"
  2471. "mov %%r8, %c[r8](%0) \n\t"
  2472. "mov %%r9, %c[r9](%0) \n\t"
  2473. "mov %%r10, %c[r10](%0) \n\t"
  2474. "mov %%r11, %c[r11](%0) \n\t"
  2475. "mov %%r12, %c[r12](%0) \n\t"
  2476. "mov %%r13, %c[r13](%0) \n\t"
  2477. "mov %%r14, %c[r14](%0) \n\t"
  2478. "mov %%r15, %c[r15](%0) \n\t"
  2479. "mov %%cr2, %%rax \n\t"
  2480. "mov %%rax, %c[cr2](%0) \n\t"
  2481. "pop %%rbp; pop %%rbp; pop %%rdx \n\t"
  2482. #else
  2483. "xchg %0, (%%esp) \n\t"
  2484. "mov %%eax, %c[rax](%0) \n\t"
  2485. "mov %%ebx, %c[rbx](%0) \n\t"
  2486. "pushl (%%esp); popl %c[rcx](%0) \n\t"
  2487. "mov %%edx, %c[rdx](%0) \n\t"
  2488. "mov %%esi, %c[rsi](%0) \n\t"
  2489. "mov %%edi, %c[rdi](%0) \n\t"
  2490. "mov %%ebp, %c[rbp](%0) \n\t"
  2491. "mov %%cr2, %%eax \n\t"
  2492. "mov %%eax, %c[cr2](%0) \n\t"
  2493. "pop %%ebp; pop %%ebp; pop %%edx \n\t"
  2494. #endif
  2495. "setbe %c[fail](%0) \n\t"
  2496. : : "c"(vmx), "d"((unsigned long)HOST_RSP),
  2497. [launched]"i"(offsetof(struct vcpu_vmx, launched)),
  2498. [fail]"i"(offsetof(struct vcpu_vmx, fail)),
  2499. [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
  2500. [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
  2501. [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
  2502. [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
  2503. [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
  2504. [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
  2505. [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
  2506. #ifdef CONFIG_X86_64
  2507. [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
  2508. [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
  2509. [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
  2510. [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
  2511. [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
  2512. [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
  2513. [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
  2514. [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
  2515. #endif
  2516. [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2))
  2517. : "cc", "memory"
  2518. #ifdef CONFIG_X86_64
  2519. , "rbx", "rdi", "rsi"
  2520. , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
  2521. #else
  2522. , "ebx", "edi", "rsi"
  2523. #endif
  2524. );
  2525. vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  2526. if (vmx->rmode.irq.pending)
  2527. fixup_rmode_irq(vmx);
  2528. vcpu->arch.interrupt_window_open =
  2529. (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0;
  2530. asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
  2531. vmx->launched = 1;
  2532. intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  2533. /* We need to handle NMIs before interrupts are enabled */
  2534. if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200) { /* nmi */
  2535. KVMTRACE_0D(NMI, vcpu, handler);
  2536. asm("int $2");
  2537. }
  2538. }
  2539. static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
  2540. {
  2541. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2542. if (vmx->vmcs) {
  2543. on_each_cpu(__vcpu_clear, vmx, 0, 1);
  2544. free_vmcs(vmx->vmcs);
  2545. vmx->vmcs = NULL;
  2546. }
  2547. }
  2548. static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
  2549. {
  2550. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2551. spin_lock(&vmx_vpid_lock);
  2552. if (vmx->vpid != 0)
  2553. __clear_bit(vmx->vpid, vmx_vpid_bitmap);
