lguest.c 59 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848
  1. /*P:100 This is the Launcher code, a simple program which lays out the
  2. * "physical" memory for the new Guest by mapping the kernel image and
  3. * the virtual devices, then opens /dev/lguest to tell the kernel
  4. * about the Guest and control it. :*/
  5. #define _LARGEFILE64_SOURCE
  6. #define _GNU_SOURCE
  7. #include <stdio.h>
  8. #include <string.h>
  9. #include <unistd.h>
  10. #include <err.h>
  11. #include <stdint.h>
  12. #include <stdlib.h>
  13. #include <elf.h>
  14. #include <sys/mman.h>
  15. #include <sys/param.h>
  16. #include <sys/types.h>
  17. #include <sys/stat.h>
  18. #include <sys/wait.h>
  19. #include <fcntl.h>
  20. #include <stdbool.h>
  21. #include <errno.h>
  22. #include <ctype.h>
  23. #include <sys/socket.h>
  24. #include <sys/ioctl.h>
  25. #include <sys/time.h>
  26. #include <time.h>
  27. #include <netinet/in.h>
  28. #include <net/if.h>
  29. #include <linux/sockios.h>
  30. #include <linux/if_tun.h>
  31. #include <sys/uio.h>
  32. #include <termios.h>
  33. #include <getopt.h>
  34. #include <zlib.h>
  35. #include <assert.h>
  36. #include <sched.h>
  37. #include <limits.h>
  38. #include <stddef.h>
  39. #include "linux/lguest_launcher.h"
  40. #include "linux/virtio_config.h"
  41. #include "linux/virtio_net.h"
  42. #include "linux/virtio_blk.h"
  43. #include "linux/virtio_console.h"
  44. #include "linux/virtio_ring.h"
  45. #include "asm-x86/bootparam.h"
  46. /*L:110 We can ignore the 39 include files we need for this program, but I do
  47. * want to draw attention to the use of kernel-style types.
  48. *
  49. * As Linus said, "C is a Spartan language, and so should your naming be." I
  50. * like these abbreviations, so we define them here. Note that u64 is always
  51. * unsigned long long, which works on all Linux systems: this means that we can
  52. * use %llu in printf for any u64. */
  53. typedef unsigned long long u64;
  54. typedef uint32_t u32;
  55. typedef uint16_t u16;
  56. typedef uint8_t u8;
  57. /*:*/
  58. #define PAGE_PRESENT 0x7 /* Present, RW, Execute */
  59. #define NET_PEERNUM 1
  60. #define BRIDGE_PFX "bridge:"
  61. #ifndef SIOCBRADDIF
  62. #define SIOCBRADDIF 0x89a2 /* add interface to bridge */
  63. #endif
  64. /* We can have up to 256 pages for devices. */
  65. #define DEVICE_PAGES 256
  66. /* This will occupy 2 pages: it must be a power of 2. */
  67. #define VIRTQUEUE_NUM 128
  68. /*L:120 verbose is both a global flag and a macro. The C preprocessor allows
  69. * this, and although I wouldn't recommend it, it works quite nicely here. */
  70. static bool verbose;
  71. #define verbose(args...) \
  72. do { if (verbose) printf(args); } while(0)
  73. /*:*/
  74. /* The pipe to send commands to the waker process */
  75. static int waker_fd;
  76. /* The pointer to the start of guest memory. */
  77. static void *guest_base;
  78. /* The maximum guest physical address allowed, and maximum possible. */
  79. static unsigned long guest_limit, guest_max;
  80. /* a per-cpu variable indicating whose vcpu is currently running */
  81. static unsigned int __thread cpu_id;
  82. /* This is our list of devices. */
  83. struct device_list
  84. {
  85. /* Summary information about the devices in our list: ready to pass to
  86. * select() to ask which need servicing.*/
  87. fd_set infds;
  88. int max_infd;
  89. /* Counter to assign interrupt numbers. */
  90. unsigned int next_irq;
  91. /* Counter to print out convenient device numbers. */
  92. unsigned int device_num;
  93. /* The descriptor page for the devices. */
  94. u8 *descpage;
  95. /* A single linked list of devices. */
  96. struct device *dev;
  97. /* And a pointer to the last device for easy append and also for
  98. * configuration appending. */
  99. struct device *lastdev;
  100. };
  101. /* The list of Guest devices, based on command line arguments. */
  102. static struct device_list devices;
  103. /* The device structure describes a single device. */
  104. struct device
  105. {
  106. /* The linked-list pointer. */
  107. struct device *next;
  108. /* The this device's descriptor, as mapped into the Guest. */
  109. struct lguest_device_desc *desc;
  110. /* The name of this device, for --verbose. */
  111. const char *name;
  112. /* If handle_input is set, it wants to be called when this file
  113. * descriptor is ready. */
  114. int fd;
  115. bool (*handle_input)(int fd, struct device *me);
  116. /* Any queues attached to this device */
  117. struct virtqueue *vq;
  118. /* Handle status being finalized (ie. feature bits stable). */
  119. void (*ready)(struct device *me);
  120. /* Device-specific data. */
  121. void *priv;
  122. };
  123. /* The virtqueue structure describes a queue attached to a device. */
  124. struct virtqueue
  125. {
  126. struct virtqueue *next;
  127. /* Which device owns me. */
  128. struct device *dev;
  129. /* The configuration for this queue. */
  130. struct lguest_vqconfig config;
  131. /* The actual ring of buffers. */
  132. struct vring vring;
  133. /* Last available index we saw. */
  134. u16 last_avail_idx;
  135. /* The routine to call when the Guest pings us. */
  136. void (*handle_output)(int fd, struct virtqueue *me);
  137. /* Outstanding buffers */
  138. unsigned int inflight;
  139. };
  140. /* Remember the arguments to the program so we can "reboot" */
  141. static char **main_args;
  142. /* Since guest is UP and we don't run at the same time, we don't need barriers.
  143. * But I include them in the code in case others copy it. */
  144. #define wmb()
  145. /* Convert an iovec element to the given type.
  146. *
  147. * This is a fairly ugly trick: we need to know the size of the type and
  148. * alignment requirement to check the pointer is kosher. It's also nice to
  149. * have the name of the type in case we report failure.
  150. *
  151. * Typing those three things all the time is cumbersome and error prone, so we
  152. * have a macro which sets them all up and passes to the real function. */
  153. #define convert(iov, type) \
  154. ((type *)_convert((iov), sizeof(type), __alignof__(type), #type))
  155. static void *_convert(struct iovec *iov, size_t size, size_t align,
  156. const char *name)
  157. {
  158. if (iov->iov_len != size)
  159. errx(1, "Bad iovec size %zu for %s", iov->iov_len, name);
  160. if ((unsigned long)iov->iov_base % align != 0)
  161. errx(1, "Bad alignment %p for %s", iov->iov_base, name);
  162. return iov->iov_base;
  163. }
  164. /* The virtio configuration space is defined to be little-endian. x86 is
  165. * little-endian too, but it's nice to be explicit so we have these helpers. */
  166. #define cpu_to_le16(v16) (v16)
  167. #define cpu_to_le32(v32) (v32)
  168. #define cpu_to_le64(v64) (v64)
  169. #define le16_to_cpu(v16) (v16)
  170. #define le32_to_cpu(v32) (v32)
  171. #define le64_to_cpu(v64) (v64)
  172. /* The device virtqueue descriptors are followed by feature bitmasks. */
  173. static u8 *get_feature_bits(struct device *dev)
  174. {
  175. return (u8 *)(dev->desc + 1)
  176. + dev->desc->num_vq * sizeof(struct lguest_vqconfig);
  177. }
  178. /*L:100 The Launcher code itself takes us out into userspace, that scary place
  179. * where pointers run wild and free! Unfortunately, like most userspace
  180. * programs, it's quite boring (which is why everyone likes to hack on the
  181. * kernel!). Perhaps if you make up an Lguest Drinking Game at this point, it
  182. * will get you through this section. Or, maybe not.
  183. *
  184. * The Launcher sets up a big chunk of memory to be the Guest's "physical"
  185. * memory and stores it in "guest_base". In other words, Guest physical ==
  186. * Launcher virtual with an offset.
  187. *
  188. * This can be tough to get your head around, but usually it just means that we
  189. * use these trivial conversion functions when the Guest gives us it's
  190. * "physical" addresses: */
  191. static void *from_guest_phys(unsigned long addr)
  192. {
  193. return guest_base + addr;
  194. }
  195. static unsigned long to_guest_phys(const void *addr)
  196. {
  197. return (addr - guest_base);
  198. }
  199. /*L:130
  200. * Loading the Kernel.
  201. *
  202. * We start with couple of simple helper routines. open_or_die() avoids
  203. * error-checking code cluttering the callers: */
  204. static int open_or_die(const char *name, int flags)
  205. {
  206. int fd = open(name, flags);
  207. if (fd < 0)
  208. err(1, "Failed to open %s", name);
  209. return fd;
  210. }
  211. /* map_zeroed_pages() takes a number of pages. */
  212. static void *map_zeroed_pages(unsigned int num)
  213. {
  214. int fd = open_or_die("/dev/zero", O_RDONLY);
  215. void *addr;
  216. /* We use a private mapping (ie. if we write to the page, it will be
  217. * copied). */
  218. addr = mmap(NULL, getpagesize() * num,
  219. PROT_READ|PROT_WRITE|PROT_EXEC, MAP_PRIVATE, fd, 0);
  220. if (addr == MAP_FAILED)
  221. err(1, "Mmaping %u pages of /dev/zero", num);
  222. return addr;
  223. }
  224. /* Get some more pages for a device. */
  225. static void *get_pages(unsigned int num)
  226. {
  227. void *addr = from_guest_phys(guest_limit);
  228. guest_limit += num * getpagesize();
  229. if (guest_limit > guest_max)
  230. errx(1, "Not enough memory for devices");
  231. return addr;
  232. }
  233. /* This routine is used to load the kernel or initrd. It tries mmap, but if
  234. * that fails (Plan 9's kernel file isn't nicely aligned on page boundaries),
  235. * it falls back to reading the memory in. */
  236. static void map_at(int fd, void *addr, unsigned long offset, unsigned long len)
  237. {
  238. ssize_t r;
  239. /* We map writable even though for some segments are marked read-only.
