vmx.c 69 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "irq.h"
  18. #include "vmx.h"
  19. #include "segment_descriptor.h"
  20. #include "mmu.h"
  21. #include <linux/kvm_host.h>
  22. #include <linux/module.h>
  23. #include <linux/kernel.h>
  24. #include <linux/mm.h>
  25. #include <linux/highmem.h>
  26. #include <linux/sched.h>
  27. #include <linux/moduleparam.h>
  28. #include <asm/io.h>
  29. #include <asm/desc.h>
  30. MODULE_AUTHOR("Qumranet");
  31. MODULE_LICENSE("GPL");
  32. static int bypass_guest_pf = 1;
  33. module_param(bypass_guest_pf, bool, 0);
  34. static int enable_vpid = 1;
  35. module_param(enable_vpid, bool, 0);
  36. struct vmcs {
  37. u32 revision_id;
  38. u32 abort;
  39. char data[0];
  40. };
  41. struct vcpu_vmx {
  42. struct kvm_vcpu vcpu;
  43. int launched;
  44. u8 fail;
  45. u32 idt_vectoring_info;
  46. struct kvm_msr_entry *guest_msrs;
  47. struct kvm_msr_entry *host_msrs;
  48. int nmsrs;
  49. int save_nmsrs;
  50. int msr_offset_efer;
  51. #ifdef CONFIG_X86_64
  52. int msr_offset_kernel_gs_base;
  53. #endif
  54. struct vmcs *vmcs;
  55. struct {
  56. int loaded;
  57. u16 fs_sel, gs_sel, ldt_sel;
  58. int gs_ldt_reload_needed;
  59. int fs_reload_needed;
  60. int guest_efer_loaded;
  61. } host_state;
  62. struct {
  63. struct {
  64. bool pending;
  65. u8 vector;
  66. unsigned rip;
  67. } irq;
  68. } rmode;
  69. int vpid;
  70. };
  71. static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
  72. {
  73. return container_of(vcpu, struct vcpu_vmx, vcpu);
  74. }
  75. static int init_rmode_tss(struct kvm *kvm);
  76. static DEFINE_PER_CPU(struct vmcs *, vmxarea);
  77. static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
  78. static struct page *vmx_io_bitmap_a;
  79. static struct page *vmx_io_bitmap_b;
  80. static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
  81. static DEFINE_SPINLOCK(vmx_vpid_lock);
  82. static struct vmcs_config {
  83. int size;
  84. int order;
  85. u32 revision_id;
  86. u32 pin_based_exec_ctrl;
  87. u32 cpu_based_exec_ctrl;
  88. u32 cpu_based_2nd_exec_ctrl;
  89. u32 vmexit_ctrl;
  90. u32 vmentry_ctrl;
  91. } vmcs_config;
  92. #define VMX_SEGMENT_FIELD(seg) \
  93. [VCPU_SREG_##seg] = { \
  94. .selector = GUEST_##seg##_SELECTOR, \
  95. .base = GUEST_##seg##_BASE, \
  96. .limit = GUEST_##seg##_LIMIT, \
  97. .ar_bytes = GUEST_##seg##_AR_BYTES, \
  98. }
  99. static struct kvm_vmx_segment_field {
  100. unsigned selector;
  101. unsigned base;
  102. unsigned limit;
  103. unsigned ar_bytes;
  104. } kvm_vmx_segment_fields[] = {
  105. VMX_SEGMENT_FIELD(CS),
  106. VMX_SEGMENT_FIELD(DS),
  107. VMX_SEGMENT_FIELD(ES),
  108. VMX_SEGMENT_FIELD(FS),
  109. VMX_SEGMENT_FIELD(GS),
  110. VMX_SEGMENT_FIELD(SS),
  111. VMX_SEGMENT_FIELD(TR),
  112. VMX_SEGMENT_FIELD(LDTR),
  113. };
  114. /*
  115. * Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it
  116. * away by decrementing the array size.
  117. */
  118. static const u32 vmx_msr_index[] = {
  119. #ifdef CONFIG_X86_64
  120. MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, MSR_KERNEL_GS_BASE,
  121. #endif
  122. MSR_EFER, MSR_K6_STAR,
  123. };
  124. #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
  125. static void load_msrs(struct kvm_msr_entry *e, int n)
  126. {
  127. int i;
  128. for (i = 0; i < n; ++i)
  129. wrmsrl(e[i].index, e[i].data);
  130. }
  131. static void save_msrs(struct kvm_msr_entry *e, int n)
  132. {
  133. int i;
  134. for (i = 0; i < n; ++i)
  135. rdmsrl(e[i].index, e[i].data);
  136. }
  137. static inline int is_page_fault(u32 intr_info)
  138. {
  139. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  140. INTR_INFO_VALID_MASK)) ==
  141. (INTR_TYPE_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
  142. }
  143. static inline int is_no_device(u32 intr_info)
  144. {
  145. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  146. INTR_INFO_VALID_MASK)) ==
  147. (INTR_TYPE_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
  148. }
  149. static inline int is_invalid_opcode(u32 intr_info)
  150. {
  151. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  152. INTR_INFO_VALID_MASK)) ==
  153. (INTR_TYPE_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
  154. }
  155. static inline int is_external_interrupt(u32 intr_info)
  156. {
  157. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
  158. == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  159. }
  160. static inline int cpu_has_vmx_tpr_shadow(void)
  161. {
  162. return (vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW);
  163. }
  164. static inline int vm_need_tpr_shadow(struct kvm *kvm)
  165. {
  166. return ((cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm)));
  167. }
  168. static inline int cpu_has_secondary_exec_ctrls(void)
  169. {
  170. return (vmcs_config.cpu_based_exec_ctrl &
  171. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS);
  172. }
  173. static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
  174. {
  175. return (vmcs_config.cpu_based_2nd_exec_ctrl &
  176. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
  177. }
  178. static inline int vm_need_virtualize_apic_accesses(struct kvm *kvm)
  179. {
  180. return ((cpu_has_vmx_virtualize_apic_accesses()) &&
  181. (irqchip_in_kernel(kvm)));
  182. }
  183. static inline int cpu_has_vmx_vpid(void)
  184. {
  185. return (vmcs_config.cpu_based_2nd_exec_ctrl &
  186. SECONDARY_EXEC_ENABLE_VPID);
  187. }
  188. static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
  189. {
  190. int i;
  191. for (i = 0; i < vmx->nmsrs; ++i)
  192. if (vmx->guest_msrs[i].index == msr)
  193. return i;
  194. return -1;
  195. }
  196. static inline void __invvpid(int ext, u16 vpid, gva_t gva)
  197. {
  198. struct {
  199. u64 vpid : 16;
  200. u64 rsvd : 48;
  201. u64 gva;
  202. } operand = { vpid, 0, gva };
  203. asm volatile (ASM_VMX_INVVPID
  204. /* CF==1 or ZF==1 --> rc = -1 */
  205. "; ja 1f ; ud2 ; 1:"
  206. : : "a"(&operand), "c"(ext) : "cc", "memory");
  207. }
  208. static struct kvm_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
  209. {
  210. int i;
  211. i = __find_msr_index(vmx, msr);
  212. if (i >= 0)
  213. return &vmx->guest_msrs[i];
  214. return NULL;
  215. }
  216. static void vmcs_clear(struct vmcs *vmcs)
  217. {
  218. u64 phys_addr = __pa(vmcs);
  219. u8 error;
  220. asm volatile (ASM_VMX_VMCLEAR_RAX "; setna %0"
  221. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  222. : "cc", "memory");
  223. if (error)
  224. printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
  225. vmcs, phys_addr);
  226. }
  227. static void __vcpu_clear(void *arg)
  228. {
  229. struct vcpu_vmx *vmx = arg;
  230. int cpu = raw_smp_processor_id();
  231. if (vmx->vcpu.cpu == cpu)
  232. vmcs_clear(vmx->vmcs);
  233. if (per_cpu(current_vmcs, cpu) == vmx->vmcs)
  234. per_cpu(current_vmcs, cpu) = NULL;
  235. rdtscll(vmx->vcpu.arch.host_tsc);
  236. }
  237. static void vcpu_clear(struct vcpu_vmx *vmx)
  238. {
  239. if (vmx->vcpu.cpu == -1)
  240. return;
  241. smp_call_function_single(vmx->vcpu.cpu, __vcpu_clear, vmx, 0, 1);
  242. vmx->launched = 0;
  243. }
  244. static inline void vpid_sync_vcpu_all(struct vcpu_vmx *vmx)
  245. {
  246. if (vmx->vpid == 0)
  247. return;
  248. __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
  249. }
  250. static unsigned long vmcs_readl(unsigned long field)
  251. {
  252. unsigned long value;
  253. asm volatile (ASM_VMX_VMREAD_RDX_RAX
  254. : "=a"(value) : "d"(field) : "cc");
  255. return value;
  256. }
  257. static u16 vmcs_read16(unsigned long field)
  258. {
  259. return vmcs_readl(field);
  260. }
  261. static u32 vmcs_read32(unsigned long field)
  262. {
  263. return vmcs_readl(field);
  264. }
  265. static u64 vmcs_read64(unsigned long field)
  266. {
  267. #ifdef CONFIG_X86_64
  268. return vmcs_readl(field);
  269. #else
  270. return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
  271. #endif
  272. }
  273. static noinline void vmwrite_error(unsigned long field, unsigned long value)
  274. {
  275. printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
  276. field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
  277. dump_stack();
  278. }
  279. static void vmcs_writel(unsigned long field, unsigned long value)
  280. {
  281. u8 error;
  282. asm volatile (ASM_VMX_VMWRITE_RAX_RDX "; setna %0"
  283. : "=q"(error) : "a"(value), "d"(field) : "cc");
  284. if (unlikely(error))
  285. vmwrite_error(field, value);
  286. }
  287. static void vmcs_write16(unsigned long field, u16 value)
  288. {
  289. vmcs_writel(field, value);
  290. }
  291. static void vmcs_write32(unsigned long field, u32 value)
  292. {
  293. vmcs_writel(field, value);
  294. }
  295. static void vmcs_write64(unsigned long field, u64 value)
  296. {
  297. #ifdef CONFIG_X86_64
  298. vmcs_writel(field, value);
  299. #else
  300. vmcs_writel(field, value);
  301. asm volatile ("");
  302. vmcs_writel(field+1, value >> 32);
  303. #endif
  304. }
  305. static void vmcs_clear_bits(unsigned long field, u32 mask)
  306. {
  307. vmcs_writel(field, vmcs_readl(field) & ~mask);
  308. }
  309. static void vmcs_set_bits(unsigned long field, u32 mask)
  310. {
  311. vmcs_writel(field, vmcs_readl(field) | mask);
  312. }
  313. static void update_exception_bitmap(struct kvm_vcpu *vcpu)
  314. {
  315. u32 eb;
  316. eb = (1u << PF_VECTOR) | (1u << UD_VECTOR);
  317. if (!vcpu->fpu_active)
  318. eb |= 1u << NM_VECTOR;
  319. if (vcpu->guest_debug.enabled)
  320. eb |= 1u << 1;
  321. if (vcpu->arch.rmode.active)
  322. eb = ~0;
  323. vmcs_write32(EXCEPTION_BITMAP, eb);
  324. }
  325. static void reload_tss(void)
  326. {
  327. /*
  328. * VT restores TR but not its size. Useless.
