main.c 44 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707
  1. /* Generic MTRR (Memory Type Range Register) driver.
  2. Copyright (C) 1997-2000 Richard Gooch
  3. Copyright (c) 2002 Patrick Mochel
  4. This library is free software; you can redistribute it and/or
  5. modify it under the terms of the GNU Library General Public
  6. License as published by the Free Software Foundation; either
  7. version 2 of the License, or (at your option) any later version.
  8. This library is distributed in the hope that it will be useful,
  9. but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. Library General Public License for more details.
  12. You should have received a copy of the GNU Library General Public
  13. License along with this library; if not, write to the Free
  14. Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  15. Richard Gooch may be reached by email at rgooch@atnf.csiro.au
  16. The postal address is:
  17. Richard Gooch, c/o ATNF, P. O. Box 76, Epping, N.S.W., 2121, Australia.
  18. Source: "Pentium Pro Family Developer's Manual, Volume 3:
  19. Operating System Writer's Guide" (Intel document number 242692),
  20. section 11.11.7
  21. This was cleaned and made readable by Patrick Mochel <mochel@osdl.org>
  22. on 6-7 March 2002.
  23. Source: Intel Architecture Software Developers Manual, Volume 3:
  24. System Programming Guide; Section 9.11. (1997 edition - PPro).
  25. */
  26. #include <linux/module.h>
  27. #include <linux/init.h>
  28. #include <linux/pci.h>
  29. #include <linux/smp.h>
  30. #include <linux/cpu.h>
  31. #include <linux/mutex.h>
  32. #include <linux/sort.h>
  33. #include <asm/e820.h>
  34. #include <asm/mtrr.h>
  35. #include <asm/uaccess.h>
  36. #include <asm/processor.h>
  37. #include <asm/msr.h>
  38. #include <asm/kvm_para.h>
  39. #include "mtrr.h"
  40. u32 num_var_ranges = 0;
  41. unsigned int mtrr_usage_table[MAX_VAR_RANGES];
  42. static DEFINE_MUTEX(mtrr_mutex);
  43. u64 size_or_mask, size_and_mask;
  44. static struct mtrr_ops * mtrr_ops[X86_VENDOR_NUM] = {};
  45. struct mtrr_ops * mtrr_if = NULL;
  46. static void set_mtrr(unsigned int reg, unsigned long base,
  47. unsigned long size, mtrr_type type);
  48. void set_mtrr_ops(struct mtrr_ops * ops)
  49. {
  50. if (ops->vendor && ops->vendor < X86_VENDOR_NUM)
  51. mtrr_ops[ops->vendor] = ops;
  52. }
  53. /* Returns non-zero if we have the write-combining memory type */
  54. static int have_wrcomb(void)
  55. {
  56. struct pci_dev *dev;
  57. u8 rev;
  58. if ((dev = pci_get_class(PCI_CLASS_BRIDGE_HOST << 8, NULL)) != NULL) {
  59. /* ServerWorks LE chipsets < rev 6 have problems with write-combining
  60. Don't allow it and leave room for other chipsets to be tagged */
  61. if (dev->vendor == PCI_VENDOR_ID_SERVERWORKS &&
  62. dev->device == PCI_DEVICE_ID_SERVERWORKS_LE) {
  63. pci_read_config_byte(dev, PCI_CLASS_REVISION, &rev);
  64. if (rev <= 5) {
  65. printk(KERN_INFO "mtrr: Serverworks LE rev < 6 detected. Write-combining disabled.\n");
  66. pci_dev_put(dev);
  67. return 0;
  68. }
  69. }
  70. /* Intel 450NX errata # 23. Non ascending cacheline evictions to
  71. write combining memory may resulting in data corruption */
  72. if (dev->vendor == PCI_VENDOR_ID_INTEL &&
  73. dev->device == PCI_DEVICE_ID_INTEL_82451NX) {
  74. printk(KERN_INFO "mtrr: Intel 450NX MMC detected. Write-combining disabled.\n");
  75. pci_dev_put(dev);
  76. return 0;
  77. }
  78. pci_dev_put(dev);
  79. }
  80. return (mtrr_if->have_wrcomb ? mtrr_if->have_wrcomb() : 0);
  81. }
  82. /* This function returns the number of variable MTRRs */
  83. static void __init set_num_var_ranges(void)
  84. {
  85. unsigned long config = 0, dummy;
  86. if (use_intel()) {
  87. rdmsr(MTRRcap_MSR, config, dummy);
  88. } else if (is_cpu(AMD))
  89. config = 2;
  90. else if (is_cpu(CYRIX) || is_cpu(CENTAUR))
  91. config = 8;
  92. num_var_ranges = config & 0xff;
  93. }
  94. static void __init init_table(void)
  95. {
  96. int i, max;
  97. max = num_var_ranges;
  98. for (i = 0; i < max; i++)
  99. mtrr_usage_table[i] = 1;
  100. }
  101. struct set_mtrr_data {
  102. atomic_t count;
  103. atomic_t gate;
  104. unsigned long smp_base;
  105. unsigned long smp_size;
  106. unsigned int smp_reg;
  107. mtrr_type smp_type;
  108. };
  109. static void ipi_handler(void *info)
  110. /* [SUMMARY] Synchronisation handler. Executed by "other" CPUs.
  111. [RETURNS] Nothing.
  112. */
  113. {
  114. #ifdef CONFIG_SMP
  115. struct set_mtrr_data *data = info;
  116. unsigned long flags;
  117. local_irq_save(flags);
  118. atomic_dec(&data->count);
  119. while(!atomic_read(&data->gate))
  120. cpu_relax();
  121. /* The master has cleared me to execute */
  122. if (data->smp_reg != ~0U)
  123. mtrr_if->set(data->smp_reg, data->smp_base,
  124. data->smp_size, data->smp_type);
  125. else
  126. mtrr_if->set_all();
  127. atomic_dec(&data->count);
  128. while(atomic_read(&data->gate))
  129. cpu_relax();
  130. atomic_dec(&data->count);
  131. local_irq_restore(flags);
  132. #endif
  133. }
  134. static inline int types_compatible(mtrr_type type1, mtrr_type type2) {
  135. return type1 == MTRR_TYPE_UNCACHABLE ||
  136. type2 == MTRR_TYPE_UNCACHABLE ||
  137. (type1 == MTRR_TYPE_WRTHROUGH && type2 == MTRR_TYPE_WRBACK) ||
  138. (type1 == MTRR_TYPE_WRBACK && type2 == MTRR_TYPE_WRTHROUGH);
  139. }
  140. /**
  141. * set_mtrr - update mtrrs on all processors
  142. * @reg: mtrr in question
  143. * @base: mtrr base
  144. * @size: mtrr size
  145. * @type: mtrr type
  146. *
  147. * This is kinda tricky, but fortunately, Intel spelled it out for us cleanly:
  148. *
  149. * 1. Send IPI to do the following:
  150. * 2. Disable Interrupts
  151. * 3. Wait for all procs to do so
  152. * 4. Enter no-fill cache mode
  153. * 5. Flush caches
  154. * 6. Clear PGE bit
  155. * 7. Flush all TLBs
  156. * 8. Disable all range registers
  157. * 9. Update the MTRRs
  158. * 10. Enable all range registers
  159. * 11. Flush all TLBs and caches again
  160. * 12. Enter normal cache mode and reenable caching
  161. * 13. Set PGE
  162. * 14. Wait for buddies to catch up
  163. * 15. Enable interrupts.
  164. *
  165. * What does that mean for us? Well, first we set data.count to the number
  166. * of CPUs. As each CPU disables interrupts, it'll decrement it once. We wait
  167. * until it hits 0 and proceed. We set the data.gate flag and reset data.count.
  168. * Meanwhile, they are waiting for that flag to be set. Once it's set, each
  169. * CPU goes through the transition of updating MTRRs. The CPU vendors may each do it
  170. * differently, so we call mtrr_if->set() callback and let them take care of it.
  171. * When they're done, they again decrement data->count and wait for data.gate to
  172. * be reset.