  240. * The kernel really wants to be writable: it patches its own
  241. * instructions.
  242. *
  243. * MAP_PRIVATE means that the page won't be copied until a write is
  244. * done to it. This allows us to share untouched memory between
  245. * Guests. */
  246. if (mmap(addr, len, PROT_READ|PROT_WRITE|PROT_EXEC,
  247. MAP_FIXED|MAP_PRIVATE, fd, offset) != MAP_FAILED)
  248. return;
  249. /* pread does a seek and a read in one shot: saves a few lines. */
  250. r = pread(fd, addr, len, offset);
  251. if (r != len)
  252. err(1, "Reading offset %lu len %lu gave %zi", offset, len, r);
  253. }
  254. /* This routine takes an open vmlinux image, which is in ELF, and maps it into
  255. * the Guest memory. ELF = Embedded Linking Format, which is the format used
  256. * by all modern binaries on Linux including the kernel.
  257. *
  258. * The ELF headers give *two* addresses: a physical address, and a virtual
  259. * address. We use the physical address; the Guest will map itself to the
  260. * virtual address.
  261. *
  262. * We return the starting address. */
  263. static unsigned long map_elf(int elf_fd, const Elf32_Ehdr *ehdr)
  264. {
  265. Elf32_Phdr phdr[ehdr->e_phnum];
  266. unsigned int i;
  267. /* Sanity checks on the main ELF header: an x86 executable with a
  268. * reasonable number of correctly-sized program headers. */
  269. if (ehdr->e_type != ET_EXEC
  270. || ehdr->e_machine != EM_386
  271. || ehdr->e_phentsize != sizeof(Elf32_Phdr)
  272. || ehdr->e_phnum < 1 || ehdr->e_phnum > 65536U/sizeof(Elf32_Phdr))
  273. errx(1, "Malformed elf header");
  274. /* An ELF executable contains an ELF header and a number of "program"
  275. * headers which indicate which parts ("segments") of the program to
  276. * load where. */
  277. /* We read in all the program headers at once: */
  278. if (lseek(elf_fd, ehdr->e_phoff, SEEK_SET) < 0)
  279. err(1, "Seeking to program headers");
  280. if (read(elf_fd, phdr, sizeof(phdr)) != sizeof(phdr))
  281. err(1, "Reading program headers");
  282. /* Try all the headers: there are usually only three. A read-only one,
  283. * a read-write one, and a "note" section which we don't load. */
  284. for (i = 0; i < ehdr->e_phnum; i++) {
  285. /* If this isn't a loadable segment, we ignore it */
  286. if (phdr[i].p_type != PT_LOAD)
  287. continue;
  288. verbose("Section %i: size %i addr %p\n",
  289. i, phdr[i].p_memsz, (void *)phdr[i].p_paddr);
  290. /* We map this section of the file at its physical address. */
  291. map_at(elf_fd, from_guest_phys(phdr[i].p_paddr),
  292. phdr[i].p_offset, phdr[i].p_filesz);
  293. }
  294. /* The entry point is given in the ELF header. */
  295. return ehdr->e_entry;
  296. }
  297. /*L:150 A bzImage, unlike an ELF file, is not meant to be loaded. You're
  298. * supposed to jump into it and it will unpack itself. We used to have to
  299. * perform some hairy magic because the unpacking code scared me.
  300. *
  301. * Fortunately, Jeremy Fitzhardinge convinced me it wasn't that hard and wrote
  302. * a small patch to jump over the tricky bits in the Guest, so now we just read
  303. * the funky header so we know where in the file to load, and away we go! */
  304. static unsigned long load_bzimage(int fd)
  305. {
  306. struct boot_params boot;
  307. int r;
  308. /* Modern bzImages get loaded at 1M. */
  309. void *p = from_guest_phys(0x100000);
  310. /* Go back to the start of the file and read the header. It should be
  311. * a Linux boot header (see Documentation/i386/boot.txt) */
  312. lseek(fd, 0, SEEK_SET);
  313. read(fd, &boot, sizeof(boot));
  314. /* Inside the setup_hdr, we expect the magic "HdrS" */
  315. if (memcmp(&boot.hdr.header, "HdrS", 4) != 0)
  316. errx(1, "This doesn't look like a bzImage to me");
  317. /* Skip over the extra sectors of the header. */
  318. lseek(fd, (boot.hdr.setup_sects+1) * 512, SEEK_SET);
  319. /* Now read everything into memory. in nice big chunks. */
  320. while ((r = read(fd, p, 65536)) > 0)
  321. p += r;
  322. /* Finally, code32_start tells us where to enter the kernel. */
  323. return boot.hdr.code32_start;
  324. }
  325. /*L:140 Loading the kernel is easy when it's a "vmlinux", but most kernels
  326. * come wrapped up in the self-decompressing "bzImage" format. With a little
  327. * work, we can load those, too. */
  328. static unsigned long load_kernel(int fd)
  329. {
  330. Elf32_Ehdr hdr;
  331. /* Read in the first few bytes. */
  332. if (read(fd, &hdr, sizeof(hdr)) != sizeof(hdr))
  333. err(1, "Reading kernel");
  334. /* If it's an ELF file, it starts with "\177ELF" */
  335. if (memcmp(hdr.e_ident, ELFMAG, SELFMAG) == 0)
  336. return map_elf(fd, &hdr);
  337. /* Otherwise we assume it's a bzImage, and try to load it. */
  338. return load_bzimage(fd);
  339. }
  340. /* This is a trivial little helper to align pages. Andi Kleen hated it because
  341. * it calls getpagesize() twice: "it's dumb code."
  342. *
  343. * Kernel guys get really het up about optimization, even when it's not
  344. * necessary. I leave this code as a reaction against that. */
  345. static inline unsigned long page_align(unsigned long addr)
  346. {
  347. /* Add upwards and truncate downwards. */
  348. return ((addr + getpagesize()-1) & ~(getpagesize()-1));
  349. }
  350. /*L:180 An "initial ram disk" is a disk image loaded into memory along with
  351. * the kernel which the kernel can use to boot from without needing any
  352. * drivers. Most distributions now use this as standard: the initrd contains
  353. * the code to load the appropriate driver modules for the current machine.
  354. *
  355. * Importantly, James Morris works for RedHat, and Fedora uses initrds for its
  356. * kernels. He sent me this (and tells me when I break it). */
  357. static unsigned long load_initrd(const char *name, unsigned long mem)
  358. {
  359. int ifd;
  360. struct stat st;
  361. unsigned long len;
  362. ifd = open_or_die(name, O_RDONLY);
  363. /* fstat() is needed to get the file size. */
  364. if (fstat(ifd, &st) < 0)
  365. err(1, "fstat() on initrd '%s'", name);
  366. /* We map the initrd at the top of memory, but mmap wants it to be
  367. * page-aligned, so we round the size up for that. */
  368. len = page_align(st.st_size);
  369. map_at(ifd, from_guest_phys(mem - len), 0, st.st_size);
  370. /* Once a file is mapped, you can close the file descriptor. It's a
  371. * little odd, but quite useful. */
  372. close(ifd);
  373. verbose("mapped initrd %s size=%lu @ %p\n", name, len, (void*)mem-len);
  374. /* We return the initrd size. */
  375. return len;
  376. }
  377. /* Once we know how much memory we have we can construct simple linear page
  378. * tables which set virtual == physical which will get the Guest far enough
  379. * into the boot to create its own.
