vmx.c 57 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "kvm.h"
  18. #include "vmx.h"
  19. #include <linux/module.h>
  20. #include <linux/kernel.h>
  21. #include <linux/mm.h>
  22. #include <linux/highmem.h>
  23. #include <linux/profile.h>
  24. #include <linux/sched.h>
  25. #include <asm/io.h>
  26. #include <asm/desc.h>
  27. #include "segment_descriptor.h"
  28. MODULE_AUTHOR("Qumranet");
  29. MODULE_LICENSE("GPL");
  30. static DEFINE_PER_CPU(struct vmcs *, vmxarea);
  31. static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
  32. static struct page *vmx_io_bitmap_a;
  33. static struct page *vmx_io_bitmap_b;
  34. #ifdef CONFIG_X86_64
  35. #define HOST_IS_64 1
  36. #else
  37. #define HOST_IS_64 0
  38. #endif
  39. #define EFER_SAVE_RESTORE_BITS ((u64)EFER_SCE)
  40. static struct vmcs_descriptor {
  41. int size;
  42. int order;
  43. u32 revision_id;
  44. } vmcs_descriptor;
  45. #define VMX_SEGMENT_FIELD(seg) \
  46. [VCPU_SREG_##seg] = { \
  47. .selector = GUEST_##seg##_SELECTOR, \
  48. .base = GUEST_##seg##_BASE, \
  49. .limit = GUEST_##seg##_LIMIT, \
  50. .ar_bytes = GUEST_##seg##_AR_BYTES, \
  51. }
  52. static struct kvm_vmx_segment_field {
  53. unsigned selector;
  54. unsigned base;
  55. unsigned limit;
  56. unsigned ar_bytes;
  57. } kvm_vmx_segment_fields[] = {
  58. VMX_SEGMENT_FIELD(CS),
  59. VMX_SEGMENT_FIELD(DS),
  60. VMX_SEGMENT_FIELD(ES),
  61. VMX_SEGMENT_FIELD(FS),
  62. VMX_SEGMENT_FIELD(GS),
  63. VMX_SEGMENT_FIELD(SS),
  64. VMX_SEGMENT_FIELD(TR),
  65. VMX_SEGMENT_FIELD(LDTR),
  66. };
  67. /*
  68. * Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it
  69. * away by decrementing the array size.
  70. */
  71. static const u32 vmx_msr_index[] = {
  72. #ifdef CONFIG_X86_64
  73. MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, MSR_KERNEL_GS_BASE,
  74. #endif
  75. MSR_EFER, MSR_K6_STAR,
  76. };
  77. #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
  78. static inline u64 msr_efer_save_restore_bits(struct vmx_msr_entry msr)
  79. {
  80. return (u64)msr.data & EFER_SAVE_RESTORE_BITS;
  81. }
  82. static inline int msr_efer_need_save_restore(struct kvm_vcpu *vcpu)
  83. {
  84. int efer_offset = vcpu->msr_offset_efer;
  85. return msr_efer_save_restore_bits(vcpu->host_msrs[efer_offset]) !=
  86. msr_efer_save_restore_bits(vcpu->guest_msrs[efer_offset]);
  87. }
  88. static inline int is_page_fault(u32 intr_info)
  89. {
  90. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  91. INTR_INFO_VALID_MASK)) ==
  92. (INTR_TYPE_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
  93. }
  94. static inline int is_no_device(u32 intr_info)
  95. {
  96. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  97. INTR_INFO_VALID_MASK)) ==
  98. (INTR_TYPE_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
  99. }
  100. static inline int is_external_interrupt(u32 intr_info)
  101. {
  102. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
  103. == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  104. }
  105. static int __find_msr_index(struct kvm_vcpu *vcpu, u32 msr)
  106. {
  107. int i;
  108. for (i = 0; i < vcpu->nmsrs; ++i)
  109. if (vcpu->guest_msrs[i].index == msr)
  110. return i;
  111. return -1;
  112. }
  113. static struct vmx_msr_entry *find_msr_entry(struct kvm_vcpu *vcpu, u32 msr)
  114. {
  115. int i;
  116. i = __find_msr_index(vcpu, msr);
  117. if (i >= 0)
  118. return &vcpu->guest_msrs[i];
  119. return NULL;
  120. }
  121. static void vmcs_clear(struct vmcs *vmcs)
  122. {
  123. u64 phys_addr = __pa(vmcs);
  124. u8 error;
  125. asm volatile (ASM_VMX_VMCLEAR_RAX "; setna %0"
  126. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  127. : "cc", "memory");
  128. if (error)
  129. printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
  130. vmcs, phys_addr);
  131. }
  132. static void __vcpu_clear(void *arg)
  133. {
  134. struct kvm_vcpu *vcpu = arg;
  135. int cpu = raw_smp_processor_id();
  136. if (vcpu->cpu == cpu)
  137. vmcs_clear(vcpu->vmcs);
  138. if (per_cpu(current_vmcs, cpu) == vcpu->vmcs)
  139. per_cpu(current_vmcs, cpu) = NULL;
  140. }
  141. static void vcpu_clear(struct kvm_vcpu *vcpu)
  142. {
  143. if (vcpu->cpu != raw_smp_processor_id() && vcpu->cpu != -1)
  144. smp_call_function_single(vcpu->cpu, __vcpu_clear, vcpu, 0, 1);
  145. else
  146. __vcpu_clear(vcpu);
  147. vcpu->launched = 0;
  148. }
  149. static unsigned long vmcs_readl(unsigned long field)
  150. {
  151. unsigned long value;
  152. asm volatile (ASM_VMX_VMREAD_RDX_RAX
  153. : "=a"(value) : "d"(field) : "cc");
  154. return value;
  155. }
  156. static u16 vmcs_read16(unsigned long field)
  157. {
  158. return vmcs_readl(field);
  159. }
  160. static u32 vmcs_read32(unsigned long field)
  161. {
  162. return vmcs_readl(field);
  163. }
  164. static u64 vmcs_read64(unsigned long field)
  165. {
  166. #ifdef CONFIG_X86_64
  167. return vmcs_readl(field);
  168. #else
  169. return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
  170. #endif
  171. }
  172. static noinline void vmwrite_error(unsigned long field, unsigned long value)
  173. {
  174. printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
  175. field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
  176. dump_stack();
  177. }
  178. static void vmcs_writel(unsigned long field, unsigned long value)
  179. {
  180. u8 error;
  181. asm volatile (ASM_VMX_VMWRITE_RAX_RDX "; setna %0"
  182. : "=q"(error) : "a"(value), "d"(field) : "cc" );
  183. if (unlikely(error))
  184. vmwrite_error(field, value);
  185. }
  186. static void vmcs_write16(unsigned long field, u16 value)
  187. {
  188. vmcs_writel(field, value);
  189. }
  190. static void vmcs_write32(unsigned long field, u32 value)
  191. {
  192. vmcs_writel(field, value);
  193. }
  194. static void vmcs_write64(unsigned long field, u64 value)
  195. {
  196. #ifdef CONFIG_X86_64
  197. vmcs_writel(field, value);
  198. #else
  199. vmcs_writel(field, value);
  200. asm volatile ("");
  201. vmcs_writel(field+1, value >> 32);
  202. #endif
  203. }
  204. static void vmcs_clear_bits(unsigned long field, u32 mask)
  205. {
  206. vmcs_writel(field, vmcs_readl(field) & ~mask);
  207. }
  208. static void vmcs_set_bits(unsigned long field, u32 mask)
  209. {
  210. vmcs_writel(field, vmcs_readl(field) | mask);
  211. }
  212. static void update_exception_bitmap(struct kvm_vcpu *vcpu)
  213. {
  214. u32 eb;
  215. eb = 1u << PF_VECTOR;
  216. if (!vcpu->fpu_active)
  217. eb |= 1u << NM_VECTOR;
  218. if (vcpu->guest_debug.enabled)
  219. eb |= 1u << 1;
  220. if (vcpu->rmode.active)
  221. eb = ~0;
  222. vmcs_write32(EXCEPTION_BITMAP, eb);
  223. }
  224. static void reload_tss(void)
  225. {
  226. #ifndef CONFIG_X86_64
  227. /*
  228. * VT restores TR but not its size. Useless.
  229. */
  230. struct descriptor_table gdt;
  231. struct segment_descriptor *descs;
  232. get_gdt(&gdt);
  233. descs = (void *)gdt.base;
  234. descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
  235. load_TR_desc();
  236. #endif
  237. }
  238. static void load_transition_efer(struct kvm_vcpu *vcpu)
  239. {
  240. u64 trans_efer;
  241. int efer_offset = vcpu->msr_offset_efer;
  242. trans_efer = vcpu->host_msrs[efer_offset].data;
  243. trans_efer &= ~EFER_SAVE_RESTORE_BITS;
  244. trans_efer |= msr_efer_save_restore_bits(
  245. vcpu->guest_msrs[efer_offset]);
  246. wrmsrl(MSR_EFER, trans_efer);
  247. vcpu->stat.efer_reload++;
  248. }
  249. static void vmx_save_host_state(struct kvm_vcpu *vcpu)
  250. {
  251. struct vmx_host_state *hs = &vcpu->vmx_host_state;
  252. if (hs->loaded)
  253. return;
  254. hs->loaded = 1;
  255. /*
  256. * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
  257. * allow segment selectors with cpl > 0 or ti == 1.
  258. */
  259. hs->ldt_sel = read_ldt();
  260. hs->fs_gs_ldt_reload_needed = hs->ldt_sel;
  261. hs->fs_sel = read_fs();
  262. if (!(hs->fs_sel & 7))
  263. vmcs_write16(HOST_FS_SELECTOR, hs->fs_sel);
  264. else {
  265. vmcs_write16(HOST_FS_SELECTOR, 0);
  266. hs->fs_gs_ldt_reload_needed = 1;
  267. }
  268. hs->gs_sel = read_gs();
  269. if (!(hs->gs_sel & 7))
  270. vmcs_write16(HOST_GS_SELECTOR, hs->gs_sel);
  271. else {
  272. vmcs_write16(HOST_GS_SELECTOR, 0);
  273. hs->fs_gs_ldt_reload_needed = 1;
  274. }
  275. #ifdef CONFIG_X86_64
  276. vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
  277. vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
  278. #else
  279. vmcs_writel(HOST_FS_BASE, segment_base(hs->fs_sel));
  280. vmcs_writel(HOST_GS_BASE, segment_base(hs->gs_sel));
  281. #endif
  282. #ifdef CONFIG_X86_64
  283. if (is_long_mode(vcpu)) {
  284. save_msrs(vcpu->host_msrs + vcpu->msr_offset_kernel_gs_base, 1);
  285. }
  286. #endif
  287. load_msrs(vcpu->guest_msrs, vcpu->save_nmsrs);
  288. if (msr_efer_need_save_restore(vcpu))
  289. load_transition_efer(vcpu);
  290. }
  291. static void vmx_load_host_state(struct kvm_vcpu *vcpu)
  292. {
  293. struct vmx_host_state *hs = &vcpu->vmx_host_state;
  294. if (!hs->loaded)
  295. return;
  296. hs->loaded = 0;
  297. if (hs->fs_gs_ldt_reload_needed) {
  298. load_ldt(hs->ldt_sel);
  299. load_fs(hs->fs_sel);
  300. /*
  301. * If we have to reload gs, we must take care to
  302. * preserve our gs base.