  2554. spin_unlock(&vmx_vpid_lock);
  2555. vmx_free_vmcs(vcpu);
  2556. kfree(vmx->host_msrs);
  2557. kfree(vmx->guest_msrs);
  2558. kvm_vcpu_uninit(vcpu);
  2559. kmem_cache_free(kvm_vcpu_cache, vmx);
  2560. }
  2561. static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
  2562. {
  2563. int err;
  2564. struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
  2565. int cpu;
  2566. if (!vmx)
  2567. return ERR_PTR(-ENOMEM);
  2568. allocate_vpid(vmx);
  2569. if (id == 0 && vm_need_ept()) {
  2570. kvm_mmu_set_base_ptes(VMX_EPT_READABLE_MASK |
  2571. VMX_EPT_WRITABLE_MASK |
  2572. VMX_EPT_DEFAULT_MT << VMX_EPT_MT_EPTE_SHIFT);
  2573. kvm_mmu_set_mask_ptes(0ull, VMX_EPT_FAKE_ACCESSED_MASK,
  2574. VMX_EPT_FAKE_DIRTY_MASK, 0ull,
  2575. VMX_EPT_EXECUTABLE_MASK);
  2576. kvm_enable_tdp();
  2577. }
  2578. err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
  2579. if (err)
  2580. goto free_vcpu;
  2581. vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  2582. if (!vmx->guest_msrs) {
  2583. err = -ENOMEM;
  2584. goto uninit_vcpu;
  2585. }
  2586. vmx->host_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  2587. if (!vmx->host_msrs)
  2588. goto free_guest_msrs;
  2589. vmx->vmcs = alloc_vmcs();
  2590. if (!vmx->vmcs)
  2591. goto free_msrs;
  2592. vmcs_clear(vmx->vmcs);
  2593. cpu = get_cpu();
  2594. vmx_vcpu_load(&vmx->vcpu, cpu);
  2595. err = vmx_vcpu_setup(vmx);
  2596. vmx_vcpu_put(&vmx->vcpu);
  2597. put_cpu();
  2598. if (err)
  2599. goto free_vmcs;
  2600. if (vm_need_virtualize_apic_accesses(kvm))
  2601. if (alloc_apic_access_page(kvm) != 0)
  2602. goto free_vmcs;
  2603. if (vm_need_ept())
  2604. if (alloc_identity_pagetable(kvm) != 0)
  2605. goto free_vmcs;
  2606. return &vmx->vcpu;
  2607. free_vmcs:
  2608. free_vmcs(vmx->vmcs);
  2609. free_msrs:
  2610. kfree(vmx->host_msrs);
  2611. free_guest_msrs:
  2612. kfree(vmx->guest_msrs);
  2613. uninit_vcpu:
  2614. kvm_vcpu_uninit(&vmx->vcpu);
  2615. free_vcpu:
  2616. kmem_cache_free(kvm_vcpu_cache, vmx);
  2617. return ERR_PTR(err);
  2618. }
  2619. static void __init vmx_check_processor_compat(void *rtn)
  2620. {
  2621. struct vmcs_config vmcs_conf;
  2622. *(int *)rtn = 0;
  2623. if (setup_vmcs_config(&vmcs_conf) < 0)
  2624. *(int *)rtn = -EIO;
  2625. if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
  2626. printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
  2627. smp_processor_id());
  2628. *(int *)rtn = -EIO;
  2629. }
  2630. }
  2631. static int get_ept_level(void)
  2632. {
  2633. return VMX_EPT_DEFAULT_GAW + 1;
  2634. }
  2635. static struct kvm_x86_ops vmx_x86_ops = {
  2636. .cpu_has_kvm_support = cpu_has_kvm_support,
  2637. .disabled_by_bios = vmx_disabled_by_bios,
  2638. .hardware_setup = hardware_setup,
  2639. .hardware_unsetup = hardware_unsetup,
  2640. .check_processor_compatibility = vmx_check_processor_compat,
  2641. .hardware_enable = hardware_enable,
  2642. .hardware_disable = hardware_disable,
  2643. .cpu_has_accelerated_tpr = cpu_has_vmx_virtualize_apic_accesses,
  2644. .vcpu_create = vmx_create_vcpu,
  2645. .vcpu_free = vmx_free_vcpu,
  2646. .vcpu_reset = vmx_vcpu_reset,
  2647. .prepare_guest_switch = vmx_save_host_state,
  2648. .vcpu_load = vmx_vcpu_load,
  2649. .vcpu_put = vmx_vcpu_put,
  2650. .vcpu_decache = vmx_vcpu_decache,
  2651. .set_guest_debug = set_guest_debug,
  2652. .guest_debug_pre = kvm_guest_debug_pre,
  2653. .get_msr = vmx_get_msr,
  2654. .set_msr = vmx_set_msr,
