sched.c 28 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119
  1. /* sched.c - SPU scheduler.
  2. *
  3. * Copyright (C) IBM 2005
  4. * Author: Mark Nutter <mnutter@us.ibm.com>
  5. *
  6. * 2006-03-31 NUMA domains added.
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation; either version 2, or (at your option)
  11. * any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program; if not, write to the Free Software
  20. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  21. */
  22. #undef DEBUG
  23. #include <linux/module.h>
  24. #include <linux/errno.h>
  25. #include <linux/sched.h>
  26. #include <linux/kernel.h>
  27. #include <linux/mm.h>
  28. #include <linux/completion.h>
  29. #include <linux/vmalloc.h>
  30. #include <linux/smp.h>
  31. #include <linux/stddef.h>
  32. #include <linux/unistd.h>
  33. #include <linux/numa.h>
  34. #include <linux/mutex.h>
  35. #include <linux/notifier.h>
  36. #include <linux/kthread.h>
  37. #include <linux/pid_namespace.h>
  38. #include <linux/proc_fs.h>
  39. #include <linux/seq_file.h>
  40. #include <linux/marker.h>
  41. #include <asm/io.h>
  42. #include <asm/mmu_context.h>
  43. #include <asm/spu.h>
  44. #include <asm/spu_csa.h>
  45. #include <asm/spu_priv1.h>
  46. #include "spufs.h"
  47. struct spu_prio_array {
  48. DECLARE_BITMAP(bitmap, MAX_PRIO);
  49. struct list_head runq[MAX_PRIO];
  50. spinlock_t runq_lock;
  51. int nr_waiting;
  52. };
  53. static unsigned long spu_avenrun[3];
  54. static struct spu_prio_array *spu_prio;
  55. static struct task_struct *spusched_task;
  56. static struct timer_list spusched_timer;
  57. static struct timer_list spuloadavg_timer;
  58. /*
  59. * Priority of a normal, non-rt, non-niced'd process (aka nice level 0).
  60. */
  61. #define NORMAL_PRIO 120
  62. /*
  63. * Frequency of the spu scheduler tick. By default we do one SPU scheduler
  64. * tick for every 10 CPU scheduler ticks.
  65. */
  66. #define SPUSCHED_TICK (10)
  67. /*
  68. * These are the 'tuning knobs' of the scheduler:
  69. *
  70. * Minimum timeslice is 5 msecs (or 1 spu scheduler tick, whichever is
  71. * larger), default timeslice is 100 msecs, maximum timeslice is 800 msecs.
  72. */
  73. #define MIN_SPU_TIMESLICE max(5 * HZ / (1000 * SPUSCHED_TICK), 1)
  74. #define DEF_SPU_TIMESLICE (100 * HZ / (1000 * SPUSCHED_TICK))
  75. #define MAX_USER_PRIO (MAX_PRIO - MAX_RT_PRIO)
  76. #define SCALE_PRIO(x, prio) \
  77. max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_SPU_TIMESLICE)
  78. /*
  79. * scale user-nice values [ -20 ... 0 ... 19 ] to time slice values:
  80. * [800ms ... 100ms ... 5ms]
  81. *
  82. * The higher a thread's priority, the bigger timeslices
  83. * it gets during one round of execution. But even the lowest
  84. * priority thread gets MIN_TIMESLICE worth of execution time.
  85. */
  86. void spu_set_timeslice(struct spu_context *ctx)
  87. {
  88. if (ctx->prio < NORMAL_PRIO)
  89. ctx->time_slice = SCALE_PRIO(DEF_SPU_TIMESLICE * 4, ctx->prio);
  90. else
  91. ctx->time_slice = SCALE_PRIO(DEF_SPU_TIMESLICE, ctx->prio);
  92. }
  93. /*
  94. * Update scheduling information from the owning thread.
  95. */
  96. void __spu_update_sched_info(struct spu_context *ctx)
  97. {
  98. /*
  99. * assert that the context is not on the runqueue, so it is safe
  100. * to change its scheduling parameters.
  101. */
  102. BUG_ON(!list_empty(&ctx->rq));
  103. /*
  104. * 32-Bit assignments are atomic on powerpc, and we don't care about
  105. * memory ordering here because retrieving the controlling thread is
  106. * per definition racy.
  107. */
  108. ctx->tid = current->pid;
  109. /*
  110. * We do our own priority calculations, so we normally want
  111. * ->static_prio to start with. Unfortunately this field
  112. * contains junk for threads with a realtime scheduling
  113. * policy so we have to look at ->prio in this case.
  114. */
  115. if (rt_prio(current->prio))
  116. ctx->prio = current->prio;
  117. else
  118. ctx->prio = current->static_prio;
  119. ctx->policy = current->policy;
  120. /*
  121. * TO DO: the context may be loaded, so we may need to activate
  122. * it again on a different node. But it shouldn't hurt anything
  123. * to update its parameters, because we know that the scheduler
  124. * is not actively looking at this field, since it is not on the
  125. * runqueue. The context will be rescheduled on the proper node
  126. * if it is timesliced or preempted.
