mmu.c 55 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * MMU support
  8. *
  9. * Copyright (C) 2006 Qumranet, Inc.
  10. *
  11. * Authors:
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. * Avi Kivity <avi@qumranet.com>
  14. *
  15. * This work is licensed under the terms of the GNU GPL, version 2. See
  16. * the COPYING file in the top-level directory.
  17. *
  18. */
  19. #include "vmx.h"
  20. #include "mmu.h"
  21. #include <linux/kvm_host.h>
  22. #include <linux/types.h>
  23. #include <linux/string.h>
  24. #include <linux/mm.h>
  25. #include <linux/highmem.h>
  26. #include <linux/module.h>
  27. #include <linux/swap.h>
  28. #include <linux/hugetlb.h>
  29. #include <linux/compiler.h>
  30. #include <asm/page.h>
  31. #include <asm/cmpxchg.h>
  32. #include <asm/io.h>
  33. /*
  34. * When setting this variable to true it enables Two-Dimensional-Paging
  35. * where the hardware walks 2 page tables:
  36. * 1. the guest-virtual to guest-physical
  37. * 2. while doing 1. it walks guest-physical to host-physical
  38. * If the hardware supports that we don't need to do shadow paging.
  39. */
  40. bool tdp_enabled = false;
  41. #undef MMU_DEBUG
  42. #undef AUDIT
  43. #ifdef AUDIT
  44. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg);
  45. #else
  46. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg) {}
  47. #endif
  48. #ifdef MMU_DEBUG
  49. #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
  50. #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
  51. #else
  52. #define pgprintk(x...) do { } while (0)
  53. #define rmap_printk(x...) do { } while (0)
  54. #endif
  55. #if defined(MMU_DEBUG) || defined(AUDIT)
  56. static int dbg = 1;
  57. #endif
  58. #ifndef MMU_DEBUG
  59. #define ASSERT(x) do { } while (0)
  60. #else
  61. #define ASSERT(x) \
  62. if (!(x)) { \
  63. printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
  64. __FILE__, __LINE__, #x); \
  65. }
  66. #endif
  67. #define PT_FIRST_AVAIL_BITS_SHIFT 9
  68. #define PT64_SECOND_AVAIL_BITS_SHIFT 52
  69. #define VALID_PAGE(x) ((x) != INVALID_PAGE)
  70. #define PT64_LEVEL_BITS 9
  71. #define PT64_LEVEL_SHIFT(level) \
  72. (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
  73. #define PT64_LEVEL_MASK(level) \
  74. (((1ULL << PT64_LEVEL_BITS) - 1) << PT64_LEVEL_SHIFT(level))
  75. #define PT64_INDEX(address, level)\
  76. (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
  77. #define PT32_LEVEL_BITS 10
  78. #define PT32_LEVEL_SHIFT(level) \
  79. (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
  80. #define PT32_LEVEL_MASK(level) \
  81. (((1ULL << PT32_LEVEL_BITS) - 1) << PT32_LEVEL_SHIFT(level))
  82. #define PT32_INDEX(address, level)\
  83. (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
  84. #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
  85. #define PT64_DIR_BASE_ADDR_MASK \
  86. (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
  87. #define PT32_BASE_ADDR_MASK PAGE_MASK
  88. #define PT32_DIR_BASE_ADDR_MASK \
  89. (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
  90. #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
  91. | PT64_NX_MASK)
  92. #define PFERR_PRESENT_MASK (1U << 0)
  93. #define PFERR_WRITE_MASK (1U << 1)
  94. #define PFERR_USER_MASK (1U << 2)
  95. #define PFERR_FETCH_MASK (1U << 4)
  96. #define PT_DIRECTORY_LEVEL 2
  97. #define PT_PAGE_TABLE_LEVEL 1
  98. #define RMAP_EXT 4
  99. #define ACC_EXEC_MASK 1
  100. #define ACC_WRITE_MASK PT_WRITABLE_MASK
  101. #define ACC_USER_MASK PT_USER_MASK
  102. #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
  103. struct kvm_pv_mmu_op_buffer {
  104. void *ptr;
  105. unsigned len;
  106. unsigned processed;
  107. char buf[512] __aligned(sizeof(long));
  108. };
  109. struct kvm_rmap_desc {
  110. u64 *shadow_ptes[RMAP_EXT];
  111. struct kvm_rmap_desc *more;
  112. };
  113. static struct kmem_cache *pte_chain_cache;
  114. static struct kmem_cache *rmap_desc_cache;
  115. static struct kmem_cache *mmu_page_header_cache;
  116. static u64 __read_mostly shadow_trap_nonpresent_pte;
  117. static u64 __read_mostly shadow_notrap_nonpresent_pte;
  118. static u64 __read_mostly shadow_base_present_pte;
  119. static u64 __read_mostly shadow_nx_mask;
  120. static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
  121. static u64 __read_mostly shadow_user_mask;
  122. static u64 __read_mostly shadow_accessed_mask;
  123. static u64 __read_mostly shadow_dirty_mask;
  124. void kvm_mmu_set_nonpresent_ptes(u64 trap_pte, u64 notrap_pte)
  125. {
  126. shadow_trap_nonpresent_pte = trap_pte;
  127. shadow_notrap_nonpresent_pte = notrap_pte;
  128. }
  129. EXPORT_SYMBOL_GPL(kvm_mmu_set_nonpresent_ptes);
  130. void kvm_mmu_set_base_ptes(u64 base_pte)
  131. {
  132. shadow_base_present_pte = base_pte;
  133. }
  134. EXPORT_SYMBOL_GPL(kvm_mmu_set_base_ptes);
  135. void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
  136. u64 dirty_mask, u64 nx_mask, u64 x_mask)
  137. {
  138. shadow_user_mask = user_mask;
  139. shadow_accessed_mask = accessed_mask;
  140. shadow_dirty_mask = dirty_mask;
  141. shadow_nx_mask = nx_mask;
  142. shadow_x_mask = x_mask;
  143. }
  144. EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
  145. static int is_write_protection(struct kvm_vcpu *vcpu)
  146. {
  147. return vcpu->arch.cr0 & X86_CR0_WP;
  148. }
  149. static int is_cpuid_PSE36(void)
  150. {
  151. return 1;
  152. }
  153. static int is_nx(struct kvm_vcpu *vcpu)
  154. {
  155. return vcpu->arch.shadow_efer & EFER_NX;
  156. }
  157. static int is_present_pte(unsigned long pte)
  158. {
  159. return pte & PT_PRESENT_MASK;
  160. }
  161. static int is_shadow_present_pte(u64 pte)
  162. {
  163. return pte != shadow_trap_nonpresent_pte
  164. && pte != shadow_notrap_nonpresent_pte;
  165. }
  166. static int is_large_pte(u64 pte)
  167. {
  168. return pte & PT_PAGE_SIZE_MASK;
  169. }
  170. static int is_writeble_pte(unsigned long pte)
  171. {
  172. return pte & PT_WRITABLE_MASK;
  173. }
  174. static int is_dirty_pte(unsigned long pte)
  175. {
  176. return pte & shadow_dirty_mask;
  177. }
  178. static int is_rmap_pte(u64 pte)
  179. {
  180. return is_shadow_present_pte(pte);
  181. }
  182. static pfn_t spte_to_pfn(u64 pte)
  183. {
  184. return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
  185. }
  186. static gfn_t pse36_gfn_delta(u32 gpte)
  187. {
  188. int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
  189. return (gpte & PT32_DIR_PSE36_MASK) << shift;
  190. }
  191. static void set_shadow_pte(u64 *sptep, u64 spte)
  192. {
  193. #ifdef CONFIG_X86_64
  194. set_64bit((unsigned long *)sptep, spte);
  195. #else
  196. set_64bit((unsigned long long *)sptep, spte);
  197. #endif
  198. }
  199. static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
  200. struct kmem_cache *base_cache, int min)
  201. {
  202. void *obj;
  203. if (cache->nobjs >= min)
  204. return 0;
  205. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  206. obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
  207. if (!obj)
  208. return -ENOMEM;
  209. cache->objects[cache->nobjs++] = obj;
  210. }
  211. return 0;
  212. }
  213. static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
  214. {
  215. while (mc->nobjs)
  216. kfree(mc->objects[--mc->nobjs]);
  217. }
  218. static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
  219. int min)
  220. {
  221. struct page *page;
  222. if (cache->nobjs >= min)
  223. return 0;
  224. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  225. page = alloc_page(GFP_KERNEL);
  226. if (!page)
  227. return -ENOMEM;
  228. set_page_private(page, 0);
  229. cache->objects[cache->nobjs++] = page_address(page);
  230. }
  231. return 0;
  232. }
  233. static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
  234. {
  235. while (mc->nobjs)
  236. free_page((unsigned long)mc->objects[--mc->nobjs]);
  237. }
  238. static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
  239. {
  240. int r;
  241. r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_chain_cache,
  242. pte_chain_cache, 4);
  243. if (r)
  244. goto out;
  245. r = mmu_topup_memory_cache(&vcpu->arch.mmu_rmap_desc_cache,
  246. rmap_desc_cache, 1);
  247. if (r)
  248. goto out;
  249. r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
  250. if (r)
  251. goto out;
  252. r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
  253. mmu_page_header_cache, 4);
  254. out:
  255. return r;
  256. }
  257. static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
  258. {
  259. mmu_free_memory_cache(&vcpu->arch.mmu_pte_chain_cache);
  260. mmu_free_memory_cache(&vcpu->arch.mmu_rmap_desc_cache);
  261. mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
  262. mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
  263. }
  264. static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
  265. size_t size)
  266. {
  267. void *p;
  268. BUG_ON(!mc->nobjs);
  269. p = mc->objects[--mc->nobjs];
  270. memset(p, 0, size);
  271. return p;
  272. }
  273. static struct kvm_pte_chain *mmu_alloc_pte_chain(struct kvm_vcpu *vcpu)
  274. {
  275. return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_chain_cache,
  276. sizeof(struct kvm_pte_chain));
  277. }
  278. static void mmu_free_pte_chain(struct kvm_pte_chain *pc)
  279. {
  280. kfree(pc);
  281. }
  282. static struct kvm_rmap_desc *mmu_alloc_rmap_desc(struct kvm_vcpu *vcpu)
  283. {
  284. return mmu_memory_cache_alloc(&vcpu->arch.mmu_rmap_desc_cache,
  285. sizeof(struct kvm_rmap_desc));
  286. }
  287. static void mmu_free_rmap_desc(struct kvm_rmap_desc *rd)
  288. {
  289. kfree(rd);
  290. }
  291. /*
  292. * Return the pointer to the largepage write count for a given
  293. * gfn, handling slots that are not large page aligned.
