input.c 28 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166
  1. /*
  2. * The input core
  3. *
  4. * Copyright (c) 1999-2002 Vojtech Pavlik
  5. */
  6. /*
  7. * This program is free software; you can redistribute it and/or modify it
  8. * under the terms of the GNU General Public License version 2 as published by
  9. * the Free Software Foundation.
  10. */
  11. #include <linux/init.h>
  12. #include <linux/sched.h>
  13. #include <linux/smp_lock.h>
  14. #include <linux/input.h>
  15. #include <linux/module.h>
  16. #include <linux/random.h>
  17. #include <linux/major.h>
  18. #include <linux/proc_fs.h>
  19. #include <linux/seq_file.h>
  20. #include <linux/interrupt.h>
  21. #include <linux/poll.h>
  22. #include <linux/device.h>
  23. #include <linux/mutex.h>
  24. MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>");
  25. MODULE_DESCRIPTION("Input core");
  26. MODULE_LICENSE("GPL");
  27. #define INPUT_DEVICES 256
  28. static LIST_HEAD(input_dev_list);
  29. static LIST_HEAD(input_handler_list);
  30. static struct input_handler *input_table[8];
  31. /**
  32. * input_event() - report new input event
  33. * @handle: device that generated the event
  34. * @type: type of the event
  35. * @code: event code
  36. * @value: value of the event
  37. *
  38. * This function should be used by drivers implementing various input devices
  39. * See also input_inject_event()
  40. */
  41. void input_event(struct input_dev *dev, unsigned int type, unsigned int code, int value)
  42. {
  43. struct input_handle *handle;
  44. if (type > EV_MAX || !test_bit(type, dev->evbit))
  45. return;
  46. add_input_randomness(type, code, value);
  47. switch (type) {
  48. case EV_SYN:
  49. switch (code) {
  50. case SYN_CONFIG:
  51. if (dev->event)
  52. dev->event(dev, type, code, value);
  53. break;
  54. case SYN_REPORT:
  55. if (dev->sync)
  56. return;
  57. dev->sync = 1;
  58. break;
  59. }
  60. break;
  61. case EV_KEY:
  62. if (code > KEY_MAX || !test_bit(code, dev->keybit) || !!test_bit(code, dev->key) == value)
  63. return;
  64. if (value == 2)
  65. break;
  66. change_bit(code, dev->key);
  67. if (test_bit(EV_REP, dev->evbit) && dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] && dev->timer.data && value) {
  68. dev->repeat_key = code;
  69. mod_timer(&dev->timer, jiffies + msecs_to_jiffies(dev->rep[REP_DELAY]));
  70. }
  71. break;
  72. case EV_SW:
  73. if (code > SW_MAX || !test_bit(code, dev->swbit) || !!test_bit(code, dev->sw) == value)
  74. return;
  75. change_bit(code, dev->sw);
  76. break;
  77. case EV_ABS:
  78. if (code > ABS_MAX || !test_bit(code, dev->absbit))
  79. return;
  80. if (dev->absfuzz[code]) {
  81. if ((value > dev->abs[code] - (dev->absfuzz[code] >> 1)) &&
  82. (value < dev->abs[code] + (dev->absfuzz[code] >> 1)))
  83. return;
  84. if ((value > dev->abs[code] - dev->absfuzz[code]) &&
  85. (value < dev->abs[code] + dev->absfuzz[code]))
  86. value = (dev->abs[code] * 3 + value) >> 2;
  87. if ((value > dev->abs[code] - (dev->absfuzz[code] << 1)) &&
  88. (value < dev->abs[code] + (dev->absfuzz[code] << 1)))
  89. value = (dev->abs[code] + value) >> 1;
  90. }
  91. if (dev->abs[code] == value)
  92. return;
  93. dev->abs[code] = value;
  94. break;
  95. case EV_REL:
  96. if (code > REL_MAX || !test_bit(code, dev->relbit) || (value == 0))
  97. return;
  98. break;
  99. case EV_MSC:
  100. if (code > MSC_MAX || !test_bit(code, dev->mscbit))
  101. return;
  102. if (dev->event)
  103. dev->event(dev, type, code, value);
  104. break;
  105. case EV_LED:
  106. if (code > LED_MAX || !test_bit(code, dev->ledbit) || !!test_bit(code, dev->led) == value)
  107. return;
  108. change_bit(code, dev->led);
  109. if (dev->event)
  110. dev->event(dev, type, code, value);
  111. break;
  112. case EV_SND:
  113. if (code > SND_MAX || !test_bit(code, dev->sndbit))
  114. return;
  115. if (!!test_bit(code, dev->snd) != !!value)
  116. change_bit(code, dev->snd);
  117. if (dev->event)
  118. dev->event(dev, type, code, value);
  119. break;
  120. case EV_REP:
  121. if (code > REP_MAX || value < 0 || dev->rep[code] == value)
  122. return;
  123. dev->rep[code] = value;
  124. if (dev->event)
  125. dev->event(dev, type, code, value);
  126. break;
  127. case EV_FF:
  128. if (value < 0)
  129. return;
  130. if (dev->event)
  131. dev->event(dev, type, code, value);
  132. break;
  133. }
  134. if (type != EV_SYN)
  135. dev->sync = 0;
  136. if (dev->grab)
  137. dev->grab->handler->event(dev->grab, type, code, value);
  138. else
  139. list_for_each_entry(handle, &dev->h_list, d_node)
  140. if (handle->open)
  141. handle->handler->event(handle, type, code, value);
  142. }
  143. EXPORT_SYMBOL(input_event);
  144. /**
  145. * input_inject_event() - send input event from input handler
  146. * @handle: input handle to send event through
  147. * @type: type of the event
  148. * @code: event code
  149. * @value: value of the event
  150. *
  151. * Similar to input_event() but will ignore event if device is "grabbed" and handle
  152. * injecting event is not the one that owns the device.