  173. * When we finish, we wait for data.count to hit 0 and toggle the data.gate flag.
  174. * Everyone then enables interrupts and we all continue on.
  175. *
  176. * Note that the mechanism is the same for UP systems, too; all the SMP stuff
  177. * becomes nops.
  178. */
  179. static void set_mtrr(unsigned int reg, unsigned long base,
  180. unsigned long size, mtrr_type type)
  181. {
  182. struct set_mtrr_data data;
  183. unsigned long flags;
  184. data.smp_reg = reg;
  185. data.smp_base = base;
  186. data.smp_size = size;
  187. data.smp_type = type;
  188. atomic_set(&data.count, num_booting_cpus() - 1);
  189. /* make sure data.count is visible before unleashing other CPUs */
  190. smp_wmb();
  191. atomic_set(&data.gate,0);
  192. /* Start the ball rolling on other CPUs */
  193. if (smp_call_function(ipi_handler, &data, 1, 0) != 0)
  194. panic("mtrr: timed out waiting for other CPUs\n");
  195. local_irq_save(flags);
  196. while(atomic_read(&data.count))
  197. cpu_relax();
  198. /* ok, reset count and toggle gate */
  199. atomic_set(&data.count, num_booting_cpus() - 1);
  200. smp_wmb();
  201. atomic_set(&data.gate,1);
  202. /* do our MTRR business */
  203. /* HACK!
  204. * We use this same function to initialize the mtrrs on boot.
  205. * The state of the boot cpu's mtrrs has been saved, and we want
  206. * to replicate across all the APs.
  207. * If we're doing that @reg is set to something special...
  208. */
  209. if (reg != ~0U)
  210. mtrr_if->set(reg,base,size,type);
  211. /* wait for the others */
  212. while(atomic_read(&data.count))
  213. cpu_relax();
  214. atomic_set(&data.count, num_booting_cpus() - 1);
  215. smp_wmb();
  216. atomic_set(&data.gate,0);
  217. /*
  218. * Wait here for everyone to have seen the gate change
  219. * So we're the last ones to touch 'data'
  220. */
  221. while(atomic_read(&data.count))
  222. cpu_relax();
  223. local_irq_restore(flags);
  224. }
  225. /**
  226. * mtrr_add_page - Add a memory type region
  227. * @base: Physical base address of region in pages (in units of 4 kB!)
  228. * @size: Physical size of region in pages (4 kB)
  229. * @type: Type of MTRR desired
  230. * @increment: If this is true do usage counting on the region
  231. *
  232. * Memory type region registers control the caching on newer Intel and
  233. * non Intel processors. This function allows drivers to request an
  234. * MTRR is added. The details and hardware specifics of each processor's
  235. * implementation are hidden from the caller, but nevertheless the
  236. * caller should expect to need to provide a power of two size on an
  237. * equivalent power of two boundary.
  238. *
  239. * If the region cannot be added either because all regions are in use
  240. * or the CPU cannot support it a negative value is returned. On success
  241. * the register number for this entry is returned, but should be treated
  242. * as a cookie only.
  243. *
  244. * On a multiprocessor machine the changes are made to all processors.
  245. * This is required on x86 by the Intel processors.
  246. *
  247. * The available types are
  248. *
  249. * %MTRR_TYPE_UNCACHABLE - No caching
  250. *
  251. * %MTRR_TYPE_WRBACK - Write data back in bursts whenever
  252. *
  253. * %MTRR_TYPE_WRCOMB - Write data back soon but allow bursts
  254. *
  255. * %MTRR_TYPE_WRTHROUGH - Cache reads but not writes
  256. *
  257. * BUGS: Needs a quiet flag for the cases where drivers do not mind
  258. * failures and do not wish system log messages to be sent.
  259. */
  260. int mtrr_add_page(unsigned long base, unsigned long size,
  261. unsigned int type, bool increment)
  262. {
  263. int i, replace, error;
  264. mtrr_type ltype;
  265. unsigned long lbase, lsize;
  266. if (!mtrr_if)
  267. return -ENXIO;
  268. if ((error = mtrr_if->validate_add_page(base,size,type)))
  269. return error;
  270. if (type >= MTRR_NUM_TYPES) {
  271. printk(KERN_WARNING "mtrr: type: %u invalid\n", type);
  272. return -EINVAL;
  273. }
  274. /* If the type is WC, check that this processor supports it */
  275. if ((type == MTRR_TYPE_WRCOMB) && !have_wrcomb()) {
  276. printk(KERN_WARNING
  277. "mtrr: your processor doesn't support write-combining\n");
  278. return -ENOSYS;
  279. }
  280. if (!size) {
  281. printk(KERN_WARNING "mtrr: zero sized request\n");
  282. return -EINVAL;
  283. }
  284. if (base & size_or_mask || size & size_or_mask) {
  285. printk(KERN_WARNING "mtrr: base or size exceeds the MTRR width\n");
  286. return -EINVAL;
  287. }
  288. error = -EINVAL;
  289. replace = -1;
  290. /* No CPU hotplug when we change MTRR entries */
  291. get_online_cpus();
  292. /* Search for existing MTRR */
  293. mutex_lock(&mtrr_mutex);
  294. for (i = 0; i < num_var_ranges; ++i) {
  295. mtrr_if->get(i, &lbase, &lsize, &ltype);
  296. if (!lsize || base > lbase + lsize - 1 || base + size - 1 < lbase)
  297. continue;
  298. /* At this point we know there is some kind of overlap/enclosure */
  299. if (base < lbase || base + size - 1 > lbase + lsize - 1) {
  300. if (base <= lbase && base + size - 1 >= lbase + lsize - 1) {
  301. /* New region encloses an existing region */
  302. if (type == ltype) {
  303. replace = replace == -1 ? i : -2;
  304. continue;
  305. }
  306. else if (types_compatible(type, ltype))
  307. continue;
  308. }
  309. printk(KERN_WARNING
  310. "mtrr: 0x%lx000,0x%lx000 overlaps existing"
  311. " 0x%lx000,0x%lx000\n", base, size, lbase,
  312. lsize);
  313. goto out;
  314. }
  315. /* New region is enclosed by an existing region */
  316. if (ltype != type) {
  317. if (types_compatible(type, ltype))
  318. continue;
  319. printk (KERN_WARNING "mtrr: type mismatch for %lx000,%lx000 old: %s new: %s\n",
  320. base, size, mtrr_attrib_to_str(ltype),
  321. mtrr_attrib_to_str(type));
  322. goto out;
  323. }
  324. if (increment)
  325. ++mtrr_usage_table[i];
  326. error = i;
  327. goto out;
  328. }
  329. /* Search for an empty MTRR */
  330. i = mtrr_if->get_free_region(base, size, replace);
  331. if (i >= 0) {
  332. set_mtrr(i, base, size, type);
  333. if (likely(replace < 0)) {
  334. mtrr_usage_table[i] = 1;
  335. } else {
  336. mtrr_usage_table[i] = mtrr_usage_table[replace];
  337. if (increment)
  338. mtrr_usage_table[i]++;
  339. if (unlikely(replace != i)) {
  340. set_mtrr(replace, 0, 0, 0);
  341. mtrr_usage_table[replace] = 0;
  342. }
  343. }
  344. } else
  345. printk(KERN_INFO "mtrr: no more MTRRs available\n");
  346. error = i;
  347. out:
  348. mutex_unlock(&mtrr_mutex);
  349. put_online_cpus();
  350. return error;
  351. }
  352. static int mtrr_check(unsigned long base, unsigned long size)
  353. {
  354. if ((base & (PAGE_SIZE - 1)) || (size & (PAGE_SIZE - 1))) {
  355. printk(KERN_WARNING
  356. "mtrr: size and base must be multiples of 4 kiB\n");
  357. printk(KERN_DEBUG
  358. "mtrr: size: 0x%lx base: 0x%lx\n", size, base);
  359. dump_stack();
  360. return -1;
  361. }
  362. return 0;
  363. }
  364. /**
  365. * mtrr_add - Add a memory type region
  366. * @base: Physical base address of region
  367. * @size: Physical size of region
  368. * @type: Type of MTRR desired
  369. * @increment: If this is true do usage counting on the region
  370. *
  371. * Memory type region registers control the caching on newer Intel and
  372. * non Intel processors. This function allows drivers to request an
  373. * MTRR is added. The details and hardware specifics of each processor's
  374. * implementation are hidden from the caller, but nevertheless the
  375. * caller should expect to need to provide a power of two size on an
  376. * equivalent power of two boundary.