  294. */
  295. static int *slot_largepage_idx(gfn_t gfn, struct kvm_memory_slot *slot)
  296. {
  297. unsigned long idx;
  298. idx = (gfn / KVM_PAGES_PER_HPAGE) -
  299. (slot->base_gfn / KVM_PAGES_PER_HPAGE);
  300. return &slot->lpage_info[idx].write_count;
  301. }
  302. static void account_shadowed(struct kvm *kvm, gfn_t gfn)
  303. {
  304. int *write_count;
  305. write_count = slot_largepage_idx(gfn, gfn_to_memslot(kvm, gfn));
  306. *write_count += 1;
  307. }
  308. static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
  309. {
  310. int *write_count;
  311. write_count = slot_largepage_idx(gfn, gfn_to_memslot(kvm, gfn));
  312. *write_count -= 1;
  313. WARN_ON(*write_count < 0);
  314. }
  315. static int has_wrprotected_page(struct kvm *kvm, gfn_t gfn)
  316. {
  317. struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
  318. int *largepage_idx;
  319. if (slot) {
  320. largepage_idx = slot_largepage_idx(gfn, slot);
  321. return *largepage_idx;
  322. }
  323. return 1;
  324. }
  325. static int host_largepage_backed(struct kvm *kvm, gfn_t gfn)
  326. {
  327. struct vm_area_struct *vma;
  328. unsigned long addr;
  329. addr = gfn_to_hva(kvm, gfn);
  330. if (kvm_is_error_hva(addr))
  331. return 0;
  332. vma = find_vma(current->mm, addr);
  333. if (vma && is_vm_hugetlb_page(vma))
  334. return 1;
  335. return 0;
  336. }
  337. static int is_largepage_backed(struct kvm_vcpu *vcpu, gfn_t large_gfn)
  338. {
  339. struct kvm_memory_slot *slot;
  340. if (has_wrprotected_page(vcpu->kvm, large_gfn))
  341. return 0;
  342. if (!host_largepage_backed(vcpu->kvm, large_gfn))
  343. return 0;
  344. slot = gfn_to_memslot(vcpu->kvm, large_gfn);
  345. if (slot && slot->dirty_bitmap)
  346. return 0;
  347. return 1;
  348. }
  349. /*
  350. * Take gfn and return the reverse mapping to it.
  351. * Note: gfn must be unaliased before this function get called
  352. */
  353. static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int lpage)
  354. {
  355. struct kvm_memory_slot *slot;
  356. unsigned long idx;
  357. slot = gfn_to_memslot(kvm, gfn);
  358. if (!lpage)
  359. return &slot->rmap[gfn - slot->base_gfn];
  360. idx = (gfn / KVM_PAGES_PER_HPAGE) -
  361. (slot->base_gfn / KVM_PAGES_PER_HPAGE);
  362. return &slot->lpage_info[idx].rmap_pde;
  363. }
  364. /*
  365. * Reverse mapping data structures:
  366. *
  367. * If rmapp bit zero is zero, then rmapp point to the shadw page table entry
  368. * that points to page_address(page).
  369. *
  370. * If rmapp bit zero is one, (then rmap & ~1) points to a struct kvm_rmap_desc
  371. * containing more mappings.
  372. */
  373. static void rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn, int lpage)
  374. {
  375. struct kvm_mmu_page *sp;
  376. struct kvm_rmap_desc *desc;
  377. unsigned long *rmapp;
  378. int i;
  379. if (!is_rmap_pte(*spte))
  380. return;
  381. gfn = unalias_gfn(vcpu->kvm, gfn);
  382. sp = page_header(__pa(spte));
  383. sp->gfns[spte - sp->spt] = gfn;
  384. rmapp = gfn_to_rmap(vcpu->kvm, gfn, lpage);
  385. if (!*rmapp) {
  386. rmap_printk("rmap_add: %p %llx 0->1\n", spte, *spte);
  387. *rmapp = (unsigned long)spte;
  388. } else if (!(*rmapp & 1)) {
  389. rmap_printk("rmap_add: %p %llx 1->many\n", spte, *spte);
  390. desc = mmu_alloc_rmap_desc(vcpu);
  391. desc->shadow_ptes[0] = (u64 *)*rmapp;
  392. desc->shadow_ptes[1] = spte;
  393. *rmapp = (unsigned long)desc | 1;
  394. } else {
  395. rmap_printk("rmap_add: %p %llx many->many\n", spte, *spte);
  396. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  397. while (desc->shadow_ptes[RMAP_EXT-1] && desc->more)
  398. desc = desc->more;
  399. if (desc->shadow_ptes[RMAP_EXT-1]) {
  400. desc->more = mmu_alloc_rmap_desc(vcpu);
  401. desc = desc->more;
  402. }
  403. for (i = 0; desc->shadow_ptes[i]; ++i)
  404. ;
  405. desc->shadow_ptes[i] = spte;
  406. }
  407. }
  408. static void rmap_desc_remove_entry(unsigned long *rmapp,
  409. struct kvm_rmap_desc *desc,
  410. int i,
  411. struct kvm_rmap_desc *prev_desc)
  412. {
  413. int j;
  414. for (j = RMAP_EXT - 1; !desc->shadow_ptes[j] && j > i; --j)
  415. ;
  416. desc->shadow_ptes[i] = desc->shadow_ptes[j];
  417. desc->shadow_ptes[j] = NULL;
  418. if (j != 0)
  419. return;
  420. if (!prev_desc && !desc->more)
  421. *rmapp = (unsigned long)desc->shadow_ptes[0];
  422. else
  423. if (prev_desc)
  424. prev_desc->more = desc->more;
  425. else
  426. *rmapp = (unsigned long)desc->more | 1;
  427. mmu_free_rmap_desc(desc);
  428. }
  429. static void rmap_remove(struct kvm *kvm, u64 *spte)
  430. {
  431. struct kvm_rmap_desc *desc;
  432. struct kvm_rmap_desc *prev_desc;
  433. struct kvm_mmu_page *sp;
  434. pfn_t pfn;
  435. unsigned long *rmapp;
  436. int i;
  437. if (!is_rmap_pte(*spte))
  438. return;
  439. sp = page_header(__pa(spte));
  440. pfn = spte_to_pfn(*spte);
  441. if (*spte & shadow_accessed_mask)
  442. kvm_set_pfn_accessed(pfn);
  443. if (is_writeble_pte(*spte))
  444. kvm_release_pfn_dirty(pfn);
  445. else
  446. kvm_release_pfn_clean(pfn);
  447. rmapp = gfn_to_rmap(kvm, sp->gfns[spte - sp->spt], is_large_pte(*spte));
  448. if (!*rmapp) {
  449. printk(KERN_ERR "rmap_remove: %p %llx 0->BUG\n", spte, *spte);
  450. BUG();
  451. } else if (!(*rmapp & 1)) {
  452. rmap_printk("rmap_remove: %p %llx 1->0\n", spte, *spte);
  453. if ((u64 *)*rmapp != spte) {
  454. printk(KERN_ERR "rmap_remove: %p %llx 1->BUG\n",
  455. spte, *spte);
  456. BUG();
  457. }
  458. *rmapp = 0;
  459. } else {
  460. rmap_printk("rmap_remove: %p %llx many->many\n", spte, *spte);
  461. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  462. prev_desc = NULL;
  463. while (desc) {
  464. for (i = 0; i < RMAP_EXT && desc->shadow_ptes[i]; ++i)
  465. if (desc->shadow_ptes[i] == spte) {
  466. rmap_desc_remove_entry(rmapp,
  467. desc, i,
  468. prev_desc);
  469. return;
  470. }
  471. prev_desc = desc;
  472. desc = desc->more;
  473. }
  474. BUG();
  475. }
  476. }
  477. static u64 *rmap_next(struct kvm *kvm, unsigned long *rmapp, u64 *spte)
  478. {
  479. struct kvm_rmap_desc *desc;
  480. struct kvm_rmap_desc *prev_desc;
  481. u64 *prev_spte;
  482. int i;
  483. if (!*rmapp)
  484. return NULL;
  485. else if (!(*rmapp & 1)) {
  486. if (!spte)
  487. return (u64 *)*rmapp;
  488. return NULL;
  489. }
  490. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  491. prev_desc = NULL;
  492. prev_spte = NULL;
  493. while (desc) {
  494. for (i = 0; i < RMAP_EXT && desc->shadow_ptes[i]; ++i) {
  495. if (prev_spte == spte)
  496. return desc->shadow_ptes[i];
  497. prev_spte = desc->shadow_ptes[i];
  498. }
  499. desc = desc->more;
  500. }
  501. return NULL;
  502. }
  503. static void rmap_write_protect(struct kvm *kvm, u64 gfn)
  504. {
  505. unsigned long *rmapp;
  506. u64 *spte;
  507. int write_protected = 0;
  508. gfn = unalias_gfn(kvm, gfn);
  509. rmapp = gfn_to_rmap(kvm, gfn, 0);
  510. spte = rmap_next(kvm, rmapp, NULL);
  511. while (spte) {
  512. BUG_ON(!spte);
  513. BUG_ON(!(*spte & PT_PRESENT_MASK));
  514. rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
  515. if (is_writeble_pte(*spte)) {
  516. set_shadow_pte(spte, *spte & ~PT_WRITABLE_MASK);
  517. write_protected = 1;
  518. }
  519. spte = rmap_next(kvm, rmapp, spte);
  520. }
  521. if (write_protected) {
  522. pfn_t pfn;
  523. spte = rmap_next(kvm, rmapp, NULL);
  524. pfn = spte_to_pfn(*spte);
  525. kvm_set_pfn_dirty(pfn);
  526. }
  527. /* check for huge page mappings */
  528. rmapp = gfn_to_rmap(kvm, gfn, 1);
  529. spte = rmap_next(kvm, rmapp, NULL);
  530. while (spte) {
  531. BUG_ON(!spte);
  532. BUG_ON(!(*spte & PT_PRESENT_MASK));
  533. BUG_ON((*spte & (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK)) != (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK));
  534. pgprintk("rmap_write_protect(large): spte %p %llx %lld\n", spte, *spte, gfn);
  535. if (is_writeble_pte(*spte)) {
  536. rmap_remove(kvm, spte);
  537. --kvm->stat.lpages;
  538. set_shadow_pte(spte, shadow_trap_nonpresent_pte);
  539. spte = NULL;
  540. write_protected = 1;
  541. }
  542. spte = rmap_next(kvm, rmapp, spte);
  543. }
  544. if (write_protected)