  153. */
  154. void input_inject_event(struct input_handle *handle, unsigned int type, unsigned int code, int value)
  155. {
  156. if (!handle->dev->grab || handle->dev->grab == handle)
  157. input_event(handle->dev, type, code, value);
  158. }
  159. EXPORT_SYMBOL(input_inject_event);
  160. static void input_repeat_key(unsigned long data)
  161. {
  162. struct input_dev *dev = (void *) data;
  163. if (!test_bit(dev->repeat_key, dev->key))
  164. return;
  165. input_event(dev, EV_KEY, dev->repeat_key, 2);
  166. input_sync(dev);
  167. if (dev->rep[REP_PERIOD])
  168. mod_timer(&dev->timer, jiffies + msecs_to_jiffies(dev->rep[REP_PERIOD]));
  169. }
  170. int input_grab_device(struct input_handle *handle)
  171. {
  172. if (handle->dev->grab)
  173. return -EBUSY;
  174. handle->dev->grab = handle;
  175. return 0;
  176. }
  177. EXPORT_SYMBOL(input_grab_device);
  178. void input_release_device(struct input_handle *handle)
  179. {
  180. struct input_dev *dev = handle->dev;
  181. if (dev->grab == handle) {
  182. dev->grab = NULL;
  183. list_for_each_entry(handle, &dev->h_list, d_node)
  184. if (handle->handler->start)
  185. handle->handler->start(handle);
  186. }
  187. }
  188. EXPORT_SYMBOL(input_release_device);
  189. int input_open_device(struct input_handle *handle)
  190. {
  191. struct input_dev *dev = handle->dev;
  192. int err;
  193. err = mutex_lock_interruptible(&dev->mutex);
  194. if (err)
  195. return err;
  196. handle->open++;
  197. if (!dev->users++ && dev->open)
  198. err = dev->open(dev);
  199. if (err)
  200. handle->open--;
  201. mutex_unlock(&dev->mutex);
  202. return err;
  203. }
  204. EXPORT_SYMBOL(input_open_device);
  205. int input_flush_device(struct input_handle* handle, struct file* file)
  206. {
  207. if (handle->dev->flush)
  208. return handle->dev->flush(handle->dev, file);
  209. return 0;
  210. }
  211. EXPORT_SYMBOL(input_flush_device);
  212. void input_close_device(struct input_handle *handle)
  213. {
  214. struct input_dev *dev = handle->dev;
  215. input_release_device(handle);
  216. mutex_lock(&dev->mutex);
  217. if (!--dev->users && dev->close)
  218. dev->close(dev);
  219. handle->open--;
  220. mutex_unlock(&dev->mutex);
  221. }
  222. EXPORT_SYMBOL(input_close_device);
  223. static void input_link_handle(struct input_handle *handle)
  224. {
  225. list_add_tail(&handle->d_node, &handle->dev->h_list);
  226. list_add_tail(&handle->h_node, &handle->handler->h_list);
  227. }
  228. #define MATCH_BIT(bit, max) \
  229. for (i = 0; i < NBITS(max); i++) \
  230. if ((id->bit[i] & dev->bit[i]) != id->bit[i]) \
  231. break; \
  232. if (i != NBITS(max)) \
  233. continue;
  234. static struct input_device_id *input_match_device(struct input_device_id *id, struct input_dev *dev)
  235. {
  236. int i;
  237. for (; id->flags || id->driver_info; id++) {
  238. if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)
  239. if (id->bustype != dev->id.bustype)
  240. continue;
  241. if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)
  242. if (id->vendor != dev->id.vendor)
  243. continue;
  244. if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)
  245. if (id->product != dev->id.product)
  246. continue;
  247. if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)
  248. if (id->version != dev->id.version)
  249. continue;
  250. MATCH_BIT(evbit, EV_MAX);
  251. MATCH_BIT(keybit, KEY_MAX);
  252. MATCH_BIT(relbit, REL_MAX);
  253. MATCH_BIT(absbit, ABS_MAX);
  254. MATCH_BIT(mscbit, MSC_MAX);
  255. MATCH_BIT(ledbit, LED_MAX);
  256. MATCH_BIT(sndbit, SND_MAX);
  257. MATCH_BIT(ffbit, FF_MAX);
  258. MATCH_BIT(swbit, SW_MAX);
  259. return id;
  260. }
  261. return NULL;
  262. }
  263. #ifdef CONFIG_PROC_FS
  264. static struct proc_dir_entry *proc_bus_input_dir;
  265. static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait);
  266. static int input_devices_state;
  267. static inline void input_wakeup_procfs_readers(void)
  268. {
  269. input_devices_state++;
  270. wake_up(&input_devices_poll_wait);
  271. }
  272. static unsigned int input_proc_devices_poll(struct file *file, poll_table *wait)
  273. {
  274. int state = input_devices_state;
  275. poll_wait(file, &input_devices_poll_wait, wait);