  329. */
  330. struct descriptor_table gdt;
  331. struct segment_descriptor *descs;
  332. get_gdt(&gdt);
  333. descs = (void *)gdt.base;
  334. descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
  335. load_TR_desc();
  336. }
  337. static void load_transition_efer(struct vcpu_vmx *vmx)
  338. {
  339. int efer_offset = vmx->msr_offset_efer;
  340. u64 host_efer = vmx->host_msrs[efer_offset].data;
  341. u64 guest_efer = vmx->guest_msrs[efer_offset].data;
  342. u64 ignore_bits;
  343. if (efer_offset < 0)
  344. return;
  345. /*
  346. * NX is emulated; LMA and LME handled by hardware; SCE meaninless
  347. * outside long mode
  348. */
  349. ignore_bits = EFER_NX | EFER_SCE;
  350. #ifdef CONFIG_X86_64
  351. ignore_bits |= EFER_LMA | EFER_LME;
  352. /* SCE is meaningful only in long mode on Intel */
  353. if (guest_efer & EFER_LMA)
  354. ignore_bits &= ~(u64)EFER_SCE;
  355. #endif
  356. if ((guest_efer & ~ignore_bits) == (host_efer & ~ignore_bits))
  357. return;
  358. vmx->host_state.guest_efer_loaded = 1;
  359. guest_efer &= ~ignore_bits;
  360. guest_efer |= host_efer & ignore_bits;
  361. wrmsrl(MSR_EFER, guest_efer);
  362. vmx->vcpu.stat.efer_reload++;
  363. }
  364. static void reload_host_efer(struct vcpu_vmx *vmx)
  365. {
  366. if (vmx->host_state.guest_efer_loaded) {
  367. vmx->host_state.guest_efer_loaded = 0;
  368. load_msrs(vmx->host_msrs + vmx->msr_offset_efer, 1);
  369. }
  370. }
  371. static void vmx_save_host_state(struct kvm_vcpu *vcpu)
  372. {
  373. struct vcpu_vmx *vmx = to_vmx(vcpu);
  374. if (vmx->host_state.loaded)
  375. return;
  376. vmx->host_state.loaded = 1;
  377. /*
  378. * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
  379. * allow segment selectors with cpl > 0 or ti == 1.
  380. */
  381. vmx->host_state.ldt_sel = read_ldt();
  382. vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
  383. vmx->host_state.fs_sel = read_fs();
  384. if (!(vmx->host_state.fs_sel & 7)) {
  385. vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
  386. vmx->host_state.fs_reload_needed = 0;
  387. } else {
  388. vmcs_write16(HOST_FS_SELECTOR, 0);
  389. vmx->host_state.fs_reload_needed = 1;
  390. }
  391. vmx->host_state.gs_sel = read_gs();
  392. if (!(vmx->host_state.gs_sel & 7))
  393. vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
  394. else {
  395. vmcs_write16(HOST_GS_SELECTOR, 0);
  396. vmx->host_state.gs_ldt_reload_needed = 1;
  397. }
  398. #ifdef CONFIG_X86_64
  399. vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
  400. vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
  401. #else
  402. vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
  403. vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
  404. #endif
  405. #ifdef CONFIG_X86_64
  406. if (is_long_mode(&vmx->vcpu))
  407. save_msrs(vmx->host_msrs +
  408. vmx->msr_offset_kernel_gs_base, 1);
  409. #endif
  410. load_msrs(vmx->guest_msrs, vmx->save_nmsrs);
  411. load_transition_efer(vmx);
  412. }
  413. static void vmx_load_host_state(struct vcpu_vmx *vmx)
  414. {
  415. unsigned long flags;
  416. if (!vmx->host_state.loaded)
  417. return;
  418. ++vmx->vcpu.stat.host_state_reload;
  419. vmx->host_state.loaded = 0;
  420. if (vmx->host_state.fs_reload_needed)
  421. load_fs(vmx->host_state.fs_sel);
  422. if (vmx->host_state.gs_ldt_reload_needed) {
  423. load_ldt(vmx->host_state.ldt_sel);
  424. /*
  425. * If we have to reload gs, we must take care to
  426. * preserve our gs base.
  427. */
  428. local_irq_save(flags);
  429. load_gs(vmx->host_state.gs_sel);
  430. #ifdef CONFIG_X86_64
  431. wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
  432. #endif
  433. local_irq_restore(flags);
  434. }
  435. reload_tss();
  436. save_msrs(vmx->guest_msrs, vmx->save_nmsrs);
  437. load_msrs(vmx->host_msrs, vmx->save_nmsrs);
  438. reload_host_efer(vmx);
  439. }
  440. /*
  441. * Switches to specified vcpu, until a matching vcpu_put(), but assumes
  442. * vcpu mutex is already taken.
  443. */
  444. static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  445. {
  446. struct vcpu_vmx *vmx = to_vmx(vcpu);
  447. u64 phys_addr = __pa(vmx->vmcs);
  448. u64 tsc_this, delta;
  449. if (vcpu->cpu != cpu) {
  450. vcpu_clear(vmx);
  451. kvm_migrate_apic_timer(vcpu);
  452. vpid_sync_vcpu_all(vmx);
  453. }
  454. if (per_cpu(current_vmcs, cpu) != vmx->vmcs) {
  455. u8 error;
  456. per_cpu(current_vmcs, cpu) = vmx->vmcs;
  457. asm volatile (ASM_VMX_VMPTRLD_RAX "; setna %0"
  458. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  459. : "cc");
  460. if (error)
  461. printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
  462. vmx->vmcs, phys_addr);
  463. }
  464. if (vcpu->cpu != cpu) {
  465. struct descriptor_table dt;
  466. unsigned long sysenter_esp;
  467. vcpu->cpu = cpu;
  468. /*
  469. * Linux uses per-cpu TSS and GDT, so set these when switching
  470. * processors.
  471. */
  472. vmcs_writel(HOST_TR_BASE, read_tr_base()); /* 22.2.4 */
  473. get_gdt(&dt);
  474. vmcs_writel(HOST_GDTR_BASE, dt.base); /* 22.2.4 */
  475. rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
  476. vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
  477. /*
  478. * Make sure the time stamp counter is monotonous.
  479. */
  480. rdtscll(tsc_this);
  481. delta = vcpu->arch.host_tsc - tsc_this;
  482. vmcs_write64(TSC_OFFSET, vmcs_read64(TSC_OFFSET) + delta);
  483. }
  484. }
  485. static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
  486. {
  487. vmx_load_host_state(to_vmx(vcpu));
  488. }
  489. static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
  490. {
  491. if (vcpu->fpu_active)
  492. return;
  493. vcpu->fpu_active = 1;
  494. vmcs_clear_bits(GUEST_CR0, X86_CR0_TS);
  495. if (vcpu->arch.cr0 & X86_CR0_TS)
  496. vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
  497. update_exception_bitmap(vcpu);
  498. }
  499. static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
  500. {
  501. if (!vcpu->fpu_active)
  502. return;
  503. vcpu->fpu_active = 0;
  504. vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
  505. update_exception_bitmap(vcpu);
  506. }
  507. static void vmx_vcpu_decache(struct kvm_vcpu *vcpu)
  508. {
  509. vcpu_clear(to_vmx(vcpu));
  510. }
  511. static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
  512. {
  513. return vmcs_readl(GUEST_RFLAGS);
  514. }
  515. static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  516. {
  517. if (vcpu->arch.rmode.active)
  518. rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  519. vmcs_writel(GUEST_RFLAGS, rflags);
  520. }
  521. static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
  522. {
  523. unsigned long rip;
  524. u32 interruptibility;
  525. rip = vmcs_readl(GUEST_RIP);
  526. rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  527. vmcs_writel(GUEST_RIP, rip);
  528. /*
  529. * We emulated an instruction, so temporary interrupt blocking
  530. * should be removed, if set.
  531. */
  532. interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  533. if (interruptibility & 3)
  534. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
  535. interruptibility & ~3);
  536. vcpu->arch.interrupt_window_open = 1;
  537. }
  538. static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
  539. bool has_error_code, u32 error_code)
  540. {
  541. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  542. nr | INTR_TYPE_EXCEPTION
  543. | (has_error_code ? INTR_INFO_DELIEVER_CODE_MASK : 0)
  544. | INTR_INFO_VALID_MASK);
  545. if (has_error_code)
  546. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
  547. }
  548. static bool vmx_exception_injected(struct kvm_vcpu *vcpu)
  549. {
  550. struct vcpu_vmx *vmx = to_vmx(vcpu);
  551. return !(vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
  552. }
  553. /*
  554. * Swap MSR entry in host/guest MSR entry array.
  555. */
  556. #ifdef CONFIG_X86_64
  557. static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
  558. {
  559. struct kvm_msr_entry tmp;
  560. tmp = vmx->guest_msrs[to];
  561. vmx->guest_msrs[to] = vmx->guest_msrs[from];
  562. vmx->guest_msrs[from] = tmp;
  563. tmp = vmx->host_msrs[to];
  564. vmx->host_msrs[to] = vmx->host_msrs[from];
  565. vmx->host_msrs[from] = tmp;
  566. }
  567. #endif
  568. /*
  569. * Set up the vmcs to automatically save and restore system
  570. * msrs. Don't touch the 64-bit msrs if the guest is in legacy
  571. * mode, as fiddling with msrs is very expensive.
  572. */
  573. static void setup_msrs(struct vcpu_vmx *vmx)
  574. {
  575. int save_nmsrs;
  576. vmx_load_host_state(vmx);
  577. save_nmsrs = 0;
  578. #ifdef CONFIG_X86_64
  579. if (is_long_mode(&vmx->vcpu)) {
  580. int index;
  581. index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
  582. if (index >= 0)
  583. move_msr_up(vmx, index, save_nmsrs++);
  584. index = __find_msr_index(vmx, MSR_LSTAR);
  585. if (index >= 0)
  586. move_msr_up(vmx, index, save_nmsrs++);
  587. index = __find_msr_index(vmx, MSR_CSTAR);
  588. if (index >= 0)
  589. move_msr_up(vmx, index, save_nmsrs++);
  590. index = __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
  591. if (index >= 0)
  592. move_msr_up(vmx, index, save_nmsrs++);
  593. /*
  594. * MSR_K6_STAR is only needed on long mode guests, and only
  595. * if efer.sce is enabled.
  596. */
  597. index = __find_msr_index(vmx, MSR_K6_STAR);
  598. if ((index >= 0) && (vmx->vcpu.arch.shadow_efer & EFER_SCE))
  599. move_msr_up(vmx, index, save_nmsrs++);
  600. }
  601. #endif
  602. vmx->save_nmsrs = save_nmsrs;
  603. #ifdef CONFIG_X86_64
  604. vmx->msr_offset_kernel_gs_base =
  605. __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
  606. #endif
  607. vmx->msr_offset_efer = __find_msr_index(vmx, MSR_EFER);
  608. }
  609. /*
  610. * reads and returns guest's timestamp counter "register"
  611. * guest_tsc = host_tsc + tsc_offset -- 21.3
  612. */
  613. static u64 guest_read_tsc(void)
  614. {
  615. u64 host_tsc, tsc_offset;
  616. rdtscll(host_tsc);
  617. tsc_offset = vmcs_read64(TSC_OFFSET);
  618. return host_tsc + tsc_offset;
  619. }
  620. /*
  621. * writes 'guest_tsc' into guest's timestamp counter "register"
  622. * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
  623. */
  624. static void guest_write_tsc(u64 guest_tsc)
  625. {
  626. u64 host_tsc;
  627. rdtscll(host_tsc);
  628. vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
  629. }
  630. /*
  631. * Reads an msr value (of 'msr_index') into 'pdata'.
  632. * Returns 0 on success, non-0 otherwise.
  633. * Assumes vcpu_load() was already called.