  545. kvm_flush_remote_tlbs(kvm);
  546. account_shadowed(kvm, gfn);
  547. }
  548. #ifdef MMU_DEBUG
  549. static int is_empty_shadow_page(u64 *spt)
  550. {
  551. u64 *pos;
  552. u64 *end;
  553. for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
  554. if (is_shadow_present_pte(*pos)) {
  555. printk(KERN_ERR "%s: %p %llx\n", __func__,
  556. pos, *pos);
  557. return 0;
  558. }
  559. return 1;
  560. }
  561. #endif
  562. static void kvm_mmu_free_page(struct kvm *kvm, struct kvm_mmu_page *sp)
  563. {
  564. ASSERT(is_empty_shadow_page(sp->spt));
  565. list_del(&sp->link);
  566. __free_page(virt_to_page(sp->spt));
  567. __free_page(virt_to_page(sp->gfns));
  568. kfree(sp);
  569. ++kvm->arch.n_free_mmu_pages;
  570. }
  571. static unsigned kvm_page_table_hashfn(gfn_t gfn)
  572. {
  573. return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
  574. }
  575. static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
  576. u64 *parent_pte)
  577. {
  578. struct kvm_mmu_page *sp;
  579. sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache, sizeof *sp);
  580. sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
  581. sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
  582. set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
  583. list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
  584. ASSERT(is_empty_shadow_page(sp->spt));
  585. sp->slot_bitmap = 0;
  586. sp->multimapped = 0;
  587. sp->parent_pte = parent_pte;
  588. --vcpu->kvm->arch.n_free_mmu_pages;
  589. return sp;
  590. }
  591. static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
  592. struct kvm_mmu_page *sp, u64 *parent_pte)
  593. {
  594. struct kvm_pte_chain *pte_chain;
  595. struct hlist_node *node;
  596. int i;
  597. if (!parent_pte)
  598. return;
  599. if (!sp->multimapped) {
  600. u64 *old = sp->parent_pte;
  601. if (!old) {
  602. sp->parent_pte = parent_pte;
  603. return;
  604. }
  605. sp->multimapped = 1;
  606. pte_chain = mmu_alloc_pte_chain(vcpu);
  607. INIT_HLIST_HEAD(&sp->parent_ptes);
  608. hlist_add_head(&pte_chain->link, &sp->parent_ptes);
  609. pte_chain->parent_ptes[0] = old;
  610. }
  611. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link) {
  612. if (pte_chain->parent_ptes[NR_PTE_CHAIN_ENTRIES-1])
  613. continue;
  614. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i)
  615. if (!pte_chain->parent_ptes[i]) {
  616. pte_chain->parent_ptes[i] = parent_pte;
  617. return;
  618. }
  619. }
  620. pte_chain = mmu_alloc_pte_chain(vcpu);
  621. BUG_ON(!pte_chain);
  622. hlist_add_head(&pte_chain->link, &sp->parent_ptes);
  623. pte_chain->parent_ptes[0] = parent_pte;
  624. }
  625. static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
  626. u64 *parent_pte)
  627. {
  628. struct kvm_pte_chain *pte_chain;
  629. struct hlist_node *node;
  630. int i;
  631. if (!sp->multimapped) {
  632. BUG_ON(sp->parent_pte != parent_pte);
  633. sp->parent_pte = NULL;
  634. return;
  635. }
  636. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
  637. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
  638. if (!pte_chain->parent_ptes[i])
  639. break;
  640. if (pte_chain->parent_ptes[i] != parent_pte)
  641. continue;
  642. while (i + 1 < NR_PTE_CHAIN_ENTRIES
  643. && pte_chain->parent_ptes[i + 1]) {
  644. pte_chain->parent_ptes[i]
  645. = pte_chain->parent_ptes[i + 1];
  646. ++i;
  647. }
  648. pte_chain->parent_ptes[i] = NULL;
  649. if (i == 0) {
  650. hlist_del(&pte_chain->link);
  651. mmu_free_pte_chain(pte_chain);
  652. if (hlist_empty(&sp->parent_ptes)) {
  653. sp->multimapped = 0;
  654. sp->parent_pte = NULL;
  655. }
  656. }
  657. return;
  658. }
  659. BUG();
  660. }
  661. static struct kvm_mmu_page *kvm_mmu_lookup_page(struct kvm *kvm, gfn_t gfn)
  662. {
  663. unsigned index;
  664. struct hlist_head *bucket;
  665. struct kvm_mmu_page *sp;
  666. struct hlist_node *node;
  667. pgprintk("%s: looking for gfn %lx\n", __func__, gfn);
  668. index = kvm_page_table_hashfn(gfn);
  669. bucket = &kvm->arch.mmu_page_hash[index];
  670. hlist_for_each_entry(sp, node, bucket, hash_link)
  671. if (sp->gfn == gfn && !sp->role.metaphysical
  672. && !sp->role.invalid) {
  673. pgprintk("%s: found role %x\n",
  674. __func__, sp->role.word);
  675. return sp;
  676. }
  677. return NULL;
  678. }
  679. static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
  680. gfn_t gfn,
  681. gva_t gaddr,
  682. unsigned level,
  683. int metaphysical,
  684. unsigned access,
  685. u64 *parent_pte)
  686. {
  687. union kvm_mmu_page_role role;
  688. unsigned index;
  689. unsigned quadrant;
  690. struct hlist_head *bucket;
  691. struct kvm_mmu_page *sp;
  692. struct hlist_node *node;
  693. role.word = 0;
  694. role.glevels = vcpu->arch.mmu.root_level;
  695. role.level = level;
  696. role.metaphysical = metaphysical;
  697. role.access = access;
  698. if (vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
  699. quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
  700. quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
  701. role.quadrant = quadrant;
  702. }
  703. pgprintk("%s: looking gfn %lx role %x\n", __func__,
  704. gfn, role.word);
  705. index = kvm_page_table_hashfn(gfn);
  706. bucket = &vcpu->kvm->arch.mmu_page_hash[index];
  707. hlist_for_each_entry(sp, node, bucket, hash_link)
  708. if (sp->gfn == gfn && sp->role.word == role.word) {
  709. mmu_page_add_parent_pte(vcpu, sp, parent_pte);
  710. pgprintk("%s: found\n", __func__);
  711. return sp;
  712. }
  713. ++vcpu->kvm->stat.mmu_cache_miss;
  714. sp = kvm_mmu_alloc_page(vcpu, parent_pte);
  715. if (!sp)
  716. return sp;
  717. pgprintk("%s: adding gfn %lx role %x\n", __func__, gfn, role.word);
  718. sp->gfn = gfn;
  719. sp->role = role;
  720. hlist_add_head(&sp->hash_link, bucket);
  721. if (!metaphysical)
  722. rmap_write_protect(vcpu->kvm, gfn);
  723. vcpu->arch.mmu.prefetch_page(vcpu, sp);
  724. return sp;
  725. }
  726. static void kvm_mmu_page_unlink_children(struct kvm *kvm,
  727. struct kvm_mmu_page *sp)
  728. {
  729. unsigned i;
  730. u64 *pt;
  731. u64 ent;
  732. pt = sp->spt;
  733. if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
  734. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  735. if (is_shadow_present_pte(pt[i]))
  736. rmap_remove(kvm, &pt[i]);
  737. pt[i] = shadow_trap_nonpresent_pte;
  738. }
  739. kvm_flush_remote_tlbs(kvm);
  740. return;
  741. }
  742. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  743. ent = pt[i];
  744. if (is_shadow_present_pte(ent)) {
  745. if (!is_large_pte(ent)) {
  746. ent &= PT64_BASE_ADDR_MASK;
  747. mmu_page_remove_parent_pte(page_header(ent),
  748. &pt[i]);
  749. } else {
  750. --kvm->stat.lpages;
  751. rmap_remove(kvm, &pt[i]);
  752. }
  753. }
  754. pt[i] = shadow_trap_nonpresent_pte;
  755. }
  756. kvm_flush_remote_tlbs(kvm);
  757. }
  758. static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
  759. {
  760. mmu_page_remove_parent_pte(sp, parent_pte);
  761. }
  762. static void kvm_mmu_reset_last_pte_updated(struct kvm *kvm)
  763. {
  764. int i;
  765. for (i = 0; i < KVM_MAX_VCPUS; ++i)
  766. if (kvm->vcpus[i])
  767. kvm->vcpus[i]->arch.last_pte_updated = NULL;
  768. }
  769. static void kvm_mmu_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp)
  770. {
  771. u64 *parent_pte;
  772. ++kvm->stat.mmu_shadow_zapped;
  773. while (sp->multimapped || sp->parent_pte) {
  774. if (!sp->multimapped)
  775. parent_pte = sp->parent_pte;
  776. else {
  777. struct kvm_pte_chain *chain;
  778. chain = container_of(sp->parent_ptes.first,
  779. struct kvm_pte_chain, link);
  780. parent_pte = chain->parent_ptes[0];
  781. }
  782. BUG_ON(!parent_pte);
  783. kvm_mmu_put_page(sp, parent_pte);
  784. set_shadow_pte(parent_pte, shadow_trap_nonpresent_pte);
  785. }
  786. kvm_mmu_page_unlink_children(kvm, sp);
  787. if (!sp->root_count) {
  788. if (!sp->role.metaphysical)
  789. unaccount_shadowed(kvm, sp->gfn);
  790. hlist_del(&sp->hash_link);
  791. kvm_mmu_free_page(kvm, sp);
  792. } else {
  793. list_move(&sp->link, &kvm->arch.active_mmu_pages);
  794. sp->role.invalid = 1;
  795. kvm_reload_remote_mmus(kvm);