  276. if (state != input_devices_state)
  277. return POLLIN | POLLRDNORM;
  278. return 0;
  279. }
  280. static struct list_head *list_get_nth_element(struct list_head *list, loff_t *pos)
  281. {
  282. struct list_head *node;
  283. loff_t i = 0;
  284. list_for_each(node, list)
  285. if (i++ == *pos)
  286. return node;
  287. return NULL;
  288. }
  289. static struct list_head *list_get_next_element(struct list_head *list, struct list_head *element, loff_t *pos)
  290. {
  291. if (element->next == list)
  292. return NULL;
  293. ++(*pos);
  294. return element->next;
  295. }
  296. static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos)
  297. {
  298. /* acquire lock here ... Yes, we do need locking, I knowi, I know... */
  299. return list_get_nth_element(&input_dev_list, pos);
  300. }
  301. static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  302. {
  303. return list_get_next_element(&input_dev_list, v, pos);
  304. }
  305. static void input_devices_seq_stop(struct seq_file *seq, void *v)
  306. {
  307. /* release lock here */
  308. }
  309. static void input_seq_print_bitmap(struct seq_file *seq, const char *name,
  310. unsigned long *bitmap, int max)
  311. {
  312. int i;
  313. for (i = NBITS(max) - 1; i > 0; i--)
  314. if (bitmap[i])
  315. break;
  316. seq_printf(seq, "B: %s=", name);
  317. for (; i >= 0; i--)
  318. seq_printf(seq, "%lx%s", bitmap[i], i > 0 ? " " : "");
  319. seq_putc(seq, '\n');
  320. }
  321. static int input_devices_seq_show(struct seq_file *seq, void *v)
  322. {
  323. struct input_dev *dev = container_of(v, struct input_dev, node);
  324. const char *path = kobject_get_path(&dev->cdev.kobj, GFP_KERNEL);
  325. struct input_handle *handle;
  326. seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
  327. dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version);
  328. seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : "");
  329. seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : "");
  330. seq_printf(seq, "S: Sysfs=%s\n", path ? path : "");
  331. seq_printf(seq, "H: Handlers=");
  332. list_for_each_entry(handle, &dev->h_list, d_node)
  333. seq_printf(seq, "%s ", handle->name);
  334. seq_putc(seq, '\n');
  335. input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX);
  336. if (test_bit(EV_KEY, dev->evbit))
  337. input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX);
  338. if (test_bit(EV_REL, dev->evbit))
  339. input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX);
  340. if (test_bit(EV_ABS, dev->evbit))
  341. input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX);
  342. if (test_bit(EV_MSC, dev->evbit))
  343. input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX);
  344. if (test_bit(EV_LED, dev->evbit))
  345. input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX);
  346. if (test_bit(EV_SND, dev->evbit))
  347. input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX);
  348. if (test_bit(EV_FF, dev->evbit))
  349. input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX);
  350. if (test_bit(EV_SW, dev->evbit))
  351. input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX);
  352. seq_putc(seq, '\n');
  353. kfree(path);
  354. return 0;
  355. }
  356. static struct seq_operations input_devices_seq_ops = {
  357. .start = input_devices_seq_start,
  358. .next = input_devices_seq_next,
  359. .stop = input_devices_seq_stop,
  360. .show = input_devices_seq_show,
  361. };
  362. static int input_proc_devices_open(struct inode *inode, struct file *file)
  363. {
  364. return seq_open(file, &input_devices_seq_ops);
  365. }
  366. static struct file_operations input_devices_fileops = {
  367. .owner = THIS_MODULE,
  368. .open = input_proc_devices_open,
  369. .poll = input_proc_devices_poll,
  370. .read = seq_read,
  371. .llseek = seq_lseek,
  372. .release = seq_release,
  373. };
  374. static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos)
  375. {
  376. /* acquire lock here ... Yes, we do need locking, I knowi, I know... */
  377. seq->private = (void *)(unsigned long)*pos;
  378. return list_get_nth_element(&input_handler_list, pos);
  379. }
  380. static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  381. {
  382. seq->private = (void *)(unsigned long)(*pos + 1);