  380. *
  381. * We lay them out of the way, just below the initrd (which is why we need to
  382. * know its size here). */
  383. static unsigned long setup_pagetables(unsigned long mem,
  384. unsigned long initrd_size)
  385. {
  386. unsigned long *pgdir, *linear;
  387. unsigned int mapped_pages, i, linear_pages;
  388. unsigned int ptes_per_page = getpagesize()/sizeof(void *);
  389. mapped_pages = mem/getpagesize();
  390. /* Each PTE page can map ptes_per_page pages: how many do we need? */
  391. linear_pages = (mapped_pages + ptes_per_page-1)/ptes_per_page;
  392. /* We put the toplevel page directory page at the top of memory. */
  393. pgdir = from_guest_phys(mem) - initrd_size - getpagesize();
  394. /* Now we use the next linear_pages pages as pte pages */
  395. linear = (void *)pgdir - linear_pages*getpagesize();
  396. /* Linear mapping is easy: put every page's address into the mapping in
  397. * order. PAGE_PRESENT contains the flags Present, Writable and
  398. * Executable. */
  399. for (i = 0; i < mapped_pages; i++)
  400. linear[i] = ((i * getpagesize()) | PAGE_PRESENT);
  401. /* The top level points to the linear page table pages above. */
  402. for (i = 0; i < mapped_pages; i += ptes_per_page) {
  403. pgdir[i/ptes_per_page]
  404. = ((to_guest_phys(linear) + i*sizeof(void *))
  405. | PAGE_PRESENT);
  406. }
  407. verbose("Linear mapping of %u pages in %u pte pages at %#lx\n",
  408. mapped_pages, linear_pages, to_guest_phys(linear));
  409. /* We return the top level (guest-physical) address: the kernel needs
  410. * to know where it is. */
  411. return to_guest_phys(pgdir);
  412. }
  413. /*:*/
  414. /* Simple routine to roll all the commandline arguments together with spaces
  415. * between them. */
  416. static void concat(char *dst, char *args[])
  417. {
  418. unsigned int i, len = 0;
  419. for (i = 0; args[i]; i++) {
  420. if (i) {
  421. strcat(dst+len, " ");
  422. len++;
  423. }
  424. strcpy(dst+len, args[i]);
  425. len += strlen(args[i]);
  426. }
  427. /* In case it's empty. */
  428. dst[len] = '\0';
  429. }
  430. /*L:185 This is where we actually tell the kernel to initialize the Guest. We
  431. * saw the arguments it expects when we looked at initialize() in lguest_user.c:
  432. * the base of Guest "physical" memory, the top physical page to allow, the
  433. * top level pagetable and the entry point for the Guest. */
  434. static int tell_kernel(unsigned long pgdir, unsigned long start)
  435. {
  436. unsigned long args[] = { LHREQ_INITIALIZE,
  437. (unsigned long)guest_base,
  438. guest_limit / getpagesize(), pgdir, start };
  439. int fd;
  440. verbose("Guest: %p - %p (%#lx)\n",
  441. guest_base, guest_base + guest_limit, guest_limit);
  442. fd = open_or_die("/dev/lguest", O_RDWR);
  443. if (write(fd, args, sizeof(args)) < 0)
  444. err(1, "Writing to /dev/lguest");
  445. /* We return the /dev/lguest file descriptor to control this Guest */
  446. return fd;
  447. }
  448. /*:*/
  449. static void add_device_fd(int fd)
  450. {
  451. FD_SET(fd, &devices.infds);
  452. if (fd > devices.max_infd)
  453. devices.max_infd = fd;
  454. }
  455. /*L:200
  456. * The Waker.
  457. *
  458. * With console, block and network devices, we can have lots of input which we
  459. * need to process. We could try to tell the kernel what file descriptors to
  460. * watch, but handing a file descriptor mask through to the kernel is fairly
  461. * icky.
  462. *
  463. * Instead, we fork off a process which watches the file descriptors and writes
  464. * the LHREQ_BREAK command to the /dev/lguest file descriptor to tell the Host
  465. * stop running the Guest. This causes the Launcher to return from the
  466. * /dev/lguest read with -EAGAIN, where it will write to /dev/lguest to reset
  467. * the LHREQ_BREAK and wake us up again.
  468. *
  469. * This, of course, is merely a different *kind* of icky.
  470. */
  471. static void wake_parent(int pipefd, int lguest_fd)
  472. {
  473. /* Add the pipe from the Launcher to the fdset in the device_list, so
  474. * we watch it, too. */
  475. add_device_fd(pipefd);
  476. for (;;) {
  477. fd_set rfds = devices.infds;
  478. unsigned long args[] = { LHREQ_BREAK, 1 };
  479. /* Wait until input is ready from one of the devices. */
  480. select(devices.max_infd+1, &rfds, NULL, NULL, NULL);
  481. /* Is it a message from the Launcher? */
  482. if (FD_ISSET(pipefd, &rfds)) {
  483. int fd;
  484. /* If read() returns 0, it means the Launcher has
  485. * exited. We silently follow. */
  486. if (read(pipefd, &fd, sizeof(fd)) == 0)
  487. exit(0);
  488. /* Otherwise it's telling us to change what file
  489. * descriptors we're to listen to. Positive means
  490. * listen to a new one, negative means stop
  491. * listening. */
  492. if (fd >= 0)
  493. FD_SET(fd, &devices.infds);
  494. else
  495. FD_CLR(-fd - 1, &devices.infds);
  496. } else /* Send LHREQ_BREAK command. */
  497. pwrite(lguest_fd, args, sizeof(args), cpu_id);
  498. }
  499. }
  500. /* This routine just sets up a pipe to the Waker process. */
  501. static int setup_waker(int lguest_fd)
  502. {
  503. int pipefd[2], child;
  504. /* We create a pipe to talk to the Waker, and also so it knows when the
  505. * Launcher dies (and closes pipe). */
  506. pipe(pipefd);
  507. child = fork();
  508. if (child == -1)
  509. err(1, "forking");
  510. if (child == 0) {
  511. /* We are the Waker: close the "writing" end of our copy of the
  512. * pipe and start waiting for input. */
  513. close(pipefd[1]);
  514. wake_parent(pipefd[0], lguest_fd);
  515. }
  516. /* Close the reading end of our copy of the pipe. */
  517. close(pipefd[0]);
  518. /* Here is the fd used to talk to the waker. */
  519. return pipefd[1];
  520. }
  521. /*
  522. * Device Handling.
  523. *
  524. * When the Guest gives us a buffer, it sends an array of addresses and sizes.
  525. * We need to make sure it's not trying to reach into the Launcher itself, so
  526. * we have a convenient routine which checks it and exits with an error message
  527. * if something funny is going on:
  528. */
  529. static void *_check_pointer(unsigned long addr, unsigned int size,
  530. unsigned int line)
  531. {
  532. /* We have to separately check addr and addr+size, because size could
  533. * be huge and addr + size might wrap around. */
  534. if (addr >= guest_limit || addr + size >= guest_limit)
  535. errx(1, "%s:%i: Invalid address %#lx", __FILE__, line, addr);
  536. /* We return a pointer for the caller's convenience, now we know it's
  537. * safe to use. */
  538. return from_guest_phys(addr);
  539. }
  540. /* A macro which transparently hands the line number to the real function. */
  541. #define check_pointer(addr,size) _check_pointer(addr, size, __LINE__)
  542. /* Each buffer in the virtqueues is actually a chain of descriptors. This
  543. * function returns the next descriptor in the chain, or vq->vring.num if we're
  544. * at the end. */
  545. static unsigned next_desc(struct virtqueue *vq, unsigned int i)
  546. {
  547. unsigned int next;
  548. /* If this descriptor says it doesn't chain, we're done. */
  549. if (!(vq->vring.desc[i].flags & VRING_DESC_F_NEXT))
  550. return vq->vring.num;
  551. /* Check they're not leading us off end of descriptors. */
  552. next = vq->vring.desc[i].next;
  553. /* Make sure compiler knows to grab that: we don't want it changing! */
  554. wmb();
  555. if (next >= vq->vring.num)
  556. errx(1, "Desc next is %u", next);
  557. return next;
  558. }
  559. /* This looks in the virtqueue and for the first available buffer, and converts
  560. * it to an iovec for convenient access. Since descriptors consist of some
  561. * number of output then some number of input descriptors, it's actually two
  562. * iovecs, but we pack them into one and note how many of each there were.