  2655. .get_segment_base = vmx_get_segment_base,
  2656. .get_segment = vmx_get_segment,
  2657. .set_segment = vmx_set_segment,
  2658. .get_cpl = vmx_get_cpl,
  2659. .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
  2660. .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
  2661. .set_cr0 = vmx_set_cr0,
  2662. .set_cr3 = vmx_set_cr3,
  2663. .set_cr4 = vmx_set_cr4,
  2664. .set_efer = vmx_set_efer,
  2665. .get_idt = vmx_get_idt,
  2666. .set_idt = vmx_set_idt,
  2667. .get_gdt = vmx_get_gdt,
  2668. .set_gdt = vmx_set_gdt,
  2669. .cache_regs = vcpu_load_rsp_rip,
  2670. .decache_regs = vcpu_put_rsp_rip,
  2671. .get_rflags = vmx_get_rflags,
  2672. .set_rflags = vmx_set_rflags,
  2673. .tlb_flush = vmx_flush_tlb,
  2674. .run = vmx_vcpu_run,
  2675. .handle_exit = kvm_handle_exit,
  2676. .skip_emulated_instruction = skip_emulated_instruction,
  2677. .patch_hypercall = vmx_patch_hypercall,
  2678. .get_irq = vmx_get_irq,
  2679. .set_irq = vmx_inject_irq,
  2680. .queue_exception = vmx_queue_exception,
  2681. .exception_injected = vmx_exception_injected,
  2682. .inject_pending_irq = vmx_intr_assist,
  2683. .inject_pending_vectors = do_interrupt_requests,
  2684. .set_tss_addr = vmx_set_tss_addr,
  2685. .get_tdp_level = get_ept_level,
  2686. };
  2687. static int __init vmx_init(void)
  2688. {
  2689. void *va;
  2690. int r;
  2691. vmx_io_bitmap_a = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
  2692. if (!vmx_io_bitmap_a)
  2693. return -ENOMEM;
  2694. vmx_io_bitmap_b = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
  2695. if (!vmx_io_bitmap_b) {
  2696. r = -ENOMEM;
  2697. goto out;
  2698. }
  2699. vmx_msr_bitmap = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
  2700. if (!vmx_msr_bitmap) {
  2701. r = -ENOMEM;
  2702. goto out1;
  2703. }
  2704. /*
  2705. * Allow direct access to the PC debug port (it is often used for I/O
  2706. * delays, but the vmexits simply slow things down).
  2707. */
  2708. va = kmap(vmx_io_bitmap_a);
  2709. memset(va, 0xff, PAGE_SIZE);
  2710. clear_bit(0x80, va);
  2711. kunmap(vmx_io_bitmap_a);
  2712. va = kmap(vmx_io_bitmap_b);
  2713. memset(va, 0xff, PAGE_SIZE);
  2714. kunmap(vmx_io_bitmap_b);
  2715. va = kmap(vmx_msr_bitmap);
  2716. memset(va, 0xff, PAGE_SIZE);
  2717. kunmap(vmx_msr_bitmap);
  2718. set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
  2719. r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx), THIS_MODULE);
  2720. if (r)
  2721. goto out2;
  2722. vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_FS_BASE);
  2723. vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_GS_BASE);
  2724. vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_IA32_SYSENTER_CS);
  2725. vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_IA32_SYSENTER_ESP);
  2726. vmx_disable_intercept_for_msr(vmx_msr_bitmap, MSR_IA32_SYSENTER_EIP);
  2727. if (cpu_has_vmx_ept())
  2728. bypass_guest_pf = 0;
  2729. if (bypass_guest_pf)
  2730. kvm_mmu_set_nonpresent_ptes(~0xffeull, 0ull);
  2731. ept_sync_global();
  2732. return 0;
  2733. out2:
  2734. __free_page(vmx_msr_bitmap);
  2735. out1:
  2736. __free_page(vmx_io_bitmap_b);
  2737. out:
  2738. __free_page(vmx_io_bitmap_a);
  2739. return r;
  2740. }
  2741. static void __exit vmx_exit(void)
  2742. {
  2743. __free_page(vmx_msr_bitmap);
  2744. __free_page(vmx_io_bitmap_b);
  2745. __free_page(vmx_io_bitmap_a);
  2746. kvm_exit();
  2747. }
  2748. module_init(vmx_init)
  2749. module_exit(vmx_exit)