  634. */
  635. static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  636. {
  637. u64 data;
  638. struct kvm_msr_entry *msr;
  639. if (!pdata) {
  640. printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
  641. return -EINVAL;
  642. }
  643. switch (msr_index) {
  644. #ifdef CONFIG_X86_64
  645. case MSR_FS_BASE:
  646. data = vmcs_readl(GUEST_FS_BASE);
  647. break;
  648. case MSR_GS_BASE:
  649. data = vmcs_readl(GUEST_GS_BASE);
  650. break;
  651. case MSR_EFER:
  652. return kvm_get_msr_common(vcpu, msr_index, pdata);
  653. #endif
  654. case MSR_IA32_TIME_STAMP_COUNTER:
  655. data = guest_read_tsc();
  656. break;
  657. case MSR_IA32_SYSENTER_CS:
  658. data = vmcs_read32(GUEST_SYSENTER_CS);
  659. break;
  660. case MSR_IA32_SYSENTER_EIP:
  661. data = vmcs_readl(GUEST_SYSENTER_EIP);
  662. break;
  663. case MSR_IA32_SYSENTER_ESP:
  664. data = vmcs_readl(GUEST_SYSENTER_ESP);
  665. break;
  666. default:
  667. msr = find_msr_entry(to_vmx(vcpu), msr_index);
  668. if (msr) {
  669. data = msr->data;
  670. break;
  671. }
  672. return kvm_get_msr_common(vcpu, msr_index, pdata);
  673. }
  674. *pdata = data;
  675. return 0;
  676. }
  677. /*
  678. * Writes msr value into into the appropriate "register".
  679. * Returns 0 on success, non-0 otherwise.
  680. * Assumes vcpu_load() was already called.
  681. */
  682. static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  683. {
  684. struct vcpu_vmx *vmx = to_vmx(vcpu);
  685. struct kvm_msr_entry *msr;
  686. int ret = 0;
  687. switch (msr_index) {
  688. #ifdef CONFIG_X86_64
  689. case MSR_EFER:
  690. ret = kvm_set_msr_common(vcpu, msr_index, data);
  691. if (vmx->host_state.loaded) {
  692. reload_host_efer(vmx);
  693. load_transition_efer(vmx);
  694. }
  695. break;
  696. case MSR_FS_BASE:
  697. vmcs_writel(GUEST_FS_BASE, data);
  698. break;
  699. case MSR_GS_BASE:
  700. vmcs_writel(GUEST_GS_BASE, data);
  701. break;
  702. #endif
  703. case MSR_IA32_SYSENTER_CS:
  704. vmcs_write32(GUEST_SYSENTER_CS, data);
  705. break;
  706. case MSR_IA32_SYSENTER_EIP:
  707. vmcs_writel(GUEST_SYSENTER_EIP, data);
  708. break;
  709. case MSR_IA32_SYSENTER_ESP:
  710. vmcs_writel(GUEST_SYSENTER_ESP, data);
  711. break;
  712. case MSR_IA32_TIME_STAMP_COUNTER:
  713. guest_write_tsc(data);
  714. break;
  715. default:
  716. msr = find_msr_entry(vmx, msr_index);
  717. if (msr) {
  718. msr->data = data;
  719. if (vmx->host_state.loaded)
  720. load_msrs(vmx->guest_msrs, vmx->save_nmsrs);
  721. break;
  722. }
  723. ret = kvm_set_msr_common(vcpu, msr_index, data);
  724. }
  725. return ret;
  726. }
  727. /*
  728. * Sync the rsp and rip registers into the vcpu structure. This allows
  729. * registers to be accessed by indexing vcpu->arch.regs.
  730. */
  731. static void vcpu_load_rsp_rip(struct kvm_vcpu *vcpu)
  732. {
  733. vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
  734. vcpu->arch.rip = vmcs_readl(GUEST_RIP);
  735. }
  736. /*
  737. * Syncs rsp and rip back into the vmcs. Should be called after possible
  738. * modification.
  739. */
  740. static void vcpu_put_rsp_rip(struct kvm_vcpu *vcpu)
  741. {
  742. vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
  743. vmcs_writel(GUEST_RIP, vcpu->arch.rip);
  744. }
  745. static int set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg)
  746. {
  747. unsigned long dr7 = 0x400;
  748. int old_singlestep;
  749. old_singlestep = vcpu->guest_debug.singlestep;
  750. vcpu->guest_debug.enabled = dbg->enabled;
  751. if (vcpu->guest_debug.enabled) {
  752. int i;
  753. dr7 |= 0x200; /* exact */
  754. for (i = 0; i < 4; ++i) {
  755. if (!dbg->breakpoints[i].enabled)
  756. continue;
  757. vcpu->guest_debug.bp[i] = dbg->breakpoints[i].address;
  758. dr7 |= 2 << (i*2); /* global enable */
  759. dr7 |= 0 << (i*4+16); /* execution breakpoint */
  760. }
  761. vcpu->guest_debug.singlestep = dbg->singlestep;
  762. } else
  763. vcpu->guest_debug.singlestep = 0;
  764. if (old_singlestep && !vcpu->guest_debug.singlestep) {
  765. unsigned long flags;
  766. flags = vmcs_readl(GUEST_RFLAGS);
  767. flags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  768. vmcs_writel(GUEST_RFLAGS, flags);
  769. }
  770. update_exception_bitmap(vcpu);
  771. vmcs_writel(GUEST_DR7, dr7);
  772. return 0;
  773. }
  774. static int vmx_get_irq(struct kvm_vcpu *vcpu)
  775. {
  776. struct vcpu_vmx *vmx = to_vmx(vcpu);
  777. u32 idtv_info_field;
  778. idtv_info_field = vmx->idt_vectoring_info;
  779. if (idtv_info_field & INTR_INFO_VALID_MASK) {
  780. if (is_external_interrupt(idtv_info_field))
  781. return idtv_info_field & VECTORING_INFO_VECTOR_MASK;
  782. else
  783. printk(KERN_DEBUG "pending exception: not handled yet\n");
  784. }
  785. return -1;
  786. }
  787. static __init int cpu_has_kvm_support(void)
  788. {
  789. unsigned long ecx = cpuid_ecx(1);
  790. return test_bit(5, &ecx); /* CPUID.1:ECX.VMX[bit 5] -> VT */
  791. }
  792. static __init int vmx_disabled_by_bios(void)
  793. {
  794. u64 msr;
  795. rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
  796. return (msr & (MSR_IA32_FEATURE_CONTROL_LOCKED |
  797. MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED))
  798. == MSR_IA32_FEATURE_CONTROL_LOCKED;
  799. /* locked but not enabled */
  800. }
  801. static void hardware_enable(void *garbage)
  802. {
  803. int cpu = raw_smp_processor_id();
  804. u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
  805. u64 old;
  806. rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
  807. if ((old & (MSR_IA32_FEATURE_CONTROL_LOCKED |
  808. MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED))
  809. != (MSR_IA32_FEATURE_CONTROL_LOCKED |
  810. MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED))
  811. /* enable and lock */
  812. wrmsrl(MSR_IA32_FEATURE_CONTROL, old |
  813. MSR_IA32_FEATURE_CONTROL_LOCKED |
  814. MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED);
  815. write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
  816. asm volatile (ASM_VMX_VMXON_RAX : : "a"(&phys_addr), "m"(phys_addr)
  817. : "memory", "cc");
  818. }
  819. static void hardware_disable(void *garbage)
  820. {
  821. asm volatile (ASM_VMX_VMXOFF : : : "cc");
  822. }
  823. static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
  824. u32 msr, u32 *result)
  825. {
  826. u32 vmx_msr_low, vmx_msr_high;
  827. u32 ctl = ctl_min | ctl_opt;
  828. rdmsr(msr, vmx_msr_low, vmx_msr_high);
  829. ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
  830. ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
  831. /* Ensure minimum (required) set of control bits are supported. */
  832. if (ctl_min & ~ctl)
  833. return -EIO;
  834. *result = ctl;
  835. return 0;
  836. }
  837. static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
  838. {
  839. u32 vmx_msr_low, vmx_msr_high;
  840. u32 min, opt;
  841. u32 _pin_based_exec_control = 0;
  842. u32 _cpu_based_exec_control = 0;
  843. u32 _cpu_based_2nd_exec_control = 0;
  844. u32 _vmexit_control = 0;
  845. u32 _vmentry_control = 0;
  846. min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
  847. opt = 0;
  848. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
  849. &_pin_based_exec_control) < 0)
  850. return -EIO;
  851. min = CPU_BASED_HLT_EXITING |
  852. #ifdef CONFIG_X86_64
  853. CPU_BASED_CR8_LOAD_EXITING |
  854. CPU_BASED_CR8_STORE_EXITING |
  855. #endif
  856. CPU_BASED_USE_IO_BITMAPS |
  857. CPU_BASED_MOV_DR_EXITING |
  858. CPU_BASED_USE_TSC_OFFSETING;
  859. opt = CPU_BASED_TPR_SHADOW |
  860. CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
  861. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
  862. &_cpu_based_exec_control) < 0)
  863. return -EIO;
  864. #ifdef CONFIG_X86_64
  865. if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
  866. _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
  867. ~CPU_BASED_CR8_STORE_EXITING;
  868. #endif
  869. if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
  870. min = 0;
  871. opt = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
  872. SECONDARY_EXEC_WBINVD_EXITING |
  873. SECONDARY_EXEC_ENABLE_VPID;
  874. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS2,
  875. &_cpu_based_2nd_exec_control) < 0)
  876. return -EIO;
  877. }
  878. #ifndef CONFIG_X86_64
  879. if (!(_cpu_based_2nd_exec_control &
  880. SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
  881. _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
  882. #endif
  883. min = 0;
  884. #ifdef CONFIG_X86_64
  885. min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
  886. #endif
  887. opt = 0;
  888. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
  889. &_vmexit_control) < 0)
  890. return -EIO;
  891. min = opt = 0;
  892. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
  893. &_vmentry_control) < 0)
  894. return -EIO;
  895. rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
  896. /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
  897. if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
  898. return -EIO;
  899. #ifdef CONFIG_X86_64
  900. /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
  901. if (vmx_msr_high & (1u<<16))
  902. return -EIO;
  903. #endif
  904. /* Require Write-Back (WB) memory type for VMCS accesses. */
  905. if (((vmx_msr_high >> 18) & 15) != 6)
  906. return -EIO;
  907. vmcs_conf->size = vmx_msr_high & 0x1fff;
  908. vmcs_conf->order = get_order(vmcs_config.size);
  909. vmcs_conf->revision_id = vmx_msr_low;
  910. vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
  911. vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
  912. vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
  913. vmcs_conf->vmexit_ctrl = _vmexit_control;
  914. vmcs_conf->vmentry_ctrl = _vmentry_control;
  915. return 0;
  916. }
  917. static struct vmcs *alloc_vmcs_cpu(int cpu)
  918. {
  919. int node = cpu_to_node(cpu);
  920. struct page *pages;
  921. struct vmcs *vmcs;
  922. pages = alloc_pages_node(node, GFP_KERNEL, vmcs_config.order);
  923. if (!pages)
  924. return NULL;
  925. vmcs = page_address(pages);
  926. memset(vmcs, 0, vmcs_config.size);
  927. vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
  928. return vmcs;
  929. }
  930. static struct vmcs *alloc_vmcs(void)
  931. {
  932. return alloc_vmcs_cpu(raw_smp_processor_id());
  933. }
  934. static void free_vmcs(struct vmcs *vmcs)
  935. {
  936. free_pages((unsigned long)vmcs, vmcs_config.order);