  303. */
  304. local_irq_disable();
  305. load_gs(hs->gs_sel);
  306. #ifdef CONFIG_X86_64
  307. wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
  308. #endif
  309. local_irq_enable();
  310. reload_tss();
  311. }
  312. save_msrs(vcpu->guest_msrs, vcpu->save_nmsrs);
  313. load_msrs(vcpu->host_msrs, vcpu->save_nmsrs);
  314. if (msr_efer_need_save_restore(vcpu))
  315. load_msrs(vcpu->host_msrs + vcpu->msr_offset_efer, 1);
  316. }
  317. /*
  318. * Switches to specified vcpu, until a matching vcpu_put(), but assumes
  319. * vcpu mutex is already taken.
  320. */
  321. static void vmx_vcpu_load(struct kvm_vcpu *vcpu)
  322. {
  323. u64 phys_addr = __pa(vcpu->vmcs);
  324. int cpu;
  325. cpu = get_cpu();
  326. if (vcpu->cpu != cpu)
  327. vcpu_clear(vcpu);
  328. if (per_cpu(current_vmcs, cpu) != vcpu->vmcs) {
  329. u8 error;
  330. per_cpu(current_vmcs, cpu) = vcpu->vmcs;
  331. asm volatile (ASM_VMX_VMPTRLD_RAX "; setna %0"
  332. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  333. : "cc");
  334. if (error)
  335. printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
  336. vcpu->vmcs, phys_addr);
  337. }
  338. if (vcpu->cpu != cpu) {
  339. struct descriptor_table dt;
  340. unsigned long sysenter_esp;
  341. vcpu->cpu = cpu;
  342. /*
  343. * Linux uses per-cpu TSS and GDT, so set these when switching
  344. * processors.
  345. */
  346. vmcs_writel(HOST_TR_BASE, read_tr_base()); /* 22.2.4 */
  347. get_gdt(&dt);
  348. vmcs_writel(HOST_GDTR_BASE, dt.base); /* 22.2.4 */
  349. rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
  350. vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
  351. }
  352. }
  353. static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
  354. {
  355. vmx_load_host_state(vcpu);
  356. kvm_put_guest_fpu(vcpu);
  357. put_cpu();
  358. }
  359. static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
  360. {
  361. if (vcpu->fpu_active)
  362. return;
  363. vcpu->fpu_active = 1;
  364. vmcs_clear_bits(GUEST_CR0, CR0_TS_MASK);
  365. if (vcpu->cr0 & CR0_TS_MASK)
  366. vmcs_set_bits(GUEST_CR0, CR0_TS_MASK);
  367. update_exception_bitmap(vcpu);
  368. }
  369. static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
  370. {
  371. if (!vcpu->fpu_active)
  372. return;
  373. vcpu->fpu_active = 0;
  374. vmcs_set_bits(GUEST_CR0, CR0_TS_MASK);
  375. update_exception_bitmap(vcpu);
  376. }
  377. static void vmx_vcpu_decache(struct kvm_vcpu *vcpu)
  378. {
  379. vcpu_clear(vcpu);
  380. }
  381. static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
  382. {
  383. return vmcs_readl(GUEST_RFLAGS);
  384. }
  385. static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  386. {
  387. vmcs_writel(GUEST_RFLAGS, rflags);
  388. }
  389. static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
  390. {
  391. unsigned long rip;
  392. u32 interruptibility;
  393. rip = vmcs_readl(GUEST_RIP);
  394. rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  395. vmcs_writel(GUEST_RIP, rip);
  396. /*
  397. * We emulated an instruction, so temporary interrupt blocking
  398. * should be removed, if set.
  399. */
  400. interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  401. if (interruptibility & 3)
  402. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
  403. interruptibility & ~3);
  404. vcpu->interrupt_window_open = 1;
  405. }
  406. static void vmx_inject_gp(struct kvm_vcpu *vcpu, unsigned error_code)
  407. {
  408. printk(KERN_DEBUG "inject_general_protection: rip 0x%lx\n",
  409. vmcs_readl(GUEST_RIP));
  410. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
  411. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  412. GP_VECTOR |
  413. INTR_TYPE_EXCEPTION |
  414. INTR_INFO_DELIEVER_CODE_MASK |
  415. INTR_INFO_VALID_MASK);
  416. }
  417. /*
  418. * Swap MSR entry in host/guest MSR entry array.
  419. */
  420. void move_msr_up(struct kvm_vcpu *vcpu, int from, int to)
  421. {
  422. struct vmx_msr_entry tmp;
  423. tmp = vcpu->guest_msrs[to];
  424. vcpu->guest_msrs[to] = vcpu->guest_msrs[from];
  425. vcpu->guest_msrs[from] = tmp;
  426. tmp = vcpu->host_msrs[to];
  427. vcpu->host_msrs[to] = vcpu->host_msrs[from];
  428. vcpu->host_msrs[from] = tmp;
  429. }
  430. /*
  431. * Set up the vmcs to automatically save and restore system
  432. * msrs. Don't touch the 64-bit msrs if the guest is in legacy
  433. * mode, as fiddling with msrs is very expensive.
  434. */
  435. static void setup_msrs(struct kvm_vcpu *vcpu)
  436. {
  437. int save_nmsrs;
  438. save_nmsrs = 0;
  439. #ifdef CONFIG_X86_64
  440. if (is_long_mode(vcpu)) {
  441. int index;
  442. index = __find_msr_index(vcpu, MSR_SYSCALL_MASK);
  443. if (index >= 0)
  444. move_msr_up(vcpu, index, save_nmsrs++);
  445. index = __find_msr_index(vcpu, MSR_LSTAR);
  446. if (index >= 0)
  447. move_msr_up(vcpu, index, save_nmsrs++);
  448. index = __find_msr_index(vcpu, MSR_CSTAR);
  449. if (index >= 0)
  450. move_msr_up(vcpu, index, save_nmsrs++);
  451. index = __find_msr_index(vcpu, MSR_KERNEL_GS_BASE);
  452. if (index >= 0)
  453. move_msr_up(vcpu, index, save_nmsrs++);
  454. /*
  455. * MSR_K6_STAR is only needed on long mode guests, and only
  456. * if efer.sce is enabled.
  457. */
  458. index = __find_msr_index(vcpu, MSR_K6_STAR);
  459. if ((index >= 0) && (vcpu->shadow_efer & EFER_SCE))
  460. move_msr_up(vcpu, index, save_nmsrs++);
  461. }
  462. #endif
  463. vcpu->save_nmsrs = save_nmsrs;
  464. #ifdef CONFIG_X86_64
  465. vcpu->msr_offset_kernel_gs_base =
  466. __find_msr_index(vcpu, MSR_KERNEL_GS_BASE);
  467. #endif
  468. vcpu->msr_offset_efer = __find_msr_index(vcpu, MSR_EFER);
  469. }
  470. /*
  471. * reads and returns guest's timestamp counter "register"
  472. * guest_tsc = host_tsc + tsc_offset -- 21.3
  473. */
  474. static u64 guest_read_tsc(void)
  475. {
  476. u64 host_tsc, tsc_offset;
  477. rdtscll(host_tsc);
  478. tsc_offset = vmcs_read64(TSC_OFFSET);
  479. return host_tsc + tsc_offset;
  480. }
  481. /*
  482. * writes 'guest_tsc' into guest's timestamp counter "register"
  483. * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
  484. */
  485. static void guest_write_tsc(u64 guest_tsc)
  486. {
  487. u64 host_tsc;
  488. rdtscll(host_tsc);
  489. vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
  490. }
  491. /*
  492. * Reads an msr value (of 'msr_index') into 'pdata'.
  493. * Returns 0 on success, non-0 otherwise.
  494. * Assumes vcpu_load() was already called.
  495. */
  496. static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  497. {
  498. u64 data;
  499. struct vmx_msr_entry *msr;
  500. if (!pdata) {
  501. printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
  502. return -EINVAL;
  503. }
  504. switch (msr_index) {
  505. #ifdef CONFIG_X86_64
  506. case MSR_FS_BASE:
  507. data = vmcs_readl(GUEST_FS_BASE);
  508. break;
  509. case MSR_GS_BASE:
  510. data = vmcs_readl(GUEST_GS_BASE);
  511. break;
  512. case MSR_EFER:
  513. return kvm_get_msr_common(vcpu, msr_index, pdata);
  514. #endif
  515. case MSR_IA32_TIME_STAMP_COUNTER:
  516. data = guest_read_tsc();
  517. break;
  518. case MSR_IA32_SYSENTER_CS:
  519. data = vmcs_read32(GUEST_SYSENTER_CS);
  520. break;
  521. case MSR_IA32_SYSENTER_EIP:
  522. data = vmcs_readl(GUEST_SYSENTER_EIP);
  523. break;
  524. case MSR_IA32_SYSENTER_ESP:
  525. data = vmcs_readl(GUEST_SYSENTER_ESP);
  526. break;
  527. default:
  528. msr = find_msr_entry(vcpu, msr_index);
  529. if (msr) {
  530. data = msr->data;
  531. break;
  532. }
  533. return kvm_get_msr_common(vcpu, msr_index, pdata);
  534. }
  535. *pdata = data;
  536. return 0;
  537. }
  538. /*
  539. * Writes msr value into into the appropriate "register".
  540. * Returns 0 on success, non-0 otherwise.
  541. * Assumes vcpu_load() was already called.