  127. */
  128. ctx->cpus_allowed = current->cpus_allowed;
  129. /* Save the current cpu id for spu interrupt routing. */
  130. ctx->last_ran = raw_smp_processor_id();
  131. }
  132. void spu_update_sched_info(struct spu_context *ctx)
  133. {
  134. int node;
  135. if (ctx->state == SPU_STATE_RUNNABLE) {
  136. node = ctx->spu->node;
  137. /*
  138. * Take list_mutex to sync with find_victim().
  139. */
  140. mutex_lock(&cbe_spu_info[node].list_mutex);
  141. __spu_update_sched_info(ctx);
  142. mutex_unlock(&cbe_spu_info[node].list_mutex);
  143. } else {
  144. __spu_update_sched_info(ctx);
  145. }
  146. }
  147. static int __node_allowed(struct spu_context *ctx, int node)
  148. {
  149. if (nr_cpus_node(node)) {
  150. cpumask_t mask = node_to_cpumask(node);
  151. if (cpus_intersects(mask, ctx->cpus_allowed))
  152. return 1;
  153. }
  154. return 0;
  155. }
  156. static int node_allowed(struct spu_context *ctx, int node)
  157. {
  158. int rval;
  159. spin_lock(&spu_prio->runq_lock);
  160. rval = __node_allowed(ctx, node);
  161. spin_unlock(&spu_prio->runq_lock);
  162. return rval;
  163. }
  164. void do_notify_spus_active(void)
  165. {
  166. int node;
  167. /*
  168. * Wake up the active spu_contexts.
  169. *
  170. * When the awakened processes see their "notify_active" flag is set,
  171. * they will call spu_switch_notify().
  172. */
  173. for_each_online_node(node) {
  174. struct spu *spu;
  175. mutex_lock(&cbe_spu_info[node].list_mutex);
  176. list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
  177. if (spu->alloc_state != SPU_FREE) {
  178. struct spu_context *ctx = spu->ctx;
  179. set_bit(SPU_SCHED_NOTIFY_ACTIVE,
  180. &ctx->sched_flags);
  181. mb();
  182. wake_up_all(&ctx->stop_wq);
  183. }
  184. }
  185. mutex_unlock(&cbe_spu_info[node].list_mutex);
  186. }
  187. }
  188. /**
  189. * spu_bind_context - bind spu context to physical spu
  190. * @spu: physical spu to bind to
  191. * @ctx: context to bind
  192. */
  193. static void spu_bind_context(struct spu *spu, struct spu_context *ctx)
  194. {
  195. spu_context_trace(spu_bind_context__enter, ctx, spu);
  196. spuctx_switch_state(ctx, SPU_UTIL_SYSTEM);
  197. if (ctx->flags & SPU_CREATE_NOSCHED)
  198. atomic_inc(&cbe_spu_info[spu->node].reserved_spus);
  199. ctx->stats.slb_flt_base = spu->stats.slb_flt;
  200. ctx->stats.class2_intr_base = spu->stats.class2_intr;
  201. spu_associate_mm(spu, ctx->owner);
  202. spin_lock_irq(&spu->register_lock);
  203. spu->ctx = ctx;
  204. spu->flags = 0;
  205. ctx->spu = spu;
  206. ctx->ops = &spu_hw_ops;
  207. spu->pid = current->pid;
  208. spu->tgid = current->tgid;
  209. spu->ibox_callback = spufs_ibox_callback;
  210. spu->wbox_callback = spufs_wbox_callback;
  211. spu->stop_callback = spufs_stop_callback;
  212. spu->mfc_callback = spufs_mfc_callback;
  213. spin_unlock_irq(&spu->register_lock);
  214. spu_unmap_mappings(ctx);
  215. spu_switch_log_notify(spu, ctx, SWITCH_LOG_START, 0);
  216. spu_restore(&ctx->csa, spu);
  217. spu->timestamp = jiffies;
  218. spu_switch_notify(spu, ctx);
  219. ctx->state = SPU_STATE_RUNNABLE;
  220. spuctx_switch_state(ctx, SPU_UTIL_USER);
  221. }
  222. /*
  223. * Must be used with the list_mutex held.