  937. }
  938. static void free_kvm_area(void)
  939. {
  940. int cpu;
  941. for_each_online_cpu(cpu)
  942. free_vmcs(per_cpu(vmxarea, cpu));
  943. }
  944. static __init int alloc_kvm_area(void)
  945. {
  946. int cpu;
  947. for_each_online_cpu(cpu) {
  948. struct vmcs *vmcs;
  949. vmcs = alloc_vmcs_cpu(cpu);
  950. if (!vmcs) {
  951. free_kvm_area();
  952. return -ENOMEM;
  953. }
  954. per_cpu(vmxarea, cpu) = vmcs;
  955. }
  956. return 0;
  957. }
  958. static __init int hardware_setup(void)
  959. {
  960. if (setup_vmcs_config(&vmcs_config) < 0)
  961. return -EIO;
  962. if (boot_cpu_has(X86_FEATURE_NX))
  963. kvm_enable_efer_bits(EFER_NX);
  964. return alloc_kvm_area();
  965. }
  966. static __exit void hardware_unsetup(void)
  967. {
  968. free_kvm_area();
  969. }
  970. static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
  971. {
  972. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  973. if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
  974. vmcs_write16(sf->selector, save->selector);
  975. vmcs_writel(sf->base, save->base);
  976. vmcs_write32(sf->limit, save->limit);
  977. vmcs_write32(sf->ar_bytes, save->ar);
  978. } else {
  979. u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
  980. << AR_DPL_SHIFT;
  981. vmcs_write32(sf->ar_bytes, 0x93 | dpl);
  982. }
  983. }
  984. static void enter_pmode(struct kvm_vcpu *vcpu)
  985. {
  986. unsigned long flags;
  987. vcpu->arch.rmode.active = 0;
  988. vmcs_writel(GUEST_TR_BASE, vcpu->arch.rmode.tr.base);
  989. vmcs_write32(GUEST_TR_LIMIT, vcpu->arch.rmode.tr.limit);
  990. vmcs_write32(GUEST_TR_AR_BYTES, vcpu->arch.rmode.tr.ar);
  991. flags = vmcs_readl(GUEST_RFLAGS);
  992. flags &= ~(X86_EFLAGS_IOPL | X86_EFLAGS_VM);
  993. flags |= (vcpu->arch.rmode.save_iopl << IOPL_SHIFT);
  994. vmcs_writel(GUEST_RFLAGS, flags);
  995. vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
  996. (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
  997. update_exception_bitmap(vcpu);
  998. fix_pmode_dataseg(VCPU_SREG_ES, &vcpu->arch.rmode.es);
  999. fix_pmode_dataseg(VCPU_SREG_DS, &vcpu->arch.rmode.ds);
  1000. fix_pmode_dataseg(VCPU_SREG_GS, &vcpu->arch.rmode.gs);
  1001. fix_pmode_dataseg(VCPU_SREG_FS, &vcpu->arch.rmode.fs);
  1002. vmcs_write16(GUEST_SS_SELECTOR, 0);
  1003. vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
  1004. vmcs_write16(GUEST_CS_SELECTOR,
  1005. vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
  1006. vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
  1007. }
  1008. static gva_t rmode_tss_base(struct kvm *kvm)
  1009. {
  1010. if (!kvm->arch.tss_addr) {
  1011. gfn_t base_gfn = kvm->memslots[0].base_gfn +
  1012. kvm->memslots[0].npages - 3;
  1013. return base_gfn << PAGE_SHIFT;
  1014. }
  1015. return kvm->arch.tss_addr;
  1016. }
  1017. static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
  1018. {
  1019. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1020. save->selector = vmcs_read16(sf->selector);
  1021. save->base = vmcs_readl(sf->base);
  1022. save->limit = vmcs_read32(sf->limit);
  1023. save->ar = vmcs_read32(sf->ar_bytes);
  1024. vmcs_write16(sf->selector, save->base >> 4);
  1025. vmcs_write32(sf->base, save->base & 0xfffff);
  1026. vmcs_write32(sf->limit, 0xffff);
  1027. vmcs_write32(sf->ar_bytes, 0xf3);
  1028. }
  1029. static void enter_rmode(struct kvm_vcpu *vcpu)
  1030. {
  1031. unsigned long flags;
  1032. vcpu->arch.rmode.active = 1;
  1033. vcpu->arch.rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
  1034. vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
  1035. vcpu->arch.rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
  1036. vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
  1037. vcpu->arch.rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
  1038. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  1039. flags = vmcs_readl(GUEST_RFLAGS);
  1040. vcpu->arch.rmode.save_iopl
  1041. = (flags & X86_EFLAGS_IOPL) >> IOPL_SHIFT;
  1042. flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
  1043. vmcs_writel(GUEST_RFLAGS, flags);
  1044. vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
  1045. update_exception_bitmap(vcpu);
  1046. vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
  1047. vmcs_write32(GUEST_SS_LIMIT, 0xffff);
  1048. vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
  1049. vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
  1050. vmcs_write32(GUEST_CS_LIMIT, 0xffff);
  1051. if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
  1052. vmcs_writel(GUEST_CS_BASE, 0xf0000);
  1053. vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
  1054. fix_rmode_seg(VCPU_SREG_ES, &vcpu->arch.rmode.es);
  1055. fix_rmode_seg(VCPU_SREG_DS, &vcpu->arch.rmode.ds);
  1056. fix_rmode_seg(VCPU_SREG_GS, &vcpu->arch.rmode.gs);
  1057. fix_rmode_seg(VCPU_SREG_FS, &vcpu->arch.rmode.fs);
  1058. kvm_mmu_reset_context(vcpu);
  1059. init_rmode_tss(vcpu->kvm);
  1060. }
  1061. #ifdef CONFIG_X86_64
  1062. static void enter_lmode(struct kvm_vcpu *vcpu)
  1063. {
  1064. u32 guest_tr_ar;
  1065. guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
  1066. if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
  1067. printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
  1068. __FUNCTION__);
  1069. vmcs_write32(GUEST_TR_AR_BYTES,
  1070. (guest_tr_ar & ~AR_TYPE_MASK)
  1071. | AR_TYPE_BUSY_64_TSS);
  1072. }
  1073. vcpu->arch.shadow_efer |= EFER_LMA;
  1074. find_msr_entry(to_vmx(vcpu), MSR_EFER)->data |= EFER_LMA | EFER_LME;
  1075. vmcs_write32(VM_ENTRY_CONTROLS,
  1076. vmcs_read32(VM_ENTRY_CONTROLS)
  1077. | VM_ENTRY_IA32E_MODE);
  1078. }
  1079. static void exit_lmode(struct kvm_vcpu *vcpu)
  1080. {
  1081. vcpu->arch.shadow_efer &= ~EFER_LMA;
  1082. vmcs_write32(VM_ENTRY_CONTROLS,
  1083. vmcs_read32(VM_ENTRY_CONTROLS)
  1084. & ~VM_ENTRY_IA32E_MODE);
  1085. }
  1086. #endif
  1087. static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
  1088. {
  1089. vpid_sync_vcpu_all(to_vmx(vcpu));
  1090. }
  1091. static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
  1092. {
  1093. vcpu->arch.cr4 &= KVM_GUEST_CR4_MASK;
  1094. vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & ~KVM_GUEST_CR4_MASK;
  1095. }
  1096. static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  1097. {
  1098. vmx_fpu_deactivate(vcpu);
  1099. if (vcpu->arch.rmode.active && (cr0 & X86_CR0_PE))
  1100. enter_pmode(vcpu);
  1101. if (!vcpu->arch.rmode.active && !(cr0 & X86_CR0_PE))
  1102. enter_rmode(vcpu);
  1103. #ifdef CONFIG_X86_64
  1104. if (vcpu->arch.shadow_efer & EFER_LME) {
  1105. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
  1106. enter_lmode(vcpu);
  1107. if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
  1108. exit_lmode(vcpu);
  1109. }
  1110. #endif
  1111. vmcs_writel(CR0_READ_SHADOW, cr0);
  1112. vmcs_writel(GUEST_CR0,
  1113. (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON);
  1114. vcpu->arch.cr0 = cr0;
  1115. if (!(cr0 & X86_CR0_TS) || !(cr0 & X86_CR0_PE))
  1116. vmx_fpu_activate(vcpu);
  1117. }
  1118. static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  1119. {
  1120. vmx_flush_tlb(vcpu);
  1121. vmcs_writel(GUEST_CR3, cr3);
  1122. if (vcpu->arch.cr0 & X86_CR0_PE)
  1123. vmx_fpu_deactivate(vcpu);
  1124. }
  1125. static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  1126. {
  1127. vmcs_writel(CR4_READ_SHADOW, cr4);
  1128. vmcs_writel(GUEST_CR4, cr4 | (vcpu->arch.rmode.active ?
  1129. KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON));
  1130. vcpu->arch.cr4 = cr4;
  1131. }
  1132. #ifdef CONFIG_X86_64
  1133. static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
  1134. {
  1135. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1136. struct kvm_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
  1137. vcpu->arch.shadow_efer = efer;
  1138. if (efer & EFER_LMA) {
  1139. vmcs_write32(VM_ENTRY_CONTROLS,
  1140. vmcs_read32(VM_ENTRY_CONTROLS) |
  1141. VM_ENTRY_IA32E_MODE);
  1142. msr->data = efer;
  1143. } else {
  1144. vmcs_write32(VM_ENTRY_CONTROLS,
  1145. vmcs_read32(VM_ENTRY_CONTROLS) &
  1146. ~VM_ENTRY_IA32E_MODE);
  1147. msr->data = efer & ~EFER_LME;
  1148. }
  1149. setup_msrs(vmx);
  1150. }
  1151. #endif
  1152. static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
  1153. {
  1154. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1155. return vmcs_readl(sf->base);
  1156. }
  1157. static void vmx_get_segment(struct kvm_vcpu *vcpu,
  1158. struct kvm_segment *var, int seg)
  1159. {
  1160. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1161. u32 ar;
  1162. var->base = vmcs_readl(sf->base);
  1163. var->limit = vmcs_read32(sf->limit);
  1164. var->selector = vmcs_read16(sf->selector);
  1165. ar = vmcs_read32(sf->ar_bytes);
  1166. if (ar & AR_UNUSABLE_MASK)
  1167. ar = 0;
  1168. var->type = ar & 15;
  1169. var->s = (ar >> 4) & 1;
  1170. var->dpl = (ar >> 5) & 3;
  1171. var->present = (ar >> 7) & 1;
  1172. var->avl = (ar >> 12) & 1;
  1173. var->l = (ar >> 13) & 1;
  1174. var->db = (ar >> 14) & 1;
  1175. var->g = (ar >> 15) & 1;
  1176. var->unusable = (ar >> 16) & 1;
  1177. }
  1178. static u32 vmx_segment_access_rights(struct kvm_segment *var)
  1179. {
  1180. u32 ar;
  1181. if (var->unusable)
  1182. ar = 1 << 16;
  1183. else {
  1184. ar = var->type & 15;
  1185. ar |= (var->s & 1) << 4;
  1186. ar |= (var->dpl & 3) << 5;
  1187. ar |= (var->present & 1) << 7;
  1188. ar |= (var->avl & 1) << 12;
  1189. ar |= (var->l & 1) << 13;
  1190. ar |= (var->db & 1) << 14;
  1191. ar |= (var->g & 1) << 15;
  1192. }
  1193. if (ar == 0) /* a 0 value means unusable */
  1194. ar = AR_UNUSABLE_MASK;
  1195. return ar;
  1196. }
  1197. static void vmx_set_segment(struct kvm_vcpu *vcpu,
  1198. struct kvm_segment *var, int seg)
  1199. {
  1200. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1201. u32 ar;
  1202. if (vcpu->arch.rmode.active && seg == VCPU_SREG_TR) {
  1203. vcpu->arch.rmode.tr.selector = var->selector;
  1204. vcpu->arch.rmode.tr.base = var->base;
  1205. vcpu->arch.rmode.tr.limit = var->limit;
  1206. vcpu->arch.rmode.tr.ar = vmx_segment_access_rights(var);
  1207. return;
  1208. }
  1209. vmcs_writel(sf->base, var->base);
  1210. vmcs_write32(sf->limit, var->limit);
  1211. vmcs_write16(sf->selector, var->selector);
  1212. if (vcpu->arch.rmode.active && var->s) {
  1213. /*
  1214. * Hack real-mode segments into vm86 compatibility.