  563. *
  564. * This function returns the descriptor number found, or vq->vring.num (which
  565. * is never a valid descriptor number) if none was found. */
  566. static unsigned get_vq_desc(struct virtqueue *vq,
  567. struct iovec iov[],
  568. unsigned int *out_num, unsigned int *in_num)
  569. {
  570. unsigned int i, head;
  571. /* Check it isn't doing very strange things with descriptor numbers. */
  572. if ((u16)(vq->vring.avail->idx - vq->last_avail_idx) > vq->vring.num)
  573. errx(1, "Guest moved used index from %u to %u",
  574. vq->last_avail_idx, vq->vring.avail->idx);
  575. /* If there's nothing new since last we looked, return invalid. */
  576. if (vq->vring.avail->idx == vq->last_avail_idx)
  577. return vq->vring.num;
  578. /* Grab the next descriptor number they're advertising, and increment
  579. * the index we've seen. */
  580. head = vq->vring.avail->ring[vq->last_avail_idx++ % vq->vring.num];
  581. /* If their number is silly, that's a fatal mistake. */
  582. if (head >= vq->vring.num)
  583. errx(1, "Guest says index %u is available", head);
  584. /* When we start there are none of either input nor output. */
  585. *out_num = *in_num = 0;
  586. i = head;
  587. do {
  588. /* Grab the first descriptor, and check it's OK. */
  589. iov[*out_num + *in_num].iov_len = vq->vring.desc[i].len;
  590. iov[*out_num + *in_num].iov_base
  591. = check_pointer(vq->vring.desc[i].addr,
  592. vq->vring.desc[i].len);
  593. /* If this is an input descriptor, increment that count. */
  594. if (vq->vring.desc[i].flags & VRING_DESC_F_WRITE)
  595. (*in_num)++;
  596. else {
  597. /* If it's an output descriptor, they're all supposed
  598. * to come before any input descriptors. */
  599. if (*in_num)
  600. errx(1, "Descriptor has out after in");
  601. (*out_num)++;
  602. }
  603. /* If we've got too many, that implies a descriptor loop. */
  604. if (*out_num + *in_num > vq->vring.num)
  605. errx(1, "Looped descriptor");
  606. } while ((i = next_desc(vq, i)) != vq->vring.num);
  607. vq->inflight++;
  608. return head;
  609. }
  610. /* After we've used one of their buffers, we tell them about it. We'll then
  611. * want to send them an interrupt, using trigger_irq(). */
  612. static void add_used(struct virtqueue *vq, unsigned int head, int len)
  613. {
  614. struct vring_used_elem *used;
  615. /* The virtqueue contains a ring of used buffers. Get a pointer to the
  616. * next entry in that used ring. */
  617. used = &vq->vring.used->ring[vq->vring.used->idx % vq->vring.num];
  618. used->id = head;
  619. used->len = len;
  620. /* Make sure buffer is written before we update index. */
  621. wmb();
  622. vq->vring.used->idx++;
  623. vq->inflight--;
  624. }
  625. /* This actually sends the interrupt for this virtqueue */
  626. static void trigger_irq(int fd, struct virtqueue *vq)
  627. {
  628. unsigned long buf[] = { LHREQ_IRQ, vq->config.irq };
  629. /* If they don't want an interrupt, don't send one, unless empty. */
  630. if ((vq->vring.avail->flags & VRING_AVAIL_F_NO_INTERRUPT)
  631. && vq->inflight)
  632. return;
  633. /* Send the Guest an interrupt tell them we used something up. */
  634. if (write(fd, buf, sizeof(buf)) != 0)
  635. err(1, "Triggering irq %i", vq->config.irq);
  636. }
  637. /* And here's the combo meal deal. Supersize me! */
  638. static void add_used_and_trigger(int fd, struct virtqueue *vq,
  639. unsigned int head, int len)
  640. {
  641. add_used(vq, head, len);
  642. trigger_irq(fd, vq);
  643. }
  644. /*
  645. * The Console
  646. *
  647. * Here is the input terminal setting we save, and the routine to restore them
  648. * on exit so the user gets their terminal back. */
  649. static struct termios orig_term;
  650. static void restore_term(void)
  651. {
  652. tcsetattr(STDIN_FILENO, TCSANOW, &orig_term);
  653. }
  654. /* We associate some data with the console for our exit hack. */
  655. struct console_abort
  656. {
  657. /* How many times have they hit ^C? */
  658. int count;
  659. /* When did they start? */
  660. struct timeval start;
  661. };
  662. /* This is the routine which handles console input (ie. stdin). */
  663. static bool handle_console_input(int fd, struct device *dev)
  664. {
  665. int len;
  666. unsigned int head, in_num, out_num;
  667. struct iovec iov[dev->vq->vring.num];
  668. struct console_abort *abort = dev->priv;
  669. /* First we need a console buffer from the Guests's input virtqueue. */
  670. head = get_vq_desc(dev->vq, iov, &out_num, &in_num);
  671. /* If they're not ready for input, stop listening to this file
  672. * descriptor. We'll start again once they add an input buffer. */
  673. if (head == dev->vq->vring.num)
  674. return false;
  675. if (out_num)
  676. errx(1, "Output buffers in console in queue?");
  677. /* This is why we convert to iovecs: the readv() call uses them, and so
  678. * it reads straight into the Guest's buffer. */
  679. len = readv(dev->fd, iov, in_num);
  680. if (len <= 0) {
  681. /* This implies that the console is closed, is /dev/null, or
  682. * something went terribly wrong. */
  683. warnx("Failed to get console input, ignoring console.");
  684. /* Put the input terminal back. */
  685. restore_term();
  686. /* Remove callback from input vq, so it doesn't restart us. */
  687. dev->vq->handle_output = NULL;
  688. /* Stop listening to this fd: don't call us again. */
  689. return false;
  690. }
  691. /* Tell the Guest about the new input. */
  692. add_used_and_trigger(fd, dev->vq, head, len);
  693. /* Three ^C within one second? Exit.
  694. *
  695. * This is such a hack, but works surprisingly well. Each ^C has to be
  696. * in a buffer by itself, so they can't be too fast. But we check that
  697. * we get three within about a second, so they can't be too slow. */
  698. if (len == 1 && ((char *)iov[0].iov_base)[0] == 3) {
  699. if (!abort->count++)
  700. gettimeofday(&abort->start, NULL);
  701. else if (abort->count == 3) {
  702. struct timeval now;
  703. gettimeofday(&now, NULL);
  704. if (now.tv_sec <= abort->start.tv_sec+1) {
  705. unsigned long args[] = { LHREQ_BREAK, 0 };
  706. /* Close the fd so Waker will know it has to
  707. * exit. */
  708. close(waker_fd);
  709. /* Just in case waker is blocked in BREAK, send
  710. * unbreak now. */
  711. write(fd, args, sizeof(args));
  712. exit(2);
  713. }
  714. abort->count = 0;
  715. }
  716. } else
  717. /* Any other key resets the abort counter. */
  718. abort->count = 0;
  719. /* Everything went OK! */
  720. return true;
  721. }
  722. /* Handling output for console is simple: we just get all the output buffers
  723. * and write them to stdout. */
  724. static void handle_console_output(int fd, struct virtqueue *vq)
  725. {
  726. unsigned int head, out, in;
  727. int len;
  728. struct iovec iov[vq->vring.num];
  729. /* Keep getting output buffers from the Guest until we run out. */
  730. while ((head = get_vq_desc(vq, iov, &out, &in)) != vq->vring.num) {
  731. if (in)
  732. errx(1, "Input buffers in output queue?");
  733. len = writev(STDOUT_FILENO, iov, out);
  734. add_used_and_trigger(fd, vq, head, len);
  735. }
  736. }
  737. /*
  738. * The Network
  739. *
  740. * Handling output for network is also simple: we get all the output buffers
  741. * and write them (ignoring the first element) to this device's file descriptor
  742. * (/dev/net/tun).
  743. */
  744. static void handle_net_output(int fd, struct virtqueue *vq)
  745. {
  746. unsigned int head, out, in;
  747. int len;
  748. struct iovec iov[vq->vring.num];
  749. /* Keep getting output buffers from the Guest until we run out. */
  750. while ((head = get_vq_desc(vq, iov, &out, &in)) != vq->vring.num) {
  751. if (in)
  752. errx(1, "Input buffers in output queue?");
  753. /* Check header, but otherwise ignore it (we told the Guest we
  754. * supported no features, so it shouldn't have anything
  755. * interesting). */
  756. (void)convert(&iov[0], struct virtio_net_hdr);
  757. len = writev(vq->dev->fd, iov+1, out-1);
  758. add_used_and_trigger(fd, vq, head, len);
  759. }
  760. }
  761. /* This is where we handle a packet coming in from the tun device to our
  762. * Guest. */
  763. static bool handle_tun_input(int fd, struct device *dev)
  764. {
  765. unsigned int head, in_num, out_num;
  766. int len;
  767. struct iovec iov[dev->vq->vring.num];
  768. struct virtio_net_hdr *hdr;
  769. /* First we need a network buffer from the Guests's recv virtqueue. */
  770. head = get_vq_desc(dev->vq, iov, &out_num, &in_num);
  771. if (head == dev->vq->vring.num) {
  772. /* Now, it's expected that if we try to send a packet too
  773. * early, the Guest won't be ready yet. Wait until the device
  774. * status says it's ready. */
  775. /* FIXME: Actually want DRIVER_ACTIVE here. */
  776. if (dev->desc->status & VIRTIO_CONFIG_S_DRIVER_OK)
  777. warn("network: no dma buffer!");
  778. /* We'll turn this back on if input buffers are registered. */
  779. return false;
  780. } else if (out_num)
  781. errx(1, "Output buffers in network recv queue?");
  782. /* First element is the header: we set it to 0 (no features). */
  783. hdr = convert(&iov[0], struct virtio_net_hdr);
  784. hdr->flags = 0;
  785. hdr->gso_type = VIRTIO_NET_HDR_GSO_NONE;
  786. /* Read the packet from the device directly into the Guest's buffer. */
  787. len = readv(dev->fd, iov+1, in_num-1);
  788. if (len <= 0)
  789. err(1, "reading network");
  790. /* Tell the Guest about the new packet. */