  224. */
  225. static inline int sched_spu(struct spu *spu)
  226. {
  227. BUG_ON(!mutex_is_locked(&cbe_spu_info[spu->node].list_mutex));
  228. return (!spu->ctx || !(spu->ctx->flags & SPU_CREATE_NOSCHED));
  229. }
  230. static void aff_merge_remaining_ctxs(struct spu_gang *gang)
  231. {
  232. struct spu_context *ctx;
  233. list_for_each_entry(ctx, &gang->aff_list_head, aff_list) {
  234. if (list_empty(&ctx->aff_list))
  235. list_add(&ctx->aff_list, &gang->aff_list_head);
  236. }
  237. gang->aff_flags |= AFF_MERGED;
  238. }
  239. static void aff_set_offsets(struct spu_gang *gang)
  240. {
  241. struct spu_context *ctx;
  242. int offset;
  243. offset = -1;
  244. list_for_each_entry_reverse(ctx, &gang->aff_ref_ctx->aff_list,
  245. aff_list) {
  246. if (&ctx->aff_list == &gang->aff_list_head)
  247. break;
  248. ctx->aff_offset = offset--;
  249. }
  250. offset = 0;
  251. list_for_each_entry(ctx, gang->aff_ref_ctx->aff_list.prev, aff_list) {
  252. if (&ctx->aff_list == &gang->aff_list_head)
  253. break;
  254. ctx->aff_offset = offset++;
  255. }
  256. gang->aff_flags |= AFF_OFFSETS_SET;
  257. }
  258. static struct spu *aff_ref_location(struct spu_context *ctx, int mem_aff,
  259. int group_size, int lowest_offset)
  260. {
  261. struct spu *spu;
  262. int node, n;
  263. /*
  264. * TODO: A better algorithm could be used to find a good spu to be
  265. * used as reference location for the ctxs chain.
  266. */
  267. node = cpu_to_node(raw_smp_processor_id());
  268. for (n = 0; n < MAX_NUMNODES; n++, node++) {
  269. node = (node < MAX_NUMNODES) ? node : 0;
  270. if (!node_allowed(ctx, node))
  271. continue;
  272. mutex_lock(&cbe_spu_info[node].list_mutex);
  273. list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
  274. if ((!mem_aff || spu->has_mem_affinity) &&
  275. sched_spu(spu)) {
  276. mutex_unlock(&cbe_spu_info[node].list_mutex);
  277. return spu;
  278. }
  279. }
  280. mutex_unlock(&cbe_spu_info[node].list_mutex);
  281. }
  282. return NULL;
  283. }
  284. static void aff_set_ref_point_location(struct spu_gang *gang)
  285. {
  286. int mem_aff, gs, lowest_offset;
  287. struct spu_context *ctx;
  288. struct spu *tmp;
  289. mem_aff = gang->aff_ref_ctx->flags & SPU_CREATE_AFFINITY_MEM;
  290. lowest_offset = 0;
  291. gs = 0;
  292. list_for_each_entry(tmp, &gang->aff_list_head, aff_list)
  293. gs++;
  294. list_for_each_entry_reverse(ctx, &gang->aff_ref_ctx->aff_list,
  295. aff_list) {
  296. if (&ctx->aff_list == &gang->aff_list_head)
  297. break;
  298. lowest_offset = ctx->aff_offset;
  299. }
  300. gang->aff_ref_spu = aff_ref_location(gang->aff_ref_ctx, mem_aff, gs,
  301. lowest_offset);
  302. }
  303. static struct spu *ctx_location(struct spu *ref, int offset, int node)
  304. {
  305. struct spu *spu;
  306. spu = NULL;
  307. if (offset >= 0) {
  308. list_for_each_entry(spu, ref->aff_list.prev, aff_list) {
  309. BUG_ON(spu->node != node);
  310. if (offset == 0)
  311. break;
  312. if (sched_spu(spu))
  313. offset--;
  314. }
  315. } else {
  316. list_for_each_entry_reverse(spu, ref->aff_list.next, aff_list) {
  317. BUG_ON(spu->node != node);
  318. if (offset == 0)
  319. break;
  320. if (sched_spu(spu))
  321. offset++;
  322. }
  323. }
  324. return spu;
  325. }
  326. /*
  327. * affinity_check is called each time a context is going to be scheduled.
  328. * It returns the spu ptr on which the context must run.
  329. */
  330. static int has_affinity(struct spu_context *ctx)
  331. {
  332. struct spu_gang *gang = ctx->gang;
  333. if (list_empty(&ctx->aff_list))
  334. return 0;
  335. if (!gang->aff_ref_spu) {
  336. if (!(gang->aff_flags & AFF_MERGED))
  337. aff_merge_remaining_ctxs(gang);
  338. if (!(gang->aff_flags & AFF_OFFSETS_SET))
  339. aff_set_offsets(gang);
  340. aff_set_ref_point_location(gang);
  341. }