  796. }
  797. kvm_mmu_reset_last_pte_updated(kvm);
  798. }
  799. /*
  800. * Changing the number of mmu pages allocated to the vm
  801. * Note: if kvm_nr_mmu_pages is too small, you will get dead lock
  802. */
  803. void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int kvm_nr_mmu_pages)
  804. {
  805. /*
  806. * If we set the number of mmu pages to be smaller be than the
  807. * number of actived pages , we must to free some mmu pages before we
  808. * change the value
  809. */
  810. if ((kvm->arch.n_alloc_mmu_pages - kvm->arch.n_free_mmu_pages) >
  811. kvm_nr_mmu_pages) {
  812. int n_used_mmu_pages = kvm->arch.n_alloc_mmu_pages
  813. - kvm->arch.n_free_mmu_pages;
  814. while (n_used_mmu_pages > kvm_nr_mmu_pages) {
  815. struct kvm_mmu_page *page;
  816. page = container_of(kvm->arch.active_mmu_pages.prev,
  817. struct kvm_mmu_page, link);
  818. kvm_mmu_zap_page(kvm, page);
  819. n_used_mmu_pages--;
  820. }
  821. kvm->arch.n_free_mmu_pages = 0;
  822. }
  823. else
  824. kvm->arch.n_free_mmu_pages += kvm_nr_mmu_pages
  825. - kvm->arch.n_alloc_mmu_pages;
  826. kvm->arch.n_alloc_mmu_pages = kvm_nr_mmu_pages;
  827. }
  828. static int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
  829. {
  830. unsigned index;
  831. struct hlist_head *bucket;
  832. struct kvm_mmu_page *sp;
  833. struct hlist_node *node, *n;
  834. int r;
  835. pgprintk("%s: looking for gfn %lx\n", __func__, gfn);
  836. r = 0;
  837. index = kvm_page_table_hashfn(gfn);
  838. bucket = &kvm->arch.mmu_page_hash[index];
  839. hlist_for_each_entry_safe(sp, node, n, bucket, hash_link)
  840. if (sp->gfn == gfn && !sp->role.metaphysical) {
  841. pgprintk("%s: gfn %lx role %x\n", __func__, gfn,
  842. sp->role.word);
  843. kvm_mmu_zap_page(kvm, sp);
  844. r = 1;
  845. }
  846. return r;
  847. }
  848. static void mmu_unshadow(struct kvm *kvm, gfn_t gfn)
  849. {
  850. struct kvm_mmu_page *sp;
  851. while ((sp = kvm_mmu_lookup_page(kvm, gfn)) != NULL) {
  852. pgprintk("%s: zap %lx %x\n", __func__, gfn, sp->role.word);
  853. kvm_mmu_zap_page(kvm, sp);
  854. }
  855. }
  856. static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn)
  857. {
  858. int slot = memslot_id(kvm, gfn_to_memslot(kvm, gfn));
  859. struct kvm_mmu_page *sp = page_header(__pa(pte));
  860. __set_bit(slot, &sp->slot_bitmap);
  861. }
  862. struct page *gva_to_page(struct kvm_vcpu *vcpu, gva_t gva)
  863. {
  864. struct page *page;
  865. gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gva);
  866. if (gpa == UNMAPPED_GVA)
  867. return NULL;
  868. down_read(&current->mm->mmap_sem);
  869. page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  870. up_read(&current->mm->mmap_sem);
  871. return page;
  872. }
  873. static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *shadow_pte,
  874. unsigned pt_access, unsigned pte_access,
  875. int user_fault, int write_fault, int dirty,
  876. int *ptwrite, int largepage, gfn_t gfn,
  877. pfn_t pfn, bool speculative)
  878. {
  879. u64 spte;
  880. int was_rmapped = 0;
  881. int was_writeble = is_writeble_pte(*shadow_pte);
  882. pgprintk("%s: spte %llx access %x write_fault %d"
  883. " user_fault %d gfn %lx\n",
  884. __func__, *shadow_pte, pt_access,
  885. write_fault, user_fault, gfn);
  886. if (is_rmap_pte(*shadow_pte)) {
  887. /*
  888. * If we overwrite a PTE page pointer with a 2MB PMD, unlink
  889. * the parent of the now unreachable PTE.
  890. */
  891. if (largepage && !is_large_pte(*shadow_pte)) {
  892. struct kvm_mmu_page *child;
  893. u64 pte = *shadow_pte;
  894. child = page_header(pte & PT64_BASE_ADDR_MASK);
  895. mmu_page_remove_parent_pte(child, shadow_pte);
  896. } else if (pfn != spte_to_pfn(*shadow_pte)) {
  897. pgprintk("hfn old %lx new %lx\n",
  898. spte_to_pfn(*shadow_pte), pfn);
  899. rmap_remove(vcpu->kvm, shadow_pte);
  900. } else {
  901. if (largepage)
  902. was_rmapped = is_large_pte(*shadow_pte);
  903. else
  904. was_rmapped = 1;
  905. }
  906. }
  907. /*
  908. * We don't set the accessed bit, since we sometimes want to see
  909. * whether the guest actually used the pte (in order to detect
  910. * demand paging).
  911. */
  912. spte = shadow_base_present_pte | shadow_dirty_mask;
  913. if (!speculative)
  914. pte_access |= PT_ACCESSED_MASK;
  915. if (!dirty)
  916. pte_access &= ~ACC_WRITE_MASK;
  917. if (pte_access & ACC_EXEC_MASK)
  918. spte |= shadow_x_mask;
  919. else
  920. spte |= shadow_nx_mask;
  921. if (pte_access & ACC_USER_MASK)
  922. spte |= shadow_user_mask;
  923. if (largepage)
  924. spte |= PT_PAGE_SIZE_MASK;
  925. spte |= (u64)pfn << PAGE_SHIFT;
  926. if ((pte_access & ACC_WRITE_MASK)
  927. || (write_fault && !is_write_protection(vcpu) && !user_fault)) {
  928. struct kvm_mmu_page *shadow;
  929. spte |= PT_WRITABLE_MASK;
  930. shadow = kvm_mmu_lookup_page(vcpu->kvm, gfn);
  931. if (shadow ||
  932. (largepage && has_wrprotected_page(vcpu->kvm, gfn))) {
  933. pgprintk("%s: found shadow page for %lx, marking ro\n",
  934. __func__, gfn);
  935. pte_access &= ~ACC_WRITE_MASK;
  936. if (is_writeble_pte(spte)) {
  937. spte &= ~PT_WRITABLE_MASK;
  938. kvm_x86_ops->tlb_flush(vcpu);
  939. }
  940. if (write_fault)
  941. *ptwrite = 1;
  942. }
  943. }
  944. if (pte_access & ACC_WRITE_MASK)
  945. mark_page_dirty(vcpu->kvm, gfn);
  946. pgprintk("%s: setting spte %llx\n", __func__, spte);
  947. pgprintk("instantiating %s PTE (%s) at %d (%llx) addr %llx\n",
  948. (spte&PT_PAGE_SIZE_MASK)? "2MB" : "4kB",
  949. (spte&PT_WRITABLE_MASK)?"RW":"R", gfn, spte, shadow_pte);
  950. set_shadow_pte(shadow_pte, spte);
  951. if (!was_rmapped && (spte & PT_PAGE_SIZE_MASK)
  952. && (spte & PT_PRESENT_MASK))
  953. ++vcpu->kvm->stat.lpages;
  954. page_header_update_slot(vcpu->kvm, shadow_pte, gfn);
  955. if (!was_rmapped) {
  956. rmap_add(vcpu, shadow_pte, gfn, largepage);
  957. if (!is_rmap_pte(*shadow_pte))
  958. kvm_release_pfn_clean(pfn);
  959. } else {
  960. if (was_writeble)
  961. kvm_release_pfn_dirty(pfn);
  962. else
  963. kvm_release_pfn_clean(pfn);
  964. }
  965. if (!ptwrite || !*ptwrite)
  966. vcpu->arch.last_pte_updated = shadow_pte;
  967. }
  968. static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
  969. {
  970. }
  971. static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
  972. int largepage, gfn_t gfn, pfn_t pfn,
  973. int level)
  974. {
  975. hpa_t table_addr = vcpu->arch.mmu.root_hpa;
  976. int pt_write = 0;
  977. for (; ; level--) {
  978. u32 index = PT64_INDEX(v, level);
  979. u64 *table;
  980. ASSERT(VALID_PAGE(table_addr));
  981. table = __va(table_addr);
  982. if (level == 1) {
  983. mmu_set_spte(vcpu, &table[index], ACC_ALL, ACC_ALL,
  984. 0, write, 1, &pt_write, 0, gfn, pfn, false);
  985. return pt_write;
  986. }
  987. if (largepage && level == 2) {
  988. mmu_set_spte(vcpu, &table[index], ACC_ALL, ACC_ALL,
  989. 0, write, 1, &pt_write, 1, gfn, pfn, false);
  990. return pt_write;
  991. }
  992. if (table[index] == shadow_trap_nonpresent_pte) {
  993. struct kvm_mmu_page *new_table;
  994. gfn_t pseudo_gfn;
  995. pseudo_gfn = (v & PT64_DIR_BASE_ADDR_MASK)
  996. >> PAGE_SHIFT;
  997. new_table = kvm_mmu_get_page(vcpu, pseudo_gfn,
  998. v, level - 1,
  999. 1, ACC_ALL, &table[index]);
  1000. if (!new_table) {
  1001. pgprintk("nonpaging_map: ENOMEM\n");
  1002. kvm_release_pfn_clean(pfn);
  1003. return -ENOMEM;
  1004. }
  1005. table[index] = __pa(new_table->spt)
  1006. | PT_PRESENT_MASK | PT_WRITABLE_MASK
  1007. | shadow_user_mask | shadow_x_mask;
  1008. }
  1009. table_addr = table[index] & PT64_BASE_ADDR_MASK;
  1010. }
  1011. }
  1012. static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, int write, gfn_t gfn)
  1013. {
  1014. int r;
  1015. int largepage = 0;
  1016. pfn_t pfn;
  1017. down_read(&current->mm->mmap_sem);
  1018. if (is_largepage_backed(vcpu, gfn & ~(KVM_PAGES_PER_HPAGE-1))) {
  1019. gfn &= ~(KVM_PAGES_PER_HPAGE-1);
  1020. largepage = 1;
  1021. }
  1022. pfn = gfn_to_pfn(vcpu->kvm, gfn);
  1023. up_read(&current->mm->mmap_sem);
  1024. /* mmio */
  1025. if (is_error_pfn(pfn)) {
  1026. kvm_release_pfn_clean(pfn);
  1027. return 1;
  1028. }
  1029. spin_lock(&vcpu->kvm->mmu_lock);