  1215. */
  1216. if (var->base == 0xffff0000 && var->selector == 0xf000)
  1217. vmcs_writel(sf->base, 0xf0000);
  1218. ar = 0xf3;
  1219. } else
  1220. ar = vmx_segment_access_rights(var);
  1221. vmcs_write32(sf->ar_bytes, ar);
  1222. }
  1223. static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  1224. {
  1225. u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
  1226. *db = (ar >> 14) & 1;
  1227. *l = (ar >> 13) & 1;
  1228. }
  1229. static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1230. {
  1231. dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
  1232. dt->base = vmcs_readl(GUEST_IDTR_BASE);
  1233. }
  1234. static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1235. {
  1236. vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
  1237. vmcs_writel(GUEST_IDTR_BASE, dt->base);
  1238. }
  1239. static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1240. {
  1241. dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
  1242. dt->base = vmcs_readl(GUEST_GDTR_BASE);
  1243. }
  1244. static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1245. {
  1246. vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
  1247. vmcs_writel(GUEST_GDTR_BASE, dt->base);
  1248. }
  1249. static int init_rmode_tss(struct kvm *kvm)
  1250. {
  1251. gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
  1252. u16 data = 0;
  1253. int ret = 0;
  1254. int r;
  1255. down_read(&kvm->slots_lock);
  1256. r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
  1257. if (r < 0)
  1258. goto out;
  1259. data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
  1260. r = kvm_write_guest_page(kvm, fn++, &data, 0x66, sizeof(u16));
  1261. if (r < 0)
  1262. goto out;
  1263. r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
  1264. if (r < 0)
  1265. goto out;
  1266. r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
  1267. if (r < 0)
  1268. goto out;
  1269. data = ~0;
  1270. r = kvm_write_guest_page(kvm, fn, &data,
  1271. RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
  1272. sizeof(u8));
  1273. if (r < 0)
  1274. goto out;
  1275. ret = 1;
  1276. out:
  1277. up_read(&kvm->slots_lock);
  1278. return ret;
  1279. }
  1280. static void seg_setup(int seg)
  1281. {
  1282. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1283. vmcs_write16(sf->selector, 0);
  1284. vmcs_writel(sf->base, 0);
  1285. vmcs_write32(sf->limit, 0xffff);
  1286. vmcs_write32(sf->ar_bytes, 0x93);
  1287. }
  1288. static int alloc_apic_access_page(struct kvm *kvm)
  1289. {
  1290. struct kvm_userspace_memory_region kvm_userspace_mem;
  1291. int r = 0;
  1292. down_write(&kvm->slots_lock);
  1293. if (kvm->arch.apic_access_page)
  1294. goto out;
  1295. kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
  1296. kvm_userspace_mem.flags = 0;
  1297. kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
  1298. kvm_userspace_mem.memory_size = PAGE_SIZE;
  1299. r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
  1300. if (r)
  1301. goto out;
  1302. down_read(&current->mm->mmap_sem);
  1303. kvm->arch.apic_access_page = gfn_to_page(kvm, 0xfee00);
  1304. up_read(&current->mm->mmap_sem);
  1305. out:
  1306. up_write(&kvm->slots_lock);
  1307. return r;
  1308. }
  1309. static void allocate_vpid(struct vcpu_vmx *vmx)
  1310. {
  1311. int vpid;
  1312. vmx->vpid = 0;
  1313. if (!enable_vpid || !cpu_has_vmx_vpid())
  1314. return;
  1315. spin_lock(&vmx_vpid_lock);
  1316. vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
  1317. if (vpid < VMX_NR_VPIDS) {
  1318. vmx->vpid = vpid;
  1319. __set_bit(vpid, vmx_vpid_bitmap);
  1320. }
  1321. spin_unlock(&vmx_vpid_lock);
  1322. }
  1323. /*
  1324. * Sets up the vmcs for emulated real mode.
  1325. */
  1326. static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
  1327. {
  1328. u32 host_sysenter_cs;
  1329. u32 junk;
  1330. unsigned long a;
  1331. struct descriptor_table dt;
  1332. int i;
  1333. unsigned long kvm_vmx_return;
  1334. u32 exec_control;
  1335. /* I/O */
  1336. vmcs_write64(IO_BITMAP_A, page_to_phys(vmx_io_bitmap_a));
  1337. vmcs_write64(IO_BITMAP_B, page_to_phys(vmx_io_bitmap_b));
  1338. vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
  1339. /* Control */
  1340. vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
  1341. vmcs_config.pin_based_exec_ctrl);
  1342. exec_control = vmcs_config.cpu_based_exec_ctrl;
  1343. if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
  1344. exec_control &= ~CPU_BASED_TPR_SHADOW;
  1345. #ifdef CONFIG_X86_64
  1346. exec_control |= CPU_BASED_CR8_STORE_EXITING |
  1347. CPU_BASED_CR8_LOAD_EXITING;
  1348. #endif
  1349. }
  1350. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
  1351. if (cpu_has_secondary_exec_ctrls()) {
  1352. exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
  1353. if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
  1354. exec_control &=
  1355. ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
  1356. if (vmx->vpid == 0)
  1357. exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
  1358. vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
  1359. }
  1360. vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, !!bypass_guest_pf);
  1361. vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, !!bypass_guest_pf);
  1362. vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
  1363. vmcs_writel(HOST_CR0, read_cr0()); /* 22.2.3 */
  1364. vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
  1365. vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
  1366. vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
  1367. vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1368. vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1369. vmcs_write16(HOST_FS_SELECTOR, read_fs()); /* 22.2.4 */
  1370. vmcs_write16(HOST_GS_SELECTOR, read_gs()); /* 22.2.4 */
  1371. vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1372. #ifdef CONFIG_X86_64
  1373. rdmsrl(MSR_FS_BASE, a);
  1374. vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
  1375. rdmsrl(MSR_GS_BASE, a);
  1376. vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
  1377. #else
  1378. vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
  1379. vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
  1380. #endif
  1381. vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
  1382. get_idt(&dt);
  1383. vmcs_writel(HOST_IDTR_BASE, dt.base); /* 22.2.4 */
  1384. asm("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return));
  1385. vmcs_writel(HOST_RIP, kvm_vmx_return); /* 22.2.5 */
  1386. vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
  1387. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
  1388. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
  1389. rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
  1390. vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
  1391. rdmsrl(MSR_IA32_SYSENTER_ESP, a);
  1392. vmcs_writel(HOST_IA32_SYSENTER_ESP, a); /* 22.2.3 */
  1393. rdmsrl(MSR_IA32_SYSENTER_EIP, a);
  1394. vmcs_writel(HOST_IA32_SYSENTER_EIP, a); /* 22.2.3 */
  1395. for (i = 0; i < NR_VMX_MSR; ++i) {
  1396. u32 index = vmx_msr_index[i];
  1397. u32 data_low, data_high;
  1398. u64 data;
  1399. int j = vmx->nmsrs;
  1400. if (rdmsr_safe(index, &data_low, &data_high) < 0)
  1401. continue;
  1402. if (wrmsr_safe(index, data_low, data_high) < 0)
  1403. continue;
  1404. data = data_low | ((u64)data_high << 32);
  1405. vmx->host_msrs[j].index = index;
  1406. vmx->host_msrs[j].reserved = 0;
  1407. vmx->host_msrs[j].data = data;
  1408. vmx->guest_msrs[j] = vmx->host_msrs[j];
  1409. ++vmx->nmsrs;
  1410. }
  1411. vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
  1412. /* 22.2.1, 20.8.1 */
  1413. vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
  1414. vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
  1415. vmcs_writel(CR4_GUEST_HOST_MASK, KVM_GUEST_CR4_MASK);
  1416. return 0;
  1417. }
  1418. static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
  1419. {
  1420. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1421. u64 msr;
  1422. int ret;
  1423. if (!init_rmode_tss(vmx->vcpu.kvm)) {
  1424. ret = -ENOMEM;
  1425. goto out;
  1426. }
  1427. vmx->vcpu.arch.rmode.active = 0;
  1428. vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
  1429. set_cr8(&vmx->vcpu, 0);
  1430. msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
  1431. if (vmx->vcpu.vcpu_id == 0)
  1432. msr |= MSR_IA32_APICBASE_BSP;
  1433. kvm_set_apic_base(&vmx->vcpu, msr);
  1434. fx_init(&vmx->vcpu);
  1435. /*
  1436. * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
  1437. * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
  1438. */
  1439. if (vmx->vcpu.vcpu_id == 0) {
  1440. vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
  1441. vmcs_writel(GUEST_CS_BASE, 0x000f0000);
  1442. } else {
  1443. vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
  1444. vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
  1445. }
  1446. vmcs_write32(GUEST_CS_LIMIT, 0xffff);
  1447. vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
  1448. seg_setup(VCPU_SREG_DS);
  1449. seg_setup(VCPU_SREG_ES);
  1450. seg_setup(VCPU_SREG_FS);
  1451. seg_setup(VCPU_SREG_GS);
  1452. seg_setup(VCPU_SREG_SS);
  1453. vmcs_write16(GUEST_TR_SELECTOR, 0);
  1454. vmcs_writel(GUEST_TR_BASE, 0);
  1455. vmcs_write32(GUEST_TR_LIMIT, 0xffff);
  1456. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  1457. vmcs_write16(GUEST_LDTR_SELECTOR, 0);
  1458. vmcs_writel(GUEST_LDTR_BASE, 0);
  1459. vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
  1460. vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
  1461. vmcs_write32(GUEST_SYSENTER_CS, 0);
  1462. vmcs_writel(GUEST_SYSENTER_ESP, 0);
  1463. vmcs_writel(GUEST_SYSENTER_EIP, 0);
  1464. vmcs_writel(GUEST_RFLAGS, 0x02);
  1465. if (vmx->vcpu.vcpu_id == 0)
  1466. vmcs_writel(GUEST_RIP, 0xfff0);
  1467. else
  1468. vmcs_writel(GUEST_RIP, 0);
  1469. vmcs_writel(GUEST_RSP, 0);
  1470. /* todo: dr0 = dr1 = dr2 = dr3 = 0; dr6 = 0xffff0ff0 */
  1471. vmcs_writel(GUEST_DR7, 0x400);
  1472. vmcs_writel(GUEST_GDTR_BASE, 0);
  1473. vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
  1474. vmcs_writel(GUEST_IDTR_BASE, 0);
  1475. vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
  1476. vmcs_write32(GUEST_ACTIVITY_STATE, 0);
  1477. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
  1478. vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
  1479. guest_write_tsc(0);
  1480. /* Special registers */
  1481. vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
  1482. setup_msrs(vmx);
  1483. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
  1484. if (cpu_has_vmx_tpr_shadow()) {
  1485. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
  1486. if (vm_need_tpr_shadow(vmx->vcpu.kvm))
  1487. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
  1488. page_to_phys(vmx->vcpu.arch.apic->regs_page));
  1489. vmcs_write32(TPR_THRESHOLD, 0);
  1490. }
  1491. if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
  1492. vmcs_write64(APIC_ACCESS_ADDR,
  1493. page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
  1494. if (vmx->vpid != 0)
  1495. vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
  1496. vmx->vcpu.arch.cr0 = 0x60000010;
  1497. vmx_set_cr0(&vmx->vcpu, vmx->vcpu.arch.cr0); /* enter rmode */
  1498. vmx_set_cr4(&vmx->vcpu, 0);
  1499. #ifdef CONFIG_X86_64
  1500. vmx_set_efer(&vmx->vcpu, 0);
  1501. #endif
  1502. vmx_fpu_activate(&vmx->vcpu);
  1503. update_exception_bitmap(&vmx->vcpu);
  1504. vpid_sync_vcpu_all(vmx);
  1505. return 0;
  1506. out:
  1507. return ret;
  1508. }
  1509. static void vmx_inject_irq(struct kvm_vcpu *vcpu, int irq)
  1510. {
  1511. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1512. if (vcpu->arch.rmode.active) {
  1513. vmx->rmode.irq.pending = true;
  1514. vmx->rmode.irq.vector = irq;
  1515. vmx->rmode.irq.rip = vmcs_readl(GUEST_RIP);
  1516. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  1517. irq | INTR_TYPE_SOFT_INTR | INTR_INFO_VALID_MASK);
  1518. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
  1519. vmcs_writel(GUEST_RIP, vmx->rmode.irq.rip - 1);
  1520. return;
  1521. }
  1522. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  1523. irq | INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  1524. }
  1525. static void kvm_do_inject_irq(struct kvm_vcpu *vcpu)
  1526. {
  1527. int word_index = __ffs(vcpu->arch.irq_summary);
  1528. int bit_index = __ffs(vcpu->arch.irq_pending[word_index]);
  1529. int irq = word_index * BITS_PER_LONG + bit_index;
  1530. clear_bit(bit_index, &vcpu->arch.irq_pending[word_index]);
  1531. if (!vcpu->arch.irq_pending[word_index])
  1532. clear_bit(word_index, &vcpu->arch.irq_summary);
  1533. vmx_inject_irq(vcpu, irq);
  1534. }
  1535. static void do_interrupt_requests(struct kvm_vcpu *vcpu,
  1536. struct kvm_run *kvm_run)
  1537. {
  1538. u32 cpu_based_vm_exec_control;
  1539. vcpu->arch.interrupt_window_open =
  1540. ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
  1541. (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0);
  1542. if (vcpu->arch.interrupt_window_open &&
  1543. vcpu->arch.irq_summary &&
  1544. !(vmcs_read32(VM_ENTRY_INTR_INFO_FIELD) & INTR_INFO_VALID_MASK))
  1545. /*
  1546. * If interrupts enabled, and not blocked by sti or mov ss. Good.