  377. *
  378. * If the region cannot be added either because all regions are in use
  379. * or the CPU cannot support it a negative value is returned. On success
  380. * the register number for this entry is returned, but should be treated
  381. * as a cookie only.
  382. *
  383. * On a multiprocessor machine the changes are made to all processors.
  384. * This is required on x86 by the Intel processors.
  385. *
  386. * The available types are
  387. *
  388. * %MTRR_TYPE_UNCACHABLE - No caching
  389. *
  390. * %MTRR_TYPE_WRBACK - Write data back in bursts whenever
  391. *
  392. * %MTRR_TYPE_WRCOMB - Write data back soon but allow bursts
  393. *
  394. * %MTRR_TYPE_WRTHROUGH - Cache reads but not writes
  395. *
  396. * BUGS: Needs a quiet flag for the cases where drivers do not mind
  397. * failures and do not wish system log messages to be sent.
  398. */
  399. int
  400. mtrr_add(unsigned long base, unsigned long size, unsigned int type,
  401. bool increment)
  402. {
  403. if (mtrr_check(base, size))
  404. return -EINVAL;
  405. return mtrr_add_page(base >> PAGE_SHIFT, size >> PAGE_SHIFT, type,
  406. increment);
  407. }
  408. /**
  409. * mtrr_del_page - delete a memory type region
  410. * @reg: Register returned by mtrr_add
  411. * @base: Physical base address
  412. * @size: Size of region
  413. *
  414. * If register is supplied then base and size are ignored. This is
  415. * how drivers should call it.
  416. *
  417. * Releases an MTRR region. If the usage count drops to zero the
  418. * register is freed and the region returns to default state.
  419. * On success the register is returned, on failure a negative error
  420. * code.
  421. */
  422. int mtrr_del_page(int reg, unsigned long base, unsigned long size)
  423. {
  424. int i, max;
  425. mtrr_type ltype;
  426. unsigned long lbase, lsize;
  427. int error = -EINVAL;
  428. if (!mtrr_if)
  429. return -ENXIO;
  430. max = num_var_ranges;
  431. /* No CPU hotplug when we change MTRR entries */
  432. get_online_cpus();
  433. mutex_lock(&mtrr_mutex);
  434. if (reg < 0) {
  435. /* Search for existing MTRR */
  436. for (i = 0; i < max; ++i) {
  437. mtrr_if->get(i, &lbase, &lsize, &ltype);
  438. if (lbase == base && lsize == size) {
  439. reg = i;
  440. break;
  441. }
  442. }
  443. if (reg < 0) {
  444. printk(KERN_DEBUG "mtrr: no MTRR for %lx000,%lx000 found\n", base,
  445. size);
  446. goto out;
  447. }
  448. }
  449. if (reg >= max) {
  450. printk(KERN_WARNING "mtrr: register: %d too big\n", reg);
  451. goto out;
  452. }
  453. mtrr_if->get(reg, &lbase, &lsize, &ltype);
  454. if (lsize < 1) {
  455. printk(KERN_WARNING "mtrr: MTRR %d not used\n", reg);
  456. goto out;
  457. }
  458. if (mtrr_usage_table[reg] < 1) {
  459. printk(KERN_WARNING "mtrr: reg: %d has count=0\n", reg);
  460. goto out;
  461. }
  462. if (--mtrr_usage_table[reg] < 1)
  463. set_mtrr(reg, 0, 0, 0);
  464. error = reg;
  465. out:
  466. mutex_unlock(&mtrr_mutex);
  467. put_online_cpus();
  468. return error;
  469. }
  470. /**
  471. * mtrr_del - delete a memory type region
  472. * @reg: Register returned by mtrr_add
  473. * @base: Physical base address
  474. * @size: Size of region
  475. *
  476. * If register is supplied then base and size are ignored. This is
  477. * how drivers should call it.
  478. *
  479. * Releases an MTRR region. If the usage count drops to zero the
  480. * register is freed and the region returns to default state.
  481. * On success the register is returned, on failure a negative error
  482. * code.
  483. */
  484. int
  485. mtrr_del(int reg, unsigned long base, unsigned long size)
  486. {
  487. if (mtrr_check(base, size))
  488. return -EINVAL;
  489. return mtrr_del_page(reg, base >> PAGE_SHIFT, size >> PAGE_SHIFT);
  490. }
  491. EXPORT_SYMBOL(mtrr_add);
  492. EXPORT_SYMBOL(mtrr_del);
  493. /* HACK ALERT!
  494. * These should be called implicitly, but we can't yet until all the initcall
  495. * stuff is done...
  496. */
  497. static void __init init_ifs(void)
  498. {
  499. #ifndef CONFIG_X86_64
  500. amd_init_mtrr();
  501. cyrix_init_mtrr();
  502. centaur_init_mtrr();
  503. #endif
  504. }
  505. /* The suspend/resume methods are only for CPU without MTRR. CPU using generic
  506. * MTRR driver doesn't require this
  507. */
  508. struct mtrr_value {
  509. mtrr_type ltype;
  510. unsigned long lbase;
  511. unsigned long lsize;
  512. };
  513. static struct mtrr_value mtrr_state[MAX_VAR_RANGES];
  514. static int mtrr_save(struct sys_device * sysdev, pm_message_t state)
  515. {
  516. int i;
  517. for (i = 0; i < num_var_ranges; i++) {
  518. mtrr_if->get(i,
  519. &mtrr_state[i].lbase,
  520. &mtrr_state[i].lsize,
  521. &mtrr_state[i].ltype);
  522. }
  523. return 0;
  524. }
  525. static int mtrr_restore(struct sys_device * sysdev)
  526. {
  527. int i;
  528. for (i = 0; i < num_var_ranges; i++) {
  529. if (mtrr_state[i].lsize)
  530. set_mtrr(i,
  531. mtrr_state[i].lbase,
  532. mtrr_state[i].lsize,
  533. mtrr_state[i].ltype);
  534. }
  535. return 0;
  536. }
  537. static struct sysdev_driver mtrr_sysdev_driver = {
  538. .suspend = mtrr_save,
  539. .resume = mtrr_restore,
  540. };
  541. /* should be related to MTRR_VAR_RANGES nums */
  542. #define RANGE_NUM 256
  543. struct res_range {
  544. unsigned long start;
  545. unsigned long end;
  546. };
  547. static int __init
  548. add_range(struct res_range *range, int nr_range, unsigned long start,
  549. unsigned long end)
  550. {
  551. /* out of slots */
  552. if (nr_range >= RANGE_NUM)
  553. return nr_range;
  554. range[nr_range].start = start;
  555. range[nr_range].end = end;
  556. nr_range++;
  557. return nr_range;
  558. }
  559. static int __init
  560. add_range_with_merge(struct res_range *range, int nr_range, unsigned long start,
  561. unsigned long end)
  562. {
  563. int i;
  564. /* try to merge it with old one */
  565. for (i = 0; i < nr_range; i++) {
  566. unsigned long final_start, final_end;
  567. unsigned long common_start, common_end;
  568. if (!range[i].end)
  569. continue;
  570. common_start = max(range[i].start, start);