  342. return gang->aff_ref_spu != NULL;
  343. }
  344. /**
  345. * spu_unbind_context - unbind spu context from physical spu
  346. * @spu: physical spu to unbind from
  347. * @ctx: context to unbind
  348. */
  349. static void spu_unbind_context(struct spu *spu, struct spu_context *ctx)
  350. {
  351. u32 status;
  352. spu_context_trace(spu_unbind_context__enter, ctx, spu);
  353. spuctx_switch_state(ctx, SPU_UTIL_SYSTEM);
  354. if (spu->ctx->flags & SPU_CREATE_NOSCHED)
  355. atomic_dec(&cbe_spu_info[spu->node].reserved_spus);
  356. if (ctx->gang){
  357. mutex_lock(&ctx->gang->aff_mutex);
  358. if (has_affinity(ctx)) {
  359. if (atomic_dec_and_test(&ctx->gang->aff_sched_count))
  360. ctx->gang->aff_ref_spu = NULL;
  361. }
  362. mutex_unlock(&ctx->gang->aff_mutex);
  363. }
  364. spu_switch_notify(spu, NULL);
  365. spu_unmap_mappings(ctx);
  366. spu_save(&ctx->csa, spu);
  367. spu_switch_log_notify(spu, ctx, SWITCH_LOG_STOP, 0);
  368. spin_lock_irq(&spu->register_lock);
  369. spu->timestamp = jiffies;
  370. ctx->state = SPU_STATE_SAVED;
  371. spu->ibox_callback = NULL;
  372. spu->wbox_callback = NULL;
  373. spu->stop_callback = NULL;
  374. spu->mfc_callback = NULL;
  375. spu->pid = 0;
  376. spu->tgid = 0;
  377. ctx->ops = &spu_backing_ops;
  378. spu->flags = 0;
  379. spu->ctx = NULL;
  380. spin_unlock_irq(&spu->register_lock);
  381. spu_associate_mm(spu, NULL);
  382. ctx->stats.slb_flt +=
  383. (spu->stats.slb_flt - ctx->stats.slb_flt_base);
  384. ctx->stats.class2_intr +=
  385. (spu->stats.class2_intr - ctx->stats.class2_intr_base);
  386. /* This maps the underlying spu state to idle */
  387. spuctx_switch_state(ctx, SPU_UTIL_IDLE_LOADED);
  388. ctx->spu = NULL;
  389. if (spu_stopped(ctx, &status))
  390. wake_up_all(&ctx->stop_wq);
  391. }
  392. /**
  393. * spu_add_to_rq - add a context to the runqueue
  394. * @ctx: context to add
  395. */
  396. static void __spu_add_to_rq(struct spu_context *ctx)
  397. {
  398. /*
  399. * Unfortunately this code path can be called from multiple threads
  400. * on behalf of a single context due to the way the problem state
  401. * mmap support works.
  402. *
  403. * Fortunately we need to wake up all these threads at the same time
  404. * and can simply skip the runqueue addition for every but the first
  405. * thread getting into this codepath.
  406. *
  407. * It's still quite hacky, and long-term we should proxy all other
  408. * threads through the owner thread so that spu_run is in control
  409. * of all the scheduling activity for a given context.
  410. */
  411. if (list_empty(&ctx->rq)) {
  412. list_add_tail(&ctx->rq, &spu_prio->runq[ctx->prio]);
  413. set_bit(ctx->prio, spu_prio->bitmap);
  414. if (!spu_prio->nr_waiting++)
  415. __mod_timer(&spusched_timer, jiffies + SPUSCHED_TICK);
  416. }
  417. }
  418. static void spu_add_to_rq(struct spu_context *ctx)
  419. {
  420. spin_lock(&spu_prio->runq_lock);
  421. __spu_add_to_rq(ctx);
  422. spin_unlock(&spu_prio->runq_lock);
  423. }
  424. static void __spu_del_from_rq(struct spu_context *ctx)
  425. {
  426. int prio = ctx->prio;
  427. if (!list_empty(&ctx->rq)) {
  428. if (!--spu_prio->nr_waiting)
  429. del_timer(&spusched_timer);
  430. list_del_init(&ctx->rq);
  431. if (list_empty(&spu_prio->runq[prio]))
  432. clear_bit(prio, spu_prio->bitmap);
  433. }
  434. }
  435. void spu_del_from_rq(struct spu_context *ctx)
  436. {
  437. spin_lock(&spu_prio->runq_lock);
  438. __spu_del_from_rq(ctx);
  439. spin_unlock(&spu_prio->runq_lock);
  440. }
  441. static void spu_prio_wait(struct spu_context *ctx)
  442. {
  443. DEFINE_WAIT(wait);
  444. /*
  445. * The caller must explicitly wait for a context to be loaded
  446. * if the nosched flag is set. If NOSCHED is not set, the caller
  447. * queues the context and waits for an spu event or error.