  542. */
  543. static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  544. {
  545. struct vmx_msr_entry *msr;
  546. int ret = 0;
  547. switch (msr_index) {
  548. #ifdef CONFIG_X86_64
  549. case MSR_EFER:
  550. ret = kvm_set_msr_common(vcpu, msr_index, data);
  551. if (vcpu->vmx_host_state.loaded)
  552. load_transition_efer(vcpu);
  553. break;
  554. case MSR_FS_BASE:
  555. vmcs_writel(GUEST_FS_BASE, data);
  556. break;
  557. case MSR_GS_BASE:
  558. vmcs_writel(GUEST_GS_BASE, data);
  559. break;
  560. #endif
  561. case MSR_IA32_SYSENTER_CS:
  562. vmcs_write32(GUEST_SYSENTER_CS, data);
  563. break;
  564. case MSR_IA32_SYSENTER_EIP:
  565. vmcs_writel(GUEST_SYSENTER_EIP, data);
  566. break;
  567. case MSR_IA32_SYSENTER_ESP:
  568. vmcs_writel(GUEST_SYSENTER_ESP, data);
  569. break;
  570. case MSR_IA32_TIME_STAMP_COUNTER:
  571. guest_write_tsc(data);
  572. break;
  573. default:
  574. msr = find_msr_entry(vcpu, msr_index);
  575. if (msr) {
  576. msr->data = data;
  577. if (vcpu->vmx_host_state.loaded)
  578. load_msrs(vcpu->guest_msrs, vcpu->save_nmsrs);
  579. break;
  580. }
  581. ret = kvm_set_msr_common(vcpu, msr_index, data);
  582. }
  583. return ret;
  584. }
  585. /*
  586. * Sync the rsp and rip registers into the vcpu structure. This allows
  587. * registers to be accessed by indexing vcpu->regs.
  588. */
  589. static void vcpu_load_rsp_rip(struct kvm_vcpu *vcpu)
  590. {
  591. vcpu->regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
  592. vcpu->rip = vmcs_readl(GUEST_RIP);
  593. }
  594. /*
  595. * Syncs rsp and rip back into the vmcs. Should be called after possible
  596. * modification.
  597. */
  598. static void vcpu_put_rsp_rip(struct kvm_vcpu *vcpu)
  599. {
  600. vmcs_writel(GUEST_RSP, vcpu->regs[VCPU_REGS_RSP]);
  601. vmcs_writel(GUEST_RIP, vcpu->rip);
  602. }
  603. static int set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg)
  604. {
  605. unsigned long dr7 = 0x400;
  606. int old_singlestep;
  607. old_singlestep = vcpu->guest_debug.singlestep;
  608. vcpu->guest_debug.enabled = dbg->enabled;
  609. if (vcpu->guest_debug.enabled) {
  610. int i;
  611. dr7 |= 0x200; /* exact */
  612. for (i = 0; i < 4; ++i) {
  613. if (!dbg->breakpoints[i].enabled)
  614. continue;
  615. vcpu->guest_debug.bp[i] = dbg->breakpoints[i].address;
  616. dr7 |= 2 << (i*2); /* global enable */
  617. dr7 |= 0 << (i*4+16); /* execution breakpoint */
  618. }
  619. vcpu->guest_debug.singlestep = dbg->singlestep;
  620. } else
  621. vcpu->guest_debug.singlestep = 0;
  622. if (old_singlestep && !vcpu->guest_debug.singlestep) {
  623. unsigned long flags;
  624. flags = vmcs_readl(GUEST_RFLAGS);
  625. flags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  626. vmcs_writel(GUEST_RFLAGS, flags);
  627. }
  628. update_exception_bitmap(vcpu);
  629. vmcs_writel(GUEST_DR7, dr7);
  630. return 0;
  631. }
  632. static __init int cpu_has_kvm_support(void)
  633. {
  634. unsigned long ecx = cpuid_ecx(1);
  635. return test_bit(5, &ecx); /* CPUID.1:ECX.VMX[bit 5] -> VT */
  636. }
  637. static __init int vmx_disabled_by_bios(void)
  638. {
  639. u64 msr;
  640. rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
  641. return (msr & 5) == 1; /* locked but not enabled */
  642. }
  643. static void hardware_enable(void *garbage)
  644. {
  645. int cpu = raw_smp_processor_id();
  646. u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
  647. u64 old;
  648. rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
  649. if ((old & 5) != 5)
  650. /* enable and lock */
  651. wrmsrl(MSR_IA32_FEATURE_CONTROL, old | 5);
  652. write_cr4(read_cr4() | CR4_VMXE); /* FIXME: not cpu hotplug safe */
  653. asm volatile (ASM_VMX_VMXON_RAX : : "a"(&phys_addr), "m"(phys_addr)
  654. : "memory", "cc");
  655. }
  656. static void hardware_disable(void *garbage)
  657. {
  658. asm volatile (ASM_VMX_VMXOFF : : : "cc");
  659. }
  660. static __init void setup_vmcs_descriptor(void)
  661. {
  662. u32 vmx_msr_low, vmx_msr_high;
  663. rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
  664. vmcs_descriptor.size = vmx_msr_high & 0x1fff;
  665. vmcs_descriptor.order = get_order(vmcs_descriptor.size);
  666. vmcs_descriptor.revision_id = vmx_msr_low;
  667. }
  668. static struct vmcs *alloc_vmcs_cpu(int cpu)
  669. {
  670. int node = cpu_to_node(cpu);
  671. struct page *pages;
  672. struct vmcs *vmcs;
  673. pages = alloc_pages_node(node, GFP_KERNEL, vmcs_descriptor.order);
  674. if (!pages)
  675. return NULL;
  676. vmcs = page_address(pages);
  677. memset(vmcs, 0, vmcs_descriptor.size);
  678. vmcs->revision_id = vmcs_descriptor.revision_id; /* vmcs revision id */
  679. return vmcs;
  680. }
  681. static struct vmcs *alloc_vmcs(void)
  682. {
  683. return alloc_vmcs_cpu(raw_smp_processor_id());
  684. }
  685. static void free_vmcs(struct vmcs *vmcs)
  686. {
  687. free_pages((unsigned long)vmcs, vmcs_descriptor.order);
  688. }
  689. static void free_kvm_area(void)
  690. {
  691. int cpu;
  692. for_each_online_cpu(cpu)
  693. free_vmcs(per_cpu(vmxarea, cpu));
  694. }
  695. extern struct vmcs *alloc_vmcs_cpu(int cpu);
  696. static __init int alloc_kvm_area(void)
  697. {
  698. int cpu;
  699. for_each_online_cpu(cpu) {
  700. struct vmcs *vmcs;
  701. vmcs = alloc_vmcs_cpu(cpu);
  702. if (!vmcs) {
  703. free_kvm_area();
  704. return -ENOMEM;
  705. }
  706. per_cpu(vmxarea, cpu) = vmcs;
  707. }
  708. return 0;
  709. }
  710. static __init int hardware_setup(void)
  711. {
  712. setup_vmcs_descriptor();
  713. return alloc_kvm_area();
  714. }
  715. static __exit void hardware_unsetup(void)
  716. {
  717. free_kvm_area();
  718. }
  719. static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
  720. {
  721. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  722. if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
  723. vmcs_write16(sf->selector, save->selector);
  724. vmcs_writel(sf->base, save->base);
  725. vmcs_write32(sf->limit, save->limit);
  726. vmcs_write32(sf->ar_bytes, save->ar);
  727. } else {
  728. u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
  729. << AR_DPL_SHIFT;
  730. vmcs_write32(sf->ar_bytes, 0x93 | dpl);
  731. }
  732. }
  733. static void enter_pmode(struct kvm_vcpu *vcpu)
  734. {
  735. unsigned long flags;
  736. vcpu->rmode.active = 0;
  737. vmcs_writel(GUEST_TR_BASE, vcpu->rmode.tr.base);
  738. vmcs_write32(GUEST_TR_LIMIT, vcpu->rmode.tr.limit);
  739. vmcs_write32(GUEST_TR_AR_BYTES, vcpu->rmode.tr.ar);
  740. flags = vmcs_readl(GUEST_RFLAGS);
  741. flags &= ~(IOPL_MASK | X86_EFLAGS_VM);
  742. flags |= (vcpu->rmode.save_iopl << IOPL_SHIFT);
  743. vmcs_writel(GUEST_RFLAGS, flags);
  744. vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~CR4_VME_MASK) |
  745. (vmcs_readl(CR4_READ_SHADOW) & CR4_VME_MASK));
  746. update_exception_bitmap(vcpu);
  747. fix_pmode_dataseg(VCPU_SREG_ES, &vcpu->rmode.es);
  748. fix_pmode_dataseg(VCPU_SREG_DS, &vcpu->rmode.ds);
  749. fix_pmode_dataseg(VCPU_SREG_GS, &vcpu->rmode.gs);
  750. fix_pmode_dataseg(VCPU_SREG_FS, &vcpu->rmode.fs);
  751. vmcs_write16(GUEST_SS_SELECTOR, 0);
  752. vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
  753. vmcs_write16(GUEST_CS_SELECTOR,
  754. vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
  755. vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
  756. }
  757. static int rmode_tss_base(struct kvm* kvm)
  758. {
  759. gfn_t base_gfn = kvm->memslots[0].base_gfn + kvm->memslots[0].npages - 3;
  760. return base_gfn << PAGE_SHIFT;
  761. }
  762. static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
  763. {
  764. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  765. save->selector = vmcs_read16(sf->selector);
  766. save->base = vmcs_readl(sf->base);
  767. save->limit = vmcs_read32(sf->limit);
  768. save->ar = vmcs_read32(sf->ar_bytes);
  769. vmcs_write16(sf->selector, vmcs_readl(sf->base) >> 4);
  770. vmcs_write32(sf->limit, 0xffff);
  771. vmcs_write32(sf->ar_bytes, 0xf3);
  772. }
  773. static void enter_rmode(struct kvm_vcpu *vcpu)
  774. {
  775. unsigned long flags;
  776. vcpu->rmode.active = 1;
  777. vcpu->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
  778. vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
  779. vcpu->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
  780. vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
  781. vcpu->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
  782. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  783. flags = vmcs_readl(GUEST_RFLAGS);
  784. vcpu->rmode.save_iopl = (flags & IOPL_MASK) >> IOPL_SHIFT;
  785. flags |= IOPL_MASK | X86_EFLAGS_VM;
  786. vmcs_writel(GUEST_RFLAGS, flags);
  787. vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | CR4_VME_MASK);
  788. update_exception_bitmap(vcpu);
  789. vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
  790. vmcs_write32(GUEST_SS_LIMIT, 0xffff);
  791. vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
  792. vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
  793. vmcs_write32(GUEST_CS_LIMIT, 0xffff);
  794. if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
  795. vmcs_writel(GUEST_CS_BASE, 0xf0000);
  796. vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
  797. fix_rmode_seg(VCPU_SREG_ES, &vcpu->rmode.es);
  798. fix_rmode_seg(VCPU_SREG_DS, &vcpu->rmode.ds);
  799. fix_rmode_seg(VCPU_SREG_GS, &vcpu->rmode.gs);
  800. fix_rmode_seg(VCPU_SREG_FS, &vcpu->rmode.fs);
  801. }
  802. #ifdef CONFIG_X86_64
  803. static void enter_lmode(struct kvm_vcpu *vcpu)
  804. {
  805. u32 guest_tr_ar;
  806. guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
  807. if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
  808. printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
  809. __FUNCTION__);
  810. vmcs_write32(GUEST_TR_AR_BYTES,
  811. (guest_tr_ar & ~AR_TYPE_MASK)
  812. | AR_TYPE_BUSY_64_TSS);
  813. }
  814. vcpu->shadow_efer |= EFER_LMA;
  815. find_msr_entry(vcpu, MSR_EFER)->data |= EFER_LMA | EFER_LME;
  816. vmcs_write32(VM_ENTRY_CONTROLS,
  817. vmcs_read32(VM_ENTRY_CONTROLS)
  818. | VM_ENTRY_CONTROLS_IA32E_MASK);
  819. }
  820. static void exit_lmode(struct kvm_vcpu *vcpu)
  821. {
  822. vcpu->shadow_efer &= ~EFER_LMA;
  823. vmcs_write32(VM_ENTRY_CONTROLS,
  824. vmcs_read32(VM_ENTRY_CONTROLS)
  825. & ~VM_ENTRY_CONTROLS_IA32E_MASK);
  826. }
  827. #endif
  828. static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
  829. {
  830. vcpu->cr4 &= KVM_GUEST_CR4_MASK;
  831. vcpu->cr4 |= vmcs_readl(GUEST_CR4) & ~KVM_GUEST_CR4_MASK;
  832. }
  833. static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  834. {
  835. vmx_fpu_deactivate(vcpu);
  836. if (vcpu->rmode.active && (cr0 & CR0_PE_MASK))
  837. enter_pmode(vcpu);
  838. if (!vcpu->rmode.active && !(cr0 & CR0_PE_MASK))
  839. enter_rmode(vcpu);
  840. #ifdef CONFIG_X86_64
  841. if (vcpu->shadow_efer & EFER_LME) {
  842. if (!is_paging(vcpu) && (cr0 & CR0_PG_MASK))
  843. enter_lmode(vcpu);
  844. if (is_paging(vcpu) && !(cr0 & CR0_PG_MASK))
  845. exit_lmode(vcpu);
  846. }
  847. #endif
  848. vmcs_writel(CR0_READ_SHADOW, cr0);
  849. vmcs_writel(GUEST_CR0,
  850. (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON);
  851. vcpu->cr0 = cr0;
  852. if (!(cr0 & CR0_TS_MASK) || !(cr0 & CR0_PE_MASK))
  853. vmx_fpu_activate(vcpu);
  854. }
  855. static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  856. {
  857. vmcs_writel(GUEST_CR3, cr3);
  858. if (vcpu->cr0 & CR0_PE_MASK)
  859. vmx_fpu_deactivate(vcpu);
  860. }
  861. static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  862. {
  863. vmcs_writel(CR4_READ_SHADOW, cr4);
  864. vmcs_writel(GUEST_CR4, cr4 | (vcpu->rmode.active ?