  571. common_end = min(range[i].end, end);
  572. if (common_start > common_end + 1)
  573. continue;
  574. final_start = min(range[i].start, start);
  575. final_end = max(range[i].end, end);
  576. range[i].start = final_start;
  577. range[i].end = final_end;
  578. return nr_range;
  579. }
  580. /* need to add that */
  581. return add_range(range, nr_range, start, end);
  582. }
  583. static void __init
  584. subtract_range(struct res_range *range, unsigned long start, unsigned long end)
  585. {
  586. int i, j;
  587. for (j = 0; j < RANGE_NUM; j++) {
  588. if (!range[j].end)
  589. continue;
  590. if (start <= range[j].start && end >= range[j].end) {
  591. range[j].start = 0;
  592. range[j].end = 0;
  593. continue;
  594. }
  595. if (start <= range[j].start && end < range[j].end &&
  596. range[j].start < end + 1) {
  597. range[j].start = end + 1;
  598. continue;
  599. }
  600. if (start > range[j].start && end >= range[j].end &&
  601. range[j].end > start - 1) {
  602. range[j].end = start - 1;
  603. continue;
  604. }
  605. if (start > range[j].start && end < range[j].end) {
  606. /* find the new spare */
  607. for (i = 0; i < RANGE_NUM; i++) {
  608. if (range[i].end == 0)
  609. break;
  610. }
  611. if (i < RANGE_NUM) {
  612. range[i].end = range[j].end;
  613. range[i].start = end + 1;
  614. } else {
  615. printk(KERN_ERR "run of slot in ranges\n");
  616. }
  617. range[j].end = start - 1;
  618. continue;
  619. }
  620. }
  621. }
  622. static int __init cmp_range(const void *x1, const void *x2)
  623. {
  624. const struct res_range *r1 = x1;
  625. const struct res_range *r2 = x2;
  626. long start1, start2;
  627. start1 = r1->start;
  628. start2 = r2->start;
  629. return start1 - start2;
  630. }
  631. struct var_mtrr_range_state {
  632. unsigned long base_pfn;
  633. unsigned long size_pfn;
  634. mtrr_type type;
  635. };
  636. struct var_mtrr_range_state __initdata range_state[RANGE_NUM];
  637. static int __initdata debug_print;
  638. static int __init
  639. x86_get_mtrr_mem_range(struct res_range *range, int nr_range,
  640. unsigned long extra_remove_base,
  641. unsigned long extra_remove_size)
  642. {
  643. unsigned long i, base, size;
  644. mtrr_type type;
  645. for (i = 0; i < num_var_ranges; i++) {
  646. type = range_state[i].type;
  647. if (type != MTRR_TYPE_WRBACK)
  648. continue;
  649. base = range_state[i].base_pfn;
  650. size = range_state[i].size_pfn;
  651. nr_range = add_range_with_merge(range, nr_range, base,
  652. base + size - 1);
  653. }
  654. if (debug_print) {
  655. printk(KERN_DEBUG "After WB checking\n");
  656. for (i = 0; i < nr_range; i++)
  657. printk(KERN_DEBUG "MTRR MAP PFN: %016lx - %016lx\n",
  658. range[i].start, range[i].end + 1);
  659. }
  660. /* take out UC ranges */
  661. for (i = 0; i < num_var_ranges; i++) {
  662. type = range_state[i].type;
  663. if (type != MTRR_TYPE_UNCACHABLE)
  664. continue;
  665. size = range_state[i].size_pfn;
  666. if (!size)
  667. continue;
  668. base = range_state[i].base_pfn;
  669. subtract_range(range, base, base + size - 1);
  670. }
  671. if (extra_remove_size)
  672. subtract_range(range, extra_remove_base,
  673. extra_remove_base + extra_remove_size - 1);
  674. /* get new range num */
  675. nr_range = 0;
  676. for (i = 0; i < RANGE_NUM; i++) {
  677. if (!range[i].end)
  678. continue;
  679. nr_range++;
  680. }
  681. if (debug_print) {
  682. printk(KERN_DEBUG "After UC checking\n");
  683. for (i = 0; i < nr_range; i++)
  684. printk(KERN_DEBUG "MTRR MAP PFN: %016lx - %016lx\n",
  685. range[i].start, range[i].end + 1);
  686. }
  687. /* sort the ranges */
  688. sort(range, nr_range, sizeof(struct res_range), cmp_range, NULL);
  689. if (debug_print) {
  690. printk(KERN_DEBUG "After sorting\n");
  691. for (i = 0; i < nr_range; i++)
  692. printk(KERN_DEBUG "MTRR MAP PFN: %016lx - %016lx\n",
  693. range[i].start, range[i].end + 1);
  694. }
  695. /* clear those is not used */
  696. for (i = nr_range; i < RANGE_NUM; i++)
  697. memset(&range[i], 0, sizeof(range[i]));
  698. return nr_range;
  699. }
  700. static struct res_range __initdata range[RANGE_NUM];
  701. #ifdef CONFIG_MTRR_SANITIZER
  702. static unsigned long __init sum_ranges(struct res_range *range, int nr_range)
  703. {
  704. unsigned long sum;
  705. int i;
  706. sum = 0;
  707. for (i = 0; i < nr_range; i++)
  708. sum += range[i].end + 1 - range[i].start;
  709. return sum;
  710. }
  711. static int enable_mtrr_cleanup __initdata =
  712. CONFIG_MTRR_SANITIZER_ENABLE_DEFAULT;
  713. static int __init disable_mtrr_cleanup_setup(char *str)
  714. {
  715. if (enable_mtrr_cleanup != -1)
  716. enable_mtrr_cleanup = 0;
  717. return 0;
  718. }
  719. early_param("disable_mtrr_cleanup", disable_mtrr_cleanup_setup);
  720. static int __init enable_mtrr_cleanup_setup(char *str)
  721. {
  722. if (enable_mtrr_cleanup != -1)
  723. enable_mtrr_cleanup = 1;
  724. return 0;
  725. }
  726. early_param("enble_mtrr_cleanup", enable_mtrr_cleanup_setup);
  727. struct var_mtrr_state {
  728. unsigned long range_startk;
  729. unsigned long range_sizek;
  730. unsigned long chunk_sizek;
  731. unsigned long gran_sizek;
  732. unsigned int reg;
  733. };
  734. static void __init
  735. set_var_mtrr(unsigned int reg, unsigned long basek, unsigned long sizek,
  736. unsigned char type, unsigned int address_bits)
  737. {
  738. u32 base_lo, base_hi, mask_lo, mask_hi;
  739. u64 base, mask;
  740. if (!sizek) {
  741. fill_mtrr_var_range(reg, 0, 0, 0, 0);
  742. return;
  743. }
  744. mask = (1ULL << address_bits) - 1;
  745. mask &= ~((((u64)sizek) << 10) - 1);
  746. base = ((u64)basek) << 10;
  747. base |= type;
  748. mask |= 0x800;
  749. base_lo = base & ((1ULL<<32) - 1);
  750. base_hi = base >> 32;
  751. mask_lo = mask & ((1ULL<<32) - 1);
  752. mask_hi = mask >> 32;
  753. fill_mtrr_var_range(reg, base_lo, base_hi, mask_lo, mask_hi);
  754. }
  755. static void __init
  756. save_var_mtrr(unsigned int reg, unsigned long basek, unsigned long sizek,
  757. unsigned char type)
  758. {
  759. range_state[reg].base_pfn = basek >> (PAGE_SHIFT - 10);