  448. */
  449. BUG_ON(!(ctx->flags & SPU_CREATE_NOSCHED));
  450. spin_lock(&spu_prio->runq_lock);
  451. prepare_to_wait_exclusive(&ctx->stop_wq, &wait, TASK_INTERRUPTIBLE);
  452. if (!signal_pending(current)) {
  453. __spu_add_to_rq(ctx);
  454. spin_unlock(&spu_prio->runq_lock);
  455. mutex_unlock(&ctx->state_mutex);
  456. schedule();
  457. mutex_lock(&ctx->state_mutex);
  458. spin_lock(&spu_prio->runq_lock);
  459. __spu_del_from_rq(ctx);
  460. }
  461. spin_unlock(&spu_prio->runq_lock);
  462. __set_current_state(TASK_RUNNING);
  463. remove_wait_queue(&ctx->stop_wq, &wait);
  464. }
  465. static struct spu *spu_get_idle(struct spu_context *ctx)
  466. {
  467. struct spu *spu, *aff_ref_spu;
  468. int node, n;
  469. spu_context_nospu_trace(spu_get_idle__enter, ctx);
  470. if (ctx->gang) {
  471. mutex_lock(&ctx->gang->aff_mutex);
  472. if (has_affinity(ctx)) {
  473. aff_ref_spu = ctx->gang->aff_ref_spu;
  474. atomic_inc(&ctx->gang->aff_sched_count);
  475. mutex_unlock(&ctx->gang->aff_mutex);
  476. node = aff_ref_spu->node;
  477. mutex_lock(&cbe_spu_info[node].list_mutex);
  478. spu = ctx_location(aff_ref_spu, ctx->aff_offset, node);
  479. if (spu && spu->alloc_state == SPU_FREE)
  480. goto found;
  481. mutex_unlock(&cbe_spu_info[node].list_mutex);
  482. mutex_lock(&ctx->gang->aff_mutex);
  483. if (atomic_dec_and_test(&ctx->gang->aff_sched_count))
  484. ctx->gang->aff_ref_spu = NULL;
  485. mutex_unlock(&ctx->gang->aff_mutex);
  486. goto not_found;
  487. }
  488. mutex_unlock(&ctx->gang->aff_mutex);
  489. }
  490. node = cpu_to_node(raw_smp_processor_id());
  491. for (n = 0; n < MAX_NUMNODES; n++, node++) {
  492. node = (node < MAX_NUMNODES) ? node : 0;
  493. if (!node_allowed(ctx, node))
  494. continue;
  495. mutex_lock(&cbe_spu_info[node].list_mutex);
  496. list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
  497. if (spu->alloc_state == SPU_FREE)
  498. goto found;
  499. }
  500. mutex_unlock(&cbe_spu_info[node].list_mutex);
  501. }
  502. not_found:
  503. spu_context_nospu_trace(spu_get_idle__not_found, ctx);
  504. return NULL;
  505. found:
  506. spu->alloc_state = SPU_USED;
  507. mutex_unlock(&cbe_spu_info[node].list_mutex);
  508. spu_context_trace(spu_get_idle__found, ctx, spu);
  509. spu_init_channels(spu);
  510. return spu;
  511. }
  512. /**
  513. * find_victim - find a lower priority context to preempt
  514. * @ctx: canidate context for running
  515. *
  516. * Returns the freed physical spu to run the new context on.
  517. */
  518. static struct spu *find_victim(struct spu_context *ctx)
  519. {
  520. struct spu_context *victim = NULL;
  521. struct spu *spu;
  522. int node, n;
  523. spu_context_nospu_trace(spu_find_victim__enter, ctx);
  524. /*
  525. * Look for a possible preemption candidate on the local node first.
  526. * If there is no candidate look at the other nodes. This isn't
  527. * exactly fair, but so far the whole spu scheduler tries to keep
  528. * a strong node affinity. We might want to fine-tune this in
  529. * the future.
  530. */
  531. restart:
  532. node = cpu_to_node(raw_smp_processor_id());
  533. for (n = 0; n < MAX_NUMNODES; n++, node++) {
  534. node = (node < MAX_NUMNODES) ? node : 0;
  535. if (!node_allowed(ctx, node))
  536. continue;
  537. mutex_lock(&cbe_spu_info[node].list_mutex);
  538. list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
  539. struct spu_context *tmp = spu->ctx;
  540. if (tmp && tmp->prio > ctx->prio &&
  541. !(tmp->flags & SPU_CREATE_NOSCHED) &&
  542. (!victim || tmp->prio > victim->prio))
  543. victim = spu->ctx;
  544. }
  545. mutex_unlock(&cbe_spu_info[node].list_mutex);
  546. if (victim) {
  547. /*
  548. * This nests ctx->state_mutex, but we always lock
  549. * higher priority contexts before lower priority
  550. * ones, so this is safe until we introduce
  551. * priority inheritance schemes.
  552. *
  553. * XXX if the highest priority context is locked,
  554. * this can loop a long time. Might be better to
  555. * look at another context or give up after X retries.
  556. */
  557. if (!mutex_trylock(&victim->state_mutex)) {
  558. victim = NULL;
  559. goto restart;
  560. }
  561. spu = victim->spu;
  562. if (!spu || victim->prio <= ctx->prio) {
  563. /*
  564. * This race can happen because we've dropped
  565. * the active list mutex. Not a problem, just
  566. * restart the search.