  1547. */
  1548. kvm_do_inject_irq(vcpu);
  1549. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  1550. if (!vcpu->arch.interrupt_window_open &&
  1551. (vcpu->arch.irq_summary || kvm_run->request_interrupt_window))
  1552. /*
  1553. * Interrupts blocked. Wait for unblock.
  1554. */
  1555. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
  1556. else
  1557. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
  1558. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  1559. }
  1560. static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
  1561. {
  1562. int ret;
  1563. struct kvm_userspace_memory_region tss_mem = {
  1564. .slot = 8,
  1565. .guest_phys_addr = addr,
  1566. .memory_size = PAGE_SIZE * 3,
  1567. .flags = 0,
  1568. };
  1569. ret = kvm_set_memory_region(kvm, &tss_mem, 0);
  1570. if (ret)
  1571. return ret;
  1572. kvm->arch.tss_addr = addr;
  1573. return 0;
  1574. }
  1575. static void kvm_guest_debug_pre(struct kvm_vcpu *vcpu)
  1576. {
  1577. struct kvm_guest_debug *dbg = &vcpu->guest_debug;
  1578. set_debugreg(dbg->bp[0], 0);
  1579. set_debugreg(dbg->bp[1], 1);
  1580. set_debugreg(dbg->bp[2], 2);
  1581. set_debugreg(dbg->bp[3], 3);
  1582. if (dbg->singlestep) {
  1583. unsigned long flags;
  1584. flags = vmcs_readl(GUEST_RFLAGS);
  1585. flags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
  1586. vmcs_writel(GUEST_RFLAGS, flags);
  1587. }
  1588. }
  1589. static int handle_rmode_exception(struct kvm_vcpu *vcpu,
  1590. int vec, u32 err_code)
  1591. {
  1592. if (!vcpu->arch.rmode.active)
  1593. return 0;
  1594. /*
  1595. * Instruction with address size override prefix opcode 0x67
  1596. * Cause the #SS fault with 0 error code in VM86 mode.
  1597. */
  1598. if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
  1599. if (emulate_instruction(vcpu, NULL, 0, 0, 0) == EMULATE_DONE)
  1600. return 1;
  1601. return 0;
  1602. }
  1603. static int handle_exception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1604. {
  1605. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1606. u32 intr_info, error_code;
  1607. unsigned long cr2, rip;
  1608. u32 vect_info;
  1609. enum emulation_result er;
  1610. vect_info = vmx->idt_vectoring_info;
  1611. intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  1612. if ((vect_info & VECTORING_INFO_VALID_MASK) &&
  1613. !is_page_fault(intr_info))
  1614. printk(KERN_ERR "%s: unexpected, vectoring info 0x%x "
  1615. "intr info 0x%x\n", __FUNCTION__, vect_info, intr_info);
  1616. if (!irqchip_in_kernel(vcpu->kvm) && is_external_interrupt(vect_info)) {
  1617. int irq = vect_info & VECTORING_INFO_VECTOR_MASK;
  1618. set_bit(irq, vcpu->arch.irq_pending);
  1619. set_bit(irq / BITS_PER_LONG, &vcpu->arch.irq_summary);
  1620. }
  1621. if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200) /* nmi */
  1622. return 1; /* already handled by vmx_vcpu_run() */
  1623. if (is_no_device(intr_info)) {
  1624. vmx_fpu_activate(vcpu);
  1625. return 1;
  1626. }
  1627. if (is_invalid_opcode(intr_info)) {
  1628. er = emulate_instruction(vcpu, kvm_run, 0, 0, EMULTYPE_TRAP_UD);
  1629. if (er != EMULATE_DONE)
  1630. kvm_queue_exception(vcpu, UD_VECTOR);
  1631. return 1;
  1632. }
  1633. error_code = 0;
  1634. rip = vmcs_readl(GUEST_RIP);
  1635. if (intr_info & INTR_INFO_DELIEVER_CODE_MASK)
  1636. error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
  1637. if (is_page_fault(intr_info)) {
  1638. cr2 = vmcs_readl(EXIT_QUALIFICATION);
  1639. return kvm_mmu_page_fault(vcpu, cr2, error_code);
  1640. }
  1641. if (vcpu->arch.rmode.active &&
  1642. handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
  1643. error_code)) {
  1644. if (vcpu->arch.halt_request) {
  1645. vcpu->arch.halt_request = 0;
  1646. return kvm_emulate_halt(vcpu);
  1647. }
  1648. return 1;
  1649. }
  1650. if ((intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK)) ==
  1651. (INTR_TYPE_EXCEPTION | 1)) {
  1652. kvm_run->exit_reason = KVM_EXIT_DEBUG;
  1653. return 0;
  1654. }
  1655. kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
  1656. kvm_run->ex.exception = intr_info & INTR_INFO_VECTOR_MASK;
  1657. kvm_run->ex.error_code = error_code;
  1658. return 0;
  1659. }
  1660. static int handle_external_interrupt(struct kvm_vcpu *vcpu,
  1661. struct kvm_run *kvm_run)
  1662. {
  1663. ++vcpu->stat.irq_exits;
  1664. return 1;
  1665. }
  1666. static int handle_triple_fault(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1667. {
  1668. kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
  1669. return 0;
  1670. }
  1671. static int handle_io(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1672. {
  1673. unsigned long exit_qualification;
  1674. int size, down, in, string, rep;
  1675. unsigned port;
  1676. ++vcpu->stat.io_exits;
  1677. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  1678. string = (exit_qualification & 16) != 0;
  1679. if (string) {
  1680. if (emulate_instruction(vcpu,
  1681. kvm_run, 0, 0, 0) == EMULATE_DO_MMIO)
  1682. return 0;
  1683. return 1;
  1684. }
  1685. size = (exit_qualification & 7) + 1;
  1686. in = (exit_qualification & 8) != 0;
  1687. down = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_DF) != 0;
  1688. rep = (exit_qualification & 32) != 0;
  1689. port = exit_qualification >> 16;
  1690. return kvm_emulate_pio(vcpu, kvm_run, in, size, port);
  1691. }
  1692. static void
  1693. vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
  1694. {
  1695. /*
  1696. * Patch in the VMCALL instruction:
  1697. */
  1698. hypercall[0] = 0x0f;
  1699. hypercall[1] = 0x01;
  1700. hypercall[2] = 0xc1;
  1701. }
  1702. static int handle_cr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1703. {
  1704. unsigned long exit_qualification;
  1705. int cr;
  1706. int reg;
  1707. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  1708. cr = exit_qualification & 15;
  1709. reg = (exit_qualification >> 8) & 15;
  1710. switch ((exit_qualification >> 4) & 3) {
  1711. case 0: /* mov to cr */
  1712. switch (cr) {
  1713. case 0:
  1714. vcpu_load_rsp_rip(vcpu);
  1715. set_cr0(vcpu, vcpu->arch.regs[reg]);
  1716. skip_emulated_instruction(vcpu);
  1717. return 1;
  1718. case 3:
  1719. vcpu_load_rsp_rip(vcpu);
  1720. set_cr3(vcpu, vcpu->arch.regs[reg]);
  1721. skip_emulated_instruction(vcpu);
  1722. return 1;
  1723. case 4:
  1724. vcpu_load_rsp_rip(vcpu);
  1725. set_cr4(vcpu, vcpu->arch.regs[reg]);
  1726. skip_emulated_instruction(vcpu);
  1727. return 1;
  1728. case 8:
  1729. vcpu_load_rsp_rip(vcpu);
  1730. set_cr8(vcpu, vcpu->arch.regs[reg]);
  1731. skip_emulated_instruction(vcpu);
  1732. if (irqchip_in_kernel(vcpu->kvm))
  1733. return 1;
  1734. kvm_run->exit_reason = KVM_EXIT_SET_TPR;
  1735. return 0;
  1736. };
  1737. break;
  1738. case 2: /* clts */
  1739. vcpu_load_rsp_rip(vcpu);
  1740. vmx_fpu_deactivate(vcpu);
  1741. vcpu->arch.cr0 &= ~X86_CR0_TS;
  1742. vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
  1743. vmx_fpu_activate(vcpu);
  1744. skip_emulated_instruction(vcpu);
  1745. return 1;
  1746. case 1: /*mov from cr*/
  1747. switch (cr) {
  1748. case 3:
  1749. vcpu_load_rsp_rip(vcpu);
  1750. vcpu->arch.regs[reg] = vcpu->arch.cr3;
  1751. vcpu_put_rsp_rip(vcpu);
  1752. skip_emulated_instruction(vcpu);
  1753. return 1;
  1754. case 8:
  1755. vcpu_load_rsp_rip(vcpu);
  1756. vcpu->arch.regs[reg] = get_cr8(vcpu);
  1757. vcpu_put_rsp_rip(vcpu);
  1758. skip_emulated_instruction(vcpu);
  1759. return 1;
  1760. }
  1761. break;
  1762. case 3: /* lmsw */
  1763. lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
  1764. skip_emulated_instruction(vcpu);
  1765. return 1;
  1766. default:
  1767. break;
  1768. }
  1769. kvm_run->exit_reason = 0;
  1770. pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
  1771. (int)(exit_qualification >> 4) & 3, cr);
  1772. return 0;
  1773. }
  1774. static int handle_dr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1775. {
  1776. unsigned long exit_qualification;
  1777. unsigned long val;
  1778. int dr, reg;
  1779. /*
  1780. * FIXME: this code assumes the host is debugging the guest.
  1781. * need to deal with guest debugging itself too.