  865. KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON));
  866. vcpu->cr4 = cr4;
  867. }
  868. #ifdef CONFIG_X86_64
  869. static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
  870. {
  871. struct vmx_msr_entry *msr = find_msr_entry(vcpu, MSR_EFER);
  872. vcpu->shadow_efer = efer;
  873. if (efer & EFER_LMA) {
  874. vmcs_write32(VM_ENTRY_CONTROLS,
  875. vmcs_read32(VM_ENTRY_CONTROLS) |
  876. VM_ENTRY_CONTROLS_IA32E_MASK);
  877. msr->data = efer;
  878. } else {
  879. vmcs_write32(VM_ENTRY_CONTROLS,
  880. vmcs_read32(VM_ENTRY_CONTROLS) &
  881. ~VM_ENTRY_CONTROLS_IA32E_MASK);
  882. msr->data = efer & ~EFER_LME;
  883. }
  884. setup_msrs(vcpu);
  885. }
  886. #endif
  887. static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
  888. {
  889. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  890. return vmcs_readl(sf->base);
  891. }
  892. static void vmx_get_segment(struct kvm_vcpu *vcpu,
  893. struct kvm_segment *var, int seg)
  894. {
  895. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  896. u32 ar;
  897. var->base = vmcs_readl(sf->base);
  898. var->limit = vmcs_read32(sf->limit);
  899. var->selector = vmcs_read16(sf->selector);
  900. ar = vmcs_read32(sf->ar_bytes);
  901. if (ar & AR_UNUSABLE_MASK)
  902. ar = 0;
  903. var->type = ar & 15;
  904. var->s = (ar >> 4) & 1;
  905. var->dpl = (ar >> 5) & 3;
  906. var->present = (ar >> 7) & 1;
  907. var->avl = (ar >> 12) & 1;
  908. var->l = (ar >> 13) & 1;
  909. var->db = (ar >> 14) & 1;
  910. var->g = (ar >> 15) & 1;
  911. var->unusable = (ar >> 16) & 1;
  912. }
  913. static u32 vmx_segment_access_rights(struct kvm_segment *var)
  914. {
  915. u32 ar;
  916. if (var->unusable)
  917. ar = 1 << 16;
  918. else {
  919. ar = var->type & 15;
  920. ar |= (var->s & 1) << 4;
  921. ar |= (var->dpl & 3) << 5;
  922. ar |= (var->present & 1) << 7;
  923. ar |= (var->avl & 1) << 12;
  924. ar |= (var->l & 1) << 13;
  925. ar |= (var->db & 1) << 14;
  926. ar |= (var->g & 1) << 15;
  927. }
  928. if (ar == 0) /* a 0 value means unusable */
  929. ar = AR_UNUSABLE_MASK;
  930. return ar;
  931. }
  932. static void vmx_set_segment(struct kvm_vcpu *vcpu,
  933. struct kvm_segment *var, int seg)
  934. {
  935. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  936. u32 ar;
  937. if (vcpu->rmode.active && seg == VCPU_SREG_TR) {
  938. vcpu->rmode.tr.selector = var->selector;
  939. vcpu->rmode.tr.base = var->base;
  940. vcpu->rmode.tr.limit = var->limit;
  941. vcpu->rmode.tr.ar = vmx_segment_access_rights(var);
  942. return;
  943. }
  944. vmcs_writel(sf->base, var->base);
  945. vmcs_write32(sf->limit, var->limit);
  946. vmcs_write16(sf->selector, var->selector);
  947. if (vcpu->rmode.active && var->s) {
  948. /*
  949. * Hack real-mode segments into vm86 compatibility.
  950. */
  951. if (var->base == 0xffff0000 && var->selector == 0xf000)
  952. vmcs_writel(sf->base, 0xf0000);
  953. ar = 0xf3;
  954. } else
  955. ar = vmx_segment_access_rights(var);
  956. vmcs_write32(sf->ar_bytes, ar);
  957. }
  958. static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  959. {
  960. u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
  961. *db = (ar >> 14) & 1;
  962. *l = (ar >> 13) & 1;
  963. }
  964. static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  965. {
  966. dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
  967. dt->base = vmcs_readl(GUEST_IDTR_BASE);
  968. }
  969. static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  970. {
  971. vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
  972. vmcs_writel(GUEST_IDTR_BASE, dt->base);
  973. }
  974. static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  975. {
  976. dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
  977. dt->base = vmcs_readl(GUEST_GDTR_BASE);
  978. }
  979. static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  980. {
  981. vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
  982. vmcs_writel(GUEST_GDTR_BASE, dt->base);
  983. }
  984. static int init_rmode_tss(struct kvm* kvm)
  985. {
  986. struct page *p1, *p2, *p3;
  987. gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
  988. char *page;
  989. p1 = gfn_to_page(kvm, fn++);
  990. p2 = gfn_to_page(kvm, fn++);
  991. p3 = gfn_to_page(kvm, fn);
  992. if (!p1 || !p2 || !p3) {
  993. kvm_printf(kvm,"%s: gfn_to_page failed\n", __FUNCTION__);
  994. return 0;
  995. }
  996. page = kmap_atomic(p1, KM_USER0);
  997. memset(page, 0, PAGE_SIZE);
  998. *(u16*)(page + 0x66) = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
  999. kunmap_atomic(page, KM_USER0);
  1000. page = kmap_atomic(p2, KM_USER0);
  1001. memset(page, 0, PAGE_SIZE);
  1002. kunmap_atomic(page, KM_USER0);
  1003. page = kmap_atomic(p3, KM_USER0);
  1004. memset(page, 0, PAGE_SIZE);
  1005. *(page + RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1) = ~0;
  1006. kunmap_atomic(page, KM_USER0);
  1007. return 1;
  1008. }
  1009. static void vmcs_write32_fixedbits(u32 msr, u32 vmcs_field, u32 val)
  1010. {
  1011. u32 msr_high, msr_low;
  1012. rdmsr(msr, msr_low, msr_high);
  1013. val &= msr_high;
  1014. val |= msr_low;
  1015. vmcs_write32(vmcs_field, val);
  1016. }
  1017. static void seg_setup(int seg)
  1018. {
  1019. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1020. vmcs_write16(sf->selector, 0);
  1021. vmcs_writel(sf->base, 0);
  1022. vmcs_write32(sf->limit, 0xffff);
  1023. vmcs_write32(sf->ar_bytes, 0x93);
  1024. }
  1025. /*
  1026. * Sets up the vmcs for emulated real mode.