  567. */
  568. mutex_unlock(&victim->state_mutex);
  569. victim = NULL;
  570. goto restart;
  571. }
  572. spu_context_trace(__spu_deactivate__unload, ctx, spu);
  573. mutex_lock(&cbe_spu_info[node].list_mutex);
  574. cbe_spu_info[node].nr_active--;
  575. spu_unbind_context(spu, victim);
  576. mutex_unlock(&cbe_spu_info[node].list_mutex);
  577. victim->stats.invol_ctx_switch++;
  578. spu->stats.invol_ctx_switch++;
  579. if (test_bit(SPU_SCHED_SPU_RUN, &victim->sched_flags))
  580. spu_add_to_rq(victim);
  581. mutex_unlock(&victim->state_mutex);
  582. return spu;
  583. }
  584. }
  585. return NULL;
  586. }
  587. static void __spu_schedule(struct spu *spu, struct spu_context *ctx)
  588. {
  589. int node = spu->node;
  590. int success = 0;
  591. spu_set_timeslice(ctx);
  592. mutex_lock(&cbe_spu_info[node].list_mutex);
  593. if (spu->ctx == NULL) {
  594. spu_bind_context(spu, ctx);
  595. cbe_spu_info[node].nr_active++;
  596. spu->alloc_state = SPU_USED;
  597. success = 1;
  598. }
  599. mutex_unlock(&cbe_spu_info[node].list_mutex);
  600. if (success)
  601. wake_up_all(&ctx->run_wq);
  602. else
  603. spu_add_to_rq(ctx);
  604. }
  605. static void spu_schedule(struct spu *spu, struct spu_context *ctx)
  606. {
  607. /* not a candidate for interruptible because it's called either
  608. from the scheduler thread or from spu_deactivate */
  609. mutex_lock(&ctx->state_mutex);
  610. __spu_schedule(spu, ctx);
  611. spu_release(ctx);
  612. }
  613. static void spu_unschedule(struct spu *spu, struct spu_context *ctx)
  614. {
  615. int node = spu->node;
  616. mutex_lock(&cbe_spu_info[node].list_mutex);
  617. cbe_spu_info[node].nr_active--;
  618. spu->alloc_state = SPU_FREE;
  619. spu_unbind_context(spu, ctx);
  620. ctx->stats.invol_ctx_switch++;
  621. spu->stats.invol_ctx_switch++;
  622. mutex_unlock(&cbe_spu_info[node].list_mutex);
  623. }
  624. /**
  625. * spu_activate - find a free spu for a context and execute it
  626. * @ctx: spu context to schedule
  627. * @flags: flags (currently ignored)
  628. *
  629. * Tries to find a free spu to run @ctx. If no free spu is available
  630. * add the context to the runqueue so it gets woken up once an spu
  631. * is available.
  632. */
  633. int spu_activate(struct spu_context *ctx, unsigned long flags)
  634. {
  635. struct spu *spu;
  636. /*
  637. * If there are multiple threads waiting for a single context
  638. * only one actually binds the context while the others will
  639. * only be able to acquire the state_mutex once the context
  640. * already is in runnable state.
  641. */
  642. if (ctx->spu)
  643. return 0;
  644. spu_activate_top:
  645. if (signal_pending(current))
  646. return -ERESTARTSYS;
  647. spu = spu_get_idle(ctx);
  648. /*
  649. * If this is a realtime thread we try to get it running by
  650. * preempting a lower priority thread.
  651. */
  652. if (!spu && rt_prio(ctx->prio))
  653. spu = find_victim(ctx);
  654. if (spu) {
  655. unsigned long runcntl;
  656. runcntl = ctx->ops->runcntl_read(ctx);
  657. __spu_schedule(spu, ctx);
  658. if (runcntl & SPU_RUNCNTL_RUNNABLE)
  659. spuctx_switch_state(ctx, SPU_UTIL_USER);
  660. return 0;
  661. }
  662. if (ctx->flags & SPU_CREATE_NOSCHED) {
  663. spu_prio_wait(ctx);
  664. goto spu_activate_top;
  665. }
  666. spu_add_to_rq(ctx);
  667. return 0;
  668. }
  669. /**
  670. * grab_runnable_context - try to find a runnable context
  671. *
  672. * Remove the highest priority context on the runqueue and return it
  673. * to the caller. Returns %NULL if no runnable context was found.
  674. */
  675. static struct spu_context *grab_runnable_context(int prio, int node)
  676. {
  677. struct spu_context *ctx;
  678. int best;
  679. spin_lock(&spu_prio->runq_lock);
  680. best = find_first_bit(spu_prio->bitmap, prio);
  681. while (best < prio) {
  682. struct list_head *rq = &spu_prio->runq[best];
  683. list_for_each_entry(ctx, rq, rq) {
  684. /* XXX(hch): check for affinity here aswell */
  685. if (__node_allowed(ctx, node)) {
  686. __spu_del_from_rq(ctx);
  687. goto found;
  688. }
  689. }
  690. best++;
  691. }
  692. ctx = NULL;
  693. found:
  694. spin_unlock(&spu_prio->runq_lock);
  695. return ctx;
  696. }
  697. static int __spu_deactivate(struct spu_context *ctx, int force, int max_prio)
  698. {
  699. struct spu *spu = ctx->spu;
  700. struct spu_context *new = NULL;
  701. if (spu) {
  702. new = grab_runnable_context(max_prio, spu->node);
  703. if (new || force) {
  704. spu_unschedule(spu, ctx);
  705. if (new) {
  706. if (new->flags & SPU_CREATE_NOSCHED)
  707. wake_up(&new->stop_wq);
  708. else {
  709. spu_release(ctx);
  710. spu_schedule(spu, new);
  711. /* this one can't easily be made
  712. interruptible */
  713. mutex_lock(&ctx->state_mutex);
  714. }
  715. }
  716. }
  717. }
  718. return new != NULL;
  719. }
  720. /**
  721. * spu_deactivate - unbind a context from it's physical spu
  722. * @ctx: spu context to unbind
  723. *
  724. * Unbind @ctx from the physical spu it is running on and schedule
  725. * the highest priority context to run on the freed physical spu.