  791. add_used_and_trigger(fd, dev->vq, head, sizeof(*hdr) + len);
  792. verbose("tun input packet len %i [%02x %02x] (%s)\n", len,
  793. ((u8 *)iov[1].iov_base)[0], ((u8 *)iov[1].iov_base)[1],
  794. head != dev->vq->vring.num ? "sent" : "discarded");
  795. /* All good. */
  796. return true;
  797. }
  798. /*L:215 This is the callback attached to the network and console input
  799. * virtqueues: it ensures we try again, in case we stopped console or net
  800. * delivery because Guest didn't have any buffers. */
  801. static void enable_fd(int fd, struct virtqueue *vq)
  802. {
  803. add_device_fd(vq->dev->fd);
  804. /* Tell waker to listen to it again */
  805. write(waker_fd, &vq->dev->fd, sizeof(vq->dev->fd));
  806. }
  807. /* When the Guest tells us they updated the status field, we handle it. */
  808. static void update_device_status(struct device *dev)
  809. {
  810. struct virtqueue *vq;
  811. /* This is a reset. */
  812. if (dev->desc->status == 0) {
  813. verbose("Resetting device %s\n", dev->name);
  814. /* Clear any features they've acked. */
  815. memset(get_feature_bits(dev) + dev->desc->feature_len, 0,
  816. dev->desc->feature_len);
  817. /* Zero out the virtqueues. */
  818. for (vq = dev->vq; vq; vq = vq->next) {
  819. memset(vq->vring.desc, 0,
  820. vring_size(vq->config.num, getpagesize()));
  821. vq->last_avail_idx = 0;
  822. }
  823. } else if (dev->desc->status & VIRTIO_CONFIG_S_FAILED) {
  824. warnx("Device %s configuration FAILED", dev->name);
  825. } else if (dev->desc->status & VIRTIO_CONFIG_S_DRIVER_OK) {
  826. unsigned int i;
  827. verbose("Device %s OK: offered", dev->name);
  828. for (i = 0; i < dev->desc->feature_len; i++)
  829. verbose(" %08x", get_feature_bits(dev)[i]);
  830. verbose(", accepted");
  831. for (i = 0; i < dev->desc->feature_len; i++)
  832. verbose(" %08x", get_feature_bits(dev)
  833. [dev->desc->feature_len+i]);
  834. if (dev->ready)
  835. dev->ready(dev);
  836. }
  837. }
  838. /* This is the generic routine we call when the Guest uses LHCALL_NOTIFY. */
  839. static void handle_output(int fd, unsigned long addr)
  840. {
  841. struct device *i;
  842. struct virtqueue *vq;
  843. /* Check each device and virtqueue. */
  844. for (i = devices.dev; i; i = i->next) {
  845. /* Notifications to device descriptors update device status. */
  846. if (from_guest_phys(addr) == i->desc) {
  847. update_device_status(i);
  848. return;
  849. }
  850. /* Notifications to virtqueues mean output has occurred. */
  851. for (vq = i->vq; vq; vq = vq->next) {
  852. if (vq->config.pfn != addr/getpagesize())
  853. continue;
  854. /* Guest should acknowledge (and set features!) before
  855. * using the device. */
  856. if (i->desc->status == 0) {
  857. warnx("%s gave early output", i->name);
  858. return;
  859. }
  860. if (strcmp(vq->dev->name, "console") != 0)
  861. verbose("Output to %s\n", vq->dev->name);
  862. if (vq->handle_output)
  863. vq->handle_output(fd, vq);
  864. return;
  865. }
  866. }
  867. /* Early console write is done using notify on a nul-terminated string
  868. * in Guest memory. */
  869. if (addr >= guest_limit)
  870. errx(1, "Bad NOTIFY %#lx", addr);
  871. write(STDOUT_FILENO, from_guest_phys(addr),
  872. strnlen(from_guest_phys(addr), guest_limit - addr));
  873. }
  874. /* This is called when the Waker wakes us up: check for incoming file
  875. * descriptors. */
  876. static void handle_input(int fd)
  877. {
  878. /* select() wants a zeroed timeval to mean "don't wait". */
  879. struct timeval poll = { .tv_sec = 0, .tv_usec = 0 };
  880. for (;;) {
  881. struct device *i;
  882. fd_set fds = devices.infds;
  883. /* If nothing is ready, we're done. */
  884. if (select(devices.max_infd+1, &fds, NULL, NULL, &poll) == 0)
  885. break;
  886. /* Otherwise, call the device(s) which have readable file
  887. * descriptors and a method of handling them. */
  888. for (i = devices.dev; i; i = i->next) {
  889. if (i->handle_input && FD_ISSET(i->fd, &fds)) {
  890. int dev_fd;
  891. if (i->handle_input(fd, i))
  892. continue;
  893. /* If handle_input() returns false, it means we
  894. * should no longer service it. Networking and
  895. * console do this when there's no input
  896. * buffers to deliver into. Console also uses
  897. * it when it discovers that stdin is closed. */
  898. FD_CLR(i->fd, &devices.infds);
  899. /* Tell waker to ignore it too, by sending a
  900. * negative fd number (-1, since 0 is a valid
  901. * FD number). */
  902. dev_fd = -i->fd - 1;
  903. write(waker_fd, &dev_fd, sizeof(dev_fd));
  904. }
  905. }
  906. }
  907. }
  908. /*L:190
  909. * Device Setup
  910. *
  911. * All devices need a descriptor so the Guest knows it exists, and a "struct
  912. * device" so the Launcher can keep track of it. We have common helper
  913. * routines to allocate and manage them.
  914. */
  915. /* The layout of the device page is a "struct lguest_device_desc" followed by a
  916. * number of virtqueue descriptors, then two sets of feature bits, then an
  917. * array of configuration bytes. This routine returns the configuration
  918. * pointer. */
  919. static u8 *device_config(const struct device *dev)
  920. {
  921. return (void *)(dev->desc + 1)
  922. + dev->desc->num_vq * sizeof(struct lguest_vqconfig)
  923. + dev->desc->feature_len * 2;
  924. }
  925. /* This routine allocates a new "struct lguest_device_desc" from descriptor
  926. * table page just above the Guest's normal memory. It returns a pointer to
  927. * that descriptor. */
  928. static struct lguest_device_desc *new_dev_desc(u16 type)
  929. {
  930. struct lguest_device_desc d = { .type = type };
  931. void *p;
  932. /* Figure out where the next device config is, based on the last one. */
  933. if (devices.lastdev)
  934. p = device_config(devices.lastdev)
  935. + devices.lastdev->desc->config_len;
  936. else
  937. p = devices.descpage;
  938. /* We only have one page for all the descriptors. */
  939. if (p + sizeof(d) > (void *)devices.descpage + getpagesize())
  940. errx(1, "Too many devices");
  941. /* p might not be aligned, so we memcpy in. */
  942. return memcpy(p, &d, sizeof(d));
  943. }
  944. /* Each device descriptor is followed by the description of its virtqueues. We
  945. * specify how many descriptors the virtqueue is to have. */
  946. static void add_virtqueue(struct device *dev, unsigned int num_descs,
  947. void (*handle_output)(int fd, struct virtqueue *me))
  948. {
  949. unsigned int pages;
  950. struct virtqueue **i, *vq = malloc(sizeof(*vq));
  951. void *p;
  952. /* First we need some memory for this virtqueue. */
  953. pages = (vring_size(num_descs, getpagesize()) + getpagesize() - 1)
  954. / getpagesize();
  955. p = get_pages(pages);
  956. /* Initialize the virtqueue */
  957. vq->next = NULL;
  958. vq->last_avail_idx = 0;
  959. vq->dev = dev;
  960. vq->inflight = 0;
  961. /* Initialize the configuration. */
  962. vq->config.num = num_descs;
  963. vq->config.irq = devices.next_irq++;
  964. vq->config.pfn = to_guest_phys(p) / getpagesize();
  965. /* Initialize the vring. */
  966. vring_init(&vq->vring, num_descs, p, getpagesize());
  967. /* Append virtqueue to this device's descriptor. We use
  968. * device_config() to get the end of the device's current virtqueues;
  969. * we check that we haven't added any config or feature information
  970. * yet, otherwise we'd be overwriting them. */
  971. assert(dev->desc->config_len == 0 && dev->desc->feature_len == 0);
  972. memcpy(device_config(dev), &vq->config, sizeof(vq->config));
  973. dev->desc->num_vq++;
  974. verbose("Virtqueue page %#lx\n", to_guest_phys(p));
  975. /* Add to tail of list, so dev->vq is first vq, dev->vq->next is
  976. * second. */
  977. for (i = &dev->vq; *i; i = &(*i)->next);
  978. *i = vq;
  979. /* Set the routine to call when the Guest does something to this
  980. * virtqueue. */
  981. vq->handle_output = handle_output;
  982. /* As an optimization, set the advisory "Don't Notify Me" flag if we
  983. * don't have a handler */
  984. if (!handle_output)
  985. vq->vring.used->flags = VRING_USED_F_NO_NOTIFY;
  986. }
  987. /* The first half of the feature bitmask is for us to advertise features. The
  988. * second half is for the Guest to accept features. */
  989. static void add_feature(struct device *dev, unsigned bit)
  990. {
  991. u8 *features = get_feature_bits(dev);
  992. /* We can't extend the feature bits once we've added config bytes */
  993. if (dev->desc->feature_len <= bit / CHAR_BIT) {
  994. assert(dev->desc->config_len == 0);
  995. dev->desc->feature_len = (bit / CHAR_BIT) + 1;
  996. }
  997. features[bit / CHAR_BIT] |= (1 << (bit % CHAR_BIT));
  998. }
  999. /* This routine sets the configuration fields for an existing device's
  1000. * descriptor. It only works for the last device, but that's OK because that's
  1001. * how we use it. */
  1002. static void set_config(struct device *dev, unsigned len, const void *conf)
  1003. {
  1004. /* Check we haven't overflowed our single page. */
  1005. if (device_config(dev) + len > devices.descpage + getpagesize())
  1006. errx(1, "Too many devices");
  1007. /* Copy in the config information, and store the length. */
  1008. memcpy(device_config(dev), conf, len);
  1009. dev->desc->config_len = len;
  1010. }
  1011. /* This routine does all the creation and setup of a new device, including
  1012. * calling new_dev_desc() to allocate the descriptor and device memory.