  1027. */
  1028. static int vmx_vcpu_setup(struct kvm_vcpu *vcpu)
  1029. {
  1030. u32 host_sysenter_cs;
  1031. u32 junk;
  1032. unsigned long a;
  1033. struct descriptor_table dt;
  1034. int i;
  1035. int ret = 0;
  1036. unsigned long kvm_vmx_return;
  1037. if (!init_rmode_tss(vcpu->kvm)) {
  1038. ret = -ENOMEM;
  1039. goto out;
  1040. }
  1041. memset(vcpu->regs, 0, sizeof(vcpu->regs));
  1042. vcpu->regs[VCPU_REGS_RDX] = get_rdx_init_val();
  1043. vcpu->cr8 = 0;
  1044. vcpu->apic_base = 0xfee00000 |
  1045. /*for vcpu 0*/ MSR_IA32_APICBASE_BSP |
  1046. MSR_IA32_APICBASE_ENABLE;
  1047. fx_init(vcpu);
  1048. /*
  1049. * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
  1050. * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
  1051. */
  1052. vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
  1053. vmcs_writel(GUEST_CS_BASE, 0x000f0000);
  1054. vmcs_write32(GUEST_CS_LIMIT, 0xffff);
  1055. vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
  1056. seg_setup(VCPU_SREG_DS);
  1057. seg_setup(VCPU_SREG_ES);
  1058. seg_setup(VCPU_SREG_FS);
  1059. seg_setup(VCPU_SREG_GS);
  1060. seg_setup(VCPU_SREG_SS);
  1061. vmcs_write16(GUEST_TR_SELECTOR, 0);
  1062. vmcs_writel(GUEST_TR_BASE, 0);
  1063. vmcs_write32(GUEST_TR_LIMIT, 0xffff);
  1064. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  1065. vmcs_write16(GUEST_LDTR_SELECTOR, 0);
  1066. vmcs_writel(GUEST_LDTR_BASE, 0);
  1067. vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
  1068. vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
  1069. vmcs_write32(GUEST_SYSENTER_CS, 0);
  1070. vmcs_writel(GUEST_SYSENTER_ESP, 0);
  1071. vmcs_writel(GUEST_SYSENTER_EIP, 0);
  1072. vmcs_writel(GUEST_RFLAGS, 0x02);
  1073. vmcs_writel(GUEST_RIP, 0xfff0);
  1074. vmcs_writel(GUEST_RSP, 0);
  1075. //todo: dr0 = dr1 = dr2 = dr3 = 0; dr6 = 0xffff0ff0
  1076. vmcs_writel(GUEST_DR7, 0x400);
  1077. vmcs_writel(GUEST_GDTR_BASE, 0);
  1078. vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
  1079. vmcs_writel(GUEST_IDTR_BASE, 0);
  1080. vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
  1081. vmcs_write32(GUEST_ACTIVITY_STATE, 0);
  1082. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
  1083. vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
  1084. /* I/O */
  1085. vmcs_write64(IO_BITMAP_A, page_to_phys(vmx_io_bitmap_a));
  1086. vmcs_write64(IO_BITMAP_B, page_to_phys(vmx_io_bitmap_b));
  1087. guest_write_tsc(0);
  1088. vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
  1089. /* Special registers */
  1090. vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
  1091. /* Control */
  1092. vmcs_write32_fixedbits(MSR_IA32_VMX_PINBASED_CTLS,
  1093. PIN_BASED_VM_EXEC_CONTROL,
  1094. PIN_BASED_EXT_INTR_MASK /* 20.6.1 */
  1095. | PIN_BASED_NMI_EXITING /* 20.6.1 */
  1096. );
  1097. vmcs_write32_fixedbits(MSR_IA32_VMX_PROCBASED_CTLS,
  1098. CPU_BASED_VM_EXEC_CONTROL,
  1099. CPU_BASED_HLT_EXITING /* 20.6.2 */
  1100. | CPU_BASED_CR8_LOAD_EXITING /* 20.6.2 */
  1101. | CPU_BASED_CR8_STORE_EXITING /* 20.6.2 */
  1102. | CPU_BASED_ACTIVATE_IO_BITMAP /* 20.6.2 */
  1103. | CPU_BASED_MOV_DR_EXITING
  1104. | CPU_BASED_USE_TSC_OFFSETING /* 21.3 */
  1105. );
  1106. vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
  1107. vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
  1108. vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
  1109. vmcs_writel(HOST_CR0, read_cr0()); /* 22.2.3 */
  1110. vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
  1111. vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
  1112. vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
  1113. vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1114. vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1115. vmcs_write16(HOST_FS_SELECTOR, read_fs()); /* 22.2.4 */
  1116. vmcs_write16(HOST_GS_SELECTOR, read_gs()); /* 22.2.4 */
  1117. vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1118. #ifdef CONFIG_X86_64
  1119. rdmsrl(MSR_FS_BASE, a);
  1120. vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
  1121. rdmsrl(MSR_GS_BASE, a);
  1122. vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
  1123. #else
  1124. vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
  1125. vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
  1126. #endif
  1127. vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
  1128. get_idt(&dt);
  1129. vmcs_writel(HOST_IDTR_BASE, dt.base); /* 22.2.4 */
  1130. asm ("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return));
  1131. vmcs_writel(HOST_RIP, kvm_vmx_return); /* 22.2.5 */
  1132. vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
  1133. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
  1134. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
  1135. rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
  1136. vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
  1137. rdmsrl(MSR_IA32_SYSENTER_ESP, a);
  1138. vmcs_writel(HOST_IA32_SYSENTER_ESP, a); /* 22.2.3 */
  1139. rdmsrl(MSR_IA32_SYSENTER_EIP, a);
  1140. vmcs_writel(HOST_IA32_SYSENTER_EIP, a); /* 22.2.3 */
  1141. for (i = 0; i < NR_VMX_MSR; ++i) {
  1142. u32 index = vmx_msr_index[i];
  1143. u32 data_low, data_high;
  1144. u64 data;
  1145. int j = vcpu->nmsrs;
  1146. if (rdmsr_safe(index, &data_low, &data_high) < 0)
  1147. continue;
  1148. if (wrmsr_safe(index, data_low, data_high) < 0)
  1149. continue;
  1150. data = data_low | ((u64)data_high << 32);
  1151. vcpu->host_msrs[j].index = index;
  1152. vcpu->host_msrs[j].reserved = 0;
  1153. vcpu->host_msrs[j].data = data;
  1154. vcpu->guest_msrs[j] = vcpu->host_msrs[j];
  1155. ++vcpu->nmsrs;
  1156. }
  1157. setup_msrs(vcpu);
  1158. vmcs_write32_fixedbits(MSR_IA32_VMX_EXIT_CTLS, VM_EXIT_CONTROLS,
  1159. (HOST_IS_64 << 9)); /* 22.2,1, 20.7.1 */
  1160. /* 22.2.1, 20.8.1 */
  1161. vmcs_write32_fixedbits(MSR_IA32_VMX_ENTRY_CTLS,
  1162. VM_ENTRY_CONTROLS, 0);
  1163. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
  1164. #ifdef CONFIG_X86_64
  1165. vmcs_writel(VIRTUAL_APIC_PAGE_ADDR, 0);
  1166. vmcs_writel(TPR_THRESHOLD, 0);
  1167. #endif
  1168. vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
  1169. vmcs_writel(CR4_GUEST_HOST_MASK, KVM_GUEST_CR4_MASK);
  1170. vcpu->cr0 = 0x60000010;
  1171. vmx_set_cr0(vcpu, vcpu->cr0); // enter rmode
  1172. vmx_set_cr4(vcpu, 0);
  1173. #ifdef CONFIG_X86_64
  1174. vmx_set_efer(vcpu, 0);
  1175. #endif
  1176. vmx_fpu_activate(vcpu);
  1177. update_exception_bitmap(vcpu);
  1178. return 0;
  1179. out:
  1180. return ret;
  1181. }
  1182. static void inject_rmode_irq(struct kvm_vcpu *vcpu, int irq)
  1183. {
  1184. u16 ent[2];
  1185. u16 cs;
  1186. u16 ip;
  1187. unsigned long flags;
  1188. unsigned long ss_base = vmcs_readl(GUEST_SS_BASE);
  1189. u16 sp = vmcs_readl(GUEST_RSP);
  1190. u32 ss_limit = vmcs_read32(GUEST_SS_LIMIT);
  1191. if (sp > ss_limit || sp < 6 ) {
  1192. vcpu_printf(vcpu, "%s: #SS, rsp 0x%lx ss 0x%lx limit 0x%x\n",
  1193. __FUNCTION__,
  1194. vmcs_readl(GUEST_RSP),
  1195. vmcs_readl(GUEST_SS_BASE),
  1196. vmcs_read32(GUEST_SS_LIMIT));
  1197. return;
  1198. }
  1199. if (kvm_read_guest(vcpu, irq * sizeof(ent), sizeof(ent), &ent) !=
  1200. sizeof(ent)) {
  1201. vcpu_printf(vcpu, "%s: read guest err\n", __FUNCTION__);
  1202. return;
  1203. }
  1204. flags = vmcs_readl(GUEST_RFLAGS);
  1205. cs = vmcs_readl(GUEST_CS_BASE) >> 4;
  1206. ip = vmcs_readl(GUEST_RIP);
  1207. if (kvm_write_guest(vcpu, ss_base + sp - 2, 2, &flags) != 2 ||
  1208. kvm_write_guest(vcpu, ss_base + sp - 4, 2, &cs) != 2 ||
  1209. kvm_write_guest(vcpu, ss_base + sp - 6, 2, &ip) != 2) {
  1210. vcpu_printf(vcpu, "%s: write guest err\n", __FUNCTION__);
  1211. return;
  1212. }
  1213. vmcs_writel(GUEST_RFLAGS, flags &
  1214. ~( X86_EFLAGS_IF | X86_EFLAGS_AC | X86_EFLAGS_TF));
  1215. vmcs_write16(GUEST_CS_SELECTOR, ent[1]) ;
  1216. vmcs_writel(GUEST_CS_BASE, ent[1] << 4);
  1217. vmcs_writel(GUEST_RIP, ent[0]);
  1218. vmcs_writel(GUEST_RSP, (vmcs_readl(GUEST_RSP) & ~0xffff) | (sp - 6));
  1219. }
  1220. static void kvm_do_inject_irq(struct kvm_vcpu *vcpu)
  1221. {
  1222. int word_index = __ffs(vcpu->irq_summary);
  1223. int bit_index = __ffs(vcpu->irq_pending[word_index]);
  1224. int irq = word_index * BITS_PER_LONG + bit_index;
  1225. clear_bit(bit_index, &vcpu->irq_pending[word_index]);
  1226. if (!vcpu->irq_pending[word_index])
  1227. clear_bit(word_index, &vcpu->irq_summary);
  1228. if (vcpu->rmode.active) {
  1229. inject_rmode_irq(vcpu, irq);
  1230. return;
  1231. }
  1232. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  1233. irq | INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  1234. }
  1235. static void do_interrupt_requests(struct kvm_vcpu *vcpu,
  1236. struct kvm_run *kvm_run)
  1237. {
  1238. u32 cpu_based_vm_exec_control;
  1239. vcpu->interrupt_window_open =
  1240. ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
  1241. (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0);
  1242. if (vcpu->interrupt_window_open &&
  1243. vcpu->irq_summary &&
  1244. !(vmcs_read32(VM_ENTRY_INTR_INFO_FIELD) & INTR_INFO_VALID_MASK))
  1245. /*
  1246. * If interrupts enabled, and not blocked by sti or mov ss. Good.
  1247. */
  1248. kvm_do_inject_irq(vcpu);
  1249. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  1250. if (!vcpu->interrupt_window_open &&
  1251. (vcpu->irq_summary || kvm_run->request_interrupt_window))
  1252. /*
  1253. * Interrupts blocked. Wait for unblock.