  383. return list_get_next_element(&input_handler_list, v, pos);
  384. }
  385. static void input_handlers_seq_stop(struct seq_file *seq, void *v)
  386. {
  387. /* release lock here */
  388. }
  389. static int input_handlers_seq_show(struct seq_file *seq, void *v)
  390. {
  391. struct input_handler *handler = container_of(v, struct input_handler, node);
  392. seq_printf(seq, "N: Number=%ld Name=%s",
  393. (unsigned long)seq->private, handler->name);
  394. if (handler->fops)
  395. seq_printf(seq, " Minor=%d", handler->minor);
  396. seq_putc(seq, '\n');
  397. return 0;
  398. }
  399. static struct seq_operations input_handlers_seq_ops = {
  400. .start = input_handlers_seq_start,
  401. .next = input_handlers_seq_next,
  402. .stop = input_handlers_seq_stop,
  403. .show = input_handlers_seq_show,
  404. };
  405. static int input_proc_handlers_open(struct inode *inode, struct file *file)
  406. {
  407. return seq_open(file, &input_handlers_seq_ops);
  408. }
  409. static struct file_operations input_handlers_fileops = {
  410. .owner = THIS_MODULE,
  411. .open = input_proc_handlers_open,
  412. .read = seq_read,
  413. .llseek = seq_lseek,
  414. .release = seq_release,
  415. };
  416. static int __init input_proc_init(void)
  417. {
  418. struct proc_dir_entry *entry;
  419. proc_bus_input_dir = proc_mkdir("input", proc_bus);
  420. if (!proc_bus_input_dir)
  421. return -ENOMEM;
  422. proc_bus_input_dir->owner = THIS_MODULE;
  423. entry = create_proc_entry("devices", 0, proc_bus_input_dir);
  424. if (!entry)
  425. goto fail1;
  426. entry->owner = THIS_MODULE;
  427. entry->proc_fops = &input_devices_fileops;
  428. entry = create_proc_entry("handlers", 0, proc_bus_input_dir);
  429. if (!entry)
  430. goto fail2;
  431. entry->owner = THIS_MODULE;
  432. entry->proc_fops = &input_handlers_fileops;
  433. return 0;
  434. fail2: remove_proc_entry("devices", proc_bus_input_dir);
  435. fail1: remove_proc_entry("input", proc_bus);
  436. return -ENOMEM;
  437. }
  438. static void input_proc_exit(void)
  439. {
  440. remove_proc_entry("devices", proc_bus_input_dir);
  441. remove_proc_entry("handlers", proc_bus_input_dir);
  442. remove_proc_entry("input", proc_bus);
  443. }
  444. #else /* !CONFIG_PROC_FS */
  445. static inline void input_wakeup_procfs_readers(void) { }
  446. static inline int input_proc_init(void) { return 0; }
  447. static inline void input_proc_exit(void) { }
  448. #endif
  449. #define INPUT_DEV_STRING_ATTR_SHOW(name) \
  450. static ssize_t input_dev_show_##name(struct class_device *dev, char *buf) \
  451. { \
  452. struct input_dev *input_dev = to_input_dev(dev); \
  453. int retval; \
  454. \
  455. retval = mutex_lock_interruptible(&input_dev->mutex); \
  456. if (retval) \
  457. return retval; \
  458. \
  459. retval = scnprintf(buf, PAGE_SIZE, \
  460. "%s\n", input_dev->name ? input_dev->name : ""); \
  461. \
  462. mutex_unlock(&input_dev->mutex); \
  463. \
  464. return retval; \
  465. } \
  466. static CLASS_DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL);
  467. INPUT_DEV_STRING_ATTR_SHOW(name);
  468. INPUT_DEV_STRING_ATTR_SHOW(phys);
  469. INPUT_DEV_STRING_ATTR_SHOW(uniq);
  470. static int input_print_modalias_bits(char *buf, int size,
  471. char name, unsigned long *bm,
  472. unsigned int min_bit, unsigned int max_bit)
  473. {
  474. int len = 0, i;
  475. len += snprintf(buf, max(size, 0), "%c", name);
  476. for (i = min_bit; i < max_bit; i++)
  477. if (bm[LONG(i)] & BIT(i))
  478. len += snprintf(buf + len, max(size - len, 0), "%X,", i);
  479. return len;
  480. }
  481. static int input_print_modalias(char *buf, int size, struct input_dev *id,
  482. int add_cr)
  483. {
  484. int len;
  485. len = snprintf(buf, max(size, 0),
  486. "input:b%04Xv%04Xp%04Xe%04X-",
  487. id->id.bustype, id->id.vendor,
  488. id->id.product, id->id.version);
  489. len += input_print_modalias_bits(buf + len, size - len,
  490. 'e', id->evbit, 0, EV_MAX);
  491. len += input_print_modalias_bits(buf + len, size - len,
  492. 'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX);
  493. len += input_print_modalias_bits(buf + len, size - len,
  494. 'r', id->relbit, 0, REL_MAX);
  495. len += input_print_modalias_bits(buf + len, size - len,
