sched_clock.c 6.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273
  1. /*
  2. * sched_clock for unstable cpu clocks
  3. *
  4. * Copyright (C) 2008 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
  5. *
  6. * Updates and enhancements:
  7. * Copyright (C) 2008 Red Hat, Inc. Steven Rostedt <srostedt@redhat.com>
  8. *
  9. * Based on code by:
  10. * Ingo Molnar <mingo@redhat.com>
  11. * Guillaume Chazarain <guichaz@gmail.com>
  12. *
  13. * Create a semi stable clock from a mixture of other events, including:
  14. * - gtod
  15. * - sched_clock()
  16. * - explicit idle events
  17. *
  18. * We use gtod as base and the unstable clock deltas. The deltas are filtered,
  19. * making it monotonic and keeping it within an expected window.
  20. *
  21. * Furthermore, explicit sleep and wakeup hooks allow us to account for time
  22. * that is otherwise invisible (TSC gets stopped).
  23. *
  24. * The clock: sched_clock_cpu() is monotonic per cpu, and should be somewhat
  25. * consistent between cpus (never more than 2 jiffies difference).
  26. */
  27. #include <linux/spinlock.h>
  28. #include <linux/hardirq.h>
  29. #include <linux/module.h>
  30. #include <linux/percpu.h>
  31. #include <linux/ktime.h>
  32. #include <linux/sched.h>
  33. /*
  34. * Scheduler clock - returns current time in nanosec units.
  35. * This is default implementation.
  36. * Architectures and sub-architectures can override this.
  37. */
  38. unsigned long long __attribute__((weak)) sched_clock(void)
  39. {
  40. return (unsigned long long)jiffies * (NSEC_PER_SEC / HZ);
  41. }
  42. static __read_mostly int sched_clock_running;
  43. #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
  44. __read_mostly int sched_clock_stable;
  45. #else
  46. static const int sched_clock_stable = 1;
  47. #endif
  48. struct sched_clock_data {
  49. /*
  50. * Raw spinlock - this is a special case: this might be called
  51. * from within instrumentation code so we dont want to do any
  52. * instrumentation ourselves.
  53. */
  54. raw_spinlock_t lock;
  55. u64 tick_raw;
  56. u64 tick_gtod;
  57. u64 clock;
  58. };
  59. static DEFINE_PER_CPU_SHARED_ALIGNED(struct sched_clock_data, sched_clock_data);
  60. static inline struct sched_clock_data *this_scd(void)
  61. {
  62. return &__get_cpu_var(sched_clock_data);
  63. }
  64. static inline struct sched_clock_data *cpu_sdc(int cpu)
  65. {
  66. return &per_cpu(sched_clock_data, cpu);
  67. }
  68. void sched_clock_init(void)
  69. {
  70. u64 ktime_now = ktime_to_ns(ktime_get());
  71. int cpu;
  72. for_each_possible_cpu(cpu) {
  73. struct sched_clock_data *scd = cpu_sdc(cpu);
  74. scd->lock = (raw_spinlock_t)__RAW_SPIN_LOCK_UNLOCKED;
  75. scd->tick_raw = 0;
  76. scd->tick_gtod = ktime_now;
  77. scd->clock = ktime_now;
  78. }
  79. sched_clock_running = 1;
  80. }
  81. /*
  82. * min, max except they take wrapping into account
  83. */
  84. static inline u64 wrap_min(u64 x, u64 y)
  85. {
  86. return (s64)(x - y) < 0 ? x : y;
  87. }
  88. static inline u64 wrap_max(u64 x, u64 y)
  89. {
  90. return (s64)(x - y) > 0 ? x : y;
  91. }
  92. /*
  93. * update the percpu scd from the raw @now value
  94. *
  95. * - filter out backward motion
  96. * - use the GTOD tick value to create a window to filter crazy TSC values
  97. */
  98. static u64 __update_sched_clock(struct sched_clock_data *scd, u64 now)
  99. {
  100. s64 delta = now - scd->tick_raw;
  101. u64 clock, min_clock, max_clock;
  102. WARN_ON_ONCE(!irqs_disabled());
  103. if (unlikely(delta < 0))
  104. delta = 0;
  105. if (unlikely(!sched_clock_running))
  106. return 0ull;
  107. /*