  1030. kvm_mmu_free_some_pages(vcpu);
  1031. r = __direct_map(vcpu, v, write, largepage, gfn, pfn,
  1032. PT32E_ROOT_LEVEL);
  1033. spin_unlock(&vcpu->kvm->mmu_lock);
  1034. return r;
  1035. }
  1036. static void nonpaging_prefetch_page(struct kvm_vcpu *vcpu,
  1037. struct kvm_mmu_page *sp)
  1038. {
  1039. int i;
  1040. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  1041. sp->spt[i] = shadow_trap_nonpresent_pte;
  1042. }
  1043. static void mmu_free_roots(struct kvm_vcpu *vcpu)
  1044. {
  1045. int i;
  1046. struct kvm_mmu_page *sp;
  1047. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  1048. return;
  1049. spin_lock(&vcpu->kvm->mmu_lock);
  1050. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  1051. hpa_t root = vcpu->arch.mmu.root_hpa;
  1052. sp = page_header(root);
  1053. --sp->root_count;
  1054. if (!sp->root_count && sp->role.invalid)
  1055. kvm_mmu_zap_page(vcpu->kvm, sp);
  1056. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  1057. spin_unlock(&vcpu->kvm->mmu_lock);
  1058. return;
  1059. }
  1060. for (i = 0; i < 4; ++i) {
  1061. hpa_t root = vcpu->arch.mmu.pae_root[i];
  1062. if (root) {
  1063. root &= PT64_BASE_ADDR_MASK;
  1064. sp = page_header(root);
  1065. --sp->root_count;
  1066. if (!sp->root_count && sp->role.invalid)
  1067. kvm_mmu_zap_page(vcpu->kvm, sp);
  1068. }
  1069. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  1070. }
  1071. spin_unlock(&vcpu->kvm->mmu_lock);
  1072. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  1073. }
  1074. static void mmu_alloc_roots(struct kvm_vcpu *vcpu)
  1075. {
  1076. int i;
  1077. gfn_t root_gfn;
  1078. struct kvm_mmu_page *sp;
  1079. int metaphysical = 0;
  1080. root_gfn = vcpu->arch.cr3 >> PAGE_SHIFT;
  1081. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  1082. hpa_t root = vcpu->arch.mmu.root_hpa;
  1083. ASSERT(!VALID_PAGE(root));
  1084. if (tdp_enabled)
  1085. metaphysical = 1;
  1086. sp = kvm_mmu_get_page(vcpu, root_gfn, 0,
  1087. PT64_ROOT_LEVEL, metaphysical,
  1088. ACC_ALL, NULL);
  1089. root = __pa(sp->spt);
  1090. ++sp->root_count;
  1091. vcpu->arch.mmu.root_hpa = root;
  1092. return;
  1093. }
  1094. metaphysical = !is_paging(vcpu);
  1095. if (tdp_enabled)
  1096. metaphysical = 1;
  1097. for (i = 0; i < 4; ++i) {
  1098. hpa_t root = vcpu->arch.mmu.pae_root[i];
  1099. ASSERT(!VALID_PAGE(root));
  1100. if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
  1101. if (!is_present_pte(vcpu->arch.pdptrs[i])) {
  1102. vcpu->arch.mmu.pae_root[i] = 0;
  1103. continue;
  1104. }
  1105. root_gfn = vcpu->arch.pdptrs[i] >> PAGE_SHIFT;
  1106. } else if (vcpu->arch.mmu.root_level == 0)
  1107. root_gfn = 0;
  1108. sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
  1109. PT32_ROOT_LEVEL, metaphysical,
  1110. ACC_ALL, NULL);
  1111. root = __pa(sp->spt);
  1112. ++sp->root_count;
  1113. vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
  1114. }
  1115. vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
  1116. }
  1117. static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr)
  1118. {
  1119. return vaddr;
  1120. }
  1121. static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
  1122. u32 error_code)
  1123. {
  1124. gfn_t gfn;
  1125. int r;
  1126. pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
  1127. r = mmu_topup_memory_caches(vcpu);
  1128. if (r)
  1129. return r;
  1130. ASSERT(vcpu);
  1131. ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  1132. gfn = gva >> PAGE_SHIFT;
  1133. return nonpaging_map(vcpu, gva & PAGE_MASK,
  1134. error_code & PFERR_WRITE_MASK, gfn);
  1135. }
  1136. static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa,
  1137. u32 error_code)
  1138. {
  1139. pfn_t pfn;
  1140. int r;
  1141. int largepage = 0;
  1142. gfn_t gfn = gpa >> PAGE_SHIFT;
  1143. ASSERT(vcpu);
  1144. ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  1145. r = mmu_topup_memory_caches(vcpu);
  1146. if (r)
  1147. return r;
  1148. down_read(&current->mm->mmap_sem);
  1149. if (is_largepage_backed(vcpu, gfn & ~(KVM_PAGES_PER_HPAGE-1))) {
  1150. gfn &= ~(KVM_PAGES_PER_HPAGE-1);
  1151. largepage = 1;
  1152. }
  1153. pfn = gfn_to_pfn(vcpu->kvm, gfn);
  1154. up_read(&current->mm->mmap_sem);
  1155. if (is_error_pfn(pfn)) {
  1156. kvm_release_pfn_clean(pfn);
  1157. return 1;
  1158. }
  1159. spin_lock(&vcpu->kvm->mmu_lock);
  1160. kvm_mmu_free_some_pages(vcpu);
  1161. r = __direct_map(vcpu, gpa, error_code & PFERR_WRITE_MASK,
  1162. largepage, gfn, pfn, kvm_x86_ops->get_tdp_level());
  1163. spin_unlock(&vcpu->kvm->mmu_lock);
  1164. return r;
  1165. }
  1166. static void nonpaging_free(struct kvm_vcpu *vcpu)
  1167. {
  1168. mmu_free_roots(vcpu);
  1169. }
  1170. static int nonpaging_init_context(struct kvm_vcpu *vcpu)
  1171. {
  1172. struct kvm_mmu *context = &vcpu->arch.mmu;
  1173. context->new_cr3 = nonpaging_new_cr3;
  1174. context->page_fault = nonpaging_page_fault;
  1175. context->gva_to_gpa = nonpaging_gva_to_gpa;
  1176. context->free = nonpaging_free;
  1177. context->prefetch_page = nonpaging_prefetch_page;
  1178. context->root_level = 0;
  1179. context->shadow_root_level = PT32E_ROOT_LEVEL;
  1180. context->root_hpa = INVALID_PAGE;
  1181. return 0;
  1182. }
  1183. void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
  1184. {
  1185. ++vcpu->stat.tlb_flush;
  1186. kvm_x86_ops->tlb_flush(vcpu);
  1187. }
  1188. static void paging_new_cr3(struct kvm_vcpu *vcpu)
  1189. {
  1190. pgprintk("%s: cr3 %lx\n", __func__, vcpu->arch.cr3);
  1191. mmu_free_roots(vcpu);
  1192. }
  1193. static void inject_page_fault(struct kvm_vcpu *vcpu,
  1194. u64 addr,
  1195. u32 err_code)
  1196. {
  1197. kvm_inject_page_fault(vcpu, addr, err_code);
  1198. }
  1199. static void paging_free(struct kvm_vcpu *vcpu)
  1200. {
  1201. nonpaging_free(vcpu);
  1202. }
  1203. #define PTTYPE 64
  1204. #include "paging_tmpl.h"
  1205. #undef PTTYPE
  1206. #define PTTYPE 32
  1207. #include "paging_tmpl.h"
  1208. #undef PTTYPE
  1209. static int paging64_init_context_common(struct kvm_vcpu *vcpu, int level)
  1210. {
  1211. struct kvm_mmu *context = &vcpu->arch.mmu;
  1212. ASSERT(is_pae(vcpu));
  1213. context->new_cr3 = paging_new_cr3;
  1214. context->page_fault = paging64_page_fault;
  1215. context->gva_to_gpa = paging64_gva_to_gpa;
  1216. context->prefetch_page = paging64_prefetch_page;
  1217. context->free = paging_free;
  1218. context->root_level = level;
  1219. context->shadow_root_level = level;
  1220. context->root_hpa = INVALID_PAGE;
  1221. return 0;
  1222. }
  1223. static int paging64_init_context(struct kvm_vcpu *vcpu)
  1224. {
  1225. return paging64_init_context_common(vcpu, PT64_ROOT_LEVEL);
  1226. }
  1227. static int paging32_init_context(struct kvm_vcpu *vcpu)
  1228. {
  1229. struct kvm_mmu *context = &vcpu->arch.mmu;
  1230. context->new_cr3 = paging_new_cr3;
  1231. context->page_fault = paging32_page_fault;
  1232. context->gva_to_gpa = paging32_gva_to_gpa;
  1233. context->free = paging_free;
  1234. context->prefetch_page = paging32_prefetch_page;
  1235. context->root_level = PT32_ROOT_LEVEL;
  1236. context->shadow_root_level = PT32E_ROOT_LEVEL;
  1237. context->root_hpa = INVALID_PAGE;
  1238. return 0;
  1239. }
  1240. static int paging32E_init_context(struct kvm_vcpu *vcpu)
  1241. {
  1242. return paging64_init_context_common(vcpu, PT32E_ROOT_LEVEL);
  1243. }
  1244. static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
  1245. {
  1246. struct kvm_mmu *context = &vcpu->arch.mmu;
  1247. context->new_cr3 = nonpaging_new_cr3;
  1248. context->page_fault = tdp_page_fault;
  1249. context->free = nonpaging_free;
  1250. context->prefetch_page = nonpaging_prefetch_page;
  1251. context->shadow_root_level = kvm_x86_ops->get_tdp_level();
  1252. context->root_hpa = INVALID_PAGE;
  1253. if (!is_paging(vcpu)) {
  1254. context->gva_to_gpa = nonpaging_gva_to_gpa;
  1255. context->root_level = 0;
  1256. } else if (is_long_mode(vcpu)) {
  1257. context->gva_to_gpa = paging64_gva_to_gpa;
  1258. context->root_level = PT64_ROOT_LEVEL;
  1259. } else if (is_pae(vcpu)) {
  1260. context->gva_to_gpa = paging64_gva_to_gpa;