  496. 'a', id->absbit, 0, ABS_MAX);
  497. len += input_print_modalias_bits(buf + len, size - len,
  498. 'm', id->mscbit, 0, MSC_MAX);
  499. len += input_print_modalias_bits(buf + len, size - len,
  500. 'l', id->ledbit, 0, LED_MAX);
  501. len += input_print_modalias_bits(buf + len, size - len,
  502. 's', id->sndbit, 0, SND_MAX);
  503. len += input_print_modalias_bits(buf + len, size - len,
  504. 'f', id->ffbit, 0, FF_MAX);
  505. len += input_print_modalias_bits(buf + len, size - len,
  506. 'w', id->swbit, 0, SW_MAX);
  507. if (add_cr)
  508. len += snprintf(buf + len, max(size - len, 0), "\n");
  509. return len;
  510. }
  511. static ssize_t input_dev_show_modalias(struct class_device *dev, char *buf)
  512. {
  513. struct input_dev *id = to_input_dev(dev);
  514. ssize_t len;
  515. len = input_print_modalias(buf, PAGE_SIZE, id, 1);
  516. return min_t(int, len, PAGE_SIZE);
  517. }
  518. static CLASS_DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL);
  519. static struct attribute *input_dev_attrs[] = {
  520. &class_device_attr_name.attr,
  521. &class_device_attr_phys.attr,
  522. &class_device_attr_uniq.attr,
  523. &class_device_attr_modalias.attr,
  524. NULL
  525. };
  526. static struct attribute_group input_dev_attr_group = {
  527. .attrs = input_dev_attrs,
  528. };
  529. #define INPUT_DEV_ID_ATTR(name) \
  530. static ssize_t input_dev_show_id_##name(struct class_device *dev, char *buf) \
  531. { \
  532. struct input_dev *input_dev = to_input_dev(dev); \
  533. return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name); \
  534. } \
  535. static CLASS_DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL);
  536. INPUT_DEV_ID_ATTR(bustype);
  537. INPUT_DEV_ID_ATTR(vendor);
  538. INPUT_DEV_ID_ATTR(product);
  539. INPUT_DEV_ID_ATTR(version);
  540. static struct attribute *input_dev_id_attrs[] = {
  541. &class_device_attr_bustype.attr,
  542. &class_device_attr_vendor.attr,
  543. &class_device_attr_product.attr,
  544. &class_device_attr_version.attr,
  545. NULL
  546. };
  547. static struct attribute_group input_dev_id_attr_group = {
  548. .name = "id",
  549. .attrs = input_dev_id_attrs,
  550. };
  551. static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
  552. int max, int add_cr)
  553. {
  554. int i;
  555. int len = 0;
  556. for (i = NBITS(max) - 1; i > 0; i--)
  557. if (bitmap[i])
  558. break;
  559. for (; i >= 0; i--)
  560. len += snprintf(buf + len, max(buf_size - len, 0),
  561. "%lx%s", bitmap[i], i > 0 ? " " : "");
  562. if (add_cr)
  563. len += snprintf(buf + len, max(buf_size - len, 0), "\n");
  564. return len;
  565. }
  566. #define INPUT_DEV_CAP_ATTR(ev, bm) \
  567. static ssize_t input_dev_show_cap_##bm(struct class_device *dev, char *buf) \
  568. { \
  569. struct input_dev *input_dev = to_input_dev(dev); \
  570. int len = input_print_bitmap(buf, PAGE_SIZE, \
  571. input_dev->bm##bit, ev##_MAX, 1); \
  572. return min_t(int, len, PAGE_SIZE); \
  573. } \
  574. static CLASS_DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL);
  575. INPUT_DEV_CAP_ATTR(EV, ev);
  576. INPUT_DEV_CAP_ATTR(KEY, key);
  577. INPUT_DEV_CAP_ATTR(REL, rel);
  578. INPUT_DEV_CAP_ATTR(ABS, abs);
  579. INPUT_DEV_CAP_ATTR(MSC, msc);
  580. INPUT_DEV_CAP_ATTR(LED, led);
  581. INPUT_DEV_CAP_ATTR(SND, snd);
  582. INPUT_DEV_CAP_ATTR(FF, ff);
  583. INPUT_DEV_CAP_ATTR(SW, sw);
  584. static struct attribute *input_dev_caps_attrs[] = {
  585. &class_device_attr_ev.attr,
  586. &class_device_attr_key.attr,
  587. &class_device_attr_rel.attr,
  588. &class_device_attr_abs.attr,
  589. &class_device_attr_msc.attr,
  590. &class_device_attr_led.attr,
  591. &class_device_attr_snd.attr,
  592. &class_device_attr_ff.attr,
  593. &class_device_attr_sw.attr,
  594. NULL
  595. };
  596. static struct attribute_group input_dev_caps_attr_group = {
  597. .name = "capabilities",
  598. .attrs = input_dev_caps_attrs,
  599. };
  600. static void input_dev_release(struct class_device *class_dev)
  601. {
  602. struct input_dev *dev = to_input_dev(class_dev);
  603. input_ff_destroy(dev);
  604. kfree(dev);
  605. module_put(THIS_MODULE);
  606. }
  607. /*
  608. * Input uevent interface - loading event handlers based on
  609. * device bitfields.