  1013. *
  1014. * See what I mean about userspace being boring? */
  1015. static struct device *new_device(const char *name, u16 type, int fd,
  1016. bool (*handle_input)(int, struct device *))
  1017. {
  1018. struct device *dev = malloc(sizeof(*dev));
  1019. /* Now we populate the fields one at a time. */
  1020. dev->fd = fd;
  1021. /* If we have an input handler for this file descriptor, then we add it
  1022. * to the device_list's fdset and maxfd. */
  1023. if (handle_input)
  1024. add_device_fd(dev->fd);
  1025. dev->desc = new_dev_desc(type);
  1026. dev->handle_input = handle_input;
  1027. dev->name = name;
  1028. dev->vq = NULL;
  1029. dev->ready = NULL;
  1030. /* Append to device list. Prepending to a single-linked list is
  1031. * easier, but the user expects the devices to be arranged on the bus
  1032. * in command-line order. The first network device on the command line
  1033. * is eth0, the first block device /dev/vda, etc. */
  1034. if (devices.lastdev)
  1035. devices.lastdev->next = dev;
  1036. else
  1037. devices.dev = dev;
  1038. devices.lastdev = dev;
  1039. return dev;
  1040. }
  1041. /* Our first setup routine is the console. It's a fairly simple device, but
  1042. * UNIX tty handling makes it uglier than it could be. */
  1043. static void setup_console(void)
  1044. {
  1045. struct device *dev;
  1046. /* If we can save the initial standard input settings... */
  1047. if (tcgetattr(STDIN_FILENO, &orig_term) == 0) {
  1048. struct termios term = orig_term;
  1049. /* Then we turn off echo, line buffering and ^C etc. We want a
  1050. * raw input stream to the Guest. */
  1051. term.c_lflag &= ~(ISIG|ICANON|ECHO);
  1052. tcsetattr(STDIN_FILENO, TCSANOW, &term);
  1053. /* If we exit gracefully, the original settings will be
  1054. * restored so the user can see what they're typing. */
  1055. atexit(restore_term);
  1056. }
  1057. dev = new_device("console", VIRTIO_ID_CONSOLE,
  1058. STDIN_FILENO, handle_console_input);
  1059. /* We store the console state in dev->priv, and initialize it. */
  1060. dev->priv = malloc(sizeof(struct console_abort));
  1061. ((struct console_abort *)dev->priv)->count = 0;
  1062. /* The console needs two virtqueues: the input then the output. When
  1063. * they put something the input queue, we make sure we're listening to
  1064. * stdin. When they put something in the output queue, we write it to
  1065. * stdout. */
  1066. add_virtqueue(dev, VIRTQUEUE_NUM, enable_fd);
  1067. add_virtqueue(dev, VIRTQUEUE_NUM, handle_console_output);
  1068. verbose("device %u: console\n", devices.device_num++);
  1069. }
  1070. /*:*/
  1071. /*M:010 Inter-guest networking is an interesting area. Simplest is to have a
  1072. * --sharenet=<name> option which opens or creates a named pipe. This can be
  1073. * used to send packets to another guest in a 1:1 manner.
  1074. *
  1075. * More sopisticated is to use one of the tools developed for project like UML
  1076. * to do networking.
  1077. *
  1078. * Faster is to do virtio bonding in kernel. Doing this 1:1 would be
  1079. * completely generic ("here's my vring, attach to your vring") and would work
  1080. * for any traffic. Of course, namespace and permissions issues need to be
  1081. * dealt with. A more sophisticated "multi-channel" virtio_net.c could hide
  1082. * multiple inter-guest channels behind one interface, although it would
  1083. * require some manner of hotplugging new virtio channels.
  1084. *
  1085. * Finally, we could implement a virtio network switch in the kernel. :*/
  1086. static u32 str2ip(const char *ipaddr)
  1087. {
  1088. unsigned int byte[4];
  1089. sscanf(ipaddr, "%u.%u.%u.%u", &byte[0], &byte[1], &byte[2], &byte[3]);
  1090. return (byte[0] << 24) | (byte[1] << 16) | (byte[2] << 8) | byte[3];
  1091. }
  1092. /* This code is "adapted" from libbridge: it attaches the Host end of the
  1093. * network device to the bridge device specified by the command line.
  1094. *
  1095. * This is yet another James Morris contribution (I'm an IP-level guy, so I
  1096. * dislike bridging), and I just try not to break it. */
  1097. static void add_to_bridge(int fd, const char *if_name, const char *br_name)
  1098. {
  1099. int ifidx;
  1100. struct ifreq ifr;
  1101. if (!*br_name)
  1102. errx(1, "must specify bridge name");
  1103. ifidx = if_nametoindex(if_name);
  1104. if (!ifidx)
  1105. errx(1, "interface %s does not exist!", if_name);
  1106. strncpy(ifr.ifr_name, br_name, IFNAMSIZ);
  1107. ifr.ifr_ifindex = ifidx;
  1108. if (ioctl(fd, SIOCBRADDIF, &ifr) < 0)
  1109. err(1, "can't add %s to bridge %s", if_name, br_name);
  1110. }
  1111. /* This sets up the Host end of the network device with an IP address, brings
  1112. * it up so packets will flow, the copies the MAC address into the hwaddr
  1113. * pointer. */
  1114. static void configure_device(int fd, const char *devname, u32 ipaddr,
  1115. unsigned char hwaddr[6])
  1116. {
  1117. struct ifreq ifr;
  1118. struct sockaddr_in *sin = (struct sockaddr_in *)&ifr.ifr_addr;
  1119. /* Don't read these incantations. Just cut & paste them like I did! */
  1120. memset(&ifr, 0, sizeof(ifr));
  1121. strcpy(ifr.ifr_name, devname);
  1122. sin->sin_family = AF_INET;
  1123. sin->sin_addr.s_addr = htonl(ipaddr);
  1124. if (ioctl(fd, SIOCSIFADDR, &ifr) != 0)
  1125. err(1, "Setting %s interface address", devname);
  1126. ifr.ifr_flags = IFF_UP;
  1127. if (ioctl(fd, SIOCSIFFLAGS, &ifr) != 0)
  1128. err(1, "Bringing interface %s up", devname);
  1129. /* SIOC stands for Socket I/O Control. G means Get (vs S for Set
  1130. * above). IF means Interface, and HWADDR is hardware address.
  1131. * Simple! */
  1132. if (ioctl(fd, SIOCGIFHWADDR, &ifr) != 0)
  1133. err(1, "getting hw address for %s", devname);
  1134. memcpy(hwaddr, ifr.ifr_hwaddr.sa_data, 6);
  1135. }
  1136. /*L:195 Our network is a Host<->Guest network. This can either use bridging or
  1137. * routing, but the principle is the same: it uses the "tun" device to inject
  1138. * packets into the Host as if they came in from a normal network card. We
  1139. * just shunt packets between the Guest and the tun device. */
  1140. static void setup_tun_net(const char *arg)
  1141. {
  1142. struct device *dev;
  1143. struct ifreq ifr;
  1144. int netfd, ipfd;
  1145. u32 ip;
  1146. const char *br_name = NULL;
  1147. struct virtio_net_config conf;
  1148. /* We open the /dev/net/tun device and tell it we want a tap device. A
  1149. * tap device is like a tun device, only somehow different. To tell
  1150. * the truth, I completely blundered my way through this code, but it
  1151. * works now! */
  1152. netfd = open_or_die("/dev/net/tun", O_RDWR);
  1153. memset(&ifr, 0, sizeof(ifr));
  1154. ifr.ifr_flags = IFF_TAP | IFF_NO_PI;
  1155. strcpy(ifr.ifr_name, "tap%d");
  1156. if (ioctl(netfd, TUNSETIFF, &ifr) != 0)
  1157. err(1, "configuring /dev/net/tun");
  1158. /* We don't need checksums calculated for packets coming in this
  1159. * device: trust us! */
  1160. ioctl(netfd, TUNSETNOCSUM, 1);
  1161. /* First we create a new network device. */
  1162. dev = new_device("net", VIRTIO_ID_NET, netfd, handle_tun_input);
  1163. /* Network devices need a receive and a send queue, just like
  1164. * console. */
  1165. add_virtqueue(dev, VIRTQUEUE_NUM, enable_fd);
  1166. add_virtqueue(dev, VIRTQUEUE_NUM, handle_net_output);
  1167. /* We need a socket to perform the magic network ioctls to bring up the
  1168. * tap interface, connect to the bridge etc. Any socket will do! */
  1169. ipfd = socket(PF_INET, SOCK_DGRAM, IPPROTO_IP);
  1170. if (ipfd < 0)
  1171. err(1, "opening IP socket");
  1172. /* If the command line was --tunnet=bridge:<name> do bridging. */
  1173. if (!strncmp(BRIDGE_PFX, arg, strlen(BRIDGE_PFX))) {
  1174. ip = INADDR_ANY;
  1175. br_name = arg + strlen(BRIDGE_PFX);
  1176. add_to_bridge(ipfd, ifr.ifr_name, br_name);
  1177. } else /* It is an IP address to set up the device with */
  1178. ip = str2ip(arg);
  1179. /* Set up the tun device, and get the mac address for the interface. */
  1180. configure_device(ipfd, ifr.ifr_name, ip, conf.mac);
  1181. /* Tell Guest what MAC address to use. */
  1182. add_feature(dev, VIRTIO_NET_F_MAC);
  1183. add_feature(dev, VIRTIO_F_NOTIFY_ON_EMPTY);
  1184. set_config(dev, sizeof(conf), &conf);
  1185. /* We don't need the socket any more; setup is done. */
  1186. close(ipfd);
  1187. verbose("device %u: tun net %u.%u.%u.%u\n",
  1188. devices.device_num++,
  1189. (u8)(ip>>24),(u8)(ip>>16),(u8)(ip>>8),(u8)ip);
  1190. if (br_name)
  1191. verbose("attached to bridge: %s\n", br_name);
  1192. }
  1193. /* Our block (disk) device should be really simple: the Guest asks for a block
  1194. * number and we read or write that position in the file. Unfortunately, that
  1195. * was amazingly slow: the Guest waits until the read is finished before
  1196. * running anything else, even if it could have been doing useful work.
  1197. *
  1198. * We could use async I/O, except it's reputed to suck so hard that characters
  1199. * actually go missing from your code when you try to use it.