  1261. context->root_level = PT32E_ROOT_LEVEL;
  1262. } else {
  1263. context->gva_to_gpa = paging32_gva_to_gpa;
  1264. context->root_level = PT32_ROOT_LEVEL;
  1265. }
  1266. return 0;
  1267. }
  1268. static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
  1269. {
  1270. ASSERT(vcpu);
  1271. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  1272. if (!is_paging(vcpu))
  1273. return nonpaging_init_context(vcpu);
  1274. else if (is_long_mode(vcpu))
  1275. return paging64_init_context(vcpu);
  1276. else if (is_pae(vcpu))
  1277. return paging32E_init_context(vcpu);
  1278. else
  1279. return paging32_init_context(vcpu);
  1280. }
  1281. static int init_kvm_mmu(struct kvm_vcpu *vcpu)
  1282. {
  1283. vcpu->arch.update_pte.pfn = bad_pfn;
  1284. if (tdp_enabled)
  1285. return init_kvm_tdp_mmu(vcpu);
  1286. else
  1287. return init_kvm_softmmu(vcpu);
  1288. }
  1289. static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
  1290. {
  1291. ASSERT(vcpu);
  1292. if (VALID_PAGE(vcpu->arch.mmu.root_hpa)) {
  1293. vcpu->arch.mmu.free(vcpu);
  1294. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  1295. }
  1296. }
  1297. int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
  1298. {
  1299. destroy_kvm_mmu(vcpu);
  1300. return init_kvm_mmu(vcpu);
  1301. }
  1302. EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
  1303. int kvm_mmu_load(struct kvm_vcpu *vcpu)
  1304. {
  1305. int r;
  1306. r = mmu_topup_memory_caches(vcpu);
  1307. if (r)
  1308. goto out;
  1309. spin_lock(&vcpu->kvm->mmu_lock);
  1310. kvm_mmu_free_some_pages(vcpu);
  1311. mmu_alloc_roots(vcpu);
  1312. spin_unlock(&vcpu->kvm->mmu_lock);
  1313. kvm_x86_ops->set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
  1314. kvm_mmu_flush_tlb(vcpu);
  1315. out:
  1316. return r;
  1317. }
  1318. EXPORT_SYMBOL_GPL(kvm_mmu_load);
  1319. void kvm_mmu_unload(struct kvm_vcpu *vcpu)
  1320. {
  1321. mmu_free_roots(vcpu);
  1322. }
  1323. static void mmu_pte_write_zap_pte(struct kvm_vcpu *vcpu,
  1324. struct kvm_mmu_page *sp,
  1325. u64 *spte)
  1326. {
  1327. u64 pte;
  1328. struct kvm_mmu_page *child;
  1329. pte = *spte;
  1330. if (is_shadow_present_pte(pte)) {
  1331. if (sp->role.level == PT_PAGE_TABLE_LEVEL ||
  1332. is_large_pte(pte))
  1333. rmap_remove(vcpu->kvm, spte);
  1334. else {
  1335. child = page_header(pte & PT64_BASE_ADDR_MASK);
  1336. mmu_page_remove_parent_pte(child, spte);
  1337. }
  1338. }
  1339. set_shadow_pte(spte, shadow_trap_nonpresent_pte);
  1340. if (is_large_pte(pte))
  1341. --vcpu->kvm->stat.lpages;
  1342. }
  1343. static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
  1344. struct kvm_mmu_page *sp,
  1345. u64 *spte,
  1346. const void *new)
  1347. {
  1348. if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
  1349. if (!vcpu->arch.update_pte.largepage ||
  1350. sp->role.glevels == PT32_ROOT_LEVEL) {
  1351. ++vcpu->kvm->stat.mmu_pde_zapped;
  1352. return;
  1353. }
  1354. }
  1355. ++vcpu->kvm->stat.mmu_pte_updated;
  1356. if (sp->role.glevels == PT32_ROOT_LEVEL)
  1357. paging32_update_pte(vcpu, sp, spte, new);
  1358. else
  1359. paging64_update_pte(vcpu, sp, spte, new);
  1360. }
  1361. static bool need_remote_flush(u64 old, u64 new)
  1362. {
  1363. if (!is_shadow_present_pte(old))
  1364. return false;
  1365. if (!is_shadow_present_pte(new))
  1366. return true;
  1367. if ((old ^ new) & PT64_BASE_ADDR_MASK)
  1368. return true;
  1369. old ^= PT64_NX_MASK;
  1370. new ^= PT64_NX_MASK;
  1371. return (old & ~new & PT64_PERM_MASK) != 0;
  1372. }
  1373. static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, u64 old, u64 new)
  1374. {
  1375. if (need_remote_flush(old, new))
  1376. kvm_flush_remote_tlbs(vcpu->kvm);
  1377. else
  1378. kvm_mmu_flush_tlb(vcpu);
  1379. }
  1380. static bool last_updated_pte_accessed(struct kvm_vcpu *vcpu)
  1381. {
  1382. u64 *spte = vcpu->arch.last_pte_updated;
  1383. return !!(spte && (*spte & shadow_accessed_mask));
  1384. }
  1385. static void mmu_guess_page_from_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
  1386. const u8 *new, int bytes)
  1387. {
  1388. gfn_t gfn;
  1389. int r;
  1390. u64 gpte = 0;
  1391. pfn_t pfn;
  1392. vcpu->arch.update_pte.largepage = 0;
  1393. if (bytes != 4 && bytes != 8)
  1394. return;
  1395. /*
  1396. * Assume that the pte write on a page table of the same type
  1397. * as the current vcpu paging mode. This is nearly always true
  1398. * (might be false while changing modes). Note it is verified later
  1399. * by update_pte().
  1400. */
  1401. if (is_pae(vcpu)) {
  1402. /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
  1403. if ((bytes == 4) && (gpa % 4 == 0)) {
  1404. r = kvm_read_guest(vcpu->kvm, gpa & ~(u64)7, &gpte, 8);
  1405. if (r)
  1406. return;
  1407. memcpy((void *)&gpte + (gpa % 8), new, 4);
  1408. } else if ((bytes == 8) && (gpa % 8 == 0)) {
  1409. memcpy((void *)&gpte, new, 8);
  1410. }
  1411. } else {
  1412. if ((bytes == 4) && (gpa % 4 == 0))
  1413. memcpy((void *)&gpte, new, 4);
  1414. }
  1415. if (!is_present_pte(gpte))
  1416. return;
  1417. gfn = (gpte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
  1418. down_read(&current->mm->mmap_sem);
  1419. if (is_large_pte(gpte) && is_largepage_backed(vcpu, gfn)) {
  1420. gfn &= ~(KVM_PAGES_PER_HPAGE-1);
  1421. vcpu->arch.update_pte.largepage = 1;
  1422. }
  1423. pfn = gfn_to_pfn(vcpu->kvm, gfn);
  1424. up_read(&current->mm->mmap_sem);
  1425. if (is_error_pfn(pfn)) {
  1426. kvm_release_pfn_clean(pfn);
  1427. return;
  1428. }
  1429. vcpu->arch.update_pte.gfn = gfn;
  1430. vcpu->arch.update_pte.pfn = pfn;
  1431. }
  1432. void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
  1433. const u8 *new, int bytes)
  1434. {
  1435. gfn_t gfn = gpa >> PAGE_SHIFT;
  1436. struct kvm_mmu_page *sp;
  1437. struct hlist_node *node, *n;
  1438. struct hlist_head *bucket;
  1439. unsigned index;
  1440. u64 entry, gentry;
  1441. u64 *spte;
  1442. unsigned offset = offset_in_page(gpa);
  1443. unsigned pte_size;
  1444. unsigned page_offset;
  1445. unsigned misaligned;
  1446. unsigned quadrant;
  1447. int level;
  1448. int flooded = 0;
  1449. int npte;
  1450. int r;
  1451. pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
  1452. mmu_guess_page_from_pte_write(vcpu, gpa, new, bytes);
  1453. spin_lock(&vcpu->kvm->mmu_lock);
  1454. kvm_mmu_free_some_pages(vcpu);
  1455. ++vcpu->kvm->stat.mmu_pte_write;
  1456. kvm_mmu_audit(vcpu, "pre pte write");
  1457. if (gfn == vcpu->arch.last_pt_write_gfn
  1458. && !last_updated_pte_accessed(vcpu)) {
  1459. ++vcpu->arch.last_pt_write_count;
  1460. if (vcpu->arch.last_pt_write_count >= 3)
  1461. flooded = 1;
  1462. } else {
  1463. vcpu->arch.last_pt_write_gfn = gfn;
  1464. vcpu->arch.last_pt_write_count = 1;
  1465. vcpu->arch.last_pte_updated = NULL;
  1466. }
  1467. index = kvm_page_table_hashfn(gfn);
  1468. bucket = &vcpu->kvm->arch.mmu_page_hash[index];
  1469. hlist_for_each_entry_safe(sp, node, n, bucket, hash_link) {
  1470. if (sp->gfn != gfn || sp->role.metaphysical)
  1471. continue;
  1472. pte_size = sp->role.glevels == PT32_ROOT_LEVEL ? 4 : 8;
  1473. misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
  1474. misaligned |= bytes < 4;
  1475. if (misaligned || flooded) {
  1476. /*
  1477. * Misaligned accesses are too much trouble to fix
  1478. * up; also, they usually indicate a page is not used
  1479. * as a page table.
  1480. *
  1481. * If we're seeing too many writes to a page,
  1482. * it may no longer be a page table, or we may be
  1483. * forking, in which case it is better to unmap the
  1484. * page.
  1485. */
  1486. pgprintk("misaligned: gpa %llx bytes %d role %x\n",
  1487. gpa, bytes, sp->role.word);
  1488. kvm_mmu_zap_page(vcpu->kvm, sp);
  1489. ++vcpu->kvm->stat.mmu_flooded;
  1490. continue;
  1491. }
  1492. page_offset = offset;
  1493. level = sp->role.level;
  1494. npte = 1;
  1495. if (sp->role.glevels == PT32_ROOT_LEVEL) {
  1496. page_offset <<= 1; /* 32->64 */
  1497. /*
  1498. * A 32-bit pde maps 4MB while the shadow pdes map
  1499. * only 2MB. So we need to double the offset again
  1500. * and zap two pdes instead of one.