  610. */
  611. static int input_add_uevent_bm_var(char **envp, int num_envp, int *cur_index,
  612. char *buffer, int buffer_size, int *cur_len,
  613. const char *name, unsigned long *bitmap, int max)
  614. {
  615. if (*cur_index >= num_envp - 1)
  616. return -ENOMEM;
  617. envp[*cur_index] = buffer + *cur_len;
  618. *cur_len += snprintf(buffer + *cur_len, max(buffer_size - *cur_len, 0), name);
  619. if (*cur_len >= buffer_size)
  620. return -ENOMEM;
  621. *cur_len += input_print_bitmap(buffer + *cur_len,
  622. max(buffer_size - *cur_len, 0),
  623. bitmap, max, 0) + 1;
  624. if (*cur_len > buffer_size)
  625. return -ENOMEM;
  626. (*cur_index)++;
  627. return 0;
  628. }
  629. static int input_add_uevent_modalias_var(char **envp, int num_envp, int *cur_index,
  630. char *buffer, int buffer_size, int *cur_len,
  631. struct input_dev *dev)
  632. {
  633. if (*cur_index >= num_envp - 1)
  634. return -ENOMEM;
  635. envp[*cur_index] = buffer + *cur_len;
  636. *cur_len += snprintf(buffer + *cur_len, max(buffer_size - *cur_len, 0),
  637. "MODALIAS=");
  638. if (*cur_len >= buffer_size)
  639. return -ENOMEM;
  640. *cur_len += input_print_modalias(buffer + *cur_len,
  641. max(buffer_size - *cur_len, 0),
  642. dev, 0) + 1;
  643. if (*cur_len > buffer_size)
  644. return -ENOMEM;
  645. (*cur_index)++;
  646. return 0;
  647. }
  648. #define INPUT_ADD_HOTPLUG_VAR(fmt, val...) \
  649. do { \
  650. int err = add_uevent_var(envp, num_envp, &i, \
  651. buffer, buffer_size, &len, \
  652. fmt, val); \
  653. if (err) \
  654. return err; \
  655. } while (0)
  656. #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max) \
  657. do { \
  658. int err = input_add_uevent_bm_var(envp, num_envp, &i, \
  659. buffer, buffer_size, &len, \
  660. name, bm, max); \
  661. if (err) \
  662. return err; \
  663. } while (0)
  664. #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev) \
  665. do { \
  666. int err = input_add_uevent_modalias_var(envp, \
  667. num_envp, &i, \
  668. buffer, buffer_size, &len, \
  669. dev); \
  670. if (err) \
  671. return err; \
  672. } while (0)
  673. static int input_dev_uevent(struct class_device *cdev, char **envp,
  674. int num_envp, char *buffer, int buffer_size)
  675. {
  676. struct input_dev *dev = to_input_dev(cdev);
  677. int i = 0;
  678. int len = 0;
  679. INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
  680. dev->id.bustype, dev->id.vendor,
  681. dev->id.product, dev->id.version);
  682. if (dev->name)
  683. INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name);
  684. if (dev->phys)
  685. INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys);
  686. if (dev->uniq)
  687. INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq);
  688. INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX);
  689. if (test_bit(EV_KEY, dev->evbit))
  690. INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX);
  691. if (test_bit(EV_REL, dev->evbit))
  692. INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX);
  693. if (test_bit(EV_ABS, dev->evbit))
  694. INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX);
  695. if (test_bit(EV_MSC, dev->evbit))
  696. INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX);
  697. if (test_bit(EV_LED, dev->evbit))
  698. INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX);
  699. if (test_bit(EV_SND, dev->evbit))
  700. INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX);
  701. if (test_bit(EV_FF, dev->evbit))
  702. INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX);
  703. if (test_bit(EV_SW, dev->evbit))
  704. INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX);
  705. INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev);
  706. envp[i] = NULL;
  707. return 0;
  708. }
  709. struct class input_class = {