  1200. *
  1201. * So we farm the I/O out to thread, and communicate with it via a pipe. */
  1202. /* This hangs off device->priv. */
  1203. struct vblk_info
  1204. {
  1205. /* The size of the file. */
  1206. off64_t len;
  1207. /* The file descriptor for the file. */
  1208. int fd;
  1209. /* IO thread listens on this file descriptor [0]. */
  1210. int workpipe[2];
  1211. /* IO thread writes to this file descriptor to mark it done, then
  1212. * Launcher triggers interrupt to Guest. */
  1213. int done_fd;
  1214. };
  1215. /*L:210
  1216. * The Disk
  1217. *
  1218. * Remember that the block device is handled by a separate I/O thread. We head
  1219. * straight into the core of that thread here:
  1220. */
  1221. static bool service_io(struct device *dev)
  1222. {
  1223. struct vblk_info *vblk = dev->priv;
  1224. unsigned int head, out_num, in_num, wlen;
  1225. int ret;
  1226. u8 *in;
  1227. struct virtio_blk_outhdr *out;
  1228. struct iovec iov[dev->vq->vring.num];
  1229. off64_t off;
  1230. /* See if there's a request waiting. If not, nothing to do. */
  1231. head = get_vq_desc(dev->vq, iov, &out_num, &in_num);
  1232. if (head == dev->vq->vring.num)
  1233. return false;
  1234. /* Every block request should contain at least one output buffer
  1235. * (detailing the location on disk and the type of request) and one
  1236. * input buffer (to hold the result). */
  1237. if (out_num == 0 || in_num == 0)
  1238. errx(1, "Bad virtblk cmd %u out=%u in=%u",
  1239. head, out_num, in_num);
  1240. out = convert(&iov[0], struct virtio_blk_outhdr);
  1241. in = convert(&iov[out_num+in_num-1], u8);
  1242. off = out->sector * 512;
  1243. /* The block device implements "barriers", where the Guest indicates
  1244. * that it wants all previous writes to occur before this write. We
  1245. * don't have a way of asking our kernel to do a barrier, so we just
  1246. * synchronize all the data in the file. Pretty poor, no? */
  1247. if (out->type & VIRTIO_BLK_T_BARRIER)
  1248. fdatasync(vblk->fd);
  1249. /* In general the virtio block driver is allowed to try SCSI commands.
  1250. * It'd be nice if we supported eject, for example, but we don't. */
  1251. if (out->type & VIRTIO_BLK_T_SCSI_CMD) {
  1252. fprintf(stderr, "Scsi commands unsupported\n");
  1253. *in = VIRTIO_BLK_S_UNSUPP;
  1254. wlen = sizeof(*in);
  1255. } else if (out->type & VIRTIO_BLK_T_OUT) {
  1256. /* Write */
  1257. /* Move to the right location in the block file. This can fail
  1258. * if they try to write past end. */
  1259. if (lseek64(vblk->fd, off, SEEK_SET) != off)
  1260. err(1, "Bad seek to sector %llu", out->sector);
  1261. ret = writev(vblk->fd, iov+1, out_num-1);
  1262. verbose("WRITE to sector %llu: %i\n", out->sector, ret);
  1263. /* Grr... Now we know how long the descriptor they sent was, we
  1264. * make sure they didn't try to write over the end of the block
  1265. * file (possibly extending it). */
  1266. if (ret > 0 && off + ret > vblk->len) {
  1267. /* Trim it back to the correct length */
  1268. ftruncate64(vblk->fd, vblk->len);
  1269. /* Die, bad Guest, die. */
  1270. errx(1, "Write past end %llu+%u", off, ret);
  1271. }
  1272. wlen = sizeof(*in);
  1273. *in = (ret >= 0 ? VIRTIO_BLK_S_OK : VIRTIO_BLK_S_IOERR);
  1274. } else {
  1275. /* Read */
  1276. /* Move to the right location in the block file. This can fail
  1277. * if they try to read past end. */
  1278. if (lseek64(vblk->fd, off, SEEK_SET) != off)
  1279. err(1, "Bad seek to sector %llu", out->sector);
  1280. ret = readv(vblk->fd, iov+1, in_num-1);
  1281. verbose("READ from sector %llu: %i\n", out->sector, ret);
  1282. if (ret >= 0) {
  1283. wlen = sizeof(*in) + ret;
  1284. *in = VIRTIO_BLK_S_OK;
  1285. } else {
  1286. wlen = sizeof(*in);
  1287. *in = VIRTIO_BLK_S_IOERR;
  1288. }
  1289. }
  1290. /* We can't trigger an IRQ, because we're not the Launcher. It does
  1291. * that when we tell it we're done. */
  1292. add_used(dev->vq, head, wlen);
  1293. return true;
  1294. }
  1295. /* This is the thread which actually services the I/O. */
  1296. static int io_thread(void *_dev)
  1297. {
  1298. struct device *dev = _dev;
  1299. struct vblk_info *vblk = dev->priv;
  1300. char c;
  1301. /* Close other side of workpipe so we get 0 read when main dies. */
  1302. close(vblk->workpipe[1]);
  1303. /* Close the other side of the done_fd pipe. */
  1304. close(dev->fd);
  1305. /* When this read fails, it means Launcher died, so we follow. */
  1306. while (read(vblk->workpipe[0], &c, 1) == 1) {
  1307. /* We acknowledge each request immediately to reduce latency,
  1308. * rather than waiting until we've done them all. I haven't
  1309. * measured to see if it makes any difference.
  1310. *
  1311. * That would be an interesting test, wouldn't it? You could
  1312. * also try having more than one I/O thread. */
  1313. while (service_io(dev))
  1314. write(vblk->done_fd, &c, 1);
  1315. }
  1316. return 0;
  1317. }
  1318. /* Now we've seen the I/O thread, we return to the Launcher to see what happens
  1319. * when that thread tells us it's completed some I/O. */
  1320. static bool handle_io_finish(int fd, struct device *dev)
  1321. {
  1322. char c;
  1323. /* If the I/O thread died, presumably it printed the error, so we
  1324. * simply exit. */
  1325. if (read(dev->fd, &c, 1) != 1)
  1326. exit(1);
  1327. /* It did some work, so trigger the irq. */
  1328. trigger_irq(fd, dev->vq);
  1329. return true;
  1330. }
  1331. /* When the Guest submits some I/O, we just need to wake the I/O thread. */
  1332. static void handle_virtblk_output(int fd, struct virtqueue *vq)
  1333. {
  1334. struct vblk_info *vblk = vq->dev->priv;
  1335. char c = 0;
  1336. /* Wake up I/O thread and tell it to go to work! */
  1337. if (write(vblk->workpipe[1], &c, 1) != 1)
  1338. /* Presumably it indicated why it died. */
  1339. exit(1);
  1340. }
  1341. /*L:198 This actually sets up a virtual block device. */
  1342. static void setup_block_file(const char *filename)
  1343. {
  1344. int p[2];
  1345. struct device *dev;
  1346. struct vblk_info *vblk;
  1347. void *stack;
  1348. struct virtio_blk_config conf;
  1349. /* This is the pipe the I/O thread will use to tell us I/O is done. */
  1350. pipe(p);
  1351. /* The device responds to return from I/O thread. */
  1352. dev = new_device("block", VIRTIO_ID_BLOCK, p[0], handle_io_finish);
  1353. /* The device has one virtqueue, where the Guest places requests. */
  1354. add_virtqueue(dev, VIRTQUEUE_NUM, handle_virtblk_output);
  1355. /* Allocate the room for our own bookkeeping */
  1356. vblk = dev->priv = malloc(sizeof(*vblk));
  1357. /* First we open the file and store the length. */
  1358. vblk->fd = open_or_die(filename, O_RDWR|O_LARGEFILE);
  1359. vblk->len = lseek64(vblk->fd, 0, SEEK_END);
  1360. /* We support barriers. */
  1361. add_feature(dev, VIRTIO_BLK_F_BARRIER);
  1362. /* Tell Guest how many sectors this device has. */
  1363. conf.capacity = cpu_to_le64(vblk->len / 512);
  1364. /* Tell Guest not to put in too many descriptors at once: two are used
  1365. * for the in and out elements. */
  1366. add_feature(dev, VIRTIO_BLK_F_SEG_MAX);
  1367. conf.seg_max = cpu_to_le32(VIRTQUEUE_NUM - 2);
  1368. set_config(dev, sizeof(conf), &conf);
  1369. /* The I/O thread writes to this end of the pipe when done. */
  1370. vblk->done_fd = p[1];
  1371. /* This is the second pipe, which is how we tell the I/O thread about
  1372. * more work. */
  1373. pipe(vblk->workpipe);
  1374. /* Create stack for thread and run it. Since stack grows upwards, we
  1375. * point the stack pointer to the end of this region. */
  1376. stack = malloc(32768);
  1377. /* SIGCHLD - We dont "wait" for our cloned thread, so prevent it from
  1378. * becoming a zombie. */
  1379. if (clone(io_thread, stack + 32768, CLONE_VM | SIGCHLD, dev) == -1)
  1380. err(1, "Creating clone");
  1381. /* We don't need to keep the I/O thread's end of the pipes open. */
  1382. close(vblk->done_fd);
  1383. close(vblk->workpipe[0]);
  1384. verbose("device %u: virtblock %llu sectors\n",
  1385. devices.device_num, le64_to_cpu(conf.capacity));
  1386. }
  1387. /* That's the end of device setup. */
  1388. /*L:230 Reboot is pretty easy: clean up and exec() the Launcher afresh. */
  1389. static void __attribute__((noreturn)) restart_guest(void)
  1390. {
  1391. unsigned int i;
  1392. /* Closing pipes causes the Waker thread and io_threads to die, and
  1393. * closing /dev/lguest cleans up the Guest. Since we don't track all
  1394. * open fds, we simply close everything beyond stderr. */
  1395. for (i = 3; i < FD_SETSIZE; i++)
  1396. close(i);
  1397. execv(main_args[0], main_args);
  1398. err(1, "Could not exec %s", main_args[0]);
  1399. }
  1400. /*L:220 Finally we reach the core of the Launcher which runs the Guest, serves
  1401. * its input and output, and finally, lays it to rest. */
  1402. static void __attribute__((noreturn)) run_guest(int lguest_fd)
  1403. {
  1404. for (;;) {
  1405. unsigned long args[] = { LHREQ_BREAK, 0 };
  1406. unsigned long notify_addr;
  1407. int readval;
  1408. /* We read from the /dev/lguest device to run the Guest. */
  1409. readval = pread(lguest_fd, &notify_addr,
  1410. sizeof(notify_addr), cpu_id);
  1411. /* One unsigned long means the Guest did HCALL_NOTIFY */
  1412. if (readval == sizeof(notify_addr)) {
  1413. verbose("Notify on address %#lx\n", notify_addr);
  1414. handle_output(lguest_fd, notify_addr);
  1415. continue;
  1416. /* ENOENT means the Guest died. Reading tells us why. */
  1417. } else if (errno == ENOENT) {
  1418. char reason[1024] = { 0 };
  1419. pread(lguest_fd, reason, sizeof(reason)-1, cpu_id);
  1420. errx(1, "%s", reason);
  1421. /* ERESTART means that we need to reboot the guest */
  1422. } else if (errno == ERESTART) {
  1423. restart_guest();
  1424. /* EAGAIN means the Waker wanted us to look at some input.