  760. range_state[reg].size_pfn = sizek >> (PAGE_SHIFT - 10);
  761. range_state[reg].type = type;
  762. }
  763. static void __init
  764. set_var_mtrr_all(unsigned int address_bits)
  765. {
  766. unsigned long basek, sizek;
  767. unsigned char type;
  768. unsigned int reg;
  769. for (reg = 0; reg < num_var_ranges; reg++) {
  770. basek = range_state[reg].base_pfn << (PAGE_SHIFT - 10);
  771. sizek = range_state[reg].size_pfn << (PAGE_SHIFT - 10);
  772. type = range_state[reg].type;
  773. set_var_mtrr(reg, basek, sizek, type, address_bits);
  774. }
  775. }
  776. static unsigned int __init
  777. range_to_mtrr(unsigned int reg, unsigned long range_startk,
  778. unsigned long range_sizek, unsigned char type)
  779. {
  780. if (!range_sizek || (reg >= num_var_ranges))
  781. return reg;
  782. while (range_sizek) {
  783. unsigned long max_align, align;
  784. unsigned long sizek;
  785. /* Compute the maximum size I can make a range */
  786. if (range_startk)
  787. max_align = ffs(range_startk) - 1;
  788. else
  789. max_align = 32;
  790. align = fls(range_sizek) - 1;
  791. if (align > max_align)
  792. align = max_align;
  793. sizek = 1 << align;
  794. if (debug_print)
  795. printk(KERN_DEBUG "Setting variable MTRR %d, "
  796. "base: %ldMB, range: %ldMB, type %s\n",
  797. reg, range_startk >> 10, sizek >> 10,
  798. (type == MTRR_TYPE_UNCACHABLE)?"UC":
  799. ((type == MTRR_TYPE_WRBACK)?"WB":"Other")
  800. );
  801. save_var_mtrr(reg++, range_startk, sizek, type);
  802. range_startk += sizek;
  803. range_sizek -= sizek;
  804. if (reg >= num_var_ranges)
  805. break;
  806. }
  807. return reg;
  808. }
  809. static unsigned __init
  810. range_to_mtrr_with_hole(struct var_mtrr_state *state, unsigned long basek,
  811. unsigned long sizek)
  812. {
  813. unsigned long hole_basek, hole_sizek;
  814. unsigned long second_basek, second_sizek;
  815. unsigned long range0_basek, range0_sizek;
  816. unsigned long range_basek, range_sizek;
  817. unsigned long chunk_sizek;
  818. unsigned long gran_sizek;
  819. hole_basek = 0;
  820. hole_sizek = 0;
  821. second_basek = 0;
  822. second_sizek = 0;
  823. chunk_sizek = state->chunk_sizek;
  824. gran_sizek = state->gran_sizek;
  825. /* align with gran size, prevent small block used up MTRRs */
  826. range_basek = ALIGN(state->range_startk, gran_sizek);
  827. if ((range_basek > basek) && basek)
  828. return second_sizek;
  829. state->range_sizek -= (range_basek - state->range_startk);
  830. range_sizek = ALIGN(state->range_sizek, gran_sizek);
  831. while (range_sizek > state->range_sizek) {
  832. range_sizek -= gran_sizek;
  833. if (!range_sizek)
  834. return 0;
  835. }
  836. state->range_sizek = range_sizek;
  837. /* try to append some small hole */
  838. range0_basek = state->range_startk;
  839. range0_sizek = ALIGN(state->range_sizek, chunk_sizek);
  840. if (range0_sizek == state->range_sizek) {
  841. if (debug_print)
  842. printk(KERN_DEBUG "rangeX: %016lx - %016lx\n",
  843. range0_basek<<10,
  844. (range0_basek + state->range_sizek)<<10);
  845. state->reg = range_to_mtrr(state->reg, range0_basek,
  846. state->range_sizek, MTRR_TYPE_WRBACK);
  847. return 0;
  848. }
  849. range0_sizek -= chunk_sizek;
  850. if (range0_sizek && sizek) {
  851. while (range0_basek + range0_sizek > (basek + sizek)) {
  852. range0_sizek -= chunk_sizek;
  853. if (!range0_sizek)
  854. break;
  855. }
  856. }
  857. if (range0_sizek) {
  858. if (debug_print)
  859. printk(KERN_DEBUG "range0: %016lx - %016lx\n",
  860. range0_basek<<10,
  861. (range0_basek + range0_sizek)<<10);
  862. state->reg = range_to_mtrr(state->reg, range0_basek,
  863. range0_sizek, MTRR_TYPE_WRBACK);
  864. }
  865. range_basek = range0_basek + range0_sizek;
  866. range_sizek = chunk_sizek;
  867. if (range_basek + range_sizek > basek &&
  868. range_basek + range_sizek <= (basek + sizek)) {
  869. /* one hole */
  870. second_basek = basek;
  871. second_sizek = range_basek + range_sizek - basek;
  872. }
  873. /* if last piece, only could one hole near end */
  874. if ((second_basek || !basek) &&
  875. range_sizek - (state->range_sizek - range0_sizek) - second_sizek <
  876. (chunk_sizek >> 1)) {
  877. /*
  878. * one hole in middle (second_sizek is 0) or at end
  879. * (second_sizek is 0 )
  880. */
  881. hole_sizek = range_sizek - (state->range_sizek - range0_sizek)
  882. - second_sizek;
  883. hole_basek = range_basek + range_sizek - hole_sizek
  884. - second_sizek;
  885. } else {
  886. /* fallback for big hole, or several holes */
  887. range_sizek = state->range_sizek - range0_sizek;
  888. second_basek = 0;
  889. second_sizek = 0;
  890. }
  891. if (debug_print)
  892. printk(KERN_DEBUG "range: %016lx - %016lx\n", range_basek<<10,
  893. (range_basek + range_sizek)<<10);
  894. state->reg = range_to_mtrr(state->reg, range_basek, range_sizek,
  895. MTRR_TYPE_WRBACK);
  896. if (hole_sizek) {
  897. if (debug_print)
  898. printk(KERN_DEBUG "hole: %016lx - %016lx\n",
  899. hole_basek<<10, (hole_basek + hole_sizek)<<10);
  900. state->reg = range_to_mtrr(state->reg, hole_basek, hole_sizek,
  901. MTRR_TYPE_UNCACHABLE);
  902. }
  903. return second_sizek;
  904. }
  905. static void __init
  906. set_var_mtrr_range(struct var_mtrr_state *state, unsigned long base_pfn,
  907. unsigned long size_pfn)
  908. {
  909. unsigned long basek, sizek;
  910. unsigned long second_sizek = 0;
  911. if (state->reg >= num_var_ranges)
  912. return;
  913. basek = base_pfn << (PAGE_SHIFT - 10);
  914. sizek = size_pfn << (PAGE_SHIFT - 10);
  915. /* See if I can merge with the last range */
  916. if ((basek <= 1024) ||
  917. (state->range_startk + state->range_sizek == basek)) {
  918. unsigned long endk = basek + sizek;
  919. state->range_sizek = endk - state->range_startk;
  920. return;
  921. }
  922. /* Write the range mtrrs */
  923. if (state->range_sizek != 0)
  924. second_sizek = range_to_mtrr_with_hole(state, basek, sizek);
  925. /* Allocate an msr */
  926. state->range_startk = basek + second_sizek;
  927. state->range_sizek = sizek - second_sizek;
  928. }