  710. .name = "input",
  711. .release = input_dev_release,
  712. .uevent = input_dev_uevent,
  713. };
  714. EXPORT_SYMBOL_GPL(input_class);
  715. struct input_dev *input_allocate_device(void)
  716. {
  717. struct input_dev *dev;
  718. dev = kzalloc(sizeof(struct input_dev), GFP_KERNEL);
  719. if (dev) {
  720. dev->dynalloc = 1;
  721. dev->cdev.class = &input_class;
  722. class_device_initialize(&dev->cdev);
  723. mutex_init(&dev->mutex);
  724. INIT_LIST_HEAD(&dev->h_list);
  725. INIT_LIST_HEAD(&dev->node);
  726. }
  727. return dev;
  728. }
  729. EXPORT_SYMBOL(input_allocate_device);
  730. void input_free_device(struct input_dev *dev)
  731. {
  732. if (dev) {
  733. mutex_lock(&dev->mutex);
  734. dev->name = dev->phys = dev->uniq = NULL;
  735. mutex_unlock(&dev->mutex);
  736. input_put_device(dev);
  737. }
  738. }
  739. EXPORT_SYMBOL(input_free_device);
  740. int input_register_device(struct input_dev *dev)
  741. {
  742. static atomic_t input_no = ATOMIC_INIT(0);
  743. struct input_handle *handle;
  744. struct input_handler *handler;
  745. struct input_device_id *id;
  746. const char *path;
  747. int error;
  748. if (!dev->dynalloc) {
  749. printk(KERN_WARNING "input: device %s is statically allocated, will not register\n"
  750. "Please convert to input_allocate_device() or contact dtor_core@ameritech.net\n",
  751. dev->name ? dev->name : "<Unknown>");
  752. return -EINVAL;
  753. }
  754. set_bit(EV_SYN, dev->evbit);
  755. /*
  756. * If delay and period are pre-set by the driver, then autorepeating
  757. * is handled by the driver itself and we don't do it in input.c.
  758. */
  759. init_timer(&dev->timer);
  760. if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD]) {
  761. dev->timer.data = (long) dev;
  762. dev->timer.function = input_repeat_key;
  763. dev->rep[REP_DELAY] = 250;
  764. dev->rep[REP_PERIOD] = 33;
  765. }
  766. INIT_LIST_HEAD(&dev->h_list);
  767. list_add_tail(&dev->node, &input_dev_list);
  768. dev->cdev.class = &input_class;
  769. snprintf(dev->cdev.class_id, sizeof(dev->cdev.class_id),
  770. "input%ld", (unsigned long) atomic_inc_return(&input_no) - 1);
  771. error = class_device_add(&dev->cdev);
  772. if (error)
  773. return error;
  774. error = sysfs_create_group(&dev->cdev.kobj, &input_dev_attr_group);
  775. if (error)
  776. goto fail1;
  777. error = sysfs_create_group(&dev->cdev.kobj, &input_dev_id_attr_group);
  778. if (error)
  779. goto fail2;
  780. error = sysfs_create_group(&dev->cdev.kobj, &input_dev_caps_attr_group);
  781. if (error)
  782. goto fail3;
  783. __module_get(THIS_MODULE);
  784. path = kobject_get_path(&dev->cdev.kobj, GFP_KERNEL);
  785. printk(KERN_INFO "input: %s as %s\n",
  786. dev->name ? dev->name : "Unspecified device", path ? path : "N/A");
  787. kfree(path);
  788. list_for_each_entry(handler, &input_handler_list, node)
  789. if (!handler->blacklist || !input_match_device(handler->blacklist, dev))
  790. if ((id = input_match_device(handler->id_table, dev)))
  791. if ((handle = handler->connect(handler, dev, id))) {
  792. input_link_handle(handle);
  793. if (handler->start)
  794. handler->start(handle);
  795. }
  796. input_wakeup_procfs_readers();
  797. return 0;
  798. fail3: sysfs_remove_group(&dev->cdev.kobj, &input_dev_id_attr_group);
  799. fail2: sysfs_remove_group(&dev->cdev.kobj, &input_dev_attr_group);
  800. fail1: class_device_del(&dev->cdev);
  801. return error;
  802. }
  803. EXPORT_SYMBOL(input_register_device);
  804. void input_unregister_device(struct input_dev *dev)
  805. {
  806. struct list_head *node, *next;
  807. if (!dev)
  808. return;
  809. del_timer_sync(&dev->timer);
  810. list_for_each_safe(node, next, &dev->h_list) {
  811. struct input_handle * handle = to_handle(node);