  1254. */
  1255. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
  1256. else
  1257. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
  1258. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  1259. }
  1260. static void kvm_guest_debug_pre(struct kvm_vcpu *vcpu)
  1261. {
  1262. struct kvm_guest_debug *dbg = &vcpu->guest_debug;
  1263. set_debugreg(dbg->bp[0], 0);
  1264. set_debugreg(dbg->bp[1], 1);
  1265. set_debugreg(dbg->bp[2], 2);
  1266. set_debugreg(dbg->bp[3], 3);
  1267. if (dbg->singlestep) {
  1268. unsigned long flags;
  1269. flags = vmcs_readl(GUEST_RFLAGS);
  1270. flags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
  1271. vmcs_writel(GUEST_RFLAGS, flags);
  1272. }
  1273. }
  1274. static int handle_rmode_exception(struct kvm_vcpu *vcpu,
  1275. int vec, u32 err_code)
  1276. {
  1277. if (!vcpu->rmode.active)
  1278. return 0;
  1279. /*
  1280. * Instruction with address size override prefix opcode 0x67
  1281. * Cause the #SS fault with 0 error code in VM86 mode.
  1282. */
  1283. if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
  1284. if (emulate_instruction(vcpu, NULL, 0, 0) == EMULATE_DONE)
  1285. return 1;
  1286. return 0;
  1287. }
  1288. static int handle_exception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1289. {
  1290. u32 intr_info, error_code;
  1291. unsigned long cr2, rip;
  1292. u32 vect_info;
  1293. enum emulation_result er;
  1294. int r;
  1295. vect_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  1296. intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  1297. if ((vect_info & VECTORING_INFO_VALID_MASK) &&
  1298. !is_page_fault(intr_info)) {
  1299. printk(KERN_ERR "%s: unexpected, vectoring info 0x%x "
  1300. "intr info 0x%x\n", __FUNCTION__, vect_info, intr_info);
  1301. }
  1302. if (is_external_interrupt(vect_info)) {
  1303. int irq = vect_info & VECTORING_INFO_VECTOR_MASK;
  1304. set_bit(irq, vcpu->irq_pending);
  1305. set_bit(irq / BITS_PER_LONG, &vcpu->irq_summary);
  1306. }
  1307. if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200) { /* nmi */
  1308. asm ("int $2");
  1309. return 1;
  1310. }
  1311. if (is_no_device(intr_info)) {
  1312. vmx_fpu_activate(vcpu);
  1313. return 1;
  1314. }
  1315. error_code = 0;
  1316. rip = vmcs_readl(GUEST_RIP);
  1317. if (intr_info & INTR_INFO_DELIEVER_CODE_MASK)
  1318. error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
  1319. if (is_page_fault(intr_info)) {
  1320. cr2 = vmcs_readl(EXIT_QUALIFICATION);
  1321. spin_lock(&vcpu->kvm->lock);
  1322. r = kvm_mmu_page_fault(vcpu, cr2, error_code);
  1323. if (r < 0) {
  1324. spin_unlock(&vcpu->kvm->lock);
  1325. return r;
  1326. }
  1327. if (!r) {
  1328. spin_unlock(&vcpu->kvm->lock);
  1329. return 1;
  1330. }
  1331. er = emulate_instruction(vcpu, kvm_run, cr2, error_code);
  1332. spin_unlock(&vcpu->kvm->lock);
  1333. switch (er) {
  1334. case EMULATE_DONE:
  1335. return 1;
  1336. case EMULATE_DO_MMIO:
  1337. ++vcpu->stat.mmio_exits;
  1338. kvm_run->exit_reason = KVM_EXIT_MMIO;
  1339. return 0;
  1340. case EMULATE_FAIL:
  1341. vcpu_printf(vcpu, "%s: emulate fail\n", __FUNCTION__);
  1342. break;
  1343. default:
  1344. BUG();
  1345. }
  1346. }
  1347. if (vcpu->rmode.active &&
  1348. handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
  1349. error_code))
  1350. return 1;
  1351. if ((intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK)) == (INTR_TYPE_EXCEPTION | 1)) {
  1352. kvm_run->exit_reason = KVM_EXIT_DEBUG;
  1353. return 0;
  1354. }
  1355. kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
  1356. kvm_run->ex.exception = intr_info & INTR_INFO_VECTOR_MASK;
  1357. kvm_run->ex.error_code = error_code;
  1358. return 0;
  1359. }
  1360. static int handle_external_interrupt(struct kvm_vcpu *vcpu,
  1361. struct kvm_run *kvm_run)
  1362. {
  1363. ++vcpu->stat.irq_exits;
  1364. return 1;
  1365. }
  1366. static int handle_triple_fault(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1367. {
  1368. kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
  1369. return 0;
  1370. }
  1371. static int get_io_count(struct kvm_vcpu *vcpu, unsigned long *count)
  1372. {
  1373. u64 inst;
  1374. gva_t rip;
  1375. int countr_size;
  1376. int i, n;
  1377. if ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_VM)) {
  1378. countr_size = 2;
  1379. } else {
  1380. u32 cs_ar = vmcs_read32(GUEST_CS_AR_BYTES);
  1381. countr_size = (cs_ar & AR_L_MASK) ? 8:
  1382. (cs_ar & AR_DB_MASK) ? 4: 2;
  1383. }
  1384. rip = vmcs_readl(GUEST_RIP);
  1385. if (countr_size != 8)
  1386. rip += vmcs_readl(GUEST_CS_BASE);
  1387. n = kvm_read_guest(vcpu, rip, sizeof(inst), &inst);
  1388. for (i = 0; i < n; i++) {
  1389. switch (((u8*)&inst)[i]) {
  1390. case 0xf0:
  1391. case 0xf2:
  1392. case 0xf3:
  1393. case 0x2e:
  1394. case 0x36:
  1395. case 0x3e:
  1396. case 0x26:
  1397. case 0x64:
  1398. case 0x65:
  1399. case 0x66:
  1400. break;
  1401. case 0x67:
  1402. countr_size = (countr_size == 2) ? 4: (countr_size >> 1);
  1403. default:
  1404. goto done;
  1405. }
  1406. }
  1407. return 0;
  1408. done:
  1409. countr_size *= 8;
  1410. *count = vcpu->regs[VCPU_REGS_RCX] & (~0ULL >> (64 - countr_size));
  1411. //printk("cx: %lx\n", vcpu->regs[VCPU_REGS_RCX]);
  1412. return 1;
  1413. }
  1414. static int handle_io(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1415. {
  1416. u64 exit_qualification;
  1417. int size, down, in, string, rep;
  1418. unsigned port;
  1419. unsigned long count;
  1420. gva_t address;
  1421. ++vcpu->stat.io_exits;
  1422. exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
  1423. in = (exit_qualification & 8) != 0;
  1424. size = (exit_qualification & 7) + 1;
  1425. string = (exit_qualification & 16) != 0;
  1426. down = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_DF) != 0;
  1427. count = 1;
  1428. rep = (exit_qualification & 32) != 0;
  1429. port = exit_qualification >> 16;
  1430. address = 0;
  1431. if (string) {
  1432. if (rep && !get_io_count(vcpu, &count))
  1433. return 1;
  1434. address = vmcs_readl(GUEST_LINEAR_ADDRESS);
  1435. }
  1436. return kvm_setup_pio(vcpu, kvm_run, in, size, count, string, down,
  1437. address, rep, port);
  1438. }
  1439. static void
  1440. vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
  1441. {
  1442. /*
  1443. * Patch in the VMCALL instruction:
  1444. */
  1445. hypercall[0] = 0x0f;
  1446. hypercall[1] = 0x01;
  1447. hypercall[2] = 0xc1;
  1448. hypercall[3] = 0xc3;
  1449. }
  1450. static int handle_cr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1451. {
  1452. u64 exit_qualification;
  1453. int cr;
  1454. int reg;
  1455. exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
  1456. cr = exit_qualification & 15;
  1457. reg = (exit_qualification >> 8) & 15;
  1458. switch ((exit_qualification >> 4) & 3) {
  1459. case 0: /* mov to cr */
  1460. switch (cr) {
  1461. case 0:
  1462. vcpu_load_rsp_rip(vcpu);
  1463. set_cr0(vcpu, vcpu->regs[reg]);
  1464. skip_emulated_instruction(vcpu);
  1465. return 1;
  1466. case 3:
  1467. vcpu_load_rsp_rip(vcpu);
  1468. set_cr3(vcpu, vcpu->regs[reg]);
  1469. skip_emulated_instruction(vcpu);
  1470. return 1;
  1471. case 4:
  1472. vcpu_load_rsp_rip(vcpu);
  1473. set_cr4(vcpu, vcpu->regs[reg]);
  1474. skip_emulated_instruction(vcpu);
  1475. return 1;
  1476. case 8:
  1477. vcpu_load_rsp_rip(vcpu);
  1478. set_cr8(vcpu, vcpu->regs[reg]);
  1479. skip_emulated_instruction(vcpu);
  1480. return 1;
  1481. };
  1482. break;
  1483. case 2: /* clts */
  1484. vcpu_load_rsp_rip(vcpu);
  1485. vmx_fpu_deactivate(vcpu);
  1486. vcpu->cr0 &= ~CR0_TS_MASK;
  1487. vmcs_writel(CR0_READ_SHADOW, vcpu->cr0);
  1488. vmx_fpu_activate(vcpu);
  1489. skip_emulated_instruction(vcpu);
  1490. return 1;
  1491. case 1: /*mov from cr*/
  1492. switch (cr) {
  1493. case 3:
  1494. vcpu_load_rsp_rip(vcpu);
  1495. vcpu->regs[reg] = vcpu->cr3;
  1496. vcpu_put_rsp_rip(vcpu);
  1497. skip_emulated_instruction(vcpu);
  1498. return 1;
  1499. case 8:
  1500. vcpu_load_rsp_rip(vcpu);
  1501. vcpu->regs[reg] = vcpu->cr8;
  1502. vcpu_put_rsp_rip(vcpu);
  1503. skip_emulated_instruction(vcpu);
  1504. return 1;
  1505. }
  1506. break;
  1507. case 3: /* lmsw */
  1508. lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
  1509. skip_emulated_instruction(vcpu);
  1510. return 1;
  1511. default:
  1512. break;
  1513. }
  1514. kvm_run->exit_reason = 0;
  1515. printk(KERN_ERR "kvm: unhandled control register: op %d cr %d\n",
  1516. (int)(exit_qualification >> 4) & 3, cr);
  1517. return 0;
  1518. }
  1519. static int handle_dr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1520. {
  1521. u64 exit_qualification;
  1522. unsigned long val;
  1523. int dr, reg;
  1524. /*
  1525. * FIXME: this code assumes the host is debugging the guest.
  1526. * need to deal with guest debugging itself too.