  929. /* mininum size of mtrr block that can take hole */
  930. static u64 mtrr_chunk_size __initdata = (256ULL<<20);
  931. static int __init parse_mtrr_chunk_size_opt(char *p)
  932. {
  933. if (!p)
  934. return -EINVAL;
  935. mtrr_chunk_size = memparse(p, &p);
  936. return 0;
  937. }
  938. early_param("mtrr_chunk_size", parse_mtrr_chunk_size_opt);
  939. /* granity of mtrr of block */
  940. static u64 mtrr_gran_size __initdata;
  941. static int __init parse_mtrr_gran_size_opt(char *p)
  942. {
  943. if (!p)
  944. return -EINVAL;
  945. mtrr_gran_size = memparse(p, &p);
  946. return 0;
  947. }
  948. early_param("mtrr_gran_size", parse_mtrr_gran_size_opt);
  949. static int nr_mtrr_spare_reg __initdata =
  950. CONFIG_MTRR_SANITIZER_SPARE_REG_NR_DEFAULT;
  951. static int __init parse_mtrr_spare_reg(char *arg)
  952. {
  953. if (arg)
  954. nr_mtrr_spare_reg = simple_strtoul(arg, NULL, 0);
  955. return 0;
  956. }
  957. early_param("mtrr_spare_reg_nr", parse_mtrr_spare_reg);
  958. static int __init
  959. x86_setup_var_mtrrs(struct res_range *range, int nr_range,
  960. u64 chunk_size, u64 gran_size)
  961. {
  962. struct var_mtrr_state var_state;
  963. int i;
  964. int num_reg;
  965. var_state.range_startk = 0;
  966. var_state.range_sizek = 0;
  967. var_state.reg = 0;
  968. var_state.chunk_sizek = chunk_size >> 10;
  969. var_state.gran_sizek = gran_size >> 10;
  970. memset(range_state, 0, sizeof(range_state));
  971. /* Write the range etc */
  972. for (i = 0; i < nr_range; i++)
  973. set_var_mtrr_range(&var_state, range[i].start,
  974. range[i].end - range[i].start + 1);
  975. /* Write the last range */
  976. if (var_state.range_sizek != 0)
  977. range_to_mtrr_with_hole(&var_state, 0, 0);
  978. num_reg = var_state.reg;
  979. /* Clear out the extra MTRR's */
  980. while (var_state.reg < num_var_ranges) {
  981. save_var_mtrr(var_state.reg, 0, 0, 0);
  982. var_state.reg++;
  983. }
  984. return num_reg;
  985. }
  986. struct mtrr_cleanup_result {
  987. unsigned long gran_sizek;
  988. unsigned long chunk_sizek;
  989. unsigned long lose_cover_sizek;
  990. unsigned int num_reg;
  991. int bad;
  992. };
  993. /*
  994. * gran_size: 1M, 2M, ..., 2G
  995. * chunk size: gran_size, ..., 4G
  996. * so we need (2+13)*6
  997. */
  998. #define NUM_RESULT 90
  999. #define PSHIFT (PAGE_SHIFT - 10)
  1000. static struct mtrr_cleanup_result __initdata result[NUM_RESULT];
  1001. static struct res_range __initdata range_new[RANGE_NUM];
  1002. static unsigned long __initdata min_loss_pfn[RANGE_NUM];
  1003. static int __init mtrr_cleanup(unsigned address_bits)
  1004. {
  1005. unsigned long extra_remove_base, extra_remove_size;
  1006. unsigned long i, base, size, def, dummy;
  1007. mtrr_type type;
  1008. int nr_range, nr_range_new;
  1009. u64 chunk_size, gran_size;
  1010. unsigned long range_sums, range_sums_new;
  1011. int index_good;
  1012. int num_reg_good;
  1013. /* extra one for all 0 */
  1014. int num[MTRR_NUM_TYPES + 1];
  1015. if (!is_cpu(INTEL) || enable_mtrr_cleanup < 1)
  1016. return 0;
  1017. rdmsr(MTRRdefType_MSR, def, dummy);
  1018. def &= 0xff;
  1019. if (def != MTRR_TYPE_UNCACHABLE)
  1020. return 0;
  1021. /* get it and store it aside */
  1022. memset(range_state, 0, sizeof(range_state));
  1023. for (i = 0; i < num_var_ranges; i++) {
  1024. mtrr_if->get(i, &base, &size, &type);
  1025. range_state[i].base_pfn = base;
  1026. range_state[i].size_pfn = size;
  1027. range_state[i].type = type;
  1028. }
  1029. /* check entries number */
  1030. memset(num, 0, sizeof(num));
  1031. for (i = 0; i < num_var_ranges; i++) {
  1032. type = range_state[i].type;
  1033. size = range_state[i].size_pfn;
  1034. if (type >= MTRR_NUM_TYPES)
  1035. continue;
  1036. if (!size)
  1037. type = MTRR_NUM_TYPES;
  1038. num[type]++;
  1039. }
  1040. /* check if we got UC entries */
  1041. if (!num[MTRR_TYPE_UNCACHABLE])
  1042. return 0;
  1043. /* check if we only had WB and UC */
  1044. if (num[MTRR_TYPE_WRBACK] + num[MTRR_TYPE_UNCACHABLE] !=
  1045. num_var_ranges - num[MTRR_NUM_TYPES])
  1046. return 0;
  1047. memset(range, 0, sizeof(range));
  1048. extra_remove_size = 0;
  1049. if (mtrr_tom2) {
  1050. extra_remove_base = 1 << (32 - PAGE_SHIFT);
  1051. extra_remove_size =
  1052. (mtrr_tom2 >> PAGE_SHIFT) - extra_remove_base;
  1053. }
  1054. nr_range = x86_get_mtrr_mem_range(range, 0, extra_remove_base,
  1055. extra_remove_size);
  1056. range_sums = sum_ranges(range, nr_range);
  1057. printk(KERN_INFO "total RAM coverred: %ldM\n",
  1058. range_sums >> (20 - PAGE_SHIFT));
  1059. if (mtrr_chunk_size && mtrr_gran_size) {
  1060. int num_reg;
  1061. debug_print = 1;
  1062. /* convert ranges to var ranges state */
  1063. num_reg = x86_setup_var_mtrrs(range, nr_range, mtrr_chunk_size,
  1064. mtrr_gran_size);
  1065. /* we got new setting in range_state, check it */
  1066. memset(range_new, 0, sizeof(range_new));
  1067. nr_range_new = x86_get_mtrr_mem_range(range_new, 0,
  1068. extra_remove_base,
  1069. extra_remove_size);
  1070. range_sums_new = sum_ranges(range_new, nr_range_new);
  1071. i = 0;
  1072. result[i].chunk_sizek = mtrr_chunk_size >> 10;
  1073. result[i].gran_sizek = mtrr_gran_size >> 10;
  1074. result[i].num_reg = num_reg;
  1075. if (range_sums < range_sums_new) {
  1076. result[i].lose_cover_sizek =
  1077. (range_sums_new - range_sums) << PSHIFT;
  1078. result[i].bad = 1;
  1079. } else
  1080. result[i].lose_cover_sizek =
  1081. (range_sums - range_sums_new) << PSHIFT;
  1082. printk(KERN_INFO "%sgran_size: %ldM \tchunk_size: %ldM \t",
  1083. result[i].bad?"*BAD*":" ", result[i].gran_sizek >> 10,
  1084. result[i].chunk_sizek >> 10);
  1085. printk(KERN_CONT "num_reg: %d \tlose cover RAM: %s%ldM \n",
  1086. result[i].num_reg, result[i].bad?"-":"",
  1087. result[i].lose_cover_sizek >> 10);
  1088. if (!result[i].bad) {
  1089. set_var_mtrr_all(address_bits);
  1090. return 1;
  1091. }
  1092. printk(KERN_INFO "invalid mtrr_gran_size or mtrr_chunk_size, "
  1093. "will find optimal one\n");
  1094. debug_print = 0;
  1095. memset(result, 0, sizeof(result[0]));
  1096. }
  1097. i = 0;