  1425. * Anything else means a bug or incompatible change. */
  1426. } else if (errno != EAGAIN)
  1427. err(1, "Running guest failed");
  1428. /* Only service input on thread for CPU 0. */
  1429. if (cpu_id != 0)
  1430. continue;
  1431. /* Service input, then unset the BREAK to release the Waker. */
  1432. handle_input(lguest_fd);
  1433. if (pwrite(lguest_fd, args, sizeof(args), cpu_id) < 0)
  1434. err(1, "Resetting break");
  1435. }
  1436. }
  1437. /*L:240
  1438. * This is the end of the Launcher. The good news: we are over halfway
  1439. * through! The bad news: the most fiendish part of the code still lies ahead
  1440. * of us.
  1441. *
  1442. * Are you ready? Take a deep breath and join me in the core of the Host, in
  1443. * "make Host".
  1444. :*/
  1445. static struct option opts[] = {
  1446. { "verbose", 0, NULL, 'v' },
  1447. { "tunnet", 1, NULL, 't' },
  1448. { "block", 1, NULL, 'b' },
  1449. { "initrd", 1, NULL, 'i' },
  1450. { NULL },
  1451. };
  1452. static void usage(void)
  1453. {
  1454. errx(1, "Usage: lguest [--verbose] "
  1455. "[--tunnet=(<ipaddr>|bridge:<bridgename>)\n"
  1456. "|--block=<filename>|--initrd=<filename>]...\n"
  1457. "<mem-in-mb> vmlinux [args...]");
  1458. }
  1459. /*L:105 The main routine is where the real work begins: */
  1460. int main(int argc, char *argv[])
  1461. {
  1462. /* Memory, top-level pagetable, code startpoint and size of the
  1463. * (optional) initrd. */
  1464. unsigned long mem = 0, pgdir, start, initrd_size = 0;
  1465. /* Two temporaries and the /dev/lguest file descriptor. */
  1466. int i, c, lguest_fd;
  1467. /* The boot information for the Guest. */
  1468. struct boot_params *boot;
  1469. /* If they specify an initrd file to load. */
  1470. const char *initrd_name = NULL;
  1471. /* Save the args: we "reboot" by execing ourselves again. */
  1472. main_args = argv;
  1473. /* We don't "wait" for the children, so prevent them from becoming
  1474. * zombies. */
  1475. signal(SIGCHLD, SIG_IGN);
  1476. /* First we initialize the device list. Since console and network
  1477. * device receive input from a file descriptor, we keep an fdset
  1478. * (infds) and the maximum fd number (max_infd) with the head of the
  1479. * list. We also keep a pointer to the last device. Finally, we keep
  1480. * the next interrupt number to use for devices (1: remember that 0 is
  1481. * used by the timer). */
  1482. FD_ZERO(&devices.infds);
  1483. devices.max_infd = -1;
  1484. devices.lastdev = NULL;
  1485. devices.next_irq = 1;
  1486. cpu_id = 0;
  1487. /* We need to know how much memory so we can set up the device
  1488. * descriptor and memory pages for the devices as we parse the command
  1489. * line. So we quickly look through the arguments to find the amount
  1490. * of memory now. */
  1491. for (i = 1; i < argc; i++) {
  1492. if (argv[i][0] != '-') {
  1493. mem = atoi(argv[i]) * 1024 * 1024;
  1494. /* We start by mapping anonymous pages over all of
  1495. * guest-physical memory range. This fills it with 0,
  1496. * and ensures that the Guest won't be killed when it
  1497. * tries to access it. */
  1498. guest_base = map_zeroed_pages(mem / getpagesize()
  1499. + DEVICE_PAGES);
  1500. guest_limit = mem;
  1501. guest_max = mem + DEVICE_PAGES*getpagesize();
  1502. devices.descpage = get_pages(1);
  1503. break;
  1504. }
  1505. }
  1506. /* The options are fairly straight-forward */
  1507. while ((c = getopt_long(argc, argv, "v", opts, NULL)) != EOF) {
  1508. switch (c) {
  1509. case 'v':
  1510. verbose = true;
  1511. break;
  1512. case 't':
  1513. setup_tun_net(optarg);
  1514. break;
  1515. case 'b':
  1516. setup_block_file(optarg);
  1517. break;
  1518. case 'i':
  1519. initrd_name = optarg;
  1520. break;
  1521. default:
  1522. warnx("Unknown argument %s", argv[optind]);
  1523. usage();
  1524. }
  1525. }
  1526. /* After the other arguments we expect memory and kernel image name,
  1527. * followed by command line arguments for the kernel. */
  1528. if (optind + 2 > argc)
  1529. usage();
  1530. verbose("Guest base is at %p\n", guest_base);
  1531. /* We always have a console device */
  1532. setup_console();
  1533. /* Now we load the kernel */
  1534. start = load_kernel(open_or_die(argv[optind+1], O_RDONLY));
  1535. /* Boot information is stashed at physical address 0 */
  1536. boot = from_guest_phys(0);
  1537. /* Map the initrd image if requested (at top of physical memory) */
  1538. if (initrd_name) {
  1539. initrd_size = load_initrd(initrd_name, mem);
  1540. /* These are the location in the Linux boot header where the
  1541. * start and size of the initrd are expected to be found. */
  1542. boot->hdr.ramdisk_image = mem - initrd_size;
  1543. boot->hdr.ramdisk_size = initrd_size;
  1544. /* The bootloader type 0xFF means "unknown"; that's OK. */
  1545. boot->hdr.type_of_loader = 0xFF;
  1546. }
  1547. /* Set up the initial linear pagetables, starting below the initrd. */
  1548. pgdir = setup_pagetables(mem, initrd_size);
  1549. /* The Linux boot header contains an "E820" memory map: ours is a
  1550. * simple, single region. */
  1551. boot->e820_entries = 1;
  1552. boot->e820_map[0] = ((struct e820entry) { 0, mem, E820_RAM });
  1553. /* The boot header contains a command line pointer: we put the command
  1554. * line after the boot header. */
  1555. boot->hdr.cmd_line_ptr = to_guest_phys(boot + 1);
  1556. /* We use a simple helper to copy the arguments separated by spaces. */
  1557. concat((char *)(boot + 1), argv+optind+2);
  1558. /* Boot protocol version: 2.07 supports the fields for lguest. */
  1559. boot->hdr.version = 0x207;
  1560. /* The hardware_subarch value of "1" tells the Guest it's an lguest. */
  1561. boot->hdr.hardware_subarch = 1;
  1562. /* Tell the entry path not to try to reload segment registers. */
  1563. boot->hdr.loadflags |= KEEP_SEGMENTS;
  1564. /* We tell the kernel to initialize the Guest: this returns the open
  1565. * /dev/lguest file descriptor. */
  1566. lguest_fd = tell_kernel(pgdir, start);
  1567. /* We fork off a child process, which wakes the Launcher whenever one
  1568. * of the input file descriptors needs attention. We call this the
  1569. * Waker, and we'll cover it in a moment. */
  1570. waker_fd = setup_waker(lguest_fd);
  1571. /* Finally, run the Guest. This doesn't return. */
  1572. run_guest(lguest_fd);
  1573. }
  1574. /*:*/
  1575. /*M:999
  1576. * Mastery is done: you now know everything I do.
  1577. *
  1578. * But surely you have seen code, features and bugs in your wanderings which
  1579. * you now yearn to attack? That is the real game, and I look forward to you
  1580. * patching and forking lguest into the Your-Name-Here-visor.
  1581. *
  1582. * Farewell, and good coding!
  1583. * Rusty Russell.
  1584. */