  726. */
  727. void spu_deactivate(struct spu_context *ctx)
  728. {
  729. spu_context_nospu_trace(spu_deactivate__enter, ctx);
  730. __spu_deactivate(ctx, 1, MAX_PRIO);
  731. }
  732. /**
  733. * spu_yield - yield a physical spu if others are waiting
  734. * @ctx: spu context to yield
  735. *
  736. * Check if there is a higher priority context waiting and if yes
  737. * unbind @ctx from the physical spu and schedule the highest
  738. * priority context to run on the freed physical spu instead.
  739. */
  740. void spu_yield(struct spu_context *ctx)
  741. {
  742. spu_context_nospu_trace(spu_yield__enter, ctx);
  743. if (!(ctx->flags & SPU_CREATE_NOSCHED)) {
  744. mutex_lock(&ctx->state_mutex);
  745. __spu_deactivate(ctx, 0, MAX_PRIO);
  746. mutex_unlock(&ctx->state_mutex);
  747. }
  748. }
  749. static noinline void spusched_tick(struct spu_context *ctx)
  750. {
  751. struct spu_context *new = NULL;
  752. struct spu *spu = NULL;
  753. if (spu_acquire(ctx))
  754. BUG(); /* a kernel thread never has signals pending */
  755. if (ctx->state != SPU_STATE_RUNNABLE)
  756. goto out;
  757. if (ctx->flags & SPU_CREATE_NOSCHED)
  758. goto out;
  759. if (ctx->policy == SCHED_FIFO)
  760. goto out;
  761. if (--ctx->time_slice && test_bit(SPU_SCHED_SPU_RUN, &ctx->sched_flags))
  762. goto out;
  763. spu = ctx->spu;
  764. spu_context_trace(spusched_tick__preempt, ctx, spu);
  765. new = grab_runnable_context(ctx->prio + 1, spu->node);
  766. if (new) {
  767. spu_unschedule(spu, ctx);
  768. if (test_bit(SPU_SCHED_SPU_RUN, &ctx->sched_flags))
  769. spu_add_to_rq(ctx);
  770. } else {
  771. spu_context_nospu_trace(spusched_tick__newslice, ctx);
  772. ctx->time_slice++;
  773. }
  774. out:
  775. spu_release(ctx);
  776. if (new)
  777. spu_schedule(spu, new);
  778. }
  779. /**
  780. * count_active_contexts - count nr of active tasks
  781. *
  782. * Return the number of tasks currently running or waiting to run.
  783. *
  784. * Note that we don't take runq_lock / list_mutex here. Reading
  785. * a single 32bit value is atomic on powerpc, and we don't care
  786. * about memory ordering issues here.
  787. */
  788. static unsigned long count_active_contexts(void)
  789. {
  790. int nr_active = 0, node;
  791. for (node = 0; node < MAX_NUMNODES; node++)
  792. nr_active += cbe_spu_info[node].nr_active;
  793. nr_active += spu_prio->nr_waiting;
  794. return nr_active;
  795. }
  796. /**
  797. * spu_calc_load - update the avenrun load estimates.
  798. *
  799. * No locking against reading these values from userspace, as for
  800. * the CPU loadavg code.
  801. */
  802. static void spu_calc_load(void)
  803. {
  804. unsigned long active_tasks; /* fixed-point */
  805. active_tasks = count_active_contexts() * FIXED_1;
  806. CALC_LOAD(spu_avenrun[0], EXP_1, active_tasks);
  807. CALC_LOAD(spu_avenrun[1], EXP_5, active_tasks);
  808. CALC_LOAD(spu_avenrun[2], EXP_15, active_tasks);
  809. }
  810. static void spusched_wake(unsigned long data)
  811. {
  812. mod_timer(&spusched_timer, jiffies + SPUSCHED_TICK);
  813. wake_up_process(spusched_task);
  814. }
  815. static void spuloadavg_wake(unsigned long data)
  816. {
  817. mod_timer(&spuloadavg_timer, jiffies + LOAD_FREQ);
  818. spu_calc_load();
  819. }
  820. static int spusched_thread(void *unused)
  821. {
  822. struct spu *spu;
  823. int node;
  824. while (!kthread_should_stop()) {
  825. set_current_state(TASK_INTERRUPTIBLE);
  826. schedule();
  827. for (node = 0; node < MAX_NUMNODES; node++) {
  828. struct mutex *mtx = &cbe_spu_info[node].list_mutex;
  829. mutex_lock(mtx);
  830. list_for_each_entry(spu, &cbe_spu_info[node].spus,
  831. cbe_list) {
  832. struct spu_context *ctx = spu->ctx;
  833. if (ctx) {
  834. mutex_unlock(mtx);
  835. spusched_tick(ctx);
  836. mutex_lock(mtx);
  837. }
  838. }
  839. mutex_unlock(mtx);
  840. }
  841. }
  842. return 0;
  843. }
  844. void spuctx_switch_state(struct spu_context *ctx,
  845. enum spu_utilization_state new_state)
  846. {
  847. unsigned long long curtime;
  848. signed long long delta;
  849. struct timespec ts;
  850. struct spu *spu;
  851. enum spu_utilization_state old_state;
  852. ktime_get_ts(&ts);
  853. curtime = timespec_to_ns(&ts);
  854. delta = curtime - ctx->stats.tstamp;
  855. WARN_ON(!mutex_is_locked(&ctx->state_mutex));
  856. WARN_ON(delta < 0);
  857. spu = ctx->spu;
  858. old_state = ctx->stats.util_state;
  859. ctx->stats.util_state = new_state;
  860. ctx->stats.tstamp = curtime;
  861. /*
  862. * Update the physical SPU utilization statistics.