  1098. memset(min_loss_pfn, 0xff, sizeof(min_loss_pfn));
  1099. memset(result, 0, sizeof(result));
  1100. for (gran_size = (1ULL<<20); gran_size < (1ULL<<32); gran_size <<= 1) {
  1101. for (chunk_size = gran_size; chunk_size < (1ULL<<33);
  1102. chunk_size <<= 1) {
  1103. int num_reg;
  1104. if (debug_print)
  1105. printk(KERN_INFO
  1106. "\ngran_size: %lldM chunk_size_size: %lldM\n",
  1107. gran_size >> 20, chunk_size >> 20);
  1108. if (i >= NUM_RESULT)
  1109. continue;
  1110. /* convert ranges to var ranges state */
  1111. num_reg = x86_setup_var_mtrrs(range, nr_range,
  1112. chunk_size, gran_size);
  1113. /* we got new setting in range_state, check it */
  1114. memset(range_new, 0, sizeof(range_new));
  1115. nr_range_new = x86_get_mtrr_mem_range(range_new, 0,
  1116. extra_remove_base, extra_remove_size);
  1117. range_sums_new = sum_ranges(range_new, nr_range_new);
  1118. result[i].chunk_sizek = chunk_size >> 10;
  1119. result[i].gran_sizek = gran_size >> 10;
  1120. result[i].num_reg = num_reg;
  1121. if (range_sums < range_sums_new) {
  1122. result[i].lose_cover_sizek =
  1123. (range_sums_new - range_sums) << PSHIFT;
  1124. result[i].bad = 1;
  1125. } else
  1126. result[i].lose_cover_sizek =
  1127. (range_sums - range_sums_new) << PSHIFT;
  1128. /* double check it */
  1129. if (!result[i].bad && !result[i].lose_cover_sizek) {
  1130. if (nr_range_new != nr_range ||
  1131. memcmp(range, range_new, sizeof(range)))
  1132. result[i].bad = 1;
  1133. }
  1134. if (!result[i].bad && (range_sums - range_sums_new <
  1135. min_loss_pfn[num_reg])) {
  1136. min_loss_pfn[num_reg] =
  1137. range_sums - range_sums_new;
  1138. }
  1139. i++;
  1140. }
  1141. }
  1142. /* print out all */
  1143. for (i = 0; i < NUM_RESULT; i++) {
  1144. printk(KERN_INFO "%sgran_size: %ldM \tchunk_size: %ldM \t",
  1145. result[i].bad?"*BAD* ":" ", result[i].gran_sizek >> 10,
  1146. result[i].chunk_sizek >> 10);
  1147. printk(KERN_CONT "num_reg: %d \tlose RAM: %s%ldM\n",
  1148. result[i].num_reg, result[i].bad?"-":"",
  1149. result[i].lose_cover_sizek >> 10);
  1150. }
  1151. /* try to find the optimal index */
  1152. if (nr_mtrr_spare_reg >= num_var_ranges)
  1153. nr_mtrr_spare_reg = num_var_ranges - 1;
  1154. num_reg_good = -1;
  1155. for (i = num_var_ranges - nr_mtrr_spare_reg; i > 0; i--) {
  1156. if (!min_loss_pfn[i]) {
  1157. num_reg_good = i;
  1158. break;
  1159. }
  1160. }
  1161. index_good = -1;
  1162. if (num_reg_good != -1) {
  1163. for (i = 0; i < NUM_RESULT; i++) {
  1164. if (!result[i].bad &&
  1165. result[i].num_reg == num_reg_good &&
  1166. !result[i].lose_cover_sizek) {
  1167. index_good = i;
  1168. break;
  1169. }
  1170. }
  1171. }
  1172. if (index_good != -1) {
  1173. printk(KERN_INFO "Found optimal setting for mtrr clean up\n");
  1174. i = index_good;
  1175. printk(KERN_INFO "gran_size: %ldM \tchunk_size: %ldM \t",
  1176. result[i].gran_sizek >> 10,
  1177. result[i].chunk_sizek >> 10);
  1178. printk(KERN_CONT "num_reg: %d \tlose RAM: %ldM\n",
  1179. result[i].num_reg,
  1180. result[i].lose_cover_sizek >> 10);
  1181. /* convert ranges to var ranges state */
  1182. chunk_size = result[i].chunk_sizek;
  1183. chunk_size <<= 10;
  1184. gran_size = result[i].gran_sizek;
  1185. gran_size <<= 10;
  1186. debug_print = 1;
  1187. x86_setup_var_mtrrs(range, nr_range, chunk_size, gran_size);
  1188. set_var_mtrr_all(address_bits);
  1189. return 1;
  1190. }
  1191. printk(KERN_INFO "mtrr_cleanup: can not find optimal value\n");
  1192. printk(KERN_INFO "please specify mtrr_gran_size/mtrr_chunk_size\n");
  1193. return 0;
  1194. }
  1195. #else
  1196. static int __init mtrr_cleanup(unsigned address_bits)
  1197. {
  1198. return 0;
  1199. }
  1200. #endif
  1201. static int __initdata changed_by_mtrr_cleanup;
  1202. static int disable_mtrr_trim;
  1203. static int __init disable_mtrr_trim_setup(char *str)
  1204. {
  1205. disable_mtrr_trim = 1;
  1206. return 0;
  1207. }
  1208. early_param("disable_mtrr_trim", disable_mtrr_trim_setup);
  1209. /*
  1210. * Newer AMD K8s and later CPUs have a special magic MSR way to force WB
  1211. * for memory >4GB. Check for that here.
  1212. * Note this won't check if the MTRRs < 4GB where the magic bit doesn't
  1213. * apply to are wrong, but so far we don't know of any such case in the wild.
  1214. */
  1215. #define Tom2Enabled (1U << 21)
  1216. #define Tom2ForceMemTypeWB (1U << 22)
  1217. int __init amd_special_default_mtrr(void)
  1218. {
  1219. u32 l, h;
  1220. if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD)
  1221. return 0;
  1222. if (boot_cpu_data.x86 < 0xf || boot_cpu_data.x86 > 0x11)
  1223. return 0;
  1224. /* In case some hypervisor doesn't pass SYSCFG through */
  1225. if (rdmsr_safe(MSR_K8_SYSCFG, &l, &h) < 0)
  1226. return 0;
  1227. /*
  1228. * Memory between 4GB and top of mem is forced WB by this magic bit.
  1229. * Reserved before K8RevF, but should be zero there.
  1230. */
  1231. if ((l & (Tom2Enabled | Tom2ForceMemTypeWB)) ==
  1232. (Tom2Enabled | Tom2ForceMemTypeWB))
  1233. return 1;
  1234. return 0;
  1235. }
  1236. static u64 __init real_trim_memory(unsigned long start_pfn,
  1237. unsigned long limit_pfn)
  1238. {
  1239. u64 trim_start, trim_size;
  1240. trim_start = start_pfn;
  1241. trim_start <<= PAGE_SHIFT;
  1242. trim_size = limit_pfn;
  1243. trim_size <<= PAGE_SHIFT;
  1244. trim_size -= trim_start;
  1245. return e820_update_range(trim_start, trim_size, E820_RAM,
  1246. E820_RESERVED);
  1247. }
  1248. /**
  1249. * mtrr_trim_uncached_memory - trim RAM not covered by MTRRs
  1250. * @end_pfn: ending page frame number
  1251. *
  1252. * Some buggy BIOSes don't setup the MTRRs properly for systems with certain
  1253. * memory configurations. This routine checks that the highest MTRR matches
  1254. * the end of memory, to make sure the MTRRs having a write back type cover
  1255. * all of the memory the kernel is intending to use. If not, it'll trim any
  1256. * memory off the end by adjusting end_pfn, removing it from the kernel's
  1257. * allocation pools, warning the user with an obnoxious message.