  1527. */
  1528. exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
  1529. dr = exit_qualification & 7;
  1530. reg = (exit_qualification >> 8) & 15;
  1531. vcpu_load_rsp_rip(vcpu);
  1532. if (exit_qualification & 16) {
  1533. /* mov from dr */
  1534. switch (dr) {
  1535. case 6:
  1536. val = 0xffff0ff0;
  1537. break;
  1538. case 7:
  1539. val = 0x400;
  1540. break;
  1541. default:
  1542. val = 0;
  1543. }
  1544. vcpu->regs[reg] = val;
  1545. } else {
  1546. /* mov to dr */
  1547. }
  1548. vcpu_put_rsp_rip(vcpu);
  1549. skip_emulated_instruction(vcpu);
  1550. return 1;
  1551. }
  1552. static int handle_cpuid(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1553. {
  1554. kvm_emulate_cpuid(vcpu);
  1555. return 1;
  1556. }
  1557. static int handle_rdmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1558. {
  1559. u32 ecx = vcpu->regs[VCPU_REGS_RCX];
  1560. u64 data;
  1561. if (vmx_get_msr(vcpu, ecx, &data)) {
  1562. vmx_inject_gp(vcpu, 0);
  1563. return 1;
  1564. }
  1565. /* FIXME: handling of bits 32:63 of rax, rdx */
  1566. vcpu->regs[VCPU_REGS_RAX] = data & -1u;
  1567. vcpu->regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
  1568. skip_emulated_instruction(vcpu);
  1569. return 1;
  1570. }
  1571. static int handle_wrmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1572. {
  1573. u32 ecx = vcpu->regs[VCPU_REGS_RCX];
  1574. u64 data = (vcpu->regs[VCPU_REGS_RAX] & -1u)
  1575. | ((u64)(vcpu->regs[VCPU_REGS_RDX] & -1u) << 32);
  1576. if (vmx_set_msr(vcpu, ecx, data) != 0) {
  1577. vmx_inject_gp(vcpu, 0);
  1578. return 1;
  1579. }
  1580. skip_emulated_instruction(vcpu);
  1581. return 1;
  1582. }
  1583. static void post_kvm_run_save(struct kvm_vcpu *vcpu,
  1584. struct kvm_run *kvm_run)
  1585. {
  1586. kvm_run->if_flag = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) != 0;
  1587. kvm_run->cr8 = vcpu->cr8;
  1588. kvm_run->apic_base = vcpu->apic_base;
  1589. kvm_run->ready_for_interrupt_injection = (vcpu->interrupt_window_open &&
  1590. vcpu->irq_summary == 0);
  1591. }
  1592. static int handle_interrupt_window(struct kvm_vcpu *vcpu,
  1593. struct kvm_run *kvm_run)
  1594. {
  1595. /*
  1596. * If the user space waits to inject interrupts, exit as soon as
  1597. * possible
  1598. */
  1599. if (kvm_run->request_interrupt_window &&
  1600. !vcpu->irq_summary) {
  1601. kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
  1602. ++vcpu->stat.irq_window_exits;
  1603. return 0;
  1604. }
  1605. return 1;
  1606. }
  1607. static int handle_halt(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1608. {
  1609. skip_emulated_instruction(vcpu);
  1610. if (vcpu->irq_summary)
  1611. return 1;
  1612. kvm_run->exit_reason = KVM_EXIT_HLT;
  1613. ++vcpu->stat.halt_exits;
  1614. return 0;
  1615. }
  1616. static int handle_vmcall(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1617. {
  1618. skip_emulated_instruction(vcpu);
  1619. return kvm_hypercall(vcpu, kvm_run);
  1620. }
  1621. /*
  1622. * The exit handlers return 1 if the exit was handled fully and guest execution
  1623. * may resume. Otherwise they set the kvm_run parameter to indicate what needs
  1624. * to be done to userspace and return 0.
  1625. */
  1626. static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu,
  1627. struct kvm_run *kvm_run) = {
  1628. [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
  1629. [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
  1630. [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
  1631. [EXIT_REASON_IO_INSTRUCTION] = handle_io,
  1632. [EXIT_REASON_CR_ACCESS] = handle_cr,
  1633. [EXIT_REASON_DR_ACCESS] = handle_dr,
  1634. [EXIT_REASON_CPUID] = handle_cpuid,
  1635. [EXIT_REASON_MSR_READ] = handle_rdmsr,
  1636. [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
  1637. [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
  1638. [EXIT_REASON_HLT] = handle_halt,
  1639. [EXIT_REASON_VMCALL] = handle_vmcall,
  1640. };
  1641. static const int kvm_vmx_max_exit_handlers =
  1642. ARRAY_SIZE(kvm_vmx_exit_handlers);
  1643. /*
  1644. * The guest has exited. See if we can fix it or if we need userspace
  1645. * assistance.
  1646. */
  1647. static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
  1648. {
  1649. u32 vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  1650. u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
  1651. if ( (vectoring_info & VECTORING_INFO_VALID_MASK) &&
  1652. exit_reason != EXIT_REASON_EXCEPTION_NMI )
  1653. printk(KERN_WARNING "%s: unexpected, valid vectoring info and "
  1654. "exit reason is 0x%x\n", __FUNCTION__, exit_reason);
  1655. if (exit_reason < kvm_vmx_max_exit_handlers
  1656. && kvm_vmx_exit_handlers[exit_reason])
  1657. return kvm_vmx_exit_handlers[exit_reason](vcpu, kvm_run);
  1658. else {
  1659. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  1660. kvm_run->hw.hardware_exit_reason = exit_reason;
  1661. }
  1662. return 0;
  1663. }
  1664. /*
  1665. * Check if userspace requested an interrupt window, and that the
  1666. * interrupt window is open.
  1667. *
  1668. * No need to exit to userspace if we already have an interrupt queued.
  1669. */
  1670. static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
  1671. struct kvm_run *kvm_run)
  1672. {
  1673. return (!vcpu->irq_summary &&
  1674. kvm_run->request_interrupt_window &&
  1675. vcpu->interrupt_window_open &&
  1676. (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF));
  1677. }
  1678. static int vmx_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1679. {
  1680. u8 fail;
  1681. int r;
  1682. preempted:
  1683. if (!vcpu->mmio_read_completed)
  1684. do_interrupt_requests(vcpu, kvm_run);
  1685. if (vcpu->guest_debug.enabled)
  1686. kvm_guest_debug_pre(vcpu);
  1687. again:
  1688. vmx_save_host_state(vcpu);
  1689. kvm_load_guest_fpu(vcpu);
  1690. r = kvm_mmu_reload(vcpu);
  1691. if (unlikely(r))
  1692. goto out;
  1693. /*
  1694. * Loading guest fpu may have cleared host cr0.ts
  1695. */
  1696. vmcs_writel(HOST_CR0, read_cr0());
  1697. asm (
  1698. /* Store host registers */
  1699. "pushf \n\t"
  1700. #ifdef CONFIG_X86_64
  1701. "push %%rax; push %%rbx; push %%rdx;"
  1702. "push %%rsi; push %%rdi; push %%rbp;"
  1703. "push %%r8; push %%r9; push %%r10; push %%r11;"
  1704. "push %%r12; push %%r13; push %%r14; push %%r15;"
  1705. "push %%rcx \n\t"
  1706. ASM_VMX_VMWRITE_RSP_RDX "\n\t"
  1707. #else
  1708. "pusha; push %%ecx \n\t"
  1709. ASM_VMX_VMWRITE_RSP_RDX "\n\t"
  1710. #endif
  1711. /* Check if vmlaunch of vmresume is needed */
  1712. "cmp $0, %1 \n\t"
  1713. /* Load guest registers. Don't clobber flags. */
  1714. #ifdef CONFIG_X86_64
  1715. "mov %c[cr2](%3), %%rax \n\t"
  1716. "mov %%rax, %%cr2 \n\t"
  1717. "mov %c[rax](%3), %%rax \n\t"
  1718. "mov %c[rbx](%3), %%rbx \n\t"
  1719. "mov %c[rdx](%3), %%rdx \n\t"
  1720. "mov %c[rsi](%3), %%rsi \n\t"
  1721. "mov %c[rdi](%3), %%rdi \n\t"
  1722. "mov %c[rbp](%3), %%rbp \n\t"
  1723. "mov %c[r8](%3), %%r8 \n\t"
  1724. "mov %c[r9](%3), %%r9 \n\t"
  1725. "mov %c[r10](%3), %%r10 \n\t"
  1726. "mov %c[r11](%3), %%r11 \n\t"
  1727. "mov %c[r12](%3), %%r12 \n\t"
  1728. "mov %c[r13](%3), %%r13 \n\t"
  1729. "mov %c[r14](%3), %%r14 \n\t"
  1730. "mov %c[r15](%3), %%r15 \n\t"
  1731. "mov %c[rcx](%3), %%rcx \n\t" /* kills %3 (rcx) */
  1732. #else
  1733. "mov %c[cr2](%3), %%eax \n\t"
  1734. "mov %%eax, %%cr2 \n\t"
  1735. "mov %c[rax](%3), %%eax \n\t"
  1736. "mov %c[rbx](%3), %%ebx \n\t"
  1737. "mov %c[rdx](%3), %%edx \n\t"
  1738. "mov %c[rsi](%3), %%esi \n\t"
  1739. "mov %c[rdi](%3), %%edi \n\t"
  1740. "mov %c[rbp](%3), %%ebp \n\t"
  1741. "mov %c[rcx](%3), %%ecx \n\t" /* kills %3 (ecx) */
  1742. #endif
  1743. /* Enter guest mode */
  1744. "jne .Llaunched \n\t"
  1745. ASM_VMX_VMLAUNCH "\n\t"
  1746. "jmp .Lkvm_vmx_return \n\t"
  1747. ".Llaunched: " ASM_VMX_VMRESUME "\n\t"
  1748. ".Lkvm_vmx_return: "
  1749. /* Save guest registers, load host registers, keep flags */
  1750. #ifdef CONFIG_X86_64
  1751. "xchg %3, (%%rsp) \n\t"
  1752. "mov %%rax, %c[rax](%3) \n\t"
  1753. "mov %%rbx, %c[rbx](%3) \n\t"
  1754. "pushq (%%rsp); popq %c[rcx](%3) \n\t"
  1755. "mov %%rdx, %c[rdx](%3) \n\t"
  1756. "mov %%rsi, %c[rsi](%3) \n\t"
  1757. "mov %%rdi, %c[rdi](%3) \n\t"
  1758. "mov %%rbp, %c[rbp](%3) \n\t"
  1759. "mov %%r8, %c[r8](%3) \n\t"
  1760. "mov %%r9, %c[r9](%3) \n\t"
  1761. "mov %%r10, %c[r10](%3) \n\t"
  1762. "mov %%r11, %c[r11](%3) \n\t"
  1763. "mov %%r12, %c[r12](%3) \n\t"
  1764. "mov %%r13, %c[r13](%3) \n\t"
  1765. "mov %%r14, %c[r14](%3) \n\t"