  863. */
  864. if (spu) {
  865. ctx->stats.times[old_state] += delta;
  866. spu->stats.times[old_state] += delta;
  867. spu->stats.util_state = new_state;
  868. spu->stats.tstamp = curtime;
  869. }
  870. }
  871. #define LOAD_INT(x) ((x) >> FSHIFT)
  872. #define LOAD_FRAC(x) LOAD_INT(((x) & (FIXED_1-1)) * 100)
  873. static int show_spu_loadavg(struct seq_file *s, void *private)
  874. {
  875. int a, b, c;
  876. a = spu_avenrun[0] + (FIXED_1/200);
  877. b = spu_avenrun[1] + (FIXED_1/200);
  878. c = spu_avenrun[2] + (FIXED_1/200);
  879. /*
  880. * Note that last_pid doesn't really make much sense for the
  881. * SPU loadavg (it even seems very odd on the CPU side...),
  882. * but we include it here to have a 100% compatible interface.
  883. */
  884. seq_printf(s, "%d.%02d %d.%02d %d.%02d %ld/%d %d\n",
  885. LOAD_INT(a), LOAD_FRAC(a),
  886. LOAD_INT(b), LOAD_FRAC(b),
  887. LOAD_INT(c), LOAD_FRAC(c),
  888. count_active_contexts(),
  889. atomic_read(&nr_spu_contexts),
  890. current->nsproxy->pid_ns->last_pid);
  891. return 0;
  892. }
  893. static int spu_loadavg_open(struct inode *inode, struct file *file)
  894. {
  895. return single_open(file, show_spu_loadavg, NULL);
  896. }
  897. static const struct file_operations spu_loadavg_fops = {
  898. .open = spu_loadavg_open,
  899. .read = seq_read,
  900. .llseek = seq_lseek,
  901. .release = single_release,
  902. };
  903. int __init spu_sched_init(void)
  904. {
  905. struct proc_dir_entry *entry;
  906. int err = -ENOMEM, i;
  907. spu_prio = kzalloc(sizeof(struct spu_prio_array), GFP_KERNEL);
  908. if (!spu_prio)
  909. goto out;
  910. for (i = 0; i < MAX_PRIO; i++) {
  911. INIT_LIST_HEAD(&spu_prio->runq[i]);
  912. __clear_bit(i, spu_prio->bitmap);
  913. }
  914. spin_lock_init(&spu_prio->runq_lock);
  915. setup_timer(&spusched_timer, spusched_wake, 0);
  916. setup_timer(&spuloadavg_timer, spuloadavg_wake, 0);
  917. spusched_task = kthread_run(spusched_thread, NULL, "spusched");
  918. if (IS_ERR(spusched_task)) {
  919. err = PTR_ERR(spusched_task);
  920. goto out_free_spu_prio;
  921. }
  922. mod_timer(&spuloadavg_timer, 0);
  923. entry = proc_create("spu_loadavg", 0, NULL, &spu_loadavg_fops);
  924. if (!entry)
  925. goto out_stop_kthread;
  926. pr_debug("spusched: tick: %d, min ticks: %d, default ticks: %d\n",
  927. SPUSCHED_TICK, MIN_SPU_TIMESLICE, DEF_SPU_TIMESLICE);
  928. return 0;
  929. out_stop_kthread:
  930. kthread_stop(spusched_task);
  931. out_free_spu_prio:
  932. kfree(spu_prio);
  933. out:
  934. return err;
  935. }
  936. void spu_sched_exit(void)
  937. {
  938. struct spu *spu;
  939. int node;
  940. remove_proc_entry("spu_loadavg", NULL);
  941. del_timer_sync(&spusched_timer);
  942. del_timer_sync(&spuloadavg_timer);
  943. kthread_stop(spusched_task);
  944. for (node = 0; node < MAX_NUMNODES; node++) {
  945. mutex_lock(&cbe_spu_info[node].list_mutex);
  946. list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list)
  947. if (spu->alloc_state != SPU_FREE)
  948. spu->alloc_state = SPU_FREE;
  949. mutex_unlock(&cbe_spu_info[node].list_mutex);
  950. }
  951. kfree(spu_prio);
  952. }