  1258. */
  1259. int __init mtrr_trim_uncached_memory(unsigned long end_pfn)
  1260. {
  1261. unsigned long i, base, size, highest_pfn = 0, def, dummy;
  1262. mtrr_type type;
  1263. int nr_range;
  1264. u64 total_trim_size;
  1265. /* extra one for all 0 */
  1266. int num[MTRR_NUM_TYPES + 1];
  1267. /*
  1268. * Make sure we only trim uncachable memory on machines that
  1269. * support the Intel MTRR architecture:
  1270. */
  1271. if (!is_cpu(INTEL) || disable_mtrr_trim)
  1272. return 0;
  1273. rdmsr(MTRRdefType_MSR, def, dummy);
  1274. def &= 0xff;
  1275. if (def != MTRR_TYPE_UNCACHABLE)
  1276. return 0;
  1277. /* get it and store it aside */
  1278. memset(range_state, 0, sizeof(range_state));
  1279. for (i = 0; i < num_var_ranges; i++) {
  1280. mtrr_if->get(i, &base, &size, &type);
  1281. range_state[i].base_pfn = base;
  1282. range_state[i].size_pfn = size;
  1283. range_state[i].type = type;
  1284. }
  1285. /* Find highest cached pfn */
  1286. for (i = 0; i < num_var_ranges; i++) {
  1287. type = range_state[i].type;
  1288. if (type != MTRR_TYPE_WRBACK)
  1289. continue;
  1290. base = range_state[i].base_pfn;
  1291. size = range_state[i].size_pfn;
  1292. if (highest_pfn < base + size)
  1293. highest_pfn = base + size;
  1294. }
  1295. /* kvm/qemu doesn't have mtrr set right, don't trim them all */
  1296. if (!highest_pfn) {
  1297. if (!kvm_para_available()) {
  1298. printk(KERN_WARNING
  1299. "WARNING: strange, CPU MTRRs all blank?\n");
  1300. WARN_ON(1);
  1301. }
  1302. return 0;
  1303. }
  1304. /* check entries number */
  1305. memset(num, 0, sizeof(num));
  1306. for (i = 0; i < num_var_ranges; i++) {
  1307. type = range_state[i].type;
  1308. if (type >= MTRR_NUM_TYPES)
  1309. continue;
  1310. size = range_state[i].size_pfn;
  1311. if (!size)
  1312. type = MTRR_NUM_TYPES;
  1313. num[type]++;
  1314. }
  1315. /* no entry for WB? */
  1316. if (!num[MTRR_TYPE_WRBACK])
  1317. return 0;
  1318. /* check if we only had WB and UC */
  1319. if (num[MTRR_TYPE_WRBACK] + num[MTRR_TYPE_UNCACHABLE] !=
  1320. num_var_ranges - num[MTRR_NUM_TYPES])
  1321. return 0;
  1322. memset(range, 0, sizeof(range));
  1323. nr_range = 0;
  1324. if (mtrr_tom2) {
  1325. range[nr_range].start = (1ULL<<(32 - PAGE_SHIFT));
  1326. range[nr_range].end = (mtrr_tom2 >> PAGE_SHIFT) - 1;
  1327. if (highest_pfn < range[nr_range].end + 1)
  1328. highest_pfn = range[nr_range].end + 1;
  1329. nr_range++;
  1330. }
  1331. nr_range = x86_get_mtrr_mem_range(range, nr_range, 0, 0);
  1332. total_trim_size = 0;
  1333. /* check the head */
  1334. if (range[0].start)
  1335. total_trim_size += real_trim_memory(0, range[0].start);
  1336. /* check the holes */
  1337. for (i = 0; i < nr_range - 1; i++) {
  1338. if (range[i].end + 1 < range[i+1].start)
  1339. total_trim_size += real_trim_memory(range[i].end + 1,
  1340. range[i+1].start);
  1341. }
  1342. /* check the top */
  1343. i = nr_range - 1;
  1344. if (range[i].end + 1 < end_pfn)
  1345. total_trim_size += real_trim_memory(range[i].end + 1,
  1346. end_pfn);
  1347. if (total_trim_size) {
  1348. printk(KERN_WARNING "WARNING: BIOS bug: CPU MTRRs don't cover"
  1349. " all of memory, losing %lluMB of RAM.\n",
  1350. total_trim_size >> 20);
  1351. if (!changed_by_mtrr_cleanup)
  1352. WARN_ON(1);
  1353. printk(KERN_INFO "update e820 for mtrr\n");
  1354. update_e820();
  1355. return 1;
  1356. }
  1357. return 0;
  1358. }
  1359. /**
  1360. * mtrr_bp_init - initialize mtrrs on the boot CPU
  1361. *
  1362. * This needs to be called early; before any of the other CPUs are
  1363. * initialized (i.e. before smp_init()).
  1364. *
  1365. */
  1366. void __init mtrr_bp_init(void)
  1367. {
  1368. u32 phys_addr;
  1369. init_ifs();
  1370. phys_addr = 32;
  1371. if (cpu_has_mtrr) {
  1372. mtrr_if = &generic_mtrr_ops;
  1373. size_or_mask = 0xff000000; /* 36 bits */
  1374. size_and_mask = 0x00f00000;
  1375. phys_addr = 36;
  1376. /* This is an AMD specific MSR, but we assume(hope?) that
  1377. Intel will implement it to when they extend the address
  1378. bus of the Xeon. */
  1379. if (cpuid_eax(0x80000000) >= 0x80000008) {
  1380. phys_addr = cpuid_eax(0x80000008) & 0xff;
  1381. /* CPUID workaround for Intel 0F33/0F34 CPU */
  1382. if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
  1383. boot_cpu_data.x86 == 0xF &&
  1384. boot_cpu_data.x86_model == 0x3 &&
  1385. (boot_cpu_data.x86_mask == 0x3 ||
  1386. boot_cpu_data.x86_mask == 0x4))
  1387. phys_addr = 36;
  1388. size_or_mask = ~((1ULL << (phys_addr - PAGE_SHIFT)) - 1);
  1389. size_and_mask = ~size_or_mask & 0xfffff00000ULL;
  1390. } else if (boot_cpu_data.x86_vendor == X86_VENDOR_CENTAUR &&
  1391. boot_cpu_data.x86 == 6) {
  1392. /* VIA C* family have Intel style MTRRs, but
  1393. don't support PAE */
  1394. size_or_mask = 0xfff00000; /* 32 bits */
  1395. size_and_mask = 0;
  1396. phys_addr = 32;
  1397. }
  1398. } else {
  1399. switch (boot_cpu_data.x86_vendor) {
  1400. case X86_VENDOR_AMD:
  1401. if (cpu_has_k6_mtrr) {
  1402. /* Pre-Athlon (K6) AMD CPU MTRRs */
  1403. mtrr_if = mtrr_ops[X86_VENDOR_AMD];
  1404. size_or_mask = 0xfff00000; /* 32 bits */
  1405. size_and_mask = 0;
  1406. }
  1407. break;
  1408. case X86_VENDOR_CENTAUR:
  1409. if (cpu_has_centaur_mcr) {
  1410. mtrr_if = mtrr_ops[X86_VENDOR_CENTAUR];
  1411. size_or_mask = 0xfff00000; /* 32 bits */
  1412. size_and_mask = 0;
  1413. }
  1414. break;
  1415. case X86_VENDOR_CYRIX:
  1416. if (cpu_has_cyrix_arr) {
  1417. mtrr_if = mtrr_ops[X86_VENDOR_CYRIX];
  1418. size_or_mask = 0xfff00000; /* 32 bits */
  1419. size_and_mask = 0;
  1420. }
  1421. break;
  1422. default:
  1423. break;
  1424. }
  1425. }
  1426. if (mtrr_if) {
  1427. set_num_var_ranges();
  1428. init_table();
  1429. if (use_intel()) {
  1430. get_mtrr_state();
  1431. if (mtrr_cleanup(phys_addr)) {
  1432. changed_by_mtrr_cleanup = 1;
  1433. mtrr_if->set_all();
  1434. }
  1435. }
  1436. }
  1437. }
  1438. void mtrr_ap_init(void)
  1439. {
  1440. unsigned long flags;
  1441. if (!mtrr_if || !use_intel())
  1442. return;
  1443. /*
  1444. * Ideally we should hold mtrr_mutex here to avoid mtrr entries changed,
  1445. * but this routine will be called in cpu boot time, holding the lock
  1446. * breaks it. This routine is called in two cases: 1.very earily time
  1447. * of software resume, when there absolutely isn't mtrr entry changes;
  1448. * 2.cpu hotadd time. We let mtrr_add/del_page hold cpuhotplug lock to
  1449. * prevent mtrr entry changes
  1450. */
  1451. local_irq_save(flags);
  1452. mtrr_if->set_all();
  1453. local_irq_restore(flags);
  1454. }
  1455. /**
  1456. * Save current fixed-range MTRR state of the BSP
  1457. */
  1458. void mtrr_save_state(void)
  1459. {
  1460. smp_call_function_single(0, mtrr_save_fixed_ranges, NULL, 1, 1);
  1461. }
  1462. static int __init mtrr_init_finialize(void)
  1463. {
  1464. if (!mtrr_if)
  1465. return 0;
  1466. if (use_intel()) {
  1467. if (!changed_by_mtrr_cleanup)
  1468. mtrr_state_warn();
  1469. } else {
  1470. /* The CPUs haven't MTRR and seem to not support SMP. They have
  1471. * specific drivers, we use a tricky method to support
  1472. * suspend/resume for them.
  1473. * TBD: is there any system with such CPU which supports
  1474. * suspend/resume? if no, we should remove the code.
  1475. */
  1476. sysdev_driver_register(&cpu_sysdev_class,
  1477. &mtrr_sysdev_driver);
  1478. }
  1479. return 0;
  1480. }
  1481. subsys_initcall(mtrr_init_finialize);