  1782. */
  1783. exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
  1784. dr = exit_qualification & 7;
  1785. reg = (exit_qualification >> 8) & 15;
  1786. vcpu_load_rsp_rip(vcpu);
  1787. if (exit_qualification & 16) {
  1788. /* mov from dr */
  1789. switch (dr) {
  1790. case 6:
  1791. val = 0xffff0ff0;
  1792. break;
  1793. case 7:
  1794. val = 0x400;
  1795. break;
  1796. default:
  1797. val = 0;
  1798. }
  1799. vcpu->arch.regs[reg] = val;
  1800. } else {
  1801. /* mov to dr */
  1802. }
  1803. vcpu_put_rsp_rip(vcpu);
  1804. skip_emulated_instruction(vcpu);
  1805. return 1;
  1806. }
  1807. static int handle_cpuid(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1808. {
  1809. kvm_emulate_cpuid(vcpu);
  1810. return 1;
  1811. }
  1812. static int handle_rdmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1813. {
  1814. u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
  1815. u64 data;
  1816. if (vmx_get_msr(vcpu, ecx, &data)) {
  1817. kvm_inject_gp(vcpu, 0);
  1818. return 1;
  1819. }
  1820. /* FIXME: handling of bits 32:63 of rax, rdx */
  1821. vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
  1822. vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
  1823. skip_emulated_instruction(vcpu);
  1824. return 1;
  1825. }
  1826. static int handle_wrmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1827. {
  1828. u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
  1829. u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
  1830. | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
  1831. if (vmx_set_msr(vcpu, ecx, data) != 0) {
  1832. kvm_inject_gp(vcpu, 0);
  1833. return 1;
  1834. }
  1835. skip_emulated_instruction(vcpu);
  1836. return 1;
  1837. }
  1838. static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu,
  1839. struct kvm_run *kvm_run)
  1840. {
  1841. return 1;
  1842. }
  1843. static int handle_interrupt_window(struct kvm_vcpu *vcpu,
  1844. struct kvm_run *kvm_run)
  1845. {
  1846. u32 cpu_based_vm_exec_control;
  1847. /* clear pending irq */
  1848. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  1849. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
  1850. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  1851. /*
  1852. * If the user space waits to inject interrupts, exit as soon as
  1853. * possible
  1854. */
  1855. if (kvm_run->request_interrupt_window &&
  1856. !vcpu->arch.irq_summary) {
  1857. kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
  1858. ++vcpu->stat.irq_window_exits;
  1859. return 0;
  1860. }
  1861. return 1;
  1862. }
  1863. static int handle_halt(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1864. {
  1865. skip_emulated_instruction(vcpu);
  1866. return kvm_emulate_halt(vcpu);
  1867. }
  1868. static int handle_vmcall(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1869. {
  1870. skip_emulated_instruction(vcpu);
  1871. kvm_emulate_hypercall(vcpu);
  1872. return 1;
  1873. }
  1874. static int handle_wbinvd(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1875. {
  1876. skip_emulated_instruction(vcpu);
  1877. /* TODO: Add support for VT-d/pass-through device */
  1878. return 1;
  1879. }
  1880. static int handle_apic_access(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1881. {
  1882. u64 exit_qualification;
  1883. enum emulation_result er;
  1884. unsigned long offset;
  1885. exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
  1886. offset = exit_qualification & 0xffful;
  1887. er = emulate_instruction(vcpu, kvm_run, 0, 0, 0);
  1888. if (er != EMULATE_DONE) {
  1889. printk(KERN_ERR
  1890. "Fail to handle apic access vmexit! Offset is 0x%lx\n",
  1891. offset);
  1892. return -ENOTSUPP;
  1893. }
  1894. return 1;
  1895. }
  1896. /*
  1897. * The exit handlers return 1 if the exit was handled fully and guest execution
  1898. * may resume. Otherwise they set the kvm_run parameter to indicate what needs
  1899. * to be done to userspace and return 0.
  1900. */
  1901. static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu,
  1902. struct kvm_run *kvm_run) = {
  1903. [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
  1904. [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
  1905. [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
  1906. [EXIT_REASON_IO_INSTRUCTION] = handle_io,
  1907. [EXIT_REASON_CR_ACCESS] = handle_cr,
  1908. [EXIT_REASON_DR_ACCESS] = handle_dr,
  1909. [EXIT_REASON_CPUID] = handle_cpuid,
  1910. [EXIT_REASON_MSR_READ] = handle_rdmsr,
  1911. [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
  1912. [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
  1913. [EXIT_REASON_HLT] = handle_halt,
  1914. [EXIT_REASON_VMCALL] = handle_vmcall,
  1915. [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
  1916. [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
  1917. [EXIT_REASON_WBINVD] = handle_wbinvd,
  1918. };
  1919. static const int kvm_vmx_max_exit_handlers =
  1920. ARRAY_SIZE(kvm_vmx_exit_handlers);
  1921. /*
  1922. * The guest has exited. See if we can fix it or if we need userspace
  1923. * assistance.
  1924. */
  1925. static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
  1926. {
  1927. u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
  1928. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1929. u32 vectoring_info = vmx->idt_vectoring_info;
  1930. if (unlikely(vmx->fail)) {
  1931. kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
  1932. kvm_run->fail_entry.hardware_entry_failure_reason
  1933. = vmcs_read32(VM_INSTRUCTION_ERROR);
  1934. return 0;
  1935. }
  1936. if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
  1937. exit_reason != EXIT_REASON_EXCEPTION_NMI)
  1938. printk(KERN_WARNING "%s: unexpected, valid vectoring info and "
  1939. "exit reason is 0x%x\n", __FUNCTION__, exit_reason);
  1940. if (exit_reason < kvm_vmx_max_exit_handlers
  1941. && kvm_vmx_exit_handlers[exit_reason])
  1942. return kvm_vmx_exit_handlers[exit_reason](vcpu, kvm_run);
  1943. else {
  1944. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  1945. kvm_run->hw.hardware_exit_reason = exit_reason;
  1946. }
  1947. return 0;
  1948. }
  1949. static void update_tpr_threshold(struct kvm_vcpu *vcpu)
  1950. {
  1951. int max_irr, tpr;
  1952. if (!vm_need_tpr_shadow(vcpu->kvm))
  1953. return;
  1954. if (!kvm_lapic_enabled(vcpu) ||
  1955. ((max_irr = kvm_lapic_find_highest_irr(vcpu)) == -1)) {
  1956. vmcs_write32(TPR_THRESHOLD, 0);
  1957. return;
  1958. }
  1959. tpr = (kvm_lapic_get_cr8(vcpu) & 0x0f) << 4;
  1960. vmcs_write32(TPR_THRESHOLD, (max_irr > tpr) ? tpr >> 4 : max_irr >> 4);
  1961. }
  1962. static void enable_irq_window(struct kvm_vcpu *vcpu)
  1963. {
  1964. u32 cpu_based_vm_exec_control;
  1965. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  1966. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
  1967. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  1968. }
  1969. static void vmx_intr_assist(struct kvm_vcpu *vcpu)
  1970. {
  1971. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1972. u32 idtv_info_field, intr_info_field;
  1973. int has_ext_irq, interrupt_window_open;
  1974. int vector;
  1975. update_tpr_threshold(vcpu);
  1976. has_ext_irq = kvm_cpu_has_interrupt(vcpu);
  1977. intr_info_field = vmcs_read32(VM_ENTRY_INTR_INFO_FIELD);
  1978. idtv_info_field = vmx->idt_vectoring_info;
  1979. if (intr_info_field & INTR_INFO_VALID_MASK) {
  1980. if (idtv_info_field & INTR_INFO_VALID_MASK) {
  1981. /* TODO: fault when IDT_Vectoring */
  1982. if (printk_ratelimit())
  1983. printk(KERN_ERR "Fault when IDT_Vectoring\n");
  1984. }
  1985. if (has_ext_irq)
  1986. enable_irq_window(vcpu);
  1987. return;
  1988. }
  1989. if (unlikely(idtv_info_field & INTR_INFO_VALID_MASK)) {
  1990. if ((idtv_info_field & VECTORING_INFO_TYPE_MASK)
  1991. == INTR_TYPE_EXT_INTR
  1992. && vcpu->arch.rmode.active) {
  1993. u8 vect = idtv_info_field & VECTORING_INFO_VECTOR_MASK;
  1994. vmx_inject_irq(vcpu, vect);
  1995. if (unlikely(has_ext_irq))
  1996. enable_irq_window(vcpu);
  1997. return;
  1998. }
  1999. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, idtv_info_field);
  2000. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
  2001. vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
  2002. if (unlikely(idtv_info_field & INTR_INFO_DELIEVER_CODE_MASK))
  2003. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
  2004. vmcs_read32(IDT_VECTORING_ERROR_CODE));
  2005. if (unlikely(has_ext_irq))
  2006. enable_irq_window(vcpu);
  2007. return;
  2008. }
  2009. if (!has_ext_irq)
  2010. return;
  2011. interrupt_window_open =
  2012. ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
  2013. (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0);
  2014. if (interrupt_window_open) {
  2015. vector = kvm_cpu_get_interrupt(vcpu);
  2016. vmx_inject_irq(vcpu, vector);
  2017. kvm_timer_intr_post(vcpu, vector);
  2018. } else
  2019. enable_irq_window(vcpu);
  2020. }
  2021. /*
  2022. * Failure to inject an interrupt should give us the information
  2023. * in IDT_VECTORING_INFO_FIELD. However, if the failure occurs
  2024. * when fetching the interrupt redirection bitmap in the real-mode
  2025. * tss, this doesn't happen. So we do it ourselves.