  1501. */
  1502. if (level == PT32_ROOT_LEVEL) {
  1503. page_offset &= ~7; /* kill rounding error */
  1504. page_offset <<= 1;
  1505. npte = 2;
  1506. }
  1507. quadrant = page_offset >> PAGE_SHIFT;
  1508. page_offset &= ~PAGE_MASK;
  1509. if (quadrant != sp->role.quadrant)
  1510. continue;
  1511. }
  1512. spte = &sp->spt[page_offset / sizeof(*spte)];
  1513. if ((gpa & (pte_size - 1)) || (bytes < pte_size)) {
  1514. gentry = 0;
  1515. r = kvm_read_guest_atomic(vcpu->kvm,
  1516. gpa & ~(u64)(pte_size - 1),
  1517. &gentry, pte_size);
  1518. new = (const void *)&gentry;
  1519. if (r < 0)
  1520. new = NULL;
  1521. }
  1522. while (npte--) {
  1523. entry = *spte;
  1524. mmu_pte_write_zap_pte(vcpu, sp, spte);
  1525. if (new)
  1526. mmu_pte_write_new_pte(vcpu, sp, spte, new);
  1527. mmu_pte_write_flush_tlb(vcpu, entry, *spte);
  1528. ++spte;
  1529. }
  1530. }
  1531. kvm_mmu_audit(vcpu, "post pte write");
  1532. spin_unlock(&vcpu->kvm->mmu_lock);
  1533. if (!is_error_pfn(vcpu->arch.update_pte.pfn)) {
  1534. kvm_release_pfn_clean(vcpu->arch.update_pte.pfn);
  1535. vcpu->arch.update_pte.pfn = bad_pfn;
  1536. }
  1537. }
  1538. int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
  1539. {
  1540. gpa_t gpa;
  1541. int r;
  1542. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gva);
  1543. spin_lock(&vcpu->kvm->mmu_lock);
  1544. r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  1545. spin_unlock(&vcpu->kvm->mmu_lock);
  1546. return r;
  1547. }
  1548. void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
  1549. {
  1550. while (vcpu->kvm->arch.n_free_mmu_pages < KVM_REFILL_PAGES) {
  1551. struct kvm_mmu_page *sp;
  1552. sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
  1553. struct kvm_mmu_page, link);
  1554. kvm_mmu_zap_page(vcpu->kvm, sp);
  1555. ++vcpu->kvm->stat.mmu_recycled;
  1556. }
  1557. }
  1558. int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code)
  1559. {
  1560. int r;
  1561. enum emulation_result er;
  1562. r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code);
  1563. if (r < 0)
  1564. goto out;
  1565. if (!r) {
  1566. r = 1;
  1567. goto out;
  1568. }
  1569. r = mmu_topup_memory_caches(vcpu);
  1570. if (r)
  1571. goto out;
  1572. er = emulate_instruction(vcpu, vcpu->run, cr2, error_code, 0);
  1573. switch (er) {
  1574. case EMULATE_DONE:
  1575. return 1;
  1576. case EMULATE_DO_MMIO:
  1577. ++vcpu->stat.mmio_exits;
  1578. return 0;
  1579. case EMULATE_FAIL:
  1580. kvm_report_emulation_failure(vcpu, "pagetable");
  1581. return 1;
  1582. default:
  1583. BUG();
  1584. }
  1585. out:
  1586. return r;
  1587. }
  1588. EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
  1589. void kvm_enable_tdp(void)
  1590. {
  1591. tdp_enabled = true;
  1592. }
  1593. EXPORT_SYMBOL_GPL(kvm_enable_tdp);
  1594. static void free_mmu_pages(struct kvm_vcpu *vcpu)
  1595. {
  1596. struct kvm_mmu_page *sp;
  1597. while (!list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
  1598. sp = container_of(vcpu->kvm->arch.active_mmu_pages.next,
  1599. struct kvm_mmu_page, link);
  1600. kvm_mmu_zap_page(vcpu->kvm, sp);
  1601. cond_resched();
  1602. }
  1603. free_page((unsigned long)vcpu->arch.mmu.pae_root);
  1604. }
  1605. static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
  1606. {
  1607. struct page *page;
  1608. int i;
  1609. ASSERT(vcpu);
  1610. if (vcpu->kvm->arch.n_requested_mmu_pages)
  1611. vcpu->kvm->arch.n_free_mmu_pages =
  1612. vcpu->kvm->arch.n_requested_mmu_pages;
  1613. else
  1614. vcpu->kvm->arch.n_free_mmu_pages =
  1615. vcpu->kvm->arch.n_alloc_mmu_pages;
  1616. /*
  1617. * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
  1618. * Therefore we need to allocate shadow page tables in the first
  1619. * 4GB of memory, which happens to fit the DMA32 zone.
  1620. */
  1621. page = alloc_page(GFP_KERNEL | __GFP_DMA32);
  1622. if (!page)
  1623. goto error_1;
  1624. vcpu->arch.mmu.pae_root = page_address(page);
  1625. for (i = 0; i < 4; ++i)
  1626. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  1627. return 0;
  1628. error_1:
  1629. free_mmu_pages(vcpu);
  1630. return -ENOMEM;
  1631. }
  1632. int kvm_mmu_create(struct kvm_vcpu *vcpu)
  1633. {
  1634. ASSERT(vcpu);
  1635. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  1636. return alloc_mmu_pages(vcpu);
  1637. }
  1638. int kvm_mmu_setup(struct kvm_vcpu *vcpu)
  1639. {
  1640. ASSERT(vcpu);
  1641. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  1642. return init_kvm_mmu(vcpu);
  1643. }
  1644. void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
  1645. {
  1646. ASSERT(vcpu);
  1647. destroy_kvm_mmu(vcpu);
  1648. free_mmu_pages(vcpu);
  1649. mmu_free_memory_caches(vcpu);
  1650. }
  1651. void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
  1652. {
  1653. struct kvm_mmu_page *sp;
  1654. list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) {
  1655. int i;
  1656. u64 *pt;
  1657. if (!test_bit(slot, &sp->slot_bitmap))
  1658. continue;
  1659. pt = sp->spt;
  1660. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  1661. /* avoid RMW */
  1662. if (pt[i] & PT_WRITABLE_MASK)
  1663. pt[i] &= ~PT_WRITABLE_MASK;
  1664. }
  1665. }
  1666. void kvm_mmu_zap_all(struct kvm *kvm)
  1667. {
  1668. struct kvm_mmu_page *sp, *node;
  1669. spin_lock(&kvm->mmu_lock);
  1670. list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
  1671. kvm_mmu_zap_page(kvm, sp);
  1672. spin_unlock(&kvm->mmu_lock);
  1673. kvm_flush_remote_tlbs(kvm);
  1674. }
  1675. void kvm_mmu_remove_one_alloc_mmu_page(struct kvm *kvm)
  1676. {
  1677. struct kvm_mmu_page *page;
  1678. page = container_of(kvm->arch.active_mmu_pages.prev,
  1679. struct kvm_mmu_page, link);
  1680. kvm_mmu_zap_page(kvm, page);
  1681. }
  1682. static int mmu_shrink(int nr_to_scan, gfp_t gfp_mask)
  1683. {
  1684. struct kvm *kvm;
  1685. struct kvm *kvm_freed = NULL;
  1686. int cache_count = 0;
  1687. spin_lock(&kvm_lock);
  1688. list_for_each_entry(kvm, &vm_list, vm_list) {
  1689. int npages;
  1690. spin_lock(&kvm->mmu_lock);
  1691. npages = kvm->arch.n_alloc_mmu_pages -
  1692. kvm->arch.n_free_mmu_pages;
  1693. cache_count += npages;
  1694. if (!kvm_freed && nr_to_scan > 0 && npages > 0) {
  1695. kvm_mmu_remove_one_alloc_mmu_page(kvm);
  1696. cache_count--;
  1697. kvm_freed = kvm;
  1698. }
  1699. nr_to_scan--;
  1700. spin_unlock(&kvm->mmu_lock);
  1701. }
  1702. if (kvm_freed)
  1703. list_move_tail(&kvm_freed->vm_list, &vm_list);
  1704. spin_unlock(&kvm_lock);
  1705. return cache_count;
  1706. }
  1707. static struct shrinker mmu_shrinker = {
  1708. .shrink = mmu_shrink,
  1709. .seeks = DEFAULT_SEEKS * 10,
  1710. };
  1711. static void mmu_destroy_caches(void)
  1712. {
  1713. if (pte_chain_cache)
  1714. kmem_cache_destroy(pte_chain_cache);
  1715. if (rmap_desc_cache)
  1716. kmem_cache_destroy(rmap_desc_cache);
  1717. if (mmu_page_header_cache)
  1718. kmem_cache_destroy(mmu_page_header_cache);
  1719. }
  1720. void kvm_mmu_module_exit(void)
  1721. {
  1722. mmu_destroy_caches();
  1723. unregister_shrinker(&mmu_shrinker);
  1724. }
  1725. int kvm_mmu_module_init(void)
  1726. {
  1727. pte_chain_cache = kmem_cache_create("kvm_pte_chain",
  1728. sizeof(struct kvm_pte_chain),
  1729. 0, 0, NULL);
  1730. if (!pte_chain_cache)
  1731. goto nomem;
  1732. rmap_desc_cache = kmem_cache_create("kvm_rmap_desc",
  1733. sizeof(struct kvm_rmap_desc),
  1734. 0, 0, NULL);
  1735. if (!rmap_desc_cache)
  1736. goto nomem;
  1737. mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
  1738. sizeof(struct kvm_mmu_page),
  1739. 0, 0, NULL);
  1740. if (!mmu_page_header_cache)
  1741. goto nomem;
  1742. register_shrinker(&mmu_shrinker);
  1743. return 0;
  1744. nomem:
  1745. mmu_destroy_caches();
  1746. return -ENOMEM;
  1747. }
  1748. /*
  1749. * Caculate mmu pages needed for kvm.