  812. list_del_init(&handle->d_node);
  813. list_del_init(&handle->h_node);
  814. handle->handler->disconnect(handle);
  815. }
  816. list_del_init(&dev->node);
  817. sysfs_remove_group(&dev->cdev.kobj, &input_dev_caps_attr_group);
  818. sysfs_remove_group(&dev->cdev.kobj, &input_dev_id_attr_group);
  819. sysfs_remove_group(&dev->cdev.kobj, &input_dev_attr_group);
  820. mutex_lock(&dev->mutex);
  821. dev->name = dev->phys = dev->uniq = NULL;
  822. mutex_unlock(&dev->mutex);
  823. class_device_unregister(&dev->cdev);
  824. input_wakeup_procfs_readers();
  825. }
  826. EXPORT_SYMBOL(input_unregister_device);
  827. void input_register_handler(struct input_handler *handler)
  828. {
  829. struct input_dev *dev;
  830. struct input_handle *handle;
  831. struct input_device_id *id;
  832. if (!handler)
  833. return;
  834. INIT_LIST_HEAD(&handler->h_list);
  835. if (handler->fops != NULL)
  836. input_table[handler->minor >> 5] = handler;
  837. list_add_tail(&handler->node, &input_handler_list);
  838. list_for_each_entry(dev, &input_dev_list, node)
  839. if (!handler->blacklist || !input_match_device(handler->blacklist, dev))
  840. if ((id = input_match_device(handler->id_table, dev)))
  841. if ((handle = handler->connect(handler, dev, id))) {
  842. input_link_handle(handle);
  843. if (handler->start)
  844. handler->start(handle);
  845. }
  846. input_wakeup_procfs_readers();
  847. }
  848. EXPORT_SYMBOL(input_register_handler);
  849. void input_unregister_handler(struct input_handler *handler)
  850. {
  851. struct list_head *node, *next;
  852. list_for_each_safe(node, next, &handler->h_list) {
  853. struct input_handle * handle = to_handle_h(node);
  854. list_del_init(&handle->h_node);
  855. list_del_init(&handle->d_node);
  856. handler->disconnect(handle);
  857. }
  858. list_del_init(&handler->node);
  859. if (handler->fops != NULL)
  860. input_table[handler->minor >> 5] = NULL;
  861. input_wakeup_procfs_readers();
  862. }
  863. EXPORT_SYMBOL(input_unregister_handler);
  864. static int input_open_file(struct inode *inode, struct file *file)
  865. {
  866. struct input_handler *handler = input_table[iminor(inode) >> 5];
  867. const struct file_operations *old_fops, *new_fops = NULL;
  868. int err;
  869. /* No load-on-demand here? */
  870. if (!handler || !(new_fops = fops_get(handler->fops)))
  871. return -ENODEV;
  872. /*
  873. * That's _really_ odd. Usually NULL ->open means "nothing special",
  874. * not "no device". Oh, well...
  875. */
  876. if (!new_fops->open) {
  877. fops_put(new_fops);
  878. return -ENODEV;
  879. }
  880. old_fops = file->f_op;
  881. file->f_op = new_fops;
  882. err = new_fops->open(inode, file);
  883. if (err) {
  884. fops_put(file->f_op);
  885. file->f_op = fops_get(old_fops);
  886. }
  887. fops_put(old_fops);
  888. return err;
  889. }
  890. static struct file_operations input_fops = {
  891. .owner = THIS_MODULE,
  892. .open = input_open_file,
  893. };
  894. static int __init input_init(void)
  895. {
  896. int err;
  897. err = class_register(&input_class);
  898. if (err) {
  899. printk(KERN_ERR "input: unable to register input_dev class\n");
  900. return err;
  901. }
  902. err = input_proc_init();
  903. if (err)
  904. goto fail1;
  905. err = register_chrdev(INPUT_MAJOR, "input", &input_fops);
  906. if (err) {
  907. printk(KERN_ERR "input: unable to register char major %d", INPUT_MAJOR);
  908. goto fail2;
  909. }
  910. return 0;
  911. fail2: input_proc_exit();
  912. fail1: class_unregister(&input_class);
  913. return err;
  914. }
  915. static void __exit input_exit(void)
  916. {
  917. input_proc_exit();
  918. unregister_chrdev(INPUT_MAJOR, "input");
  919. class_unregister(&input_class);
  920. }
  921. subsys_initcall(input_init);
  922. module_exit(input_exit);