  2026. */
  2027. static void fixup_rmode_irq(struct vcpu_vmx *vmx)
  2028. {
  2029. vmx->rmode.irq.pending = 0;
  2030. if (vmcs_readl(GUEST_RIP) + 1 != vmx->rmode.irq.rip)
  2031. return;
  2032. vmcs_writel(GUEST_RIP, vmx->rmode.irq.rip);
  2033. if (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) {
  2034. vmx->idt_vectoring_info &= ~VECTORING_INFO_TYPE_MASK;
  2035. vmx->idt_vectoring_info |= INTR_TYPE_EXT_INTR;
  2036. return;
  2037. }
  2038. vmx->idt_vectoring_info =
  2039. VECTORING_INFO_VALID_MASK
  2040. | INTR_TYPE_EXT_INTR
  2041. | vmx->rmode.irq.vector;
  2042. }
  2043. static void vmx_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2044. {
  2045. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2046. u32 intr_info;
  2047. /*
  2048. * Loading guest fpu may have cleared host cr0.ts
  2049. */
  2050. vmcs_writel(HOST_CR0, read_cr0());
  2051. asm(
  2052. /* Store host registers */
  2053. #ifdef CONFIG_X86_64
  2054. "push %%rdx; push %%rbp;"
  2055. "push %%rcx \n\t"
  2056. #else
  2057. "push %%edx; push %%ebp;"
  2058. "push %%ecx \n\t"
  2059. #endif
  2060. ASM_VMX_VMWRITE_RSP_RDX "\n\t"
  2061. /* Check if vmlaunch of vmresume is needed */
  2062. "cmpl $0, %c[launched](%0) \n\t"
  2063. /* Load guest registers. Don't clobber flags. */
  2064. #ifdef CONFIG_X86_64
  2065. "mov %c[cr2](%0), %%rax \n\t"
  2066. "mov %%rax, %%cr2 \n\t"
  2067. "mov %c[rax](%0), %%rax \n\t"
  2068. "mov %c[rbx](%0), %%rbx \n\t"
  2069. "mov %c[rdx](%0), %%rdx \n\t"
  2070. "mov %c[rsi](%0), %%rsi \n\t"
  2071. "mov %c[rdi](%0), %%rdi \n\t"
  2072. "mov %c[rbp](%0), %%rbp \n\t"
  2073. "mov %c[r8](%0), %%r8 \n\t"
  2074. "mov %c[r9](%0), %%r9 \n\t"
  2075. "mov %c[r10](%0), %%r10 \n\t"
  2076. "mov %c[r11](%0), %%r11 \n\t"
  2077. "mov %c[r12](%0), %%r12 \n\t"
  2078. "mov %c[r13](%0), %%r13 \n\t"
  2079. "mov %c[r14](%0), %%r14 \n\t"
  2080. "mov %c[r15](%0), %%r15 \n\t"
  2081. "mov %c[rcx](%0), %%rcx \n\t" /* kills %0 (rcx) */
  2082. #else
  2083. "mov %c[cr2](%0), %%eax \n\t"
  2084. "mov %%eax, %%cr2 \n\t"
  2085. "mov %c[rax](%0), %%eax \n\t"
  2086. "mov %c[rbx](%0), %%ebx \n\t"
  2087. "mov %c[rdx](%0), %%edx \n\t"
  2088. "mov %c[rsi](%0), %%esi \n\t"
  2089. "mov %c[rdi](%0), %%edi \n\t"
  2090. "mov %c[rbp](%0), %%ebp \n\t"
  2091. "mov %c[rcx](%0), %%ecx \n\t" /* kills %0 (ecx) */
  2092. #endif
  2093. /* Enter guest mode */
  2094. "jne .Llaunched \n\t"
  2095. ASM_VMX_VMLAUNCH "\n\t"
  2096. "jmp .Lkvm_vmx_return \n\t"
  2097. ".Llaunched: " ASM_VMX_VMRESUME "\n\t"
  2098. ".Lkvm_vmx_return: "
  2099. /* Save guest registers, load host registers, keep flags */
  2100. #ifdef CONFIG_X86_64
  2101. "xchg %0, (%%rsp) \n\t"
  2102. "mov %%rax, %c[rax](%0) \n\t"
  2103. "mov %%rbx, %c[rbx](%0) \n\t"
  2104. "pushq (%%rsp); popq %c[rcx](%0) \n\t"
  2105. "mov %%rdx, %c[rdx](%0) \n\t"
  2106. "mov %%rsi, %c[rsi](%0) \n\t"
  2107. "mov %%rdi, %c[rdi](%0) \n\t"
  2108. "mov %%rbp, %c[rbp](%0) \n\t"
  2109. "mov %%r8, %c[r8](%0) \n\t"
  2110. "mov %%r9, %c[r9](%0) \n\t"
  2111. "mov %%r10, %c[r10](%0) \n\t"
  2112. "mov %%r11, %c[r11](%0) \n\t"
  2113. "mov %%r12, %c[r12](%0) \n\t"
  2114. "mov %%r13, %c[r13](%0) \n\t"
  2115. "mov %%r14, %c[r14](%0) \n\t"
  2116. "mov %%r15, %c[r15](%0) \n\t"
  2117. "mov %%cr2, %%rax \n\t"
  2118. "mov %%rax, %c[cr2](%0) \n\t"
  2119. "pop %%rbp; pop %%rbp; pop %%rdx \n\t"
  2120. #else
  2121. "xchg %0, (%%esp) \n\t"
  2122. "mov %%eax, %c[rax](%0) \n\t"
  2123. "mov %%ebx, %c[rbx](%0) \n\t"
  2124. "pushl (%%esp); popl %c[rcx](%0) \n\t"
  2125. "mov %%edx, %c[rdx](%0) \n\t"
  2126. "mov %%esi, %c[rsi](%0) \n\t"
  2127. "mov %%edi, %c[rdi](%0) \n\t"
  2128. "mov %%ebp, %c[rbp](%0) \n\t"
  2129. "mov %%cr2, %%eax \n\t"
  2130. "mov %%eax, %c[cr2](%0) \n\t"
  2131. "pop %%ebp; pop %%ebp; pop %%edx \n\t"
  2132. #endif
  2133. "setbe %c[fail](%0) \n\t"
  2134. : : "c"(vmx), "d"((unsigned long)HOST_RSP),
  2135. [launched]"i"(offsetof(struct vcpu_vmx, launched)),
  2136. [fail]"i"(offsetof(struct vcpu_vmx, fail)),
  2137. [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
  2138. [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
  2139. [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
  2140. [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
  2141. [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
  2142. [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
  2143. [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
  2144. #ifdef CONFIG_X86_64
  2145. [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
  2146. [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
  2147. [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
  2148. [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
  2149. [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
  2150. [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
  2151. [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
  2152. [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
  2153. #endif
  2154. [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2))
  2155. : "cc", "memory"
  2156. #ifdef CONFIG_X86_64
  2157. , "rbx", "rdi", "rsi"
  2158. , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
  2159. #else
  2160. , "ebx", "edi", "rsi"
  2161. #endif
  2162. );
  2163. vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  2164. if (vmx->rmode.irq.pending)
  2165. fixup_rmode_irq(vmx);
  2166. vcpu->arch.interrupt_window_open =
  2167. (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0;
  2168. asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
  2169. vmx->launched = 1;
  2170. intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  2171. /* We need to handle NMIs before interrupts are enabled */
  2172. if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200) /* nmi */
  2173. asm("int $2");
  2174. }
  2175. static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
  2176. {
  2177. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2178. if (vmx->vmcs) {
  2179. on_each_cpu(__vcpu_clear, vmx, 0, 1);
  2180. free_vmcs(vmx->vmcs);
  2181. vmx->vmcs = NULL;
  2182. }
  2183. }
  2184. static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
  2185. {
  2186. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2187. spin_lock(&vmx_vpid_lock);
  2188. if (vmx->vpid != 0)
  2189. __clear_bit(vmx->vpid, vmx_vpid_bitmap);
  2190. spin_unlock(&vmx_vpid_lock);
  2191. vmx_free_vmcs(vcpu);
  2192. kfree(vmx->host_msrs);
  2193. kfree(vmx->guest_msrs);
  2194. kvm_vcpu_uninit(vcpu);
  2195. kmem_cache_free(kvm_vcpu_cache, vmx);
  2196. }
  2197. static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
  2198. {
  2199. int err;
  2200. struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
  2201. int cpu;
  2202. if (!vmx)
  2203. return ERR_PTR(-ENOMEM);
  2204. allocate_vpid(vmx);
  2205. err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
  2206. if (err)
  2207. goto free_vcpu;
  2208. vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  2209. if (!vmx->guest_msrs) {
  2210. err = -ENOMEM;
  2211. goto uninit_vcpu;
  2212. }
  2213. vmx->host_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  2214. if (!vmx->host_msrs)
  2215. goto free_guest_msrs;
  2216. vmx->vmcs = alloc_vmcs();
  2217. if (!vmx->vmcs)
  2218. goto free_msrs;
  2219. vmcs_clear(vmx->vmcs);
  2220. cpu = get_cpu();
  2221. vmx_vcpu_load(&vmx->vcpu, cpu);
  2222. err = vmx_vcpu_setup(vmx);
  2223. vmx_vcpu_put(&vmx->vcpu);
  2224. put_cpu();
  2225. if (err)
  2226. goto free_vmcs;
  2227. if (vm_need_virtualize_apic_accesses(kvm))
  2228. if (alloc_apic_access_page(kvm) != 0)
  2229. goto free_vmcs;
  2230. return &vmx->vcpu;
  2231. free_vmcs:
  2232. free_vmcs(vmx->vmcs);
  2233. free_msrs:
  2234. kfree(vmx->host_msrs);
  2235. free_guest_msrs:
  2236. kfree(vmx->guest_msrs);
  2237. uninit_vcpu:
  2238. kvm_vcpu_uninit(&vmx->vcpu);
  2239. free_vcpu:
  2240. kmem_cache_free(kvm_vcpu_cache, vmx);
  2241. return ERR_PTR(err);
  2242. }
  2243. static void __init vmx_check_processor_compat(void *rtn)
  2244. {
  2245. struct vmcs_config vmcs_conf;
  2246. *(int *)rtn = 0;
  2247. if (setup_vmcs_config(&vmcs_conf) < 0)
  2248. *(int *)rtn = -EIO;
  2249. if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
  2250. printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
  2251. smp_processor_id());
  2252. *(int *)rtn = -EIO;
  2253. }
  2254. }
  2255. static struct kvm_x86_ops vmx_x86_ops = {
  2256. .cpu_has_kvm_support = cpu_has_kvm_support,
  2257. .disabled_by_bios = vmx_disabled_by_bios,
  2258. .hardware_setup = hardware_setup,
  2259. .hardware_unsetup = hardware_unsetup,
  2260. .check_processor_compatibility = vmx_check_processor_compat,
  2261. .hardware_enable = hardware_enable,
  2262. .hardware_disable = hardware_disable,
  2263. .cpu_has_accelerated_tpr = cpu_has_vmx_virtualize_apic_accesses,
  2264. .vcpu_create = vmx_create_vcpu,
  2265. .vcpu_free = vmx_free_vcpu,
  2266. .vcpu_reset = vmx_vcpu_reset,
  2267. .prepare_guest_switch = vmx_save_host_state,
  2268. .vcpu_load = vmx_vcpu_load,
  2269. .vcpu_put = vmx_vcpu_put,
  2270. .vcpu_decache = vmx_vcpu_decache,
  2271. .set_guest_debug = set_guest_debug,
  2272. .guest_debug_pre = kvm_guest_debug_pre,
  2273. .get_msr = vmx_get_msr,
  2274. .set_msr = vmx_set_msr,
  2275. .get_segment_base = vmx_get_segment_base,
  2276. .get_segment = vmx_get_segment,
  2277. .set_segment = vmx_set_segment,
  2278. .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
  2279. .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
  2280. .set_cr0 = vmx_set_cr0,
  2281. .set_cr3 = vmx_set_cr3,
  2282. .set_cr4 = vmx_set_cr4,
  2283. #ifdef CONFIG_X86_64
  2284. .set_efer = vmx_set_efer,
  2285. #endif
  2286. .get_idt = vmx_get_idt,
  2287. .set_idt = vmx_set_idt,
  2288. .get_gdt = vmx_get_gdt,
  2289. .set_gdt = vmx_set_gdt,
  2290. .cache_regs = vcpu_load_rsp_rip,
  2291. .decache_regs = vcpu_put_rsp_rip,
  2292. .get_rflags = vmx_get_rflags,
  2293. .set_rflags = vmx_set_rflags,
  2294. .tlb_flush = vmx_flush_tlb,
  2295. .run = vmx_vcpu_run,
  2296. .handle_exit = kvm_handle_exit,
  2297. .skip_emulated_instruction = skip_emulated_instruction,
  2298. .patch_hypercall = vmx_patch_hypercall,
  2299. .get_irq = vmx_get_irq,
  2300. .set_irq = vmx_inject_irq,
  2301. .queue_exception = vmx_queue_exception,
  2302. .exception_injected = vmx_exception_injected,
  2303. .inject_pending_irq = vmx_intr_assist,
  2304. .inject_pending_vectors = do_interrupt_requests,
  2305. .set_tss_addr = vmx_set_tss_addr,
  2306. };
  2307. static int __init vmx_init(void)
  2308. {
  2309. void *iova;
  2310. int r;
  2311. vmx_io_bitmap_a = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
  2312. if (!vmx_io_bitmap_a)
  2313. return -ENOMEM;
  2314. vmx_io_bitmap_b = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
  2315. if (!vmx_io_bitmap_b) {
  2316. r = -ENOMEM;
  2317. goto out;
  2318. }
  2319. /*
  2320. * Allow direct access to the PC debug port (it is often used for I/O
  2321. * delays, but the vmexits simply slow things down).
  2322. */
  2323. iova = kmap(vmx_io_bitmap_a);
  2324. memset(iova, 0xff, PAGE_SIZE);
  2325. clear_bit(0x80, iova);
  2326. kunmap(vmx_io_bitmap_a);
  2327. iova = kmap(vmx_io_bitmap_b);
  2328. memset(iova, 0xff, PAGE_SIZE);
  2329. kunmap(vmx_io_bitmap_b);
  2330. set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
  2331. r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx), THIS_MODULE);
  2332. if (r)
  2333. goto out1;
  2334. if (bypass_guest_pf)
  2335. kvm_mmu_set_nonpresent_ptes(~0xffeull, 0ull);
  2336. return 0;
  2337. out1:
  2338. __free_page(vmx_io_bitmap_b);
  2339. out:
  2340. __free_page(vmx_io_bitmap_a);
  2341. return r;
  2342. }
  2343. static void __exit vmx_exit(void)
  2344. {
  2345. __free_page(vmx_io_bitmap_b);
  2346. __free_page(vmx_io_bitmap_a);
  2347. kvm_exit();
  2348. }
  2349. module_init(vmx_init)
  2350. module_exit(vmx_exit)