  1750. */
  1751. unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
  1752. {
  1753. int i;
  1754. unsigned int nr_mmu_pages;
  1755. unsigned int nr_pages = 0;
  1756. for (i = 0; i < kvm->nmemslots; i++)
  1757. nr_pages += kvm->memslots[i].npages;
  1758. nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
  1759. nr_mmu_pages = max(nr_mmu_pages,
  1760. (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
  1761. return nr_mmu_pages;
  1762. }
  1763. static void *pv_mmu_peek_buffer(struct kvm_pv_mmu_op_buffer *buffer,
  1764. unsigned len)
  1765. {
  1766. if (len > buffer->len)
  1767. return NULL;
  1768. return buffer->ptr;
  1769. }
  1770. static void *pv_mmu_read_buffer(struct kvm_pv_mmu_op_buffer *buffer,
  1771. unsigned len)
  1772. {
  1773. void *ret;
  1774. ret = pv_mmu_peek_buffer(buffer, len);
  1775. if (!ret)
  1776. return ret;
  1777. buffer->ptr += len;
  1778. buffer->len -= len;
  1779. buffer->processed += len;
  1780. return ret;
  1781. }
  1782. static int kvm_pv_mmu_write(struct kvm_vcpu *vcpu,
  1783. gpa_t addr, gpa_t value)
  1784. {
  1785. int bytes = 8;
  1786. int r;
  1787. if (!is_long_mode(vcpu) && !is_pae(vcpu))
  1788. bytes = 4;
  1789. r = mmu_topup_memory_caches(vcpu);
  1790. if (r)
  1791. return r;
  1792. if (!emulator_write_phys(vcpu, addr, &value, bytes))
  1793. return -EFAULT;
  1794. return 1;
  1795. }
  1796. static int kvm_pv_mmu_flush_tlb(struct kvm_vcpu *vcpu)
  1797. {
  1798. kvm_x86_ops->tlb_flush(vcpu);
  1799. return 1;
  1800. }
  1801. static int kvm_pv_mmu_release_pt(struct kvm_vcpu *vcpu, gpa_t addr)
  1802. {
  1803. spin_lock(&vcpu->kvm->mmu_lock);
  1804. mmu_unshadow(vcpu->kvm, addr >> PAGE_SHIFT);
  1805. spin_unlock(&vcpu->kvm->mmu_lock);
  1806. return 1;
  1807. }
  1808. static int kvm_pv_mmu_op_one(struct kvm_vcpu *vcpu,
  1809. struct kvm_pv_mmu_op_buffer *buffer)
  1810. {
  1811. struct kvm_mmu_op_header *header;
  1812. header = pv_mmu_peek_buffer(buffer, sizeof *header);
  1813. if (!header)
  1814. return 0;
  1815. switch (header->op) {
  1816. case KVM_MMU_OP_WRITE_PTE: {
  1817. struct kvm_mmu_op_write_pte *wpte;
  1818. wpte = pv_mmu_read_buffer(buffer, sizeof *wpte);
  1819. if (!wpte)
  1820. return 0;
  1821. return kvm_pv_mmu_write(vcpu, wpte->pte_phys,
  1822. wpte->pte_val);
  1823. }
  1824. case KVM_MMU_OP_FLUSH_TLB: {
  1825. struct kvm_mmu_op_flush_tlb *ftlb;
  1826. ftlb = pv_mmu_read_buffer(buffer, sizeof *ftlb);
  1827. if (!ftlb)
  1828. return 0;
  1829. return kvm_pv_mmu_flush_tlb(vcpu);
  1830. }
  1831. case KVM_MMU_OP_RELEASE_PT: {
  1832. struct kvm_mmu_op_release_pt *rpt;
  1833. rpt = pv_mmu_read_buffer(buffer, sizeof *rpt);
  1834. if (!rpt)
  1835. return 0;
  1836. return kvm_pv_mmu_release_pt(vcpu, rpt->pt_phys);
  1837. }
  1838. default: return 0;
  1839. }
  1840. }
  1841. int kvm_pv_mmu_op(struct kvm_vcpu *vcpu, unsigned long bytes,
  1842. gpa_t addr, unsigned long *ret)
  1843. {
  1844. int r;
  1845. struct kvm_pv_mmu_op_buffer buffer;
  1846. buffer.ptr = buffer.buf;
  1847. buffer.len = min_t(unsigned long, bytes, sizeof buffer.buf);
  1848. buffer.processed = 0;
  1849. r = kvm_read_guest(vcpu->kvm, addr, buffer.buf, buffer.len);
  1850. if (r)
  1851. goto out;
  1852. while (buffer.len) {
  1853. r = kvm_pv_mmu_op_one(vcpu, &buffer);
  1854. if (r < 0)
  1855. goto out;
  1856. if (r == 0)
  1857. break;
  1858. }
  1859. r = 1;
  1860. out:
  1861. *ret = buffer.processed;
  1862. return r;
  1863. }
  1864. #ifdef AUDIT
  1865. static const char *audit_msg;
  1866. static gva_t canonicalize(gva_t gva)
  1867. {
  1868. #ifdef CONFIG_X86_64
  1869. gva = (long long)(gva << 16) >> 16;
  1870. #endif
  1871. return gva;
  1872. }
  1873. static void audit_mappings_page(struct kvm_vcpu *vcpu, u64 page_pte,
  1874. gva_t va, int level)
  1875. {
  1876. u64 *pt = __va(page_pte & PT64_BASE_ADDR_MASK);
  1877. int i;
  1878. gva_t va_delta = 1ul << (PAGE_SHIFT + 9 * (level - 1));
  1879. for (i = 0; i < PT64_ENT_PER_PAGE; ++i, va += va_delta) {
  1880. u64 ent = pt[i];
  1881. if (ent == shadow_trap_nonpresent_pte)
  1882. continue;
  1883. va = canonicalize(va);
  1884. if (level > 1) {
  1885. if (ent == shadow_notrap_nonpresent_pte)
  1886. printk(KERN_ERR "audit: (%s) nontrapping pte"
  1887. " in nonleaf level: levels %d gva %lx"
  1888. " level %d pte %llx\n", audit_msg,
  1889. vcpu->arch.mmu.root_level, va, level, ent);
  1890. audit_mappings_page(vcpu, ent, va, level - 1);
  1891. } else {
  1892. gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, va);
  1893. hpa_t hpa = (hpa_t)gpa_to_pfn(vcpu, gpa) << PAGE_SHIFT;
  1894. if (is_shadow_present_pte(ent)
  1895. && (ent & PT64_BASE_ADDR_MASK) != hpa)
  1896. printk(KERN_ERR "xx audit error: (%s) levels %d"
  1897. " gva %lx gpa %llx hpa %llx ent %llx %d\n",
  1898. audit_msg, vcpu->arch.mmu.root_level,
  1899. va, gpa, hpa, ent,
  1900. is_shadow_present_pte(ent));
  1901. else if (ent == shadow_notrap_nonpresent_pte
  1902. && !is_error_hpa(hpa))
  1903. printk(KERN_ERR "audit: (%s) notrap shadow,"
  1904. " valid guest gva %lx\n", audit_msg, va);
  1905. kvm_release_pfn_clean(pfn);
  1906. }
  1907. }
  1908. }
  1909. static void audit_mappings(struct kvm_vcpu *vcpu)
  1910. {
  1911. unsigned i;
  1912. if (vcpu->arch.mmu.root_level == 4)
  1913. audit_mappings_page(vcpu, vcpu->arch.mmu.root_hpa, 0, 4);
  1914. else
  1915. for (i = 0; i < 4; ++i)
  1916. if (vcpu->arch.mmu.pae_root[i] & PT_PRESENT_MASK)
  1917. audit_mappings_page(vcpu,
  1918. vcpu->arch.mmu.pae_root[i],
  1919. i << 30,
  1920. 2);
  1921. }
  1922. static int count_rmaps(struct kvm_vcpu *vcpu)
  1923. {
  1924. int nmaps = 0;
  1925. int i, j, k;
  1926. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  1927. struct kvm_memory_slot *m = &vcpu->kvm->memslots[i];
  1928. struct kvm_rmap_desc *d;
  1929. for (j = 0; j < m->npages; ++j) {
  1930. unsigned long *rmapp = &m->rmap[j];
  1931. if (!*rmapp)
  1932. continue;
  1933. if (!(*rmapp & 1)) {
  1934. ++nmaps;
  1935. continue;
  1936. }
  1937. d = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  1938. while (d) {
  1939. for (k = 0; k < RMAP_EXT; ++k)
  1940. if (d->shadow_ptes[k])
  1941. ++nmaps;
  1942. else
  1943. break;
  1944. d = d->more;
  1945. }
  1946. }
  1947. }
  1948. return nmaps;
  1949. }
  1950. static int count_writable_mappings(struct kvm_vcpu *vcpu)
  1951. {
  1952. int nmaps = 0;
  1953. struct kvm_mmu_page *sp;
  1954. int i;
  1955. list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) {
  1956. u64 *pt = sp->spt;
  1957. if (sp->role.level != PT_PAGE_TABLE_LEVEL)
  1958. continue;
  1959. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  1960. u64 ent = pt[i];
  1961. if (!(ent & PT_PRESENT_MASK))
  1962. continue;
  1963. if (!(ent & PT_WRITABLE_MASK))
  1964. continue;
  1965. ++nmaps;
  1966. }
  1967. }
  1968. return nmaps;
  1969. }
  1970. static void audit_rmap(struct kvm_vcpu *vcpu)
  1971. {
  1972. int n_rmap = count_rmaps(vcpu);
  1973. int n_actual = count_writable_mappings(vcpu);
  1974. if (n_rmap != n_actual)
  1975. printk(KERN_ERR "%s: (%s) rmap %d actual %d\n",
  1976. __func__, audit_msg, n_rmap, n_actual);
  1977. }
  1978. static void audit_write_protection(struct kvm_vcpu *vcpu)
  1979. {
  1980. struct kvm_mmu_page *sp;
  1981. struct kvm_memory_slot *slot;
  1982. unsigned long *rmapp;
  1983. gfn_t gfn;
  1984. list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) {
  1985. if (sp->role.metaphysical)
  1986. continue;
  1987. slot = gfn_to_memslot(vcpu->kvm, sp->gfn);
  1988. gfn = unalias_gfn(vcpu->kvm, sp->gfn);
  1989. rmapp = &slot->rmap[gfn - slot->base_gfn];
  1990. if (*rmapp)
  1991. printk(KERN_ERR "%s: (%s) shadow page has writable"
  1992. " mappings: gfn %lx role %x\n",
  1993. __func__, audit_msg, sp->gfn,
  1994. sp->role.word);
  1995. }
  1996. }
  1997. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg)
  1998. {
  1999. int olddbg = dbg;
  2000. dbg = 0;
  2001. audit_msg = msg;
  2002. audit_rmap(vcpu);
  2003. audit_write_protection(vcpu);
  2004. audit_mappings(vcpu);
  2005. dbg = olddbg;
  2006. }
  2007. #endif