  1766. "mov %%r15, %c[r15](%3) \n\t"
  1767. "mov %%cr2, %%rax \n\t"
  1768. "mov %%rax, %c[cr2](%3) \n\t"
  1769. "mov (%%rsp), %3 \n\t"
  1770. "pop %%rcx; pop %%r15; pop %%r14; pop %%r13; pop %%r12;"
  1771. "pop %%r11; pop %%r10; pop %%r9; pop %%r8;"
  1772. "pop %%rbp; pop %%rdi; pop %%rsi;"
  1773. "pop %%rdx; pop %%rbx; pop %%rax \n\t"
  1774. #else
  1775. "xchg %3, (%%esp) \n\t"
  1776. "mov %%eax, %c[rax](%3) \n\t"
  1777. "mov %%ebx, %c[rbx](%3) \n\t"
  1778. "pushl (%%esp); popl %c[rcx](%3) \n\t"
  1779. "mov %%edx, %c[rdx](%3) \n\t"
  1780. "mov %%esi, %c[rsi](%3) \n\t"
  1781. "mov %%edi, %c[rdi](%3) \n\t"
  1782. "mov %%ebp, %c[rbp](%3) \n\t"
  1783. "mov %%cr2, %%eax \n\t"
  1784. "mov %%eax, %c[cr2](%3) \n\t"
  1785. "mov (%%esp), %3 \n\t"
  1786. "pop %%ecx; popa \n\t"
  1787. #endif
  1788. "setbe %0 \n\t"
  1789. "popf \n\t"
  1790. : "=q" (fail)
  1791. : "r"(vcpu->launched), "d"((unsigned long)HOST_RSP),
  1792. "c"(vcpu),
  1793. [rax]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RAX])),
  1794. [rbx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBX])),
  1795. [rcx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RCX])),
  1796. [rdx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDX])),
  1797. [rsi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RSI])),
  1798. [rdi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDI])),
  1799. [rbp]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBP])),
  1800. #ifdef CONFIG_X86_64
  1801. [r8 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R8 ])),
  1802. [r9 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R9 ])),
  1803. [r10]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R10])),
  1804. [r11]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R11])),
  1805. [r12]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R12])),
  1806. [r13]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R13])),
  1807. [r14]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R14])),
  1808. [r15]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R15])),
  1809. #endif
  1810. [cr2]"i"(offsetof(struct kvm_vcpu, cr2))
  1811. : "cc", "memory" );
  1812. ++vcpu->stat.exits;
  1813. vcpu->interrupt_window_open = (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0;
  1814. asm ("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
  1815. if (unlikely(fail)) {
  1816. kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
  1817. kvm_run->fail_entry.hardware_entry_failure_reason
  1818. = vmcs_read32(VM_INSTRUCTION_ERROR);
  1819. r = 0;
  1820. goto out;
  1821. }
  1822. /*
  1823. * Profile KVM exit RIPs:
  1824. */
  1825. if (unlikely(prof_on == KVM_PROFILING))
  1826. profile_hit(KVM_PROFILING, (void *)vmcs_readl(GUEST_RIP));
  1827. vcpu->launched = 1;
  1828. r = kvm_handle_exit(kvm_run, vcpu);
  1829. if (r > 0) {
  1830. /* Give scheduler a change to reschedule. */
  1831. if (signal_pending(current)) {
  1832. r = -EINTR;
  1833. kvm_run->exit_reason = KVM_EXIT_INTR;
  1834. ++vcpu->stat.signal_exits;
  1835. goto out;
  1836. }
  1837. if (dm_request_for_irq_injection(vcpu, kvm_run)) {
  1838. r = -EINTR;
  1839. kvm_run->exit_reason = KVM_EXIT_INTR;
  1840. ++vcpu->stat.request_irq_exits;
  1841. goto out;
  1842. }
  1843. if (!need_resched()) {
  1844. ++vcpu->stat.light_exits;
  1845. goto again;
  1846. }
  1847. }
  1848. out:
  1849. if (r > 0) {
  1850. kvm_resched(vcpu);
  1851. goto preempted;
  1852. }
  1853. post_kvm_run_save(vcpu, kvm_run);
  1854. return r;
  1855. }
  1856. static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
  1857. {
  1858. vmcs_writel(GUEST_CR3, vmcs_readl(GUEST_CR3));
  1859. }
  1860. static void vmx_inject_page_fault(struct kvm_vcpu *vcpu,
  1861. unsigned long addr,
  1862. u32 err_code)
  1863. {
  1864. u32 vect_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  1865. ++vcpu->stat.pf_guest;
  1866. if (is_page_fault(vect_info)) {
  1867. printk(KERN_DEBUG "inject_page_fault: "
  1868. "double fault 0x%lx @ 0x%lx\n",
  1869. addr, vmcs_readl(GUEST_RIP));
  1870. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, 0);
  1871. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  1872. DF_VECTOR |
  1873. INTR_TYPE_EXCEPTION |
  1874. INTR_INFO_DELIEVER_CODE_MASK |
  1875. INTR_INFO_VALID_MASK);
  1876. return;
  1877. }
  1878. vcpu->cr2 = addr;
  1879. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, err_code);
  1880. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  1881. PF_VECTOR |
  1882. INTR_TYPE_EXCEPTION |
  1883. INTR_INFO_DELIEVER_CODE_MASK |
  1884. INTR_INFO_VALID_MASK);
  1885. }
  1886. static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
  1887. {
  1888. if (vcpu->vmcs) {
  1889. on_each_cpu(__vcpu_clear, vcpu, 0, 1);
  1890. free_vmcs(vcpu->vmcs);
  1891. vcpu->vmcs = NULL;
  1892. }
  1893. }
  1894. static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
  1895. {
  1896. vmx_free_vmcs(vcpu);
  1897. }
  1898. static int vmx_create_vcpu(struct kvm_vcpu *vcpu)
  1899. {
  1900. struct vmcs *vmcs;
  1901. vcpu->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  1902. if (!vcpu->guest_msrs)
  1903. return -ENOMEM;
  1904. vcpu->host_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  1905. if (!vcpu->host_msrs)
  1906. goto out_free_guest_msrs;
  1907. vmcs = alloc_vmcs();
  1908. if (!vmcs)
  1909. goto out_free_msrs;
  1910. vmcs_clear(vmcs);
  1911. vcpu->vmcs = vmcs;
  1912. vcpu->launched = 0;
  1913. return 0;
  1914. out_free_msrs:
  1915. kfree(vcpu->host_msrs);
  1916. vcpu->host_msrs = NULL;
  1917. out_free_guest_msrs:
  1918. kfree(vcpu->guest_msrs);
  1919. vcpu->guest_msrs = NULL;
  1920. return -ENOMEM;
  1921. }
  1922. static struct kvm_arch_ops vmx_arch_ops = {
  1923. .cpu_has_kvm_support = cpu_has_kvm_support,
  1924. .disabled_by_bios = vmx_disabled_by_bios,
  1925. .hardware_setup = hardware_setup,
  1926. .hardware_unsetup = hardware_unsetup,
  1927. .hardware_enable = hardware_enable,
  1928. .hardware_disable = hardware_disable,
  1929. .vcpu_create = vmx_create_vcpu,
  1930. .vcpu_free = vmx_free_vcpu,
  1931. .vcpu_load = vmx_vcpu_load,
  1932. .vcpu_put = vmx_vcpu_put,
  1933. .vcpu_decache = vmx_vcpu_decache,
  1934. .set_guest_debug = set_guest_debug,
  1935. .get_msr = vmx_get_msr,
  1936. .set_msr = vmx_set_msr,
  1937. .get_segment_base = vmx_get_segment_base,
  1938. .get_segment = vmx_get_segment,
  1939. .set_segment = vmx_set_segment,
  1940. .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
  1941. .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
  1942. .set_cr0 = vmx_set_cr0,
  1943. .set_cr3 = vmx_set_cr3,
  1944. .set_cr4 = vmx_set_cr4,
  1945. #ifdef CONFIG_X86_64
  1946. .set_efer = vmx_set_efer,
  1947. #endif
  1948. .get_idt = vmx_get_idt,
  1949. .set_idt = vmx_set_idt,
  1950. .get_gdt = vmx_get_gdt,
  1951. .set_gdt = vmx_set_gdt,
  1952. .cache_regs = vcpu_load_rsp_rip,
  1953. .decache_regs = vcpu_put_rsp_rip,
  1954. .get_rflags = vmx_get_rflags,
  1955. .set_rflags = vmx_set_rflags,
  1956. .tlb_flush = vmx_flush_tlb,
  1957. .inject_page_fault = vmx_inject_page_fault,
  1958. .inject_gp = vmx_inject_gp,
  1959. .run = vmx_vcpu_run,
  1960. .skip_emulated_instruction = skip_emulated_instruction,
  1961. .vcpu_setup = vmx_vcpu_setup,
  1962. .patch_hypercall = vmx_patch_hypercall,
  1963. };
  1964. static int __init vmx_init(void)
  1965. {
  1966. void *iova;
  1967. int r;
  1968. vmx_io_bitmap_a = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
  1969. if (!vmx_io_bitmap_a)
  1970. return -ENOMEM;
  1971. vmx_io_bitmap_b = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
  1972. if (!vmx_io_bitmap_b) {
  1973. r = -ENOMEM;
  1974. goto out;
  1975. }
  1976. /*
  1977. * Allow direct access to the PC debug port (it is often used for I/O
  1978. * delays, but the vmexits simply slow things down).
  1979. */
  1980. iova = kmap(vmx_io_bitmap_a);
  1981. memset(iova, 0xff, PAGE_SIZE);
  1982. clear_bit(0x80, iova);
  1983. kunmap(vmx_io_bitmap_a);
  1984. iova = kmap(vmx_io_bitmap_b);
  1985. memset(iova, 0xff, PAGE_SIZE);
  1986. kunmap(vmx_io_bitmap_b);
  1987. r = kvm_init_arch(&vmx_arch_ops, THIS_MODULE);
  1988. if (r)
  1989. goto out1;
  1990. return 0;
  1991. out1:
  1992. __free_page(vmx_io_bitmap_b);
  1993. out:
  1994. __free_page(vmx_io_bitmap_a);
  1995. return r;
  1996. }
  1997. static void __exit vmx_exit(void)
  1998. {
  1999. __free_page(vmx_io_bitmap_b);
  2000. __free_page(vmx_io_bitmap_a);
  2001. kvm_exit_arch();
  2002. }
  2003. module_init(vmx_init)
  2004. module_exit(vmx_exit)