  108. * scd->clock = clamp(scd->tick_gtod + delta,
  109. * max(scd->tick_gtod, scd->clock),
  110. * scd->tick_gtod + TICK_NSEC);
  111. */
  112. clock = scd->tick_gtod + delta;
  113. min_clock = wrap_max(scd->tick_gtod, scd->clock);
  114. max_clock = wrap_max(scd->clock, scd->tick_gtod + TICK_NSEC);
  115. clock = wrap_max(clock, min_clock);
  116. clock = wrap_min(clock, max_clock);
  117. scd->clock = clock;
  118. return scd->clock;
  119. }
  120. static void lock_double_clock(struct sched_clock_data *data1,
  121. struct sched_clock_data *data2)
  122. {
  123. if (data1 < data2) {
  124. __raw_spin_lock(&data1->lock);
  125. __raw_spin_lock(&data2->lock);
  126. } else {
  127. __raw_spin_lock(&data2->lock);
  128. __raw_spin_lock(&data1->lock);
  129. }
  130. }
  131. u64 sched_clock_cpu(int cpu)
  132. {
  133. u64 now, clock, this_clock, remote_clock;
  134. struct sched_clock_data *scd;
  135. if (sched_clock_stable)
  136. return sched_clock();
  137. scd = cpu_sdc(cpu);
  138. /*
  139. * Normally this is not called in NMI context - but if it is,
  140. * trying to do any locking here is totally lethal.
  141. */
  142. if (unlikely(in_nmi()))
  143. return scd->clock;
  144. if (unlikely(!sched_clock_running))
  145. return 0ull;
  146. WARN_ON_ONCE(!irqs_disabled());
  147. now = sched_clock();
  148. if (cpu != raw_smp_processor_id()) {
  149. struct sched_clock_data *my_scd = this_scd();
  150. lock_double_clock(scd, my_scd);
  151. this_clock = __update_sched_clock(my_scd, now);
  152. remote_clock = scd->clock;
  153. /*
  154. * Use the opportunity that we have both locks
  155. * taken to couple the two clocks: we take the
  156. * larger time as the latest time for both
  157. * runqueues. (this creates monotonic movement)
  158. */
  159. if (likely((s64)(remote_clock - this_clock) < 0)) {
  160. clock = this_clock;
  161. scd->clock = clock;
  162. } else {
  163. /*
  164. * Should be rare, but possible:
  165. */
  166. clock = remote_clock;
  167. my_scd->clock = remote_clock;
  168. }
  169. __raw_spin_unlock(&my_scd->lock);
  170. } else {
  171. __raw_spin_lock(&scd->lock);
  172. clock = __update_sched_clock(scd, now);
  173. }
  174. __raw_spin_unlock(&scd->lock);
  175. return clock;
  176. }
  177. #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
  178. void sched_clock_tick(void)
  179. {
  180. struct sched_clock_data *scd = this_scd();
  181. u64 now, now_gtod;
  182. if (unlikely(!sched_clock_running))
  183. return;
  184. WARN_ON_ONCE(!irqs_disabled());
  185. now_gtod = ktime_to_ns(ktime_get());
  186. now = sched_clock();
  187. __raw_spin_lock(&scd->lock);
  188. scd->tick_raw = now;
  189. scd->tick_gtod = now_gtod;
  190. __update_sched_clock(scd, now);
  191. __raw_spin_unlock(&scd->lock);
  192. }
  193. /*
  194. * We are going deep-idle (irqs are disabled):
  195. */
  196. void sched_clock_idle_sleep_event(void)
  197. {
  198. sched_clock_cpu(smp_processor_id());
  199. }
  200. EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
  201. /*
  202. * We just idled delta nanoseconds (called with irqs disabled):
  203. */
  204. void sched_clock_idle_wakeup_event(u64 delta_ns)
  205. {
  206. if (timekeeping_suspended)
  207. return;
  208. sched_clock_tick();
  209. touch_softlockup_watchdog();
  210. }
  211. EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
  212. #endif /* CONFIG_HAVE_UNSTABLE_SCHED_CLOCK */
  213. unsigned long long cpu_clock(int cpu)
  214. {
  215. unsigned long long clock;
  216. unsigned long flags;
  217. local_irq_save(flags);
  218. clock = sched_clock_cpu(cpu);
  219. local_irq_restore(flags);
  220. return clock;
  221. }
  222. EXPORT_SYMBOL_GPL(cpu_clock);